WO2011048725A1 - Solid state image capture device, a/d conversion method, and a/d conversion device - Google Patents

Solid state image capture device, a/d conversion method, and a/d conversion device Download PDF

Info

Publication number
WO2011048725A1
WO2011048725A1 PCT/JP2010/004199 JP2010004199W WO2011048725A1 WO 2011048725 A1 WO2011048725 A1 WO 2011048725A1 JP 2010004199 W JP2010004199 W JP 2010004199W WO 2011048725 A1 WO2011048725 A1 WO 2011048725A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switch
column
residual
conversion
Prior art date
Application number
PCT/JP2010/004199
Other languages
French (fr)
Japanese (ja)
Inventor
石井基範
春日繁孝
加藤剛久
鵜川三蔵
岡田雄介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011048725A1 publication Critical patent/WO2011048725A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/145Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp

Definitions

  • the present invention relates to a solid-state imaging device, an AD conversion method, and an AD converter, and more particularly, to a solid-state imaging device including an AD conversion unit.
  • Solid-state imaging devices are generally called image sensors, CCD (Charge Coupled Device) type sensors (or simply called CCDs), MOS (Metal Oxide Semiconductor) sensors, and CMOS (Complementary Metal Oxide Sensors). Are simply referred to as CMOS sensors).
  • solid-state imaging devices In these solid-state imaging devices, a large number of minute portions (which are called pixels) that output electrical signals corresponding to the intensity of incident light are two-dimensionally arranged.
  • the solid-state imaging device determines the order of the signals by scanning the signals output from these pixels in each row and each column, and serially outputs the signals in the determined order to the outside of the solid-state imaging device. It has means to transfer.
  • the signal directly output from the pixel is naturally an analog signal.
  • an imaging device such as a digital still camera to which a solid-state imaging device is applied is required to output an image signal as digital data. Therefore, such an imaging apparatus needs to convert an analog signal into a digital signal (AD conversion).
  • the solid-state imaging device In conventional imaging devices, the solid-state imaging device often outputs an analog signal to the outside, and the analog signal is AD converted by an external circuit in many cases. In this case, there is a problem that noise is superimposed on the analog signal outside, or the analog signal changes depending on the method of coupling the solid-state imaging device and the external device. Therefore, recently, it has begun to incorporate an AD converter in a solid-state imaging device and output a digital signal to the outside.
  • CMOS process since a CMOS process is used in the CMOS sensor, it is possible to produce a circuit of a certain scale without any problem. Further, in the CMOS sensor, the signal output path is not fixed as in the bucket relay in the CCD, and therefore the AD converter may be arranged in any path from the pixel to the output terminal. Therefore, in reality, an A / D converter is not built in a CCD, and only a CMOS sensor is built in.
  • FIG. 14 is a diagram illustrating a configuration of a solid-state imaging device 500 described in Patent Document 1.
  • the solid-state imaging device 500 described in Patent Document 1 includes pixels 501 arranged in a two-dimensional manner, and AD converters 502 arranged corresponding to the columns (in this document, “column AD circuit”). ).
  • Each AD converter 502 includes a comparator 503.
  • the signal from the pixels 501 in each column is input to one input terminal of the comparator 503, and the ramp voltage RAMP (voltage that changes at a constant speed with time) is input to the other input terminal of the comparator 503. Then, the ramp voltage RAMP input to the comparator 503 is changed by a DA converter 504 (DAC) in a minute step shape every clock, and whether or not this voltage matches the voltage from the pixel 501 is determined by the comparator 503. By determining, the AD converter 502 can obtain a digital value.
  • DAC DA converter 504
  • CMOS sensor In the case of a CMOS sensor, noise generated due to variations in threshold voltage (generally referred to as Vt) of a source follower transistor provided independently for each pixel is superimposed on the signal voltage. Therefore, the CMOS sensor needs a noise canceling function for reducing this noise. In order to realize this function, it is generally performed to subtract an output voltage (hereinafter simply referred to as a reset voltage) from a pixel when the pixel is reset from a signal voltage from the pixel.
  • the AD converter 502 implements a noise canceling function by down-counting by the count number proportional to the reset voltage and then counting up by the count number proportional to the signal voltage.
  • Patent Document 1 can perform AD conversion with high linearity, it takes time by the number of clocks corresponding to the resolution of the AD converter 502. For example, when 10-bit AD conversion processing is desired, there are 1024 possible digital values. Accordingly, the lamp voltage RAMP needs to be changed 1024 times (or the lamp voltage is continuously changed for a time of 1024 clocks or more) accordingly, and 1024 clocks are required for AD conversion processing. In practice, more time is required for noise cancellation.
  • Patent Document 1 has a problem that it takes time to perform AD conversion processing.
  • FIG. 15 is a diagram illustrating a configuration of a solid-state imaging device 600 described in Patent Document 2.
  • the AD converter 502 in Patent Document 1 has only one stage. However, in the solid-state imaging device 600 shown in FIG. 15, the AD converter includes an AD converter 601 that converts the upper N bits and an AD converter that converts the lower M bits. It is divided into two stages with the container 602. This solid-state imaging device 600 converts the upper N bits, and then converts the difference (analog residual) between the analog value corresponding to the upper N bit value and the analog value of the differential voltage into the lower M bits. To perform the entire AD conversion.
  • the AD converter 601 performs AD conversion by a 2-bit ADC 603 and outputs a 2-bit digital value, and a logic circuit (not described in Patent Document 2, but generally uses a logic circuit). To generate control signals ⁇ A to ⁇ D to control the switches. Thereafter, the AD converter 601 obtains an analog residual output by controlling ⁇ 1 to ⁇ 4.
  • Patent Document 3 discloses a technique for reducing the area of the AD converter.
  • FIG. 17 is a diagram illustrating a configuration of a solid-state imaging device 700 described in Patent Document 3.
  • the solid-state imaging device 700 reduces the total area of the plurality of AD converters 701 by arranging one AD converter 701 (one AD converter 701 in two columns in FIG. 17) common to the plurality of columns. be able to.
  • JP 2005-323331 A Japanese Patent No. 4069203 US Patent Application Publication No. 2008/0019208
  • an object of the present invention is to provide a solid-state imaging device, an AD conversion method, and an AD converter that can further speed up AD conversion processing.
  • a solid-state imaging device is arranged in a matrix and outputs a reset voltage and a signal voltage corresponding to the amount of incident light, and the signal AD that converts the voltage into an M + N-bit third digital signal including a first digital signal of M (M is an integer of 1 or more) bits and a second digital signal of N (N is an integer of 1 or more) bits.
  • a conversion circuit wherein the AD conversion circuit calculates a differential voltage indicating a difference between the reset voltage and the signal voltage, AD-converts the calculated differential voltage into the first digital signal, and the differential voltage And a first AD converter for performing a first AD conversion process for generating a first residual voltage indicating a difference between the analog voltage corresponding to the digital value of the first digital signal, and the first residual voltage as the second digital signal.
  • the first 1AD conversion unit is configured to calculate the difference voltage indicates a difference between each of the difference voltage and the 2 M-number of threshold voltage, a residual voltage generator for generating a 2 M-number of the second residue voltage corresponding to each of the 2 M pieces of digital values represented by M bits, a and each of the 2 M-number of the second residue voltage
  • a first comparison unit that generates a 2 M- bit first comparison result signal by comparing with one reference voltage; and converts the 2 M- bit first comparison result signal into the M-bit first digital signal.
  • a decoder and a second residual voltage corresponding to a digital value of the first digital signal converted by the decoder are selected from the 2 M second residual voltages, and the selected second residual voltage is selected.
  • a selection unit that outputs the first residual voltage.
  • the residual voltage generator generates 2 M second residual voltages, and N bits are generated using the generated second residual voltages.
  • AD conversion processing is performed. Accordingly, for example, after performing N-bit AD conversion processing, the first digital signal generated by the AD conversion processing is DA-converted, and the residual voltage is calculated using the DA-converted analog signal.
  • the solid-state imaging device according to an aspect of the present invention can generate the first residual voltage at high speed. Therefore, the solid-state imaging device according to one embodiment of the present invention can speed up AD conversion processing.
  • the second AD conversion unit includes a plurality of second column AD conversion units, one for each column, and one first AD conversion unit is provided for each Q column and arranged in the corresponding Q column.
  • a plurality of first column AD conversion units that perform the first AD conversion processing on the reset voltage and the signal voltage output by the plurality of pixels, and each of the first column AD conversion units includes Q columns
  • a first selection circuit that selects one of the columns and outputs the reset voltage and the differential voltage output by the pixels arranged in the selected column; the reset voltage output by the first selection circuit; and
  • a first AD converter that performs the first AD conversion processing on the signal voltage, and one of the Q columns are selected, and the first residual voltage generated by the first AD converter is selected in the selected column.
  • Each of the second column AD conversion units is configured to perform the second AD conversion process on the first residual voltage output by the second selection circuit provided in the corresponding Q column. May be performed.
  • the solid-state imaging device can reduce the circuit area of the AD conversion circuit.
  • the solid-state imaging device further causes the first column AD conversion unit to select each column of the Q columns by causing the first selection circuit and the second selection circuit to sequentially select the columns of the Q column.
  • a first control unit configured to sequentially generate the corresponding first residual voltage and the first digital signal, wherein the first control unit includes a first column included in the Q column in the first column AD conversion unit; At the same time as generating the corresponding first residual voltage, the first column AD conversion unit is included in the second column AD conversion unit provided in the second column different from the first column included in the Q column.
  • the second AD conversion process may be performed on the first residual voltage of the corresponding column already generated by
  • the solid-state imaging device can speed up the AD conversion process by simultaneously performing the first AD conversion process and the second AD conversion process.
  • the solid-state imaging device further includes a column scanning circuit that sequentially transfers the third digital signal AD-converted by the AD conversion circuit to the outside
  • the first control unit further includes the first column.
  • the AD conversion unit sequentially generates the first residual voltage and the first digital signal corresponding to the first column group included in the Q column, and the second column AD conversion provided in the first column group
  • the second digital signal is sequentially generated by causing the unit to perform the second AD conversion processing on the first residual voltage corresponding to the first column group, and the first column AD conversion unit
  • the first residual voltage and the first digital signal corresponding to a second column group different from the first column group included in the Q column are sequentially generated, and the second provided in the second column group Corresponds to the second column group in the column AD converter
  • the second AD conversion processing may be performed on the first residual voltage
  • the third digital signal corresponding to the first column group may be sequentially transferred to the outside simultaneously with the column scanning circuit. .
  • the solid-state imaging device performs the AD conversion process and the third digital signal transfer process at the same time until the third digital signal is output from the imaging operation to the outside.
  • the processing speed can be improved.
  • the solid-state imaging device further causes the first column AD conversion unit to select each column of the Q columns by causing the first selection circuit and the second selection circuit to sequentially select the columns of the Q column.
  • a first control unit configured to sequentially generate the corresponding first residual voltage and the first digital signal, wherein the first control unit includes the first column AD conversion unit in all columns included in the Q column; After generating the corresponding first residual voltage, the second column AD conversion unit may simultaneously perform the second AD conversion processing on the first residual voltage corresponding to all the columns.
  • the solid-state imaging device can use the same lamp voltage in all the second column AD conversion circuits, and thus the circuit scale can be reduced.
  • the first AD converter is provided for each column, and performs a plurality of first AD conversion processes on the reset voltage and the signal voltage output by the pixels arranged in the corresponding column.
  • 1st column AD conversion part is provided, and the 2nd AD conversion part is provided for every column, and with respect to the 1st residual voltage generated by the 1st column AD conversion part provided in the corresponding column
  • a plurality of second column AD conversion units that perform the second AD conversion processing may be provided.
  • the solid-state imaging device can simultaneously perform the first AD conversion processing on each column, and therefore can speed up the first AD conversion processing.
  • the second AD conversion unit compares the ramp voltage and the first residual voltage with a reference signal generation unit that generates a ramp voltage whose voltage value changes with time from a first time, and compares A second comparison unit that generates a second comparison result signal indicating a result; a first holding unit that holds, as the second digital signal, a time from the first time until the logic of the second comparison result signal is inverted; May be provided.
  • the solid-state imaging device can ensure linearity with respect to, for example, AD conversion processing of lower N bits that requires accuracy.
  • the residual voltage generation unit includes a first residual voltage generation unit that generates one of the 2 M second residual voltages, and (2 M ⁇ 1) second residuals.
  • the first residual voltage generator includes a first terminal to which the second residual voltage generated by the first residual voltage generator is output, and one end connected to the first terminal.
  • a first capacitor connected to the first capacitor, a first switch that switches between a closed state in which the reset voltage is supplied to the first terminal and an open state in which the reset voltage is not supplied, and one of the signal voltage and the first reference voltage is selected
  • the solid-state imaging device uses, for example, a method that is inferior in linearity but high in speed for AD conversion processing of upper M bits that do not require high accuracy. Higher speed can be realized while suppressing a decrease in accuracy of the entire AD conversion process.
  • the solid-state imaging device further includes a second control unit that controls the first switch, the second switch, the third switch, the fourth switch, and the fifth switch, and the second control unit includes: In the first period, the first switch and the fifth switch are closed, the second switch, the third switch, and the fourth switch select the signal voltage, and the second switch after the first period is selected. In two periods, the first switch and the fifth switch are opened, the second switch selects the first reference voltage, and the third switch and the fourth switch select the second reference voltage. In a third period after the second period, the first switch and the fifth switch are opened, and the first reference voltage is selected by the second switch and the third switch. , May be selecting the second reference voltage to the fourth switch.
  • the residual voltage generation unit includes a first residual voltage generation unit that generates one of the 2 M second residual voltages, and (2 M ⁇ 1) second residuals.
  • the first residual voltage generator includes a first terminal from which the second residual voltage generated by the first residual voltage generator is output, a first node, A first capacitor having one end connected to the first node; a first switch that switches between a closed state in which the reset voltage is supplied to the first node and an open state in which the reset voltage is not supplied; and the signal voltage and the first reference voltage A second switch that supplies the selected voltage to the other end of the first capacitor, an inverting input terminal is connected to the first node, the reset voltage is applied to a non-inverting input terminal, and an output A first operational amplifier having a terminal connected to the first terminal, and the first operational amplifier A fourth capacitor and a sixth switch connected in parallel with each other are provided between the inverting input terminal and the output terminal, and each of the second residual voltage generators is generated by the second residual voltage generator.
  • a second operational amplifier having an output terminal connected to the second terminal, and a fifth capacitor and a seventh switch connected in parallel with each other between the non-inverting input terminal and the output terminal of the second operational amplifier. You may prepare.
  • the solid-state imaging device uses, for example, a method that is inferior in linearity but high in speed for AD conversion processing of upper M bits that do not require high accuracy. Higher speed can be realized while suppressing a decrease in accuracy of the entire AD conversion process.
  • the solid-state imaging device further includes a second control for controlling the first switch, the second switch, the third switch, the fourth switch, the fifth switch, the sixth switch, and the seventh switch.
  • the second control unit closes the first switch, the fifth switch, the sixth switch, and the seventh switch in the first period, and sets the second switch and the third switch to the closed state. Selecting the first reference voltage, causing the fourth switch to select the second reference voltage, and in a second period after the first period, the first switch, the fifth switch, the sixth switch, and Opening the seventh switch, causing the second switch to select the signal voltage, causing the third switch and the fourth switch to select the second reference voltage, and the second period. In the subsequent third period, the first switch, the fifth switch, the sixth switch, and the seventh switch are opened, and the signal voltage is applied to the second switch, the third switch, and the fourth switch. It may be selected.
  • the signal voltage includes a first digital signal having M (M is an integer of 1 or more) bits and a second digital signal having N (N is an integer of 1 or more) bits.
  • AD converter for AD conversion into an M + N-bit third digital signal including A and AD converting the signal voltage into the first digital signal and corresponding to the signal voltage and the digital value of the first digital signal
  • a first AD conversion unit that performs a first AD conversion process that generates a first residual voltage that indicates a difference from the analog voltage to be converted, and a second AD conversion process that performs an AD conversion of the first residual voltage into the second digital signal
  • a second AD converter wherein the first AD converter calculates the differential voltage and indicates a difference between the differential voltage and each of the 2 M threshold voltages, and is represented by 2 M represented by M bits.
  • Each of the digital values of By comparing each of the 2 M second residual voltages with the first reference voltage, 2 M bits by generating a corresponding 2 M second residual voltage, respectively.
  • a first comparison unit that generates the first comparison result signal, a decoder that converts the 2 M- bit first comparison result signal into the M-bit first digital signal, and the 2 M second residual voltages.
  • a selection unit that selects a second residual voltage corresponding to a digital value of the first digital signal converted by the decoder and outputs the selected second residual voltage as the first residual voltage.
  • the residual voltage generator generates 2 M second residual voltages, and N bits are generated using the generated second residual voltages.
  • AD conversion processing is performed. Accordingly, for example, after performing N-bit AD conversion processing, the first digital signal generated by the AD conversion processing is DA-converted, and the residual voltage is calculated using the DA-converted analog signal.
  • the AD converter according to an aspect of the present invention can generate the first residual voltage at high speed.
  • the AD converter according to one embodiment of the present invention can speed up AD conversion processing.
  • the present invention can be realized not only as such a solid-state imaging device but also as a solid-state imaging device control method and a solid-state imaging device driving method in which some or all of characteristic means included in the solid-state imaging device are steps.
  • it can be realized as an AD conversion method in a solid-state imaging device, or as a program for causing a computer to execute some or all of such characteristic steps.
  • a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or a digital still camera or digital video camera equipped with such a solid-state imaging device. It can be realized as a camera, can be realized as an AD converter included in such a solid-state imaging device, or can be realized as an AD conversion method using characteristic means included in such an AD converter as steps.
  • LSI semiconductor integrated circuit
  • the present invention can provide a solid-state imaging device, an AD conversion method, and an AD converter that can further speed up AD conversion processing.
  • FIG. 1 is a diagram showing a configuration of a solid-state imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of the pixel according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing AD conversion processing of upper bits according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a configuration of the first AD converter according to Embodiment 1 of the present invention.
  • FIG. 5 is a circuit diagram of the first AD converter according to Embodiment 1 of the present invention.
  • FIG. 6 is a timing chart of the first AD converter according to Embodiment 1 of the present invention.
  • FIG. 7 is a circuit diagram of the comparator according to Embodiment 1 of the present invention.
  • FIG. 1 is a diagram showing a configuration of a solid-state imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of the pixel according to Embod
  • FIG. 8 is a timing chart of AD conversion processing by the solid-state imaging device according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing a configuration of the solid-state imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 10 is a timing chart of AD conversion processing by the solid-state imaging device according to Embodiment 2 of the present invention.
  • FIG. 11 is a circuit diagram of the first AD converter according to Embodiment 3 of the present invention.
  • FIG. 12 is a timing chart of the first AD converter according to Embodiment 3 of the present invention.
  • FIG. 13 is a timing chart of AD conversion processing by the solid-state imaging device according to Embodiment 4 of the present invention.
  • FIG. 14 is a diagram illustrating a configuration of a conventional solid-state imaging device.
  • FIG. 15 is a diagram illustrating a configuration of a conventional solid-state imaging device.
  • FIG. 16 is a diagram showing a configuration of a conventional AD converter.
  • FIG. 17 is a diagram illustrating a configuration of a conventional solid-state imaging device.
  • the solid-state imaging device 100 according to Embodiment 1 of the present invention generates 2 M output voltages Vout indicating the difference between the differential voltage V0 and each of the 2 M threshold voltages, and generates the generated 2 M outputs.
  • the first M-bit first digital signal 130 is generated using the voltage Vout.
  • FIG. 1 is a diagram showing a configuration of a solid-state imaging device 100 according to Embodiment 1 of the present invention.
  • the solid-state imaging device 100 illustrated in FIG. 1 includes an imaging unit 101, an AD conversion circuit 120, a row scanning circuit 103, a column scanning circuit 109, and a timing control unit 112.
  • the solid-state imaging device 100 illustrated in FIG. 1 includes an imaging unit 101, an AD conversion circuit 120, a row scanning circuit 103, a column scanning circuit 109, and a timing control unit 112.
  • the solid-state imaging device 100 illustrated in FIG. 1 includes an imaging unit 101, an AD conversion circuit 120, a row scanning circuit 103, a column scanning circuit 109, and a timing control unit 112.
  • the imaging unit 101 includes pixels 102 (pixel circuits) arranged in a two-dimensional matrix and a plurality of vertical signal lines 104.
  • Each vertical signal line 104 is arranged along the vertical direction for each column.
  • a signal line from the row scanning circuit 103 and a vertical signal line 104 are connected to each pixel 102.
  • Each pixel 102 photoelectrically converts incident light into an analog signal voltage (pixel signal).
  • Each pixel 102 outputs a reset voltage Vres to the corresponding vertical signal line 104 in the reset state, and outputs a signal voltage Vsig corresponding to the amount of incident light in the data output state.
  • the row scanning circuit 103 selects each row of the imaging unit 101 in order. Each pixel 102 in the selected row performs an imaging operation within a certain time (this is called a horizontal blanking period), and sequentially outputs the obtained reset voltage Vres and signal voltage Vsig to the vertical signal line 104. To do.
  • FIG. 2 is a circuit diagram of the pixel 102.
  • the pixel 102 includes a reset transistor 201, a photodiode (PD) 202, a transfer transistor 203, a floating diffusion (FD) 204, an amplification transistor 205, and a pixel selection transistor 206.
  • the reset transistor 201 is connected between the FD 204 and the power supply line VDD.
  • the gate terminal of the reset transistor 201 is connected to the reset signal line RSCELL.
  • PD 202 generates a signal charge corresponding to the intensity of received light and accumulates the signal charge.
  • the transfer transistor 203 is connected between the PD 202 and the FD 204.
  • the gate terminal of the transfer transistor 203 is connected to the transfer signal line TRANS.
  • the FD 204 accumulates signal charges transferred from PD 202.
  • the FD 204 is connected to the gate terminal of the amplification transistor 205.
  • the amplification transistor 205 is connected between the vertical signal line 104 and the power supply line VDD.
  • the pixel selection transistor 206 is connected in series with the amplification transistor 205 between the vertical signal line 104 and the power supply line VDD.
  • the gate terminal of the pixel selection transistor 206 is connected to the selection signal line SELECT.
  • the pixel 102 outputs a signal corresponding to the potential of the FD 204 to the vertical signal line 104 when the pixel selection transistor 206 is selected (on state). Specifically, the pixel 102 outputs the reset voltage Vres to the vertical signal line 104 in a state where the reset transistor 201 is turned on. Further, the pixel 102 outputs the signal voltage Vsig to the vertical signal line 104 in a state where the signal charges accumulated in the PD 202 are transferred to the FD 204 via the transfer transistor 203.
  • the amplification transistor 205 forms a source follower circuit together with a load transistor (not shown) connected to the vertical signal line 104.
  • the AD conversion circuit 120 converts the signal voltage Vsig output from the plurality of pixels 102 into a first digital signal 130 of M (M is an integer of 1 or more) bits and a second of N (N is an integer of 1 or more) bits. AD conversion to a third digital signal of M + N bits including the digital signal.
  • the first digital signal 130 corresponds to the upper M-bit digital signal included in the M + N-bit third digital signal
  • the second digital signal is the lower N-bit digital signal included in the M + N-bit third digital signal.
  • the signal corresponds to the signal.
  • the AD conversion circuit 120 includes a first AD conversion unit 121 and a second AD conversion unit 122.
  • the first AD converter 121 calculates a differential voltage V0 indicating a difference between the reset voltage Vres and the signal voltage Vsig, and AD converts the calculated differential voltage V0 into an M-bit first digital signal 130.
  • the first AD converter 121 holds the generated M-bit first digital signal 130.
  • the first AD converter 121 generates a residual voltage 131 indicating a difference between the differential voltage V0 and an analog voltage corresponding to the digital value of the M-bit first digital signal 130.
  • the residual voltage 131 corresponds to the first residual voltage of the present invention, and corresponds to the analog voltage value for the lower N bits of the M + N-bit third digital signal.
  • the first AD converter 121 calculates the differential voltage V0, AD converts the calculated differential voltage V0 into the M-bit first digital signal 130, and generates the residual voltage 131. This is referred to as conversion processing.
  • the first AD converter 121 includes a reference voltage generator 107 and a plurality of first column AD converters 123, one for each column.
  • the reference voltage generator 107 generates a first reference voltage VH and a second reference voltage VL.
  • the first reference voltage VH corresponds to the upper limit value of the differential voltage V0
  • the second reference voltage VL corresponds to the lower limit value of the differential voltage V0.
  • Each first column AD conversion unit 123 performs a first AD conversion process on the reset voltage Vres and the signal voltage Vsig generated by the pixels 102 arranged in the corresponding column, thereby performing the first AD conversion processing corresponding to each column. 1 digital signal 130 and residual voltage 131 are generated.
  • Each first column AD conversion unit 123 includes a reset voltage holding unit 105, a first AD converter 106, and a first storage unit 108.
  • the reset voltage holding unit 105 is connected to the vertical signal line 104 in the corresponding column, and holds the reset voltage Vres output by the pixel 102 in the corresponding column. Note that the reset voltage holding unit 105 may hold the reset voltage Vres output from the pixel 102, or may hold a voltage obtained by adding a certain offset value to the reset voltage Vres. Further, the reset voltage holding unit 105 may add a certain offset value to the held reset voltage Vres and output the result.
  • the reset voltage Vres held by the reset voltage holding unit 105, the signal voltage Vsig from the vertical signal line 104, the first reference voltage VH generated by the reference voltage generation unit 107, and the second voltage A reference voltage VL is input.
  • the first AD converter 106 performs a first AD conversion process on the reset voltage Vres held in the reset voltage holding unit 105 and the signal voltage Vsig of the vertical signal line 104.
  • the first AD converter 106 performs upper M-bit AD conversion processing on the voltage value of the signal voltage Vsig that is equal to or higher than the second reference voltage VL and equal to or lower than the first reference voltage VH.
  • the first storage unit 108 holds the first digital signal 130 generated by the first AD converter 106.
  • the first AD converter 106 outputs the residual voltage 131 to the second AD converter 122.
  • the second AD converter 122 performs a second AD conversion process in which the residual voltage 131 generated by the first AD converter 121 is AD converted into an N-bit second digital signal.
  • the second AD converter 122 includes a reference signal generator 113 and a second column AD converter 124 provided for each column.
  • the reference signal generator 113 generates a ramp voltage RAMP whose voltage value changes with time. Note that the voltage value of the ramp voltage RAMP may change continuously at a constant speed with time, or may change in a minute step shape every clock.
  • Each second column AD converter 124 AD converts the residual voltage 131 generated by the first column AD converter 123 of the corresponding column into an N-bit second digital signal.
  • Each second column AD conversion unit 124 holds the AD converted second digital signal.
  • Each second column AD conversion unit 124 includes a comparator 110 and a counter latch unit 111.
  • the comparator 110 corresponds to the second comparison unit of the present invention, compares the residual voltage 131 generated by the first AD converter 106 with the ramp voltage RAMP generated by the reference signal generation unit 113, and compares the result.
  • a comparison result signal 133 (corresponding to the second comparison result signal of the present invention) is generated.
  • the comparator 110 outputs the generated comparison result signal 133 to the counter latch unit 111.
  • the counter latch unit 111 corresponds to the first holding unit of the present invention, and latches (holds) the counter value CNT generated by the timing control unit 112 at the timing when the logic of the comparison result signal 133 is inverted.
  • the counter value held by the counter latch unit 111 corresponds to the lower N bits included in the M + N-bit third digital signal generated by the AD conversion circuit 120.
  • the column scanning circuit 109 sequentially transfers the third digital signal AD-converted by the AD conversion circuit 120 to the outside. That is, the column scanning circuit 109 sequentially outputs the M-bit first digital signals 130 held in the plurality of first storage units 108 and the N-bit second digital signals held in the plurality of counter latch units 111 to the outside. Forward.
  • the timing control unit 112 corresponds to the first control unit and the second control unit of the present invention, and controls the row scanning circuit 103, the column scanning circuit 109, and the AD conversion circuit 120. Further, the timing control unit 112 counts the counter value CNT.
  • the residual voltage 131 is input to one input terminal of the comparator 110.
  • the timing control unit 112 starts to linearly change the ramp voltage RAMP output from the reference signal generation unit 113, and at the same time increases or decreases the counter value CNT by 1 every time one clock time elapses. .
  • the comparator 110 inverts the logic of the comparison result signal 133 when the voltage values of both input terminals match (this actually has a delay time).
  • the counter latch unit 111 stores the counter value CNT at this time. That is, the counter latch unit 111 holds the time from when the change of the ramp voltage RAMP starts until the logic of the comparison result signal 133 is inverted as the second digital signal.
  • the AD conversion circuit 120 is configured such that the first column AD conversion unit 123 performs upper M-bit AD conversion and the second column AD conversion unit 124 performs lower N-bit AD conversion, whereby an M + N-bit AD conversion is performed. Conversion is possible. Further, the first column AD conversion unit 123 and the second column AD conversion unit 124 are arranged in each column. Therefore, the AD conversion circuit 120 can simultaneously AD convert the signal voltage Vsig output from all the pixels 102 in the row selected by the row scanning circuit 103.
  • This calibration processing may be performed inside the solid-state imaging device 100, or only a digital value necessary for calibration is generated inside the solid-state imaging device 100, and the calibration processing itself may be performed outside the solid-state imaging device 100. Good. In any case, since a digital value is output from the solid-state imaging device 100 to the outside, there is no problem that noise is superimposed on the output path and outside on the signal output by the solid-state imaging device 100.
  • FIG. 3 is a diagram for explaining the upper bit AD conversion operation by the first AD converter 106.
  • the first AD converter 106 performs a noise canceling operation by subtracting the signal voltage Vsig from the reset voltage Vres.
  • the first reference voltage VH and the second reference voltage VL generated by the reference voltage generation unit 107 and the voltage value between the first reference voltage VH and the second reference voltage VL are equally divided into 2 M ( Consider 2 M ⁇ 1) voltage values (the 2 M +1 voltage values will be referred to as threshold voltages).
  • the respective threshold voltages are described as VL, V1, V2,..., V2 M ⁇ 1, VH in FIG.
  • the threshold voltage corresponds to a digital value in which the lower N bits are 0.
  • the threshold voltage Vl is expressed by the following (formula 1).
  • l is an integer of 0 ⁇ l ⁇ 2 M.
  • the first AD converter 106 compares the magnitude relationship between the respective threshold voltages and the differential voltage V0. Then, the first AD converter 106 outputs the upper M-bit digital value corresponding to the largest threshold voltage not exceeding the differential voltage V 0 as the first digital signal 130.
  • the first AD converter 106 needs to have a function of calculating and outputting the residual voltage 131 corresponding to the lower bits.
  • the residual voltage 131 is a difference between the differential voltage V0 and the largest threshold voltage that does not exceed the differential voltage V0. This residual voltage 131 corresponds to the analog voltage of the lower N bits.
  • the largest threshold voltage that does not exceed the differential voltage Va is the threshold voltage V2 M ⁇ 1, and the residual voltage 131 is Vb.
  • FIG. 4 is a diagram showing a schematic configuration of the first AD converter 106.
  • the first AD converter 106 includes a calculation unit 151, a selection unit 152, an impedance converter 155, and a decoder / selection circuit 156.
  • Calculation unit 151 a first calculation unit 153-1, the second calculation unit 153-2, the third calculation unit 153-3, ..., the second M computing unit 153-2 M in total 2 M pieces of computing units 153. Note that these first when calculating unit 153-1 and the second calculation unit 153-2 not particularly distinguished second M computing units 153-2 M ⁇ is referred computation unit 153.
  • the first reference voltage VH and the second reference voltage VL generated by the reference voltage generation unit 107, the signal voltage Vsig, and the reset voltage Vres are input to each calculation unit 153.
  • Each calculation unit 153 corresponds to 2 M threshold voltages of VL, V1, V2,..., V2 M ⁇ 1 excluding VH. Each calculation unit 153 compares the corresponding threshold voltage with the difference voltage V0 and outputs a 1-bit comparison result signal b (b0, b1, b2,..., B2 M ⁇ 1). . Each calculation unit 153 calculates a residual voltage indicating a difference between the differential voltage V0 and a corresponding threshold voltage, and outputs an output voltage Vout (Vout (1) to Vout (2 M )) indicating the residual voltage. Is output. This output voltage Vout corresponds to the second residual voltage of the present invention.
  • the selection unit 152 selects any one of 2 M output voltages Vout and outputs the selected output voltage Vout to the impedance converter 155. This selection operation is performed by a selection signal sel described later.
  • the selection unit 152 includes 2 M switches 154 each corresponding to each calculation unit 153. Each switch 154 is connected between the output terminal of the corresponding calculation unit 153 (the terminal from which the output voltage Vout is output) and the input terminal of the impedance converter 155.
  • the impedance converter 155 outputs the output voltage Vout output by the selection unit 152 as a residual voltage 131 with low impedance.
  • the impedance converter 155 may amplify the output voltage Vout.
