WO2011048642A1 - Device for reforming heavy oil and method of reforming heavy oil - Google Patents

Device for reforming heavy oil and method of reforming heavy oil Download PDF

Info

Publication number
WO2011048642A1
WO2011048642A1 PCT/JP2009/006855 JP2009006855W WO2011048642A1 WO 2011048642 A1 WO2011048642 A1 WO 2011048642A1 JP 2009006855 W JP2009006855 W JP 2009006855W WO 2011048642 A1 WO2011048642 A1 WO 2011048642A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy oil
supercritical water
oil
phase
residence time
Prior art date
Application number
PCT/JP2009/006855
Other languages
French (fr)
Japanese (ja)
Inventor
永松茂樹
粥川智生
江上日加里
藤本高義
Original Assignee
日揮株式会社
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社, 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 日揮株式会社
Priority to EA201270444A priority Critical patent/EA022662B1/en
Priority to CA2774062A priority patent/CA2774062C/en
Publication of WO2011048642A1 publication Critical patent/WO2011048642A1/en
Priority to ECSP12011824 priority patent/ECSP12011824A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water

Definitions

  • the present invention relates to a technology for reforming heavy oil using supercritical water.
  • the dilution method has a problem that a sufficient diluent such as condensate must be secured, and a problem that the transportation cost increases because the transportation amount increases by the amount of dilution.
  • the reforming method requires a large plant as well as a refinery at the well site, so there is a problem that it is economical only in the vicinity of a large oil field, and processing of by-products such as coke and sulfur. The problem of having to secure the hydrogen required for reforming occurs.
  • existing heavy oil upgrading technologies include pyrolysis processes such as delayed coker and fluid coker, and hydrocracking processes such as H-Oil and LC-Fining.
  • the pyrolysis process is a technology that pyrolyzes heavy oil to produce cracked oil, gas, and coke.
  • the by-products such as coke and sulfur produced in large quantities here have problems such as being forced to pile up in areas where there is no use.
  • the hydrocracking process is a technique for cracking heavy oil using a catalyst under high-temperature and high-pressure hydrogen conditions. Since a large amount of hydrogen is required here, naphtha and natural gas are required, and the supply thereof becomes a problem. Furthermore, it is necessary to consider the supply of the catalyst and the disposal of the used catalyst. As described above, in the existing technology, processing of by-products, hydrogen production, catalyst supply, and waste catalyst processing become problems.
  • heavy oil super heavy crude oil
  • supercritical water super heavy crude oil
  • the pyrolysis reaction of heavy oil due to the contact between heavy oil and supercritical water inside the reactor and the extraction of light oil produced by pyrolysis to the supercritical water side are performed in parallel.
  • the synthetic light crude oil that can be transported by pipeline can be obtained by separating and recovering the extracted light oil.
  • heavy oil that has not been extracted into supercritical water can be used as residual oil in applications such as boiler fuel.
  • Patent Document 1 supplies heavy oil vertically downward from the upper part of the reactor, and supercritical water (or subcritical water) from the lower part. Is separated into a light oil dissolved in supercritical water and a heavy oil not dissolved in the supercritical water.
  • Patent Document 2 discloses a primary pyrolysis section that heats and mixes heavy oil with supercritical water in the lower part of a vertical reactor, decomposes a part of the raw material into light components, and vaporizes the reactor.
  • a reformer having a secondary decomposition section that decomposes a part of the vaporized light component into a reformed component at a higher temperature from the center to the top in the inner vertical direction.
  • a pyrolysis vessel is provided in the reactor, and heavy oil is reacted in the reactor.
  • the liquid overflowing from the pyrolysis vessel without pyrolysis is left as a residual oil from the bottom of the reactor. Discharged.
  • Patent Document 3 heavy oil is reacted with supercritical water in a reactor to produce coke together with the reformed oil emulsion, and the reformed oil emulsion is continuously extracted while the coke is intermittently discharged.
  • the technology to be extracted is disclosed.
  • Japanese Patent No. 4117262 Claim 1, paragraphs 0030 to 0033
  • FIG. JP 2008-208170 A claim 1, paragraphs 0012 to 0017
  • FIG. Japanese Patent Laying-Open No. 2007-51224 Claim 1, paragraphs 0024 to 0030
  • Patent Document 1 the technique described in Patent Document 1 is made by bringing heavy oil into contact with supercritical water and dissolving a light oil component on the supercritical water side, so that vanadium contained in heavy oil, etc. It removes heavy metals and has obtained gas turbine fuel that is unlikely to cause high temperature corrosion. At this time, the heavy metal contained in the heavy oil is concentrated on the heavy oil side that does not dissolve in the supercritical water, and this heavy oil is used as a fuel for a boiler or the like.
  • Patent Document 1 does not disclose a technique for producing a synthetic crude oil by modifying a heavy oil that has not been dissolved in supercritical water to reduce density and viscosity.
  • the primary pyrolysis section is heated to 380 ° C. to 450 ° C.
  • the upper secondary pyrolysis section is 450 ° C. to 550 ° C. higher than the primary pyrolysis section.
  • the reaction time of heavy oil in the pyrolysis vessel arranged in the primary pyrolysis section is adjusted by changing the supply amount of heavy oil and the volume of the pyrolysis vessel.
