WO2011049187A1 - Soldering device and soldering method - Google Patents

Soldering device and soldering method Download PDF

Info

Publication number
WO2011049187A1
WO2011049187A1 PCT/JP2010/068651 JP2010068651W WO2011049187A1 WO 2011049187 A1 WO2011049187 A1 WO 2011049187A1 JP 2010068651 W JP2010068651 W JP 2010068651W WO 2011049187 A1 WO2011049187 A1 WO 2011049187A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab lead
battery cell
solar battery
soldering
tab
Prior art date
Application number
PCT/JP2010/068651
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 石川
学 片山
昌人 笠原
一茂 石原
Original Assignee
日清紡メカトロニクス株式会社
日清紡アルプステック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡メカトロニクス株式会社, 日清紡アルプステック株式会社 filed Critical 日清紡メカトロニクス株式会社
Publication of WO2011049187A1 publication Critical patent/WO2011049187A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/008Soldering within a furnace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a soldering apparatus and a soldering method for soldering solar cells and tab leads.
  • the solar cell module is configured by electrically connecting adjacent solar cells among a plurality of solar cells arranged in a row on one surface.
  • solar cells when solar cells are electrically connected to each other, the front side connection electrode of one of the adjacent solar cells and the back side connection electrode of the other solar cell are soldered using a tab lead. It is done by the soldering device that performs.
  • a conventional soldering apparatus includes a loading unit that sequentially arranges solar cells and tab leads, and a soldering unit that solders the solar cells and tab leads.
  • the loading unit conveys the tab leads and the solar cells to the soldering unit while sequentially arranging the tab leads and the solar cells in a string form for each one-pitch feed on the conveyor that is carrying the one-pitch feed.
  • the soldering part is a solar cell by heating and pressing the contact part between the solar cell and the tab lead at a temperature equal to or higher than the solder melting point using a hot air heater or the like for a short time until the next one-pitch feed. And tab lead.
  • the temperature of the contact portion between the solar cell and the tab lead is rapidly raised from a substantially room temperature state to a temperature higher than the solder melting point in a short time. Cracks are likely to occur.
  • it is conceivable that the cracking rate of the solar battery cell is prevented by slowing the heating rate, but the cycle time for soldering the solar battery cell and the tab lead becomes longer, and the production efficiency is increased. It was difficult to improve.
  • a plate heater is provided as a preheating means.
  • a heating block is provided in the shroud.
  • FIG. 14 is a graph showing the temperature change of the entire solar cell and the tab lead, and the horizontal axis shows the position where the solar cell and the tab lead are conveyed in the solar cell module manufacturing apparatus disclosed in Patent Document 2, The vertical axis indicates the temperature of the entire solar battery cell and the tab lead. Above the graph in FIG.
  • FIG. 14 a part of the solar cell module manufacturing apparatus 200 disclosed in Patent Document 2 is illustrated in correspondence with the position where the horizontal solar cell and the tab lead are conveyed.
  • a heating block 202 and a cooling block 203 are provided in a shroud 201.
  • the solar cell module manufacturing apparatus 200 transports solar cells and tab leads in the shroud 201 in the direction of arrow D.
  • the entire solar cells and the tab leads are rapidly heated by the heating block 202 as shown in the graph of FIG.
  • the solar cell module manufacturing apparatus 200 heats the temperature of the entire solar cell and the tab lead to a temperature higher than the solder melting point (for example, approximately 180 ° C.) by the heating block 202. Then, the entire solar cell and the tab lead are continuously heated to a temperature higher than the solder melting point, and the solar cell and the tab lead are soldered. Thereafter, the entire solar cell and the tab lead are cooled by the cooling block 203 in the cooling stage. In the conventional solar cell module manufacturing apparatus 200 and the like, the entire solar cell and the tab lead are continuously heated to a temperature higher than the solder melting point from the preheating stage to the soldering stage, and the solar battery cell and the tab lead are soldered. To do.
  • the solder melting point for example, approximately 180 ° C.
  • the present invention has been made in view of the above-described problems, and greatly improves the output per unit of time, and without causing damage such as cracks to the solar battery cell, the solar battery cell and the tab lead. It is an object to provide an apparatus and method for soldering.
  • a soldering apparatus is a soldering apparatus for soldering a solar battery cell and a tab lead, wherein the solar battery cell and the tab lead are overlapped with each other.
  • the soldering portion includes a heating body disposed along the longitudinal direction of the tab lead, and the heating body is close to or in contact with the overlapping portion of the solar cell and the tab lead,
  • the overlapping portion of the solar battery cell and the tab lead can be configured to be heated to a temperature higher than the solder melting point.
  • the said heating body can be comprised so that the several tab may be provided which presses the said tab lead with respect to the said photovoltaic cell.
  • each pressing element can reliably press the tab lead against the solar battery cell.
  • the said conveyance part adsorbs the said photovoltaic cell to the said conveyance belt by adsorbing the said photovoltaic cell through the cell adsorption hole of the said conveyance belt located in the both sides of the said tab lead currently conveyed.
  • It can be constituted as follows.
  • the tab lead sandwiched between the solar battery cell and the transport belt can be transported while being positioned without being displaced from the solar battery cell.
  • the transport unit may be configured to position the tab lead with respect to the transport belt by attracting the tab lead placed on the transport belt to the transport belt. In this case, when the solar battery cell is placed on the tab lead or the tab lead is placed on the transport belt, the tab lead can be accurately positioned without shifting.
  • the transport unit sucks the tab lead to the transport belt by sucking the tab lead through a tab lead suction hole of the transport belt, which is located below the tab lead placed on the transport belt.
  • the tab lead can be accurately positioned without shifting.
  • the transport unit may be configured to suck the transported tab lead until immediately before the melting of the tab lead solder starts. In this case, misalignment of the tab lead can be reliably prevented during conveyance of the solar battery cell and the tab lead.
  • the tab lead supply unit further includes a tab lead supply unit that supplies the tab lead, and the tab lead supply unit connects the tab lead to the side where the tab lead is connected to the front connection electrode of the solar cell and the tab lead connects to the back side of the solar cell. It can be configured to be bent so as to have a step between the side connected to the electrode. In this case, the tab lead can be brought into surface contact with the solar battery cell without the tab lead floating on the solar battery cell. In addition, the tab lead supply unit contacts the front end of the tab lead with the front end of the tab lead as the tab lead approaches the front end of the tab lead on the side where the tab lead is connected to the front side connection electrode of the solar battery cell. It can be configured to be inclined and molded.
  • the solar battery cell and the tab lead can be kept positioned without being displaced.
  • the temporary fixing of the tab lead and the solar battery cell is temporarily fixed.
  • a stop device may be further provided.
  • the tab lead can be transported in a positioned state without being displaced from the solar battery cell.
  • the temporary fixing device can be configured to temporarily fix the tab lead by heating the tab lead superimposed on the front connection electrode of the solar battery cell. In this case, it is possible to more reliably prevent the tab lead from being displaced from the solar battery cell.
  • soldering part may further comprise the cooling part which cools the melt
  • warpage of the solar battery cell after soldering can be eliminated.
  • a soldering method according to the present invention is a soldering method for soldering a solar battery cell and a tab lead, and the solar battery cell and the tab lead are joined in a state where the solar battery cell and the tab lead are overlapped.
  • the solar battery cell and the tab lead can be soldered without causing damage such as cracks in the solar battery cell while greatly improving the output per hour.
  • FIG. 1A is a plan view showing a configuration of solar cells and tab leads.
  • FIG. 1B is a side view showing the configuration of the solar battery cell and the tab lead.
  • FIG. 1C is a diagram illustrating a configuration of a solar battery cell.
  • FIG. 2 is a diagram showing a schematic configuration of the soldering apparatus.
  • FIG. 3 is a perspective view showing the configuration of the tab lead loading apparatus.
  • FIG. 4 is a view of the tab lead loading device as seen from the direction of arrow A.
  • 5A is a view of the tab lead loading device as seen from the direction of arrow B.
  • FIG. FIG. 5B is a view of the conveyor belt as viewed from the direction of arrow C.
  • FIG. 6A is a side view of the tab lead formed by the tab lead loading device.
  • FIG. 6A is a side view of the tab lead formed by the tab lead loading device.
  • FIG. 6B is a side view of another form of tab lead.
  • FIG. 6C is a side view of a tab lead having a short specification among the tab leads placed last.
  • FIG. 7 is a diagram illustrating a state where the first tab lead is placed on the transport belt.
  • FIG. 8 is a diagram illustrating a state in which the solar battery cell is placed on the transport belt.
  • FIG. 9 is a diagram showing a state in which the next (or last) tab lead is placed.
  • FIG. 10 is a perspective view in which a part of the heating head is cut.
  • FIG. 11 is a diagram illustrating a configuration of the heating head.
  • FIG. 12 is a view showing temperature changes of the entire solar battery cell and the tab lead according to the present embodiment.
  • FIG. 13 is a diagram showing a state in which the lead wire of the tab lead contracts when cooled.
  • FIG. 14 is a diagram showing the temperature change of the entire solar battery cell and the tab lead in the conventional soldering apparatus and the conventional solder
  • FIG. 1A is a plan view of a state in which a plurality of solar cells 10 are arranged in a string shape with tab leads 15 as viewed from the front connection electrode side (hereinafter referred to as the front side).
  • FIG. 1A is a plan view of a state in which a plurality of solar cells 10 are arranged in a string shape with tab leads 15 as viewed from the front connection electrode side (hereinafter referred to as the front side).
  • FIG. 1B is a side view of a state in which a plurality of solar cells 10 are arranged in a string shape with tab leads 15 as viewed from the side.
  • FIG. 1C is a diagram illustrating a configuration of the solar battery cell 10.
  • FIG. 1C (a) is a plan view of the solar battery cell 10 as viewed from the front side.
  • FIG. 1C (b) is a plan view of the solar battery cell 10 as viewed from the back side connection electrode side (hereinafter referred to as the back side).
  • the solar battery cell 10 is formed in a rectangular flat plate shape having a thickness of approximately 0.16 mm. As shown in FIG.
  • FIG. 1C (a) on the front side of the solar battery cell 10 according to this embodiment, two front-side connection electrodes 11 are provided from one side to the opposite side of the solar battery cell 10. Further, on the front side of the solar battery cell 10, a plurality of finger portions 13 are provided from one side to the opposite side of the solar battery cell 10 so as to be orthogonal to the front-side connection electrode 11. Further, as shown in FIG. 1C (b), on the back side of the solar battery cell 10, two back side connection electrodes 12 are formed over one side facing from one side of the solar battery cell 10 like the front side connection electrode 11. Is provided. The front side connection electrode 11 and the back side connection electrode 12 are coated with solder for soldering to the tab lead 15. On the other hand, as shown in FIGS.
  • the tab lead 15 is a lead wire, and is formed in a strip-like flat plate shape having a thickness of approximately 0.2 mm.
  • the tab lead 15 is formed using copper, and the surface thereof is coated with solder for soldering to the front side connection electrode 11 and the back side connection electrode 12. Soldering is performed in a state where a plurality of solar cells 10 are arranged in a string with tab leads 15 as shown in FIGS. 1A and 1B. Specifically, the solar cells 10 are arranged at a predetermined interval, and one (front side) of half of the tab leads 15 is placed on the front connection electrode 11 of the solar cells 10 so as to overlap the tab leads 15.
  • FIG. 2 is a diagram illustrating a schematic configuration of the soldering apparatus 100.
  • the soldering apparatus 100 includes a plurality of components that perform processing related to soldering.
  • the soldering apparatus 100 includes a solar battery cell supply unit 20, a tab lead supply unit 30, a transport unit 50, a preheating unit 60, a soldering unit 70, and a cooling unit 80.
  • the solar cell supply unit 20 supplies the solar cell 10 to the transport unit 50.
  • the tab lead supply unit 30 bends the tab lead 15, cuts it to a predetermined length, and supplies it to the transport unit 50.
  • the solar cell supply unit 20, the tab lead supply unit 30, and the transport unit 50 operate in conjunction with each other, so that the solar cell 10 and the tab lead 15 are placed on the transport belt 51 of the transport unit 50 in FIGS. Are arranged in a string as shown in FIG.
  • the conveyance part 50 conveys to the preheating part 60, the soldering part 70, and the cooling part 80 in the state which positioned the photovoltaic cell 10 and the tab lead 15.
  • the temperature control device 61 heats the entire solar cell 10 and the tab lead 15 while controlling the solar cell 10 in the heating furnace 62 to a temperature not higher than the solder melting point.
  • soldering portion 70 the overlapping portion of the connection electrode of the solar battery cell 10 and the tab lead 15 is locally heated, and the tab lead 15 is pressed against the solar battery cell 10, so that the solar battery cell 10 and the tab lead 15 Solder.
  • the cooling unit 80 the solar battery cell 10 and the tab lead 15 are cooled, and the overlapping part of the solar battery cell 10 and the tab lead 15 is solidified.
  • each of the above-described constituent elements can be soldered to the solar battery cell 10 and the tab lead 15 with high efficiency by singly or in cooperation with each other.
  • a specific configuration and operation process of each component will be described in detail.
  • the solar cell supply unit 20 performs a step of supplying the solar cell 10 to the transport unit 50.
  • the solar cell supply unit 20 is provided with a cell loading device 21.
  • the cell loading device 21 can reciprocate from the stocker 22 in which the solar cells 10 before being soldered are stacked and accommodated to the transport unit 50. Specifically, the cell loading device 21 adsorbs the solar cells 10 one by one from the stocker 22 and then places the cells 10 at predetermined positions on the conveyance belt 51 of the conveyance unit 50.
  • FIG. (Tab lead supply unit 30) The tab lead supply unit 30 performs a process of bending and forming the tab lead 15 having a predetermined length and supplying it to the transport unit 50. As shown in FIG. 2, the tab lead supply unit 30 includes a tab lead loading device 33 that bends the tab lead 15 having a predetermined length and places the bent tab lead 15 on the conveyor belt 51.
  • the tab lead loading device 33 will be described with reference to FIGS.
  • FIG. 3 is a perspective view showing the configuration of the tab lead loading device 33.
  • 4 is a view of the tab lead loading device 33 shown in FIG. 5A is a view of the tab lead loading device 33 shown in FIG.
  • the tab lead loading device 33 is disposed on the side of the transport unit 50 and includes an upper die 37, a lower die 42, and the like.
  • the upper die 37 is one mold for bending the tab lead 15 and can be moved in the vertical direction and the horizontal direction by an upper die driving device (not shown).
  • two protrusions 38 are formed in parallel on the lower surface of the upper mold 37 along the conveying direction of the conveying belt 51.
  • Formed portions 39 for pressing the tab lead 15 protrude downward from the lower surface of each protrusion 38.
  • the width dimension of the molding part 39 formed on each protrusion 38 substantially matches the width of the tab lead 15.
  • the distance between the adjacent molded portions 39 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A (see FIG. 5A and the like).
  • a stepped portion 40 is formed at the approximate center in the longitudinal direction of each molding portion 39.
  • Each molding part 39 protrudes slightly toward the lower side from the front side of the molding part 39 with the stepped part 40 as a boundary.
  • the step of the step portion 40 is approximately the thickness of the solar battery cell 10. Further, as shown in FIG.
  • a plurality of suction holes 41 are formed in the protruding portions 38 of the upper mold 37 so as to be separated in the longitudinal direction.
  • Each suction hole 41 is formed in the ridge portion 38 along the vertical direction, and the lower side is open to the lower surface of the molding portion 39.
  • the tab lead 15 can be sucked to the upper die 37 by sucking the tab lead 15 through the suction holes 41 by a tab lead suction device (not shown).
  • heating elements 48 as a plurality of temporary fixing members are provided in the protrusions 38 on the front side of the upper die 37 so as to be separated in the longitudinal direction.
  • the heating element 48 is provided at two locations of the front end portion and the rear end portion of the front protrusion portion 38.
  • the heating element 48 is formed in a pin shape, and at least its tip is heated to a solder melting point or higher.
  • the heating element 48 can be heated by an electric resistance heating method or the like.
  • Each heater element 48 is configured to be protruded downward from the lower surface of the molding portion 39 by a lifting mechanism (not shown) from the state accommodated in the molding portion 39 as indicated by a two-dot chain line in FIG. As will be described later, when the front side of the tab lead 15 is placed on the solar battery cell 10, each heater element 48 protrudes downward from the lower surface of the molding portion 39, thereby heating a predetermined position of the tab lead 15. Thus, a part of the solder of the tab lead 15 can be melted.
  • the tab lead 15 and the solar battery cell 10 are partially soldered and temporarily fixed.
  • the heating element 48 was provided in two places, the front-end part and rear-end part in the front protrusion part 38, it is not restricted to this case but provided in two or more places. It may be done.
  • the lower die 42 is the other die for bending the tab lead 15 and can be moved in the vertical direction by a lower die driving device (not shown). Two protrusions 43 are formed on the upper surface of the lower mold 42 in parallel along the conveying direction of the conveying belt 51. As shown in FIGS.
  • a concave groove portion 44 for pressing the tab lead 15 is formed on the upper surface of each protrusion 43.
  • the groove width dimension of the concave groove portion 44 formed in each protrusion 43 substantially matches the width of the tab lead 15.
  • the distance between the adjacent concave groove portions 44 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A (see FIG. 5A and the like).
  • stepped portions 45 are formed in the recessed groove portions 44 of the respective protrusions 43 of the lower mold 42. The step 45 is formed so as to be positioned vertically below the step 40 formed in each molding portion 39 of the upper die 37.
  • the position of the step 45 of the lower mold 42 is such that the step 40 of the upper mold 37 and the step 45 of the lower mold 42 sandwich the tab lead 15 disposed between the upper mold 37 and the lower mold 42 from above and below.
  • a step is formed at the center of the tab lead 15A as shown in FIG.
  • the groove portion 44 of the lower mold 42 is slightly deeper on the rear side than on the front side of the groove portion 44 with each step portion 45 as a boundary.
  • the level difference of the stepped portion 45 is approximately the thickness of the solar battery cell 10.
  • the tab lead chuck 35 pulls the tab lead 15 from the reel 32 and holds it in a horizontal state.
  • the lower mold driving device raises the lower mold 42 and fits the tab lead 15 into the recessed groove portion 44 of the lower mold 42 for positioning (see also the lower mold shown by a two-dot chain line in FIG. 5A).
  • the tab lead cutter 36 cuts the tab lead 15.
  • the tab lead chuck 35 releases the holding of the tab lead 15 and retracts backward.
  • the upper die driving device lowers the upper die 37 and presses the tab lead 15 fitted to the lower die 42 (see also the upper die indicated by a two-dot chain line in FIG. 5A).
  • the tab lead 15 having a predetermined length drawn from the reel 32 is formed in the step portion 40 formed in the molding portion 39 of the upper die 37 and the groove portion 44 formed in the lower die 42 on the center side. The center is bent by the portion 45 and molded. Further, when the formed tab lead 15 is pressed between the upper die 37 and the lower die 42, the shape wound around the reel 32 is more straightened.
  • 5B is a view of the conveyor belt 51 shown in FIG.
  • the upper die 37 presses the tab lead 15 the upper die 37 of the tab lead loading device 33 sucks the tab lead 15 through the suction hole 41.
  • the upper mold drive device and the lower mold drive device release the upper mold 37 and the lower mold 42, respectively. Therefore, the tab lead 15 is attracted only to the upper mold 37.
  • the upper die drive device, on which the tab lead 15 is attracted by the upper die driving device is moved in the horizontal direction to above the conveyor belt 51 of the conveyor unit 50. Further, as indicated by a two-dot chain line in FIG.
  • the upper die driving device lowers the upper die 37, and then the upper die 37 releases the tab lead 15 from suction. Therefore, the two tab leads 15 are placed at predetermined positions on the conveyance surface 52 of the conveyance belt 51 as indicated by a two-dot chain line in FIG. 5B.
  • the distance between the two tab leads 15 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A.
  • the tab lead chuck 35 is pulled horizontally in the direction of the tab lead 15 with the cut portion of the tab lead 15 therebetween, and is held horizontally. Prepare for 15 bending.
  • the cell loading device 21 of the solar cell supply unit 20 and the tab lead loading device 33 of the tab lead supply unit 30 described above place the solar cell 10 and the tab lead 15 on the conveyance belt 51 of the conveyance unit 50 in order, respectively.
  • FIGS. 1A and 1B a plurality of solar cells 10 are arranged in a string with tab leads 15.
  • FIG. 6A is a side view of the tab lead 15a formed by the tab lead loading device 33 according to the present embodiment.
  • the solar battery cell 10 is indicated by a two-dot chain line.
  • FIG. 6B is a side view of another form of the tab lead 15b.
  • the solar battery cell 10 is indicated by a two-dot chain line.
  • the tab lead 15b is bent so that the front side is higher by the thickness of the solar battery cell 10 at the center.
  • the tab lead 15b is formed with a slight inclination so as to go downward as it goes toward the front end. That is, in the upper mold 37 and the lower mold 42 of the tab lead loading device 33, the molded part 39 of the upper mold 37 and the recessed groove part 44 of the lower mold 42 are respectively provided on the front side so that the tab lead 15b as shown in FIG. 6B can be molded. What is necessary is just to form the inclination which goes below as it goes. Therefore, when the tab lead 15b is placed on the transport belt 51 of the transport unit 50, the tab lead 15b does not float on the solar battery cell 10 even if it is placed on the solar battery cell 10 already placed. The tab lead 15b and the solar battery cell 10 can be brought into wide surface contact.
  • the front side of the tab lead 15b acts so that the top of the photovoltaic cell 10 may be pressed by the elastic force of the tab lead 15b. Therefore, the tab lead 15b and the solar battery cell 10 can be brought into more contact with each other to prevent a deviation between them.
  • the tab lead 15 to be placed first is not subjected to bending as described above.
  • the tab lead loading device 33 is provided with means such as providing a separate upper die and a lower die that are not bent to adsorb the tab lead 15 having no step formed in the center. Can be supplied.
  • the conveyance part 50 performs the process of carrying intermittently to the preheating part 60, the soldering part 70, and the cooling part 80, positioning the photovoltaic cell 10 and the tab lead 15 in the state arrange
  • the conveyance unit 50 includes a conveyance belt 51, conveyance rollers 55a and 55b, a suction device 56, and the like.
  • the conveyance belt 51 is wound around a conveyance roller 55 a and a conveyance roller 55 b disposed at a position close to the cooling unit 80.
  • the conveyor belt 51 is a thin flat belt, and is made of metal in order to increase thermal conductivity. Further, when a roller driving device (not shown) connected to the rotation shafts of the transport rollers 55a and 55b is driven, the respective transport rollers 55a and 55b are rotated in the arrow direction.
  • the solar cells and the tab leads (hereinafter collectively referred to as “conveyed objects”) placed on the conveying surface 52 of the conveying belt 51 are rotated by the rotation of the conveying rollers 55a and 55b.
  • the parts 80 are conveyed in the order.
  • the suction device 56 is disposed below the conveyance surface 52 of the conveyance belt 51 over the longitudinal direction of the conveyance belt 51.
  • the suction device 56 can position the photovoltaic cells 10 and the tab leads 15 placed on the transport surface 52 by attracting them to the transport belt 51. The operation of adsorbing the solar battery cell 10 and the tab lead 15 by the adsorption device 56 will be described later.
  • a plurality of tab lead suction holes 53 are continuously formed in the transport belt 51 along the circumferential direction of the transport belt 51. In the conveyance belt 51 of the present embodiment, two rows of tab lead suction holes 53 are formed on the left and right sides in the width direction of the conveyance belt 51.
  • the tab lead suction hole 53 is formed at a position coinciding with the position where each tab lead 15 is placed on the conveyor belt 51 by the tab lead loading device 33 (see also FIG. 5B). That is, the distance between the rows of the tab lead suction holes 53 is the same as the distance W between the centers of the two tab leads 15 described with reference to FIG. 1A. As shown in FIG. 3, a plurality of cell suction holes 54 are continuously formed in the transport belt 51 over the circumferential direction of the transport belt 51 on both sides of each tab lead suction hole 53.
  • FIG. 7A is a perspective view showing a state in which the tab lead loading device 33 has placed the first tab lead 15 on the conveyor belt 51.
  • FIG.7 (b) is sectional drawing which cut
  • FIG. 8A is a perspective view showing a state in which the cell loading device 21 places the solar battery cell 10 on the transport belt 51.