  • Decoder selection circuit 156 by decoding the comparison result signal b 2 M bits generated by 2 M pieces of computing units 153 to generate a first digital signal 130 of upper M bits. Further, the decoder / selection circuit 156 uses the 2 M- bit comparison result signal b to close (turn on) the switch 154 corresponding to the calculation unit 153 corresponding to the largest threshold voltage not exceeding the differential voltage V0, In addition, a 2 M- bit selection signal sel is generated to open the other switch 154 (off). Each bit of the 2 M- bit selection signal sel is input to the control terminal of the corresponding switch 154.
  • the selection unit 152 selects the output voltage Vout corresponding to the digital value of the first digital signal 130 converted by the decoder / selection circuit 156 from the 2 M output voltages Vout, and selects the selected output voltage Vout.
  • the residual voltage 131 is output.
  • the decoder / selection circuit 156 operates after obtaining the comparison result signal b generated by the calculation unit 153.
  • the decoder / selection circuit 156 can be composed of at most M stages of logic gates. In particular, in the case of a solid-state imaging device, M + N ⁇ 14, and M is practically about 5 at most. In this case, since the decoder / selection circuit 156 can be composed of at most five stages of logic gates, it operates at high speed.
  • the first AD converter 106 can complete the AD conversion processing of the upper bits and the output processing of the residual voltage 131 at the same time as the operation of the calculation unit 153 is almost completed, thereby realizing high-speed AD conversion. it can. Further, the first AD converter 106 can realize noise cancellation at the same time.
  • FIG. 5 is a diagram showing a detailed configuration of the first AD converter 106.
  • the first AD converter 106 further includes a switch 157 connected between the input terminal of the impedance converter 155 and the signal line to which the first reference voltage VH is applied.
  • the configuration of the first calculation unit 153-1 and the other calculation units 153 is different.
  • the first calculation unit 153-1 includes a residual voltage generation unit 160A and a comparator 161.
  • the second M computing unit 153-2 M from the second computing unit 153-2 includes a residual voltage generating unit 160B, and a comparator 161.
  • a total of 2 M residual voltage generators 160A and 160B generate 2 M output voltages Vout.
  • 2 M output voltages Vout correspond to each of 2 M digital values represented by the M-bit first digital signal 130.
  • Vout is expressed by (Expression 2) described later.
  • the 2 M comparators 161 correspond to the first comparison unit of the present invention, and each of the 2 M output voltages Vout and the first reference voltage VH are compared, thereby comparing the 2 M bit comparison result signal b. Is generated.
  • the residual voltage generator 160A corresponds to the first residual voltage generator of the present invention, and includes a first switch 164, a second switch 162, and a capacitor 163.
  • the capacitor 163 corresponds to the first capacitor of the present invention, and one end (right end) is connected to the node 165 and the other end (left end) is connected to the second switch 162.
  • the node 165 corresponds to an output terminal (a first terminal and a second terminal of the present invention) from which the output voltage Vout is output.
  • the node 165 includes a first switch 164, a first input terminal of the comparator 161, and a corresponding switch 154. Connected to.
  • the second switch 162 selects one of the signal voltage Vsig and the first reference voltage VH, and supplies the selected voltage to the left end of the capacitor 163.
  • C is an arbitrary positive real number
  • the capacitance value of the capacitor 163 is 2 MC .
  • the first switch 164 switches between a closed state (ON) in which the reset voltage Vres is supplied to the node 165 and an open state (OFF) in which the reset voltage Vres is not supplied to the node 165.
  • the residual voltage generator 160B corresponds to a second residual voltage generator of the present invention, and includes a first switch 164 (corresponding to a fifth switch of the present invention), a third switch 166, a fourth switch 168, Capacitors 167 and 169.
  • the capacitor 167 corresponds to the second capacitor of the present invention, and has one end (right end) connected to the node 165 and the other end (left end) connected to the third switch 166.
  • the capacitor 169 corresponds to the third capacitor of the present invention, and has one end (right end) connected to the node 165 and the other end (left end) connected to the fourth switch 168.
  • the third switch 166 selects any one of the signal voltage Vsig, the first reference voltage VH, and the second reference voltage VL, and supplies the selected voltage to the left end of the capacitor 167.
  • the fourth switch 168 selects one of the second reference voltage VL and the signal voltage Vsig and supplies the selected voltage to the left end of the capacitor 169.
  • the capacitance value of the capacitor 167 and 169 included from the second calculation unit 153-2 to the second M computing unit 153-2 M are different. Specifically, when k is an integer greater than or equal to 2 and less than or equal to 2 M , the capacitance value of the capacitor 167 included in the k th calculation unit 153 is (2 M ⁇ k + 1) C, and the capacitance value of the capacitor 169 is ( k-1) C.
  • the opening / closing and selection of the first switch 164, the second switch 162, the third switch 166, the fourth switch 168, and the switch 157 are controlled by a control signal generated by the timing control unit 112.
  • FIG. 6 is a timing chart showing the operation of the first AD converter 106.
  • FIG. 6 shows the time in the horizontal direction, and shows how time elapses from left to right.
  • the vertical direction of FIG. 6 is a voltage value.
  • the output voltages Vout (1) to Vout (4) (voltage of the node 165) of the first calculation unit to the fourth calculation unit and the residual voltage 131 (voltage of the input terminal of the impedance converter 155) are the same. ) And the value at each time. Further, the description here is a case where no offset voltage is applied to the reset voltage Vres. When applying, an offset voltage may be added to the first reference voltage VH applied to the second input terminal of each comparator 161.
  • the timing control unit 112 closes the first switch 164 and causes the second switch 162, the third switch 166, and the fourth switch 168 to select Vsig.
  • the output voltages Vout of the respective calculation units 153 are all Vres.
  • the voltage difference between both ends of the capacitors 163, 167, and 169 is Vres ⁇ Vsig.
  • the voltage difference between both ends of the capacitors 163, 167, and 169 becomes the above value.
  • the timing control unit 112 turns on the switches 157 and turns off all the switches 154.
  • the first reference voltage VH is supplied to the input terminal of the impedance converter 155. Therefore, the residual voltage 131 is VH.
  • the timing control unit 112 turns off the first switch 164 and causes the second switch 162 to select the first reference voltage VH, and the third switch 166 and the fourth switch 168. To select the second reference voltage VL.
  • the voltage difference between both ends of the capacitor 163 before and after the time t2 is constant. Therefore, since the voltage at the left end of the capacitor 163 changes by VH ⁇ Vsig due to the switching of the second switch 162, the voltage at the right end (node 165) of the capacitor 163, that is, the output output by the first calculation unit 153-1.
  • the voltage Vout (1) is expressed by the following (formula 2).
  • both the leftmost potentials are the second reference voltage VL. That is, the voltage difference between both ends of the capacitor 167 and the capacitor 169 is constant, and the left end voltage is changed by VL ⁇ Vsig. Therefore, the right end of the voltage or the second computation unit 153-2 ⁇ output voltage Vout output by the second M computing unit 153-2 M of capacitor 167 and capacitor 169 (k) (k is a 2 ⁇ k ⁇ 2 M (Integer) is represented by the following (formula 3).
  • the timing control unit 112 causes the third switch 166 to select the first reference voltage VH. That is, after time t3, the timing controller 112 turns off the first switch 164, causes the second switch 162 and the third switch 166 to select the first reference voltage, and causes the fourth switch 168 to apply the second reference voltage VL. Let them choose.
  • the output voltage Vout (k) of the k-th calculation unit 153-k is as follows.
  • the output voltage Vout (2) of the second calculation unit 153-2 is Vres ⁇ Vsig + V3
  • the output voltage Vout (3) of the third calculation unit 153-3 is Vres ⁇ Vsig + V2.
  • the output voltage Vout (4) of the fourth calculation unit 153-4 is Vres ⁇ Vsig + V1.
  • the output voltages Vout (1) and Vout (2) are larger than the first reference voltage VH, and the output voltages Vout (3) and Vout (4) are smaller than the first reference voltage VH. Therefore, b (1) is LO (low level), b (2) is LO, b (3) is HI (high level), and b (4) is HI.
  • Vd when the difference between the differential voltage V0 and the jth threshold voltage is Vd, Vd can be expressed by the following equation. J is an integer.
  • the decoder / selection circuit 156 decodes the 2 M- bit comparison result signal b to output the first digital signal 130 of higher M bits.
  • the first digital signal 130 is 10 in binary notation.
  • the decoder / selection circuit 156 outputs the selection signal sel using the 2 M- bit comparison result signal b, and outputs the output voltage Vout (j) of the j-th calculation unit 153-j to the input terminal of the impedance converter 155. Apply to.
  • Vout (j) is expressed by the following (Expression 11).
  • the first AD converter 106 outputs a voltage corresponding to (Vd + VH) as the residual voltage 131 after time t4.
  • the residual voltage 131 is Vres ⁇ Vsig + V3.
  • the first AD converter 106 outputs the first reference voltage VH as the residual voltage 131 before time t4. Therefore, the second column AD conversion unit 124 calculates these voltage differences. From (Equation 10) and (Equation 11), this voltage difference is Vd. The second column AD converter 124 can generate a second digital signal of lower N bits by AD converting this Vd.
  • FIG. 7 is a circuit diagram showing a configuration example of the comparator 110.
  • the comparator 110 includes a differential amplifier circuit 170, capacitors 171 and 172, and a switch 173.
  • the capacitor 171 is connected between the first input terminal of the comparator 110 and one input terminal of the differential amplifier circuit 170 (the gate of one differential transistor 174).
  • the capacitor 172 is connected between the second input terminal of the comparator 110 and the other input terminal of the differential amplifier circuit 170 (the gate of the other differential transistor 174).
  • the switch 173 shorts or opens the two input terminals of the differential amplifier circuit 170.
  • the opening and closing of the switch 173 is controlled by the timing control unit 112.
  • the timing control unit 112 closes the switch 173 and outputs the second input during the period (before time t4 in FIG. 6) in which the residual voltage 131 is input to the first input terminal and is the first reference voltage VH.
  • the ramp voltage RAMP generated by the reference signal generator 113 input to the terminal is made constant.
  • the timing control unit 112 opens the switch 173 and starts increasing the RAMP voltage at the timing (time t4) when the residual voltage 131 becomes Vd + VH. Further, the timing control unit 112 starts increasing the counter value CNT simultaneously with these.
  • the logic of the comparison result signal 133 changes at the timing when the potentials of the two input terminals of the differential amplifier circuit 170 coincide.
  • the counter latch unit 111 stores the counter value CNT at the timing when the logic of the comparison result signal 133 changes, and the lower N-bit AD conversion ends.
  • FIG. 8 is a timing chart of the AD conversion operation by the solid-state imaging device 100.
  • FIG. 8 shows the time in the horizontal direction, and shows how time elapses from left to right.
  • the vertical direction is a voltage value.
  • the pixel 102 performs an imaging operation, and outputs a reset voltage Vres to the vertical signal line 104 in a period from time t11 to time t13. Accordingly, the reset voltage holding unit 105 holds the reset voltage Vres at time t12.
  • the pixel 102 outputs the signal voltage Vsig to the vertical signal line 104.
  • the signal voltage Vsig and the reset voltage Vres are input to the first AD converter 106.
  • each calculation unit 153 performs the operation shown in FIG. Therefore, at time t15 (corresponding to time t3 in FIG. 6), each output voltage Vout has a value represented by the above (Equation 9).
  • the residual voltage 131 becomes the first reference voltage VH, and at time t16, the residual voltage 131 becomes (Vd + VH) (Vres ⁇ Vsig + Vx in FIG. 8). Are described in order.
  • the reference signal generator 113 starts increasing the voltage value of the ramp voltage RAMP.
  • the timing control unit 112 starts counting up the counter value CNT.
  • the comparator 110 inverts the logic of the comparison result signal 133.
  • the counter latch unit 111 stores the counter value CNT at time t19.
  • the column scanning circuit 109 sequentially transfers the M + N-bit third digital signal of each column to the outside of the solid-state imaging device 100. Thus, the operation for one line is completed.
  • the AD conversion operation shown here is performed during the horizontal scanning period.
  • the solid-state imaging device 100 may perform the AD conversion operation in the horizontal blanking period and the horizontal scanning period of other rows.
  • a circuit or means for performing an AD conversion operation in parallel with the operation of another row may be prepared.
  • the solid-state imaging device 100 according to Embodiment 1 of the present invention can further speed up the AD conversion processing as compared with the conventional solid-state imaging device 600 shown in FIG.
  • an ADC circuit (2-bit ADC 603) and a circuit that outputs an analog residual exist independently. Further, after the AD conversion operation of the ADC circuit is completed, DA conversion is performed by operating a switch connected to the capacitor. Next, the difference between the signal voltage and the reset voltage is calculated, and an analog residual (residual voltage) is generated by subtracting the analog voltage obtained by DA conversion from the difference.
  • the conventional AD converter 601 DA-converts the AD converted upper bit digital signal, and calculates the analog residual by subtracting the DA-converted analog voltage from the DA-converted signal voltage.
  • the AD conversion time may be completed in a short time. Since the conversion time increases, there is a concern about speed reduction.
  • the conventional AD converter 601 shown in FIG. 16 has two blocks, an ADC circuit and an analog residual output circuit, and there is a concern that the circuit scale will increase. However, it is assumed that this circuit is arranged corresponding to each column of the imaging unit, and it is expected that it is difficult to arrange in terms of area.
  • 2 M residual voltage generators 160 (160A and 160B) generate 2 M residual voltages (output voltage Vout), AD conversion processing is performed using the generated residual voltage.
  • AD conversion processing is performed using the generated residual voltage.
  • the first AD converter 121 calculates the differential voltage V0 at high speed using the charging / discharging of the capacitor, and 2 M threshold voltages and the difference By simultaneously comparing the voltages with 2 M comparators 161, high-speed AD conversion processing can be realized.
  • the second AD converter 122 performs an AD conversion process with excellent linearity using the ramp voltage RAMP.
  • the solid-state imaging device 100 according to Embodiment 1 of the present invention does not require high accuracy for the upper M-bit AD conversion.
  • a method with excellent linearity but slow speed is used.
  • the solid-state imaging device 100 according to the present invention can achieve both the trade-off relationship between improving the conversion speed and ensuring the linearity.
  • FIG. 9 is a diagram showing a configuration of a solid-state imaging device 100A according to Embodiment 2 of the present invention.
  • symbol is attached
  • the solid-state imaging device 100A according to Embodiment 2 of the present invention differs from the solid-state imaging device 100 according to Embodiment 1 described above in the configuration of the first AD converter 121A.
  • differences from the solid-state imaging device 100 according to Embodiment 1 will be mainly described, and overlapping descriptions will be omitted.
  • the first AD conversion unit 121A performs a first AD conversion process.
  • the first AD converter 121A includes a reference voltage generator 107 and a plurality of first column AD converters 123A, one for each Q column.
  • Each first column AD conversion unit 123A performs a first AD conversion process on the reset voltage Vres and the signal voltage Vsig generated by the pixels 102 arranged in the corresponding Q column.
  • Each first column AD conversion unit 123A includes Q reset voltage holding units 105, Q signal voltage holding units 301, a first selection circuit 302, a second selection circuit 303, and a first AD converter 106. , Q first storage units 108, and Q residual voltage holding units 304.
  • Each reset voltage holding unit 105 is provided for each column, is connected to the vertical signal line 104 of the corresponding column, and holds the reset voltage Vres output by the pixel 102 of the corresponding column.
  • Each signal voltage holding unit 301 is provided for each column, is connected to the vertical signal line 104 of the corresponding column, and holds the signal voltage Vsig output by the pixel 102 of the corresponding column.
  • the first selection circuit 302 selects one of the Q columns, the reset voltage Vres held in the reset voltage holding unit 105 provided in the selected column, and the signal voltage holding unit 301 provided in the selected column. And the signal voltage Vsig held at the first AD converter 106.
  • the first AD converter 106 receives the reset voltage Vres and the signal voltage Vsig output from the first selection circuit 302, and the first reference voltage VH and the second reference voltage VL generated by the reference voltage generation unit 107.
  • the first AD converter 106 performs a first AD conversion process on the reset voltage Vres and the signal voltage Vsig output from the first selection circuit 302.
  • Each first storage unit 108 is provided for each column, and holds the first digital signal 130 of the corresponding column generated by the first AD converter 106.
  • Each residual voltage holding unit 304 is provided for each column, and holds the residual voltage 131 of the corresponding column generated by the first AD converter 106.
  • the second selection circuit 303 selects one of the Q columns, and outputs the first digital signal 130 generated by the first AD converter 106 to the first storage unit 108 provided in the selected column.
  • the residual voltage 131 generated by the first AD converter 106 is output to the residual voltage holding unit 304 provided in the column.
  • the second column AD conversion unit 124 AD converts the residual voltage 131 held in the residual voltage holding unit 304 provided in the corresponding column into an N-bit second digital signal.
  • each second column AD converter 124 performs a second AD conversion process on the residual voltage 131 output by the second selection circuit 303 provided in the corresponding Q column.
  • timing control unit 112 causes the plurality of first column AD conversion units 123A to select each of the Q columns by causing the plurality of first selection circuits 302 and the plurality of second selection circuits 303 to sequentially select the columns of the Q column.
  • the residual voltage 131 and the first digital signal 130 corresponding to the columns are sequentially generated.
  • the first AD converters 106 are arranged every Q columns. Therefore, the number of first AD converters 106 that the solid-state imaging device 100A requires is 1 / Q compared to the solid-state imaging device 100 according to Embodiment 1 of the present invention. Thereby, the solid-state imaging device 100A can reduce the circuit area. Further, in the solid-state imaging device 100A, the horizontal width of the area where one first AD converter 106 can be arranged is an area corresponding to Q columns, so that circuit arrangement can be facilitated.
  • FIG. 10 is a timing chart of the AD conversion operation by the solid-state imaging device 100A according to Embodiment 2 of the present invention.
  • FIG. 10 shows time in the horizontal direction, and shows how time passes from left to right.
  • the vertical direction is a voltage value.
  • first selection circuit 302 and the second selection circuit 303 sequentially select from the first column to the Qth column. Note that the order in which the columns are selected may be other orders.
  • each pixel 102 arranged in a row selected by the row scanning circuit 103 performs an imaging operation in the horizontal blanking period, outputs the obtained reset voltage Vres to the reset voltage holding unit 105, and obtains the obtained signal.
  • the voltage Vsig is output to the signal voltage holding unit 301 (not described so far in FIG. 10).
  • the first selection circuit 302 selects the leftmost first column among the Q columns, and holds the reset voltage holding unit 105 and the signal voltage holding arranged in the first column.
  • the output terminal of the unit 301 is connected to the first AD converter 106.
  • the second selection circuit 303 connects the output terminal of the first AD converter 106 to which the residual voltage 131 is output to the input terminal of the comparator 110 corresponding to the first column.
  • the first AD converter 106 performs AD conversion by the same operation as that of the first embodiment of the present invention. That is, the first AD converter 106 outputs the residual voltage 131 to the first input terminal of the comparator 110 in the first column via the second selection circuit 303. Specifically, as described in the first embodiment, the first reference voltage VH and then Vd + VH are output as the residual voltage 131.
  • the timing control unit 112 closes the switch 173 during the period when VH is input, and opens the switch 173 at the timing when Vd + VH is input.
  • the residual voltage 131 (Vd + VH) is held by the residual voltage holding unit 304.
  • the first AD converter 106 outputs the first M-bit first digital signal 130 to the first storage unit 108 in the first column via the second selection circuit 303.
  • the first selection circuit 302 and the second selection circuit 303 select the second column on the right of the first column in the period from time t22 to time t23, and the first column AD conversion unit 123A operates in the same manner. I do.
  • the first selection circuit 302 and the second selection circuit 303 select the third column in the period from time t23 to time t24, and the first column AD conversion unit 123A performs the same operation. Thereafter, in the period from time t24 to time t25, the same operation is repeated from the fourth column to the Q-1th column. Finally, in the period from time t25 to time t26, the first selection circuit 302 and the second selection circuit 303 select the Qth column, and the first column AD conversion unit 123A performs the same operation. This operation is simultaneously performed in all the first row AD conversion units 123A mounted on the solid-state imaging device 100A.
  • the second column AD conversion units 124 of all the columns of the solid-state imaging device 100A simultaneously perform AD conversion processing of lower N bits.
  • the timing control unit 112 causes the plurality of first column AD conversion units 123A to generate the residual voltages 131 corresponding to all the columns included in the Q column during the period from time t21 to time t26. After time t27, the second AD conversion units 124 are caused to simultaneously perform the second AD conversion processing.
  • the column scanning circuit 109 sequentially transfers the M + N-bit third digital signal of each column to the outside of the solid-state imaging device 100A. Thus, the operation for one line is completed.
  • the AD conversion operation shown here is performed during the horizontal scanning period.
  • the solid-state imaging device 100A may perform the AD conversion operation in the horizontal blanking period and the horizontal scanning period of other rows.
  • a circuit or means for performing an AD conversion operation in parallel with the operation of another row may be prepared.
  • the time required for all AD conversion processing is a value obtained by adding the time required for AD conversion processing for the lower N bits to Q times the time required for AD conversion processing for the upper M bits.
  • This is inferior to the solid-state imaging device 100 according to Embodiment 1 of the present invention, but is faster than the solid-state imaging device 700 described in Patent Document 3 that shares several AD converters.
  • the first AD converter 106 according to the present invention is high-speed as described in the first embodiment, the entire conversion time can be reduced by operating the AD conversion processing of lower bits, which is relatively low-speed, for all columns simultaneously. This is because it can be shortened.
  • Embodiment 3 of the present invention a modification of the first AD converter 106 according to Embodiment 1 and Embodiment 2 described above will be described. Other elements are the same as those in the first embodiment or the second embodiment, and a description thereof will be omitted.
  • FIG. 11 is a diagram showing a configuration of the first AD converter 106A of the solid-state imaging device according to Embodiment 3 of the present invention. Note that the same elements as those in FIG. 5 are denoted by the same reference numerals, and redundant description is omitted.
  • the capacitance value of the capacitor may be different from the following description.
  • the capacitance value there may be a case where a correct AD conversion result cannot be obtained, but if a means for calibrating it is prepared separately, it is possible to correctly perform AD conversion as a result.
  • the configuration of the calculation unit 153A is different from the calculation unit 153 described above.
  • the first calculation unit 153A-1 includes a residual voltage generation unit 160C and a waveform shaping circuit 313.
  • the second calculation unit 153A-2 to the second M calculation unit 153A- 2M include a residual voltage generation unit 160D and a waveform shaping circuit 313.
  • the residual voltage generator 160C includes an operational amplifier 310, a capacitor 311 and a switch 312 in addition to the configuration of the residual voltage generator 160A shown in FIG.
  • the residual voltage generator 160D includes an operational amplifier 310, a capacitor 311 and a switch 312 in addition to the configuration of the residual voltage generator 160B shown in FIG.
  • the operational amplifier 310, the capacitor 311, and the switch 312 include an output terminal (corresponding to a first terminal and a second terminal of the present invention) from which an output voltage Vout is output, and a node 165 (a first node and a second node of the present invention). Equivalent).
  • the inverting input terminal of the operational amplifier 310 is connected to the node 165.
  • a reset voltage Vres is applied to the non-inverting input terminal of the operational amplifier 310.
  • the capacitor 311 is connected between the inverting input terminal and the output terminal of the operational amplifier 310.
  • the capacitance of the capacitor 311 is 2 MC .
  • the switch 312 is connected between the inverting input terminal and the output terminal of the operational amplifier 310 in parallel with the capacitor 311.
  • the operational amplifier 310 outputs the output voltage Vout to the output terminal. This output voltage Vout is input to the waveform shaping circuit 313 and the switch 154.
  • the waveform shaping circuit 313 digitally determines 0/1 based on the magnitude relationship between the input output voltage Vout and the first reference voltage VH. That is, the waveform shaping circuit 313 corresponds to the comparator 161 shown in FIG. 5, and generates the comparison result signal b by comparing the residual voltage (output voltage Vout) with the first reference voltage VH.
  • FIG. 12 is a timing chart showing the operation of the first AD converter 106A.
  • FIG. 12 shows the time in the horizontal direction, and shows how time elapses from left to right.
  • the vertical direction in FIG. 12 is a voltage value.
  • FIG. 12 shows values of the output voltages Vout (1) to Vout (4) of the first calculation unit to the fourth calculation unit and the residual voltage 131 at each time.
  • the description here is a case where no offset voltage is applied to the reset voltage Vres.
  • the threshold value used in the waveform shaping circuit 313 may be set to a value obtained by adding an offset voltage to the first reference voltage VH.
  • the gain of all the operational amplifiers 310 is assumed to be infinite. There is no infinite operational amplifier, but usually the operational amplifier has a large gain so that it can be considered infinite. Alternatively, an operational amplifier having a sufficiently large gain can be manufactured.
  • the timing control unit 112 turns on the first switch 164 and the switch 312 to cause the second switch 162 and the third switch 166 to select VH and set the fourth switch 168 to VL. Let them choose. At this time, the voltages at all terminals of all the operational amplifiers 310 become Vres.
  • the timing control unit 112 turns on the switch 154 and turns off the switch 157.
  • the first reference voltage VH is supplied to the input terminal of the impedance converter 155. Therefore, the residual voltage 131 is VH.
  • the timing control unit 112 turns off the first switch 164 and the switch 312 and causes the second switch 162 to select Vsig and causes the third switch 166 and the fourth switch 168 to perform VL. To select. At this time, the voltage at the left end of the capacitor 163 changes by Vsig ⁇ VH due to the switching of the second switch 162.
  • This change is amplified by the operational amplifier 310.
  • the operational amplifier 310 receives negative feedback due to the capacitor 311 connected between the output terminal of the operational amplifier 310 and the inverting input terminal of the operational amplifier 310, and the output voltage Vout (1) becomes a finite value.
  • the voltage at the inverting input terminal of the operational amplifier 310 is the voltage at the non-inverting input terminal (that is, Vres).
  • the voltage at the right end of the capacitor 163 (the voltage at the node 165) does not change.
  • the voltage difference between both ends of the capacitor 163 increases by (Vsig ⁇ VH), so that the charge Q A accumulated in the capacitor 163 increases as shown by the following (formula 12), with the left end charge being positive. .
  • the output voltage Vout (1) of the operational amplifier 310 of the first calculation unit 153A-1 is expressed by the following (formula 13).
  • the timing control unit 112 causes the third switch 166 and the fourth switch 168 to select Vsig.
  • the timing control unit 112 turns off the first switch 164 and the switch 312 after time t33, causes the second switch 162 to select Vsig, and causes the third switch 166 and fourth switch 168 to select Vsig.
  • Vout (k) has the same value as the above (formula 8).
  • (Expression 13) is the same as (Expression 2). Therefore, after time t33, the upper M-bit AD conversion process can be performed by operating the first AD converter 106A in the same manner as after time t3 shown in FIG. The subsequent processing is the same as in the first embodiment.
  • Embodiment 4 of the present invention a modification of the driving method of the solid-state imaging device 100A according to Embodiment 2 described above will be described.
  • FIG. 13 is a timing chart of the AD conversion operation by the solid-state imaging device 100A according to Embodiment 4 of the present invention. Note that the configuration of the solid-state imaging device 100A is the same as that of the second embodiment. Hereinafter, an example in which the solid-state imaging device 100A includes the first AD converter 106 described in the first embodiment will be described. However, the solid-state imaging device 100A includes the first AD converter 106A described in the third embodiment. You may prepare.
  • each pixel 102 arranged in a row selected by the row scanning circuit 103 performs an imaging operation in the horizontal blanking period, outputs the obtained reset voltage Vres to the reset voltage holding unit 105, and obtains the obtained signal.
  • the voltage Vsig is output to the signal voltage holding unit 301.
  • the first selection circuit 302 and the second selection circuit 303 select the first column.
  • the first AD converter 106 performs upper M-bit AD conversion processing on the first column, and outputs the residual voltage 131 to the comparator.
  • the first selection circuit 302 and the second selection circuit 303 select the second column.
  • the first AD converter 106 performs upper M-bit AD conversion processing on the second column.
  • the timing control unit 112 starts counting up the counter value CNT at time t42.
  • the ramp voltage RAMP input to the reference signal generator 113 and the comparator 110 in the first column starts to increase.
  • the counter latch unit 111 stores the counter value CNT when the voltages at both input terminals of the comparator 110 match.
  • the lower N-bit AD conversion processing in the first column and the upper M-bit AD conversion processing in the second column are performed simultaneously.
  • the timing control unit 112 causes the plurality of first column AD conversion units 123A to generate the residual voltage 131 corresponding to the first column included in the Q column, and at the same time, includes the first column included in the Q column.
  • a plurality of second column AD conversion units 124 provided in different second columns are caused to perform the second AD conversion process on the residual voltage 131 of the corresponding column already generated by the first column AD conversion unit 123A. .
  • the AD conversion processing of the lower N bits in the second column is performed simultaneously with the AD conversion processing of the upper M bits in the third column.
  • the processing up to the lower N-bit AD conversion processing of the P-th column is performed (P is an integer of 1 or more and less than Q).
  • the solid-state imaging device 100A continues to perform AD conversion for the (P + 1) th column.
  • the column scanning circuit 109 starts from the first column after the AD conversion processing for all bits is completed. Transfers digital values up to P column to the outside.
  • AD conversion processing of the upper M bits of the Qth column is performed, and in the period of time t47 to time t48, AD conversion processing of the lower N bits of the Qth column is performed.
  • the column scanning circuit 109 transfers the digital values of the P + 1th column to the Qth column to the outside.
  • the timing control unit 112 corresponds to the first column group (first column to Pth column) included in the Q column in the plurality of first column AD conversion units 123A in the period from time t41 to time t45. Residual voltage 131 and first digital signal 130 are sequentially generated, and a plurality of second column AD converters 124 provided in the first column group are supplied to residual voltage 131 corresponding to the first column group. Then, the second digital signal is sequentially generated by performing the second AD conversion process.
  • the timing control unit 112 during the period from time t45 to time t48, includes a second column group (P + 1st column to Qth column) included in the Q column in the plurality of first column AD conversion units 123A.
  • the residual voltage 131 and the first digital signal 130 corresponding to the second column group are sequentially generated, and a plurality of second column AD conversion units 124 provided in the second column group are also provided with the remaining voltage corresponding to the second column group.
  • the second AD conversion process is performed on the difference voltage 131, and at the same time, the column scanning circuit 109 sequentially transfers the third digital signal corresponding to the first column group to the outside.
  • each unit operates in parallel, thereby reducing the number of operations waiting for other processing, thereby enabling a high-speed AD conversion operation as a whole. Become.
  • timing charts are naturally obtained when other columns perform AD conversion processing of upper M bits and simultaneously perform lower N bits of AD conversion processing in other columns. Conceivable. Furthermore, another timing chart can be considered if a digital value is transferred to the outside simultaneously with performing some AD conversion operation in another column.
  • the solid-state imaging device 100A may divide a digital signal that has undergone all-bit AD conversion processing into three or more divisions and output it to the outside.
  • the solid-state imaging device 100A may simultaneously perform AD conversion processing of lower M bits of another plurality of columns at the same time as performing AD conversion processing of upper M bits of a plurality of columns sequentially. For example, after the AD conversion processing of the upper M bits from the first column to the Pth column is sequentially performed, the AD conversion processing of the lower N bits from the first column to the Pth column is simultaneously performed, and then the first column to The third digital signal up to the P-th column may be transferred to the outside. In this case, at least one of the lower N-bit AD conversion processing and transfer processing and the upper M-bit AD conversion processing from the (P + 1) -th column to the Q-th column may be performed simultaneously.
  • each processing unit included in the solid-state imaging devices 100 and 100A according to the first to fourth embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • solid-state imaging devices 100 and 100A may be realized by a processor such as a CPU executing a program.
  • the present invention may be the above program or a recording medium on which the above program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • the present invention may be realized as an AD converter that is a part or all of the AD conversion circuit 120 included in the solid-state imaging device 100 or 100A.
  • the numbers used above are all exemplified for specifically describing the present invention, and the present invention is not limited to the illustrated numbers.
  • the logic levels represented by high / low or the switching states represented by on / off are illustrative for the purpose of illustrating the present invention, and different combinations of the illustrated logic levels or switching states. Therefore, it is possible to obtain an equivalent result.
  • n-type and p-type transistors and the like are illustrated to specifically describe the present invention, and it is possible to obtain equivalent results by inverting them.
  • the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
  • MOS transistor an example using a MOS transistor is shown, but another transistor such as a bipolar transistor may be used.
  • the present invention can be applied to a solid-state imaging device. Further, the present invention can be used for a digital still camera, a digital video camera, a surveillance camera, and the like provided with a solid-state imaging device.
  • Solid-state imaging device 101 Imaging unit 102, 501 Pixel 103 Row scanning circuit 104 Vertical signal line 105 Reset voltage holding unit 106, 106A First AD converter 107 Reference voltage generation unit 108 First storage unit 109 Column scanning circuit 110, 503 Comparator 111 Counter latch unit 112 Timing control unit 113 Reference signal generation unit 120 AD conversion circuit 121, 121A First AD conversion unit 122 Second AD conversion unit 123, 123A First column AD conversion unit 124 Second column AD conversion unit 130 First digital signal 131 Residual voltage 133 Comparison result signal 151 Calculation unit 152 Selection unit 153, 153A Calculation unit 154, 157, 173, 312 Switch 155 Impedance converter 156 Decoder / selection circuit 160, 60A, 160B, 160C, 160D Residual voltage generator 161 Comparator 162 Second switch 163, 167, 169, 171, 172, 311 Capacitor 164 First switch 165 Node 166 Third switch 168 Fourth switch 170 Differential amplifier circuit

Abstract

Disclosed is a solid state image capture unit (100), comprising a first A/D conversion unit (121), which converts a differential voltage (V0) to a first digital signal (130) of M bits and generates a residual voltage (131) that signifies the difference between the differential voltage (V0) and the analog voltage corresponding to the first digital signal (130), and a second A/D conversion unit (122) that converts the residual voltage (131) to a second digital signal of N bits. The first A/D conversion unit (121) further comprises residual voltage generating units (160A and 160B) that generate 2M output voltages (Vout) that signify the difference between the differential voltage (V0) and each of 2M threshold voltages, a comparison unit (161) and a decoder/selection circuit (156), which employ the 2M output voltages (Vout) to generate the first digital signal (130), and a selection unit (152) that outputs the output voltages (Vout) that correspond to the first digital signal (130) as the residual voltage (131).

