JPH01267384A - Screw rotor having beveled tooth - Google Patents

Screw rotor having beveled tooth

Info

Publication number
JPH01267384A
JPH01267384A JP9143588A JP9143588A JPH01267384A JP H01267384 A JPH01267384 A JP H01267384A JP 9143588 A JP9143588 A JP 9143588A JP 9143588 A JP9143588 A JP 9143588A JP H01267384 A JPH01267384 A JP H01267384A
Authority
JP
Japan
Prior art keywords
rotor
screw
screw rotor
tooth
gradually
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9143588A
Other languages
Japanese (ja)
Inventor
Hirochika Kametani
裕敬 亀谷
Riichi Uchida
利一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9143588A priority Critical patent/JPH01267384A/en
Publication of JPH01267384A publication Critical patent/JPH01267384A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To improve the efficiency of a machine, by making gradually small the outer diameter of at least one of a pair of two screw rotors, while enlarging gradually the tooth bottom diameter of the other rotor, and providing each tooth of the rotor as a beveled tooth the height of which is made smaller gradually. CONSTITUTION:In a screw fluid machine which is formed by accomodating inside a casing 6 a pair of screw rotor 1a, 1b rotated is synchronism through synchronous gears 2a, 2b in the condition engaged each other while the total of the outer diameter of one side rotor 1a or 1b and the tooth bottom diameter of the other rotor 1b or 1a is kept nearly a constant value in the vertical section of every shaft the outer diameter of at least one of two rotors 1a, 1b is gradually formed smaller in the rotary shaft direction. An simultaneously, the tooth bottom diameter of the other rotor is gradually enlarged in the rotary shaft direction. Thereby, a beveled tooth is formed with its height gradually reduced, so that operation of high efficiency can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスクリュー真空ポンプあるいはスクリュー圧縮
機等のスクリュー式流体機械に係り、特に製作が容易で
効率の高いスクリューロータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a screw type fluid machine such as a screw vacuum pump or a screw compressor, and particularly to a screw rotor that is easy to manufacture and has high efficiency.

〔従来の技術〕[Conventional technology]

従来のスクリュー圧縮機やスクリュー真空ポンプなどの
スクリュー流体機械においては、スクリューロータの長
さがリードとほぼ同等か短い場合が多い、このため運転
により最も高圧となる作動室と、吸入が終了して間もな
い低圧の作動室が。
In screw fluid machines such as conventional screw compressors and screw vacuum pumps, the length of the screw rotor is often about the same as or shorter than the lead, so the working chamber is at the highest pressure during operation, and the working chamber is at the highest pressure when suction is completed. A low-pressure working chamber will soon appear.

隣接している。Adjacent.

無給油式のスクリュー流体機械においては、スクリュー
ロータ相互で接触せぬよう微少な隙間が設けられている
ので、この隙間からの流体の漏洩がある。流体の漏洩の
量は圧力差が大きいほど多くなるので、先に述べた従来
のスクリュー流体機械では高圧の作動室から低圧の作動
室への漏洩量が多く、発熱や効率の低下が大きい問題で
あった。
In an oil-free screw fluid machine, a minute gap is provided to prevent the screw rotors from coming into contact with each other, so fluid leaks from this gap. The amount of fluid leaking increases as the pressure difference increases, so in the conventional screw fluid machine mentioned above, there is a large amount of leakage from the high pressure working chamber to the low pressure working chamber, which causes problems such as heat generation and a decrease in efficiency. there were.

これを解決する手段として、スクリューロータの長さを
リードに対して十分長くして、各々の歯溝を回転軸の回
りに360℃以上にわたって形成する方法がある。
As a means to solve this problem, there is a method in which the length of the screw rotor is made sufficiently longer than the lead, and each tooth groove is formed over 360 degrees Celsius or more around the rotation axis.

しかし上記手段を用いることで1次に述べる欠点が生じ
てしまう。
However, the use of the above means causes the following drawbacks.