  • FIG. 8B is a cross-sectional view taken along the line II-II shown in FIG. FIG.
  • 9A is a perspective view showing a state in which the tab lead loading device 33 places the next (or last) tab lead 15 on the conveyor belt 51.
  • 9B is a cross-sectional view taken along the line III-III shown in FIG. 9A (a cross section including the solar battery cell and the tab lead in the heating furnace 62) in the vertical direction and viewed from the arrow direction. It is. 7A, 8A, and 9A illustrate an inlet 64 of a heating furnace 62 described later.
  • the first tab lead 15 that is not bent by the tab lead loading device 33 is placed in parallel along a predetermined position on the transport surface 52, that is, along the continuous tab lead suction holes 53. To do.
  • the suction device 56 sucks each tab lead 15 placed on the transport surface 52 through each tab lead suction hole 53. Specifically, as shown in FIG. 7B, the suction device 56 sucks each tab lead suction hole 57 positioned below each tab lead suction hole 53 of the transport belt 51, thereby The tab lead 15 is attracted to the conveyor belt 51. Accordingly, each tab lead 15 is positioned at a predetermined position placed on the transport belt 51.
  • the cell loading device 21 places the first solar battery cell 10 at a predetermined position on the transport surface 52.
  • the cell loading device 21 places the solar battery cell 10 so that the rear side of each tab lead 15 already placed and the back side connection electrode 12 of the solar battery cell 10 are aligned.
  • the solar battery cell 10 may come into contact with the tab lead 15 and the tab lead 15 may be displaced.
  • each tab lead 15 is positioned with respect to the conveyance belt 51 by the suction device 56, even if the solar battery cell 10 comes into contact, it does not move and can maintain a predetermined position.
  • the suction device 56 sucks the solar cells 10 placed on the transport surface 52, specifically, each tab lead 15, through each cell suction hole 54. Specifically, as shown in FIG.
  • the suction device 56 sucks through the cell suction holes 58 located below the cell suction holes 54 of the transport belt 51, thereby solar cells. 10 is adsorbed to the conveyor belt 51. Therefore, the solar battery cell 10 is positioned so that the predetermined position placed on the conveyor belt 51, that is, the tab lead 15 and the back side connection electrode 12 of the solar battery cell 10 coincide with each other. At this time, the solar cell 10 is adsorbed while being slightly bent in the vicinity of contact with each tab lead 15, so that each tab lead 15 is sandwiched between the solar cell 10 and the transport belt 51. Therefore, the photovoltaic cell 10 and each tab lead 15 can maintain the state positioned without deviation. In FIG.
  • the state where the solar cell 10 is bent and fixed in the vicinity of the tab lead 15 by the adsorption hole 54 is emphasized.
  • the photovoltaic cells 10 and the tab leads 15 are intermittently conveyed by the conveyance rollers 55 a and 55 b and the conveyance belt 51.
  • the roller driving device moves the transport belt 51 by a length corresponding to approximately one solar cell 10.
  • the adsorption device 56 continues to adsorb the solar battery cell 10
  • the solar battery cell 10 and the tab lead 15 do not shift due to vibration during transportation.
  • the next tab lead 15 bent by the tab lead loading device 33 is placed at a predetermined position on the transport surface 52.
  • each tab lead 15 is placed so as to coincide with each front-side connection electrode 11 of the solar battery cell 10, and the rear side of each tab lead 15 is placed in parallel along the continuous tab lead suction hole 53.
  • the suction device 56 sucks the tab lead 15 newly placed on the transport surface 52 through the tab lead suction hole 53 and sucks it to the transport belt 51. Therefore, the rear side of the tab lead 15 is positioned at a predetermined position placed on the transport belt 51. Further, since the rear side of the tab lead 15 is positioned, the movement of the front side of the tab lead 15 is also regulated so as to coincide with the front connection electrode 11 of the solar battery cell 10. Further, as shown in FIGS.
  • the tab lead 15 is bent at the center by the thickness of the solar battery cell 10, so that the front side of the tab lead 15 can be prevented from floating on the solar battery cell 10. Further, by placing the tab lead 15b with the front side of the tab lead inclined downward as shown in FIG. 6B, the front side of the tab lead 15b presses on the front connection electrode 11 of the solar cell 10 by the elastic force of the tab lead 15b. . Therefore, since the front side of the tab lead 15b and the front side connection electrode 11 of the solar battery cell 10 are in strong surface contact, it is possible to further prevent the tab lead 15b and the solar battery cell 10 from shifting. Next, the cell loading device 21 places the next solar battery cell 10 on the rear side of the already placed tab lead 15.
  • the cell loading device 21 places the solar battery cell 10 so that the rear side of each tab lead 15 that has already been placed coincides with each back-side connection electrode 12 of the solar battery cell 10.
  • the suction device 56 sucks the solar battery cell 10 placed on the tab lead 15 through the cell suction hole 54.
  • the photovoltaic cells 10 and the tab leads 15 are intermittently conveyed by the conveying rollers 55 a and 55 b and the conveying belt 51 by a length corresponding to approximately one photovoltaic cell 10.
  • the tab lead loading device 33, the cell loading device 21 and the transport belt 51 are operated, so that the solar cells 10 and the tab leads 15 can be arranged in a string while accurately positioning on the transport belt 51. .
  • the tab lead loading device 33 places the last tab lead 15 at a predetermined position on the transport surface 52 at a predetermined position on the transport surface 52.
  • the tab lead loading device 33 places the last tab lead 15 bent and formed at a predetermined position on the conveyance surface 52.
  • the front side of each tab lead 15 is placed so as to coincide with each front-side connection electrode 11 of the solar battery cell 10, and the rear side of each tab lead 15 is placed in parallel along the continuous tab lead suction hole 53.
  • the last tab lead 15 is a tab lead 15c with a short rear side as shown in FIG.
  • the tab lead loading device 33 is mounted so that the front side of the tab lead 15c coincides with each front connection electrode 11 of the solar battery cell 10.
  • each heater element 48 provided on the upper die 37 of the tab lead loading device 33 described with reference to FIG. 4 protrudes downward from the lower surface of the molding portion 39, and two front and rear positions on the front side of each tab lead 15 (FIG. 9 ( The temporary attachment positions 59a and 59b) shown in a) are heated.
  • Each heater element 48 heats each tab lead 15, so that the solder at the temporary attachment positions 59 a and 59 b of each tab lead 15 is melted and soldered to the front connection electrode 11 of the solar battery cell 10 to be temporarily fixed.
  • each tab lead 15 and the front-side connection electrode 11 of the solar battery cell 10 are temporarily fixed to be separated from each other on the front side of the tab lead 15, so that there is no deviation between the tab lead 15 and the solar battery cell 10.
  • stable temporary fixing can be performed.
  • the last tab lead 15 is temporarily fixed to the solar battery cell 10 because the adsorption device 56 is configured not to adsorb the tab lead 15 to the transport belt 51 in the heating furnace 62 as described later. It is. That is, in the heating furnace 62, the rear side of the last tab lead 15 is not adsorbed and is not sandwiched between the solar battery cell 10 and the transport belt 51.
  • the last tab lead 15 may be displaced from the solar battery cell 10 during transportation or soldering.
  • the last tab lead 15 was temporarily fixed was demonstrated here, you may make it temporarily fix all the tab leads 15 mounted on the photovoltaic cell 10.
  • the tab lead loading device 33 also serves as a temporary fixing device for temporarily fixing the tab lead 15 has been described, a dedicated temporary fixing device for temporarily fixing the tab lead 15 may be provided.
  • the conveyor belt 51 intermittently conveys the placed solar cells 10 and the tab leads 15 into the heating furnace 62 of the preheating unit 60 in order.
  • the adsorption device 56 is configured to suck only the solar battery cell 10 placed on the tab lead 15 and not suck the tab lead 15. Specifically, as shown in FIG. 9B, the adsorption device 56 in the heating furnace 62 is not provided with the tab lead suction hole 57 described in FIGS. 7B and 8B. That is, in the heating furnace 62, the adsorption device 56 sucks only through the cell suction holes 58 located below the cell suction holes 54 of the transport belt 51 and sucks the solar battery cells 10 to the transport belt 51. .
  • the suction device 56 Even if the suction device 56 does not suck the tab leads 15, both sides of each tab lead 15 are pressed against the transport belt 51 by the solar cells 10, and thus the solar cells 10 and the tab leads 15 are misaligned during transport. There is no.
  • the suction device 56 is configured not to suck the tab lead 15 in the heating furnace 62. If the tab lead 15 is directly sucked, the solder of the tab lead 15 melted by the heat in the heating furnace 62 is sucked. This is to prevent any trouble in the subsequent process.
  • the adsorption device 56 adsorbs the solar cells 10 to the conveyance belt 51 on both sides of the tab lead 15 in the heating furnace 62, so that the conveyance belt 51 positions the tab lead 15 and the solar cells 10. Can be transported.
  • the suction device 56 can suck the tab lead 15 until the soldering of the tab lead 15 is started or until the soldering of the tab lead 15 is started. Also good. Thereby, the shift
  • FIG. In the above description, the case where the suction device 56 sucks each tab lead 15 placed on the transport surface 52 through each tab lead suction hole 53 has been described. It can also be configured.
  • the preheating unit 60 performs a step of preheating the solar battery cell 10 and the tab lead 15. As shown in FIG. 2, the preheating unit 60 includes a plurality of heaters 63 in the heating furnace 62 along the conveyance direction of the conveyance belt 51. Although the preheating part 60 of this embodiment is comprised from the three heaters 63, the quantity can be suitably changed according to the kind etc. of the photovoltaic cell 10. FIG. Each heater 63 is, for example, a hot air heater or an IR lamp. In addition to directly heating the solar cells 10 conveyed by the conveyor belt 51, the heaters 63 heat the atmosphere in the heating furnace 62 to uniformly heat the entire solar cells 10.
  • each heater 63 is heated by the temperature control device 61 .
  • a plurality of temperature detection devices are provided in the heating furnace 62 along the conveyance direction at positions close to the conveyance belt 51.
  • the temperature control device 61 controls the heater 63 closer to the soldering portion 70 to have a higher temperature based on the temperature detection device. Therefore, in the heating furnace 62 in the preheating unit 60, the ambient temperature increases as the soldering unit 70 is approached from the inlet 64 of the heating furnace 62.
  • FIG. 12 the temperature change of the whole photovoltaic cell 10 and the tab lead 15 in the preheating part 60 is demonstrated.
  • FIG. 12 is a graph showing temperature changes of the entire solar battery cell and the tab lead, the horizontal axis shows the position where the solar battery cell and the tab lead are transported in the soldering apparatus, and the vertical axis shows the temperature of the solar battery cell and the tab lead. Is shown. Note that a part of the configuration of the soldering apparatus 100 is illustrated above the graph of FIG. 12 so as to correspond to the positions at which the horizontal solar cell and the tab lead are conveyed. Moreover, the temperature change of the whole photovoltaic cell 10 is shown with the continuous line, and the temperature change of the tab lead 15 is shown with the broken line. As shown in FIG.
  • the temperature of the entire solar cell 10 and the tab lead 15 is raised by the temperature-controlled heater 63 toward the soldering portion 70 in the preheating portion 60.
  • the temperature control device 61 controls the temperature so that the solar battery cell 10 is gradually heated so as not to crack.
  • the temperature control device 61 controls the temperature of the solar battery cell 10 positioned in front of the soldering portion 70 so as to heat it to a temperature not higher than the solder melting point, preferably lower than the solder melting point.
  • fusing point is 200 degreeC solder
  • the temperature control apparatus 61 is heating so that the photovoltaic cell 10 may be about 150 degreeC.
  • the temperature controller 61 controls the temperature of the heating furnace 62, that is, the heater 63, according to the type of solder.
  • the photovoltaic cell 10 is heated gradually.
  • the photovoltaic cell 10 located in front of the soldering part 70 is heated to a temperature below the solder melting point. Therefore, the solar battery cell 10 is not damaged such as cracks.
  • the time for melting the solder in the overlapping portion where the electrode 12 is overlapped can be shortened.
  • a heater may be appropriately provided in the space between the conveyance belt 51 and the adsorption device 56.
  • the soldering unit 70 performs a process of soldering the solar battery cell 10 and the tab lead 15. As shown in FIG.
  • the soldering unit 70 is provided with a tab lead heating device 71.
  • the tab lead heating device 71 includes a heating head 72 that heats the overlapping portion of the solar battery cell 10 and the tab lead 15 in the heating furnace 62, a heating head lifting device (not shown) that moves the heating head 72 up and down, and the like. Yes.
  • the heating head 72 will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a perspective view in which a part of the heating head 72 is cut.
  • Fig.11 (a) is sectional drawing which cut
  • FIG. 11B is a cross-sectional view of the VV line shown in FIG.
  • the heating head 72 is provided with two heating blocks 73 as heating elements in parallel along the conveyance direction of the conveyance belt 51, that is, the longitudinal direction of the tab lead 15. ing.
  • the two heating blocks 73 are separated from each other in the width direction of the transport belt 51.
  • the distance between the two heating blocks 73 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A.
  • two sheath heaters 74 as heat transfer bodies are embedded along the longitudinal direction.
  • the sheath heater 74 has a nichrome wire processed into a coil shape at the center, an insulating material such as magnesium oxide filled around the nichrome wire, and a sheath covering the entire circumference of the insulating material.
  • the heat transfer body is not limited to the sheath heater 74 and may be any heat transfer body as long as it can heat the heating block 73 and a presser 75 described later. Between the two sheath heaters 74 of each heating block 73, a plurality of pressing members 75 that respectively press the tab leads 15 from above are provided along the transport direction.
  • the heating block 73 of the present embodiment includes seven pressing elements 75, the number thereof can be changed as appropriate according to the dimensions of the solar battery cell 10. Each pressing element 75 is formed in a pin shape.
  • each pressing element 75 is urged downward by an urging spring 76. Therefore, when each pressing element 75 presses the tab lead 15 from above, the pressing elements 75 are slightly lifted against the urging spring 76 so that each pressing element 75 presses the tab lead 15 and the pressing force against the tab lead 15 is increased. Adjusted appropriately.
  • Each presser 75 is located in the heating block 73 heated by the sheath heater 74, so that each presser 75 itself is heated to a high temperature.
  • the sheath heater 74 is controlled by the temperature control device 61. Specifically, a temperature detection device (not shown) is provided at a position close to the heating block 73 or the pressing element 75.
  • the temperature control device 61 controls the heating block 73 and the pressing element 75 at a temperature higher than the solder melting point and at a constant temperature based on the temperature detection device.
  • the tab lead heating device 71 solders the tab lead 15 to the front connection electrode 11 and the back connection electrode 12 of the solar battery cell 10 will be described with reference to FIGS.
  • the conveyor belt 51 intermittently conveys the solar cells 10 heated by the preheating unit 60, thereby conveying the solar cells 10 just below the heating head 72 as shown in FIG.
  • the heating block 73 and the pressing element 75 are heated to a temperature higher than the solder melting point by the temperature control device 61 via the sheath heater 74.
  • the heating head lifting device of the tab lead heating device 71 lowers the heating head 72 so that a plurality of pressings of each heating block 73 are pressed.
  • the lower end of the child 75 presses each tab lead 15 disposed on the solar battery cell 10 from above.
  • each pressing element 75 moves upward against the urging force of the urging spring 76, thereby preventing the solar cell 10 from being damaged due to the pressing force pressing the tab lead 15 being too strong.
  • the temperature control device 61 heats the heating block 73 and the pressing element 75 to a temperature higher than the solder melting point. Therefore, the temperature of the tab lead 15 rises as the heating block 73 and the presser 75 are lowered.
  • the overlapping portion of the tab lead 15 and the front connection electrode 11 of the solar battery cell 10 has a temperature higher than the solder melting point, and the solder is completely melted. To do. Furthermore, the heat of the heating block 73 and the pressing element 75 is transmitted to the lower side of the solar battery cell 10, and the solder at the overlapping portion between the back-side connection electrode 12 and the tab lead 15 of the solar battery cell 10 is similarly melted. At this time, since the plurality of pressing elements 75 press the tab lead 15 against the solar battery cell 10, the tab lead 15 and the solar battery cell 10 are reliably brought into contact with each other, so that the soldering can be reliably performed. it can.
  • the tab lead similarly along the longitudinal direction of the tab lead 15 with the radiant heat of the presser 75 and the heating block 73. Since the solder of 15 and each connection electrode melts, the soldering is performed over the entire length of the tab lead 15.
  • the heating block 73 and the pressing element 75 are provided so as to coincide with the longitudinal direction of the tab lead 15. Accordingly, the tab lead heating device 71 locally heats the tab lead 15 and the portion (the connection electrodes 11 and 12 of the solar cell 10) where the solder of the solar cell 10 is coated.
  • the heating is not performed on the other portions of the solar battery cell 10 that is not coated with solder, and the temperature of only the connection electrodes 11 and 12 of the solar battery cell 10 is increased.
  • the temperature change of the whole photovoltaic cell 10 and the tab lead 15 in the soldering part 70 is demonstrated.
  • the temperature change of the entire solar battery cell 10 is indicated by a solid line
  • the temperature change of the tab lead 15 is indicated by a broken line.
  • the temperature of the tab lead 15 indicated by the broken line in FIG. 12 is raised to a temperature higher than the solder melting point when the temperature-controlled pressing element 75 and the heating block 73 approach in the soldering portion 70.
  • the time required to reach a temperature higher than the solder melting point can be shortened.
  • the temperature of the tab lead 15 is raised from 150.degree. C. to 200.degree.
  • the temperature of the entire solar battery cell 10 shown by the solid line in FIG. 12 is such that only the portion coated with solder is locally heated in the soldering portion 70 and the other part of the solar battery cell 10 is heated. There is almost no change.
  • the temperature of the entire solar battery cell 10 remains at 150 ° C. Therefore, it is possible to prevent the solar cell 10 from being damaged due to the entire solar cell 10 being heated to a high temperature.
  • the soldering part 70 when heating the overlapping part of the solar battery cell 10 and the tab lead 15 to a temperature higher than the solder melting point, it is heated from a preheated state, so that the temperature higher than the solder melting point. It is possible to shorten the time until heating, and to improve the efficiency of soldering. At this time, in the soldering part 70, since the overlapping part of the photovoltaic cell 10 and the tab lead 15 is locally heated without heating the entire photovoltaic cell 10, the occurrence of damage to the photovoltaic cell 10 is prevented. it can. According to the soldering portion 70 of the present embodiment, the solar battery cell 10 and the tab lead 15 can be soldered in a short time of 3 seconds or less. Further, as shown in FIG.
  • the adsorption device 56 adsorbs the solar cells 10 to the transport belt 51 on both sides of the lower tab lead 15, so that the lower tab lead 15 and the solar cells 10 are absorbed. Is a positioned state. Moreover, the rear side of the upper tab lead 15 is positioned by the adjacent solar battery cell 10 to be soldered next. Therefore, the upper tab lead 15 is also positioned with respect to the solar battery cell 10. Therefore, even if the tab lead heating device 71 presses the upper tab lead 15 via the presser 75, soldering can be performed between each tab lead 15 and the solar battery cell 10 without deviation. In addition, in the soldering part 70 mentioned above, the case where the tab lead 15 was pressed using the presser 75 was demonstrated.
  • the present invention is not limited to this, and the heating block 73 omitting the presser 75 is heated without contacting the tab lead 15, or the heating block 73 omitting the presser 75 directly presses and heats the tab lead 15. May be.
  • the pressing element 75 arranged in a quantity corresponding to the size of the solar battery cell 10 may locally heat the overlapping portion of the solar battery cell 10 and the tab lead 15. Any configuration may be used as long as the overlapping portion of the battery cell 10 and the tab lead 15 can be locally heated.
  • the tab lead heating device 71 raises the heating head 72 to prepare for the next soldering of the tab lead 15 and the solar battery cell 10.
  • the cooling unit 80 performs a process of cooling the soldered solar battery cell 10 and the tab lead 15.
  • the cooling unit 80 includes a cooling device 81.
  • the cooling device 81 blows and cools the solar cells 10 and the tab leads 15 intermittently conveyed from the heating furnace 62 to cool them.
  • the temperature of the cool air blown by the cooling device 81 is controlled by the temperature control device 61.
  • the cooling device 81 can also blow room temperature air. Furthermore, it is possible to blow cold air of 0 ° C. or lower.
  • the temperature of the cold air blown by the temperature control device 61 according to the type of the solar battery cell 10 can be appropriately changed.
  • the temperature change of the whole photovoltaic cell 10 and the tab lead 15 in the cooling unit 80 will be described.
  • the temperature change of the entire solar battery cell 10 is indicated by a solid line
  • the temperature change of the tab lead 15 is indicated by a broken line.
  • the temperature of the tab lead 15 indicated by the broken line in FIG. 12 and the temperature of the entire solar battery cell 10 indicated by the solid line rapidly decrease in the cooling unit 80. Therefore, the solder melted at the overlapping portion of the solar battery cell 10 and the tab lead 15 can be solidified by a mechanism described later.
  • the cooling unit 80 cools the solder melted at the overlapping portion of the solar battery cell 10 and the tab lead 15 will be described with reference to FIG.
  • the cooling device 81 sequentially cools the transported tab lead 15 from one end in the longitudinal direction, whereby the lead wire 18 in the tab lead 15 having a high thermal conductivity is thermally contracted in the direction of arrow E.
  • the lead wire 18 can be contracted while moving in the solder melted in the solder 16 (hereinafter referred to as melted solder 17). Therefore, since the molten solder 17 is solidified after the lead wire 18 is sufficiently heat-shrinked, the stress along the longitudinal direction of the tab lead 15 does not act between the lead wire 18 and the solder 16 after the solidification. Warpage of the battery cell 10 can be reduced.
  • the tab lead 15 is cooled from both ends in the longitudinal direction toward the center.
  • the tab lead 15 is gradually cooled, so that it is not affected by the difference in thermal conductivity, and the thermal contraction of the lead wire 18 and the solidification of the molten solder 17 are performed simultaneously. Therefore, as shown in FIG. 13B, the lead wire 18 contracts in the center side, that is, in the direction of the arrow F, and is affected by the difference in the thermal expansion coefficient between the solar battery cell 10 and the copper in the tab lead 15. The cell 10 is warped. In this way, by cooling the soldered solar battery cell 10 and the tab lead 15, the solar battery cell 10 is formed by the thermal contraction of the lead wire 18 after the molten solder 17 is solidified, as compared with the case where it is naturally cooled. Can reduce the warpage.
  • the cooled solar cells are formed as strings connected in a string.
  • the strings are connected in a plurality of rows and formed as a matrix solar cell panel.
  • the solar cell panel is transferred to a laminating process (not shown) laminated with another member such as a glass plate.
  • a laminating process not shown
  • production efficiency improves.
  • production of the photovoltaic cell 10 can be eliminated, a yield can be improved significantly.
  • the soldering apparatus 100 described above the case where the solar cells 10 are connected by the two parallel tab leads 15 has been described.
  • the present invention is not limited to this case, and the solar cells 10 are formed by one or three or more tab leads. May be connected.
  • the tab lead supply unit 30 may be provided with the reel 32, the tab lead chuck 35, the protrusions 38 of the upper die 37, and the protrusions 43 of the lower die 42 according to the number of tab leads.
  • the transport unit 50 may be provided with a tab lead suction hole 53, a cell suction hole 54, a tab lead suction hole 57, and a cell suction hole 58 corresponding to the number of tab leads.
  • a heating block 73 corresponding to the number of tab leads may be provided in the soldering part 70.
  • the solar cell 10 and the tab lead 15 are transported in a positioned state without being misaligned.
  • the soldering apparatus 100 superimposes the solar battery cell and the tab lead with a preheating portion that heats the solar battery cell and the tab lead to a temperature below the solder melting point, and the solar battery cell and the tab lead. It is not restricted to the structure provided with the soldering part which heats a part to temperature higher than solder melting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed are a soldering device and soldering method whereby it is possible to can solder a tab lead to a solar battery cell in a short time without damaging the solar cell. The soldering device (100), which is used to solder a tab lead (15) to a solar cell (10), is equipped with: a preheating section (60) which, with the solar cell (10) and the tab lead (15) overlapping, heats the solar cell (10) and the tab lead (15) to a temperature not greater than the solder melting point; and a soldering section (70) which heats the overlapping section of the solar cell (10) and the tab lead (15) to a temperature above the solder melting point.