Description

固体撮像装置、AD変換方法及びAD変換器Solid-state imaging device, AD conversion method, and AD converter
 本発明は固体撮像装置、AD変換方法及びAD変換器に関し、特に、AD変換部を備える固体撮像装置に関する。 The present invention relates to a solid-state imaging device, an AD conversion method, and an AD converter, and more particularly, to a solid-state imaging device including an AD conversion unit.
 近年、画像を電子的に撮像及び記録するために、固体撮像装置を用いることが常識的になってきている。固体撮像装置は、一般的にイメージセンサと呼ばれ、CCD(Charge Coupled Device)型センサ(あるいは単にCCDと呼ばれる)と、MOS(Metal Oxide Semiconductor)センサ及びCMOS(Complementary Metal Oxide Semiconductor)センサ(以下これらを単にCMOSセンサと呼ぶ)との2種類に大別される。 In recent years, it has become common sense to use a solid-state imaging device for electronically capturing and recording images. Solid-state imaging devices are generally called image sensors, CCD (Charge Coupled Device) type sensors (or simply called CCDs), MOS (Metal Oxide Semiconductor) sensors, and CMOS (Complementary Metal Oxide Sensors). Are simply referred to as CMOS sensors).
 これら固体撮像装置は、入射する光の強度に応じた電気信号を出力する微小な部分(これは画素と呼ばれる)が多数2次元的に配列されている。また、固体撮像装置は、これらの画素から出力される信号を各行及び各列で走査することにより、信号の順番を決定し、決定した順番で当該信号を、当該固体撮像装置の外部にシリアルに転送する手段を有している。 In these solid-state imaging devices, a large number of minute portions (which are called pixels) that output electrical signals corresponding to the intensity of incident light are two-dimensionally arranged. In addition, the solid-state imaging device determines the order of the signals by scanning the signals output from these pixels in each row and each column, and serially outputs the signals in the determined order to the outside of the solid-state imaging device. It has means to transfer.
 画素から直接出力される信号は当然のことながらアナログ信号である。しかし、固体撮像装置が応用されるデジタルスチルカメラなどの撮像装置では、画像信号をデジタルデータとして出力されることが要求される。よって、このような撮像装置は、アナログ信号をデジタル信号に変換(AD変換)する必要がある。 The signal directly output from the pixel is naturally an analog signal. However, an imaging device such as a digital still camera to which a solid-state imaging device is applied is required to output an image signal as digital data. Therefore, such an imaging apparatus needs to convert an analog signal into a digital signal (AD conversion).
 従来の撮像装置では、固体撮像装置がアナログ信号を外部に出力し、このアナログ信号を外部の回路によりAD変換する場合が多かった。この場合、外部でアナログ信号にノイズが重畳されたり、固体撮像装置と外部装置との結合方法によりアナログ信号が変化したりする問題がある。そこで、最近では固体撮像装置内にAD変換器を内蔵し、外部にはデジタル信号を出力することが行われ始めている。 In conventional imaging devices, the solid-state imaging device often outputs an analog signal to the outside, and the analog signal is AD converted by an external circuit in many cases. In this case, there is a problem that noise is superimposed on the analog signal outside, or the analog signal changes depending on the method of coupling the solid-state imaging device and the external device. Therefore, recently, it has begun to incorporate an AD converter in a solid-state imaging device and output a digital signal to the outside.
 AD変換器を固体撮像装置内に内蔵することは、CCDでは一般的に困難である。その理由は2つある。 It is generally difficult for a CCD to incorporate an AD converter in a solid-state imaging device. There are two reasons for this.
 1つは、AD変換器を作製するためには、ある一定規模の回路が必要となるので、現実的にはある程度の微細配線ルールを用いたCMOSが必須である。しかし、CCDの作製には一般的にCMOSプロセスではない特殊工程を用いて作製される。よって、CCDにAD変換器を搭載することが困難である。 First, in order to manufacture an AD converter, a circuit of a certain scale is required, so in reality, a CMOS using a certain amount of fine wiring rules is essential. However, a CCD is generally manufactured using a special process that is not a CMOS process. Therefore, it is difficult to mount an AD converter on the CCD.
 もう1つの理由は、CCDでは画素からのアナログ信号(光強度に応じた電荷)をバケツリレー的に順番に出力アンプに転送するため、AD変換器は出力アンプの後ろに配置しなければならない。よって、AD変換器は、各画素からの信号の転送速度に応じて、高速にAD変換処理を行う必要がある。しかしながら、このような高速なAD変換処理を実現することは困難であるので、CCDにAD変換器を搭載することは困難である。 Another reason is that an analog-to-digital signal (charge corresponding to light intensity) from a pixel is sequentially transferred to the output amplifier in a bucket relay manner in the CCD, so the AD converter must be placed behind the output amplifier. Therefore, the AD converter needs to perform AD conversion processing at high speed according to the transfer rate of the signal from each pixel. However, since it is difficult to realize such high-speed AD conversion processing, it is difficult to mount an AD converter on the CCD.
 それに対し、CMOSセンサでは、CMOSプロセスが使用されているため、ある程度の規模の回路を作製することは問題なく可能である。また、CMOSセンサでは、信号の出力経路は、CCDにおけるバケツリレーのような固定的ではないため、画素から出力端子までのどの経路にAD変換器を配置してもよい。従って、現実的にはCCDではAD変換器は内蔵されず、内蔵されるのはCMOSセンサだけである。 On the other hand, since a CMOS process is used in the CMOS sensor, it is possible to produce a circuit of a certain scale without any problem. Further, in the CMOS sensor, the signal output path is not fixed as in the bucket relay in the CCD, and therefore the AD converter may be arranged in any path from the pixel to the output terminal. Therefore, in reality, an A / D converter is not built in a CCD, and only a CMOS sensor is built in.
 このようなAD変換器を内蔵した固体撮像装置の一例が特許文献1に開示されている。図14は、特許文献1記載の固体撮像装置500の構成を示す図である。 An example of a solid-state imaging device incorporating such an AD converter is disclosed in Patent Document 1. FIG. 14 is a diagram illustrating a configuration of a solid-state imaging device 500 described in Patent Document 1.
 特許文献1記載の固体撮像装置500は、図14のように、2次元的に配列した画素501と、各列に対応して配列したAD変換器502(当文献では「カラムAD回路」と記載)とを備える。各AD変換器502は比較器503を含んでいる。 As shown in FIG. 14, the solid-state imaging device 500 described in Patent Document 1 includes pixels 501 arranged in a two-dimensional manner, and AD converters 502 arranged corresponding to the columns (in this document, “column AD circuit”). ). Each AD converter 502 includes a comparator 503.
 この比較器503の一方の入力端子に各列の画素501からの信号が入力され、比較器503のもう一方の入力端子にランプ電圧RAMP(時間とともに一定速度で変化する電圧)が入力される。そして、比較器503に入力されるランプ電圧RAMPをDA変換器504(DAC)により1クロック毎に微小な階段状に変化させるとともに、画素501からの電圧にこれが一致するかどうかを比較器503により判定することで、AD変換器502はデジタル値を得ることができる。 The signal from the pixels 501 in each column is input to one input terminal of the comparator 503, and the ramp voltage RAMP (voltage that changes at a constant speed with time) is input to the other input terminal of the comparator 503. Then, the ramp voltage RAMP input to the comparator 503 is changed by a DA converter 504 (DAC) in a minute step shape every clock, and whether or not this voltage matches the voltage from the pixel 501 is determined by the comparator 503. By determining, the AD converter 502 can obtain a digital value.
 また、CMOSセンサの場合、各画素独立に設けられているソースフォロワ用トランジスタの閾値電圧(一般にVtと呼ばれる)のばらつきなどで生じるノイズが信号電圧に重畳される。よって、このノイズを低減するためのノイズキャンセル機能がCMOSセンサには必要になる。この機能を実現するために、画素からの信号電圧から、画素をリセットしたときの画素からの出力電圧(以下単にリセット電圧と呼ぶ)を差し引くことが一般に行われる。このAD変換器502では、リセット電圧に比例したカウント数だけダウンカウントしたあと、信号電圧に比例したカウント数だけアップカウントすることで、ノイズキャンセル機能を実現している。 In the case of a CMOS sensor, noise generated due to variations in threshold voltage (generally referred to as Vt) of a source follower transistor provided independently for each pixel is superimposed on the signal voltage. Therefore, the CMOS sensor needs a noise canceling function for reducing this noise. In order to realize this function, it is generally performed to subtract an output voltage (hereinafter simply referred to as a reset voltage) from a pixel when the pixel is reset from a signal voltage from the pixel. The AD converter 502 implements a noise canceling function by down-counting by the count number proportional to the reset voltage and then counting up by the count number proportional to the signal voltage.
 しかしながら、特許文献1の方法では、高い線形性を持ったAD変換を行うことができるが、AD変換器502の分解能に応じたクロック数だけ時間がかかる。例えば10ビットのAD変換処理を行いたい場合、取りえるデジタル値は1024個ある。よって、それに応じてランプ電圧RAMPを1024回変化させる(または1024クロック以上の時間、ランプ電圧を連続的に変化させる)必要があり、AD変換処理に1024クロック必要である。なお、実際にはノイズキャンセルのためさらに時間が必要である。 However, although the method of Patent Document 1 can perform AD conversion with high linearity, it takes time by the number of clocks corresponding to the resolution of the AD converter 502. For example, when 10-bit AD conversion processing is desired, there are 1024 possible digital values. Accordingly, the lamp voltage RAMP needs to be changed 1024 times (or the lamp voltage is continuously changed for a time of 1024 clocks or more) accordingly, and 1024 clocks are required for AD conversion processing. In practice, more time is required for noise cancellation.
 このように特許文献1の方法は、AD変換処理に時間がかかるという問題がある。 As described above, the method of Patent Document 1 has a problem that it takes time to perform AD conversion processing.
 この問題を解決するための技術が特許文献2に開示されている。図15は特許文献2記載の固体撮像装置600の構成を示す図である。 A technique for solving this problem is disclosed in Patent Document 2. FIG. 15 is a diagram illustrating a configuration of a solid-state imaging device 600 described in Patent Document 2.
 特許文献1におけるAD変換器502は1段のみであるが、図15に示す固体撮像装置600ではAD変換器を、上位Nビットを変換するAD変換器601と、下位Mビットを変換するAD変換器602との2段に分けている。この固体撮像装置600は、上位Nビットを変換したのち、上位Nビット値に対応するアナログ値と、差分電圧のアナログ値との差分(アナログ残差)を、下位Mビットを変換するAD変換器に入力して全体のAD変換を行う。 The AD converter 502 in Patent Document 1 has only one stage. However, in the solid-state imaging device 600 shown in FIG. 15, the AD converter includes an AD converter 601 that converts the upper N bits and an AD converter that converts the lower M bits. It is divided into two stages with the container 602. This solid-state imaging device 600 converts the upper N bits, and then converts the difference (analog residual) between the analog value corresponding to the upper N bit value and the analog value of the differential voltage into the lower M bits. To perform the entire AD conversion.
 例えば、N=3、M=7の場合、下位Mビットは128個の値しかないので、128クロックでAD変換処理が完了する。よって、特許文献2記載の固体撮像装置600は、全体として3+7=10ビットの精度を確保しながら、AD変換処理の速度を向上できる。 For example, when N = 3 and M = 7, since the lower M bits have only 128 values, AD conversion processing is completed in 128 clocks. Therefore, the solid-state imaging device 600 described in Patent Document 2 can improve the speed of AD conversion processing while ensuring the accuracy of 3 + 7 = 10 bits as a whole.
 図16は、上位NビットのAD変換器601の具体的な回路構成を示す図である。これはN=2の場合である。まず、AD変換器601は、2ビットADC603でAD変換を行い、2ビットのデジタル値を出力するとともに、ロジック回路(特許文献2には記載されていないが、一般的にはロジック回路を使用)で制御信号φA~φDを生成し、スイッチを制御する。その後、AD変換器601は、φ1~φ4を制御することによりアナログ残差出力を得る。 FIG. 16 is a diagram illustrating a specific circuit configuration of the upper N-bit AD converter 601. This is the case when N = 2. First, the AD converter 601 performs AD conversion by a 2-bit ADC 603 and outputs a 2-bit digital value, and a logic circuit (not described in Patent Document 2, but generally uses a logic circuit). To generate control signals φA to φD to control the switches. Thereafter, the AD converter 601 obtains an analog residual output by controlling φ1 to φ4.
 一方で、AD変換器の面積を縮小する技術が特許文献3に開示されている。 On the other hand, Patent Document 3 discloses a technique for reducing the area of the AD converter.
 図17は、特許文献3記載の固体撮像装置700の構成を示す図である。この固体撮像装置700は、複数列に共通で1つのAD変換器701(図17では2列に1つのAD変換器701)を配置することで、複数のAD変換器701の総面積を縮小することができる。 FIG. 17 is a diagram illustrating a configuration of a solid-state imaging device 700 described in Patent Document 3. The solid-state imaging device 700 reduces the total area of the plurality of AD converters 701 by arranging one AD converter 701 (one AD converter 701 in two columns in FIG. 17) common to the plurality of columns. be able to.
特開2005-323331号公報JP 2005-323331 A 特許第4069203号公報Japanese Patent No. 4069203 米国特許出願公開第2008/0019208号明細書US Patent Application Publication No. 2008/0019208
 しかしながら、特許文献2記載の技術によりAD変換処理の高速化を実現できるものの、さらなるAD変換処理の高速化が望まれている。 However, although the speed of AD conversion processing can be realized by the technique described in Patent Document 2, further speedup of AD conversion processing is desired.
 よって本発明は、さらにAD変換処理を高速化できる固体撮像装置、AD変換方法及びAD変換器を提供することを目的とする。 Therefore, an object of the present invention is to provide a solid-state imaging device, an AD conversion method, and an AD converter that can further speed up AD conversion processing.
 上記目的を達成するために、本発明の一形態に係る固体撮像装置は、行列状に配置され、リセット電圧と、入射光の光量に応じた信号電圧とを出力する複数の画素と、前記信号電圧を、M(Mは1以上の整数)ビットの第1デジタル信号と、N(Nは1以上の整数)ビットの第2デジタル信号とを含むM+Nビットの第3デジタル信号にAD変換するAD変換回路とを備え、前記AD変換回路は、前記リセット電圧と前記信号電圧との差を示す差分電圧を算出し、算出した前記差分電圧を前記第1デジタル信号にAD変換するとともに、当該差分電圧と当該第1デジタル信号のデジタル値に対応するアナログ電圧との差分を示す第1残差電圧を生成する第1AD変換処理を行う第1AD変換部と、前記第1残差電圧を前記第2デジタル信号にAD変換する第2AD変換処理を行う第2AD変換部とを備え、前記第1AD変換部は、前記差分電圧を算出するとともに、当該差分電圧と2M個の閾値電圧の各々との差を示し、Mビットにより表される2M個のデジタル値の各々に対応する2M個の第2残差電圧を生成する残差電圧生成部と、前記2M個の第2残差電圧の各々と第1基準電圧とを比較することにより、2Mビットの第1比較結果信号を生成する第1比較部と、前記2Mビットの第1比較結果信号を前記Mビットの第1デジタル信号に変換するデコーダと、前記2M個の第2残差電圧のうち、前記デコーダにより変換された前記第1デジタル信号のデジタル値に対応する第2残差電圧を選択し、選択した第2残差電圧を前記第1残差電圧として出力する選択部とを備える。 In order to achieve the above object, a solid-state imaging device according to an aspect of the present invention is arranged in a matrix and outputs a reset voltage and a signal voltage corresponding to the amount of incident light, and the signal AD that converts the voltage into an M + N-bit third digital signal including a first digital signal of M (M is an integer of 1 or more) bits and a second digital signal of N (N is an integer of 1 or more) bits. A conversion circuit, wherein the AD conversion circuit calculates a differential voltage indicating a difference between the reset voltage and the signal voltage, AD-converts the calculated differential voltage into the first digital signal, and the differential voltage And a first AD converter for performing a first AD conversion process for generating a first residual voltage indicating a difference between the analog voltage corresponding to the digital value of the first digital signal, and the first residual voltage as the second digital signal. Signal And a second 2AD conversion unit that performs first 2AD conversion process D conversion, the first 1AD conversion unit is configured to calculate the difference voltage indicates a difference between each of the difference voltage and the 2 M-number of threshold voltage, a residual voltage generator for generating a 2 M-number of the second residue voltage corresponding to each of the 2 M pieces of digital values represented by M bits, a and each of the 2 M-number of the second residue voltage A first comparison unit that generates a 2 M- bit first comparison result signal by comparing with one reference voltage; and converts the 2 M- bit first comparison result signal into the M-bit first digital signal. A decoder and a second residual voltage corresponding to a digital value of the first digital signal converted by the decoder are selected from the 2 M second residual voltages, and the selected second residual voltage is selected. And a selection unit that outputs the first residual voltage.
 この構成によれば、本発明の一形態に係る固体撮像装置では、残差電圧生成部により、2M個の第2残差電圧を生成し、生成した第2残差電圧を用いてNビットのAD変換処理を行う。これにより、例えば、NビットのAD変換処理を行ったのち、当該AD変換処理により生成された第1デジタル信号をDA変換し、当該DA変換したアナログ信号を用いて、残差電圧を算出する場合に比べて、本発明の一形態に係る固体撮像装置は、高速に第1残差電圧を生成できる。よって、本発明の一形態に係る固体撮像装置は、AD変換処理を高速化できる。 According to this configuration, in the solid-state imaging device according to an aspect of the present invention, the residual voltage generator generates 2 M second residual voltages, and N bits are generated using the generated second residual voltages. AD conversion processing is performed. Accordingly, for example, after performing N-bit AD conversion processing, the first digital signal generated by the AD conversion processing is DA-converted, and the residual voltage is calculated using the DA-converted analog signal. In comparison, the solid-state imaging device according to an aspect of the present invention can generate the first residual voltage at high speed. Therefore, the solid-state imaging device according to one embodiment of the present invention can speed up AD conversion processing.
 また、前記第2AD変換部は、列毎に1つ設けられた複数の第2列AD変換部を備え、前記第1AD変換部は、Q列毎に1つ設けられ、対応するQ列に配置された複数の画素により出力される前記リセット電圧及び前記信号電圧に対して前記第1AD変換処理を行う複数の第1列AD変換部を備え、前記各第1列AD変換部は、Q列のうちの1列を選択し、選択した列に配置された画素により出力される前記リセット電圧及び前記差分電圧を出力する第1選択回路と、前記第1選択回路により出力される前記リセット電圧及び前記信号電圧に対して前記第1AD変換処理を行う第1AD変換器と、Q列のうちの1列を選択し、前記第1AD変換器により生成された前記第1残差電圧を、選択した列に設けられた前記第2列AD変換部に出力する第2選択回路とを備え、前記各第2列AD変換部は、対応するQ列に設けられた前記第2選択回路により出力された前記第1残差電圧に対して前記第2AD変換処理を行ってもよい。 The second AD conversion unit includes a plurality of second column AD conversion units, one for each column, and one first AD conversion unit is provided for each Q column and arranged in the corresponding Q column. A plurality of first column AD conversion units that perform the first AD conversion processing on the reset voltage and the signal voltage output by the plurality of pixels, and each of the first column AD conversion units includes Q columns A first selection circuit that selects one of the columns and outputs the reset voltage and the differential voltage output by the pixels arranged in the selected column; the reset voltage output by the first selection circuit; and A first AD converter that performs the first AD conversion processing on the signal voltage, and one of the Q columns are selected, and the first residual voltage generated by the first AD converter is selected in the selected column. Output to the second row AD converter provided Each of the second column AD conversion units is configured to perform the second AD conversion process on the first residual voltage output by the second selection circuit provided in the corresponding Q column. May be performed.
 この構成によれば、Q列に1つ第1AD変換器を設ければよいので、本発明の一形態に係る固体撮像装置は、AD変換回路の回路面積を縮小できる。 According to this configuration, since it is only necessary to provide one first AD converter in the Q column, the solid-state imaging device according to one embodiment of the present invention can reduce the circuit area of the AD conversion circuit.
 また、前記固体撮像装置は、さらに、前記第1選択回路及び前記第2選択回路に前記Q列の各列を順次選択させることにより、前記第1列AD変換部に前記Q列の各列に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させる第1制御部を備え、前記第1制御部は、前記第1列AD変換部に前記Q列に含まれる第1列に対応する前記第1残差電圧を生成させると同時に、前記Q列に含まれる、前記第1列と異なる第2列に設けられた前記第2列AD変換部に、前記第1列AD変換部により既に生成された、対応する列の前記第1残差電圧に対して前記第2AD変換処理を行わせてもよい。 Further, the solid-state imaging device further causes the first column AD conversion unit to select each column of the Q columns by causing the first selection circuit and the second selection circuit to sequentially select the columns of the Q column. A first control unit configured to sequentially generate the corresponding first residual voltage and the first digital signal, wherein the first control unit includes a first column included in the Q column in the first column AD conversion unit; At the same time as generating the corresponding first residual voltage, the first column AD conversion unit is included in the second column AD conversion unit provided in the second column different from the first column included in the Q column. The second AD conversion process may be performed on the first residual voltage of the corresponding column already generated by
 この構成によれば、本発明の一形態に係る固体撮像装置は、第1AD変換処理と第2AD変換処理とを同時に行うことにより、AD変換処理を高速化できる。 According to this configuration, the solid-state imaging device according to an aspect of the present invention can speed up the AD conversion process by simultaneously performing the first AD conversion process and the second AD conversion process.
 また、前記固体撮像装置は、さらに、前記AD変換回路によりAD変換された前記第3デジタル信号を、外部に順次転送する列走査回路を備え、前記第1制御部は、さらに、前記第1列AD変換部に前記Q列に含まれる第1列群に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させるとともに、当該第1列群に設けられた前記第2列AD変換部に、当該第1列群に対応する前記第1残差電圧に対して前記第2AD変換処理を行わせることにより、前記第2デジタル信号を順次生成させ、前記第1列AD変換部に前記Q列に含まれる、前記第1列群と異なる第2列群に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させるとともに、当該第2列群に設けられた前記第2列AD変換部に、当該第2列群に対応する前記第1残差電圧に対して前記第2AD変換処理を行わせると同時に、前記列走査回路に、前記第1列群に対応する前記第3デジタル信号を、外部に順次転送させてもよい。 In addition, the solid-state imaging device further includes a column scanning circuit that sequentially transfers the third digital signal AD-converted by the AD conversion circuit to the outside, and the first control unit further includes the first column. The AD conversion unit sequentially generates the first residual voltage and the first digital signal corresponding to the first column group included in the Q column, and the second column AD conversion provided in the first column group The second digital signal is sequentially generated by causing the unit to perform the second AD conversion processing on the first residual voltage corresponding to the first column group, and the first column AD conversion unit The first residual voltage and the first digital signal corresponding to a second column group different from the first column group included in the Q column are sequentially generated, and the second provided in the second column group Corresponds to the second column group in the column AD converter The second AD conversion processing may be performed on the first residual voltage, and the third digital signal corresponding to the first column group may be sequentially transferred to the outside simultaneously with the column scanning circuit. .
 この構成によれば、本発明の一形態に係る固体撮像装置は、AD変換処理と、第3デジタル信号の転送処理とを同時に行うことにより、撮像動作から第3デジタル信号を外部に出力するまでの処理の速度を向上できる。 According to this configuration, the solid-state imaging device according to an aspect of the present invention performs the AD conversion process and the third digital signal transfer process at the same time until the third digital signal is output from the imaging operation to the outside. The processing speed can be improved.
 また、前記固体撮像装置は、さらに、前記第1選択回路及び前記第2選択回路に前記Q列の各列を順次選択させることにより、前記第1列AD変換部に前記Q列の各列に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させる第1制御部を備え、前記第1制御部は、前記第1列AD変換部に前記Q列に含まれる全ての列に対応する前記第1残差電圧を生成させた後、前記第2列AD変換部に、当該全ての列に対応する第1残差電圧に対する前記第2AD変換処理を同時に行わせてもよい。 Further, the solid-state imaging device further causes the first column AD conversion unit to select each column of the Q columns by causing the first selection circuit and the second selection circuit to sequentially select the columns of the Q column. A first control unit configured to sequentially generate the corresponding first residual voltage and the first digital signal, wherein the first control unit includes the first column AD conversion unit in all columns included in the Q column; After generating the corresponding first residual voltage, the second column AD conversion unit may simultaneously perform the second AD conversion processing on the first residual voltage corresponding to all the columns.
 この構成によれば、本発明の一形態に係る固体撮像装置は、全ての第2列AD変換回路において、同一のランプ電圧を用いることができるので、回路規模を縮小できる。 According to this configuration, the solid-state imaging device according to an aspect of the present invention can use the same lamp voltage in all the second column AD conversion circuits, and thus the circuit scale can be reduced.
 また、前記第1AD変換部は、列毎に1つ設けられ、対応する列に配置された画素により出力された前記リセット電圧と前記信号電圧とに対して、前記第1AD変換処理を行う複数の第1列AD変換部を備え、前記第2AD変換部は、列毎に1つ設けられ、対応する列に設けられた前記第1列AD変換部により生成された前記第1残差電圧に対して前記第2AD変換処理を行う複数の第2列AD変換部を備えてもよい。 The first AD converter is provided for each column, and performs a plurality of first AD conversion processes on the reset voltage and the signal voltage output by the pixels arranged in the corresponding column. 1st column AD conversion part is provided, and the 2nd AD conversion part is provided for every column, and with respect to the 1st residual voltage generated by the 1st column AD conversion part provided in the corresponding column A plurality of second column AD conversion units that perform the second AD conversion processing may be provided.
 この構成によれば、本発明の一形態に係る固体撮像装置は、各列に対して同時に第1AD変換処理を行うことができるので、第1AD変換処理を高速化できる。 According to this configuration, the solid-state imaging device according to one aspect of the present invention can simultaneously perform the first AD conversion processing on each column, and therefore can speed up the first AD conversion processing.
 また、前記第2AD変換部は、第1時刻から、時間の経過とともに電圧値が変化するランプ電圧を生成する参照信号生成部と、前記ランプ電圧と前記第1残差電圧とを比較し、比較結果を示す第2比較結果信号を生成する第2比較部と、前記第1時刻から前記第2比較結果信号の論理が反転するまでの時間を前記第2デジタル信号として保持する第1保持部とを備えてもよい。 The second AD conversion unit compares the ramp voltage and the first residual voltage with a reference signal generation unit that generates a ramp voltage whose voltage value changes with time from a first time, and compares A second comparison unit that generates a second comparison result signal indicating a result; a first holding unit that holds, as the second digital signal, a time from the first time until the logic of the second comparison result signal is inverted; May be provided.
 この構成によれば、本発明の一形態に係る固体撮像装置は、例えば、精度が要求される下位NビットのAD変換処理に対して、線形性を確保できる。 According to this configuration, the solid-state imaging device according to an aspect of the present invention can ensure linearity with respect to, for example, AD conversion processing of lower N bits that requires accuracy.
 また、前記残差電圧生成部は、それぞれが前記2M個の第2残差電圧のうち1つを生成する第1残差電圧生成部と、(2M-1)個の第2残差電圧生成部とを含み、前記第1残差電圧生成部は、当該第1残差電圧生成部により生成される前記第2残差電圧が出力される第1端子と、前記第1端子に一端が接続された第1容量と、前記第1端子に前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第1スイッチと、前記信号電圧と第1基準電圧との一方を選択し、選択した電圧を前記第1容量の他端に供給する第2スイッチとを備え、前記各第2残差電圧生成部は、当該第2残差電圧生成部により生成される前記第2残差電圧が出力される第2端子と、前記第2端子に一端が接続された第2容量及び第3容量と、前記信号電圧と前記第1基準電圧と第2基準電圧とのうち1つを選択し、選択した電圧を前記第2容量の他端に供給する第3スイッチと、前記信号電圧と第2基準電圧との一方を選択し、選択した電圧を前記第3容量の他端に供給する第4スイッチと、前記第2端子に前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第5スイッチとを備えてもよい。 The residual voltage generation unit includes a first residual voltage generation unit that generates one of the 2 M second residual voltages, and (2 M −1) second residuals. The first residual voltage generator includes a first terminal to which the second residual voltage generated by the first residual voltage generator is output, and one end connected to the first terminal. A first capacitor connected to the first capacitor, a first switch that switches between a closed state in which the reset voltage is supplied to the first terminal and an open state in which the reset voltage is not supplied, and one of the signal voltage and the first reference voltage is selected A second switch for supplying the selected voltage to the other end of the first capacitor, and each of the second residual voltage generators generates the second residual generated by the second residual voltage generator. A second terminal for outputting a voltage; a second capacitor and a third capacitor having one end connected to the second terminal; and the signal A third switch that selects one of the voltage, the first reference voltage, and the second reference voltage, and supplies the selected voltage to the other end of the second capacitor; and the signal voltage and the second reference voltage A fourth switch that selects one and supplies the selected voltage to the other end of the third capacitor; a fifth switch that switches between a closed state in which the reset voltage is supplied to the second terminal and an open state in which the reset voltage is not supplied; May be provided.
 この構成によれば、本発明の一形態に係る固体撮像装置は、例えば、高い精度が要求されない上位MビットのAD変換処理に対して、線形性は劣るが速度が速い方法を用いることで、AD変換処理全体の精度の低下を抑制しつつ、高速化を実現できる。 According to this configuration, the solid-state imaging device according to an aspect of the present invention uses, for example, a method that is inferior in linearity but high in speed for AD conversion processing of upper M bits that do not require high accuracy. Higher speed can be realized while suppressing a decrease in accuracy of the entire AD conversion process.
 また、前記固体撮像装置は、さらに、前記第1スイッチ、前記第2スイッチ、前記第3スイッチ、前記第4スイッチ及び前記第5スイッチを制御する第2制御部を備え、前記第2制御部は、第1期間において、前記第1スイッチ及び前記第5スイッチを閉状態にし、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチに前記信号電圧を選択させ、前記第1期間の後の第2期間において、前記第1スイッチ及び前記第5スイッチを開状態にし、前記第2スイッチに前記第1基準電圧を選択させ、前記第3スイッチ及び前記第4スイッチに前記第2基準電圧を選択させ、前記第2期間の後の第3期間において、前記第1スイッチ及び前記第5スイッチを開状態にし、前記第2スイッチ及び前記第3スイッチに前記第1基準電圧を選択させ、前記第4スイッチに前記第2基準電圧を選択させてもよい。 The solid-state imaging device further includes a second control unit that controls the first switch, the second switch, the third switch, the fourth switch, and the fifth switch, and the second control unit includes: In the first period, the first switch and the fifth switch are closed, the second switch, the third switch, and the fourth switch select the signal voltage, and the second switch after the first period is selected. In two periods, the first switch and the fifth switch are opened, the second switch selects the first reference voltage, and the third switch and the fourth switch select the second reference voltage. In a third period after the second period, the first switch and the fifth switch are opened, and the first reference voltage is selected by the second switch and the third switch. , May be selecting the second reference voltage to the fourth switch.
 また、前記残差電圧生成部は、それぞれが前記2M個の第2残差電圧のうち1つを生成する第1残差電圧生成部と、(2M-1)個の第2残差電圧生成部とを含み、前記第1残差電圧生成部は、当該第1残差電圧生成部により生成される前記第2残差電圧が出力される第1端子と、第1ノードと、前記第1ノードに一端が接続された第1容量と、前記第1ノードに前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第1スイッチと、前記信号電圧と第1基準電圧との一方を選択し、選択した電圧を前記第1容量の他端に供給する第2スイッチと、反転入力端子が前記第1ノードに接続され、非反転入力端子に前記リセット電圧が印加され、出力端子が前記第1端子と接続される第1オペアンプと、前記第1オペアンプの非反転入力端子と出力端子との間に、互いに並列に接続される第4容量及び第6スイッチとを備え、前記各第2残差電圧生成部は、当該第2残差電圧生成部により生成される前記第2残差電圧が出力される第2端子と、第2ノードと、前記第2ノードに一端が接続された第2容量及び第3容量と、前記信号電圧と前記第1基準電圧と第2基準電圧とのうち1つを選択し、選択した電圧を前記第2容量の他端に供給する第3スイッチと、前記信号電圧と第2基準電圧との一方を選択し、選択した電圧を前記第3容量の他端に供給する第4スイッチと、前記第2ノードに前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第5スイッチと、反転入力端子が前記第2ノードに接続され、非反転入力端子に前記リセット電圧が印加され、出力端子が前記第2端子と接続される第2オペアンプと、前記第2オペアンプの非反転入力端子と出力端子との間に、互いに並列に接続される第5容量及び第7スイッチとを備えてもよい。 The residual voltage generation unit includes a first residual voltage generation unit that generates one of the 2 M second residual voltages, and (2 M −1) second residuals. The first residual voltage generator includes a first terminal from which the second residual voltage generated by the first residual voltage generator is output, a first node, A first capacitor having one end connected to the first node; a first switch that switches between a closed state in which the reset voltage is supplied to the first node and an open state in which the reset voltage is not supplied; and the signal voltage and the first reference voltage A second switch that supplies the selected voltage to the other end of the first capacitor, an inverting input terminal is connected to the first node, the reset voltage is applied to a non-inverting input terminal, and an output A first operational amplifier having a terminal connected to the first terminal, and the first operational amplifier A fourth capacitor and a sixth switch connected in parallel with each other are provided between the inverting input terminal and the output terminal, and each of the second residual voltage generators is generated by the second residual voltage generator. A second terminal from which the second residual voltage is output, a second node, a second capacitor and a third capacitor having one end connected to the second node, the signal voltage, and the first reference voltage, One of the second reference voltages is selected, a third switch for supplying the selected voltage to the other end of the second capacitor, one of the signal voltage and the second reference voltage is selected, and the selected voltage Is supplied to the other end of the third capacitor, a fifth switch for switching between a closed state for supplying the reset voltage to the second node and an open state for not supplying the second node, and an inverting input terminal for the second switch The reset voltage is applied to the non-inverting input terminal. A second operational amplifier having an output terminal connected to the second terminal, and a fifth capacitor and a seventh switch connected in parallel with each other between the non-inverting input terminal and the output terminal of the second operational amplifier. You may prepare.
 この構成によれば、本発明の一形態に係る固体撮像装置は、例えば、高い精度が要求されない上位MビットのAD変換処理に対して、線形性は劣るが速度が速い方法を用いることで、AD変換処理全体の精度の低下を抑制しつつ、高速化を実現できる。 According to this configuration, the solid-state imaging device according to an aspect of the present invention uses, for example, a method that is inferior in linearity but high in speed for AD conversion processing of upper M bits that do not require high accuracy. Higher speed can be realized while suppressing a decrease in accuracy of the entire AD conversion process.
 また、前記固体撮像装置は、さらに、前記第1スイッチ、前記第2スイッチ、前記第3スイッチ、前記第4スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを制御する第2制御部を備え、前記第2制御部は、第1期間において、前記第1スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを閉状態にし、前記第2スイッチ及び前記第3スイッチに前記第1基準電圧を選択させ、前記第4スイッチに前記第2基準電圧を選択させ、前記第1期間の後の第2期間において、前記第1スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを開状態にし、前記第2スイッチに前記信号電圧を選択させ、前記第3スイッチ及び前記第4スイッチに前記第2基準電圧を選択させ、前記第2期間の後の第3期間において、前記第1スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを開状態にし、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチに前記信号電圧を選択させてもよい。 The solid-state imaging device further includes a second control for controlling the first switch, the second switch, the third switch, the fourth switch, the fifth switch, the sixth switch, and the seventh switch. And the second control unit closes the first switch, the fifth switch, the sixth switch, and the seventh switch in the first period, and sets the second switch and the third switch to the closed state. Selecting the first reference voltage, causing the fourth switch to select the second reference voltage, and in a second period after the first period, the first switch, the fifth switch, the sixth switch, and Opening the seventh switch, causing the second switch to select the signal voltage, causing the third switch and the fourth switch to select the second reference voltage, and the second period. In the subsequent third period, the first switch, the fifth switch, the sixth switch, and the seventh switch are opened, and the signal voltage is applied to the second switch, the third switch, and the fourth switch. It may be selected.
 また、本発明の一形態に係るAD変換器は、信号電圧を、M(Mは1以上の整数)ビットの第1デジタル信号と、N(Nは1以上の整数)ビットの第2デジタル信号とを含むM+Nビットの第3デジタル信号にAD変換するAD変換器であって、前記信号電圧を前記第1デジタル信号にAD変換するとともに、当該信号電圧と当該第1デジタル信号のデジタル値に対応するアナログ電圧との差分を示す第1残差電圧を生成する第1AD変換処理を行う第1AD変換部と、前記第1残差電圧を前記第2デジタル信号にAD変換する第2AD変換処理を行う第2AD変換部とを備え、前記第1AD変換部は、前記差分電圧を算出するとともに、当該差分電圧と2M個の閾値電圧の各々との差を示し、Mビットにより表される2M個のデジタル値の各々に対応する2M個の第2残差電圧を生成する残差電圧生成部と、前記2M個の第2残差電圧の各々と第1基準電圧とを比較することにより、2Mビットの第1比較結果信号を生成する第1比較部と、前記2Mビットの第1比較結果信号を前記Mビットの第1デジタル信号に変換するデコーダと、前記2M個の第2残差電圧のうち、前記デコーダにより変換された前記第1デジタル信号のデジタル値に対応する第2残差電圧を選択し、選択した第2残差電圧を前記第1残差電圧として出力する選択部とを備える。 In the AD converter according to one embodiment of the present invention, the signal voltage includes a first digital signal having M (M is an integer of 1 or more) bits and a second digital signal having N (N is an integer of 1 or more) bits. AD converter for AD conversion into an M + N-bit third digital signal including A, and AD converting the signal voltage into the first digital signal and corresponding to the signal voltage and the digital value of the first digital signal A first AD conversion unit that performs a first AD conversion process that generates a first residual voltage that indicates a difference from the analog voltage to be converted, and a second AD conversion process that performs an AD conversion of the first residual voltage into the second digital signal A second AD converter, wherein the first AD converter calculates the differential voltage and indicates a difference between the differential voltage and each of the 2 M threshold voltages, and is represented by 2 M represented by M bits. Each of the digital values of By comparing each of the 2 M second residual voltages with the first reference voltage, 2 M bits by generating a corresponding 2 M second residual voltage, respectively. A first comparison unit that generates the first comparison result signal, a decoder that converts the 2 M- bit first comparison result signal into the M-bit first digital signal, and the 2 M second residual voltages. A selection unit that selects a second residual voltage corresponding to a digital value of the first digital signal converted by the decoder and outputs the selected second residual voltage as the first residual voltage. Prepare.