作動時のスクリューロータの回転に従って、スクリュー
ロータの歯溝とケーシング内面そして相手側スクリュー
ロータの歯先によって閉じられたらせん状の空間である
作動室が吸込口側から吐出口側へ移動する。ただしここ
で作動室は閉じられた空間と表現したが、先に述べた理
由により実際には微少な隙間′が依存している。
As the screw rotor rotates during operation, the working chamber, which is a spiral space closed by the tooth grooves of the screw rotor, the inner surface of the casing, and the tips of the teeth of the mating screw rotor, moves from the suction port side to the discharge port side. However, although the working chamber is described here as a closed space, it actually depends on a minute gap' for the reasons mentioned above.

吸込口からの流体の吸入が完了し、作動室が閉じられる
と、しばらくの開作動室は一定の容積のままで移動する
。そして吐出側の端まで移動した時に、ケーシング端面
を作動室の一壁面とすることで容積の縮小すなわち圧縮
が始まる。そしてスクリューロータの1回転以内の短時
間で圧力を急激に上昇させて圧縮を完了させる。
When the suction of fluid from the suction port is completed and the working chamber is closed, the open working chamber remains at a constant volume and moves for a while. When the casing reaches the end on the discharge side, the end surface of the casing becomes one wall of the working chamber, and the volume begins to be reduced, that is, compressed. Then, the pressure is rapidly increased within a short period of one revolution of the screw rotor to complete compression.

圧力を急激に上昇させるということは、隣合った作動室
間の圧力差が大きくなることを意味しており、先に述べ
た2つのスクリューロータ聞及びスクリューロータとケ
ーシングの間の微少な隙間からの流体が漏洩量が増加し
てしまう。
Rapidly increasing the pressure means that the pressure difference between adjacent working chambers becomes larger, and from the minute gap between the two screw rotors and between the screw rotor and the casing mentioned earlier. The amount of fluid leaking increases.

この漏洩量増加の対策として吸入が完了し、作動室が閉
じられてから漸次作動室の容積を減じて、急激な圧縮を
避ける方法がある1作動室の容積を漸次縮小する従来技
術としては例えば特公報38−15285号公報、特公
昭59−36116号公報に開示されているものがある
As a countermeasure against this increase in leakage amount, there is a method of gradually reducing the volume of the working chamber after suction is completed and the working chamber is closed to avoid sudden compression.1 Conventional techniques for gradually reducing the volume of the working chamber include, for example. Some of these are disclosed in Japanese Patent Publication No. 38-15285 and Japanese Patent Publication No. 59-36116.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来技術で述べられているものは、スクリューロ
ータの設計製造方法及びケーシングの製造方法について
配慮されておらず、製造上の問題があった。
The prior art described above does not take into consideration the design and manufacturing method of the screw rotor and the method of manufacturing the casing, and there are problems in manufacturing.

該特許で述べられているスクリューロータは回転軸に対
して平行な面あるいは垂直な面が少ない。
The screw rotor described in this patent has few surfaces parallel or perpendicular to the axis of rotation.

また回転軸と相手となるスクリューロータの回転軸とは
平行でないため、回転に伴う歯面の軌跡を幾何学的に表
現する数式が複雑になる。
Furthermore, since the rotation axis and the rotation axis of the mating screw rotor are not parallel, the mathematical formula for geometrically expressing the locus of the tooth surface due to rotation becomes complicated.

また両ロータの回転同期をとる歯車もかさ歯車を必要と
し、歯車の精度を出すことが難しい、噛み合って回転す
るスクリューロータの歯形を設計するにあたっては、相
手の歯との干渉あるいは歯面の創成等の複雑な幾何計算
が不可欠であることから、これらのことは歯形の設計を
困難にしてしまうという問題がある。
In addition, the gears that synchronize the rotation of both rotors require bevel gears, and it is difficult to achieve the precision of the gears.When designing the tooth profile of the screw rotors that rotate in mesh, it is important to avoid interference with the mating teeth or the creation of tooth surfaces. Since complex geometrical calculations such as these are essential, there is a problem in that these things make designing the tooth profile difficult.

また同じ理由から、従来の工作機械で精度よく該スクリ
ューロータを加工することは非常に難しく、さらにケー
シングにおいても2本の回転軸を精度よく交叉するよう
に加工することは困難という製造上の問題があった。
For the same reason, it is extremely difficult to machine the screw rotor with high precision using conventional machine tools, and it is also difficult to machine the casing so that the two rotating axes intersect with high precision, which is a manufacturing problem. was there.