Description

ハンダ付け装置及びハンダ付け方法Soldering apparatus and soldering method
 本発明は、太陽電池セルとタブリードとをハンダ付けするハンダ付け装置及びハンダ付け方法に関するものである。 The present invention relates to a soldering apparatus and a soldering method for soldering solar cells and tab leads.
 太陽電池モジュールは、一面に列状に配設された複数の太陽電池セルのうち隣接する太陽電池同士を電気的に接続することにより構成されている。
 従来から、太陽電池セル同士を電気的に接続する場合、隣接する太陽電池セルのうち一方の太陽電池セルの表側接続電極と他方の太陽電池セルの裏側接続電極とをタブリードを用いてハンダ付けを行うハンダ付け装置により行われている。
 従来のハンダ付け装置は、太陽電池セルおよびタブリードを順番に配置するローディング部と、太陽電池セルとタブリードとをハンダ付けするハンダ付け部とを備えている。ローディング部は、ワンピッチ送りで搬送しているコンベア上にワンピッチ送り毎にタブリードと太陽電池セルとを順番にストリング状に配置していきながら、ハンダ付け部に搬送する。ハンダ付け部は、次のワンピッチ送りまでの短時間の間に、熱風ヒータ等を用いて、太陽電池セルとタブリードとの接触部をハンダ融点以上の温度で加熱し押圧することで、太陽電池セルとタブリードとをハンダ付けする。
 しかしながら、上述したようなハンダ付け装置の場合、太陽電池セルとタブリードとの接触部を短時間の間にほぼ室温の状態から急速にハンダ融点以上の温度まで昇温させることから、太陽電池セルにクラックが生じやすい。ここで、昇温させる速度を遅くすることで、太陽電池セルのクラックが生じないようにすることが考えられるが、太陽電池セルとタブリードとをハンダ付けするサイクルタイムが長くなってしまい、生産効率を向上させることが困難であった。また、急速に昇温させるため、太陽電池セルにクラックが発生することがあり、歩留まりの低下を招いていた。
 一方、例えば、特許文献1に開示された太陽電池用タブリードのハンダ付け装置では、予熱手段としてのプレートヒータが設けられている。このような予熱手段としてのプレートヒータを設けることにより、急激な加熱による太陽電池セルのクラックを防止することができる。
 また、例えば、特許文献2に開示された太陽電池モジュールの製造装置では、シュラウド内に加熱ブロックが設けられている。このような加熱ブロックを設けることで、急激な加熱による太陽電池セルのクラックの防止にある程度効果があり、生産効率もある程度向上させることができる。
特開2006−147887号公報 特開2005−191259号公報
The solar cell module is configured by electrically connecting adjacent solar cells among a plurality of solar cells arranged in a row on one surface.
Conventionally, when solar cells are electrically connected to each other, the front side connection electrode of one of the adjacent solar cells and the back side connection electrode of the other solar cell are soldered using a tab lead. It is done by the soldering device that performs.
A conventional soldering apparatus includes a loading unit that sequentially arranges solar cells and tab leads, and a soldering unit that solders the solar cells and tab leads. The loading unit conveys the tab leads and the solar cells to the soldering unit while sequentially arranging the tab leads and the solar cells in a string form for each one-pitch feed on the conveyor that is carrying the one-pitch feed. The soldering part is a solar cell by heating and pressing the contact part between the solar cell and the tab lead at a temperature equal to or higher than the solder melting point using a hot air heater or the like for a short time until the next one-pitch feed. And tab lead.
However, in the case of the soldering apparatus as described above, the temperature of the contact portion between the solar cell and the tab lead is rapidly raised from a substantially room temperature state to a temperature higher than the solder melting point in a short time. Cracks are likely to occur. Here, it is conceivable that the cracking rate of the solar battery cell is prevented by slowing the heating rate, but the cycle time for soldering the solar battery cell and the tab lead becomes longer, and the production efficiency is increased. It was difficult to improve. Further, since the temperature is rapidly increased, cracks may occur in the solar battery cell, leading to a decrease in yield.
On the other hand, for example, in the solar cell tab lead soldering device disclosed in Patent Document 1, a plate heater is provided as a preheating means. By providing such a plate heater as preheating means, it is possible to prevent cracking of the solar battery cell due to rapid heating.
For example, in the solar cell module manufacturing apparatus disclosed in Patent Document 2, a heating block is provided in the shroud. By providing such a heating block, it is effective to some extent for preventing cracking of the solar battery cell due to rapid heating, and the production efficiency can be improved to some extent.
JP 2006-147887 A JP 2005-191259 A
 しかしながら、例えば、特許文献1に開示されたハンダ付け装置では、十分な予熱がなく、ハンダ付け部の直近で太陽電池セル全体とタブリードとをハンダ融点以上の温度に加熱するので、生産効率の向上は不可能である。また、生産効率を向上させようとして急速に昇温させると太陽電池セルにクラック等が発生してしまう問題がある。
 また、例えば、特許文献2等で開示された太陽電池モジュールの製造装置によって、太陽電池セルとタブリードとをハンダ付けする場合、予熱段階からハンダ付け段階に亘って太陽電池セル全体がハンダ融点よりも高い温度に加熱される構成であるために、太陽電池セルに対して損傷を与え、場合によってはクラックが発生してしまうという問題があると共に生産効率を十分に向上させることができないという問題がある。
 ここで、図14を参照して、特許文献2等で開示された太陽電池モジュールの製造装置が、ハンダ付けを行う場合の太陽電池セル全体およびタブリードの温度変化について説明する。図14は、太陽電池セル全体およびタブリードの温度変化を示すグラフであり、横軸が特許文献2に開示された太陽電池モジュールの製造装置における、太陽電池セルおよびタブリードが搬送された位置を示し、縦軸が太陽電池セル全体およびタブリードの温度を示している。図14のグラフの上方には、横軸の太陽電池セルおよびタブリードが搬送された位置に対応させて、特許文献2に開示された太陽電池モジュールの製造装置200の一部を図示している。図14に示す太陽電池モジュールの製造装置200は、シュラウド201内に加熱ブロック202と冷却ブロック203とが設けられている。太陽電池モジュールの製造装置200は、太陽電池セルおよびタブリードを、シュラウド201内を矢印D方向に搬送する。
 太陽電池モジュールの製造装置200が、シュラウド201内に太陽電池セルおよびタブリードを搬送すると、図14のグラフに示すように、加熱ブロック202により太陽電池セル全体およびタブリードが急激に昇温する。太陽電池モジュールの製造装置200は、加熱ブロック202によって、太陽電池セル全体およびタブリードの温度をハンダ融点(例えば略180℃)よりも高い温度に加熱する。そして、太陽電池セル全体およびタブリードをハンダ融点よりも高い温度に加熱し続け、太陽電池セルとタブリードとをハンダ付けする。その後、冷却段階で冷却ブロック203によって太陽電池セル全体およびタブリードを冷却する。
 従来の太陽電池モジュールの製造装置200等では、予熱段階からハンダ付け段階に至るまで、太陽電池セル全体およびタブリードをハンダ融点よりも高い温度に加熱し続けて、太陽電池セルとタブリードとをハンダ付けする。すなわち、予熱段階からハンダ付け段階に連続的に移行する構成であるために、ハンダ融点より高い温度に加熱する時間を制御することができない。したがって、太陽電池セル全体が長時間に亘って高温で加熱されるために太陽電池セルにクラック等の損傷が発生するおそれがある。また、近年用いられているハンダ融点が高い無鉛ハンダを用いる場合、さらに太陽電池セルの損傷が懸念される。
 本発明は、上述したような問題点に鑑みてなされたものであって、時間当たりの出来高を大幅に向上させると共に、太陽電池セルにクラック等の損傷を発生させることなく太陽電池セルとタブリードとをハンダ付けする装置および方法を提供することを目的とする。
However, for example, in the soldering apparatus disclosed in Patent Document 1, there is no sufficient preheating, and the entire solar cell and the tab lead are heated to a temperature equal to or higher than the solder melting point in the immediate vicinity of the soldering portion, so that the production efficiency is improved. Is impossible. Moreover, there is a problem that cracks or the like occur in the solar battery cells when the temperature is rapidly raised in order to improve the production efficiency.
In addition, for example, when the solar battery cell and the tab lead are soldered by the solar battery module manufacturing apparatus disclosed in Patent Document 2 or the like, the entire solar battery cell is more than the solder melting point from the preheating stage to the soldering stage. Since the structure is heated to a high temperature, there is a problem that the solar battery cells are damaged and cracks are generated in some cases, and the production efficiency cannot be sufficiently improved. .
Here, with reference to FIG. 14, the temperature change of the whole photovoltaic cell and tab lead when the manufacturing apparatus of the solar cell module disclosed by patent document 2 etc. solders is demonstrated. FIG. 14 is a graph showing the temperature change of the entire solar cell and the tab lead, and the horizontal axis shows the position where the solar cell and the tab lead are conveyed in the solar cell module manufacturing apparatus disclosed in Patent Document 2, The vertical axis indicates the temperature of the entire solar battery cell and the tab lead. Above the graph in FIG. 14, a part of the solar cell module manufacturing apparatus 200 disclosed in Patent Document 2 is illustrated in correspondence with the position where the horizontal solar cell and the tab lead are conveyed. In a solar cell module manufacturing apparatus 200 shown in FIG. 14, a heating block 202 and a cooling block 203 are provided in a shroud 201. The solar cell module manufacturing apparatus 200 transports solar cells and tab leads in the shroud 201 in the direction of arrow D.
When the solar cell module manufacturing apparatus 200 transports the solar cells and the tab leads into the shroud 201, the entire solar cells and the tab leads are rapidly heated by the heating block 202 as shown in the graph of FIG. The solar cell module manufacturing apparatus 200 heats the temperature of the entire solar cell and the tab lead to a temperature higher than the solder melting point (for example, approximately 180 ° C.) by the heating block 202. Then, the entire solar cell and the tab lead are continuously heated to a temperature higher than the solder melting point, and the solar cell and the tab lead are soldered. Thereafter, the entire solar cell and the tab lead are cooled by the cooling block 203 in the cooling stage.
In the conventional solar cell module manufacturing apparatus 200 and the like, the entire solar cell and the tab lead are continuously heated to a temperature higher than the solder melting point from the preheating stage to the soldering stage, and the solar battery cell and the tab lead are soldered. To do. That is, since it is a structure which transfers continuously from the preheating stage to the soldering stage, the time for heating to a temperature higher than the solder melting point cannot be controlled. Therefore, since the entire solar battery cell is heated at a high temperature for a long time, the solar battery cell may be damaged such as a crack. Further, when lead-free solder having a high solder melting point that has been used in recent years is used, there is a concern that the solar battery cell may be damaged.
The present invention has been made in view of the above-described problems, and greatly improves the output per unit of time, and without causing damage such as cracks to the solar battery cell, the solar battery cell and the tab lead. It is an object to provide an apparatus and method for soldering.
 上記目的を達成するために、本発明に係るハンダ付け装置は、太陽電池セルとタブリードとをハンダ付けするハンダ付け装置であって、前記太陽電池セルと前記タブリードとを重ね合わせた状態で、前記太陽電池セルと前記タブリードとをハンダ融点以下の温度に加熱する予熱部と、前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱するハンダ付け部とを備えていることを特徴とする。
 また、前記ハンダ付け部は、前記タブリードの長手方向に沿って配設された加熱体を備え、前記加熱体が、前記太陽電池セルと前記タブリードとの重ね合わせ部に近接または接触することで、前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱するように構成することができる。この場合、予め加熱された太陽電池セルとタブリードとの重ね合わせ部を局所的に加熱することができ、太陽電池セルとタブリードとの重ね合わせ部を短時間でハンダ融点よりも高い温度に加熱することができる。
 また、前記加熱体は、前記タブリードを前記太陽電池セルに対して押圧する複数の押圧子を備えるように構成することができる。この場合、各押圧子は確実にタブリードを太陽電池セルに押圧することができる。
 また、前記太陽電池セルと前記タブリードとを前記予熱部および前記ハンダ付け部に搬送する搬送部を更に備え、前記搬送部は、搬送している前記太陽電池セルを搬送ベルトに吸着して、前記タブリードを前記太陽電池セルと前記搬送ベルトとの間で挟むことにより、前記太陽電池セルと前記タブリードとを位置決めした状態で搬送するように構成することができる。この場合、太陽電池セルと搬送ベルトに挟まれたタブリードを太陽電池セルに対してズレることなく位置決めされた状態で搬送することができる。
 また、前記搬送部は、搬送している前記タブリードの両側に位置する、前記搬送ベルトのセル吸着孔を介して、前記太陽電池セルを吸着することにより前記太陽電池セルを前記搬送ベルトに吸着するように構成することができる。この場合、太陽電池セルと搬送ベルトに挟まれたタブリードを太陽電池セルに対してズレることなく位置決めされた状態で搬送することができる。
 また、前記搬送部は、前記搬送ベルトに載置された前記タブリードを前記搬送ベルトに吸着することにより、前記タブリードを前記搬送ベルトに対して位置決めするように構成することができる。この場合、太陽電池セルをタブリード上に載置したり、搬送ベルト上にタブリードを載置したりするとき、タブリードがズレずに正確に位置決めすることができる。
 また、前記搬送部は、前記搬送ベルトに載置された前記タブリードの下側に位置する、前記搬送ベルトのタブリード吸着孔を介して、前記タブリードを吸着することにより前記タブリードを前記搬送ベルトに吸着するように構成することができる。この場合、太陽電池セルをタブリード上に載置したり、搬送ベルト上にタブリードを載置したりするとき、タブリードがズレずに正確に位置決めすることができる。
 また、前記搬送部は、前記タブリードのハンダの溶融が開始する直前まで、搬送している前記タブリードを吸着するように構成することができる。この場合、太陽電池セルとタブリードを搬送中にタブリードの位置ズレを確実に防止することができる。
 また、前記タブリードを供給するタブリード供給部を更に備え、前記タブリード供給部は、前記タブリードを前記タブリードが前記太陽電池セルの表側接続電極に接続される側と前記タブリードが前記太陽電池セルの裏側接続電極に接続される側との間に段差を有するように曲げ成形するように構成することができる。この場合、タブリードが太陽電池セル上を浮き上がることなく、タブリードを太陽電池セル上に面接触させることができる。
 また、前記タブリード供給部は、前記タブリードを、前記タブリードが前記太陽電池セルの表側接続電極に接続される側において前記タブリードの先端に向かうにしたがって、前記タブリードの前記先端が前記表側接続電極と接するように傾斜させて成形するように構成することができる。この場合、タブリードの弾性力により、タブリードが太陽電池セル上を押圧するため、太陽電池セルとタブリードとがズレることなく、位置決めされた状態を維持することができる。
 また、前記ハンダ付け部により前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱する前に、前記タブリードと前記太陽電池セルとを重ね合わせた状態に仮止めする仮止め装置を更に備えるように構成することができる。この場合、タブリードを太陽電池セルに対してズレることなく、位置決めされた状態で搬送することができる。
 また、前記仮止め装置は、前記太陽電池セルの表側接続電極上に重ね合わせた前記タブリードを加熱することにより仮止めするように構成することができる。この場合、タブリードを太陽電池セルに対してのズレを更に確実に防止することができる。
 また、前記ハンダ付け部により前記太陽電池セルと前記タブリードとの重ね合わせ部の溶融したハンダを、前記タブリードの長手方向における一方側から冷却する冷却部を更に備えるように構成することができる。この場合、ハンダ付け後の太陽電池セルの反りをなくすことができる。
 本発明に係るハンダ付け方法は、太陽電池セルとタブリードとをハンダ付けするハンダ付け方法であって、前記太陽電池セルと前記タブリードとを重ね合わせた状態で、前記太陽電池セルと前記タブリードとをハンダ融点以下の温度に加熱する予熱工程と、前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱するハンダ付け工程とを有することを特徴とする。
In order to achieve the above object, a soldering apparatus according to the present invention is a soldering apparatus for soldering a solar battery cell and a tab lead, wherein the solar battery cell and the tab lead are overlapped with each other. A preheating part for heating the solar battery cell and the tab lead to a temperature below the solder melting point; and a soldering part for heating the overlapping part of the solar battery cell and the tab lead to a temperature higher than the solder melting point. It is characterized by that.
Further, the soldering portion includes a heating body disposed along the longitudinal direction of the tab lead, and the heating body is close to or in contact with the overlapping portion of the solar cell and the tab lead, The overlapping portion of the solar battery cell and the tab lead can be configured to be heated to a temperature higher than the solder melting point. In this case, it is possible to locally heat the overlapped portion of the preheated solar cell and the tab lead, and heat the overlapped portion of the solar cell and the tab lead to a temperature higher than the solder melting point in a short time. be able to.
Moreover, the said heating body can be comprised so that the several tab may be provided which presses the said tab lead with respect to the said photovoltaic cell. In this case, each pressing element can reliably press the tab lead against the solar battery cell.
In addition, a transport unit that transports the solar cells and the tab lead to the preheating unit and the soldering unit, the transport unit adsorbs the transported solar cells to a transport belt, By sandwiching the tab lead between the solar battery cell and the transport belt, the solar battery cell and the tab lead can be transported in a positioned state. In this case, the tab lead sandwiched between the solar battery cell and the transport belt can be transported while being positioned without being displaced from the solar battery cell.
Moreover, the said conveyance part adsorbs the said photovoltaic cell to the said conveyance belt by adsorbing the said photovoltaic cell through the cell adsorption hole of the said conveyance belt located in the both sides of the said tab lead currently conveyed. It can be constituted as follows. In this case, the tab lead sandwiched between the solar battery cell and the transport belt can be transported while being positioned without being displaced from the solar battery cell.
The transport unit may be configured to position the tab lead with respect to the transport belt by attracting the tab lead placed on the transport belt to the transport belt. In this case, when the solar battery cell is placed on the tab lead or the tab lead is placed on the transport belt, the tab lead can be accurately positioned without shifting.
In addition, the transport unit sucks the tab lead to the transport belt by sucking the tab lead through a tab lead suction hole of the transport belt, which is located below the tab lead placed on the transport belt. Can be configured to. In this case, when the solar battery cell is placed on the tab lead or the tab lead is placed on the transport belt, the tab lead can be accurately positioned without shifting.
The transport unit may be configured to suck the transported tab lead until immediately before the melting of the tab lead solder starts. In this case, misalignment of the tab lead can be reliably prevented during conveyance of the solar battery cell and the tab lead.
The tab lead supply unit further includes a tab lead supply unit that supplies the tab lead, and the tab lead supply unit connects the tab lead to the side where the tab lead is connected to the front connection electrode of the solar cell and the tab lead connects to the back side of the solar cell. It can be configured to be bent so as to have a step between the side connected to the electrode. In this case, the tab lead can be brought into surface contact with the solar battery cell without the tab lead floating on the solar battery cell.
In addition, the tab lead supply unit contacts the front end of the tab lead with the front end of the tab lead as the tab lead approaches the front end of the tab lead on the side where the tab lead is connected to the front side connection electrode of the solar battery cell. It can be configured to be inclined and molded. In this case, since the tab lead presses on the solar battery cell due to the elastic force of the tab lead, the solar battery cell and the tab lead can be kept positioned without being displaced.
In addition, before the soldered portion heats the overlapping portion of the solar battery cell and the tab lead to a temperature higher than the solder melting point, the temporary fixing of the tab lead and the solar battery cell is temporarily fixed. A stop device may be further provided. In this case, the tab lead can be transported in a positioned state without being displaced from the solar battery cell.
Moreover, the temporary fixing device can be configured to temporarily fix the tab lead by heating the tab lead superimposed on the front connection electrode of the solar battery cell. In this case, it is possible to more reliably prevent the tab lead from being displaced from the solar battery cell.
Moreover, it can comprise so that the soldering part may further comprise the cooling part which cools the melt | dissolved solder of the overlapping part of the said photovoltaic cell and the said tab lead from the one side in the longitudinal direction of the said tab lead. In this case, warpage of the solar battery cell after soldering can be eliminated.
A soldering method according to the present invention is a soldering method for soldering a solar battery cell and a tab lead, and the solar battery cell and the tab lead are joined in a state where the solar battery cell and the tab lead are overlapped. It has the preheating process heated to the temperature below a solder melting | fusing point, and the soldering process which heats the overlapping part of the said photovoltaic cell and the said tab lead to temperature higher than a solder melting | fusing point, It is characterized by the above-mentioned.
 本発明によれば、時間当たりの出来高を大幅に向上させながら、太陽電池セルにクラック等の損傷を発生させることなく太陽電池セルとタブリードとをハンダ付けすることができる。 According to the present invention, the solar battery cell and the tab lead can be soldered without causing damage such as cracks in the solar battery cell while greatly improving the output per hour.
 図1Aは、太陽電池セルおよびタブリードの構成を示す平面図である。
 図1Bは、太陽電池セルおよびタブリードの構成を示す側面図である。
 図1Cは、太陽電池セルの構成を示す図である。
 図2は、ハンダ付け装置の概略構成を示す図である。
 図3は、タブリードローディング装置の構成を示す斜視図である。
 図4は、タブリードローディング装置を矢印A方向から見た図である。
 図5Aは、タブリードローディング装置を矢印B方向から見た図である。
 図5Bは、搬送ベルトを矢印C方向から見た図である。
 図6Aは、タブリードローディング装置が成形したタブリードの側面図である。
 図6Bは、他の形態のタブリードの側面図である。
 図6Cは、最後に載置されるタブリードのうち短い仕様のタブリードの側面図である。
 図7は、最初のタブリードを搬送ベルトに載置した状態を示す図である。
 図8は、太陽電池セルを搬送ベルトに載置した状態を示す図である。
 図9は、次の(あるいは最後の)タブリードを載置した状態を示す図である。
 図10は、加熱ヘッドの一部を切断した斜視図である。
 図11は、加熱ヘッドの構成を示す図である。
 図12は、本実施形態に係る太陽電池セル全体およびタブリードの温度変化を示す図である。
 図13は、冷却したときのタブリードのリード線が収縮する状態を示す図である。
 図14は、従来のハンダ付け装置および従来のハンダ付け装置における太陽電池セル全体およびタブリードの温度変化を示す図である。
FIG. 1A is a plan view showing a configuration of solar cells and tab leads.
FIG. 1B is a side view showing the configuration of the solar battery cell and the tab lead.
FIG. 1C is a diagram illustrating a configuration of a solar battery cell.
FIG. 2 is a diagram showing a schematic configuration of the soldering apparatus.
FIG. 3 is a perspective view showing the configuration of the tab lead loading apparatus.
FIG. 4 is a view of the tab lead loading device as seen from the direction of arrow A.
5A is a view of the tab lead loading device as seen from the direction of arrow B. FIG.
FIG. 5B is a view of the conveyor belt as viewed from the direction of arrow C.
FIG. 6A is a side view of the tab lead formed by the tab lead loading device.
FIG. 6B is a side view of another form of tab lead.
FIG. 6C is a side view of a tab lead having a short specification among the tab leads placed last.
FIG. 7 is a diagram illustrating a state where the first tab lead is placed on the transport belt.
FIG. 8 is a diagram illustrating a state in which the solar battery cell is placed on the transport belt.
FIG. 9 is a diagram showing a state in which the next (or last) tab lead is placed.
FIG. 10 is a perspective view in which a part of the heating head is cut.
FIG. 11 is a diagram illustrating a configuration of the heating head.
FIG. 12 is a view showing temperature changes of the entire solar battery cell and the tab lead according to the present embodiment.
FIG. 13 is a diagram showing a state in which the lead wire of the tab lead contracts when cooled.
FIG. 14 is a diagram showing the temperature change of the entire solar battery cell and the tab lead in the conventional soldering apparatus and the conventional soldering apparatus.
 10:太陽電池セル
 11:表側接続電極
 12:裏側接続電極
 13:フィンガー部
 15:タブリード
 20:セル供給部
 21:セルローディング装置
 30:タブリード供給部
 33:タブリードローディング装置
 37:上型
 38:突条部
 39:成形部
 40:段部
 42:下型
 43:突条部
 44:凹溝部
 45:段部
 48:加熱子
 50:搬送部
 51:搬送ベルト
 53:タブリード吸着孔
 54:セル吸着孔
 56:吸着装置
 60:予熱部
 70:ハンダ付け部
 72:加熱ヘッド
 73:加熱ブロック(加熱体)
 74:シースヒータ
 75:押圧子
 80:冷却部
DESCRIPTION OF SYMBOLS 10: Solar cell 11: Front side connection electrode 12: Back side connection electrode 13: Finger part 15: Tab lead 20: Cell supply part 21: Cell loading apparatus 30: Tab lead supply part 33: Tab lead loading apparatus 37: Upper mold 38: Projection Part 39: Molding part 40: Step part 42: Lower mold 43: Projection part 44: Groove part 45: Step part 48: Heater 50: Conveying part 51: Conveying belt 53: Tab lead adsorbing hole 54: Cell adsorbing hole 56: Adsorption device 60: Preheating part 70: Soldering part 72: Heating head 73: Heating block (heating body)
74: Sheath heater 75: Presser 80: Cooling section
 以下、図面を参照して本実施形態に係るハンダ付け装置100について説明する。なお、図面には、必要に応じてハンダ付け装置100の前側(ハンダ付けされた太陽電池セルとタブリードの排出側)を矢印Frで示し、後側(太陽電池セルおよびタブリードの供給側)を矢印Rrで示す。
 ここでは、まず、図1A、図1Bおよび図1Cを参照して、ハンダ付け装置100でハンダ付けされる太陽電池セル10およびタブリード15について説明する。
 図1Aは、複数の太陽電池セル10をタブリード15でストリング状に配置した状態を表側接続電極側(以下、表側という)から見た平面図である。図1Bは、複数の太陽電池セル10をタブリード15でストリング状に配置した状態を側方から見た側面図である。図1Cは、太陽電池セル10の構成を示す図である。図1C(a)は、太陽電池セル10を表側から見た平面図である。図1C(b)は、太陽電池セル10を裏側接続電極側(以下、裏側という)から見た平面図である。
 太陽電池セル10は、厚さを略0.16mmとする矩形状の平板形状に形成されている。図1C(a)に示すように、本実施形態に係る太陽電池セル10の表側には、太陽電池セル10の一辺から対向する一辺に亘って2本の表側接続電極11が設けられている。また、太陽電池セル10の表側には、表側接続電極11に直交するように太陽電池セル10の一辺から対向する一辺に亘って複数のフィンガー部13が設けられている。また、図1C(b)に示すように、太陽電池セル10の裏側には、表側接続電極11と同様に太陽電池セル10の一辺から対向する一辺に亘って2本の裏側接続電極12が、設けられている。表側接続電極11および裏側接続電極12の表面には、タブリード15とハンダ付けするためのハンダがコーティングされている。
 一方、図1Aおよび図1Bに示すように、タブリード15は、リード線であり、厚さを略0.2mmとする短冊状の平板形状に形成されている。タブリード15は、銅を用いて形成され、表面には、表側接続電極11および裏側接続電極12とハンダ付けするためのハンダがコーティングされている。
 ハンダ付けは、図1A及び図1Bに示すように、複数の太陽電池セル10がタブリード15でストリング状に配置された状態で行われる。具体的には、太陽電池セル10を所定の間隔をあけて配置すると共に、タブリード15の半分から一方(前側)を太陽電池セル10の表側接続電極11上に重ね合わせて配置し、タブリード15の半分から他方(後側)を、隣接する太陽電池セル10の裏側接続電極12上に重ね合わせて配置する。本実施形態では、隣接する太陽電池セル10同士が2本のタブリード15で繋げられる。ここでは、2本のタブリード15の中心間の距離をWとする(図1Aを参照)。
 このようにストリング状に配置された太陽電池セル10とタブリード15とが重ね合わされた重ね合わせ部をハンダ付け装置100が加熱することで各接続電極およびタブリード15にコーティングされたハンダが溶融し、太陽電池セル10とタブリード15とが電気的に接続される。
 次に、図2を参照して、本実施形態に係るハンダ付け装置100の概略について説明する。図2は、ハンダ付け装置100の概略構成を示す図である。
 本実施形態のハンダ付け装置100は、ハンダ付けに関連した処理を行う複数の構成要素からなっている。具体的には、ハンダ付け装置100は、太陽電池セル供給部20、タブリード供給部30、搬送部50、予熱部60、ハンダ付け部70、冷却部80を含んで構成されている。
 ここで、各構成要素を簡単に説明する。まず、太陽電池セル供給部20は、太陽電池セル10を搬送部50に供給する。タブリード供給部30は、タブリード15を曲げ成形すると共に所定の長さに切断し、搬送部50に供給する。このとき、太陽電池セル供給部20、タブリード供給部30および搬送部50が連係して動作することで、太陽電池セル10とタブリード15とが搬送部50の搬送ベルト51上で図1A、図1Bに示すようなストリング状に配置される。
 搬送部50は、太陽電池セル10とタブリード15を位置決めした状態で、予熱部60、ハンダ付け部70および冷却部80に搬送する。予熱部60では、温度制御装置61が加熱炉62内の太陽電池セル10をハンダ融点以下の温度に制御しながら、太陽電池セル10全体およびタブリード15を加熱する。ハンダ付け部70では、太陽電池セル10の接続電極とタブリード15との重ね合わせ部を局所的に加熱すると共に、タブリード15を太陽電池セル10に対して押圧して太陽電池セル10とタブリード15とをハンダ付けする。冷却部80では、太陽電池セル10およびタブリード15を冷却して、太陽電池セル10とタブリード15との重ね合わせ部を固化させる。
 本実施形態のハンダ付け装置100によれば、上述した各構成要素が単独又は互いに連係して太陽電池セル10とタブリード15とのハンダ付けを高効率に行うことができる。以下では、各構成要素の具体的な構成および動作処理について詳細に説明する。
 (太陽電池セル供給部20)
 太陽電池セル供給部20は、太陽電池セル10を搬送部50に供給する工程を行う。
 図2に示すように、太陽電池セル供給部20には、セルローディング装置21が備えられている。セルローディング装置21は、ハンダ付けされる前の太陽電池セル10が重ねて収容されたストッカー22から搬送部50までを往復して移動することができる。具体的には、セルローディング装置21は、ストッカー22から太陽電池セル10を一枚ごと吸着させた後、搬送部50の搬送ベルト51上の所定の位置に載置する。なお、太陽電池セル10を搬送部50に供給する途中には、図示しない撮影装置が太陽電池セル10にクラックが生じていないかを検査したり、図示しないフラックス供給装置が太陽電池セル10の表側接続電極11および裏側接続電極12にフラックスを塗布するように構成することができる。