 この構成によれば、本発明の一形態に係るAD変換器では、残差電圧生成部により、2M個の第2残差電圧を生成し、生成した第2残差電圧を用いてNビットのAD変換処理を行う。これにより、例えば、NビットのAD変換処理を行ったのち、当該AD変換処理により生成された第1デジタル信号をDA変換し、当該DA変換したアナログ信号を用いて、残差電圧を算出する場合に比べて、本発明の一形態に係るAD変換器は、高速に第1残差電圧を生成できる。よって、本発明の一形態に係るAD変換器は、AD変換処理を高速化できる。 According to this configuration, in the AD converter according to an aspect of the present invention, the residual voltage generator generates 2 M second residual voltages, and N bits are generated using the generated second residual voltages. AD conversion processing is performed. Accordingly, for example, after performing N-bit AD conversion processing, the first digital signal generated by the AD conversion processing is DA-converted, and the residual voltage is calculated using the DA-converted analog signal. As compared with the above, the AD converter according to an aspect of the present invention can generate the first residual voltage at high speed. Thus, the AD converter according to one embodiment of the present invention can speed up AD conversion processing.
 なお、本発明は、このような固体撮像装置として実現できるだけでなく、固体撮像装置に含まれる特徴的な手段の一部又は全てをステップとする固体撮像装置の制御方法、固体撮像装置の駆動方法、又は固体撮像装置におけるAD変換方法として実現したり、そのような特徴的なステップの一部又は全てをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 Note that the present invention can be realized not only as such a solid-state imaging device but also as a solid-state imaging device control method and a solid-state imaging device driving method in which some or all of characteristic means included in the solid-state imaging device are steps. Alternatively, it can be realized as an AD conversion method in a solid-state imaging device, or as a program for causing a computer to execute some or all of such characteristic steps. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.
 さらに、本発明は、このような固体撮像装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような固体撮像装置を備えるデジタルスチルカメラ又はデジタルビデオカメラ等のカメラとして実現したり、このような固体撮像装置に含まれるAD変換器として実現したり、このようなAD変換器に含まれる特徴的な手段をステップとするAD変換方法として実現したりできる。 Furthermore, the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such a solid-state imaging device, or a digital still camera or digital video camera equipped with such a solid-state imaging device. It can be realized as a camera, can be realized as an AD converter included in such a solid-state imaging device, or can be realized as an AD conversion method using characteristic means included in such an AD converter as steps.
 以上より、本発明は、さらにAD変換処理を高速化できる固体撮像装置、AD変換方法及びAD変換器を提供できる。 As described above, the present invention can provide a solid-state imaging device, an AD conversion method, and an AD converter that can further speed up AD conversion processing.
図1は、本発明の実施の形態1に係る固体撮像装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a solid-state imaging apparatus according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る画素の構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of the pixel according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る上位ビットのAD変換処理を示す図である。FIG. 3 is a diagram showing AD conversion processing of upper bits according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態1に係る第1AD変換器の構成を示す図である。FIG. 4 is a diagram showing a configuration of the first AD converter according to Embodiment 1 of the present invention. 図5は、本発明の実施の形態1に係る第1AD変換器の回路図である。FIG. 5 is a circuit diagram of the first AD converter according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1に係る第1AD変換器のタイミングチャートである。FIG. 6 is a timing chart of the first AD converter according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1に係る比較器の回路図である。FIG. 7 is a circuit diagram of the comparator according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る固体撮像装置によるAD変換処理のタイミングチャートである。FIG. 8 is a timing chart of AD conversion processing by the solid-state imaging device according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態2に係る固体撮像装置の構成を示す図である。FIG. 9 is a diagram showing a configuration of the solid-state imaging apparatus according to Embodiment 2 of the present invention. 図10は、本発明の実施の形態2に係る固体撮像装置によるAD変換処理のタイミングチャートである。FIG. 10 is a timing chart of AD conversion processing by the solid-state imaging device according to Embodiment 2 of the present invention. 図11は、本発明の実施の形態3に係る第1AD変換器の回路図である。FIG. 11 is a circuit diagram of the first AD converter according to Embodiment 3 of the present invention. 図12は、本発明の実施の形態3に係る第1AD変換器のタイミングチャートである。FIG. 12 is a timing chart of the first AD converter according to Embodiment 3 of the present invention. 図13は、本発明の実施の形態4に係る固体撮像装置によるAD変換処理のタイミングチャートである。FIG. 13 is a timing chart of AD conversion processing by the solid-state imaging device according to Embodiment 4 of the present invention. 図14は、従来の固体撮像装置の構成を示す図である。FIG. 14 is a diagram illustrating a configuration of a conventional solid-state imaging device. 図15は、従来の固体撮像装置の構成を示す図である。FIG. 15 is a diagram illustrating a configuration of a conventional solid-state imaging device. 図16は、従来のAD変換器の構成を示す図である。FIG. 16 is a diagram showing a configuration of a conventional AD converter. 図17は、従来の固体撮像装置の構成を示す図である。FIG. 17 is a diagram illustrating a configuration of a conventional solid-state imaging device.
 以下、本発明に係る実施の形態について、図面を参照しながら説明する。なお、図中で、同じ符号のものは同一の構成要素を表す。 Embodiments according to the present invention will be described below with reference to the drawings. In the drawings, the same reference numerals denote the same components.
 (実施の形態1)
 本発明の実施の形態1に係る固体撮像装置100は、差分電圧V0と2M個の閾値電圧の各々との差を示す2M個の出力電圧Voutを生成し、生成した2M個の出力電圧Voutを用いて上位Mビットの第1デジタル信号130を生成する。これにより、本発明の実施の形態1に係る固体撮像装置100は、高速に第1残差電圧を生成できるので、AD変換処理を高速化できる。
(Embodiment 1)
The solid-state imaging device 100 according to Embodiment 1 of the present invention generates 2 M output voltages Vout indicating the difference between the differential voltage V0 and each of the 2 M threshold voltages, and generates the generated 2 M outputs. The first M-bit first digital signal 130 is generated using the voltage Vout. Thereby, since the solid-state imaging device 100 according to Embodiment 1 of the present invention can generate the first residual voltage at high speed, the AD conversion processing can be speeded up.
 まず、本発明の実施の形態1に係る固体撮像装置100の構成を説明する。 First, the configuration of the solid-state imaging device 100 according to Embodiment 1 of the present invention will be described.
 図1は、本発明の実施の形態1に係る固体撮像装置100の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a solid-state imaging device 100 according to Embodiment 1 of the present invention.
 図1に示す固体撮像装置100は、撮像部101と、AD変換回路120と、行走査回路103と、列走査回路109と、タイミング制御部112とを備える。 1 includes an imaging unit 101, an AD conversion circuit 120, a row scanning circuit 103, a column scanning circuit 109, and a timing control unit 112. The solid-state imaging device 100 illustrated in FIG.
 撮像部101は、2次元行列状に配置された画素102(画素回路)と、複数の垂直信号線104とを含む。 The imaging unit 101 includes pixels 102 (pixel circuits) arranged in a two-dimensional matrix and a plurality of vertical signal lines 104.
 各垂直信号線104は、列毎に縦方向に沿って配置される。 Each vertical signal line 104 is arranged along the vertical direction for each column.
 各画素102には、行走査回路103からの信号線と、垂直信号線104が接続されている。 A signal line from the row scanning circuit 103 and a vertical signal line 104 are connected to each pixel 102.
 各画素102は、入射光をアナログの信号電圧(画素信号)に光電変換する。また、各画素102は、対応する垂直信号線104に、リセット状態においてリセット電圧Vresを出力し、データ出力状態において、入射光の光量に応じた信号電圧Vsigを出力する。 Each pixel 102 photoelectrically converts incident light into an analog signal voltage (pixel signal). Each pixel 102 outputs a reset voltage Vres to the corresponding vertical signal line 104 in the reset state, and outputs a signal voltage Vsig corresponding to the amount of incident light in the data output state.
 行走査回路103は、撮像部101の各行を順番に選択する。その選択された行の各画素102は、ある一定時間内(これは水平ブランキング期間と呼ばれる)に撮像動作を行い、得られるリセット電圧Vresと信号電圧Vsigとを垂直信号線104に順番に出力する。 The row scanning circuit 103 selects each row of the imaging unit 101 in order. Each pixel 102 in the selected row performs an imaging operation within a certain time (this is called a horizontal blanking period), and sequentially outputs the obtained reset voltage Vres and signal voltage Vsig to the vertical signal line 104. To do.
 次に、画素102の構成を説明する。図2は、画素102の回路図である。 Next, the configuration of the pixel 102 will be described. FIG. 2 is a circuit diagram of the pixel 102.
 図2に示すように、画素102は、リセットトランジスタ201と、フォトダイオード(PD)202と、転送トランジスタ203と、フローティングディフュージョン(FD)204と、増幅トランジスタ205と、画素選択トランジスタ206とを備える。 As shown in FIG. 2, the pixel 102 includes a reset transistor 201, a photodiode (PD) 202, a transfer transistor 203, a floating diffusion (FD) 204, an amplification transistor 205, and a pixel selection transistor 206.
 リセットトランジスタ201は、FD204と電源線VDDとの間に接続されている。このリセットトランジスタ201のゲート端子はリセット信号線RSCELLに接続されている。 The reset transistor 201 is connected between the FD 204 and the power supply line VDD. The gate terminal of the reset transistor 201 is connected to the reset signal line RSCELL.
 PD202は、受光した光の強度に応じた信号電荷を発生し、当該信号電荷を蓄積する。 PD 202 generates a signal charge corresponding to the intensity of received light and accumulates the signal charge.
 転送トランジスタ203は、PD202とFD204との間に接続されている。この転送トランジスタ203のゲート端子は転送信号線TRANSに接続されている。 The transfer transistor 203 is connected between the PD 202 and the FD 204. The gate terminal of the transfer transistor 203 is connected to the transfer signal line TRANS.
 FD204は、PD202から転送された信号電荷を蓄積する。このFD204は、増幅トランジスタ205のゲート端子に接続されている。 FD 204 accumulates signal charges transferred from PD 202. The FD 204 is connected to the gate terminal of the amplification transistor 205.
 増幅トランジスタ205は、垂直信号線104と電源線VDDとの間に接続されている。 The amplification transistor 205 is connected between the vertical signal line 104 and the power supply line VDD.
 画素選択トランジスタ206は、垂直信号線104と電源線VDDとの間に、増幅トランジスタ205と直列に接続されている。この画素選択トランジスタ206のゲート端子は選択信号線SELECTに接続されている。 The pixel selection transistor 206 is connected in series with the amplification transistor 205 between the vertical signal line 104 and the power supply line VDD. The gate terminal of the pixel selection transistor 206 is connected to the selection signal line SELECT.
 以上の構成により、画素102は、画素選択トランジスタ206が選択された時(オン状態の時)、FD204の電位に応じた信号を垂直信号線104に出力する。具体的には、画素102は、リセットトランジスタ201がオンされた状態においてリセット電圧Vresを垂直信号線104に出力する。また、画素102は、PD202に蓄積された信号電荷が、転送トランジスタ203を介してFD204に転送された状態において信号電圧Vsigを垂直信号線104に出力する。 With the above configuration, the pixel 102 outputs a signal corresponding to the potential of the FD 204 to the vertical signal line 104 when the pixel selection transistor 206 is selected (on state). Specifically, the pixel 102 outputs the reset voltage Vres to the vertical signal line 104 in a state where the reset transistor 201 is turned on. Further, the pixel 102 outputs the signal voltage Vsig to the vertical signal line 104 in a state where the signal charges accumulated in the PD 202 are transferred to the FD 204 via the transfer transistor 203.
 なお、増幅トランジスタ205は、垂直信号線104に接続された負荷トランジスタ(図示せず)と共にソースフォロワ回路を形成する。 The amplification transistor 205 forms a source follower circuit together with a load transistor (not shown) connected to the vertical signal line 104.
 再び図1を参照して説明を行う。 Referring back to FIG.
 AD変換回路120は、複数の画素102により出力された信号電圧Vsigを、M(Mは1以上の整数)ビットの第1デジタル信号130と、N(Nは1以上の整数)ビットの第2デジタル信号とを含むM+Nビットの第3デジタル信号にAD変換する。例えば、第1デジタル信号130は、M+Nビットの第3デジタル信号に含まれる上位Mビットのデジタル信号に相当し、第2デジタル信号は、M+Nビットの第3デジタル信号に含まれる下位Nビットのデジタル信号に相当する。 The AD conversion circuit 120 converts the signal voltage Vsig output from the plurality of pixels 102 into a first digital signal 130 of M (M is an integer of 1 or more) bits and a second of N (N is an integer of 1 or more) bits. AD conversion to a third digital signal of M + N bits including the digital signal. For example, the first digital signal 130 corresponds to the upper M-bit digital signal included in the M + N-bit third digital signal, and the second digital signal is the lower N-bit digital signal included in the M + N-bit third digital signal. Corresponds to the signal.
 このAD変換回路120は、第1AD変換部121と、第2AD変換部122とを備える。 The AD conversion circuit 120 includes a first AD conversion unit 121 and a second AD conversion unit 122.
 第1AD変換部121は、リセット電圧Vresと信号電圧Vsigとの差を示す差分電圧V0を算出し、算出した差分電圧V0をMビットの第1デジタル信号130にAD変換する。また、第1AD変換部121は、生成したMビットの第1デジタル信号130を保持する。 The first AD converter 121 calculates a differential voltage V0 indicating a difference between the reset voltage Vres and the signal voltage Vsig, and AD converts the calculated differential voltage V0 into an M-bit first digital signal 130. The first AD converter 121 holds the generated M-bit first digital signal 130.
 また、第1AD変換部121は、当該差分電圧V0と当該Mビットの第1デジタル信号130のデジタル値に対応するアナログ電圧との差を示す残差電圧131を生成する。ここで、残差電圧131は、本発明の第1残差電圧に相当し、M+Nビットの第3デジタル信号の下位Nビット分のアナログ電圧値に相当する。 Also, the first AD converter 121 generates a residual voltage 131 indicating a difference between the differential voltage V0 and an analog voltage corresponding to the digital value of the M-bit first digital signal 130. Here, the residual voltage 131 corresponds to the first residual voltage of the present invention, and corresponds to the analog voltage value for the lower N bits of the M + N-bit third digital signal.
 なお、以下では、第1AD変換部121による、差分電圧V0を算出し、算出した差分電圧V0をMビットの第1デジタル信号130にAD変換するとともに、残差電圧131を生成する処理を第1AD変換処理と記す。 In the following, the first AD converter 121 calculates the differential voltage V0, AD converts the calculated differential voltage V0 into the M-bit first digital signal 130, and generates the residual voltage 131. This is referred to as conversion processing.
 この第1AD変換部121は、基準電圧生成部107と、列毎に1つ設けられた複数の第1列AD変換部123を備える。 The first AD converter 121 includes a reference voltage generator 107 and a plurality of first column AD converters 123, one for each column.
 基準電圧生成部107は、第1基準電圧VHと、第2基準電圧VLとを生成する。この第1基準電圧VHは差分電圧V0の上限値に相当し、第2基準電圧VLは差分電圧V0の下限値に相当する。 The reference voltage generator 107 generates a first reference voltage VH and a second reference voltage VL. The first reference voltage VH corresponds to the upper limit value of the differential voltage V0, and the second reference voltage VL corresponds to the lower limit value of the differential voltage V0.
 各第1列AD変換部123は、対応する列に配置された画素102により生成されたリセット電圧Vresと信号電圧Vsigとに対して、第1AD変換処理を行うことにより、各列に対応する第1デジタル信号130及び残差電圧131を生成する。 Each first column AD conversion unit 123 performs a first AD conversion process on the reset voltage Vres and the signal voltage Vsig generated by the pixels 102 arranged in the corresponding column, thereby performing the first AD conversion processing corresponding to each column. 1 digital signal 130 and residual voltage 131 are generated.
 各第1列AD変換部123は、リセット電圧保持部105と、第1AD変換器106と、第1記憶部108とを備える。 Each first column AD conversion unit 123 includes a reset voltage holding unit 105, a first AD converter 106, and a first storage unit 108.
 リセット電圧保持部105は、対応する列の垂直信号線104に接続されており、対応する列の画素102により出力されたリセット電圧Vresを保持する。なお、リセット電圧保持部105は、画素102により出力されたリセット電圧Vresそのものを保持してもよいし、リセット電圧Vresにある一定のオフセット値を加えた電圧を保持してもよい。さらに、リセット電圧保持部105は、保持するリセット電圧Vresにある一定のオフセット値を加えたうえで出力してもよい。 The reset voltage holding unit 105 is connected to the vertical signal line 104 in the corresponding column, and holds the reset voltage Vres output by the pixel 102 in the corresponding column. Note that the reset voltage holding unit 105 may hold the reset voltage Vres output from the pixel 102, or may hold a voltage obtained by adding a certain offset value to the reset voltage Vres. Further, the reset voltage holding unit 105 may add a certain offset value to the held reset voltage Vres and output the result.
 第1AD変換器106には、リセット電圧保持部105により保持されるリセット電圧Vresと、垂直信号線104からの信号電圧Vsigと、基準電圧生成部107により生成された第1基準電圧VH及び第2基準電圧VLとが入力される。 In the first AD converter 106, the reset voltage Vres held by the reset voltage holding unit 105, the signal voltage Vsig from the vertical signal line 104, the first reference voltage VH generated by the reference voltage generation unit 107, and the second voltage A reference voltage VL is input.
 この第1AD変換器106は、リセット電圧保持部105に保持されるリセット電圧Vresと、垂直信号線104の信号電圧Vsigとに対して、第1AD変換処理を行う。 The first AD converter 106 performs a first AD conversion process on the reset voltage Vres held in the reset voltage holding unit 105 and the signal voltage Vsig of the vertical signal line 104.
 また、第1AD変換器106は、信号電圧Vsigの第2基準電圧VL以上かつ第1基準電圧VH以下の電圧値に対して上位MビットのAD変換処理を行う。 Also, the first AD converter 106 performs upper M-bit AD conversion processing on the voltage value of the signal voltage Vsig that is equal to or higher than the second reference voltage VL and equal to or lower than the first reference voltage VH.
 第1記憶部108は、第1AD変換器106により生成された第1デジタル信号130を保持する。 The first storage unit 108 holds the first digital signal 130 generated by the first AD converter 106.
 また、第1AD変換器106は、残差電圧131を第2AD変換部122へ出力する。 Also, the first AD converter 106 outputs the residual voltage 131 to the second AD converter 122.
 第2AD変換部122は、第1AD変換部121により生成された残差電圧131をNビットの第2デジタル信号にAD変換する第2AD変換処理を行う。 The second AD converter 122 performs a second AD conversion process in which the residual voltage 131 generated by the first AD converter 121 is AD converted into an N-bit second digital signal.
 この第2AD変換部122は、参照信号生成部113と、列毎に1つ設けられた第2列AD変換部124とを備える。 The second AD converter 122 includes a reference signal generator 113 and a second column AD converter 124 provided for each column.
 参照信号生成部113は、時間の経過とともに電圧値が変化するランプ電圧RAMPを生成する。なお、ランプ電圧RAMPは、時間とともに一定速度で電圧値が連続的に変化してもよいし、1クロック毎に微小な階段状に変化してもよい。 The reference signal generator 113 generates a ramp voltage RAMP whose voltage value changes with time. Note that the voltage value of the ramp voltage RAMP may change continuously at a constant speed with time, or may change in a minute step shape every clock.
 各第2列AD変換部124は、対応する列の第1列AD変換部123により生成された残差電圧131をNビットの第2デジタル信号にAD変換する。また、各第2列AD変換部124は、AD変換した第2デジタル信号を保持する。 Each second column AD converter 124 AD converts the residual voltage 131 generated by the first column AD converter 123 of the corresponding column into an N-bit second digital signal. Each second column AD conversion unit 124 holds the AD converted second digital signal.
 各第2列AD変換部124は、比較器110と、カウンタラッチ部111とを備える。 Each second column AD conversion unit 124 includes a comparator 110 and a counter latch unit 111.
 比較器110は、本発明の第2比較部に相当し、第1AD変換器106により生成された残差電圧131と、参照信号生成部113により生成されたランプ電圧RAMPとを比較し、比較結果を示す比較結果信号133(本発明の第2比較結果信号に相当)を生成する。また、比較器110は、生成した比較結果信号133をカウンタラッチ部111に出力する。 The comparator 110 corresponds to the second comparison unit of the present invention, compares the residual voltage 131 generated by the first AD converter 106 with the ramp voltage RAMP generated by the reference signal generation unit 113, and compares the result. A comparison result signal 133 (corresponding to the second comparison result signal of the present invention) is generated. The comparator 110 outputs the generated comparison result signal 133 to the counter latch unit 111.
 カウンタラッチ部111は、本発明の第1保持部に相当し、比較結果信号133の論理が反転したタイミングで、タイミング制御部112により生成されたカウンタ値CNTをラッチ(保持)する。このカウンタラッチ部111により保持されるカウンタ値は、AD変換回路120により生成されるM+Nビットの第3デジタル信号に含まれる下位Nビットに相当する。 The counter latch unit 111 corresponds to the first holding unit of the present invention, and latches (holds) the counter value CNT generated by the timing control unit 112 at the timing when the logic of the comparison result signal 133 is inverted. The counter value held by the counter latch unit 111 corresponds to the lower N bits included in the M + N-bit third digital signal generated by the AD conversion circuit 120.
 列走査回路109は、AD変換回路120によりAD変換された第3デジタル信号を、外部に順次転送する。つまり、列走査回路109は、複数の第1記憶部108に保持されるMビットの第1デジタル信号130及び複数のカウンタラッチ部111に保持されるNビットの第2デジタル信号を、外部に順次転送する。 The column scanning circuit 109 sequentially transfers the third digital signal AD-converted by the AD conversion circuit 120 to the outside. That is, the column scanning circuit 109 sequentially outputs the M-bit first digital signals 130 held in the plurality of first storage units 108 and the N-bit second digital signals held in the plurality of counter latch units 111 to the outside. Forward.
 タイミング制御部112は、本発明の第1制御部及び第2制御部に相当し、行走査回路103と、列走査回路109と、AD変換回路120とを制御する。また、タイミング制御部112は、カウンタ値CNTをカウントする。 The timing control unit 112 corresponds to the first control unit and the second control unit of the present invention, and controls the row scanning circuit 103, the column scanning circuit 109, and the AD conversion circuit 120. Further, the timing control unit 112 counts the counter value CNT.
 以下、第2列AD変換部124の動作を説明する。 Hereinafter, the operation of the second column AD conversion unit 124 will be described.
 まず、比較器110の一方の入力端子に残差電圧131が入力される。その後、タイミング制御部112は、参照信号生成部113から出力されるランプ電圧RAMPを直線的に変化させ始めると同時に、カウンタ値CNTを、1クロック時間が経過する毎に1増加させる又は1減少させる。そして、比較器110は、両入力端子の電圧値が一致したときに(これには実際には遅延時間が存在する)、比較結果信号133の論理を反転させる。カウンタラッチ部111は、このときのカウンタ値CNTを記憶する。つまり、カウンタラッチ部111は、ランプ電圧RAMPの変化が開始した時刻から比較結果信号133の論理が反転するまでの時間を第2デジタル信号として保持する。 First, the residual voltage 131 is input to one input terminal of the comparator 110. Thereafter, the timing control unit 112 starts to linearly change the ramp voltage RAMP output from the reference signal generation unit 113, and at the same time increases or decreases the counter value CNT by 1 every time one clock time elapses. . Then, the comparator 110 inverts the logic of the comparison result signal 133 when the voltage values of both input terminals match (this actually has a delay time). The counter latch unit 111 stores the counter value CNT at this time. That is, the counter latch unit 111 holds the time from when the change of the ramp voltage RAMP starts until the logic of the comparison result signal 133 is inverted as the second digital signal.
 このように、AD変換回路120は、第1列AD変換部123が上位MビットのAD変換を行い、第2列AD変換部124が下位NビットのAD変換を行うことにより、M+NビットのAD変換が可能となる。さらに、この第1列AD変換部123及び第2列AD変換部124が各列に配置されている。よって、AD変換回路120は、行走査回路103により選択された行の全ての画素102により出力された信号電圧Vsigを、同時にAD変換することが可能である。 As described above, the AD conversion circuit 120 is configured such that the first column AD conversion unit 123 performs upper M-bit AD conversion and the second column AD conversion unit 124 performs lower N-bit AD conversion, whereby an M + N-bit AD conversion is performed. Conversion is possible. Further, the first column AD conversion unit 123 and the second column AD conversion unit 124 are arranged in each column. Therefore, the AD conversion circuit 120 can simultaneously AD convert the signal voltage Vsig output from all the pixels 102 in the row selected by the row scanning circuit 103.
 実際にはこれだけの動作では正確なデジタル値を得ることが出来ず、別途デジタル値を校正する校正処理が必要となる。この校正処理は、固体撮像装置100の内部で行ってもよいし、校正に必要なデジタル値のみを固体撮像装置100の内部で生成し、校正処理自体は固体撮像装置100の外部で行ってもよい。いずれにせよ、固体撮像装置100から外部へは、デジタル値が出力されるので、固体撮像装置100により出力される信号に出力経路及び外部でノイズが重畳されるという問題は生じない。 Actually, it is not possible to obtain an accurate digital value with such an operation, and a calibration process for separately calibrating the digital value is required. This calibration processing may be performed inside the solid-state imaging device 100, or only a digital value necessary for calibration is generated inside the solid-state imaging device 100, and the calibration processing itself may be performed outside the solid-state imaging device 100. Good. In any case, since a digital value is output from the solid-state imaging device 100 to the outside, there is no problem that noise is superimposed on the output path and outside on the signal output by the solid-state imaging device 100.
 次に、第1AD変換器106について詳細に説明する。 Next, the first AD converter 106 will be described in detail.
 図3は、第1AD変換器106による上位ビットAD変換動作を説明する図である。 FIG. 3 is a diagram for explaining the upper bit AD conversion operation by the first AD converter 106.
 上位ビットのAD変換を行うには、以下の動作が必要である。まず、第1AD変換器106は、リセット電圧Vresから信号電圧Vsigを差し引くことにより、ノイズキャンセル動作を行う。ここで得られる差分電圧V0(=Vres-Vsig)はノイズ及び画素102内の回路の個々のばらつきによるオフセット電圧を含まず、ほぼ画素102に入射した光強度のみに依存する。 The following operations are required to perform AD conversion of upper bits. First, the first AD converter 106 performs a noise canceling operation by subtracting the signal voltage Vsig from the reset voltage Vres. The differential voltage V0 (= Vres−Vsig) obtained here does not include noise and an offset voltage due to individual variations in the circuit in the pixel 102, and almost depends only on the light intensity incident on the pixel 102.
 ここで、基準電圧生成部107により生成される第1基準電圧VH及び第2基準電圧VLと、この第1基準電圧VHと第2基準電圧VLとの間の電圧値を2M等分する(2M-1)個の電圧値とを考える(この2M+1個の電圧値を閾値電圧と呼ぶことにする)。このそれぞれの閾値電圧は、図3ではVL、V1、V2、・・・、V2M-1、VHと記載している。また、閾値電圧は、下位Nビットが0になるデジタル値に対応している。また、閾値電圧Vlは下記(式1)で表される。ここで、lは、0≦l≦2Mの整数である。 Here, the first reference voltage VH and the second reference voltage VL generated by the reference voltage generation unit 107 and the voltage value between the first reference voltage VH and the second reference voltage VL are equally divided into 2 M ( Consider 2 M −1) voltage values (the 2 M +1 voltage values will be referred to as threshold voltages). The respective threshold voltages are described as VL, V1, V2,..., V2 M −1, VH in FIG. The threshold voltage corresponds to a digital value in which the lower N bits are 0. The threshold voltage Vl is expressed by the following (formula 1). Here, l is an integer of 0 ≦ l ≦ 2 M.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1AD変換器106は、このそれぞれの閾値電圧と、差分電圧V0との大小関係を比較する。そして、第1AD変換器106は、差分電圧V0を超えない最も大きい閾値電圧に対応する上位Mビットのデジタル値を第1デジタル信号130として出力する。 The first AD converter 106 compares the magnitude relationship between the respective threshold voltages and the differential voltage V0. Then, the first AD converter 106 outputs the upper M-bit digital value corresponding to the largest threshold voltage not exceeding the differential voltage V 0 as the first digital signal 130.
 さらに、第1AD変換器106には、下位ビットに対応する残差電圧131を計算し出力する機能が必要である。この残差電圧131は、差分電圧V0と、当該差分電圧V0を超えない最も大きい閾値電圧との差である。この残差電圧131は下位Nビットのアナログ電圧に対応している。 Furthermore, the first AD converter 106 needs to have a function of calculating and outputting the residual voltage 131 corresponding to the lower bits. The residual voltage 131 is a difference between the differential voltage V0 and the largest threshold voltage that does not exceed the differential voltage V0. This residual voltage 131 corresponds to the analog voltage of the lower N bits.
 例えば、図3に示すように差分電圧V0がVaの場合、当該差分電圧Vaを超えない最も大きい閾値電圧は、閾値電圧V2M-1であり、残差電圧131はVbとなる。 For example, as shown in FIG. 3, when the differential voltage V0 is Va, the largest threshold voltage that does not exceed the differential voltage Va is the threshold voltage V2 M −1, and the residual voltage 131 is Vb.
 図4は、第1AD変換器106の概略構成を示す図である。 FIG. 4 is a diagram showing a schematic configuration of the first AD converter 106.
 図4に示すように、第1AD変換器106は、計算部151と、選択部152と、インピーダンス変換器155と、デコーダ・選択回路156とを備える。 4, the first AD converter 106 includes a calculation unit 151, a selection unit 152, an impedance converter 155, and a decoder / selection circuit 156.
 計算部151は、第1計算ユニット153-1、第2計算ユニット153-2、第3計算ユニット153-3、・・・、第2M計算ユニット153-2Mの計2M個の計算ユニット153を備える。なお、これら第1計算ユニット153-1及び第2計算ユニット153-2~第2M計算ユニット153-2Mを特に区別しない場合には、計算ユニット153を記す。 Calculation unit 151, a first calculation unit 153-1, the second calculation unit 153-2, the third calculation unit 153-3, ..., the second M computing unit 153-2 M in total 2 M pieces of computing units 153. Note that these first when calculating unit 153-1 and the second calculation unit 153-2 not particularly distinguished second M computing units 153-2 M ~ is referred computation unit 153.
 各計算ユニット153には、基準電圧生成部107により生成された第1基準電圧VH及び第2基準電圧VLと、信号電圧Vsigと、リセット電圧Vresとが入力される。 The first reference voltage VH and the second reference voltage VL generated by the reference voltage generation unit 107, the signal voltage Vsig, and the reset voltage Vres are input to each calculation unit 153.
 また、各計算ユニット153は、それぞれ、VHを除いたVL、V1、V2、・・・、V2M-1の2M個の閾値電圧に対応している。各計算ユニット153は、対応する閾値電圧に対し、差分電圧V0との大小関係を比較し、1ビットの比較結果信号b(b0、b1、b2、・・・、b2M-1)を出力する。また、各計算ユニット153は、差分電圧V0と、対応する閾値電圧との差を示す残差電圧を計算し、当該残差電圧を示す出力電圧Vout(Vout(1)~Vout(2M))を出力する。この出力電圧Voutは、本発明の第2残差電圧に相当する。 Each calculation unit 153 corresponds to 2 M threshold voltages of VL, V1, V2,..., V2 M −1 excluding VH. Each calculation unit 153 compares the corresponding threshold voltage with the difference voltage V0 and outputs a 1-bit comparison result signal b (b0, b1, b2,..., B2 M −1). . Each calculation unit 153 calculates a residual voltage indicating a difference between the differential voltage V0 and a corresponding threshold voltage, and outputs an output voltage Vout (Vout (1) to Vout (2 M )) indicating the residual voltage. Is output. This output voltage Vout corresponds to the second residual voltage of the present invention.
 選択部152は、2M個の出力電圧Voutのうちいずれか1つを選択し、選択した出力電圧Voutをインピーダンス変換器155に出力する。この選択動作は、後述する選択信号selにより行われる。この選択部152は、各計算ユニット153にそれぞれが対応する2M個のスイッチ154を備える。各スイッチ154は、対応する計算ユニット153の出力端子(出力電圧Voutが出力される端子)と、インピーダンス変換器155の入力端子との間に接続される。 The selection unit 152 selects any one of 2 M output voltages Vout and outputs the selected output voltage Vout to the impedance converter 155. This selection operation is performed by a selection signal sel described later. The selection unit 152 includes 2 M switches 154 each corresponding to each calculation unit 153. Each switch 154 is connected between the output terminal of the corresponding calculation unit 153 (the terminal from which the output voltage Vout is output) and the input terminal of the impedance converter 155.
 インピーダンス変換器155は、選択部152により出力された出力電圧Voutを低インピーダンスで残差電圧131として出力する。なお、インピーダンス変換器155は、出力電圧Voutを増幅してもよい。 The impedance converter 155 outputs the output voltage Vout output by the selection unit 152 as a residual voltage 131 with low impedance. The impedance converter 155 may amplify the output voltage Vout.
 デコーダ・選択回路156は、2M個の計算ユニット153により生成された2Mビットの比較結果信号bをデコードすることにより、上位Mビットの第1デジタル信号130を生成する。また、デコーダ・選択回路156は、2Mビットの比較結果信号bを用いて、差分電圧V0を超えない最も大きい閾値電圧に対応する計算ユニット153に対応するスイッチ154を閉状態(オン)にし、かつ他のスイッチ154を開状態(オフ)にする2Mビットの選択信号selを生成する。この2Mビットの選択信号selの各ビットは、対応するスイッチ154の制御端子に入力される。 Decoder selection circuit 156, by decoding the comparison result signal b 2 M bits generated by 2 M pieces of computing units 153 to generate a first digital signal 130 of upper M bits. Further, the decoder / selection circuit 156 uses the 2 M- bit comparison result signal b to close (turn on) the switch 154 corresponding to the calculation unit 153 corresponding to the largest threshold voltage not exceeding the differential voltage V0, In addition, a 2 M- bit selection signal sel is generated to open the other switch 154 (off). Each bit of the 2 M- bit selection signal sel is input to the control terminal of the corresponding switch 154.
 つまり、選択部152は、2M個の出力電圧Voutのうち、デコーダ・選択回路156により変換された第1デジタル信号130のデジタル値に対応する出力電圧Voutを選択し、選択した出力電圧Voutを残差電圧131として出力する。 That is, the selection unit 152 selects the output voltage Vout corresponding to the digital value of the first digital signal 130 converted by the decoder / selection circuit 156 from the 2 M output voltages Vout, and selects the selected output voltage Vout. The residual voltage 131 is output.
 ここで、計算ユニット153は並列に接続されており、比較動作及び出力電圧Voutを生成する動作は全計算ユニット153で同時に実行される。よって、全ての比較動作の結果を用いて、残差電圧131を生成する場合に比べて、高速化が可能である。また、デコーダ・選択回路156は、計算ユニット153により生成された比較結果信号bを得た後動作するが、このデコーダ・選択回路156は、高々M段の論理ゲートで構成できる。特に固体撮像装置の場合、M+N≦14程度であり、Mは高々5程度が現実的である。この場合、デコーダ・選択回路156は、高々5段の論理ゲートで構成できるので、高速に動作する。すなわち、第1AD変換器106は、ほぼ計算ユニット153の動作が終了すると同時に上位ビットのAD変換処理と、残差電圧131の出力処理とを完了することが可能であり、高速なAD変換を実現できる。また、第1AD変換器106は、これらと同時にノイズキャンセルを実現できる。 Here, the calculation units 153 are connected in parallel, and the comparison operation and the operation of generating the output voltage Vout are simultaneously executed by all the calculation units 153. Therefore, the speed can be increased as compared with the case where the residual voltage 131 is generated using the results of all the comparison operations. The decoder / selection circuit 156 operates after obtaining the comparison result signal b generated by the calculation unit 153. The decoder / selection circuit 156 can be composed of at most M stages of logic gates. In particular, in the case of a solid-state imaging device, M + N ≦ 14, and M is practically about 5 at most. In this case, since the decoder / selection circuit 156 can be composed of at most five stages of logic gates, it operates at high speed. That is, the first AD converter 106 can complete the AD conversion processing of the upper bits and the output processing of the residual voltage 131 at the same time as the operation of the calculation unit 153 is almost completed, thereby realizing high-speed AD conversion. it can. Further, the first AD converter 106 can realize noise cancellation at the same time.
 以下、第1AD変換器106について、さらに詳しく説明する。 Hereinafter, the first AD converter 106 will be described in more detail.
 図5は、第1AD変換器106の詳細な構成を示す図である。 FIG. 5 is a diagram showing a detailed configuration of the first AD converter 106.
 なお、以下では、キャパシタの容量値を含めて説明するが、各キャパシタの容量値が以下の説明とは異なる値であってもよい。ただし、容量値によっては、正しいAD変換結果が得られない場合も考えられるが、別途それを校正する手段を用意すれば結果的に正しくAD変換することは可能である。 In the following, description will be made including the capacitance value of the capacitor, but the capacitance value of each capacitor may be different from the following description. However, depending on the capacitance value, there may be a case where a correct AD conversion result cannot be obtained, but if a means for calibrating it is prepared separately, it is possible to correctly perform AD conversion as a result.
 図5に示すように、第1AD変換器106は、さらに、インピーダンス変換器155の入力端子と、第1基準電圧VHが印加されている信号線との間に接続されるスイッチ157を備える。 As shown in FIG. 5, the first AD converter 106 further includes a switch 157 connected between the input terminal of the impedance converter 155 and the signal line to which the first reference voltage VH is applied.
 また、第1計算ユニット153-1と、それ以外の計算ユニット153(第2計算ユニット153-2から第2M計算ユニット153-2M)との構成は異なる。具体的には、第1計算ユニット153-1は、残差電圧生成部160Aと、比較器161とを備える。第2計算ユニット153-2から第2M計算ユニット153-2Mは、残差電圧生成部160Bと、比較器161とを備える。 The configuration of the first calculation unit 153-1 and the other calculation units 153 (from the second calculation unit 153-2 to the second M calculation unit 153-2 M ) is different. Specifically, the first calculation unit 153-1 includes a residual voltage generation unit 160A and a comparator 161. The second M computing unit 153-2 M from the second computing unit 153-2 includes a residual voltage generating unit 160B, and a comparator 161.
 合計2M個の残差電圧生成部160A及び160Bは、2M個の出力電圧Voutを生成する。ここで、2M個の出力電圧Voutは、Mビットの第1デジタル信号130により表される2M個のデジタル値の各々に対応する。なお、Voutは後述する(式2)で表される。 A total of 2 M residual voltage generators 160A and 160B generate 2 M output voltages Vout. Here, 2 M output voltages Vout correspond to each of 2 M digital values represented by the M-bit first digital signal 130. Vout is expressed by (Expression 2) described later.