  • the reaction time in the secondary pyrolysis section is adjusted by changing the flow rate of supercritical water or by filling the secondary pyrolysis section with a filler and changing its internal volume. Yes.
  • Patent Document 3 The technique described in Patent Document 3 is operated by actively selecting conditions for generating coke, and coke processing becomes a problem. Moreover, under severe conditions that generate coke, there are concerns about an increase in gas production (reduction in liquid yield) and an increase in olefin concentration in the reformed oil due to excessive decomposition of light oil.
  • the present invention has been made under such circumstances, and its purpose is to control the degree of thermal decomposition of heavy oil when reforming heavy oil using supercritical water.
  • An object of the present invention is to provide a possible heavy oil reforming apparatus and reforming method.
  • the heavy oil reforming apparatus is maintained at a temperature and pressure above the critical point of water, while bringing the heavy oil and supercritical water into contact with each other while advancing thermal decomposition of the heavy oil.
  • a first phase consisting of a heavy oil obtained by pyrolyzing the heavy oil and supercritical water dissolved in the heavy oil; the supercritical water; and the supercritical water extracted into the supercritical water.
  • a control unit that controls the amount of the mixed fluid extracted from the heavy oil and the supercritical water so that the residence time of the mixed fluid of water becomes a preset first residence time. .
  • the heavy oil reforming apparatus is maintained at a temperature and pressure above the critical point of water, and the heavy oil and the supercritical water are brought into contact with each other to advance thermal decomposition of the heavy oil.
  • the first phase comprising the heavy oil obtained by pyrolyzing the heavy oil and the supercritical water dissolved in the heavy oil, the supercritical water, and extraction into the supercritical water.
  • a reactor for separating into a second phase consisting of A heavy oil supply section for supplying heavy oil to the reactor; A supercritical water supply for supplying supercritical water to the reactor; A first extraction portion for extracting a mixed fluid of heavy oil and supercritical water from the first phase; A second extraction portion for extracting a mixed fluid of supercritical water and light oil from the second phase; Based on the supply amount of the heavy oil, the heavy oil component and the heavy oil component so that the residence time of the mixed fluid of supercritical water dissolved in the heavy oil component becomes a preset first residence time. And a control unit for controlling the amount of fluid extracted from the supercritical water.
  • the heavy oil reforming apparatus may have the following characteristics.
  • the control unit is a mixed fluid of the heavy oil and supercritical water so that the first residence time is 3 minutes or more and 95 minutes or less. Control the amount of extraction.
  • the first residence time is a residence time during which the pyrolysis of the heavy oil proceeds within a range where the amount of coke produced is 0% by weight or more and 20% by weight or less of the heavy oil.
  • the first residence time is a residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the heavy oil at 350 ° C. becomes 3.0 ⁇ 10 ⁇ 5 m 2 / s or less. There is.
  • the control unit obtains the volume of the second phase based on the height position of the interface detected by the interface detection unit, and determines the supercritical water and the supercritical water based on the volume of the second phase. To control the supply amount of supercritical water so that the residence time of the mixed fluid of light oil extracted in the critical water becomes a preset second residence time.
  • the control unit Based on the supply amount of the heavy oil, the control unit has a second residence time set in advance for the mixed fluid of the supercritical water and the light oil extracted into the supercritical water. To control the amount of supercritical water supplied.
  • the control unit controls the supply amount of supercritical water so that the second residence time is 1 minute or more and 25 minutes or less.
  • the second residence time is a residence time during which thermal decomposition of the heavy oil proceeds within a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil.
  • the second residence time is a residence time during which the thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C. is 5.0 ⁇ 10 ⁇ 3 m 2 / s or less.
  • the heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil.
  • a method for reforming heavy oil according to still another invention includes a step of supplying heavy oil to a reactor, Supplying supercritical water to the reactor; Maintaining the reactor at a temperature and pressure above the critical point of water, bringing the heavy oil into contact with the supercritical water and proceeding with the thermal decomposition of the heavy oil, A first phase comprising the heavy oil obtained in this manner and supercritical water dissolved in the heavy oil, a second phase comprising the supercritical water and the light oil extracted into the supercritical water.
  • a method for reforming heavy oil according to still another invention includes a step of supplying heavy oil to a reactor, Supplying supercritical water to the reactor; Maintaining the reactor at a temperature and pressure above the critical point of water, bringing the heavy oil into contact with the supercritical water and proceeding with the thermal decomposition of the heavy oil, A first phase comprising the heavy oil obtained in this manner and supercritical water dissolved in the heavy oil, a second phase comprising the supercritical water and the light oil extracted into the supercritical water.