また、他の従来技術で述べられているものは上記の公知
例での設計製作の困難さという問題を解決している。
In addition, other prior art techniques solve the problem of difficulty in design and manufacturing in the above-mentioned known examples.

しかし該特許によるスクリュー流体機械はスクリューロ
ータの回転により漸次容積が縮小する作動室の他に、容
積が増加する作動室を持っている。
However, the screw fluid machine according to this patent has a working chamber whose volume gradually decreases as the screw rotor rotates, and a working chamber whose volume increases.

この作動室は不要であり、機械全体を大きくしてしまう
ほか、エネルギを消費してしまうため効率を低下すると
いう問題があった。
This working chamber is unnecessary, which increases the size of the entire machine and consumes energy, which reduces efficiency.

本発明の目的は設計や製作が容易で、効率のよいスクリ
ューロータを実現することにある。
An object of the present invention is to realize an efficient screw rotor that is easy to design and manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は2つのロータの回転軸を平行にし、一方のロ
ータの外径と他方のロータの歯底径との合計がどこの軸
直角断面をとってもほぼ一定の値を保つようにしながら
、2つのスクリューロータのうち少なくとも一方の外径
を回転軸方向に次第に小さくすると同時に、相手ロータ
の歯底径を回転軸方向に次第に大きくして、スクリュー
ロータの歯を歯丈が次第に低くなる勾配歯にすることに
よって達成される。
The above purpose is to make the rotational axes of the two rotors parallel, so that the sum of the outer diameter of one rotor and the root diameter of the other rotor remains approximately constant no matter where the cross section perpendicular to the axis is taken. Gradually reduce the outer diameter of at least one of the screw rotors in the direction of the rotation axis, and at the same time gradually increase the tooth bottom diameter of the mating rotor in the direction of the rotation axis, making the teeth of the screw rotor gradient teeth with gradually lower tooth heights. This is achieved by

〔作用〕[Effect]

−組のスクリューロータを噛み合わせてケーシングに組
み込むと、ロータとケーシングに囲まれた空間すなわち
作動室が形成される0本発明によるスクリューロータは
勾配歯を有しているので、この作動室の容積は一端から
他端へ向かって漸次減少する。
- When a pair of screw rotors are meshed and assembled into a casing, a space surrounded by the rotor and the casing, that is, a working chamber is formed.Since the screw rotor according to the present invention has sloped teeth, the volume of this working chamber is gradually decreases from one end to the other.

このスクリューロータを圧縮機あるいt2真空ポンプに
実施する場合には、一端が吸込側、他端が吐出側となる
ので、各々のロータ端部を仮にそう呼ぶことにする。す
ると作動室容積は吸込側から吐出側へ向って漸次縮少す
ることになる。
When this screw rotor is used in a compressor or a t2 vacuum pump, one end will be the suction side and the other end will be the discharge side, so each rotor end will be temporarily referred to as such. Then, the working chamber volume gradually decreases from the suction side to the discharge side.

2つのスクリューロータを同期をとって回転させると作
動室は吸込側から吐出側へ移動する。
When the two screw rotors are rotated synchronously, the working chamber moves from the suction side to the discharge side.

1つの作動室についてみると、容積が次第に縮小しなが
ら移動することになる0時間の経過を追ってみると、流
体が作動に吸い込まれる吸い込み過程が終了して作動室
が閉じられると、直ちに作動室容積の縮小が開始される
。さらに作動室の容積は縮小を続け、内部に閉じ込めた
流体を漸次圧縮していく。そして作動室が吐出端面に到
達すると同時あるいはその前後において吐出口が開かれ
て圧縮された流体が排出される。
As for one working chamber, if we follow the passage of time 0 when the volume gradually decreases and moves, as soon as the suction process in which fluid is sucked into the working chamber ends and the working chamber is closed, the working chamber Volume reduction begins. Furthermore, the volume of the working chamber continues to shrink, gradually compressing the fluid trapped inside. Then, at the same time or before or after the working chamber reaches the discharge end surface, the discharge port is opened and the compressed fluid is discharged.