 2M個の比較器161は、本発明の第1比較部に相当し、2M個の出力電圧Voutの各々と第1基準電圧VHとを比較することにより、2Mビットの比較結果信号bを生成する。 The 2 M comparators 161 correspond to the first comparison unit of the present invention, and each of the 2 M output voltages Vout and the first reference voltage VH are compared, thereby comparing the 2 M bit comparison result signal b. Is generated.
 残差電圧生成部160Aは、本発明の第1残差電圧生成部に相当し、第1スイッチ164と、第2スイッチ162と、キャパシタ163とを備える。 The residual voltage generator 160A corresponds to the first residual voltage generator of the present invention, and includes a first switch 164, a second switch 162, and a capacitor 163.
 キャパシタ163は、本発明の第1容量に相当し、一端(右端)がノード165に接続され、他端(左端)が第2スイッチ162に接続されている。ノード165は、出力電圧Voutが出力される出力端子(本発明の第1端子及び第2端子)に相当し、第1スイッチ164と、比較器161の第1入力端子と、対応するスイッチ154とに接続される。 The capacitor 163 corresponds to the first capacitor of the present invention, and one end (right end) is connected to the node 165 and the other end (left end) is connected to the second switch 162. The node 165 corresponds to an output terminal (a first terminal and a second terminal of the present invention) from which the output voltage Vout is output. The node 165 includes a first switch 164, a first input terminal of the comparator 161, and a corresponding switch 154. Connected to.
 第2スイッチ162は、信号電圧Vsig及び第1基準電圧VHの一方を選択し、選択した電圧をキャパシタ163の左端に供給する。ここでCを任意の正の実数としたとき、キャパシタ163の容量値は2MCである。 The second switch 162 selects one of the signal voltage Vsig and the first reference voltage VH, and supplies the selected voltage to the left end of the capacitor 163. Here, when C is an arbitrary positive real number, the capacitance value of the capacitor 163 is 2 MC .
 第1スイッチ164は、リセット電圧Vresをノード165に供給する閉状態(オン)と、リセット電圧Vresをノード165に供給しない開状態(オフ)とを切り替える。 The first switch 164 switches between a closed state (ON) in which the reset voltage Vres is supplied to the node 165 and an open state (OFF) in which the reset voltage Vres is not supplied to the node 165.
 残差電圧生成部160Bは、本発明の第2残差電圧生成部に相当し、第1スイッチ164(本発明の第5スイッチに相当)と、第3スイッチ166と、第4スイッチ168と、キャパシタ167及び169とを備える。 The residual voltage generator 160B corresponds to a second residual voltage generator of the present invention, and includes a first switch 164 (corresponding to a fifth switch of the present invention), a third switch 166, a fourth switch 168, Capacitors 167 and 169.
 キャパシタ167は、本発明の第2容量に相当し、一端(右端)がノード165に接続され、他端(左端)が第3スイッチ166に接続されている。キャパシタ169は、本発明の第3容量に相当し、一端(右端)がノード165に接続され、他端(左端)が第4スイッチ168に接続されている。 The capacitor 167 corresponds to the second capacitor of the present invention, and has one end (right end) connected to the node 165 and the other end (left end) connected to the third switch 166. The capacitor 169 corresponds to the third capacitor of the present invention, and has one end (right end) connected to the node 165 and the other end (left end) connected to the fourth switch 168.
 第3スイッチ166は、信号電圧Vsig、第1基準電圧VH及び第2基準電圧VLのうちいずれかを選択し、選択した電圧をキャパシタ167の左端に供給する。第4スイッチ168は、第2基準電圧VL及び信号電圧Vsigのうち一方を選択し、選択した電圧をキャパシタ169の左端に供給する。 The third switch 166 selects any one of the signal voltage Vsig, the first reference voltage VH, and the second reference voltage VL, and supplies the selected voltage to the left end of the capacitor 167. The fourth switch 168 selects one of the second reference voltage VL and the signal voltage Vsig and supplies the selected voltage to the left end of the capacitor 169.
 また、第2計算ユニット153-2から第2M計算ユニット153-2Mに含まれるキャパシタ167及び169の容量値は異なる。具体的には、kを2以上かつ2M以下の整数としたとき、第k計算ユニット153に含まれるキャパシタ167の容量値は(2M-k+1)Cであり、キャパシタ169の容量値は(k-1)Cである。 The capacitance value of the capacitor 167 and 169 included from the second calculation unit 153-2 to the second M computing unit 153-2 M are different. Specifically, when k is an integer greater than or equal to 2 and less than or equal to 2 M , the capacitance value of the capacitor 167 included in the k th calculation unit 153 is (2 M −k + 1) C, and the capacitance value of the capacitor 169 is ( k-1) C.
 また、第1スイッチ164、第2スイッチ162、第3スイッチ166、第4スイッチ168、及びスイッチ157は、タイミング制御部112により生成された制御信号により開閉及び選択が制御される。 Further, the opening / closing and selection of the first switch 164, the second switch 162, the third switch 166, the fourth switch 168, and the switch 157 are controlled by a control signal generated by the timing control unit 112.
 以下、第1AD変換器106の動作を説明する。以下では、M=2、VL=0V、VH=1V、Vres=1.5V、Vsig=1.2Vの場合を例に説明するが、他の場合も同様に動作することはいうまでもない。図6は、第1AD変換器106の動作を示すタイミングチャートである。図6は、横方向に時刻を示しており、左から右に時間が経過する様子を示したものである。また、図6の縦方向は電圧値である。また、図6では第1計算ユニット~第4計算ユニットの出力電圧Vout(1)~Vout(4)(ノード165の電圧)と、残差電圧131(インピーダンス変換器155の入力端子の電圧も同様)との各時刻での値を示している。また、ここでの説明は、リセット電圧Vresにオフセット電圧を印加していない場合である。印加する場合は、各比較器161の第2入力端子に印加する第1基準電圧VHに、オフセット電圧を加えておけばよい。 Hereinafter, the operation of the first AD converter 106 will be described. In the following, the case of M = 2, VL = 0V, VH = 1V, Vres = 1.5V, and Vsig = 1.2V will be described as an example, but it goes without saying that the same operation is performed in other cases. FIG. 6 is a timing chart showing the operation of the first AD converter 106. FIG. 6 shows the time in the horizontal direction, and shows how time elapses from left to right. Moreover, the vertical direction of FIG. 6 is a voltage value. In FIG. 6, the output voltages Vout (1) to Vout (4) (voltage of the node 165) of the first calculation unit to the fourth calculation unit and the residual voltage 131 (voltage of the input terminal of the impedance converter 155) are the same. ) And the value at each time. Further, the description here is a case where no offset voltage is applied to the reset voltage Vres. When applying, an offset voltage may be added to the first reference voltage VH applied to the second input terminal of each comparator 161.
 まず、時刻t1~時刻t2の期間において、タイミング制御部112は、第1スイッチ164を閉状態にし、第2スイッチ162、第3スイッチ166及び第4スイッチ168にVsigを選択させる。このとき、キャパシタ163、キャパシタ167及びキャパシタ169の右端(ノード165)の電圧はVresになるため、各計算ユニット153の出力電圧Voutは全てVresになる。 First, in the period from time t1 to time t2, the timing control unit 112 closes the first switch 164 and causes the second switch 162, the third switch 166, and the fourth switch 168 to select Vsig. At this time, since the voltages at the right ends (nodes 165) of the capacitors 163, 167, and 169 are Vres, the output voltages Vout of the respective calculation units 153 are all Vres.
 また、キャパシタ163、キャパシタ167、キャパシタ169の左端の電圧はVsigとなるので、キャパシタ163、167及び169の両端の電圧差は、Vres-Vsigとなる。実際には、キャパシタ163、167及び169の充放電が終了し、定常状態になったとき、キャパシタ163、167及び169の両端の電圧差が上記の値になる。 Further, since the voltages at the left ends of the capacitors 163, 167, and 169 are Vsig, the voltage difference between both ends of the capacitors 163, 167, and 169 is Vres−Vsig. Actually, when charging / discharging of the capacitors 163, 167, and 169 is completed and a steady state is reached, the voltage difference between both ends of the capacitors 163, 167, and 169 becomes the above value.
 また、時刻t1~時刻t4の期間では、タイミング制御部112は、スイッチ157をオンするとともに、全てのスイッチ154をオフする。これにより、インピーダンス変換器155の入力端子に第1基準電圧VHが供給される。よって、残差電圧131はVHとなる。 In the period from time t1 to time t4, the timing control unit 112 turns on the switches 157 and turns off all the switches 154. As a result, the first reference voltage VH is supplied to the input terminal of the impedance converter 155. Therefore, the residual voltage 131 is VH.
 次に、時刻t2~時刻t3の期間において、タイミング制御部112は、第1スイッチ164をオフするとともに、第2スイッチ162に第1基準電圧VHを選択させ、第3スイッチ166及び第4スイッチ168に第2基準電圧VLを選択させる。このとき、キャパシタ163の右端(ノード165)には電圧源が接続されていない状態なので、時刻t2の前後でのキャパシタ163の両端の電圧差は一定である。よって、キャパシタ163の左端の電圧が第2スイッチ162の切り替えにより、VH-Vsigだけ変化しているため、キャパシタ163の右端(ノード165)の電圧すなわち第1計算ユニット153-1により出力される出力電圧Vout(1)は、下記(式2)で表される。 Next, in the period from time t2 to time t3, the timing control unit 112 turns off the first switch 164 and causes the second switch 162 to select the first reference voltage VH, and the third switch 166 and the fourth switch 168. To select the second reference voltage VL. At this time, since the voltage source is not connected to the right end (node 165) of the capacitor 163, the voltage difference between both ends of the capacitor 163 before and after the time t2 is constant. Therefore, since the voltage at the left end of the capacitor 163 changes by VH−Vsig due to the switching of the second switch 162, the voltage at the right end (node 165) of the capacitor 163, that is, the output output by the first calculation unit 153-1. The voltage Vout (1) is expressed by the following (formula 2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、キャパシタ167及びキャパシタ169についても、右端には電圧源が接続されていない。また、左端の電位はともに第2基準電圧VLとなる。つまり、キャパシタ167及びキャパシタ169の両端の電圧差が一定であるとともに、左端の電圧がVL-Vsigだけ変化している。それゆえ、キャパシタ167及びキャパシタ169の右端の電圧すなわち第2計算ユニット153-2~第2M計算ユニット153-2Mにより出力される出力電圧Vout(k)(kは2≦k≦2Mの整数)は、下記(式3)で表される。 Further, no voltage source is connected to the right end of the capacitors 167 and 169 as well. Further, both the leftmost potentials are the second reference voltage VL. That is, the voltage difference between both ends of the capacitor 167 and the capacitor 169 is constant, and the left end voltage is changed by VL−Vsig. Therefore, the right end of the voltage or the second computation unit 153-2 ~ output voltage Vout output by the second M computing unit 153-2 M of capacitor 167 and capacitor 169 (k) (k is a 2 ≦ k ≦ 2 M (Integer) is represented by the following (formula 3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、時刻t3において、タイミング制御部112は、第3スイッチ166に第1基準電圧VHを選択させる。つまり、時刻t3以降において、タイミング制御部112は、第1スイッチ164をオフし、第2スイッチ162及び第3スイッチ166に第1基準電圧を選択させ、第4スイッチ168に第2基準電圧VLを選択させる。 Next, at time t3, the timing control unit 112 causes the third switch 166 to select the first reference voltage VH. That is, after time t3, the timing controller 112 turns off the first switch 164, causes the second switch 162 and the third switch 166 to select the first reference voltage, and causes the fourth switch 168 to apply the second reference voltage VL. Let them choose.
 このとき、第1計算ユニット153-1の状態は変化しないので、第1計算ユニット153-1の出力電圧Vout(1)は上記(式2)で表される。 At this time, since the state of the first calculation unit 153-1 does not change, the output voltage Vout (1) of the first calculation unit 153-1 is expressed by the above (formula 2).
 また、第k計算ユニット153-kの出力電圧Vout(k)は以下のようになる。 Also, the output voltage Vout (k) of the k-th calculation unit 153-k is as follows.
 まず、時刻t3より前において、キャパシタ167とキャパシタ169とに充電される電荷の合計QBCは、下記(式4)で表される。 First, before the time t3, the total charge Q BC charged in the capacitor 167 and the capacitor 169 is expressed by the following (formula 4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、時刻t3より後において、キャパシタ167に充電される電荷QBは、下記(式5)で表される。 Further, after time t3, the charge Q B charged in the capacitor 167 is expressed by the following (formula 5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、時刻t3より後において、キャパシタ169に充電される電荷QCは、下記(式6)で表される。 Further, after time t3, the charge Q C charged in the capacitor 169 is expressed by the following (formula 6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、Vout(k)には電圧源が接続されていないので、時刻t3の前後で電荷が保存されるので、下記(式7)の関係が成り立つ。 In addition, since no voltage source is connected to Vout (k), the electric charge is stored before and after time t3, so the following relationship (Equation 7) holds.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 これらの(式4)~(式7)からQBC、QB、QCを消去することにより下記(式8)が得られる。 By eliminating Q BC , Q B , and Q C from (Equation 4) to (Equation 7), the following (Equation 8) is obtained.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 さらに、これを上記(式1)のVlの定義で書き換えれば下記(式9)が得られる。 Furthermore, if this is rewritten with the definition of Vl in (Expression 1) above, the following (Expression 9) is obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 例えば、図6に示す例では、第2計算ユニット153-2の出力電圧Vout(2)は、Vres-Vsig+V3となり、第3計算ユニット153-3の出力電圧Vout(3)は、Vres-Vsig+V2となり、第4計算ユニット153-4の出力電圧Vout(4)は、Vres-Vsig+V1となる。 For example, in the example shown in FIG. 6, the output voltage Vout (2) of the second calculation unit 153-2 is Vres−Vsig + V3, and the output voltage Vout (3) of the third calculation unit 153-3 is Vres−Vsig + V2. The output voltage Vout (4) of the fourth calculation unit 153-4 is Vres−Vsig + V1.
 次に、時刻t3~時刻t4の期間において、出力電圧Vout(k)が安定した後、各比較器161は第2入力端子に入力されている第1基準電圧VHと、出力電圧Vout(k)との比較を行う。これは、(式8)で考えると、差分電圧V0(=Vres-Vsig)と閾値電圧Vk(=(k-1)×(VH-VL)/2M)との大小関係を比較することと同じである。このように、各比較器161は、対応する閾値電圧と差分電圧V0とを比較し、比較結果を示す比較結果信号bを出力できる。 Next, in the period from time t3 to time t4, after the output voltage Vout (k) is stabilized, each comparator 161 receives the first reference voltage VH input to the second input terminal and the output voltage Vout (k). Compare with. Considering (Equation 8), this is because comparing the magnitude relationship between the differential voltage V0 (= Vres−Vsig) and the threshold voltage Vk (= (k−1) × (VH−VL) / 2 M ). The same. In this way, each comparator 161 can compare the corresponding threshold voltage with the differential voltage V0 and output the comparison result signal b indicating the comparison result.
 例えば、図6に示す例では、出力電圧Vout(1)及びVout(2)が第1基準電圧VHより大きく、出力電圧Vout(3)及びVout(4)が第1基準電圧VHより小さい。したがって、b(1)はLO(ローレベル)、b(2)はLO、b(3)はHI(ハイレベル)、b(4)はHIとなる。 For example, in the example shown in FIG. 6, the output voltages Vout (1) and Vout (2) are larger than the first reference voltage VH, and the output voltages Vout (3) and Vout (4) are smaller than the first reference voltage VH. Therefore, b (1) is LO (low level), b (2) is LO, b (3) is HI (high level), and b (4) is HI.
 ここで、差分電圧V0と、j番目の閾値電圧との差をVdとすると、Vdは次式で表せる。なお、jは整数である。 Here, when the difference between the differential voltage V0 and the jth threshold voltage is Vd, Vd can be expressed by the following equation. J is an integer.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 次に、時刻t4において、デコーダ・選択回路156は、2Mビットの比較結果信号bをデコードすることにより、上位Mビットの第1デジタル信号130を出力する。図6の場合であれば、第1デジタル信号130は、2進数表記で10となる。また、デコーダ・選択回路156は、2Mビットの比較結果信号bを用いて、選択信号selを出力し、第j計算ユニット153-jの出力電圧Vout(j)をインピーダンス変換器155の入力端子に印加する。 Next, at time t4, the decoder / selection circuit 156 decodes the 2 M- bit comparison result signal b to output the first digital signal 130 of higher M bits. In the case of FIG. 6, the first digital signal 130 is 10 in binary notation. The decoder / selection circuit 156 outputs the selection signal sel using the 2 M- bit comparison result signal b, and outputs the output voltage Vout (j) of the j-th calculation unit 153-j to the input terminal of the impedance converter 155. Apply to.
 例えば、図6に示す例では、第2計算ユニット153-2に対応するスイッチ154のみがオンし、それ以外のスイッチ154がオフする。 For example, in the example shown in FIG. 6, only the switch 154 corresponding to the second calculation unit 153-2 is turned on, and the other switches 154 are turned off.
 また、時刻t4において、タイミング制御部112は、スイッチ157を開く。このとき、(式9)より、Vout(j)は、下記(式11)で表される。 Also, at time t4, the timing control unit 112 opens the switch 157. At this time, from (Expression 9), Vout (j) is expressed by the following (Expression 11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 つまり、第1AD変換器106は、時刻t4以降において、残差電圧131として、(Vd+VH)に対応する電圧を出力する。 That is, the first AD converter 106 outputs a voltage corresponding to (Vd + VH) as the residual voltage 131 after time t4.
 例えば、図6に示す例では、残差電圧131は、Vres-Vsig+V3になる。 For example, in the example shown in FIG. 6, the residual voltage 131 is Vres−Vsig + V3.
 なお、時刻t4以前において、第1AD変換器106は、第1基準電圧VHを残差電圧131として出力している。従って、第2列AD変換部124が、これらの電圧差を算出する。(式10)と(式11)より、この電圧差はVdである。第2列AD変換部124は、このVdをAD変換することにより、下位Nビットの第2デジタル信号を生成できる。 Note that the first AD converter 106 outputs the first reference voltage VH as the residual voltage 131 before time t4. Therefore, the second column AD conversion unit 124 calculates these voltage differences. From (Equation 10) and (Equation 11), this voltage difference is Vd. The second column AD converter 124 can generate a second digital signal of lower N bits by AD converting this Vd.
 以下、第2列AD変換部124の詳細を説明する。 Hereinafter, details of the second column AD conversion unit 124 will be described.
 図7は、比較器110の構成例を示す回路図である。 FIG. 7 is a circuit diagram showing a configuration example of the comparator 110.
 図7に示すように、比較器110は、差動増幅回路170と、キャパシタ171及び172とスイッチ173とを備える。 As shown in FIG. 7, the comparator 110 includes a differential amplifier circuit 170, capacitors 171 and 172, and a switch 173.
 キャパシタ171は、当該比較器110の第1入力端子と、差動増幅回路170の一方の入力端子(一方の差動トランジスタ174のゲート)との間に接続されている。また、キャパシタ172は、当該比較器110の第2入力端子と、差動増幅回路170の他方の入力端子(他方の差動トランジスタ174のゲート)との間に接続されている。 The capacitor 171 is connected between the first input terminal of the comparator 110 and one input terminal of the differential amplifier circuit 170 (the gate of one differential transistor 174). The capacitor 172 is connected between the second input terminal of the comparator 110 and the other input terminal of the differential amplifier circuit 170 (the gate of the other differential transistor 174).
 スイッチ173は、差動増幅回路170の2つの入力端子を短絡又は開放する。このスイッチ173は、タイミング制御部112により開閉が制御される。 The switch 173 shorts or opens the two input terminals of the differential amplifier circuit 170. The opening and closing of the switch 173 is controlled by the timing control unit 112.
 次に、比較器110の動作を説明する。 Next, the operation of the comparator 110 will be described.
 まず、タイミング制御部112は、第1入力端子に入力されている、残差電圧131が第1基準電圧VHである期間(図6の時刻t4以前)において、スイッチ173を閉じるとともに、第2入力端子に入力されている参照信号生成部113により生成されたランプ電圧RAMPを一定にする。 First, the timing control unit 112 closes the switch 173 and outputs the second input during the period (before time t4 in FIG. 6) in which the residual voltage 131 is input to the first input terminal and is the first reference voltage VH. The ramp voltage RAMP generated by the reference signal generator 113 input to the terminal is made constant.
 次に、タイミング制御部112は、残差電圧131がVd+VHになるタイミング(時刻t4)で、スイッチ173を開くとともに、RAMP電圧を上昇させ始める。さらに、タイミング制御部112は、これらと同時にカウンタ値CNTを増加させ始める。 Next, the timing control unit 112 opens the switch 173 and starts increasing the RAMP voltage at the timing (time t4) when the residual voltage 131 becomes Vd + VH. Further, the timing control unit 112 starts increasing the counter value CNT simultaneously with these.
 その後、差動増幅回路170の2つの入力端子の電位が一致するタイミングで比較結果信号133の論理が変化する。 Thereafter, the logic of the comparison result signal 133 changes at the timing when the potentials of the two input terminals of the differential amplifier circuit 170 coincide.
 カウンタラッチ部111が、この比較結果信号133の論理が変化したタイミングのカウンタ値CNTを記憶することにより、下位NビットAD変換が終了する。 The counter latch unit 111 stores the counter value CNT at the timing when the logic of the comparison result signal 133 changes, and the lower N-bit AD conversion ends.
 以上の動作を踏まえ、固体撮像装置100によるAD変換動作を説明する。図8は、固体撮像装置100によるAD変換動作のタイミングチャートである。図8は、横方向に時刻を示しており、左から右に時間が経過する様子を示したものである。縦方向は電圧値である。 Based on the above operation, the AD conversion operation by the solid-state imaging device 100 will be described. FIG. 8 is a timing chart of the AD conversion operation by the solid-state imaging device 100. FIG. 8 shows the time in the horizontal direction, and shows how time elapses from left to right. The vertical direction is a voltage value.
 まず、水平ブランキング期間に、画素102は、撮像動作を行い、時刻t11~時刻t13の期間において、リセット電圧Vresを垂直信号線104に出力する。それに伴い、リセット電圧保持部105は、時刻t12において、リセット電圧Vresを保持する。 First, in the horizontal blanking period, the pixel 102 performs an imaging operation, and outputs a reset voltage Vres to the vertical signal line 104 in a period from time t11 to time t13. Accordingly, the reset voltage holding unit 105 holds the reset voltage Vres at time t12.
 その後、時刻t14~時刻t17の期間において、画素102は、信号電圧Vsigを垂直信号線104に出力する。これにより、信号電圧Vsigとリセット電圧Vresとが第1AD変換器106に入力される。 Thereafter, in the period from time t14 to time t17, the pixel 102 outputs the signal voltage Vsig to the vertical signal line 104. As a result, the signal voltage Vsig and the reset voltage Vres are input to the first AD converter 106.
 次に、各計算ユニット153が図6に示す動作を行う。よって、時刻t15(図6の時刻t3に相当)において、各出力電圧Voutは、上記(式9)で示される値となる。 Next, each calculation unit 153 performs the operation shown in FIG. Therefore, at time t15 (corresponding to time t3 in FIG. 6), each output voltage Vout has a value represented by the above (Equation 9).
 また、時刻t16(図6の時刻t4に相当)以前において、残差電圧131は第1基準電圧VHとなり、時刻t16の時点で、残差電圧131は、(Vd+VH)(図8ではVres-Vsig+Vxと記載)が順番に出力される。 Further, before time t16 (corresponding to time t4 in FIG. 6), the residual voltage 131 becomes the first reference voltage VH, and at time t16, the residual voltage 131 becomes (Vd + VH) (Vres−Vsig + Vx in FIG. 8). Are described in order.
 次に、時刻t18において、参照信号生成部113は、ランプ電圧RAMPの電圧値の増加を開始する。また、時刻t18において、タイミング制御部112は、カウンタ値CNTのカウントアップを開始する。 Next, at time t18, the reference signal generator 113 starts increasing the voltage value of the ramp voltage RAMP. At time t18, the timing control unit 112 starts counting up the counter value CNT.
 次に、時刻t19において、残差電圧131とランプ電圧RAMPとの電圧値が一致することにより、比較器110は比較結果信号133の論理を反転させる。これにより、カウンタラッチ部111は、時刻t19におけるカウンタ値CNTを記憶する。 Next, at time t19, when the voltage values of the residual voltage 131 and the ramp voltage RAMP match, the comparator 110 inverts the logic of the comparison result signal 133. As a result, the counter latch unit 111 stores the counter value CNT at time t19.
 以上により、M+NビットのAD変換動作が完了する。 Thus, the M + N bit AD conversion operation is completed.
 なお、図8には記載していないが、この後、列走査回路109は、各列のM+Nビットの第3デジタル信号を、順番に固体撮像装置100の外部に転送する。以上により、一行分の動作が完了する。 Although not shown in FIG. 8, after that, the column scanning circuit 109 sequentially transfers the M + N-bit third digital signal of each column to the outside of the solid-state imaging device 100. Thus, the operation for one line is completed.
 また、ここで示したAD変換動作は、水平走査期間に行われる。ただし、固体撮像装置100の撮像速度(所謂フレームレート)を大きくしたい場合は、固体撮像装置100は、他の行の水平ブランキング期間及び水平走査期間に、AD変換動作を行ってもよい。この場合、他の行の動作と並列的にAD変換動作をする回路又は手段を用意すればよい。 Further, the AD conversion operation shown here is performed during the horizontal scanning period. However, when it is desired to increase the imaging speed (so-called frame rate) of the solid-state imaging device 100, the solid-state imaging device 100 may perform the AD conversion operation in the horizontal blanking period and the horizontal scanning period of other rows. In this case, a circuit or means for performing an AD conversion operation in parallel with the operation of another row may be prepared.
 以上より、本発明の実施の形態1に係る固体撮像装置100は、図15に示す従来の固体撮像装置600に比べ、さらにAD変換処理を高速化できる。 As described above, the solid-state imaging device 100 according to Embodiment 1 of the present invention can further speed up the AD conversion processing as compared with the conventional solid-state imaging device 600 shown in FIG.
 具体的には、図16に示す従来のAD変換器601では、ADC回路(2ビットADC603)とアナログ残差を出力する回路とが独立して存在している。また、ADC回路のAD変換動作が終了した後に、キャパシタに接続されているスイッチが操作されることによりDA変換が行われる。次に、信号電圧とリセット電圧との差分を算出するとともに、当該差分からDA変換されたアナログ電圧を減算することによりアナログ残差(残差電圧)が生成される。 Specifically, in the conventional AD converter 601 shown in FIG. 16, an ADC circuit (2-bit ADC 603) and a circuit that outputs an analog residual exist independently. Further, after the AD conversion operation of the ADC circuit is completed, DA conversion is performed by operating a switch connected to the capacitor. Next, the difference between the signal voltage and the reset voltage is calculated, and an analog residual (residual voltage) is generated by subtracting the analog voltage obtained by DA conversion from the difference.
 このように、従来のAD変換器601では、AD変換した上位ビットのデジタル信号をDA変換し、DA変換した信号電圧からDA変換したアナログ電圧を減算することにより、アナログ残差を算出する。 As described above, the conventional AD converter 601 DA-converts the AD converted upper bit digital signal, and calculates the analog residual by subtracting the DA-converted analog voltage from the DA-converted signal voltage.
 さらに、特許文献2には、ADC回路の具体例としてN=2の場合のみ開示してありこの場合にはAD変換時間が短時間で終了するかも知れないが、Nが大きくなると一般的にAD変換時間が増大するため、速度低下が懸念される。 Further, Patent Document 2 discloses only a case where N = 2 as a specific example of the ADC circuit. In this case, the AD conversion time may be completed in a short time. Since the conversion time increases, there is a concern about speed reduction.
 また、図16で示した従来のAD変換器601には、ADC回路とアナログ残差の出力回路との2つのブロックが存在しており、回路規模が大きくなることが懸念される。ところが、この回路は撮像部の各列に対応して配置することが前提であり、面積的に配置困難になることが予想される。 Also, the conventional AD converter 601 shown in FIG. 16 has two blocks, an ADC circuit and an analog residual output circuit, and there is a concern that the circuit scale will increase. However, it is assumed that this circuit is arranged corresponding to each column of the imaging unit, and it is expected that it is difficult to arrange in terms of area.
 さらに、従来のAD変換器601は、ADC回路とアナログ回路残差を出力するアンプとが同時に動作するため、動作電力の増大が懸念される。 Furthermore, in the conventional AD converter 601, since the ADC circuit and the amplifier that outputs the analog circuit residual operate simultaneously, there is a concern that the operating power increases.
 一方、本発明の実施の形態1に係る固体撮像装置100では、2M個の残差電圧生成部160(160A及び160B)により、2M個の残差電圧(出力電圧Vout)を生成し、生成した残差電圧を用いてAD変換処理を行う。このように、本発明の実施の形態1に係る固体撮像装置100は、従来のAD変換器601で行われていたDA変換処理を行わないので、従来のAD変換器601に比べて、高速にAD変換処理を行うことができる。 On the other hand, in the solid-state imaging device 100 according to Embodiment 1 of the present invention, 2 M residual voltage generators 160 (160A and 160B) generate 2 M residual voltages (output voltage Vout), AD conversion processing is performed using the generated residual voltage. As described above, since the solid-state imaging device 100 according to Embodiment 1 of the present invention does not perform the DA conversion processing performed in the conventional AD converter 601, it is faster than the conventional AD converter 601. AD conversion processing can be performed.
 また、本発明の実施の形態1に係る固体撮像装置100では、第1AD変換部121が、キャパシタの充放電を用いて高速に差分電圧V0を算出するとともに、2M個の閾値電圧と、差分電圧とを2M個の比較器161により同時に比較することにより、高速なAD変換処理を実現できる。 Further, in the solid-state imaging device 100 according to Embodiment 1 of the present invention, the first AD converter 121 calculates the differential voltage V0 at high speed using the charging / discharging of the capacitor, and 2 M threshold voltages and the difference By simultaneously comparing the voltages with 2 M comparators 161, high-speed AD conversion processing can be realized.
 また、第2AD変換部122は、ランプ電圧RAMPを用い線形性の優れたAD変換処理を行う。 Further, the second AD converter 122 performs an AD conversion process with excellent linearity using the ramp voltage RAMP.
 このように、本発明の実施の形態1に係る固体撮像装置100は、上位MビットのAD変換については、高い精度が要求されないので、線形性は劣るが速度が速い方法を用い、下位Nビットの変換については線形性が優れているが速度が遅い方法を用いる。これにより、本発明に係る固体撮像装置100は、変換速度の向上と線形性の確保という、互いにトレードオフ関係にあるこの両者を両立することができる。 As described above, the solid-state imaging device 100 according to Embodiment 1 of the present invention does not require high accuracy for the upper M-bit AD conversion. For this conversion, a method with excellent linearity but slow speed is used. As a result, the solid-state imaging device 100 according to the present invention can achieve both the trade-off relationship between improving the conversion speed and ensuring the linearity.
 (実施の形態2)
 以下、本発明の実施の形態2に係る固体撮像装置100Aについて図面を参照しながら説明する。
(Embodiment 2)
Hereinafter, a solid-state imaging device 100A according to Embodiment 2 of the present invention will be described with reference to the drawings.
 図9は、本発明の実施の形態2に係る固体撮像装置100Aの構成を示す図である。なお、図1と同様の要素には同一の符号を付している。 FIG. 9 is a diagram showing a configuration of a solid-state imaging device 100A according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the element similar to FIG.
 本発明の実施の形態2に係る固体撮像装置100Aは、上述した実施の形態1に係る固体撮像装置100に対して、第1AD変換部121Aの構成が異なる。以下では、実施の形態1に係る固体撮像装置100との相違点を主に説明し、重複する説明は省略する。 The solid-state imaging device 100A according to Embodiment 2 of the present invention differs from the solid-state imaging device 100 according to Embodiment 1 described above in the configuration of the first AD converter 121A. Hereinafter, differences from the solid-state imaging device 100 according to Embodiment 1 will be mainly described, and overlapping descriptions will be omitted.
 第1AD変換部121Aは、第1AD変換処理を行う。この第1AD変換部121Aは、基準電圧生成部107と、Q列毎に1つ設けられた複数の第1列AD変換部123Aを備える。 The first AD conversion unit 121A performs a first AD conversion process. The first AD converter 121A includes a reference voltage generator 107 and a plurality of first column AD converters 123A, one for each Q column.
 各第1列AD変換部123Aは、対応するQ列に配置された画素102により生成されたリセット電圧Vresと信号電圧Vsigとに対して、第1AD変換処理を行う。 Each first column AD conversion unit 123A performs a first AD conversion process on the reset voltage Vres and the signal voltage Vsig generated by the pixels 102 arranged in the corresponding Q column.
 各第1列AD変換部123Aは、Q個のリセット電圧保持部105と、Q個の信号電圧保持部301と、第1選択回路302と、第2選択回路303と、第1AD変換器106と、Q個の第1記憶部108と、Q個の残差電圧保持部304とを備える。 Each first column AD conversion unit 123A includes Q reset voltage holding units 105, Q signal voltage holding units 301, a first selection circuit 302, a second selection circuit 303, and a first AD converter 106. , Q first storage units 108, and Q residual voltage holding units 304.
 各リセット電圧保持部105は、列毎に設けられ、対応する列の垂直信号線104に接続されており、対応する列の画素102により出力されたリセット電圧Vresを保持する。 Each reset voltage holding unit 105 is provided for each column, is connected to the vertical signal line 104 of the corresponding column, and holds the reset voltage Vres output by the pixel 102 of the corresponding column.
 各信号電圧保持部301は、列毎に設けられ、対応する列の垂直信号線104に接続されており、対応する列の画素102により出力された信号電圧Vsigを保持する。 Each signal voltage holding unit 301 is provided for each column, is connected to the vertical signal line 104 of the corresponding column, and holds the signal voltage Vsig output by the pixel 102 of the corresponding column.
 第1選択回路302は、Q列のうち1列を選択し、選択した列に設けられたリセット電圧保持部105に保持されるリセット電圧Vresと、選択した列に設けられた信号電圧保持部301に保持される信号電圧Vsigとを第1AD変換器106に出力する。 The first selection circuit 302 selects one of the Q columns, the reset voltage Vres held in the reset voltage holding unit 105 provided in the selected column, and the signal voltage holding unit 301 provided in the selected column. And the signal voltage Vsig held at the first AD converter 106.
 第1AD変換器106には、第1選択回路302により出力されるリセット電圧Vres及び信号電圧Vsigと、基準電圧生成部107により生成された第1基準電圧VH及び第2基準電圧VLとが入力される。 The first AD converter 106 receives the reset voltage Vres and the signal voltage Vsig output from the first selection circuit 302, and the first reference voltage VH and the second reference voltage VL generated by the reference voltage generation unit 107. The
 この第1AD変換器106は、第1選択回路302により出力されるリセット電圧Vres及び信号電圧Vsigに対して第1AD変換処理を行う。 The first AD converter 106 performs a first AD conversion process on the reset voltage Vres and the signal voltage Vsig output from the first selection circuit 302.
 各第1記憶部108は、列毎に設けられ、第1AD変換器106により生成された対応する列の第1デジタル信号130を保持する。 Each first storage unit 108 is provided for each column, and holds the first digital signal 130 of the corresponding column generated by the first AD converter 106.
 各残差電圧保持部304は、列毎に設けられ、第1AD変換器106により生成された対応する列の残差電圧131を保持する。 Each residual voltage holding unit 304 is provided for each column, and holds the residual voltage 131 of the corresponding column generated by the first AD converter 106.
 第2選択回路303は、Q列のうち1列を選択し、選択した列に設けられた第1記憶部108へ第1AD変換器106により生成された第1デジタル信号130を出力し、選択した列に設けられた残差電圧保持部304へ第1AD変換器106により生成された残差電圧131を出力する。 The second selection circuit 303 selects one of the Q columns, and outputs the first digital signal 130 generated by the first AD converter 106 to the first storage unit 108 provided in the selected column. The residual voltage 131 generated by the first AD converter 106 is output to the residual voltage holding unit 304 provided in the column.
 また、第2列AD変換部124は、対応する列に設けられた残差電圧保持部304に保持される残差電圧131をNビットの第2デジタル信号にAD変換する。言い換えると、各第2列AD変換部124は、対応するQ列に設けられた第2選択回路303により出力された残差電圧131に対して第2AD変換処理を行う。 Further, the second column AD conversion unit 124 AD converts the residual voltage 131 held in the residual voltage holding unit 304 provided in the corresponding column into an N-bit second digital signal. In other words, each second column AD converter 124 performs a second AD conversion process on the residual voltage 131 output by the second selection circuit 303 provided in the corresponding Q column.
 また、タイミング制御部112は、複数の第1選択回路302及び複数の第2選択回路303にQ列の各列を順次選択させることにより、複数の第1列AD変換部123AにQ列の各列に対応する残差電圧131及び第1デジタル信号130を順次生成させる。 Further, the timing control unit 112 causes the plurality of first column AD conversion units 123A to select each of the Q columns by causing the plurality of first selection circuits 302 and the plurality of second selection circuits 303 to sequentially select the columns of the Q column. The residual voltage 131 and the first digital signal 130 corresponding to the columns are sequentially generated.
 このように、図9に示す固体撮像装置100Aでは、第1AD変換器106をQ列おきに配置している。そのため、固体撮像装置100Aが必要な第1AD変換器106の数は、本発明の実施の形態1に係る固体撮像装置100と比較してQ分の1になる。これにより、固体撮像装置100Aは、回路面積を小さくできる。また、固体撮像装置100Aでは、1つの第1AD変換器106を配置できる領域の横幅はQ列分の領域となるため、回路配置を容易にできる。 Thus, in the solid-state imaging device 100A shown in FIG. 9, the first AD converters 106 are arranged every Q columns. Therefore, the number of first AD converters 106 that the solid-state imaging device 100A requires is 1 / Q compared to the solid-state imaging device 100 according to Embodiment 1 of the present invention. Thereby, the solid-state imaging device 100A can reduce the circuit area. Further, in the solid-state imaging device 100A, the horizontal width of the area where one first AD converter 106 can be arranged is an area corresponding to Q columns, so that circuit arrangement can be facilitated.
 以下、本発明の実施の形態1に係る固体撮像装置100と重複しない部分を中心に、本発明の実施の形態2に係る固体撮像装置100Aの動作を説明する。 Hereinafter, the operation of the solid-state imaging device 100A according to the second embodiment of the present invention will be described focusing on portions that do not overlap with the solid-state imaging device 100 according to the first embodiment of the present invention.
 図10は、本発明の実施の形態2に係る固体撮像装置100AによるAD変換動作のタイミングチャートである。図10は、横方向に時刻を示しており、左から右に時間が経過する様子を示したものである。また、縦方向は電圧値である。 FIG. 10 is a timing chart of the AD conversion operation by the solid-state imaging device 100A according to Embodiment 2 of the present invention. FIG. 10 shows time in the horizontal direction, and shows how time passes from left to right. The vertical direction is a voltage value.
 また、ここでは、第1選択回路302及び第2選択回路303は、第1列から第Q列の順序で順次選択するものとする。なお、列を選択する順序は、これ以外の順序であってもよい。 Also, here, it is assumed that the first selection circuit 302 and the second selection circuit 303 sequentially select from the first column to the Qth column. Note that the order in which the columns are selected may be other orders.
 まず、行走査回路103により選択された行に配置された各画素102は、水平ブランキング期間に撮像動作を行い、得られたリセット電圧Vresをリセット電圧保持部105に出力し、得られた信号電圧Vsigを信号電圧保持部301に出力する(ここまでは図10に記載していない)。 First, each pixel 102 arranged in a row selected by the row scanning circuit 103 performs an imaging operation in the horizontal blanking period, outputs the obtained reset voltage Vres to the reset voltage holding unit 105, and obtains the obtained signal. The voltage Vsig is output to the signal voltage holding unit 301 (not described so far in FIG. 10).
 次に、時刻t21~時刻t22の期間において、第1選択回路302は、Q列のうち最も左にある第1列を選択し、第1列に配置されたリセット電圧保持部105及び信号電圧保持部301の出力端子を第1AD変換器106に接続する。また、第2選択回路303は、第1列に対応する比較器110の入力端子に、第1AD変換器106の、残差電圧131が出力される出力端子を接続する。 Next, in the period from time t21 to time t22, the first selection circuit 302 selects the leftmost first column among the Q columns, and holds the reset voltage holding unit 105 and the signal voltage holding arranged in the first column. The output terminal of the unit 301 is connected to the first AD converter 106. The second selection circuit 303 connects the output terminal of the first AD converter 106 to which the residual voltage 131 is output to the input terminal of the comparator 110 corresponding to the first column.