 (タブリード供給部30)
 タブリード供給部30は、所定の長さのタブリード15を曲げ形成し搬送部50に供給する工程を行う。
 図2に示すように、タブリード供給部30には、所定の長さのタブリード15を曲げ成形し、曲げ成形したタブリード15を搬送ベルト51上に載置するタブリードローディング装置33が備えられている。ここで、図3~図5Aを参照して、タブリードローディング装置33について説明する。図3は、タブリードローディング装置33の構成を示す斜視図である。図4は、図3に示すタブリードローディング装置33を矢印A方向から見た図である。図5Aは、図3に示すタブリードローディング装置33を矢印B方向から見た図である。
 図3に示すように、タブリードローディング装置33は、搬送部50の側方に位置して配設され、上型37、下型42等を含んで構成されている。
 上型37は、タブリード15を曲げ成形するための一方の金型であり、図示しない上型駆動装置により鉛直方向および水平方向に移動可能である。
 図4および図5Aに示すように、上型37の下面には、2つの突条部38がそれぞれ搬送ベルト51の搬送方向に沿って平行に形成されている。各突条部38の下面には、タブリード15を押圧するための成形部39が、下方に向かってそれぞれ突出している。各突条部38に形成される成形部39の幅寸法は、タブリード15の幅と略一致する。また、隣り合う成形部39同士の距離は、図1Aで説明した2本のタブリード15の中心間の距離Wと同じ距離である(図5A等を参照)。また、図4に示すように、各成形部39の長手方向の略中央には、段部40が形成されている。各成形部39は、段部40を境にして成形部39の前側よりも後側の方が下側に向かって僅かに突出している。この段部40の段差は、太陽電池セル10の略厚みほどである。
 また、図4に示すように、上型37の各突条部38には長手方向に離間して複数の吸着孔41が形成されている。各吸着孔41は、突条部38内を鉛直方向に沿って形成され、下側が成形部39の下面に開口している。図示しないタブリード吸着装置が各吸着孔41を介してタブリード15を吸引することで、タブリード15を上型37に吸着させることができる。
 さらに、図4に示すように、上型37の前側の各突条部38内には長手方向に離間して複数の仮止め部材としての加熱子48が設けられている。ここでは、加熱子48は、前側の突条部38における前端部と後端部との2箇所に設けられている。また、加熱子48は、ピン状に形成されていて、少なくともその先端がハンダ融点以上に加熱されている。加熱子48の加熱は電気抵抗加熱方式等を採用することができる。各加熱子48は、成形部39内に収容された状態から、図4の二点鎖線で示すように成形部39の下面から下方向に図示しない昇降機構により突出可能に構成されている。後述するように、タブリード15の前側を太陽電池セル10上に載置したときに、各加熱子48が成形部39の下面から下方向に突出することで、タブリード15の所定の位置を加熱してタブリード15のハンダを一部、溶融させることができる。タブリード15のハンダを一部溶融させることで、タブリード15と太陽電池セル10とが一部分でハンダ付けされ、仮止めされる。なお、本実施形態では、加熱子48が前側の突条部38における前端部と後端部との2箇所に設けられている場合について説明したが、この場合に限られず、2箇所以上に設けられていてもよい。
 一方、下型42は、タブリード15を曲げ成形するための他方の金型であり、図示しない下型駆動装置により鉛直方向に移動可能である。下型42の上面には、2つの突条部43がそれぞれ搬送ベルト51の搬送方向に沿って平行に形成されている。
 図4および図5Aに示すように、各突条部43の上面には、タブリード15を押圧するための凹溝部44が、それぞれ形成されている。各突条部43に形成された凹溝部44の溝幅寸法は、タブリード15の幅と略一致する。また、隣り合う凹溝部44同士の距離は、図1Aで説明した2本のタブリード15の中心間の距離Wと同じ距離である(図5A等を参照)。また、図4に示すように、下型42の各突条部43の凹溝部44内には、段部45がそれぞれ形成されている。この段部45は、上型37の各成形部39に形成された段部40の鉛直下に位置して形成されている。すなわち、下型42の段部45の位置は、上型37の段部40と下型42の段部45とが上型37と下型42との間に配置されたタブリード15を上下から挟むように押圧したときに、後述する図6Aに示すようなタブリード15Aの中央に段差が形成されるような位置に形成される。また、下型42の凹溝部44は、各段部45を境界にして凹溝部44の前側よりも後側の方が僅かに溝の深さが深くなっている。この段部45の段差は、太陽電池セル10の略厚みほどである。
 次に、図4および図5Aを参照して、タブリードローディング装置33がタブリード15を曲げ成形する動作について説明する。なお、ここでは、図2に示すように、一のリール32から供給されるタブリードを曲げ形成する場合について説明するが、隣接する他のリール32から供給されるタブリードを曲げ形成する場合も同様に同時に行われる。
 まず、図4に示すように、タブリードチャック35が、タブリード15をリール32から引き出して水平状態に保持する。
 次に、下型駆動装置が下型42を上昇させて、下型42の凹溝部44内にタブリード15を嵌め合わせて、位置決めする(図5Aの二点鎖線で示す下型も参照)。
 続いて、タブリードカッタ36が、タブリード15を切断する。また、タブリードチャック35は、タブリード15の保持を解除して、後方に退避する。次に、上型駆動装置が上型37を下降させて、下型42に嵌め合わされたタブリード15を押圧する(図5Aの二点鎖線で示す上型も参照)。
 上述した動作により、リール32から引き出された所定の長さのタブリード15は、上型37の成形部39に形成された段部40および中央側の下型42の凹溝部44に形成された段部45により中央が曲げられて成形される。また、成形されたタブリード15は、上型37と下型42との間で押圧されることによって、リール32に巻かれていた形状が、より真っ直ぐに矯正される。
 次に、図5Aおよび図5Bを参照して、タブリードローディング装置33が切断したタブリードを搬送ベルト51に載置する動作について説明する。図5Bは、図3に示す搬送ベルト51を矢印C方向から見た図である。
 上型37がタブリード15を押圧した後、タブリードローディング装置33の上型37は、吸着孔41を介してタブリード15を吸着する。上型駆動装置および下型駆動装置は、それぞれ上型37および下型42を離型させる。したがって、タブリード15は、上型37のみに吸着された状態となる。
 次に、図5Bに示すように、上型駆動装置がタブリード15を吸着している上型37を、そのまま水平方向に搬送部50の搬送ベルト51の上方まで移動させる。さらに、図5Bの二点鎖線で示すように上型駆動装置が上型37を下降させ、その後、上型37はタブリード15の吸着を解除する。したがって、図5Bの二点鎖線で示すように2本のタブリード15は搬送ベルト51の搬送面52の所定の位置に載置される。ここで、2本のタブリード15同士の距離は、図1Aで説明した2本のタブリード15の中心間の距離Wと同じ距離である。
 このようにタブリードローディング装置33が動作することで、タブリード供給部30では、タブリード15を所定の長さに切断して曲げ成形し、成形したタブリード15を搬送部50に供給することができる。なお、上型37がタブリード15を搬送ベルト51の所定の位置に載置している間、タブリードチャック35は、タブリード15の切断部を挟んで水平方向に引っ張り、水平に保持し、次のタブリード15の曲げ成形に備える。
 ここで、上述した太陽電池セル供給部20のセルローディング装置21とタブリード供給部30のタブリードローディング装置33とは、それぞれ順番に太陽電池セル10およびタブリード15を搬送部50の搬送ベルト51上に載置していき、図1A、図1Bに示すような、複数の太陽電池セル10をタブリード15でストリング状に配置していく。
 なお、上述したタブリード供給部30では、タブリード15を切断して曲げ成形すると共に、成形したタブリード15を搬送ベルト51に載置する動作をタブリードローディング装置33が1台で行う場合について説明したが、タブリード15を曲げ成形する装置と、成形したタブリード15を搬送ベルト51に載置する装置とを分けて構成してもよい。
 ここで、図6Aおよび図6Bを参照して、上型37および下型42により曲げ成形されたタブリード15の形状について説明する。図6Aは、本実施形態に係るタブリードローディング装置33により成形されたタブリード15aの側面図である。図6Aでは、太陽電池セル10を二点鎖線で示している。タブリード15aは、中央で太陽電池セル10の厚み分だけ前側が高くなるように、曲げ成形されている。したがって、タブリード15aを搬送部50の搬送ベルト51に載置するとき、既に載置されている太陽電池セル10上に載置したとしても、タブリード15aが太陽電池セル10上で浮き上がることがなく、タブリード15aと太陽電池セル10とを広く面接触させることができる。
 また、図6Bは、他の形態のタブリード15bの側面図である。図6Bでは、太陽電池セル10を二点鎖線で示している。タブリード15bは、中央で太陽電池セル10の厚み分だけ前側が高くなるように、曲げ成形されている。また、タブリード15bは、前側の先端に向かうにしたがって下側に向かうようにやや傾斜して成形されている。すなわち、タブリードローディング装置33の上型37および下型42では、図6Bに示すようなタブリード15bを成形できるように、上型37の成形部39および下型42の凹溝部44それぞれに、前側に向かうにしたがって下側に向かうような傾斜を形成すればよい。したがって、タブリード15bを搬送部50の搬送ベルト51に載置するとき、既に載置されている太陽電池セル10上に載置したとしても、タブリード15bが太陽電池セル10上で浮き上がることがなく、タブリード15bと太陽電池セル10とを広く面接触させることができる。さらに、前側に向かうにしたがって下側に向かうように傾斜しているので、タブリード15bの前側が、タブリード15bの弾性力により太陽電池セル10上を押し付けるように作用する。したがって、タブリード15bと太陽電池セル10とをより接触させて、両者の間のズレを防止することができる。
 図7に示すように、最初に載置するタブリード15については、上述したような曲げ成形を行わないようにする。最初のタブリード15の場合、タブリードローディング装置33には、曲げ成形をしない別置の上型と下型を設ける等の手段を設けることで、中央に段差が成形されていないタブリード15を吸着して供給することができる。
 また、タブリードローディング装置33が搬送ベルト51に最後に載置するタブリード15については曲げ成形を行うものの、最初のタブリード15や中間のタブリード15に比べて短い仕様のものがある。具体的には、図6Cに示すタブリード15cのように、後側の長さが短いものである。
 (搬送部50)
 搬送部50は、太陽電池セル10およびタブリード15をストリング状に配置された状態で位置決めしながら、予熱部60、ハンダ付け部70および冷却部80に間欠搬送する工程を行う。
 図2に示すように、搬送部50には、搬送ベルト51、搬送ローラ55a、55b、吸着装置56等が備えられている。搬送ベルト51は、搬送ローラ55aと、冷却部80に近接した位置に配設された搬送ローラ55bとに巻回されている。搬送ベルト51は、薄い平板状のベルトであって、熱伝導性を高めるために金属製となっている。また、搬送ローラ55a、55bの回転軸に接続された図示しないローラ駆動装置が駆動することにより、各搬送ローラ55a、55bが矢印方向に回転する。各搬送ローラ55a、55bの回転により、搬送ベルト51の搬送面52に載置された太陽電池セルおよびタブリード(以下、合わせて、被搬送物という)が、予熱部60、ハンダ付け部70および冷却部80の順に搬送される。
 また、吸着装置56は、搬送ベルト51の搬送面52の下側に搬送ベルト51の長手方向に亘って配設されている。吸着装置56は、搬送面52に載置された太陽電池セル10およびタブリード15を搬送ベルト51に吸着させて位置決めを行うことができる。吸着装置56による太陽電池セル10およびタブリード15を吸着させる動作については後述する。
 また、図3に示すように、搬送ベルト51には、搬送ベルト51の周方向に亘って複数のタブリード吸着孔53が連続して形成されている。本実施形態の搬送ベルト51には、搬送ベルト51の幅方向における左右両側に2列のタブリード吸着孔53が形成されている。タブリード吸着孔53は、タブリードローディング装置33によって搬送ベルト51上に各タブリード15を載置される位置と一致する位置に、形成される(図5Bも参照)。すなわち、各タブリード吸着孔53の列間の距離は、図1Aで説明した2本のタブリード15の中心間の距離Wと同じ距離である。また、図3に示すように、搬送ベルト51には、各タブリード吸着孔53の両側に、搬送ベルト51の周方向に亘って複数のセル吸着孔54が連続して形成されている。
 次に、図3および図7~図9を参照して、吸着装置56により太陽電池セル10およびタブリード15を吸着させながら、搬送ベルト51が太陽電池セル10およびタブリード15を搬送する動作について説明する。ここで、図7(a)は、タブリードローディング装置33が搬送ベルト51に最初のタブリード15を載置した状態を示す斜視図である。図7(b)は、図7(a)に示すI−I線を鉛直方向に切断して矢印方向から見た断面図である。また、図8(a)は、セルローディング装置21が搬送ベルト51に太陽電池セル10を載置した状態を示す斜視図である。図8(b)は、図8(a)に示すII−II線を鉛直方向に切断して、矢印方向から見た断面図である。図9(a)は、タブリードローディング装置33が搬送ベルト51に、次の(あるいは最後の)タブリード15を載置した状態を示す斜視図である。図9(b)は、図9(a)に示すIII−III線(加熱炉62内の太陽電池セルとタブリードとを含めた断面)を鉛直方向に切断して、矢印方向から見た断面図である。なお、図7(a)、図8(a)および図9(a)には、後述する加熱炉62の入口64が図示されている。
 まず、図7(a)に示すように、タブリードローディング装置33が曲げ成形していない最初のタブリード15を搬送面52の所定の位置、すなわち連続するタブリード吸着孔53に沿ってそれぞれ平行に載置する。続いて、吸着装置56が搬送面52に載置された各タブリード15を、各タブリード吸着孔53を介して吸引する。具体的には、図7(b)に示すように、吸着装置56は、搬送ベルト51の各タブリード吸着孔53の下側に位置する各タブリード吸引孔57を介して、吸引することで、各タブリード15を搬送ベルト51に吸着させる。したがって、各タブリード15は、搬送ベルト51に載置された所定の位置に位置決めされる。
 次に、図8(a)に示すように、セルローディング装置21が搬送面52の所定の位置に最初の太陽電池セル10を載置する。具体的には、セルローディング装置21は、既に載置されている各タブリード15の後側と太陽電池セル10の各裏側接続電極12とを一致させるように太陽電池セル10を載置する。太陽電池セル10がタブリード15上に載置されるとき、タブリード15と接触してしまい、タブリード15がズレてしまう恐れがある。しかし、各タブリード15は吸着装置56により搬送ベルト51に対して位置決めされているので、太陽電池セル10が接触したとしても動かず、所定の位置を維持することができる。
 続いて、吸着装置56が搬送面52上、詳しくは各タブリード15上に載置された太陽電池セル10を、各セル吸着孔54を介して吸引する。具体的には、図8(b)に示すように、吸着装置56は、搬送ベルト51のセル吸着孔54の下側に位置するセル吸引孔58を介して、吸引することで、太陽電池セル10を搬送ベルト51に吸着させる。したがって、太陽電池セル10は、搬送ベルト51に載置された所定の位置、すなわちタブリード15と太陽電池セル10の裏側接続電極12とが一致するように位置決めされる。このとき、太陽電池セル10は各タブリード15と接触している近傍がやや撓みながら吸着されるので、各タブリード15は太陽電池セル10と搬送ベルト51とにより挟まれた状態となる。したがって、太陽電池セル10と各タブリード15とは、ズレずに位置決めされた状態を維持することができる。なお、図8(b)では、太陽電池セル10が吸着孔54によりタブリード15の近傍が撓み固定される状態を強調して示している。
 次に、搬送ローラ55a、55bおよび搬送ベルト51により、太陽電池セル10とタブリード15とを間欠搬送する。具体的には、ローラ駆動装置が、太陽電池セル10の略1枚分に相当する長さだけ搬送ベルト51を移動させる。このとき、吸着装置56は、太陽電池セル10を吸着し続けているので、搬送時の振動等で太陽電池セル10とタブリード15とがズレることがない。
 次に、図9(a)に示すように、タブリードローディング装置33が曲げ成形した次のタブリード15を搬送面52の所定の位置に載置する。具体的には、各タブリード15の前側を太陽電池セル10の各表側接続電極11に一致させるように載置し、各タブリード15の後側を連続するタブリード吸着孔53に沿ってそれぞれ平行に載置する。続いて、吸着装置56が搬送面52に新たに載置されたタブリード15を、タブリード吸着孔53を介して吸引し、搬送ベルト51に吸着させる。したがって、タブリード15の後側は、搬送ベルト51に載置された所定の位置に位置決めされる。また、タブリード15の後側が位置決めされていることで、タブリード15の前側も幅方向の動きが規制され、太陽電池セル10の表側接続電極11と一致するように位置決めされる。
 また、タブリード15は、図6Aおよび図6Bに示すように、中央で太陽電池セル10の厚み分だけ曲げ成形されているので、タブリード15の前側が太陽電池セル10上で浮き上がることを防止できる。また、図6Bに示すようなタブリードの前側を下側に傾斜させたタブリード15bを載置することで、タブリード15bの弾性力によりタブリード15bの前側が太陽電池セル10の表側接続電極11上を押し付ける。したがって、タブリード15bの前側と太陽電池セル10の表側接続電極11とが強く面接触するために、タブリード15bと太陽電池セル10との間で、よりズレを防止できる。
 次に、セルローディング装置21は既に載置されているタブリード15の後側に次の太陽電池セル10を載置する。具体的には、セルローディング装置21は、既に載置されている各タブリード15の後側と太陽電池セル10の各裏側接続電極12とが一致するように太陽電池セル10を載置する。続いて、吸着装置56がタブリード15上に載置された太陽電池セル10をセル吸着孔54を介して吸引する。
 次に、搬送ローラ55a、55bおよび搬送ベルト51により、太陽電池セル10の略1枚分に相当する長さだけ太陽電池セル10とタブリード15とを間欠搬送する。
 このように、タブリードローディング装置33、セルローディング装置21および搬送ベルト51が動作することで、搬送ベルト51上で太陽電池セル10とタブリード15とを正確に位置決めしながらストリング状に配置させることができる。
 次に、図9(a)を参照して、タブリードローディング装置33が最後のタブリード15を搬送面52の所定の位置に載置する場合について説明する。ここでは、図9(a)の二点鎖線で示すように、予め設定された数の太陽電池セル10が搬送ベルト51に載置されたとする。
 この場合、タブリードローディング装置33は、曲げ形成した最後のタブリード15を搬送面52の所定の位置に載置する。具体的には、各タブリード15の前側を太陽電池セル10の各表側接続電極11に一致させるように載置し、各タブリード15の後側を連続するタブリード吸着孔53に沿ってそれぞれ平行に載置する。なお、最後のタブリード15が図6Cに示すような後側が短い仕様のタブリード15cの場合、タブリードローディング装置33は、タブリード15cの前側を太陽電池セル10の各表側接続電極11に一致させるように載置する。
 次に、図4で説明したタブリードローディング装置33の上型37に設けられた各加熱子48が成形部39の下面から下方向に突出して、各タブリード15の前側の前後2箇所(図9(a)に示す仮付け位置59a、59b)を加熱する。各加熱子48が各タブリード15を加熱することで、各タブリード15の仮付け位置59a、59bのハンダが溶融し、太陽電池セル10の表側接続電極11とハンダ付けされることで、仮止めされる。このとき、各タブリード15と太陽電池セル10の表側接続電極11とが、タブリード15の前側において前後に離間させて仮止めされていることから、タブリード15と太陽電池セル10との間でズレないように安定した仮止めを行うことができる。
 このように、最後のタブリード15を太陽電池セル10と仮止めするのは、後述するように加熱炉62内では、吸着装置56がタブリード15を搬送ベルト51に吸着しないように構成されているためである。すなわち、加熱炉62内では、最後のタブリード15の後側は吸着されておらず、さらに太陽電池セル10と搬送ベルト51とに挟まれた状態ではない。したがって、仮止めをしない場合、最後のタブリード15は搬送時やハンダ付け時に太陽電池セル10との間でズレる可能性があるためである。
 なお、ここでは、最後のタブリード15を仮止めする場合について説明したが、太陽電池セル10上に載置するタブリード15の全てを仮止めするようにしてもよい。また、タブリードローディング装置33が、タブリード15を仮止めする仮止め装置と兼ねる場合について説明したが、タブリード15を仮止めする専用の仮止め装置を設けてもよい。
 次に、搬送ベルト51は、載置された太陽電池セル10とタブリード15とを順に予熱部60の加熱炉62内に間欠搬送していく。この加熱炉62内では、吸着装置56が、タブリード15上に載置された太陽電池セル10のみを吸引し、タブリード15を吸引しないように構成されている。具体的に説明すると、図9(b)で示すように、加熱炉62における吸着装置56には、図7(b)および図8(b)で説明したタブリード吸引孔57が設けられていない。すなわち、加熱炉62内では、吸着装置56は、搬送ベルト51のセル吸着孔54の下側に位置するセル吸引孔58のみを介して吸引して、太陽電池セル10を搬送ベルト51に吸着させる。なお、吸着装置56がタブリード15を吸引しなくとも、各タブリード15の両側が太陽電池セル10によって搬送ベルト51に押し当てられることから、搬送時に太陽電池セル10とタブリード15とがズレてしまうことがない。
 ここで、加熱炉62内で吸着装置56がタブリード15を吸引しないように構成されているのは、タブリード15を直接、吸引すると加熱炉62内の熱で溶融されたタブリード15のハンダが吸引されて、後工程で支障をきたすことが無いようにするためである。
 このように、加熱炉62内で吸着装置56がタブリード15の両側で太陽電池セル10を搬送ベルト51に吸着させることで、搬送ベルト51は、タブリード15と太陽電池セル10とを位置決めさせた状態で搬送することができる。また、タブリード15にタブリード吸着孔53の跡を形成することを防止することができる。なお、加熱炉62内であっても吸着装置56が、タブリード15のハンダの溶融が開始する直前まで、またはタブリード15のハンダの溶融が開始する以前まで、タブリード15を吸引できるように構成してもよい。これにより、搬送ベルト51により、タブリード15と太陽電池セル10との搬送中のズレをより確実に防止することができる。
 なお、上述した説明では、吸着装置56が搬送面52に載置された各タブリード15を、各タブリード吸着孔53を介して吸引する場合について説明したが、この場合に限られず、吸引しないように構成することもできる。
 (予熱部60)
 予熱部60は、太陽電池セル10およびタブリード15を予備加熱する工程を行う。
 図2に示すように、予熱部60には、加熱炉62内に搬送ベルト51の搬送方向に沿って、複数のヒータ63が備えられている。本実施形態の予熱部60は、3つのヒータ63から構成されているが、その数量は太陽電池セル10の種類等に応じて、適宜変更することができる。各ヒータ63は、例えば熱風ヒータやIRランプ等である。また、各ヒータ63は、搬送ベルト51で搬送されている太陽電池セル10を直接加熱する他、加熱炉62内の雰囲気を加熱することで、太陽電池セル10全体を満遍なく加熱する。
 さらに、各ヒータ63は、温度制御装置61により加熱する温度がコントロールされている。具体的には、加熱炉62内には、搬送ベルト51に近接した位置に図示しない温度検出装置が搬送方向に沿って複数、設けられている。温度制御装置61は、温度検出装置に基づいて、ハンダ付け部70に近いヒータ63ほど高い温度になるように制御している。したがって、予熱部60における加熱炉62内では、加熱炉62の入口64からハンダ付け部70に近づくほど、雰囲気温度が高くなっている。
 ここで、図12を参照して、予熱部60における太陽電池セル10全体およびタブリード15の温度変化について説明する。図12は、太陽電池セル全体およびタブリードの温度変化を示すグラフであり、横軸がハンダ付け装置における、太陽電池セルおよびタブリードが搬送された位置を示し、縦軸が太陽電池セルおよびタブリードの温度を示している。なお、図12のグラフの上方には、横軸の太陽電池セルおよびタブリードが搬送された位置に対応させて、ハンダ付け装置100の構成の一部を図示している。また、太陽電池セル10全体の温度変化を実線で示し、タブリード15の温度変化を破線で示している。
 図12で示すように、温度制御されたヒータ63によって、太陽電池セル10全体およびタブリード15は、予熱部60においてハンダ付け部70に向かうほど昇温する。このとき、温度制御装置61は、太陽電池セル10にクラックが生じないように徐々に加熱するように温度制御している。
 また、温度制御装置61は、ハンダ付け部70の手前に位置する太陽電池セル10をハンダ融点以下の温度、好ましくはハンダ融点よりも低い温度に加熱するように温度制御している。図12に示す例では、ハンダ融点が200℃のハンダの場合であって、温度制御装置61は、太陽電池セル10が略150℃前後になるように加熱している。なお、ハンダ融点は、使用するハンダの種類等によっても変化するため、温度制御装置61はハンダの種類に応じて加熱炉62内、すなわちヒータ63の温度を制御する。
 このように、予熱部60では、太陽電池セル10を徐々に加熱している。また、予熱部60では、ハンダ付け部70の手前に位置する太陽電池セル10をハンダ融点以下の温度に加熱している。したがって、太陽電池セル10にクラック等の損傷を発生させることがない。また、次のハンダ付け部70では、予熱部60において太陽電池セル10およびタブリード15が予め加熱されているので、タブリード15と表側接続電極11とが重ね合わされた重ね合わせ部、タブリード15と裏側接続電極12とが重ね合わされた重ね合わせ部のハンダを溶融させる時間を短縮させることができる。
 なお、予熱部60では、各ヒータ63が太陽電池セル10およびタブリード15を加熱する場合について説明したが、搬送ベルト51と吸着装置56の間の空間に適宜ヒータを設けてもよい。この場合、搬送ベルト51と吸着装置56の間の空間に適宜設けたヒータによって加熱された搬送ベルト51が、太陽電池セル10およびタブリード15を加熱するので、さらに予熱の効率を向上させることができる。
 (ハンダ付け部70)
 ハンダ付け部70は、太陽電池セル10とタブリード15とをハンダ付けする工程を行う。
 図2に示すように、ハンダ付け部70には、タブリード加熱装置71が備えられている。タブリード加熱装置71は、加熱炉62内で太陽電池セル10とタブリード15との重ね合わせ部を加熱する加熱ヘッド72と、加熱ヘッド72を上下に昇降させる図示しない加熱ヘッド昇降装置等から構成されている。ここで、図10および図11を参照して、加熱ヘッド72について説明する。図10は、加熱ヘッド72の一部を切断した斜視図である。図11(a)は、図10に示すIV−IV線を鉛直方向に切断して矢印方向から見た断面図である。図11(b)は、図10に示すV−V線を鉛直方向に切断して矢印方向から見た断面図である。
 図10および図11(b)に示すように、加熱ヘッド72には、搬送ベルト51の搬送方向、すなわちタブリード15の長手方向に沿って、加熱体としての加熱ブロック73が2つ平行に設けられている。2つの加熱ブロック73は、搬送ベルト51の幅方向に離間している。また、2つの加熱ブロック73同士の距離は、図1Aで説明した2本のタブリード15の中心間の距離Wと同じ距離である。各加熱ブロック73には、熱伝達体としての2つのシースヒータ74が長手方向に沿って埋設されている。シースヒータ74は、中心にコイル状に加工されたニクロム線と、ニクロム線の周りに充填された酸化マグネシウム等の絶縁材と、絶縁材の全周を覆うシースとを有するものである。なお、熱伝達体は、シースヒータ74の場合に限られず、加熱ブロック73および後述する押圧子75を加熱できるものであれば、どのようなものであってもよい。
 各加熱ブロック73の2つのシースヒータ74の間には、各タブリード15を上方からそれぞれ押圧する押圧子75が搬送方向に沿って複数、設けられている。本実施形態の加熱ブロック73には、7つの押圧子75から構成されているが、その数量は太陽電池セル10の寸法等に応じて、適宜変更することができる。各押圧子75は、ピン状に形成されている。また、各押圧子75は、付勢バネ76によって下方向に付勢されている。したがって、各押圧子75がタブリード15を上方から押圧したとき、付勢バネ76に抗して、やや上昇することで、各押圧子75は全てタブリード15を押圧すると共に、タブリード15に対する押圧力が適切に調整される。また、各押圧子75は、シースヒータ74に加熱された加熱ブロック73内に位置することから、各押圧子75自体が高温に加熱されている。
 ここで、シースヒータ74は、温度制御装置61によって制御されている。具体的には、加熱ブロック73または押圧子75に近接した位置に図示しない温度検出装置が設けられている。温度制御装置61は、温度検出装置に基づいて、加熱ブロック73および押圧子75をハンダ融点よりも高い温度であって、かつ一定の温度に制御している。
 次に、図11(a)、(b)を参照して、タブリード加熱装置71がタブリード15を太陽電池セル10の表側接続電極11と裏側接続電極12とにハンダ付けする動作について説明する。
 まず、搬送ベルト51が予熱部60により加熱された太陽電池セル10を間欠搬送することで、図11(a)に示すように、太陽電池セル10を加熱ヘッド72のちょうど下側に搬送する。このとき、加熱ブロック73および押圧子75は、温度制御装置61によってシースヒータ74を介して、ハンダ融点よりも高い温度に加熱されている。
 次に、図11(a)および図11(b)の二点鎖線で示すように、タブリード加熱装置71の加熱ヘッド昇降装置が加熱ヘッド72を下降させることで、各加熱ブロック73の複数の押圧子75の下端が、太陽電池セル10上に配置されている各タブリード15を上側からそれぞれ押圧する。このとき、各押圧子75は、付勢バネ76の付勢に抗して上方に移動することで、タブリード15を押圧する押圧力が強すぎることによる太陽電池セル10の破損等を防止することができる。
 また、温度制御装置61は、加熱ブロック73および押圧子75をハンダ融点よりも高い温度に加熱している。したがって、加熱ブロック73および押圧子75の下降に応じて、タブリード15の温度が昇温する。さらに、加熱ブロック73および押圧子75がタブリード15に近接することで、タブリード15と太陽電池セル10の表側接続電極11との重ね合わせ部がハンダ融点よりも高い温度になり、ハンダが完全に溶融する。さらに、加熱ブロック73および押圧子75の熱は、太陽電池セル10の下側にまで伝わり、太陽電池セル10の裏側接続電極12とタブリード15との重ね合わせ部のハンダも同様に、溶融する。また、このとき、複数の押圧子75が、タブリード15を太陽電池セル10に対して押圧することから、タブリード15と太陽電池セル10とを確実に接触させるので、ハンダ付けを確実に行うことができる。なお、タブリード15と太陽電池セル10との重ね合わせ部のうち押圧子75が接した部分に限られず、押圧子75および加熱ブロック73の輻射熱によって、タブリード15の長手方向に沿って、同様にタブリード15と各接続電極とのハンダが溶融するので、タブリード15の全長に亘ってハンダ付けが行われる。
 なお、加熱ブロック73や押圧子75は、タブリード15の長手方向に一致するように設けられている。したがって、タブリード加熱装置71は、タブリード15および太陽電池セル10のハンダがコーティングされた箇所(太陽電池セル10の各接続電極11、12)を局所的に加熱する。すなわち、ハンダがコーティングされていない太陽電池セル10の他の部分の加熱を行わず、太陽電池セル10の各接続電極11、12部分のみの温度を昇温させるように構成されている。
 ここで、図12を参照して、ハンダ付け部70における太陽電池セル10全体およびタブリード15の温度変化について説明する。図12では、太陽電池セル10全体の温度変化を実線で示し、タブリード15の温度変化を破線で示している。
 図12の破線で示すタブリード15の温度は、ハンダ付け部70において、温度制御された押圧子75および加熱ブロック73が接近することで、ハンダ融点よりも高い温度に昇温する。このとき、太陽電池セル10およびタブリード15は予熱部60によって予め加熱されているので、ハンダ融点よりも高い温度に至るまでの時間を短縮させることができる。図12に示す例では、タブリード15の温度を150℃から200℃まで昇温させる。
 一方、図12の実線で示す太陽電池セル10全体の温度は、ハンダ付け部70において、ハンダがコーティングされた箇所のみが局所的に加熱され、太陽電池セル10の他の部分の加熱が行われていないためほとんど変化がない。図12に示す例では、太陽電池セル10全体の温度が150℃のままである。したがって、太陽電池セル10全体が高温に加熱されることによる太陽電池セル10の損傷の発生を防止することができる。
 このように、ハンダ付け部70では、太陽電池セル10とタブリード15との重ね合わせ部をハンダ融点よりも高い温度に加熱するとき、予熱された状態から加熱することから、ハンダ融点よりも高い温度に加熱するまでの時間を短縮させることができ、ハンダ付けの効率を向上させることができる。このとき、ハンダ付け部70では、太陽電池セル10全体を加熱することなく太陽電池セル10とタブリード15との重ね合わせ部を局所的に加熱することから、太陽電池セル10の損傷の発生を防止できる。本実施形態のハンダ付け部70によれば、太陽電池セル10とタブリード15とを3秒以下の短時間でハンダ付けすることができる。
 また、図11(b)に示すように、吸着装置56は、下側のタブリード15の両側で太陽電池セル10を搬送ベルト51に吸着させているので、下側のタブリード15と太陽電池セル10とは位置決めされた状態である。また、上側のタブリード15は、次にハンダ付けされる隣の太陽電池セル10によって、その後側が位置決めされている。そのため、上側のタブリード15も太陽電池セル10に対して位置決めされた状態である。したがって、タブリード加熱装置71が押圧子75を介して上側のタブリード15を押圧しても、各タブリード15と太陽電池セル10との間で、ズレることなくハンダ付けを行うことができる。
 なお、上述したハンダ付け部70では、押圧子75を用いてタブリード15を加熱しながら押圧する場合について説明した。しかし、この場合に限られず、押圧子75を省略した加熱ブロック73がタブリード15と接触することなく加熱したり、押圧子75を省略した加熱ブロック73が直接、タブリード15を押圧して加熱したりしてもよい。さらに、太陽電池セル10の大きさに応じた数量で配設された押圧子75が、主に太陽電池セル10とタブリード15との重ね合わせ部を局所的に加熱してしてもよく、太陽電池セル10とタブリード15との重ね合わせ部を局所的に加熱できるのであれば、どのような構成であってもよい。
 ハンダ付け部70では、ハンダ付けした後、タブリード加熱装置71が加熱ヘッド72を上昇させて、次のタブリード15と太陽電池セル10とのハンダ付けに備える。
 (冷却部80)
 冷却部80は、ハンダ付けを行った太陽電池セル10とタブリード15と冷却する工程を行う。
 図2に示すように、冷却部80には、冷却装置81が備えられている。冷却装置81は、加熱炉62から間欠搬送された太陽電池セル10とタブリード15とに冷風を吹き付け、冷却する。冷却装置81が吹き付ける冷風の温度は、温度制御装置61により制御されている。ここで、冷却装置81は、室温の空気を吹き付けることもできる。また更に、0℃以下の冷風を吹き付けることもできる。なお、冷却部80では、温度制御装置61が太陽電池セル10の種類等に応じて吹き付ける冷風の温度を適宜変更することができる。
 ここで、図12を参照して、冷却部80における太陽電池セル10全体およびタブリード15の温度変化について説明する。図12では、太陽電池セル10全体の温度変化を実線で示し、タブリード15の温度変化を破線で示している。
 図12の破線で示すタブリード15の温度および実線で示す太陽電池セル10全体の温度は、冷却部80において、急速に低下する。したがって、太陽電池セル10とタブリード15との重ね合わせ部で溶融していたハンダを後述するメカニズムで固化させることができる。
 次に、図13を参照して冷却部80が太陽電池セル10とタブリード15との重ね合わせ部で溶融しているハンダを冷却する場合について説明する。
 冷却装置81が、搬送されたタブリード15を長手方向の一方の端部から順に冷却することにより、熱伝導率が高いタブリード15内のリード線18が矢印E方向に熱収縮する。このとき、図13(a)に示すように、リード線18はハンダ16内で溶融している状態のハンダ(以下、溶融ハンダ17という)内を移動しながら収縮することができる。したがって、リード線18が十分に熱収縮した後に溶融ハンダ17が固化することから、固化した後に、リード線18とハンダ16との間でタブリード15の長手方向に沿った応力が作用しないため、太陽電池セル10の反りを低減させることができる。
 なお、自然冷却させた場合は、タブリード15は長手方向の両端部から中央部に向けて冷却される。このとき、タブリード15は、徐々に冷却されることにより、熱伝導率の差の影響を受けず、リード線18の熱収縮と溶融ハンダ17の固化が同時に行われる。したがって、図13(b)に示すように、リード線18が中央側すなわち矢印F方向に収縮し、太陽電池セル10とタブリード15内の銅の熱膨張係数の差の影響を受けて、太陽電池セル10が反ってしまう。
 このように、ハンダ付けされた太陽電池セル10とタブリード15とを冷却することにより、自然冷却させた場合に比べ、溶融ハンダ17が固化した後にリード線18が熱収縮することによる太陽電池セル10の反りを軽減させることができる。
 次に、冷却された太陽電池セルは、ストリング状に接続されたストリングとして形成される。ストリングは、複数列接続され、マトリックス状の太陽電池パネルとして形成される。太陽電池パネルは、ガラス板等の他の部材と積層される図示しないラミネート工程に移送される。
 以上、上述したハンダ付け装置100によれば、太陽電池セル10とタブリード15とを短時間でハンダ付けすることができるので、生産効率が向上する。また、上述したハンダ付け装置100によれば、太陽電池セル10の損傷の発生をなくすことができるので歩留まりを大幅に向上させることができる。
 なお、上述したハンダ付け装置100では、平行な2本のタブリード15により太陽電池セル10を接続する場合について説明したが、この場合に限られず、1本または3本以上のタブリードにより太陽電池セル10を接続するようにしてもよい。この場合、タブリード供給部30では、タブリードの本数に応じたリール32、タブリードチャック35、上型37の突条部38および下型42の突条部43を設ければよい。また、搬送部50では、タブリードの本数に応じたタブリード吸着孔53、セル吸着孔54、タブリード吸引孔57およびセル吸引孔58を設ければよい。また、ハンダ付け部70では、タブリードの本数に応じた加熱ブロック73を設ければよい。
 ここで、上述したハンダ付け装置100において、例えば太陽電池セル10とタブリード15とがズレることなく、位置決めされた状態で搬送させることを主な、発明を解決しようとする課題等とする。この場合、ハンダ付け装置100は、太陽電池セルとタブリードとを重ね合わせた状態で、太陽電池セルとタブリードとをハンダ融点以下の温度に加熱する予熱部と、太陽電池セルとタブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱するハンダ付け部とを備える構成に限られない。
Hereinafter, the soldering apparatus 100 according to the present embodiment will be described with reference to the drawings. In the drawings, the front side (soldered solar cell and tab lead discharge side) of the soldering apparatus 100 is indicated by an arrow Fr, and the rear side (solar cell and tab lead supply side) is indicated by an arrow as necessary. Indicated by Rr.
Here, first, the solar cells 10 and the tab leads 15 to be soldered by the soldering apparatus 100 will be described with reference to FIGS. 1A, 1B, and 1C.
FIG. 1A is a plan view of a state in which a plurality of solar cells 10 are arranged in a string shape with tab leads 15 as viewed from the front connection electrode side (hereinafter referred to as the front side). FIG. 1B is a side view of a state in which a plurality of solar cells 10 are arranged in a string shape with tab leads 15 as viewed from the side. FIG. 1C is a diagram illustrating a configuration of the solar battery cell 10. FIG. 1C (a) is a plan view of the solar battery cell 10 as viewed from the front side. FIG. 1C (b) is a plan view of the solar battery cell 10 as viewed from the back side connection electrode side (hereinafter referred to as the back side).
The solar battery cell 10 is formed in a rectangular flat plate shape having a thickness of approximately 0.16 mm. As shown in FIG. 1C (a), on the front side of the solar battery cell 10 according to this embodiment, two front-side connection electrodes 11 are provided from one side to the opposite side of the solar battery cell 10. Further, on the front side of the solar battery cell 10, a plurality of finger portions 13 are provided from one side to the opposite side of the solar battery cell 10 so as to be orthogonal to the front-side connection electrode 11. Further, as shown in FIG. 1C (b), on the back side of the solar battery cell 10, two back side connection electrodes 12 are formed over one side facing from one side of the solar battery cell 10 like the front side connection electrode 11. Is provided. The front side connection electrode 11 and the back side connection electrode 12 are coated with solder for soldering to the tab lead 15.
On the other hand, as shown in FIGS. 1A and 1B, the tab lead 15 is a lead wire, and is formed in a strip-like flat plate shape having a thickness of approximately 0.2 mm. The tab lead 15 is formed using copper, and the surface thereof is coated with solder for soldering to the front side connection electrode 11 and the back side connection electrode 12.
Soldering is performed in a state where a plurality of solar cells 10 are arranged in a string with tab leads 15 as shown in FIGS. 1A and 1B. Specifically, the solar cells 10 are arranged at a predetermined interval, and one (front side) of half of the tab leads 15 is placed on the front connection electrode 11 of the solar cells 10 so as to overlap the tab leads 15. The other half (rear side) is placed on the back side connection electrode 12 of the adjacent solar battery cell 10 so as to overlap. In the present embodiment, adjacent solar cells 10 are connected by two tab leads 15. Here, the distance between the centers of the two tab leads 15 is W (see FIG. 1A).
The soldering device 100 heats the overlapping portion where the solar cells 10 arranged in a string and the tab leads 15 are superposed, so that the solder coated on each connection electrode and the tab lead 15 is melted. The battery cell 10 and the tab lead 15 are electrically connected.
Next, an outline of the soldering apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 2 is a diagram illustrating a schematic configuration of the soldering apparatus 100.
The soldering apparatus 100 according to this embodiment includes a plurality of components that perform processing related to soldering. Specifically, the soldering apparatus 100 includes a solar battery cell supply unit 20, a tab lead supply unit 30, a transport unit 50, a preheating unit 60, a soldering unit 70, and a cooling unit 80.
Here, each component will be briefly described. First, the solar cell supply unit 20 supplies the solar cell 10 to the transport unit 50. The tab lead supply unit 30 bends the tab lead 15, cuts it to a predetermined length, and supplies it to the transport unit 50. At this time, the solar cell supply unit 20, the tab lead supply unit 30, and the transport unit 50 operate in conjunction with each other, so that the solar cell 10 and the tab lead 15 are placed on the transport belt 51 of the transport unit 50 in FIGS. Are arranged in a string as shown in FIG.
The conveyance part 50 conveys to the preheating part 60, the soldering part 70, and the cooling part 80 in the state which positioned the photovoltaic cell 10 and the tab lead 15. FIG. In the preheating unit 60, the temperature control device 61 heats the entire solar cell 10 and the tab lead 15 while controlling the solar cell 10 in the heating furnace 62 to a temperature not higher than the solder melting point. In the soldering portion 70, the overlapping portion of the connection electrode of the solar battery cell 10 and the tab lead 15 is locally heated, and the tab lead 15 is pressed against the solar battery cell 10, so that the solar battery cell 10 and the tab lead 15 Solder. In the cooling unit 80, the solar battery cell 10 and the tab lead 15 are cooled, and the overlapping part of the solar battery cell 10 and the tab lead 15 is solidified.
According to the soldering apparatus 100 of the present embodiment, each of the above-described constituent elements can be soldered to the solar battery cell 10 and the tab lead 15 with high efficiency by singly or in cooperation with each other. Hereinafter, a specific configuration and operation process of each component will be described in detail.
(Solar cell supply unit 20)
The solar cell supply unit 20 performs a step of supplying the solar cell 10 to the transport unit 50.