流体の圧縮が吸い込みから吐出まで継続して漸次行われ
るので、隣合った作動室どうしの圧力差は小さい、した
がってスクリューロータ相互間やスクリューロータとケ
ーシングの間の微少な隙間からの流体あ漏洩量は少ない
、このため本スクリューロータを用いればスクリュー流
体機械の効率を向上できる。
Since the fluid is compressed continuously and gradually from suction to discharge, the pressure difference between adjacent working chambers is small. Therefore, the amount of fluid leaking from minute gaps between screw rotors or between the screw rotor and casing is small. Therefore, the efficiency of screw fluid machines can be improved by using this screw rotor.

〔実施例〕〔Example〕

以下1発明の実施例を図面を用いて説明する。 An embodiment of the invention will be described below with reference to the drawings.

第1図は本発明の特徴を最も良く表わしているスクリュ
ーロータの側面図、第2図は第1図のスクリューロータ
の回転軸を含む断面図である。
FIG. 1 is a side view of a screw rotor that best represents the features of the present invention, and FIG. 2 is a cross-sectional view of the screw rotor shown in FIG. 1, including its rotation axis.

これらの図において、2つのロータは微少な隙間をあけ
て互いに噛合っている。2つのロータの歯の部分はほぼ
同一形状をしており、ねじり方向のみが左右逆になって
いる。この−組のロータを圧縮機あるいは真空ポンプに
使用する場合には、図中のスクリューロータの歯の部分
の左端が吸込側で右端が吐出側となる。スクリューロー
タの外径は2つとも吸入側から吐出側へいくに従って直
線的に減少させており、いずれの一方のロータも円錐型
の穴に内接する。一方面底径を吸入側から吐出側へいく
に従って外径と同じ割合で増加させることで、2つのロ
ータが噛み合っている。
In these figures, the two rotors mesh with each other with a small gap. The teeth of the two rotors have almost the same shape, and only the twisting direction is reversed. When this set of rotors is used in a compressor or a vacuum pump, the left end of the toothed portion of the screw rotor in the figure is the suction side, and the right end is the discharge side. The outer diameters of both screw rotors decrease linearly from the suction side to the discharge side, and either rotor is inscribed in a conical hole. The two rotors mesh with each other by increasing the bottom diameter of one surface at the same rate as the outer diameter from the suction side to the discharge side.

作動室はケーシングによって蓋されたスクリューロータ
のらせん状の溝を相手側スクリューロータの歯によって
いくつかの室に区切られて形成されている。1つの作動
室の容積は、吐出側へいくほど外径と歯底径の差に比例
して歯丈が小さくなる分だけ減少する。
The working chamber is formed by dividing a spiral groove of a screw rotor covered by a casing into several chambers by teeth of a mating screw rotor. The volume of one working chamber decreases toward the discharge side as the tooth height decreases in proportion to the difference between the outer diameter and the tooth bottom diameter.

2つのロータを同期させて回転させると1作動室は吸込
側から吐出側へと移動しながらその容積を減少する。こ
のため閉じ込めた流体を吸入側から吐出側へ移送しなが
ら圧縮を行ういわゆる内部圧縮が可能で効率を向上でき
る。
When the two rotors are rotated synchronously, one working chamber decreases in volume while moving from the suction side to the discharge side. Therefore, it is possible to perform so-called internal compression in which the confined fluid is compressed while being transferred from the suction side to the discharge side, thereby improving efficiency.

また本スクリューロータは旋盤加工に適しており、リー
ドが均一で、外径も単なるテーバをなしている。歯の前
進面や後進面も回転軸に対して直角である。したがって
特殊な刃具、工作機械が不要なので安価に製作できる利
点がある。
In addition, this screw rotor is suitable for lathe processing, has a uniform lead, and has a simple tapered outer diameter. The advancing and retracting surfaces of the teeth are also perpendicular to the axis of rotation. Therefore, it has the advantage that it can be manufactured at low cost since no special cutting tools or machine tools are required.