 また、第1AD変換器106は、本発明の実施の形態1と同様の動作によりAD変換を行う。つまり、第1AD変換器106は、第2選択回路303を介して、残差電圧131を第1列の比較器110の第1入力端子に出力する。具体的には、実施の形態1で説明したように、残差電圧131として、第1基準電圧VH、次いでVd+VHが出力される。また、比較器110として図7に示す回路を用いる場合、タイミング制御部112は、VHが入力される期間、スイッチ173を閉じておき、Vd+VHが入力されるタイミングでスイッチ173を開く。また、この残差電圧131(Vd+VH)は、残差電圧保持部304で保持される。 The first AD converter 106 performs AD conversion by the same operation as that of the first embodiment of the present invention. That is, the first AD converter 106 outputs the residual voltage 131 to the first input terminal of the comparator 110 in the first column via the second selection circuit 303. Specifically, as described in the first embodiment, the first reference voltage VH and then Vd + VH are output as the residual voltage 131. When the circuit shown in FIG. 7 is used as the comparator 110, the timing control unit 112 closes the switch 173 during the period when VH is input, and opens the switch 173 at the timing when Vd + VH is input. The residual voltage 131 (Vd + VH) is held by the residual voltage holding unit 304.
 また、第1AD変換器106は、第2選択回路303を介して、第1列の第1記憶部108に上位Mビットの第1デジタル信号130を出力する。 Also, the first AD converter 106 outputs the first M-bit first digital signal 130 to the first storage unit 108 in the first column via the second selection circuit 303.
 その後、第1選択回路302及び第2選択回路303は、時刻t22~時刻t23の期間において、第1列の右隣の第2列を選択し、第1列AD変換部123Aは、同様の動作を行う。また、第1選択回路302及び第2選択回路303は、時刻t23~時刻t24の期間において、第3列を選択し、第1列AD変換部123Aは、同様の動作を行う。以下、時刻t24~時刻t25の期間において、第4列からQ-1列目に至るまで同様の動作が繰り返される。最後に時刻t25~時刻t26の期間において、第1選択回路302及び第2選択回路303は第Q列を選択し、第1列AD変換部123Aは、同様の動作を行う。また、この動作は、固体撮像装置100Aに搭載されている全ての第1列AD変換部123Aで同時に行われる。 Thereafter, the first selection circuit 302 and the second selection circuit 303 select the second column on the right of the first column in the period from time t22 to time t23, and the first column AD conversion unit 123A operates in the same manner. I do. The first selection circuit 302 and the second selection circuit 303 select the third column in the period from time t23 to time t24, and the first column AD conversion unit 123A performs the same operation. Thereafter, in the period from time t24 to time t25, the same operation is repeated from the fourth column to the Q-1th column. Finally, in the period from time t25 to time t26, the first selection circuit 302 and the second selection circuit 303 select the Qth column, and the first column AD conversion unit 123A performs the same operation. This operation is simultaneously performed in all the first row AD conversion units 123A mounted on the solid-state imaging device 100A.
 以上の動作により、全列の上位MビットのAD変換処理と、残差電圧131の生成処理とが完了する。 With the above operation, the AD conversion processing of the upper M bits of all the columns and the generation processing of the residual voltage 131 are completed.
 この後、時刻t27以降において、固体撮像装置100Aの全列の第2列AD変換部124は、下位NビットのAD変換処理を同時に行う。 Thereafter, after time t27, the second column AD conversion units 124 of all the columns of the solid-state imaging device 100A simultaneously perform AD conversion processing of lower N bits.
 以上により、全てのビットのAD変換処理が完了する。 This completes AD conversion processing for all bits.
 このように、タイミング制御部112は、時刻t21~時刻t26の期間において、複数の第1列AD変換部123AにQ列に含まれる全ての列に対応する残差電圧131を生成させた後、時刻t27以降において、複数の第2列AD変換部124に第2AD変換処理を同時に行わせる。 As described above, the timing control unit 112 causes the plurality of first column AD conversion units 123A to generate the residual voltages 131 corresponding to all the columns included in the Q column during the period from time t21 to time t26. After time t27, the second AD conversion units 124 are caused to simultaneously perform the second AD conversion processing.
 なお、図10には記載していないが、この後、列走査回路109は、各列のM+Nビットの第3デジタル信号を、順番に固体撮像装置100Aの外部に転送する。以上により、一行分の動作が完了する。 Although not shown in FIG. 10, after that, the column scanning circuit 109 sequentially transfers the M + N-bit third digital signal of each column to the outside of the solid-state imaging device 100A. Thus, the operation for one line is completed.
 また、ここで示したAD変換動作は、水平走査期間に行われる。ただし、固体撮像装置100Aの撮像速度(所謂フレームレート)を大きくしたい場合は、固体撮像装置100Aは、他の行の水平ブランキング期間及び水平走査期間に、AD変換動作を行ってもよい。この場合、他の行の動作と並列的にAD変換動作をする回路又は手段を用意すればよい。 Further, the AD conversion operation shown here is performed during the horizontal scanning period. However, when it is desired to increase the imaging speed (so-called frame rate) of the solid-state imaging device 100A, the solid-state imaging device 100A may perform the AD conversion operation in the horizontal blanking period and the horizontal scanning period of other rows. In this case, a circuit or means for performing an AD conversion operation in parallel with the operation of another row may be prepared.
 ここで、全てのAD変換処理に要する時間は、上位MビットのAD変換処理にかかる時間のQ倍に、下位NビットのAD変換処理にかかる時間を加算した値になる。これは、本発明の実施の形態1に係る固体撮像装置100には劣るが、AD変換器を数列共有している特許文献3に記載の固体撮像装置700と比較して高速である。なぜなら、本発明に係る第1AD変換器106は、実施の形態1で説明したように高速なので、比較的低速である下位ビットのAD変換処理を全列同時に動作させることで、全体の変換時間が短縮できるからである。 Here, the time required for all AD conversion processing is a value obtained by adding the time required for AD conversion processing for the lower N bits to Q times the time required for AD conversion processing for the upper M bits. This is inferior to the solid-state imaging device 100 according to Embodiment 1 of the present invention, but is faster than the solid-state imaging device 700 described in Patent Document 3 that shares several AD converters. Because the first AD converter 106 according to the present invention is high-speed as described in the first embodiment, the entire conversion time can be reduced by operating the AD conversion processing of lower bits, which is relatively low-speed, for all columns simultaneously. This is because it can be shortened.
 (実施の形態3)
 以下、本発明の実施の形態3に係る固体撮像装置の動作について図面を参照しながら説明する。
(Embodiment 3)
Hereinafter, the operation of the solid-state imaging device according to Embodiment 3 of the present invention will be described with reference to the drawings.
 本発明の実施の形態3では、上述した実施の形態1及び実施の形態2に係る第1AD変換器106の変形例について説明する。なお、その他の要素は、実施の形態1又は実施の形態2と同様であり、説明は省略する。 In Embodiment 3 of the present invention, a modification of the first AD converter 106 according to Embodiment 1 and Embodiment 2 described above will be described. Other elements are the same as those in the first embodiment or the second embodiment, and a description thereof will be omitted.
 図11は、本発明の実施の形態3に係る固体撮像装置の第1AD変換器106Aの構成を示す図である。なお、図5と同様の要素には同一の符号を付しており、重複する説明は省略する。 FIG. 11 is a diagram showing a configuration of the first AD converter 106A of the solid-state imaging device according to Embodiment 3 of the present invention. Note that the same elements as those in FIG. 5 are denoted by the same reference numerals, and redundant description is omitted.
 以下、第1AD変換器106Aの具体的な構成及び動作を説明する。なお、以下では、キャパシタの容量値を含めて説明するが、各キャパシタの容量値が以下の説明とは異なる値であってもよい。ただし、容量値によっては、正しいAD変換結果が得られない場合も考えられるが、別途それを校正する手段を用意すれば結果的に正しくAD変換することは可能である。 Hereinafter, a specific configuration and operation of the first AD converter 106A will be described. In the following, description will be made including the capacitance value of the capacitor, but the capacitance value of each capacitor may be different from the following description. However, depending on the capacitance value, there may be a case where a correct AD conversion result cannot be obtained, but if a means for calibrating it is prepared separately, it is possible to correctly perform AD conversion as a result.
 図11に示す第1AD変換器106Aでは、計算ユニット153Aの構成が、上述した計算ユニット153と異なる。 In the first AD converter 106A shown in FIG. 11, the configuration of the calculation unit 153A is different from the calculation unit 153 described above.
 具体的には、第1計算ユニット153A-1は、残差電圧生成部160Cと、波形整形回路313とを備える。また、第2計算ユニット153A-2から第2M計算ユニット153A-2Mは、残差電圧生成部160Dと、波形整形回路313とを備える。 Specifically, the first calculation unit 153A-1 includes a residual voltage generation unit 160C and a waveform shaping circuit 313. The second calculation unit 153A-2 to the second M calculation unit 153A- 2M include a residual voltage generation unit 160D and a waveform shaping circuit 313.
 残差電圧生成部160Cは、図5に示す残差電圧生成部160Aの構成に加え、さらに、オペアンプ310と、キャパシタ311と、スイッチ312とを備える。同様に、残差電圧生成部160Dは、図5に示す残差電圧生成部160Bの構成に加え、さらに、オペアンプ310と、キャパシタ311と、スイッチ312とを備える。 The residual voltage generator 160C includes an operational amplifier 310, a capacitor 311 and a switch 312 in addition to the configuration of the residual voltage generator 160A shown in FIG. Similarly, the residual voltage generator 160D includes an operational amplifier 310, a capacitor 311 and a switch 312 in addition to the configuration of the residual voltage generator 160B shown in FIG.
 このオペアンプ310、キャパシタ311、及びスイッチ312は、出力電圧Voutが出力される出力端子(本発明の第1端子及び第2端子に相当)と、ノード165(本発明の第1ノード及び第2ノードに相当)との間に接続される。 The operational amplifier 310, the capacitor 311, and the switch 312 include an output terminal (corresponding to a first terminal and a second terminal of the present invention) from which an output voltage Vout is output, and a node 165 (a first node and a second node of the present invention). Equivalent).
 オペアンプ310の反転入力端子は、ノード165に接続されている。また、オペアンプ310の非反転入力端子には、リセット電圧Vresが印加されている。 The inverting input terminal of the operational amplifier 310 is connected to the node 165. A reset voltage Vres is applied to the non-inverting input terminal of the operational amplifier 310.
 キャパシタ311は、オペアンプ310の反転入力端子と出力端子との間に接続されている。このキャパシタ311の容量は2MCである。 The capacitor 311 is connected between the inverting input terminal and the output terminal of the operational amplifier 310. The capacitance of the capacitor 311 is 2 MC .
 スイッチ312は、キャパシタ311と並列に、オペアンプ310の反転入力端子と出力端子との間に接続されている。 The switch 312 is connected between the inverting input terminal and the output terminal of the operational amplifier 310 in parallel with the capacitor 311.
 また、オペアンプ310は、出力端子に出力電圧Voutを出力する。この出力電圧Voutは、波形整形回路313と、スイッチ154とに入力される。 The operational amplifier 310 outputs the output voltage Vout to the output terminal. This output voltage Vout is input to the waveform shaping circuit 313 and the switch 154.
 波形整形回路313は、入力された出力電圧Voutと第1基準電圧VHとの大小関係によりデジタル的に0/1判定する。つまり、波形整形回路313は、図5に示す比較器161に相当し、残差電圧(出力電圧Vout)と、第1基準電圧VHとを比較することにより、比較結果信号bを生成する。 The waveform shaping circuit 313 digitally determines 0/1 based on the magnitude relationship between the input output voltage Vout and the first reference voltage VH. That is, the waveform shaping circuit 313 corresponds to the comparator 161 shown in FIG. 5, and generates the comparison result signal b by comparing the residual voltage (output voltage Vout) with the first reference voltage VH.
 以下、図11に示す第1AD変換器106Aの動作を説明する。以下では、M=2、VL=0V、VH=1V、Vres=1.5V、Vsig=1.2Vの場合を例に説明するが、他の場合も同様に動作することはいうまでもない。図12は、第1AD変換器106Aの動作を示すタイミングチャートである。また、図12は、横方向に時刻を示しており、左から右に時間が経過する様子を示したものである。また、図12の縦方向は電圧値である。 Hereinafter, the operation of the first AD converter 106A shown in FIG. 11 will be described. In the following, the case of M = 2, VL = 0V, VH = 1V, Vres = 1.5V, and Vsig = 1.2V will be described as an example, but it goes without saying that the same operation is performed in other cases. FIG. 12 is a timing chart showing the operation of the first AD converter 106A. FIG. 12 shows the time in the horizontal direction, and shows how time elapses from left to right. The vertical direction in FIG. 12 is a voltage value.
 また、図12では第1計算ユニット~第4計算ユニットの出力電圧Vout(1)~Vout(4)と、残差電圧131との各時刻での値を示している。また、ここでの説明は、リセット電圧Vresにオフセット電圧を印加していない場合である。印加する場合は、波形整形回路313において用いる、0/1判定する閾値を第1基準電圧VHにオフセット電圧を加えた値にしておけばよい。ここでの説明では、全オペアンプ310の利得を無限大と仮定している。利得が無限大のオペアンプは存在しないが、通常、オペアンプは無限大とみなせるほど利得が大きい。もしくは十分利得が大きいオペアンプは作製可能である。 FIG. 12 shows values of the output voltages Vout (1) to Vout (4) of the first calculation unit to the fourth calculation unit and the residual voltage 131 at each time. Further, the description here is a case where no offset voltage is applied to the reset voltage Vres. When applied, the threshold value used in the waveform shaping circuit 313 may be set to a value obtained by adding an offset voltage to the first reference voltage VH. In the description here, the gain of all the operational amplifiers 310 is assumed to be infinite. There is no infinite operational amplifier, but usually the operational amplifier has a large gain so that it can be considered infinite. Alternatively, an operational amplifier having a sufficiently large gain can be manufactured.
 まず、時刻t31~時刻t32の期間において、タイミング制御部112は、第1スイッチ164及びスイッチ312をオンし、第2スイッチ162及び第3スイッチ166にVHを選択させ、第4スイッチ168にVLを選択させる。このとき、全オペアンプ310の全端子の電圧はVresとなる。 First, in the period from time t31 to time t32, the timing control unit 112 turns on the first switch 164 and the switch 312 to cause the second switch 162 and the third switch 166 to select VH and set the fourth switch 168 to VL. Let them choose. At this time, the voltages at all terminals of all the operational amplifiers 310 become Vres.
 また、時刻t31~時刻t34の期間において、タイミング制御部112は、スイッチ154をオンするとともに、スイッチ157をオフする。これにより、インピーダンス変換器155の入力端子に第1基準電圧VHが供給される。よって、残差電圧131はVHとなる。 In the period from time t31 to time t34, the timing control unit 112 turns on the switch 154 and turns off the switch 157. As a result, the first reference voltage VH is supplied to the input terminal of the impedance converter 155. Therefore, the residual voltage 131 is VH.
 次に、時刻t32~時刻t33の期間において、タイミング制御部112は、第1スイッチ164及びスイッチ312をオフし、第2スイッチ162にVsigを選択させ、第3スイッチ166及び第4スイッチ168にVLを選択させる。このとき、キャパシタ163の左端の電圧が第2スイッチ162の切り替えにより、Vsig-VHだけ変化している。 Next, in the period from time t32 to time t33, the timing control unit 112 turns off the first switch 164 and the switch 312 and causes the second switch 162 to select Vsig and causes the third switch 166 and the fourth switch 168 to perform VL. To select. At this time, the voltage at the left end of the capacitor 163 changes by Vsig−VH due to the switching of the second switch 162.
 この変化分がオペアンプ310により増幅される。ただし、オペアンプ310の出力端子とオペアンプ310の反転入力端子との間に接続されるキャパシタ311により、オペアンプ310は負帰還を受け、出力電圧Vout(1)は有限値となる。このとき、オペアンプ310の利得は無限大なので、オペアンプ310の出力電圧Vout(1)が有限値になるためには、オペアンプ310の反転入力端子の電圧が非反転入力端子の電圧(すなわちVres)と等しくなければならない。このため、キャパシタ163の右端の電圧(ノード165の電圧)は変化しない。これにより、キャパシタ163の両端の電圧差は(Vsig-VH)だけ増加するので、キャパシタ163に蓄積される電荷QAは、左端の電荷を正として、下記(式12)で示されるだけ増加する。 This change is amplified by the operational amplifier 310. However, the operational amplifier 310 receives negative feedback due to the capacitor 311 connected between the output terminal of the operational amplifier 310 and the inverting input terminal of the operational amplifier 310, and the output voltage Vout (1) becomes a finite value. At this time, since the gain of the operational amplifier 310 is infinite, in order for the output voltage Vout (1) of the operational amplifier 310 to have a finite value, the voltage at the inverting input terminal of the operational amplifier 310 is the voltage at the non-inverting input terminal (that is, Vres). Must be equal. For this reason, the voltage at the right end of the capacitor 163 (the voltage at the node 165) does not change. As a result, the voltage difference between both ends of the capacitor 163 increases by (Vsig−VH), so that the charge Q A accumulated in the capacitor 163 increases as shown by the following (formula 12), with the left end charge being positive. .
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、オペアンプ310の反転入力端子には電圧源又は電流源が接続されていないので、この増加分の電荷は、キャパシタ311から移動することになる。ここで、キャパシタ311とキャパシタ163との容量は等しいので、この電荷移動により、キャパシタ311の両端の電圧差は(VH-Vsig)だけ変化し、この変化分が出力電圧Vout(1)の変化分となる。したがって、第1計算ユニット153A-1のオペアンプ310の出力電圧Vout(1)は、下記(式13)で表される。 Further, since the voltage source or the current source is not connected to the inverting input terminal of the operational amplifier 310, the increased charge moves from the capacitor 311. Here, since the capacitances of the capacitor 311 and the capacitor 163 are equal, the voltage difference between both ends of the capacitor 311 changes by (VH−Vsig) by this charge movement, and this change is the change of the output voltage Vout (1). It becomes. Therefore, the output voltage Vout (1) of the operational amplifier 310 of the first calculation unit 153A-1 is expressed by the following (formula 13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、第k計算ユニット153A-k(kは2≦k≦2Mの整数)についても同様に考えると、キャパシタ167の両端の電圧差がVL-VHだけ変化するため、増加する電荷は、下記(式14)で示される。 Similarly, regarding the k-th calculation unit 153A-k (k is an integer of 2 ≦ k ≦ 2 M ), the voltage difference between both ends of the capacitor 167 changes by VL−VH. (Expression 14)
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 この電荷がキャパシタ311から移動することによるキャパシタ311の両端の電圧差の変化を考えれば、第k計算ユニット153A-kの出力電圧Vout(k)が下記(式15)のように求まる。 Considering the change in the voltage difference between both ends of the capacitor 311 due to the movement of this charge from the capacitor 311, the output voltage Vout (k) of the kth calculation unit 153A-k is obtained as shown in the following (formula 15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 次に、時刻t33において、タイミング制御部112は、第3スイッチ166及び第4スイッチ168にVsigを選択させる。つまり、タイミング制御部112は、時刻t33以降において、第1スイッチ164及びスイッチ312をオフし、第2スイッチ162にVsigを選択させ、第3スイッチ166及び第4スイッチ168にVsigを選択させる。 Next, at time t33, the timing control unit 112 causes the third switch 166 and the fourth switch 168 to select Vsig. In other words, the timing control unit 112 turns off the first switch 164 and the switch 312 after time t33, causes the second switch 162 to select Vsig, and causes the third switch 166 and fourth switch 168 to select Vsig.
 このとき、第1計算ユニット153A-1の状態は変化しないため、出力電圧Vout(1)は、上記(式13)で表される。 At this time, since the state of the first calculation unit 153A-1 does not change, the output voltage Vout (1) is expressed by the above (formula 13).
 一方、第k計算ユニット153A-kについては、キャパシタ167及びキャパシタ169の両端の電圧差が(Vsig-VL)だけ変化することによる電荷移動が同様に生じる。ここで、キャパシタ167とキャパシタ169との容量の合計と、キャパシタ311の容量とは等しいので、この電圧変化が(絶対値は)そのままキャパシタ311に生じるため、出力電圧Vout(k)は、下記(式16)で表される。 On the other hand, in the k-th calculation unit 153A-k, the charge transfer due to the change in the voltage difference between both ends of the capacitor 167 and the capacitor 169 by (Vsig−VL) similarly occurs. Here, since the total capacity of the capacitors 167 and 169 is equal to the capacity of the capacitor 311, this voltage change (absolute value) occurs in the capacitor 311 as it is, so that the output voltage Vout (k) is expressed as ( It is expressed by equation 16).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 つまり、Vout(k)は、上記(式8)と同じ値になる。また、(式13)は(式2)と同じである。したがって、時刻t33以降は、図6に示す時刻t3以降と同様に第1AD変換器106Aを動作させることによって、上位MビットのAD変換処理を行うことができる。また、それ以降の処理は、実施の形態1と同様である。 That is, Vout (k) has the same value as the above (formula 8). (Expression 13) is the same as (Expression 2). Therefore, after time t33, the upper M-bit AD conversion process can be performed by operating the first AD converter 106A in the same manner as after time t3 shown in FIG. The subsequent processing is the same as in the first embodiment.
 以上より、本発明の実施の形態3に係る第1AD変換器106Aを用いた場合でも、第1AD変換器106を用いた場合と同様の効果を得ることができる。 As described above, even when the first AD converter 106A according to Embodiment 3 of the present invention is used, the same effect as that obtained when the first AD converter 106 is used can be obtained.
 (実施の形態4)
 以下、本発明の実施の形態4に係る固体撮像装置の動作について図面を参照しながら説明する。
(Embodiment 4)
Hereinafter, the operation of the solid-state imaging device according to Embodiment 4 of the present invention will be described with reference to the drawings.
 本発明の実施の形態4では、上述した実施の形態2に係る固体撮像装置100Aの駆動方法の変形例について説明する。 In Embodiment 4 of the present invention, a modification of the driving method of the solid-state imaging device 100A according to Embodiment 2 described above will be described.
 図13は、本発明の実施の形態4に係る固体撮像装置100AによるAD変換動作のタイミングチャートである。なお、固体撮像装置100Aの構成は、実施の形態2と同様である。また、以下では、固体撮像装置100Aが、実施の形態1で説明した第1AD変換器106を備える例を説明するが、固体撮像装置100Aは、実施の形態3で説明した第1AD変換器106Aを備えてもよい。 FIG. 13 is a timing chart of the AD conversion operation by the solid-state imaging device 100A according to Embodiment 4 of the present invention. Note that the configuration of the solid-state imaging device 100A is the same as that of the second embodiment. Hereinafter, an example in which the solid-state imaging device 100A includes the first AD converter 106 described in the first embodiment will be described. However, the solid-state imaging device 100A includes the first AD converter 106A described in the third embodiment. You may prepare.
 まず、行走査回路103により選択された行に配置された各画素102は、水平ブランキング期間に撮像動作を行い、得られたリセット電圧Vresをリセット電圧保持部105に出力し、得られた信号電圧Vsigを信号電圧保持部301に出力する。 First, each pixel 102 arranged in a row selected by the row scanning circuit 103 performs an imaging operation in the horizontal blanking period, outputs the obtained reset voltage Vres to the reset voltage holding unit 105, and obtains the obtained signal. The voltage Vsig is output to the signal voltage holding unit 301.
 次に、時刻t41~時刻t42の期間において、第1選択回路302及び第2選択回路303は第1列を選択する。これにより、第1AD変換器106は、第1列に対して、上位MビットのAD変換処理を行い、残差電圧131を比較器に出力する。 Next, in the period from time t41 to time t42, the first selection circuit 302 and the second selection circuit 303 select the first column. As a result, the first AD converter 106 performs upper M-bit AD conversion processing on the first column, and outputs the residual voltage 131 to the comparator.
 次に、時刻t42~時刻t43の期間において、第1選択回路302及び第2選択回路303は第2列を選択する。これにより、第1AD変換器106は、第2列に対して、上位MビットのAD変換処理を行う。また、この第2列の上位MビットのAD変換処理と同時に、時刻t42において、タイミング制御部112は、カウンタ値CNTのカウントアップを開始する。さらに、時刻t42において、参照信号生成部113、第1列の比較器110に入力するランプ電圧RAMPを増加させ始める。そして、比較器110の両入力端子の電圧が一致したときのカウンタ値CNTがカウンタラッチ部111により記憶される。 Next, in the period from time t42 to time t43, the first selection circuit 302 and the second selection circuit 303 select the second column. As a result, the first AD converter 106 performs upper M-bit AD conversion processing on the second column. At the same time as the AD conversion process of the upper M bits in the second column, the timing control unit 112 starts counting up the counter value CNT at time t42. Further, at time t42, the ramp voltage RAMP input to the reference signal generator 113 and the comparator 110 in the first column starts to increase. The counter latch unit 111 stores the counter value CNT when the voltages at both input terminals of the comparator 110 match.
 このように、本発明の実施の形態4に係る固体撮像装置100Aでは、第1列の下位NビットAD変換処理と、第2列の上位MビットAD変換処理とを同時に行う。 Thus, in the solid-state imaging device 100A according to Embodiment 4 of the present invention, the lower N-bit AD conversion processing in the first column and the upper M-bit AD conversion processing in the second column are performed simultaneously.
 言い換えると、タイミング制御部112は、複数の第1列AD変換部123AにQ列に含まれる第1列に対応する残差電圧131を生成させると同時に、Q列に含まれる、第1列と異なる第2列に設けられた複数の第2列AD変換部124に、第1列AD変換部123Aにより既に生成された、対応する列の残差電圧131に対して第2AD変換処理を行わせる。 In other words, the timing control unit 112 causes the plurality of first column AD conversion units 123A to generate the residual voltage 131 corresponding to the first column included in the Q column, and at the same time, includes the first column included in the Q column. A plurality of second column AD conversion units 124 provided in different second columns are caused to perform the second AD conversion process on the residual voltage 131 of the corresponding column already generated by the first column AD conversion unit 123A. .
 同様に、時刻t43~時刻t44の期間において、第2列の下位NビットのAD変換処理は、第3列の上位MビットのAD変換処理と同時に行われる。このように、時刻t45までに、第P列の下位NビットAD変換処理までが行われる(Pは1以上Q未満の整数)。 Similarly, in the period from time t43 to time t44, the AD conversion processing of the lower N bits in the second column is performed simultaneously with the AD conversion processing of the upper M bits in the third column. Thus, by time t45, the processing up to the lower N-bit AD conversion processing of the P-th column is performed (P is an integer of 1 or more and less than Q).
 次に、時刻t45以降において、固体撮像装置100Aは、第P+1列のAD変換を続けて行うが、これと同時に、列走査回路109は、全ビットのAD変換処理が終了した第1列から第P列までのデジタル値を外部に転送する。 Next, after time t45, the solid-state imaging device 100A continues to perform AD conversion for the (P + 1) th column. At the same time, the column scanning circuit 109 starts from the first column after the AD conversion processing for all bits is completed. Transfers digital values up to P column to the outside.
 その後、時刻t46~時刻t47の期間において、第Q列の上位MビットのAD変換処理が行われ、時刻t47~時刻t48の期間において、第Q列の下位NビットのAD変換処理が行われる。 Thereafter, in the period from time t46 to time t47, AD conversion processing of the upper M bits of the Qth column is performed, and in the period of time t47 to time t48, AD conversion processing of the lower N bits of the Qth column is performed.
 全列のAD変換処理が終了した時刻t48より後に、列走査回路109は、第P+1列から第Q列のデジタル値を外部に転送する。 After the time t48 when the AD conversion processing for all the columns is completed, the column scanning circuit 109 transfers the digital values of the P + 1th column to the Qth column to the outside.
 以上により、1行分のAD変換処理が完了する。 Thus, the AD conversion process for one line is completed.
 このように、タイミング制御部112は、時刻t41~時刻t45の期間において、複数の第1列AD変換部123AにQ列に含まれる第1列群(第1列~第P列)に対応する残差電圧131及び第1デジタル信号130を順次生成させるとともに、当該第1列群に設けられた複数の第2列AD変換部124に、当該第1列群に対応する残差電圧131に対して第2AD変換処理を行わせることにより、第2デジタル信号を順次生成させる。 As described above, the timing control unit 112 corresponds to the first column group (first column to Pth column) included in the Q column in the plurality of first column AD conversion units 123A in the period from time t41 to time t45. Residual voltage 131 and first digital signal 130 are sequentially generated, and a plurality of second column AD converters 124 provided in the first column group are supplied to residual voltage 131 corresponding to the first column group. Then, the second digital signal is sequentially generated by performing the second AD conversion process.
 さらに、タイミング制御部112は、時刻t45~時刻t48の期間において、複数の第1列AD変換部123AにQ列に含まれる、第1列群と異なる第2列群(第P+1列~第Q列)に対応する残差電圧131及び第1デジタル信号130を順次生成させるとともに、当該第2列群に設けられた複数の第2列AD変換部124に、当該第2列群に対応する残差電圧131に対して第2AD変換処理を行わせると同時に、列走査回路109に、第1列群に対応する第3デジタル信号を、外部に順次転送させる。 Further, the timing control unit 112, during the period from time t45 to time t48, includes a second column group (P + 1st column to Qth column) included in the Q column in the plurality of first column AD conversion units 123A. The residual voltage 131 and the first digital signal 130 corresponding to the second column group are sequentially generated, and a plurality of second column AD conversion units 124 provided in the second column group are also provided with the remaining voltage corresponding to the second column group. The second AD conversion process is performed on the difference voltage 131, and at the same time, the column scanning circuit 109 sequentially transfers the third digital signal corresponding to the first column group to the outside.
 また、本発明の実施の形態4に係る固体撮像装置100Aによれば、並列的に各部が動作することにより、他の処理を待つ動作が減少するので、全体として高速なAD変換動作が可能になる。 In addition, according to the solid-state imaging device 100A according to Embodiment 4 of the present invention, the operation of each unit operates in parallel, thereby reducing the number of operations waiting for other processing, thereby enabling a high-speed AD conversion operation as a whole. Become.
 なお、以上の説明はあくまでも一例であり、他の列が上位MビットのAD変換処理を行っているのと同時に他の列で下位NビットのAD変換処理を行えば、他のタイミングチャートも当然考えられる。さらに、他の列で何らかのAD変換動作を行っているのと同時にデジタル値を外部に転送すれば、他のタイミングチャートも考えられる。 Note that the above description is merely an example, and other timing charts are naturally obtained when other columns perform AD conversion processing of upper M bits and simultaneously perform lower N bits of AD conversion processing in other columns. Conceivable. Furthermore, another timing chart can be considered if a digital value is transferred to the outside simultaneously with performing some AD conversion operation in another column.
 例えば、固体撮像装置100Aは、全ビットのAD変換処理が終わったデジタル信号を、3分割以上に分割して外部に出力してもよい。 For example, the solid-state imaging device 100A may divide a digital signal that has undergone all-bit AD conversion processing into three or more divisions and output it to the outside.
 また、固体撮像装置100Aは、複数列の上位MビットのAD変換処理を順次行うのと同時に、別の複数列の下位NビットのAD変換処理を一斉に行ってもよい。例えば、第1列~第P列までの上位MビットのAD変換処理を順次行った後、第1列~第P列までの下位NビットのAD変換処理を同時に行い、その後、第1列~第P列までの第3デジタル信号を外部に転送してもよい。この場合、この下位NビットのAD変換処理及び転送処理の少なくとも一方と、第P+1列~第Q列までの上位MビットのAD変換処理を同時に行ってもよい。 Further, the solid-state imaging device 100A may simultaneously perform AD conversion processing of lower M bits of another plurality of columns at the same time as performing AD conversion processing of upper M bits of a plurality of columns sequentially. For example, after the AD conversion processing of the upper M bits from the first column to the Pth column is sequentially performed, the AD conversion processing of the lower N bits from the first column to the Pth column is simultaneously performed, and then the first column to The third digital signal up to the P-th column may be transferred to the outside. In this case, at least one of the lower N-bit AD conversion processing and transfer processing and the upper M-bit AD conversion processing from the (P + 1) -th column to the Q-th column may be performed simultaneously.
 また、上記実施の形態1~4に係る固体撮像装置100及び100Aに含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又はすべてを含むように1チップ化されてもよい。 Further, each processing unit included in the solid- state imaging devices 100 and 100A according to the first to fourth embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 また、本発明の実施の形態1~4に係る、固体撮像装置100及び100Aの機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。 Further, some or all of the functions of the solid- state imaging devices 100 and 100A according to Embodiments 1 to 4 of the present invention may be realized by a processor such as a CPU executing a program.
 さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 Furthermore, the present invention may be the above program or a recording medium on which the above program is recorded. Needless to say, the program can be distributed via a transmission medium such as the Internet.
 また、本発明は、固体撮像装置100又は100Aに含まれるAD変換回路120の一部又はすべてであるAD変換器として実現してもよい。 Further, the present invention may be realized as an AD converter that is a part or all of the AD conversion circuit 120 included in the solid- state imaging device 100 or 100A.
 また、上記実施の形態1~4に係る、固体撮像装置100及び100A、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。 Further, at least a part of the functions of the solid- state imaging devices 100 and 100A and the modifications thereof according to the first to fourth embodiments may be combined.
 また、上記で用いた数字は、すべて本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。さらに、ハイ/ローにより表される論理レベル又はオン/オフにより表されるスイッチング状態は、本発明を具体的に説明するために例示するものであり、例示された論理レベル又はスイッチング状態の異なる組み合わせにより、同等な結果を得ることも可能である。また、トランジスタ等のn型及びp型等は、本発明を具体的に説明するために例示するものであり、これらを反転させることで、同等の結果を得ることも可能である。また、構成要素間の接続関係は、本発明を具体的に説明するために例示するものであり、本発明の機能を実現する接続関係はこれに限定されない。 Also, the numbers used above are all exemplified for specifically describing the present invention, and the present invention is not limited to the illustrated numbers. Furthermore, the logic levels represented by high / low or the switching states represented by on / off are illustrative for the purpose of illustrating the present invention, and different combinations of the illustrated logic levels or switching states. Therefore, it is possible to obtain an equivalent result. In addition, n-type and p-type transistors and the like are illustrated to specifically describe the present invention, and it is possible to obtain equivalent results by inverting them. In addition, the connection relationship between the components is exemplified for specifically explaining the present invention, and the connection relationship for realizing the function of the present invention is not limited to this.
 また、上記説明では、MOSトランジスタを用いた例を示したが、バイポーラトランジスタ等の他のトランジスタを用いてもよい。 In the above description, an example using a MOS transistor is shown, but another transistor such as a bipolar transistor may be used.
 更に、本発明の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。 Furthermore, various modifications in which the present embodiment is modified within the scope conceived by those skilled in the art are also included in the present invention without departing from the gist of the present invention.
 本発明は、固体撮像装置に適用できる。また、本発明は、固体撮像装置を備えるデジタルスチルカメラ、デジタルビデオカメラ及び監視カメラなどに利用できる。 The present invention can be applied to a solid-state imaging device. Further, the present invention can be used for a digital still camera, a digital video camera, a surveillance camera, and the like provided with a solid-state imaging device.
 100、100A、500、600、700 固体撮像装置
 101 撮像部
 102、501 画素
 103 行走査回路
 104 垂直信号線
 105 リセット電圧保持部
 106、106A 第1AD変換器
 107 基準電圧生成部
 108 第1記憶部
 109 列走査回路
 110、503 比較器
 111 カウンタラッチ部
 112 タイミング制御部
 113 参照信号生成部
 120 AD変換回路
 121、121A 第1AD変換部
 122 第2AD変換部
 123、123A 第1列AD変換部
 124 第2列AD変換部
 130 第1デジタル信号
 131 残差電圧
 133 比較結果信号
 151 計算部
 152 選択部
 153、153A 計算ユニット
 154、157、173、312 スイッチ
 155 インピーダンス変換器
 156 デコーダ・選択回路
 160、160A、160B、160C、160D 残差電圧生成部
 161 比較器
 162 第2スイッチ
 163、167、169、171、172、311 キャパシタ
 164 第1スイッチ
 165 ノード
 166 第3スイッチ
 168 第4スイッチ
 170 差動増幅回路
 174 差動トランジスタ
 201 リセットトランジスタ
 202 フォトダイオード(PD)
 203 転送トランジスタ
 204 フローティングディフュージョン(FD)
 205 増幅トランジスタ
 206 画素選択トランジスタ
 301 信号電圧保持部
 302 第1選択回路
 303 第2選択回路
 304 残差電圧保持部
 310 オペアンプ
 313 波形整形回路
 502、601、602、701 AD変換器
 504 DA変換器
 603 2ビットADC
 b 比較結果信号
 CNT カウンタ値
 RAMP ランプ電圧
 RSCELL リセット信号線
 sel 選択信号
 SELECT 選択信号線
 TRANS 転送信号線
 V0、Va 差分電圧
 VDD 電源線
 VH 第1基準電圧
 VL 第2基準電圧
 Vout 出力電圧
 Vres リセット電圧
 Vsig 信号電圧
100, 100A, 500, 600, 700 Solid-state imaging device 101 Imaging unit 102, 501 Pixel 103 Row scanning circuit 104 Vertical signal line 105 Reset voltage holding unit 106, 106A First AD converter 107 Reference voltage generation unit 108 First storage unit 109 Column scanning circuit 110, 503 Comparator 111 Counter latch unit 112 Timing control unit 113 Reference signal generation unit 120 AD conversion circuit 121, 121A First AD conversion unit 122 Second AD conversion unit 123, 123A First column AD conversion unit 124 Second column AD conversion unit 130 First digital signal 131 Residual voltage 133 Comparison result signal 151 Calculation unit 152 Selection unit 153, 153A Calculation unit 154, 157, 173, 312 Switch 155 Impedance converter 156 Decoder / selection circuit 160, 60A, 160B, 160C, 160D Residual voltage generator 161 Comparator 162 Second switch 163, 167, 169, 171, 172, 311 Capacitor 164 First switch 165 Node 166 Third switch 168 Fourth switch 170 Differential amplifier circuit 174 Differential transistor 201 Reset transistor 202 Photodiode (PD)
203 Transfer transistor 204 Floating diffusion (FD)
205 Amplifier Transistor 206 Pixel Selection Transistor 301 Signal Voltage Holding Unit 302 First Selection Circuit 303 Second Selection Circuit 304 Residual Voltage Holding Unit 310 Operational Amplifier 313 Waveform Shaping Circuit 502, 601, 602, 701 AD Converter 504 DA Converter 603 2 Bit ADC
b Comparison result signal CNT Counter value RAMP Ramp voltage RSCELL Reset signal line sel Select signal SELECT Select signal line TRANS Transfer signal line V0, Va Differential voltage VDD Power supply line VH First reference voltage VL Second reference voltage Vout Output voltage Vres Reset voltage Vsig Signal voltage