As shown in FIG. 2, the solar cell supply unit 20 is provided with a cell loading device 21. The cell loading device 21 can reciprocate from the stocker 22 in which the solar cells 10 before being soldered are stacked and accommodated to the transport unit 50. Specifically, the cell loading device 21 adsorbs the solar cells 10 one by one from the stocker 22 and then places the cells 10 at predetermined positions on the conveyance belt 51 of the conveyance unit 50. In the middle of supplying the solar cells 10 to the transport unit 50, an imaging device (not shown) inspects whether or not the solar cells 10 are cracked, or a flux supply device (not shown) is connected to the front side of the solar cells 10. It can comprise so that a flux may be apply | coated to the connection electrode 11 and the back side connection electrode 12. FIG.
(Tab lead supply unit 30)
The tab lead supply unit 30 performs a process of bending and forming the tab lead 15 having a predetermined length and supplying it to the transport unit 50.
As shown in FIG. 2, the tab lead supply unit 30 includes a tab lead loading device 33 that bends the tab lead 15 having a predetermined length and places the bent tab lead 15 on the conveyor belt 51. Here, the tab lead loading device 33 will be described with reference to FIGS. 3 to 5A. FIG. 3 is a perspective view showing the configuration of the tab lead loading device 33. 4 is a view of the tab lead loading device 33 shown in FIG. 5A is a view of the tab lead loading device 33 shown in FIG.
As shown in FIG. 3, the tab lead loading device 33 is disposed on the side of the transport unit 50 and includes an upper die 37, a lower die 42, and the like.
The upper die 37 is one mold for bending the tab lead 15 and can be moved in the vertical direction and the horizontal direction by an upper die driving device (not shown).
As shown in FIGS. 4 and 5A, two protrusions 38 are formed in parallel on the lower surface of the upper mold 37 along the conveying direction of the conveying belt 51. Formed portions 39 for pressing the tab lead 15 protrude downward from the lower surface of each protrusion 38. The width dimension of the molding part 39 formed on each protrusion 38 substantially matches the width of the tab lead 15. Further, the distance between the adjacent molded portions 39 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A (see FIG. 5A and the like). Further, as shown in FIG. 4, a stepped portion 40 is formed at the approximate center in the longitudinal direction of each molding portion 39. Each molding part 39 protrudes slightly toward the lower side from the front side of the molding part 39 with the stepped part 40 as a boundary. The step of the step portion 40 is approximately the thickness of the solar battery cell 10.
Further, as shown in FIG. 4, a plurality of suction holes 41 are formed in the protruding portions 38 of the upper mold 37 so as to be separated in the longitudinal direction. Each suction hole 41 is formed in the ridge portion 38 along the vertical direction, and the lower side is open to the lower surface of the molding portion 39. The tab lead 15 can be sucked to the upper die 37 by sucking the tab lead 15 through the suction holes 41 by a tab lead suction device (not shown).
Further, as shown in FIG. 4, heating elements 48 as a plurality of temporary fixing members are provided in the protrusions 38 on the front side of the upper die 37 so as to be separated in the longitudinal direction. Here, the heating element 48 is provided at two locations of the front end portion and the rear end portion of the front protrusion portion 38. The heating element 48 is formed in a pin shape, and at least its tip is heated to a solder melting point or higher. The heating element 48 can be heated by an electric resistance heating method or the like. Each heater element 48 is configured to be protruded downward from the lower surface of the molding portion 39 by a lifting mechanism (not shown) from the state accommodated in the molding portion 39 as indicated by a two-dot chain line in FIG. As will be described later, when the front side of the tab lead 15 is placed on the solar battery cell 10, each heater element 48 protrudes downward from the lower surface of the molding portion 39, thereby heating a predetermined position of the tab lead 15. Thus, a part of the solder of the tab lead 15 can be melted. By partially melting the solder of the tab lead 15, the tab lead 15 and the solar battery cell 10 are partially soldered and temporarily fixed. In addition, although this embodiment demonstrated the case where the heating element 48 was provided in two places, the front-end part and rear-end part in the front protrusion part 38, it is not restricted to this case but provided in two or more places. It may be done.
On the other hand, the lower die 42 is the other die for bending the tab lead 15 and can be moved in the vertical direction by a lower die driving device (not shown). Two protrusions 43 are formed on the upper surface of the lower mold 42 in parallel along the conveying direction of the conveying belt 51.
As shown in FIGS. 4 and 5A, a concave groove portion 44 for pressing the tab lead 15 is formed on the upper surface of each protrusion 43. The groove width dimension of the concave groove portion 44 formed in each protrusion 43 substantially matches the width of the tab lead 15. Further, the distance between the adjacent concave groove portions 44 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A (see FIG. 5A and the like). Further, as shown in FIG. 4, stepped portions 45 are formed in the recessed groove portions 44 of the respective protrusions 43 of the lower mold 42. The step 45 is formed so as to be positioned vertically below the step 40 formed in each molding portion 39 of the upper die 37. That is, the position of the step 45 of the lower mold 42 is such that the step 40 of the upper mold 37 and the step 45 of the lower mold 42 sandwich the tab lead 15 disposed between the upper mold 37 and the lower mold 42 from above and below. When pressed in such a manner, a step is formed at the center of the tab lead 15A as shown in FIG. Further, the groove portion 44 of the lower mold 42 is slightly deeper on the rear side than on the front side of the groove portion 44 with each step portion 45 as a boundary. The level difference of the stepped portion 45 is approximately the thickness of the solar battery cell 10.
Next, the operation of the tab lead loading device 33 for bending the tab lead 15 will be described with reference to FIGS. 4 and 5A. Here, as shown in FIG. 2, the case where the tab lead supplied from one reel 32 is bent will be described. However, the case where the tab lead supplied from another adjacent reel 32 is bent is similarly described. Done at the same time.
First, as shown in FIG. 4, the tab lead chuck 35 pulls the tab lead 15 from the reel 32 and holds it in a horizontal state.
Next, the lower mold driving device raises the lower mold 42 and fits the tab lead 15 into the recessed groove portion 44 of the lower mold 42 for positioning (see also the lower mold shown by a two-dot chain line in FIG. 5A).
Subsequently, the tab lead cutter 36 cuts the tab lead 15. The tab lead chuck 35 releases the holding of the tab lead 15 and retracts backward. Next, the upper die driving device lowers the upper die 37 and presses the tab lead 15 fitted to the lower die 42 (see also the upper die indicated by a two-dot chain line in FIG. 5A).
Through the above-described operation, the tab lead 15 having a predetermined length drawn from the reel 32 is formed in the step portion 40 formed in the molding portion 39 of the upper die 37 and the groove portion 44 formed in the lower die 42 on the center side. The center is bent by the portion 45 and molded. Further, when the formed tab lead 15 is pressed between the upper die 37 and the lower die 42, the shape wound around the reel 32 is more straightened.
Next, with reference to FIG. 5A and FIG. 5B, the operation | movement which mounts the tab lead cut | disconnected by the tab lead loading apparatus 33 on the conveyance belt 51 is demonstrated. 5B is a view of the conveyor belt 51 shown in FIG.
After the upper die 37 presses the tab lead 15, the upper die 37 of the tab lead loading device 33 sucks the tab lead 15 through the suction hole 41. The upper mold drive device and the lower mold drive device release the upper mold 37 and the lower mold 42, respectively. Therefore, the tab lead 15 is attracted only to the upper mold 37.
Next, as shown in FIG. 5B, the upper die drive device, on which the tab lead 15 is attracted by the upper die driving device, is moved in the horizontal direction to above the conveyor belt 51 of the conveyor unit 50. Further, as indicated by a two-dot chain line in FIG. 5B, the upper die driving device lowers the upper die 37, and then the upper die 37 releases the tab lead 15 from suction. Therefore, the two tab leads 15 are placed at predetermined positions on the conveyance surface 52 of the conveyance belt 51 as indicated by a two-dot chain line in FIG. 5B. Here, the distance between the two tab leads 15 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A.
By operating the tab lead loading device 33 in this way, the tab lead supply unit 30 can cut and bend the tab lead 15 to a predetermined length and supply the molded tab lead 15 to the transport unit 50. While the upper die 37 places the tab lead 15 at a predetermined position on the transport belt 51, the tab lead chuck 35 is pulled horizontally in the direction of the tab lead 15 with the cut portion of the tab lead 15 therebetween, and is held horizontally. Prepare for 15 bending.
Here, the cell loading device 21 of the solar cell supply unit 20 and the tab lead loading device 33 of the tab lead supply unit 30 described above place the solar cell 10 and the tab lead 15 on the conveyance belt 51 of the conveyance unit 50 in order, respectively. As shown in FIGS. 1A and 1B, a plurality of solar cells 10 are arranged in a string with tab leads 15.
In the above-described tab lead supply unit 30, the tab lead 15 is cut and bent, and the operation of placing the formed tab lead 15 on the conveyor belt 51 is described as being performed by the tab lead loading device 33 alone. A device for bending the tab lead 15 and a device for placing the molded tab lead 15 on the conveyor belt 51 may be separately configured.
Here, the shape of the tab lead 15 bent by the upper die 37 and the lower die 42 will be described with reference to FIGS. 6A and 6B. FIG. 6A is a side view of the tab lead 15a formed by the tab lead loading device 33 according to the present embodiment. In FIG. 6A, the solar battery cell 10 is indicated by a two-dot chain line. The tab lead 15a is bent so that the front side is higher by the thickness of the solar battery cell 10 at the center. Accordingly, when the tab lead 15a is placed on the transport belt 51 of the transport unit 50, the tab lead 15a does not float on the solar battery cell 10 even if it is placed on the solar battery cell 10 already placed. The tab lead 15a and the solar battery cell 10 can be brought into wide surface contact.
FIG. 6B is a side view of another form of the tab lead 15b. In FIG. 6B, the solar battery cell 10 is indicated by a two-dot chain line. The tab lead 15b is bent so that the front side is higher by the thickness of the solar battery cell 10 at the center. Further, the tab lead 15b is formed with a slight inclination so as to go downward as it goes toward the front end. That is, in the upper mold 37 and the lower mold 42 of the tab lead loading device 33, the molded part 39 of the upper mold 37 and the recessed groove part 44 of the lower mold 42 are respectively provided on the front side so that the tab lead 15b as shown in FIG. 6B can be molded. What is necessary is just to form the inclination which goes below as it goes. Therefore, when the tab lead 15b is placed on the transport belt 51 of the transport unit 50, the tab lead 15b does not float on the solar battery cell 10 even if it is placed on the solar battery cell 10 already placed. The tab lead 15b and the solar battery cell 10 can be brought into wide surface contact. Furthermore, since it inclines so that it may go to a lower side as it goes to the front side, the front side of the tab lead 15b acts so that the top of the photovoltaic cell 10 may be pressed by the elastic force of the tab lead 15b. Therefore, the tab lead 15b and the solar battery cell 10 can be brought into more contact with each other to prevent a deviation between them.
As shown in FIG. 7, the tab lead 15 to be placed first is not subjected to bending as described above. In the case of the first tab lead 15, the tab lead loading device 33 is provided with means such as providing a separate upper die and a lower die that are not bent to adsorb the tab lead 15 having no step formed in the center. Can be supplied.
Further, although the tab lead 15 that is finally placed on the transport belt 51 by the tab lead loading device 33 is bent, there is a specification that is shorter than the first tab lead 15 and the intermediate tab lead 15. Specifically, like the tab lead 15c shown in FIG. 6C, the rear side is short.
(Conveyor 50)
The conveyance part 50 performs the process of carrying intermittently to the preheating part 60, the soldering part 70, and the cooling part 80, positioning the photovoltaic cell 10 and the tab lead 15 in the state arrange | positioned at string form.
As shown in FIG. 2, the conveyance unit 50 includes a conveyance belt 51, conveyance rollers 55a and 55b, a suction device 56, and the like. The conveyance belt 51 is wound around a conveyance roller 55 a and a conveyance roller 55 b disposed at a position close to the cooling unit 80. The conveyor belt 51 is a thin flat belt, and is made of metal in order to increase thermal conductivity. Further, when a roller driving device (not shown) connected to the rotation shafts of the transport rollers 55a and 55b is driven, the respective transport rollers 55a and 55b are rotated in the arrow direction. The solar cells and the tab leads (hereinafter collectively referred to as “conveyed objects”) placed on the conveying surface 52 of the conveying belt 51 are rotated by the rotation of the conveying rollers 55a and 55b. The parts 80 are conveyed in the order.
Further, the suction device 56 is disposed below the conveyance surface 52 of the conveyance belt 51 over the longitudinal direction of the conveyance belt 51. The suction device 56 can position the photovoltaic cells 10 and the tab leads 15 placed on the transport surface 52 by attracting them to the transport belt 51. The operation of adsorbing the solar battery cell 10 and the tab lead 15 by the adsorption device 56 will be described later.
Further, as shown in FIG. 3, a plurality of tab lead suction holes 53 are continuously formed in the transport belt 51 along the circumferential direction of the transport belt 51. In the conveyance belt 51 of the present embodiment, two rows of tab lead suction holes 53 are formed on the left and right sides in the width direction of the conveyance belt 51. The tab lead suction hole 53 is formed at a position coinciding with the position where each tab lead 15 is placed on the conveyor belt 51 by the tab lead loading device 33 (see also FIG. 5B). That is, the distance between the rows of the tab lead suction holes 53 is the same as the distance W between the centers of the two tab leads 15 described with reference to FIG. 1A. As shown in FIG. 3, a plurality of cell suction holes 54 are continuously formed in the transport belt 51 over the circumferential direction of the transport belt 51 on both sides of each tab lead suction hole 53.
Next, with reference to FIG. 3 and FIGS. 7 to 9, an operation in which the conveyor belt 51 conveys the solar cells 10 and the tab leads 15 while adsorbing the solar cells 10 and the tab leads 15 by the adsorption device 56 will be described. . Here, FIG. 7A is a perspective view showing a state in which the tab lead loading device 33 has placed the first tab lead 15 on the conveyor belt 51. FIG.7 (b) is sectional drawing which cut | disconnected the II line | wire shown to Fig.7 (a) in the perpendicular direction, and was seen from the arrow direction. FIG. 8A is a perspective view showing a state in which the cell loading device 21 places the solar battery cell 10 on the transport belt 51. FIG. 8B is a cross-sectional view taken along the line II-II shown in FIG. FIG. 9A is a perspective view showing a state in which the tab lead loading device 33 places the next (or last) tab lead 15 on the conveyor belt 51. 9B is a cross-sectional view taken along the line III-III shown in FIG. 9A (a cross section including the solar battery cell and the tab lead in the heating furnace 62) in the vertical direction and viewed from the arrow direction. It is. 7A, 8A, and 9A illustrate an inlet 64 of a heating furnace 62 described later.
First, as shown in FIG. 7A, the first tab lead 15 that is not bent by the tab lead loading device 33 is placed in parallel along a predetermined position on the transport surface 52, that is, along the continuous tab lead suction holes 53. To do. Subsequently, the suction device 56 sucks each tab lead 15 placed on the transport surface 52 through each tab lead suction hole 53. Specifically, as shown in FIG. 7B, the suction device 56 sucks each tab lead suction hole 57 positioned below each tab lead suction hole 53 of the transport belt 51, thereby The tab lead 15 is attracted to the conveyor belt 51. Accordingly, each tab lead 15 is positioned at a predetermined position placed on the transport belt 51.
Next, as shown in FIG. 8A, the cell loading device 21 places the first solar battery cell 10 at a predetermined position on the transport surface 52. Specifically, the cell loading device 21 places the solar battery cell 10 so that the rear side of each tab lead 15 already placed and the back side connection electrode 12 of the solar battery cell 10 are aligned. When the solar battery cell 10 is placed on the tab lead 15, the solar battery cell 10 may come into contact with the tab lead 15 and the tab lead 15 may be displaced. However, since each tab lead 15 is positioned with respect to the conveyance belt 51 by the suction device 56, even if the solar battery cell 10 comes into contact, it does not move and can maintain a predetermined position.
Subsequently, the suction device 56 sucks the solar cells 10 placed on the transport surface 52, specifically, each tab lead 15, through each cell suction hole 54. Specifically, as shown in FIG. 8B, the suction device 56 sucks through the cell suction holes 58 located below the cell suction holes 54 of the transport belt 51, thereby solar cells. 10 is adsorbed to the conveyor belt 51. Therefore, the solar battery cell 10 is positioned so that the predetermined position placed on the conveyor belt 51, that is, the tab lead 15 and the back side connection electrode 12 of the solar battery cell 10 coincide with each other. At this time, the solar cell 10 is adsorbed while being slightly bent in the vicinity of contact with each tab lead 15, so that each tab lead 15 is sandwiched between the solar cell 10 and the transport belt 51. Therefore, the photovoltaic cell 10 and each tab lead 15 can maintain the state positioned without deviation. In FIG. 8B, the state where the solar cell 10 is bent and fixed in the vicinity of the tab lead 15 by the adsorption hole 54 is emphasized.
Next, the photovoltaic cells 10 and the tab leads 15 are intermittently conveyed by the conveyance rollers 55 a and 55 b and the conveyance belt 51. Specifically, the roller driving device moves the transport belt 51 by a length corresponding to approximately one solar cell 10. At this time, since the adsorption device 56 continues to adsorb the solar battery cell 10, the solar battery cell 10 and the tab lead 15 do not shift due to vibration during transportation.
Next, as shown in FIG. 9A, the next tab lead 15 bent by the tab lead loading device 33 is placed at a predetermined position on the transport surface 52. Specifically, the front side of each tab lead 15 is placed so as to coincide with each front-side connection electrode 11 of the solar battery cell 10, and the rear side of each tab lead 15 is placed in parallel along the continuous tab lead suction hole 53. Put. Subsequently, the suction device 56 sucks the tab lead 15 newly placed on the transport surface 52 through the tab lead suction hole 53 and sucks it to the transport belt 51. Therefore, the rear side of the tab lead 15 is positioned at a predetermined position placed on the transport belt 51. Further, since the rear side of the tab lead 15 is positioned, the movement of the front side of the tab lead 15 is also regulated so as to coincide with the front connection electrode 11 of the solar battery cell 10.
Further, as shown in FIGS. 6A and 6B, the tab lead 15 is bent at the center by the thickness of the solar battery cell 10, so that the front side of the tab lead 15 can be prevented from floating on the solar battery cell 10. Further, by placing the tab lead 15b with the front side of the tab lead inclined downward as shown in FIG. 6B, the front side of the tab lead 15b presses on the front connection electrode 11 of the solar cell 10 by the elastic force of the tab lead 15b. . Therefore, since the front side of the tab lead 15b and the front side connection electrode 11 of the solar battery cell 10 are in strong surface contact, it is possible to further prevent the tab lead 15b and the solar battery cell 10 from shifting.
Next, the cell loading device 21 places the next solar battery cell 10 on the rear side of the already placed tab lead 15. Specifically, the cell loading device 21 places the solar battery cell 10 so that the rear side of each tab lead 15 that has already been placed coincides with each back-side connection electrode 12 of the solar battery cell 10. Subsequently, the suction device 56 sucks the solar battery cell 10 placed on the tab lead 15 through the cell suction hole 54.
Next, the photovoltaic cells 10 and the tab leads 15 are intermittently conveyed by the conveying rollers 55 a and 55 b and the conveying belt 51 by a length corresponding to approximately one photovoltaic cell 10.
As described above, the tab lead loading device 33, the cell loading device 21 and the transport belt 51 are operated, so that the solar cells 10 and the tab leads 15 can be arranged in a string while accurately positioning on the transport belt 51. .
Next, a case where the tab lead loading device 33 places the last tab lead 15 at a predetermined position on the transport surface 52 will be described with reference to FIG. Here, it is assumed that a predetermined number of solar cells 10 are placed on the conveyor belt 51 as indicated by a two-dot chain line in FIG.
In this case, the tab lead loading device 33 places the last tab lead 15 bent and formed at a predetermined position on the conveyance surface 52. Specifically, the front side of each tab lead 15 is placed so as to coincide with each front-side connection electrode 11 of the solar battery cell 10, and the rear side of each tab lead 15 is placed in parallel along the continuous tab lead suction hole 53. Put. When the last tab lead 15 is a tab lead 15c with a short rear side as shown in FIG. 6C, the tab lead loading device 33 is mounted so that the front side of the tab lead 15c coincides with each front connection electrode 11 of the solar battery cell 10. Put.