本実施例の歯形は、微少であるが干渉を生ずるために、
2つのスクリューロータの間に微少な隙間を設けなけれ
ばならない、この隙間から流体が漏れると効率が低下し
てしまう、この勾配歯を有するスクリューロータでは歯
丈の高い吸込側では干渉量が大きく、歯丈の低い吐出側
では干渉量が小さいので、隙間も干渉量に合わせて吸入
側より吐出側が小さくできる。同じ隙間と圧力差に対し
て絶対圧力が高いほど漏れは多い0本実施例のスクリュ
ーロータは圧力が高く漏れが多くなりゃすい吐出側にお
いて、隙間が小さくできるので、漏れを少なくおさえる
ことができる。
The tooth profile of this example causes slight interference, so
A small gap must be provided between the two screw rotors, and if fluid leaks from this gap, efficiency will decrease.In this screw rotor with sloped teeth, the amount of interference is large on the suction side where the tooth height is high. Since the amount of interference is small on the discharge side where the tooth height is low, the gap can be made smaller on the discharge side than on the suction side in accordance with the amount of interference. For the same gap and pressure difference, the higher the absolute pressure, the more leakage will occur.In the screw rotor of this embodiment, the gap can be made smaller on the discharge side where pressure is high and leakage is likely to occur, so leakage can be kept to a minimum.

第3図は第1図で示した実施例のスクリューロータを使
ったスクリュー流体機械の断面図である。
FIG. 3 is a sectional view of a screw fluid machine using the screw rotor of the embodiment shown in FIG.

ケーシング6の内部に一組のスクリューロータ1a及び
1bが噛合った状態で取り付けられる。
A pair of screw rotors 1a and 1b are attached inside the casing 6 in a meshed state.

2つのスクリューロータを同期をとって回転させるため
に、各々の回転軸に同期歯車2a及び2bを取り付ける
。また動力は動力入力軸3を回転することによって入力
される。この流体機械を圧縮機あるいは真空ポンプとし
て使う場合には、吸込口4から流体が作動室へ吸い込ま
れ、内部圧縮を径で吐出口5から吐き出される。
In order to rotate the two screw rotors synchronously, synchronous gears 2a and 2b are attached to each rotating shaft. Further, power is input by rotating the power input shaft 3. When this fluid machine is used as a compressor or a vacuum pump, fluid is sucked into the working chamber through the suction port 4 and discharged from the discharge port 5 in the form of internal compression.

第4図は本発明の他の一実施例で、スクリューロータ内
部にモータを組み込んだ真空ポンプの例である。
FIG. 4 shows another embodiment of the present invention, which is an example of a vacuum pump in which a motor is incorporated inside a screw rotor.

ケーシング16の内部にスクリューロータila及びl
lbが噛合った状態で取り付けられる。2つのスクリュ
ーロータを同期をとって回転させるために各々のスクリ
ューロータ下端に同期歯車12a及び12bを取りつけ
る。また内側に固定子13a、外側に回転子13bを持
つアウタモータをスクリューロータllaの内部に設け
る。
Screw rotors ila and l are installed inside the casing 16.
It is installed with the lbs engaged. Synchronous gears 12a and 12b are attached to the lower end of each screw rotor to rotate the two screw rotors synchronously. Further, an outer motor having a stator 13a on the inside and a rotor 13b on the outside is provided inside the screw rotor lla.

流体は吸込口14から真空ポンプ内部に入り、作動室に
吸い込まれた後、内部圧縮を経て吐出口15から吐き出
される。
The fluid enters the inside of the vacuum pump through the suction port 14, is sucked into the working chamber, is internally compressed, and is discharged from the discharge port 15.

この実施例では、スクリューロータの吸込口側に回転軸
が突き出ていない、そのため軸受や同期歯車等に使用す
る潤滑油は吸込口側に不要なので、潤滑油が真空ポンプ
から逆流して真空を汚染する心配がない。
In this example, the rotating shaft does not protrude from the suction port side of the screw rotor, so lubricating oil used for bearings, synchronous gears, etc. is not needed on the suction port side, so the lubricating oil flows back from the vacuum pump and contaminates the vacuum. There is no need to worry about doing so.

またスクリューロータを支えている軸受はスクリューロ
ータの両端近くにあるので1片持ち構造に比較して剛性
が高く、振動や負荷変動に強い。
Furthermore, since the bearings that support the screw rotor are located near both ends of the screw rotor, they are more rigid than a single cantilever structure and are resistant to vibration and load fluctuations.