Claims (13)

  1.  行列状に配置され、リセット電圧と、入射光の光量に応じた信号電圧とを出力する複数の画素と、
     前記信号電圧を、M(Mは1以上の整数)ビットの第1デジタル信号と、N(Nは1以上の整数)ビットの第2デジタル信号とを含むM+Nビットの第3デジタル信号にAD変換するAD変換回路とを備え、
     前記AD変換回路は、
     前記リセット電圧と前記信号電圧との差を示す差分電圧を算出し、算出した前記差分電圧を前記第1デジタル信号にAD変換するとともに、当該差分電圧と当該第1デジタル信号のデジタル値に対応するアナログ電圧との差分を示す第1残差電圧を生成する第1AD変換処理を行う第1AD変換部と、
     前記第1残差電圧を前記第2デジタル信号にAD変換する第2AD変換処理を行う第2AD変換部とを備え、
     前記第1AD変換部は、
     前記差分電圧を算出するとともに、当該差分電圧と2M個の閾値電圧の各々との差を示し、Mビットにより表される2M個のデジタル値の各々に対応する2M個の第2残差電圧を生成する残差電圧生成部と、
     前記2M個の第2残差電圧の各々と第1基準電圧とを比較することにより、2Mビットの第1比較結果信号を生成する第1比較部と、
     前記2Mビットの第1比較結果信号を前記Mビットの第1デジタル信号に変換するデコーダと、
     前記2M個の第2残差電圧のうち、前記デコーダにより変換された前記第1デジタル信号のデジタル値に対応する第2残差電圧を選択し、選択した第2残差電圧を前記第1残差電圧として出力する選択部とを備える
     固体撮像装置。
    A plurality of pixels arranged in a matrix and outputting a reset voltage and a signal voltage corresponding to the amount of incident light;
    AD conversion of the signal voltage into a third digital signal of M + N bits including a first digital signal of M (M is an integer of 1 or more) bits and a second digital signal of N (N is an integer of 1 or more) bits. And an AD conversion circuit that
    The AD conversion circuit includes:
    A differential voltage indicating a difference between the reset voltage and the signal voltage is calculated, the calculated differential voltage is AD-converted into the first digital signal, and corresponding to the digital value of the differential voltage and the first digital signal. A first AD converter that performs a first AD conversion process for generating a first residual voltage indicating a difference from the analog voltage;
    A second AD converter that performs a second AD conversion process for AD converting the first residual voltage into the second digital signal;
    The first AD converter is
    To calculate the differential voltage, the difference voltage and the 2 M-number of shows the difference between the respective threshold voltages, 2 M number of second residual corresponding to each of the 2 M pieces of digital values represented by M bits A residual voltage generator for generating a differential voltage;
    A first comparison unit that generates a 2 M- bit first comparison result signal by comparing each of the 2 M second residual voltages with a first reference voltage;
    A decoder for converting the 2 M- bit first comparison result signal into the M-bit first digital signal;
    Of the 2 M second residual voltages, a second residual voltage corresponding to the digital value of the first digital signal converted by the decoder is selected, and the selected second residual voltage is selected as the first residual voltage. A solid-state imaging device comprising: a selection unit that outputs as a residual voltage.
  2.  前記第2AD変換部は、
     列毎に1つ設けられた複数の第2列AD変換部を備え、
     前記第1AD変換部は、
     Q列毎に1つ設けられ、対応するQ列に配置された複数の画素により出力される前記リセット電圧及び前記信号電圧に対して前記第1AD変換処理を行う複数の第1列AD変換部を備え、
     前記各第1列AD変換部は、
     Q列のうちの1列を選択し、選択した列に配置された画素により出力される前記リセット電圧及び前記差分電圧を出力する第1選択回路と、
     前記第1選択回路により出力される前記リセット電圧及び前記信号電圧に対して前記第1AD変換処理を行う第1AD変換器と、
     Q列のうちの1列を選択し、前記第1AD変換器により生成された前記第1残差電圧を、選択した列に設けられた前記第2列AD変換部に出力する第2選択回路とを備え、
     前記各第2列AD変換部は、対応するQ列に設けられた前記第2選択回路により出力された前記第1残差電圧に対して前記第2AD変換処理を行う
     請求項1記載の固体撮像装置。
    The second AD converter is
    A plurality of second column AD conversion units, one for each column,
    The first AD converter is
    A plurality of first column AD conversion units that are provided for each Q column and perform the first AD conversion processing on the reset voltage and the signal voltage output by the plurality of pixels arranged in the corresponding Q column. Prepared,
    Each of the first column AD conversion units is
    A first selection circuit that selects one of the Q columns and outputs the reset voltage and the differential voltage output by a pixel arranged in the selected column;
    A first AD converter that performs the first AD conversion processing on the reset voltage and the signal voltage output by the first selection circuit;
    A second selection circuit that selects one of the Q columns and outputs the first residual voltage generated by the first AD converter to the second column AD converter provided in the selected column; With
    2. The solid-state imaging according to claim 1, wherein each of the second column AD conversion units performs the second AD conversion processing on the first residual voltage output by the second selection circuit provided in the corresponding Q column. apparatus.
  3.  前記固体撮像装置は、さらに、
     前記第1選択回路及び前記第2選択回路に前記Q列の各列を順次選択させることにより、前記第1列AD変換部に前記Q列の各列に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させる第1制御部を備え、
     前記第1制御部は、前記第1列AD変換部に前記Q列に含まれる第1列に対応する前記第1残差電圧を生成させると同時に、前記Q列に含まれる、前記第1列と異なる第2列に設けられた前記第2列AD変換部に、前記第1列AD変換部により既に生成された、対応する列の前記第1残差電圧に対して前記第2AD変換処理を行わせる
     請求項2記載の固体撮像装置。
    The solid-state imaging device further includes:
    By causing the first selection circuit and the second selection circuit to sequentially select each column of the Q columns, the first column AD conversion unit causes the first residual voltage corresponding to each column of the Q columns and the A first controller that sequentially generates a first digital signal;
    The first control unit causes the first column AD conversion unit to generate the first residual voltage corresponding to the first column included in the Q column, and at the same time includes the first column included in the Q column. The second AD conversion process is performed on the first residual voltage of the corresponding column already generated by the first column AD conversion unit in the second column AD conversion unit provided in the second column different from The solid-state imaging device according to claim 2.
  4.  前記固体撮像装置は、さらに、
     前記AD変換回路によりAD変換された前記第3デジタル信号を、外部に順次転送する列走査回路を備え、
     前記第1制御部は、さらに、
     前記第1列AD変換部に前記Q列に含まれる第1列群に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させるとともに、当該第1列群に設けられた前記第2列AD変換部に、当該第1列群に対応する前記第1残差電圧に対して前記第2AD変換処理を行わせることにより、前記第2デジタル信号を順次生成させ、
     前記第1列AD変換部に前記Q列に含まれる、前記第1列群と異なる第2列群に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させるとともに、当該第2列群に設けられた前記第2列AD変換部に、当該第2列群に対応する前記第1残差電圧に対して前記第2AD変換処理を行わせると同時に、前記列走査回路に、前記第1列群に対応する前記第3デジタル信号を、外部に順次転送させる
     請求項3記載の固体撮像装置。
    The solid-state imaging device further includes:
    A column scanning circuit for sequentially transferring the third digital signal AD-converted by the AD conversion circuit to the outside;
    The first control unit further includes:
    The first column AD conversion unit sequentially generates the first residual voltage and the first digital signal corresponding to the first column group included in the Q column, and the first column AD provided in the first column group By causing the two-column AD conversion unit to perform the second AD conversion processing on the first residual voltage corresponding to the first column group, the second digital signal is sequentially generated,
    The first column AD conversion unit sequentially generates the first residual voltage and the first digital signal corresponding to a second column group included in the Q column and different from the first column group, and the second column The second column AD converter provided in the column group performs the second AD conversion process on the first residual voltage corresponding to the second column group, and at the same time, the column scanning circuit The solid-state imaging device according to claim 3, wherein the third digital signals corresponding to the first column group are sequentially transferred to the outside.
  5.  前記固体撮像装置は、さらに、
     前記第1選択回路及び前記第2選択回路に前記Q列の各列を順次選択させることにより、前記第1列AD変換部に前記Q列の各列に対応する前記第1残差電圧及び前記第1デジタル信号を順次生成させる第1制御部を備え、
     前記第1制御部は、前記第1列AD変換部に前記Q列に含まれる全ての列に対応する前記第1残差電圧を生成させた後、前記第2列AD変換部に、当該全ての列に対応する第1残差電圧に対する前記第2AD変換処理を同時に行わせる
     請求項2記載の固体撮像装置。
    The solid-state imaging device further includes:
    By causing the first selection circuit and the second selection circuit to sequentially select each column of the Q columns, the first column AD conversion unit causes the first residual voltage corresponding to each column of the Q columns and the A first controller that sequentially generates a first digital signal;
    The first control unit causes the first column AD conversion unit to generate the first residual voltage corresponding to all the columns included in the Q column, and then causes the second column AD conversion unit to 3. The solid-state imaging device according to claim 2, wherein the second AD conversion processing is simultaneously performed on the first residual voltage corresponding to the first column.
  6.  前記第1AD変換部は、
     列毎に1つ設けられ、対応する列に配置された画素により出力された前記リセット電圧と前記信号電圧とに対して、前記第1AD変換処理を行う複数の第1列AD変換部を備え、
     前記第2AD変換部は、
     列毎に1つ設けられ、対応する列に設けられた前記第1列AD変換部により生成された前記第1残差電圧に対して前記第2AD変換処理を行う複数の第2列AD変換部を備える
     請求項1記載の固体撮像装置。
    The first AD converter is
    A plurality of first column AD conversion units that are provided for each column and perform the first AD conversion processing on the reset voltage and the signal voltage output by the pixels arranged in the corresponding column,
    The second AD converter is
    A plurality of second column AD conversion units that are provided for each column and perform the second AD conversion processing on the first residual voltage generated by the first column AD conversion unit provided in the corresponding column The solid-state imaging device according to claim 1.
  7.  前記第2AD変換部は、
     第1時刻から、時間の経過とともに電圧値が変化するランプ電圧を生成する参照信号生成部と、
     前記ランプ電圧と前記第1残差電圧とを比較し、比較結果を示す第2比較結果信号を生成する第2比較部と、
     前記第1時刻から前記第2比較結果信号の論理が反転するまでの時間を前記第2デジタル信号として保持する第1保持部とを備える
     請求項1記載の固体撮像装置。
    The second AD converter is
    A reference signal generator that generates a ramp voltage whose voltage value changes with the passage of time from the first time;
    A second comparison unit that compares the ramp voltage with the first residual voltage and generates a second comparison result signal indicating a comparison result;
    The solid-state imaging device according to claim 1, further comprising: a first holding unit that holds, as the second digital signal, a time from the first time until the logic of the second comparison result signal is inverted.
  8.  前記残差電圧生成部は、それぞれが前記2M個の第2残差電圧のうち1つを生成する第1残差電圧生成部と、(2M-1)個の第2残差電圧生成部とを含み、
     前記第1残差電圧生成部は、
     当該第1残差電圧生成部により生成される前記第2残差電圧が出力される第1端子と、 前記第1端子に一端が接続された第1容量と、
     前記第1端子に前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第1スイッチと、
     前記信号電圧と第1基準電圧との一方を選択し、選択した電圧を前記第1容量の他端に供給する第2スイッチとを備え、
     前記各第2残差電圧生成部は、
     当該第2残差電圧生成部により生成される前記第2残差電圧が出力される第2端子と、
     前記第2端子に一端が接続された第2容量及び第3容量と、
     前記信号電圧と前記第1基準電圧と第2基準電圧とのうち1つを選択し、選択した電圧を前記第2容量の他端に供給する第3スイッチと、
     前記信号電圧と第2基準電圧との一方を選択し、選択した電圧を前記第3容量の他端に供給する第4スイッチと、
     前記第2端子に前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第5スイッチとを備える
     請求項1記載の固体撮像装置。
    The residual voltage generator includes a first residue voltage generating unit generated by each one of the 2 M-number of the second residue voltage, (2 M -1) pieces of the second residue voltage generator Including
    The first residual voltage generator is
    A first terminal from which the second residual voltage generated by the first residual voltage generator is output; a first capacitor having one end connected to the first terminal;
    A first switch that switches between a closed state in which the reset voltage is supplied to the first terminal and an open state in which the reset voltage is not supplied;
    A second switch that selects one of the signal voltage and the first reference voltage and supplies the selected voltage to the other end of the first capacitor;
    Each of the second residual voltage generators is
    A second terminal from which the second residual voltage generated by the second residual voltage generator is output;
    A second capacitor and a third capacitor having one end connected to the second terminal;
    A third switch that selects one of the signal voltage, the first reference voltage, and the second reference voltage, and supplies the selected voltage to the other end of the second capacitor;
    A fourth switch that selects one of the signal voltage and the second reference voltage and supplies the selected voltage to the other end of the third capacitor;
    The solid-state imaging device according to claim 1, further comprising a fifth switch that switches between a closed state in which the reset voltage is supplied to the second terminal and an open state in which the reset voltage is not supplied.
  9.  前記固体撮像装置は、さらに、
     前記第1スイッチ、前記第2スイッチ、前記第3スイッチ、前記第4スイッチ及び前記第5スイッチを制御する第2制御部を備え、
     前記第2制御部は、
     第1期間において、前記第1スイッチ及び前記第5スイッチを閉状態にし、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチに前記信号電圧を選択させ、
     前記第1期間の後の第2期間において、前記第1スイッチ及び前記第5スイッチを開状態にし、前記第2スイッチに前記第1基準電圧を選択させ、前記第3スイッチ及び前記第4スイッチに前記第2基準電圧を選択させ、
     前記第2期間の後の第3期間において、前記第1スイッチ及び前記第5スイッチを開状態にし、前記第2スイッチ及び前記第3スイッチに前記第1基準電圧を選択させ、前記第4スイッチに前記第2基準電圧を選択させる
     請求項8記載の固体撮像装置。
    The solid-state imaging device further includes:
    A second control unit for controlling the first switch, the second switch, the third switch, the fourth switch, and the fifth switch;
    The second controller is
    In the first period, the first switch and the fifth switch are closed, the second switch, the third switch and the fourth switch to select the signal voltage,
    In a second period after the first period, the first switch and the fifth switch are opened, the second switch selects the first reference voltage, and the third switch and the fourth switch Selecting the second reference voltage;
    In a third period after the second period, the first switch and the fifth switch are opened, the second switch and the third switch select the first reference voltage, and the fourth switch The solid-state imaging device according to claim 8, wherein the second reference voltage is selected.
  10.  前記残差電圧生成部は、それぞれが前記2M個の第2残差電圧のうち1つを生成する第1残差電圧生成部と、(2M-1)個の第2残差電圧生成部とを含み、
     前記第1残差電圧生成部は、
     当該第1残差電圧生成部により生成される前記第2残差電圧が出力される第1端子と、
     第1ノードと、
     前記第1ノードに一端が接続された第1容量と、
     前記第1ノードに前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第1スイッチと、
     前記信号電圧と第1基準電圧との一方を選択し、選択した電圧を前記第1容量の他端に供給する第2スイッチと、
     反転入力端子が前記第1ノードに接続され、非反転入力端子に前記リセット電圧が印加され、出力端子が前記第1端子と接続される第1オペアンプと、
     前記第1オペアンプの非反転入力端子と出力端子との間に、互いに並列に接続される第4容量及び第6スイッチとを備え、
     前記各第2残差電圧生成部は、
     当該第2残差電圧生成部により生成される前記第2残差電圧が出力される第2端子と、
     第2ノードと、
     前記第2ノードに一端が接続された第2容量及び第3容量と、
     前記信号電圧と前記第1基準電圧と第2基準電圧とのうち1つを選択し、選択した電圧を前記第2容量の他端に供給する第3スイッチと、
     前記信号電圧と第2基準電圧との一方を選択し、選択した電圧を前記第3容量の他端に供給する第4スイッチと、
     前記第2ノードに前記リセット電圧を供給する閉状態と、供給しない開状態とを切り替える第5スイッチと、
     反転入力端子が前記第2ノードに接続され、非反転入力端子に前記リセット電圧が印加され、出力端子が前記第2端子と接続される第2オペアンプと、
     前記第2オペアンプの非反転入力端子と出力端子との間に、互いに並列に接続される第5容量及び第7スイッチとを備える
     請求項1記載の固体撮像装置。
    The residual voltage generator includes a first residue voltage generating unit generated by each one of the 2 M-number of the second residue voltage, (2 M -1) pieces of the second residue voltage generator Including
    The first residual voltage generator is
    A first terminal from which the second residual voltage generated by the first residual voltage generator is output;
    A first node;
    A first capacitor having one end connected to the first node;
    A first switch that switches between a closed state in which the reset voltage is supplied to the first node and an open state in which the reset voltage is not supplied;
    A second switch for selecting one of the signal voltage and the first reference voltage and supplying the selected voltage to the other end of the first capacitor;
    A first operational amplifier having an inverting input terminal connected to the first node, a non-inverting input terminal to which the reset voltage is applied, and an output terminal connected to the first terminal;
    A fourth capacitor and a sixth switch connected in parallel with each other between the non-inverting input terminal and the output terminal of the first operational amplifier;
    Each of the second residual voltage generators is
    A second terminal from which the second residual voltage generated by the second residual voltage generator is output;
    A second node;
    A second capacitor and a third capacitor having one end connected to the second node;
    A third switch that selects one of the signal voltage, the first reference voltage, and the second reference voltage, and supplies the selected voltage to the other end of the second capacitor;
    A fourth switch for selecting one of the signal voltage and the second reference voltage and supplying the selected voltage to the other end of the third capacitor;
    A fifth switch for switching between a closed state in which the reset voltage is supplied to the second node and an open state in which the reset voltage is not supplied;
    A second operational amplifier in which an inverting input terminal is connected to the second node, the reset voltage is applied to a non-inverting input terminal, and an output terminal is connected to the second terminal;
    The solid-state imaging device according to claim 1, further comprising a fifth capacitor and a seventh switch connected in parallel to each other between the non-inverting input terminal and the output terminal of the second operational amplifier.
  11.  前記固体撮像装置は、さらに、
     前記第1スイッチ、前記第2スイッチ、前記第3スイッチ、前記第4スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを制御する第2制御部を備え、
     前記第2制御部は、
     第1期間において、前記第1スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを閉状態にし、前記第2スイッチ及び前記第3スイッチに前記第1基準電圧を選択させ、前記第4スイッチに前記第2基準電圧を選択させ、
     前記第1期間の後の第2期間において、前記第1スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを開状態にし、前記第2スイッチに前記信号電圧を選択させ、前記第3スイッチ及び前記第4スイッチに前記第2基準電圧を選択させ、
     前記第2期間の後の第3期間において、前記第1スイッチ、前記第5スイッチ、前記第6スイッチ及び前記第7スイッチを開状態にし、前記第2スイッチ、前記第3スイッチ及び前記第4スイッチに前記信号電圧を選択させる
     請求項10記載の固体撮像装置。
    The solid-state imaging device further includes:
    A second control unit for controlling the first switch, the second switch, the third switch, the fourth switch, the fifth switch, the sixth switch, and the seventh switch;
    The second controller is
    In the first period, the first switch, the fifth switch, the sixth switch, and the seventh switch are closed, the second switch and the third switch select the first reference voltage, and the first switch 4 switches to select the second reference voltage,
    In a second period after the first period, the first switch, the fifth switch, the sixth switch, and the seventh switch are opened, the second switch selects the signal voltage, and the second switch 3 switches and the fourth switch to select the second reference voltage,
    In a third period after the second period, the first switch, the fifth switch, the sixth switch, and the seventh switch are opened, and the second switch, the third switch, and the fourth switch The solid-state imaging device according to claim 10, wherein the signal voltage is selected.
  12.  行列状に配置され、リセット電圧と、入射光の光量に応じた信号電圧とを出力する複数の画素を備える固体撮像装置におけるAD変換方法であって、
     前記信号電圧を、M(Mは1以上の整数)ビットの第1デジタル信号と、N(Nは1以上の整数)ビットの第2デジタル信号とを含むM+Nビットの第3デジタル信号にAD変換するAD変換ステップを含み、
     前記AD変換ステップは、
     前記リセット電圧と前記信号電圧との差を示す差分電圧を算出し、算出した前記差分電圧を第1デジタル信号にAD変換するとともに、当該差分電圧と当該第1デジタル信号のデジタル値に対応するアナログ電圧との差分を示す第1残差電圧を生成する第1AD変換処理を行う第1AD変換ステップと、
     前記第1残差電圧を前記第2デジタル信号にAD変換する第2AD変換処理を行う第2AD変換ステップとを含み、
     前記第1AD変換ステップは、
     前記差分電圧を算出するとともに、当該差分電圧と2M個の閾値電圧の各々との差を示し、Mビットにより表される2M個のデジタル値の各々に対応する2M個の第2残差電圧を生成する残差電圧生成ステップと、
     前記2M個の第2残差電圧の各々と第1基準電圧とを比較することにより、2Mビットの第1比較結果信号を生成する第1比較ステップと、
     前記2Mビットの第1比較結果信号を前記Mビットの第1デジタル信号に変換するデコードステップと、
     前記2M個の第2残差電圧のうち、前記デコードステップで変換された前記第1デジタル信号のデジタル値に対応する第2残差電圧を選択し、選択した第2残差電圧を前記第1残差電圧として出力する選択ステップとを含む
     AD変換方法。
    An AD conversion method in a solid-state imaging device including a plurality of pixels arranged in a matrix and outputting a reset voltage and a signal voltage corresponding to the amount of incident light,
    AD conversion of the signal voltage into a third digital signal of M + N bits including a first digital signal of M (M is an integer of 1 or more) bits and a second digital signal of N (N is an integer of 1 or more) bits. Including an AD conversion step to
    The AD conversion step includes
    A differential voltage indicating a difference between the reset voltage and the signal voltage is calculated, the calculated differential voltage is AD-converted into a first digital signal, and an analog corresponding to the digital value of the differential voltage and the first digital signal is calculated. A first AD conversion step for performing a first AD conversion process for generating a first residual voltage indicating a difference from the voltage;
    A second AD conversion step of performing a second AD conversion process for AD converting the first residual voltage into the second digital signal,
    The first AD conversion step includes:
    To calculate the differential voltage, the difference voltage and the 2 M-number of shows the difference between the respective threshold voltages, 2 M number of second residual corresponding to each of the 2 M pieces of digital values represented by M bits A residual voltage generating step for generating a differential voltage;
    A first comparison step of generating a 2 M- bit first comparison result signal by comparing each of the 2 M second residual voltages with a first reference voltage;
    A decoding step of converting the 2 M- bit first comparison result signal into the M-bit first digital signal;
    Of the 2 M second residual voltages, a second residual voltage corresponding to the digital value of the first digital signal converted in the decoding step is selected, and the selected second residual voltage is selected as the first residual voltage. And a selection step of outputting as one residual voltage.
  13.  信号電圧を、M(Mは1以上の整数)ビットの第1デジタル信号と、N(Nは1以上の整数)ビットの第2デジタル信号とを含むM+Nビットの第3デジタル信号にAD変換するAD変換器であって、
     前記信号電圧を前記第1デジタル信号にAD変換するとともに、当該信号電圧と当該第1デジタル信号のデジタル値に対応するアナログ電圧との差分を示す第1残差電圧を生成する第1AD変換処理を行う第1AD変換部と、
     前記第1残差電圧を前記第2デジタル信号にAD変換する第2AD変換処理を行う第2AD変換部とを備え、
     前記第1AD変換部は、
     前記差分電圧を算出するとともに、当該差分電圧と2M個の閾値電圧の各々との差を示し、Mビットにより表される2M個のデジタル値の各々に対応する2M個の第2残差電圧を生成する残差電圧生成部と、
     前記2M個の第2残差電圧の各々と第1基準電圧とを比較することにより、2Mビットの第1比較結果信号を生成する第1比較部と、
     前記2Mビットの第1比較結果信号を前記Mビットの第1デジタル信号に変換するデコーダと、
     前記2M個の第2残差電圧のうち、前記デコーダにより変換された前記第1デジタル信号のデジタル値に対応する第2残差電圧を選択し、選択した第2残差電圧を前記第1残差電圧として出力する選択部とを備える
     AD変換器。
    The signal voltage is AD-converted into an M + N-bit third digital signal including a first digital signal of M (M is an integer of 1 or more) bits and a second digital signal of N (N is an integer of 1 or more) bits. An AD converter,
    AD conversion of the signal voltage into the first digital signal and a first AD conversion process for generating a first residual voltage indicating a difference between the signal voltage and an analog voltage corresponding to a digital value of the first digital signal A first AD converter to perform;
    A second AD converter that performs a second AD conversion process for AD converting the first residual voltage into the second digital signal;
    The first AD converter is
    To calculate the differential voltage, the difference voltage and the 2 M-number of shows the difference between the respective threshold voltages, 2 M number of second residual corresponding to each of the 2 M pieces of digital values represented by M bits A residual voltage generator for generating a differential voltage;
    A first comparison unit that generates a 2 M- bit first comparison result signal by comparing each of the 2 M second residual voltages with a first reference voltage;
    A decoder for converting the 2 M- bit first comparison result signal into the M-bit first digital signal;
    Of the 2 M second residual voltages, a second residual voltage corresponding to the digital value of the first digital signal converted by the decoder is selected, and the selected second residual voltage is selected as the first residual voltage. An AD converter comprising a selection unit that outputs as a residual voltage.
PCT/JP2010/004199 2009-10-21 2010-06-24 Solid state image capture device, a/d conversion method, and a/d conversion device WO2011048725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009242737A JP2011091573A (en) 2009-10-21 2009-10-21 Solid-state imaging apparatus and ad conversion method
JP2009-242737 2009-10-21