Next, each heater element 48 provided on the upper die 37 of the tab lead loading device 33 described with reference to FIG. 4 protrudes downward from the lower surface of the molding portion 39, and two front and rear positions on the front side of each tab lead 15 (FIG. 9 ( The temporary attachment positions 59a and 59b) shown in a) are heated. Each heater element 48 heats each tab lead 15, so that the solder at the temporary attachment positions 59 a and 59 b of each tab lead 15 is melted and soldered to the front connection electrode 11 of the solar battery cell 10 to be temporarily fixed. The At this time, each tab lead 15 and the front-side connection electrode 11 of the solar battery cell 10 are temporarily fixed to be separated from each other on the front side of the tab lead 15, so that there is no deviation between the tab lead 15 and the solar battery cell 10. As described above, stable temporary fixing can be performed.
Thus, the last tab lead 15 is temporarily fixed to the solar battery cell 10 because the adsorption device 56 is configured not to adsorb the tab lead 15 to the transport belt 51 in the heating furnace 62 as described later. It is. That is, in the heating furnace 62, the rear side of the last tab lead 15 is not adsorbed and is not sandwiched between the solar battery cell 10 and the transport belt 51. Therefore, when the temporary fixing is not performed, the last tab lead 15 may be displaced from the solar battery cell 10 during transportation or soldering.
In addition, although the case where the last tab lead 15 was temporarily fixed was demonstrated here, you may make it temporarily fix all the tab leads 15 mounted on the photovoltaic cell 10. FIG. Moreover, although the case where the tab lead loading device 33 also serves as a temporary fixing device for temporarily fixing the tab lead 15 has been described, a dedicated temporary fixing device for temporarily fixing the tab lead 15 may be provided.
Next, the conveyor belt 51 intermittently conveys the placed solar cells 10 and the tab leads 15 into the heating furnace 62 of the preheating unit 60 in order. In the heating furnace 62, the adsorption device 56 is configured to suck only the solar battery cell 10 placed on the tab lead 15 and not suck the tab lead 15. Specifically, as shown in FIG. 9B, the adsorption device 56 in the heating furnace 62 is not provided with the tab lead suction hole 57 described in FIGS. 7B and 8B. That is, in the heating furnace 62, the adsorption device 56 sucks only through the cell suction holes 58 located below the cell suction holes 54 of the transport belt 51 and sucks the solar battery cells 10 to the transport belt 51. . Even if the suction device 56 does not suck the tab leads 15, both sides of each tab lead 15 are pressed against the transport belt 51 by the solar cells 10, and thus the solar cells 10 and the tab leads 15 are misaligned during transport. There is no.
Here, the suction device 56 is configured not to suck the tab lead 15 in the heating furnace 62. If the tab lead 15 is directly sucked, the solder of the tab lead 15 melted by the heat in the heating furnace 62 is sucked. This is to prevent any trouble in the subsequent process.
Thus, the adsorption device 56 adsorbs the solar cells 10 to the conveyance belt 51 on both sides of the tab lead 15 in the heating furnace 62, so that the conveyance belt 51 positions the tab lead 15 and the solar cells 10. Can be transported. Further, it is possible to prevent the tab lead 15 from forming a trace of the tab lead suction hole 53. Even in the heating furnace 62, the suction device 56 can suck the tab lead 15 until the soldering of the tab lead 15 is started or until the soldering of the tab lead 15 is started. Also good. Thereby, the shift | offset | difference during conveyance with the tab lead 15 and the photovoltaic cell 10 can be prevented more reliably by the conveyance belt 51. FIG.
In the above description, the case where the suction device 56 sucks each tab lead 15 placed on the transport surface 52 through each tab lead suction hole 53 has been described. It can also be configured.
(Preheating part 60)
The preheating unit 60 performs a step of preheating the solar battery cell 10 and the tab lead 15.
As shown in FIG. 2, the preheating unit 60 includes a plurality of heaters 63 in the heating furnace 62 along the conveyance direction of the conveyance belt 51. Although the preheating part 60 of this embodiment is comprised from the three heaters 63, the quantity can be suitably changed according to the kind etc. of the photovoltaic cell 10. FIG. Each heater 63 is, for example, a hot air heater or an IR lamp. In addition to directly heating the solar cells 10 conveyed by the conveyor belt 51, the heaters 63 heat the atmosphere in the heating furnace 62 to uniformly heat the entire solar cells 10.
Further, the temperature at which each heater 63 is heated by the temperature control device 61 is controlled. Specifically, a plurality of temperature detection devices (not shown) are provided in the heating furnace 62 along the conveyance direction at positions close to the conveyance belt 51. The temperature control device 61 controls the heater 63 closer to the soldering portion 70 to have a higher temperature based on the temperature detection device. Therefore, in the heating furnace 62 in the preheating unit 60, the ambient temperature increases as the soldering unit 70 is approached from the inlet 64 of the heating furnace 62.
Here, with reference to FIG. 12, the temperature change of the whole photovoltaic cell 10 and the tab lead 15 in the preheating part 60 is demonstrated. FIG. 12 is a graph showing temperature changes of the entire solar battery cell and the tab lead, the horizontal axis shows the position where the solar battery cell and the tab lead are transported in the soldering apparatus, and the vertical axis shows the temperature of the solar battery cell and the tab lead. Is shown. Note that a part of the configuration of the soldering apparatus 100 is illustrated above the graph of FIG. 12 so as to correspond to the positions at which the horizontal solar cell and the tab lead are conveyed. Moreover, the temperature change of the whole photovoltaic cell 10 is shown with the continuous line, and the temperature change of the tab lead 15 is shown with the broken line.
As shown in FIG. 12, the temperature of the entire solar cell 10 and the tab lead 15 is raised by the temperature-controlled heater 63 toward the soldering portion 70 in the preheating portion 60. At this time, the temperature control device 61 controls the temperature so that the solar battery cell 10 is gradually heated so as not to crack.
The temperature control device 61 controls the temperature of the solar battery cell 10 positioned in front of the soldering portion 70 so as to heat it to a temperature not higher than the solder melting point, preferably lower than the solder melting point. In the example shown in FIG. 12, it is a case where solder melting | fusing point is 200 degreeC solder | pewter, Comprising: The temperature control apparatus 61 is heating so that the photovoltaic cell 10 may be about 150 degreeC. Since the solder melting point varies depending on the type of solder used, etc., the temperature controller 61 controls the temperature of the heating furnace 62, that is, the heater 63, according to the type of solder.
Thus, in the preheating part 60, the photovoltaic cell 10 is heated gradually. Moreover, in the preheating part 60, the photovoltaic cell 10 located in front of the soldering part 70 is heated to a temperature below the solder melting point. Therefore, the solar battery cell 10 is not damaged such as cracks. In the next soldering part 70, since the solar cell 10 and the tab lead 15 are preheated in the preheating part 60, the overlapping part where the tab lead 15 and the front side connection electrode 11 are overlapped, the tab lead 15 and the back side connection. The time for melting the solder in the overlapping portion where the electrode 12 is overlapped can be shortened.
In the preheating unit 60, the case where each heater 63 heats the solar battery cell 10 and the tab lead 15 has been described. However, a heater may be appropriately provided in the space between the conveyance belt 51 and the adsorption device 56. In this case, since the conveyor belt 51 heated by a heater provided as appropriate in the space between the conveyor belt 51 and the suction device 56 heats the solar cells 10 and the tab leads 15, the efficiency of preheating can be further improved. .
(Soldering part 70)
The soldering unit 70 performs a process of soldering the solar battery cell 10 and the tab lead 15.
As shown in FIG. 2, the soldering unit 70 is provided with a tab lead heating device 71. The tab lead heating device 71 includes a heating head 72 that heats the overlapping portion of the solar battery cell 10 and the tab lead 15 in the heating furnace 62, a heating head lifting device (not shown) that moves the heating head 72 up and down, and the like. Yes. Here, the heating head 72 will be described with reference to FIGS. 10 and 11. FIG. 10 is a perspective view in which a part of the heating head 72 is cut. Fig.11 (a) is sectional drawing which cut | disconnected the IV-IV line | wire shown in FIG. 10 in the perpendicular direction, and was seen from the arrow direction. FIG. 11B is a cross-sectional view of the VV line shown in FIG. 10 cut in the vertical direction and viewed from the arrow direction.
As shown in FIGS. 10 and 11B, the heating head 72 is provided with two heating blocks 73 as heating elements in parallel along the conveyance direction of the conveyance belt 51, that is, the longitudinal direction of the tab lead 15. ing. The two heating blocks 73 are separated from each other in the width direction of the transport belt 51. The distance between the two heating blocks 73 is the same distance as the distance W between the centers of the two tab leads 15 described in FIG. 1A. In each heating block 73, two sheath heaters 74 as heat transfer bodies are embedded along the longitudinal direction. The sheath heater 74 has a nichrome wire processed into a coil shape at the center, an insulating material such as magnesium oxide filled around the nichrome wire, and a sheath covering the entire circumference of the insulating material. The heat transfer body is not limited to the sheath heater 74 and may be any heat transfer body as long as it can heat the heating block 73 and a presser 75 described later.
Between the two sheath heaters 74 of each heating block 73, a plurality of pressing members 75 that respectively press the tab leads 15 from above are provided along the transport direction. Although the heating block 73 of the present embodiment includes seven pressing elements 75, the number thereof can be changed as appropriate according to the dimensions of the solar battery cell 10. Each pressing element 75 is formed in a pin shape. Further, each pressing element 75 is urged downward by an urging spring 76. Therefore, when each pressing element 75 presses the tab lead 15 from above, the pressing elements 75 are slightly lifted against the urging spring 76 so that each pressing element 75 presses the tab lead 15 and the pressing force against the tab lead 15 is increased. Adjusted appropriately. Each presser 75 is located in the heating block 73 heated by the sheath heater 74, so that each presser 75 itself is heated to a high temperature.
Here, the sheath heater 74 is controlled by the temperature control device 61. Specifically, a temperature detection device (not shown) is provided at a position close to the heating block 73 or the pressing element 75. The temperature control device 61 controls the heating block 73 and the pressing element 75 at a temperature higher than the solder melting point and at a constant temperature based on the temperature detection device.
Next, an operation in which the tab lead heating device 71 solders the tab lead 15 to the front connection electrode 11 and the back connection electrode 12 of the solar battery cell 10 will be described with reference to FIGS.
First, the conveyor belt 51 intermittently conveys the solar cells 10 heated by the preheating unit 60, thereby conveying the solar cells 10 just below the heating head 72 as shown in FIG. At this time, the heating block 73 and the pressing element 75 are heated to a temperature higher than the solder melting point by the temperature control device 61 via the sheath heater 74.
Next, as indicated by a two-dot chain line in FIGS. 11A and 11B, the heating head lifting device of the tab lead heating device 71 lowers the heating head 72 so that a plurality of pressings of each heating block 73 are pressed. The lower end of the child 75 presses each tab lead 15 disposed on the solar battery cell 10 from above. At this time, each pressing element 75 moves upward against the urging force of the urging spring 76, thereby preventing the solar cell 10 from being damaged due to the pressing force pressing the tab lead 15 being too strong. Can do.
Further, the temperature control device 61 heats the heating block 73 and the pressing element 75 to a temperature higher than the solder melting point. Therefore, the temperature of the tab lead 15 rises as the heating block 73 and the presser 75 are lowered. Furthermore, when the heating block 73 and the pressing element 75 are close to the tab lead 15, the overlapping portion of the tab lead 15 and the front connection electrode 11 of the solar battery cell 10 has a temperature higher than the solder melting point, and the solder is completely melted. To do. Furthermore, the heat of the heating block 73 and the pressing element 75 is transmitted to the lower side of the solar battery cell 10, and the solder at the overlapping portion between the back-side connection electrode 12 and the tab lead 15 of the solar battery cell 10 is similarly melted. At this time, since the plurality of pressing elements 75 press the tab lead 15 against the solar battery cell 10, the tab lead 15 and the solar battery cell 10 are reliably brought into contact with each other, so that the soldering can be reliably performed. it can. In addition, it is not restricted to the part which the presser 75 contact | abutted among the overlapping parts of the tab lead 15 and the photovoltaic cell 10, but it is the tab lead similarly along the longitudinal direction of the tab lead 15 with the radiant heat of the presser 75 and the heating block 73. Since the solder of 15 and each connection electrode melts, the soldering is performed over the entire length of the tab lead 15.
The heating block 73 and the pressing element 75 are provided so as to coincide with the longitudinal direction of the tab lead 15. Accordingly, the tab lead heating device 71 locally heats the tab lead 15 and the portion (the connection electrodes 11 and 12 of the solar cell 10) where the solder of the solar cell 10 is coated. That is, the heating is not performed on the other portions of the solar battery cell 10 that is not coated with solder, and the temperature of only the connection electrodes 11 and 12 of the solar battery cell 10 is increased.
Here, with reference to FIG. 12, the temperature change of the whole photovoltaic cell 10 and the tab lead 15 in the soldering part 70 is demonstrated. In FIG. 12, the temperature change of the entire solar battery cell 10 is indicated by a solid line, and the temperature change of the tab lead 15 is indicated by a broken line.
The temperature of the tab lead 15 indicated by the broken line in FIG. 12 is raised to a temperature higher than the solder melting point when the temperature-controlled pressing element 75 and the heating block 73 approach in the soldering portion 70. At this time, since the solar battery cell 10 and the tab lead 15 are preheated by the preheating unit 60, the time required to reach a temperature higher than the solder melting point can be shortened. In the example shown in FIG. 12, the temperature of the tab lead 15 is raised from 150.degree. C. to 200.degree.
On the other hand, the temperature of the entire solar battery cell 10 shown by the solid line in FIG. 12 is such that only the portion coated with solder is locally heated in the soldering portion 70 and the other part of the solar battery cell 10 is heated. There is almost no change. In the example shown in FIG. 12, the temperature of the entire solar battery cell 10 remains at 150 ° C. Therefore, it is possible to prevent the solar cell 10 from being damaged due to the entire solar cell 10 being heated to a high temperature.
Thus, in the soldering part 70, when heating the overlapping part of the solar battery cell 10 and the tab lead 15 to a temperature higher than the solder melting point, it is heated from a preheated state, so that the temperature higher than the solder melting point. It is possible to shorten the time until heating, and to improve the efficiency of soldering. At this time, in the soldering part 70, since the overlapping part of the photovoltaic cell 10 and the tab lead 15 is locally heated without heating the entire photovoltaic cell 10, the occurrence of damage to the photovoltaic cell 10 is prevented. it can. According to the soldering portion 70 of the present embodiment, the solar battery cell 10 and the tab lead 15 can be soldered in a short time of 3 seconds or less.
Further, as shown in FIG. 11 (b), the adsorption device 56 adsorbs the solar cells 10 to the transport belt 51 on both sides of the lower tab lead 15, so that the lower tab lead 15 and the solar cells 10 are absorbed. Is a positioned state. Moreover, the rear side of the upper tab lead 15 is positioned by the adjacent solar battery cell 10 to be soldered next. Therefore, the upper tab lead 15 is also positioned with respect to the solar battery cell 10. Therefore, even if the tab lead heating device 71 presses the upper tab lead 15 via the presser 75, soldering can be performed between each tab lead 15 and the solar battery cell 10 without deviation.
In addition, in the soldering part 70 mentioned above, the case where the tab lead 15 was pressed using the presser 75 was demonstrated. However, the present invention is not limited to this, and the heating block 73 omitting the presser 75 is heated without contacting the tab lead 15, or the heating block 73 omitting the presser 75 directly presses and heats the tab lead 15. May be. Furthermore, the pressing element 75 arranged in a quantity corresponding to the size of the solar battery cell 10 may locally heat the overlapping portion of the solar battery cell 10 and the tab lead 15. Any configuration may be used as long as the overlapping portion of the battery cell 10 and the tab lead 15 can be locally heated.
In the soldering part 70, after soldering, the tab lead heating device 71 raises the heating head 72 to prepare for the next soldering of the tab lead 15 and the solar battery cell 10.
(Cooling unit 80)
The cooling unit 80 performs a process of cooling the soldered solar battery cell 10 and the tab lead 15.
As shown in FIG. 2, the cooling unit 80 includes a cooling device 81. The cooling device 81 blows and cools the solar cells 10 and the tab leads 15 intermittently conveyed from the heating furnace 62 to cool them. The temperature of the cool air blown by the cooling device 81 is controlled by the temperature control device 61. Here, the cooling device 81 can also blow room temperature air. Furthermore, it is possible to blow cold air of 0 ° C. or lower. In the cooling unit 80, the temperature of the cold air blown by the temperature control device 61 according to the type of the solar battery cell 10 can be appropriately changed.
Here, with reference to FIG. 12, the temperature change of the whole photovoltaic cell 10 and the tab lead 15 in the cooling unit 80 will be described. In FIG. 12, the temperature change of the entire solar battery cell 10 is indicated by a solid line, and the temperature change of the tab lead 15 is indicated by a broken line.
The temperature of the tab lead 15 indicated by the broken line in FIG. 12 and the temperature of the entire solar battery cell 10 indicated by the solid line rapidly decrease in the cooling unit 80. Therefore, the solder melted at the overlapping portion of the solar battery cell 10 and the tab lead 15 can be solidified by a mechanism described later.
Next, the case where the cooling unit 80 cools the solder melted at the overlapping portion of the solar battery cell 10 and the tab lead 15 will be described with reference to FIG.
The cooling device 81 sequentially cools the transported tab lead 15 from one end in the longitudinal direction, whereby the lead wire 18 in the tab lead 15 having a high thermal conductivity is thermally contracted in the direction of arrow E. At this time, as shown in FIG. 13A, the lead wire 18 can be contracted while moving in the solder melted in the solder 16 (hereinafter referred to as melted solder 17). Therefore, since the molten solder 17 is solidified after the lead wire 18 is sufficiently heat-shrinked, the stress along the longitudinal direction of the tab lead 15 does not act between the lead wire 18 and the solder 16 after the solidification. Warpage of the battery cell 10 can be reduced.
In the case of natural cooling, the tab lead 15 is cooled from both ends in the longitudinal direction toward the center. At this time, the tab lead 15 is gradually cooled, so that it is not affected by the difference in thermal conductivity, and the thermal contraction of the lead wire 18 and the solidification of the molten solder 17 are performed simultaneously. Therefore, as shown in FIG. 13B, the lead wire 18 contracts in the center side, that is, in the direction of the arrow F, and is affected by the difference in the thermal expansion coefficient between the solar battery cell 10 and the copper in the tab lead 15. The cell 10 is warped.
In this way, by cooling the soldered solar battery cell 10 and the tab lead 15, the solar battery cell 10 is formed by the thermal contraction of the lead wire 18 after the molten solder 17 is solidified, as compared with the case where it is naturally cooled. Can reduce the warpage.
Next, the cooled solar cells are formed as strings connected in a string. The strings are connected in a plurality of rows and formed as a matrix solar cell panel. The solar cell panel is transferred to a laminating process (not shown) laminated with another member such as a glass plate.
As mentioned above, according to the soldering apparatus 100 mentioned above, since the photovoltaic cell 10 and the tab lead 15 can be soldered in a short time, production efficiency improves. Moreover, according to the soldering apparatus 100 mentioned above, since the generation | occurrence | production of the photovoltaic cell 10 can be eliminated, a yield can be improved significantly.
In the soldering apparatus 100 described above, the case where the solar cells 10 are connected by the two parallel tab leads 15 has been described. However, the present invention is not limited to this case, and the solar cells 10 are formed by one or three or more tab leads. May be connected. In this case, the tab lead supply unit 30 may be provided with the reel 32, the tab lead chuck 35, the protrusions 38 of the upper die 37, and the protrusions 43 of the lower die 42 according to the number of tab leads. Further, the transport unit 50 may be provided with a tab lead suction hole 53, a cell suction hole 54, a tab lead suction hole 57, and a cell suction hole 58 corresponding to the number of tab leads. In the soldering part 70, a heating block 73 corresponding to the number of tab leads may be provided.
Here, in the above-described soldering apparatus 100, for example, the solar cell 10 and the tab lead 15 are transported in a positioned state without being misaligned. In this case, the soldering apparatus 100 superimposes the solar battery cell and the tab lead with a preheating portion that heats the solar battery cell and the tab lead to a temperature below the solder melting point, and the solar battery cell and the tab lead. It is not restricted to the structure provided with the soldering part which heats a part to temperature higher than solder melting | fusing point.