さらのスクリューロータ内部にモータを設けたことで、
真空ポンプ全体を小形化することができる。スクリュー
ロータlla内部のモータのみでは出力が不足する場合
にはスクリューロータllb内部にもモータを設け、2
つのモータによって駆動することもできる。
By installing a motor inside the further screw rotor,
The entire vacuum pump can be downsized. If the motor inside screw rotor lla alone is insufficient in output, a motor is also installed inside screw rotor llb, and 2
It can also be driven by two motors.

第5図は本発明の更に他の実施例の断面図である0本実
施例は内部圧縮における1回転あたりの圧縮比を一定に
するため、歯丈の変化を指数関数的にしたものである。
FIG. 5 is a sectional view of still another embodiment of the present invention. In this embodiment, the change in tooth height is made exponential in order to keep the compression ratio per revolution constant in internal compression. .

本実施例のスクリューロータ21a、21bを圧縮機あ
るいは真空ポンプに適用した場合には、左端が吸込側、
右端が吐出側になる。圧力が高く隙間からの漏れが多く
なりやすい吐出側近くでは隣の作動室どうしの圧力比が
小さく、漏れが少なくなり、効率を向上する効果がある
When the screw rotors 21a and 21b of this embodiment are applied to a compressor or a vacuum pump, the left end is the suction side,
The right end will be the discharge side. Near the discharge side, where pressure is high and leakage from gaps is likely to increase, the pressure ratio between adjacent working chambers is small, reducing leakage and improving efficiency.

第6図は本発明の更に他の実施例の断面図である。FIG. 6 is a sectional view of still another embodiment of the present invention.

本実施例のスクリューロータ31a、31bのうちの一
方のスクリューロータ(この例では31a)の外径が一
定で歯底径が次第に大きくなっており。
The outer diameter of one of the screw rotors 31a and 31b (31a in this example) of the present embodiment is constant, and the tooth root diameter gradually increases.

他方のスクリューロータ(この例では31b)は 。The other screw rotor (31b in this example) is.

外径が次第に小さくなって歯底径は一定である。The outer diameter gradually decreases and the root diameter remains constant.

第3図で示した実施例においてはケーシングにおいて2
つのスクリューロータla、lbが入る一部が重複して
いる2つの円錐状の穴を加工する必要があるが、本実施
例では一方のスクリューロータ31aの外径が一定なの
で、ケーシングに開ける2つの穴は円錐形と円筒形とな
る。そのため2つの穴の軸方向での位置合わせが不要で
あり加工が容易であるという利点がある。
In the embodiment shown in FIG.
It is necessary to machine two partially overlapping conical holes into which the two screw rotors la and lb are inserted, but in this example, since the outer diameter of one screw rotor 31a is constant, the two conical holes drilled in the casing are The holes will be conical and cylindrical. Therefore, there is an advantage that alignment of the two holes in the axial direction is not necessary, and machining is easy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スクリュー流体機械内部において1作
動室の移動を行いながら作動室の容積を漸次減少させる
内部圧縮が可能である。
According to the present invention, internal compression is possible in which the volume of the working chamber is gradually reduced while moving one working chamber inside the screw fluid machine.

このため吸込を終了した作動室とそれに隣接する圧縮途
中の作動室との圧力差は小さく、従って吸込み効率は1
00%に近い。
Therefore, the pressure difference between the working chamber that has finished suction and the adjacent working chamber that is in the middle of compression is small, and therefore the suction efficiency is 1
Close to 00%.