Publications (1)

Publication Number Publication Date
WO2011048725A1 true WO2011048725A1 (en) 2011-04-28

Family

ID=43899970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004199 WO2011048725A1 (en) 2009-10-21 2010-06-24 Solid state image capture device, a/d conversion method, and a/d conversion device

Country Status (2)

Country Link
JP (1) JP2011091573A (en)
WO (1) WO2011048725A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957983B2 (en) * 2010-06-29 2015-02-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074433A (en) * 2004-09-02 2006-03-16 Renesas Technology Corp Semiconductor integrated circuit device
JP2008072162A (en) * 2006-09-12 2008-03-27 Dainippon Printing Co Ltd Image signal reader for solid-state imaging element
JP2009239694A (en) * 2008-03-27 2009-10-15 Canon Inc Solid-state imaging apparatus and imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006074433A (en) * 2004-09-02 2006-03-16 Renesas Technology Corp Semiconductor integrated circuit device
JP2008072162A (en) * 2006-09-12 2008-03-27 Dainippon Printing Co Ltd Image signal reader for solid-state imaging element
JP2009239694A (en) * 2008-03-27 2009-10-15 Canon Inc Solid-state imaging apparatus and imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957983B2 (en) * 2010-06-29 2015-02-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device

Also Published As

Publication number Publication date
JP2011091573A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
KR101202140B1 (en) Counter circuit, ad conversion method, ad converter, semiconductor device for detecting distribution of physical quantities, and electronic apparatus
JP5605377B2 (en) AD conversion method and AD conversion apparatus
JP4470700B2 (en) AD conversion method, AD converter, semiconductor device for detecting physical quantity distribution, and electronic apparatus
US8269872B2 (en) Analog-to-digital converter, analog-to-digital converting method, solid-state image pickup device, and camera system
US20130206961A1 (en) Solid-state image sensing device
KR102195409B1 (en) Device and method for lamp signal calibration and image sensor using the same
JP4743227B2 (en) AD conversion method, AD conversion apparatus, and semiconductor device and electronic apparatus for detecting physical quantity distribution
US8797455B2 (en) Analog-to-digital converter, image sensor including the same, and apparatus including image sensor
US9124834B2 (en) Solid-state image sensing device having signal holding circuits for holding image digital signals converted by analog-digital converters
JP4474982B2 (en) Solid-state imaging device and signal processing method for solid-state imaging device
JP5704939B2 (en) Imaging device
JP6124016B2 (en) AD conversion apparatus and AD conversion method
CN108429894B (en) Image sensor, electronic device, and image processing method
JP2009118035A (en) Solid-state imaging apparatus and electronic device using the same
US10715757B2 (en) A/D converter
JP2014050019A (en) Driving method of imaging apparatus, driving method of imaging system, imaging apparatus, and imaging system
JP7214622B2 (en) Solid-state imaging device and camera system using the same
WO2011048725A1 (en) Solid state image capture device, a/d conversion method, and a/d conversion device
JP2007104531A (en) Cyclic a/d converter including offset reduction function and digital output image sensor using the same
JP6911893B2 (en) Image sensor and image sensor
JP2021182741A (en) Imaging element and imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824581

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824581

Country of ref document: EP

Kind code of ref document: A1