Claims (14)

  1.  太陽電池セルとタブリードとをハンダ付けするハンダ付け装置であって、
     前記太陽電池セルと前記タブリードとを重ね合わせた状態で、前記太陽電池セルと前記タブリードとをハンダ融点以下の温度に加熱する予熱部と、
     前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱するハンダ付け部とを備えていることを特徴とするハンダ付け装置。
    A soldering device for soldering solar cells and tab leads,
    In a state where the solar battery cell and the tab lead are overlapped, a preheating part that heats the solar battery cell and the tab lead to a temperature equal to or lower than a solder melting point,
    A soldering apparatus, comprising: a soldering portion that heats an overlapping portion of the solar battery cell and the tab lead to a temperature higher than a solder melting point.
  2.  前記ハンダ付け部は、前記タブリードの長手方向に沿って配設された加熱体を備え、
     前記加熱体が、前記太陽電池セルと前記タブリードとの重ね合わせ部に近接または接触することで、前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱することを特徴とする請求項1に記載のハンダ付け装置。
    The soldering portion includes a heating body disposed along a longitudinal direction of the tab lead,
    The heating body heats the overlapping portion of the solar battery cell and the tab lead to a temperature higher than the solder melting point by approaching or contacting the overlapping portion of the solar battery cell and the tab lead. The soldering apparatus according to claim 1.
  3.  前記加熱体は、前記タブリードを前記太陽電池セルに対して押圧する複数の押圧子を備えていることを特徴とする請求項2に記載のハンダ付け装置。 The soldering apparatus according to claim 2, wherein the heating body includes a plurality of pressing elements that press the tab lead against the solar battery cell.
  4.  前記太陽電池セルと前記タブリードとを前記予熱部および前記ハンダ付け部に搬送する搬送部を更に備え、
     前記搬送部は、搬送している前記太陽電池セルを搬送ベルトに吸着して、前記タブリードを前記太陽電池セルと前記搬送ベルトとの間で挟むことにより、前記太陽電池セルと前記タブリードとを位置決めした状態で搬送することを特徴とする請求項1ないし3の何れか1項に記載のハンダ付け装置。
    A transport unit that transports the solar cell and the tab lead to the preheating unit and the soldering unit;
    The transport unit adsorbs the solar battery cell being transported to a transport belt, and positions the solar battery cell and the tab lead by sandwiching the tab lead between the solar battery cell and the transport belt. The soldering apparatus according to claim 1, wherein the soldering apparatus is transported in a state where the soldering is performed.
  5.  前記搬送部は、搬送している前記タブリードの両側に位置する、前記搬送ベルトのセル吸着孔を介して、前記太陽電池セルを吸着することにより前記太陽電池セルを前記搬送ベルトに吸着することを特徴とする請求項4に記載のハンダ付け装置。 The conveyance unit adsorbs the solar cells to the conveyance belt by adsorbing the solar cells via cell adsorption holes of the conveyance belt located on both sides of the tab lead being conveyed. The soldering apparatus according to claim 4, wherein the soldering apparatus is a soldering apparatus.
  6.  前記搬送部は、前記搬送ベルトに載置された前記タブリードを前記搬送ベルトに吸着することにより、前記タブリードを前記搬送ベルトに対して位置決めすることを特徴とする請求項4または5に記載のハンダ付け装置。 6. The solder according to claim 4, wherein the conveyance unit positions the tab lead with respect to the conveyance belt by adsorbing the tab lead placed on the conveyance belt to the conveyance belt. 6. Attachment device.
  7.  前記搬送部は、前記搬送ベルトに載置された前記タブリードの下側に位置する、前記搬送ベルトのタブリード吸着孔を介して、前記タブリードを吸着することにより前記タブリードを前記搬送ベルトに吸着することを特徴とする請求項6に記載のハンダ付け装置。 The conveyance unit adsorbs the tab lead to the conveyance belt by adsorbing the tab lead through a tab lead adsorption hole of the conveyance belt, which is positioned below the tab lead placed on the conveyance belt. The soldering apparatus according to claim 6.
  8.  前記搬送部は、前記タブリードのハンダの溶融が開始する直前まで、搬送している前記タブリードを吸着することを特徴とする請求項7に記載のハンダ付け装置。 8. The soldering apparatus according to claim 7, wherein the transport unit sucks the tab lead being transported until immediately before the melting of the solder of the tab lead starts.
  9.  前記タブリードを供給するタブリード供給部を更に備え、
     前記タブリード供給部は、前記タブリードを前記タブリードが前記太陽電池セルの表側接続電極に接続される側と前記タブリードが前記太陽電池セルの裏側接続電極に接続される側との間に段差を有するように曲げ成形することを特徴とする請求項1ないし8の何れか1項に記載のハンダ付け装置。
    A tab lead supply section for supplying the tab lead;
    The tab lead supply unit has a step between the tab lead and the side where the tab lead is connected to the front connection electrode of the solar cell and the side where the tab lead is connected to the back side connection electrode of the solar cell. The soldering apparatus according to claim 1, wherein the soldering apparatus is bent.
  10. 前記タブリード供給部は、前記タブリードを、前記タブリードが前記太陽電池セルの表側接続電極に接続される側において前記タブリードの先端に向かうにしたがって、前記タブリードの前記先端が前記表側接続電極と接するように傾斜させて成形することを特徴とする請求項9に記載のハンダ付け装置。 The tab lead supply unit is configured so that the tip of the tab lead comes into contact with the front connection electrode as the tab lead is directed to the tip of the tab lead on the side where the tab lead is connected to the front connection electrode of the solar battery cell. The soldering apparatus according to claim 9, wherein the soldering apparatus is formed while being inclined.
  11. 前記ハンダ付け部により前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱する前に、
     前記タブリードと前記太陽電池セルとを重ね合わせた状態に仮止めする仮止め装置を更に備えていることを特徴とする請求項1ないし10の何れか1項に記載のハンダ付け装置。
    Before heating the overlapping portion of the solar cell and the tab lead to a temperature higher than the solder melting point by the soldering portion,
    The soldering apparatus according to any one of claims 1 to 10, further comprising a temporary fixing device that temporarily fixes the tab lead and the solar battery cell in an overlapped state.
  12. 前記仮止め装置は、前記太陽電池セルの表側接続電極上に重ね合わせた前記タブリードを加熱することにより仮止めすることを特徴とする請求項11に記載のハンダ付け装置。 The soldering apparatus according to claim 11, wherein the temporary fixing device temporarily fixes the tab lead superimposed on the front connection electrode of the solar battery cell by heating.
  13. 前記ハンダ付け部により前記太陽電池セルと前記タブリードとの重ね合わせ部の溶融したハンダを、前記タブリードの長手方向における一方側から冷却する冷却部を更に備えていることを特徴とする請求項12に記載のハンダ付け装置。 The soldering part further comprises a cooling part that cools the molten solder in the overlapping part of the solar cell and the tab lead from one side in the longitudinal direction of the tab lead. The soldering device described.
  14. 太陽電池セルとタブリードとをハンダ付けするハンダ付け方法であって、
     前記太陽電池セルと前記タブリードとを重ね合わせた状態で、前記太陽電池セルと前記タブリードとをハンダ融点以下の温度に加熱する予熱工程と、
     前記太陽電池セルと前記タブリードとの重ね合わせ部をハンダ融点よりも高い温度に加熱するハンダ付け工程とを有することを特徴とするハンダ付け方法。
    A soldering method for soldering solar cells and tab leads,
    A preheating step of heating the solar battery cell and the tab lead to a temperature not higher than a solder melting point in a state where the solar battery cell and the tab lead are overlapped,
    A soldering method comprising: a soldering step of heating an overlapping portion of the solar battery cell and the tab lead to a temperature higher than a solder melting point.
PCT/JP2010/068651 2009-10-20 2010-10-15 Soldering device and soldering method WO2011049187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009241758A JP2011088165A (en) 2009-10-20 2009-10-20 Soldering device and soldering method
JP2009-241758 2009-10-20