しかも内部圧縮を行うことにより、トルクの増大をおさ
えることができるので1機械の効率を大幅によくするこ
とができる。
Moreover, by performing internal compression, it is possible to suppress an increase in torque, so the efficiency of one machine can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図、第2図は第1図の
回転軸を含む断面図、第3図は第1図の実施例をスクリ
ュー流体機械に使用した一例の断面図、第4図は本発明
の他の実施例の断面図、第5図は本発明の更に他の実施
例の断面図、第6図は本発明の更に他の実施例の断面図
である。 1 a 、  1 b 、  11 a 、  1 l
 b−スクリューロータ、2 a 、 2 b 、 1
2 a 、 12 b−同期歯車、4,14・・・吸込
0.5.15・・・吐出口、6,16・・・ケーシング
、3・・・動力入力軸、13a・・・アウタモータ固代
理人 弁理士 小川勝男−゛′ 鴇  /l!1 塙 2 図 1久、To   スクリューローフ 第 3  記 第  4  口 /4− 第 5 図 第 6  ロ ゴl(L、ij衾 ヌ7す・−ロータ
Fig. 1 is a side view of one embodiment of the present invention, Fig. 2 is a sectional view including the rotating shaft of Fig. 1, and Fig. 3 is a sectional view of an example in which the embodiment of Fig. 1 is used in a screw fluid machine. , FIG. 4 is a sectional view of another embodiment of the invention, FIG. 5 is a sectional view of still another embodiment of the invention, and FIG. 6 is a sectional view of still another embodiment of the invention. 1 a, 1 b, 11 a, 1 l
b-Screw rotor, 2a, 2b, 1
2 a, 12 b - synchronous gear, 4, 14... Suction 0.5.15... Discharge port, 6, 16... Casing, 3... Power input shaft, 13a... Outer motor fixed representative People Patent Attorney Katsuo Ogawa-゛′ Toki /l! 1 Hanawa 2 Figure 1 Ku, To Screw Loaf No. 3 No. 4 Mouth/4- No. 5 Figure No. 6 Logo l (L, ij 衾 nu7su・-rotor

Claims (1)

【特許請求の範囲】 1、平行な二軸の回りを互に噛合つてスクリューロータ
と、このロータを収納したケーシングによつて形成され
る作動室が、回転軸方向に複数個形成されると共に各軸
の回りのらせん状の作動室が互に連通しないスクリュー
流体機械において、一方のスクリューロータの外径と他
方のスクリューロータの歯底径の合計がどの軸直角断面
をとつてもほぼ一定の値を保ちながら、2つのスクリュ
ーロータのうち少なくとも一方の外径を回転軸方向に漸
次小さくすると同時に相手ロータの歯底径を回転軸方向
に漸次大きくすることで歯丈が次第に低くなる勾配歯と
したことを特徴とする勾配歯を有するスクリューロータ
。 2、特許請求の範囲第1項において、少なくとも一方の
スクリューロータの内部にケーシングに固定された死軸
を持ち、その死軸を回転軸とするアウタモータ(内側が
固定子、外側が回転子という構造のモータ)によりスク
リューロータが駆動されることを特徴とする勾配歯を有
するスクリューロータ。
[Scope of Claims] 1. A plurality of working chambers are formed in the direction of the rotation axis, each of which is formed by a screw rotor that meshes around two parallel shafts and a casing that houses this rotor. In a screw fluid machine where the spiral working chambers around the shaft do not communicate with each other, the sum of the outer diameter of one screw rotor and the root diameter of the other screw rotor is approximately constant regardless of the cross section perpendicular to the axis. While maintaining the same, the outer diameter of at least one of the two screw rotors is gradually decreased in the direction of the rotation axis, and at the same time the tooth bottom diameter of the mating rotor is gradually increased in the direction of the rotation axis, thereby creating a sloped tooth whose tooth height gradually decreases. A screw rotor having sloped teeth, characterized in that: 2. In claim 1, an outer motor (a structure in which the inner side is a stator and the outer side is a rotor) has a dead shaft fixed to a casing inside at least one screw rotor, and the dead shaft is the rotating shaft. A screw rotor having inclined teeth, characterized in that the screw rotor is driven by a motor).
JP9143588A 1988-04-15 1988-04-15 Screw rotor having beveled tooth Pending JPH01267384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143588A JPH01267384A (en) 1988-04-15 1988-04-15 Screw rotor having beveled tooth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143588A JPH01267384A (en) 1988-04-15 1988-04-15 Screw rotor having beveled tooth

Publications (1)

Publication Number Publication Date
JPH01267384A true JPH01267384A (en) 1989-10-25

Family

ID=14026290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143588A Pending JPH01267384A (en) 1988-04-15 1988-04-15 Screw rotor having beveled tooth

Country Status (1)