Publications (1)

Publication Number Publication Date
WO2011049187A1 true WO2011049187A1 (en) 2011-04-28

Family

ID=43900410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068651 WO2011049187A1 (en) 2009-10-20 2010-10-15 Soldering device and soldering method

Country Status (3)

Country Link
JP (1) JP2011088165A (en)
TW (1) TW201139021A (en)
WO (1) WO2011049187A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528203A (en) * 2012-03-08 2012-07-04 宁波华索光伏设备有限公司 Semi-automatic single welding machine for solar cell slices
CN102615374A (en) * 2012-04-26 2012-08-01 宁夏小牛自动化设备有限公司 Series welding equipment for solar cell and easily maintained welding head for series welding of solar cell
CN103182579A (en) * 2011-12-29 2013-07-03 深圳市晶拓光伏自动化设备有限公司 Solar cell crystal silicon wafer series welding machine
CN104139272A (en) * 2013-05-06 2014-11-12 无锡奥特维科技有限公司 Automatic series welding machine for photovoltaic crystalline silicon cell pieces with radians
CN109014479A (en) * 2018-08-28 2018-12-18 无锡奥特维科技股份有限公司 Battery plate welding device and method
CN111715957A (en) * 2020-05-20 2020-09-29 天能电池集团股份有限公司 Device and method for automatically welding bus bar of storage battery
JP2021053668A (en) * 2019-09-30 2021-04-08 昭和電工株式会社 Aluminum brazing method and brazing device
CN113478059A (en) * 2021-07-05 2021-10-08 上海空间电源研究所 Automatic welding system for solar cell bypass diode assembly for space
CN114161038A (en) * 2021-12-16 2022-03-11 深圳地精智能装备有限公司 Accurate aligning mechanism of solar cell
CN114406243A (en) * 2021-12-29 2022-04-29 肇庆理士电源技术有限公司 Be used for medium-sized sealed lead acid battery cast joint utmost point ear preheating device
EP4322231A3 (en) * 2022-12-19 2024-06-26 Trina Solar Co., Ltd Continuous string welding device for photovoltaic cells and welding method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064871A (en) * 2010-09-17 2012-03-29 Nippon Avionics Co Ltd Connection method and device of solar cell connection member
JP2013237055A (en) * 2012-05-11 2013-11-28 Npc Inc Wiring device and conveying device of solar battery cell
KR102175893B1 (en) 2014-02-24 2020-11-06 엘지전자 주식회사 Manufacturing method of solar cell module
KR101938644B1 (en) * 2015-10-02 2019-04-10 엘지전자 주식회사 Apparatus and method for attaching interconnector of solar cell panel
EP3624203B1 (en) * 2015-10-02 2022-08-24 LG Electronics Inc. Method for attaching interconnector of solar cell panel
KR102474475B1 (en) * 2015-12-23 2022-12-07 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Apparatus for attaching interconnector of solar cell panel
CN107934377A (en) * 2017-11-07 2018-04-20 无锡奥特维科技股份有限公司 Transmitting device, welding equipment and transmission method with adsorption hole
EP3569349B1 (en) * 2018-05-18 2021-03-17 SUPSI (Scuola Universitaria Professionale Della Svizzera Italiana) Device for gripping and welding solar cells to related electrical connectors and associated actuating head, and robot
KR102005574B1 (en) * 2019-01-07 2019-07-30 엘지전자 주식회사 Apparatus and method for attaching interconnector of solar cell panel
JP7403343B2 (en) * 2020-02-18 2023-12-22 パナソニックホールディングス株式会社 Method for manufacturing solar cell modules

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363293A (en) * 2003-06-04 2004-12-24 Sharp Corp Solar cell module and manufacturing method thereof
JP2005235971A (en) * 2004-02-19 2005-09-02 Nisshinbo Ind Inc Solder device of tab lead for solar battery containing flux coating function
JP2006066570A (en) * 2004-08-26 2006-03-09 Eco & Engineering Co Ltd Connection method of solar cell element
JP2006147902A (en) * 2004-11-22 2006-06-08 Toyama Kikai Kk Method of welding lead
JP2006147887A (en) * 2004-11-19 2006-06-08 Nisshinbo Ind Inc Method for soldering tab lead for solar battery and device for the method
JP2006310745A (en) * 2005-03-29 2006-11-09 Kyocera Corp Solar cell module and its manufacturing method
JP2008053625A (en) * 2006-08-28 2008-03-06 Npc Inc Soldering equipment and soldering method of tab lead
JP2008258267A (en) * 2007-04-02 2008-10-23 Nisshinbo Ind Inc Soldering method of tab lead to solar cell
JP2009152266A (en) * 2007-12-19 2009-07-09 Eco & Engineering Co Ltd Method and device for connecting solar battery element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363293A (en) * 2003-06-04 2004-12-24 Sharp Corp Solar cell module and manufacturing method thereof
JP2005235971A (en) * 2004-02-19 2005-09-02 Nisshinbo Ind Inc Solder device of tab lead for solar battery containing flux coating function
JP2006066570A (en) * 2004-08-26 2006-03-09 Eco & Engineering Co Ltd Connection method of solar cell element
JP2006147887A (en) * 2004-11-19 2006-06-08 Nisshinbo Ind Inc Method for soldering tab lead for solar battery and device for the method
JP2006147902A (en) * 2004-11-22 2006-06-08 Toyama Kikai Kk Method of welding lead
JP2006310745A (en) * 2005-03-29 2006-11-09 Kyocera Corp Solar cell module and its manufacturing method
JP2008053625A (en) * 2006-08-28 2008-03-06 Npc Inc Soldering equipment and soldering method of tab lead
JP2008258267A (en) * 2007-04-02 2008-10-23 Nisshinbo Ind Inc Soldering method of tab lead to solar cell
JP2009152266A (en) * 2007-12-19 2009-07-09 Eco & Engineering Co Ltd Method and device for connecting solar battery element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182579A (en) * 2011-12-29 2013-07-03 深圳市晶拓光伏自动化设备有限公司 Solar cell crystal silicon wafer series welding machine
CN102528203A (en) * 2012-03-08 2012-07-04 宁波华索光伏设备有限公司 Semi-automatic single welding machine for solar cell slices
CN102615374A (en) * 2012-04-26 2012-08-01 宁夏小牛自动化设备有限公司 Series welding equipment for solar cell and easily maintained welding head for series welding of solar cell
CN104139272A (en) * 2013-05-06 2014-11-12 无锡奥特维科技有限公司 Automatic series welding machine for photovoltaic crystalline silicon cell pieces with radians
CN109014479A (en) * 2018-08-28 2018-12-18 无锡奥特维科技股份有限公司 Battery plate welding device and method
JP2021053668A (en) * 2019-09-30 2021-04-08 昭和電工株式会社 Aluminum brazing method and brazing device
JP7273369B2 (en) 2019-09-30 2023-05-15 株式会社レゾナック Brazing method and brazing apparatus for aluminum
CN111715957A (en) * 2020-05-20 2020-09-29 天能电池集团股份有限公司 Device and method for automatically welding bus bar of storage battery
CN111715957B (en) * 2020-05-20 2022-01-25 天能电池集团股份有限公司 Device and method for automatically welding bus bar of storage battery
CN113478059A (en) * 2021-07-05 2021-10-08 上海空间电源研究所 Automatic welding system for solar cell bypass diode assembly for space
CN114161038A (en) * 2021-12-16 2022-03-11 深圳地精智能装备有限公司 Accurate aligning mechanism of solar cell
CN114406243A (en) * 2021-12-29 2022-04-29 肇庆理士电源技术有限公司 Be used for medium-sized sealed lead acid battery cast joint utmost point ear preheating device
CN114406243B (en) * 2021-12-29 2023-04-18 肇庆理士电源技术有限公司 Be used for medium-sized sealed lead acid battery cast joint utmost point ear preheating device
EP4322231A3 (en) * 2022-12-19 2024-06-26 Trina Solar Co., Ltd Continuous string welding device for photovoltaic cells and welding method

Also Published As

Publication number Publication date
JP2011088165A (en) 2011-05-06
TW201139021A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
WO2011049187A1 (en) Soldering device and soldering method
JP4240587B2 (en) Tab lead soldering equipment
JP4903021B2 (en) Tab lead soldering apparatus and soldering method
JP2013139044A (en) Soldering device of tab lead for solar cell
JP4358651B2 (en) Tab lead soldering apparatus and tab lead soldering method
WO2005117140A1 (en) Solar battery cell manufacturing apparatus
JP2005303180A (en) Device and method for mounting electronic component
JP2002368241A (en) Method of modularizing solar cell
US20230006089A1 (en) Device and method for repairing photovoltaic cell string
JP2004039856A (en) Lead welding apparatus
WO2021258576A1 (en) Battery string, battery assembly, and fabrication apparatus and fabrication method for battery string
JP3761495B2 (en) Lead welding equipment
JP2014036177A (en) Welding device for lead
JP4527945B2 (en) Solar cell manufacturing equipment
JP2014175618A (en) Tab lead bending mechanism and connection device for solar cell with tab lead bending mechanism
JP4146417B2 (en) Lead welding method
JP4562047B1 (en) Solar cell module manufacturing method and apparatus
JP2011134901A (en) Assembling device and assembling method for fpd module
JP2005347703A (en) Tab lead fitting equipment for solar battery cell
JP2012064871A (en) Connection method and device of solar cell connection member
JP2011146482A (en) Apparatus and method for manufacturing solar cell module
JP2011238874A (en) Deposition method for reed and device of the same
JP3063390B2 (en) Soldering equipment for terminals
JP3259381B2 (en) Semiconductor chip bonding apparatus and bonding method
JP5574824B2 (en) Solar cell substrate connecting apparatus and connecting method, and solar battery manufacturing apparatus and manufacturing method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825036

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10825036

Country of ref document: EP

Kind code of ref document: A1