Country Link
JP (1) JPH01267384A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019586A (en) * 1998-01-20 2000-02-01 Sunny King Machinery Co., Ltd. Gradationally contracted screw compression equipment
US6200116B1 (en) * 1998-06-17 2001-03-13 The Boc Group Plc Vacuum pumps
US6257854B1 (en) * 2000-02-02 2001-07-10 Industrial Technology Research Institute Double screw rotor assembly having means to automatically adjust the clearance by pressure difference
US6386848B2 (en) * 2000-03-15 2002-05-14 Teijin Seiki Co., Ltd. Screw rotors and screw machine
US7150611B2 (en) * 2000-02-18 2006-12-19 Vratislav Perna Equipment with mutually interacting spiral teeth
US20110033330A1 (en) * 2009-08-10 2011-02-10 Christian Endres Gear pump for viscous media
WO2011148797A1 (en) * 2010-05-24 2011-12-01 国立大学法人東北大学 Screw vacuum pump
JP2013507575A (en) * 2009-10-21 2013-03-04 コディヴァック リミテッド Screw rotor vacuum pump with built-in motor
WO2019210053A1 (en) * 2018-04-27 2019-10-31 Carrier Corporation Screw compressor with external motor rotor
WO2022085631A1 (en) * 2020-10-23 2022-04-28 株式会社日立産機システム Screw compressor and screw rotor
US12031536B2 (en) 2020-10-23 2024-07-09 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor and screw rotor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019586A (en) * 1998-01-20 2000-02-01 Sunny King Machinery Co., Ltd. Gradationally contracted screw compression equipment
US6200116B1 (en) * 1998-06-17 2001-03-13 The Boc Group Plc Vacuum pumps
US6257854B1 (en) * 2000-02-02 2001-07-10 Industrial Technology Research Institute Double screw rotor assembly having means to automatically adjust the clearance by pressure difference
US7150611B2 (en) * 2000-02-18 2006-12-19 Vratislav Perna Equipment with mutually interacting spiral teeth
US6386848B2 (en) * 2000-03-15 2002-05-14 Teijin Seiki Co., Ltd. Screw rotors and screw machine
US20110033330A1 (en) * 2009-08-10 2011-02-10 Christian Endres Gear pump for viscous media
JP2013507575A (en) * 2009-10-21 2013-03-04 コディヴァック リミテッド Screw rotor vacuum pump with built-in motor
WO2011148797A1 (en) * 2010-05-24 2011-12-01 国立大学法人東北大学 Screw vacuum pump
WO2019210053A1 (en) * 2018-04-27 2019-10-31 Carrier Corporation Screw compressor with external motor rotor
CN111989490A (en) * 2018-04-27 2020-11-24 开利公司 Screw compressor with external motor rotor
US11519409B2 (en) 2018-04-27 2022-12-06 Carrier Corporation Screw compressor with external motor rotor
WO2022085631A1 (en) * 2020-10-23 2022-04-28 株式会社日立産機システム Screw compressor and screw rotor
US12031536B2 (en) 2020-10-23 2024-07-09 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor and screw rotor

Similar Documents

Publication Publication Date Title
US5800151A (en) Screw rotor and method of generating tooth profile therefor
US11248606B2 (en) Rotor pair for a compression block of a screw machine
JPH06307360A (en) Fluid rotating device
US3822972A (en) Multistart helical rotor mechanism
DE102013009040A1 (en) Spindle compressor with high internal compression
JPH01267384A (en) Screw rotor having beveled tooth
JP2619468B2 (en) Oil-free screw fluid machine
US3116871A (en) Rotary gas motor and compressor with conical rotors
TWI274107B (en) Screw fluid machine
US6200116B1 (en) Vacuum pumps
US3138110A (en) Helically threaded intermeshing rotors
US4679996A (en) Rotary machine having screw rotor assembly
JP2010196582A (en) Single screw compressor
JP2924997B2 (en) Screw machine
EP0171180A1 (en) Screw compressor
CN113236561B (en) Variable-pitch co-rotating meshing double-screw compressor rotor and compressor
CN112780553A (en) Rotor subassembly, compressor and air conditioner
CN112797001A (en) Rotor subassembly, compressor and air conditioner
JPH0932766A (en) Screw fluid machine and screw gear
CN215256790U (en) Rotor subassembly, compressor and air conditioner
JP4248055B2 (en) Oil-cooled screw compressor
GB2501305A (en) Screw machine with tapered diameter rotors
JPS5936116B2 (en) fluid machinery
JP3073889U (en) Compound twin screw rotor device
CN109373167B (en) Oil pump with double oil outlet channel structure