  • the heavy oil reforming method may include the following features.
  • (J) In order to suppress the formation of coke in the heavy oil component, the first residence time is adjusted within a range of 3 minutes to 95 minutes.
  • the first residence time is a residence time during which pyrolysis of the heavy oil proceeds in a range where the amount of coke produced is 0% by weight or more and 20% by weight or less of the heavy oil. .
  • (L) The first residence time is a residence time during which thermal decomposition of the heavy oil proceeds until a kinematic viscosity of the heavy oil at 350 ° C. is 3.0 ⁇ 10 ⁇ 5 m 2 / s or less. It is characterized by being.
  • (M) obtaining the volume of the second phase based on the height position of the interface detected in the step of detecting the height position of the interface between the first phase and the second phase, Including the step of controlling the supply amount of supercritical water so that the residence time of the supercritical water in the second phase and the mixed fluid of the light oil extracted in the supercritical water becomes a preset second residence time. .
  • (N) Based on the supply amount of the heavy oil, the supercritical water and the supercritical water so that the residence time of the mixed fluid of the light oil extracted in the supercritical water becomes a preset second residence time. Including a step of controlling the supply amount of (O) adjusting the second residence time within a range of 1 minute to 25 minutes in order to suppress overdecomposition of the light oil.
  • the second residence time is a residence time during which pyrolysis of the heavy oil proceeds within a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil.
  • the second residence time is a residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C. is 5.0 ⁇ 10 ⁇ 3 m 2 / s or less. thing.
  • (R) including a step of cooling and depressurizing the mixed fluid of the heavy oil extracted from the first phase and the supercritical water to separate it into the heavy oil and water.
  • S The step of lowering the temperature of the mixed fluid of the heavy oil extracted from the first phase and the supercritical water to obtain fuel oil containing moisture in the heavy oil is included.
  • T The fluid mixture of the heavy oil extracted from the first phase and the supercritical water contains water in the range of 3 wt% to 100 wt% of the heavy oil.
  • U A step of lowering the temperature of the mixed fluid of supercritical water and light oil extracted from the second phase and reducing the pressure to separate the oil into light oil and water.
  • (V) including a step of recovering water separated from the heavy oil or light oil for reuse as supercritical water supplied to the reactor.
  • W Lowering the temperature of the mixed fluid of the heavy oil extracted from the first phase and the supercritical water, lowering the pressure, and separating the fluid into the heavy oil and water; Lowering the temperature of the mixed fluid of supercritical water and light oil extracted from the second phase and lowering the pressure to separate the oil into light oil and water; Mixing the heavy oil and the light oil after being separated from water.
  • the heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil.
  • these fluids are brought into the first phase (mixing of heavy oil and supercritical water dissolved in this heavy oil by bringing heavy oil and supercritical water into contact in the reactor.
  • the first phase is constituted by separating into two phases of a fluid phase) and a second phase (a phase consisting of a mixed fluid of the supercritical water and a light oil extracted into the supercritical water).
  • the extraction amount of the mixed fluid of the heavy oil and the supercritical water is adjusted so that the residence time of the mixed fluid in the first phase becomes a preset first residence time.
  • This makes it possible to control the degree of progress of thermal decomposition of the heavy oil that proceeds in the first phase.
  • the thermal decomposition is allowed to proceed to the maximum extent that coke generation from the heavy oil can be suppressed. It is possible to operate the reformer under optimum conditions, such as by allowing thermal decomposition to proceed so that the kinematic viscosity of the heavy oil falls within a desired range.
  • the reformer according to the present embodiment is installed at a well where a high-density, high-viscosity crude oil such as oil sand bitumen or orinocotal is produced, and the heavy oil is synthesized with low-density, low-viscosity. Plays a role in reforming crude oil.
  • the reformer reforms the heavy oil by bringing heavy oil and supercritical water into contact with each other, and separates the heavy oil into the light oil and the reactor 1.
  • a high-pressure separator 2 that separates a mixed fluid of light oil and supercritical water flowing out of the oil under a pressure condition similar to that in the reactor 1, for example, and a combination of light oil and water flowing out of the high-pressure separator 2
  • the mixed fluid of the low pressure separator 3 that separates the mixed fluid into oil and water under a lower pressure condition than the high pressure separator 2 and the heavy oil and supercritical water that has flowed out of the reactor 1
  • a flash drum 4 for separation and a recycled water tank 5 for recycling the water after oil-water separation are provided.
  • the reactor 1 thermally decomposes the heavy oil by bringing the heavy oil and supercritical water, which have been heated and pressurized, into contact with each other, for example, in countercurrent. This serves to separate and extract the light oil and heavy oil obtained separately.
  • the reactor 1 is a pressure vessel having a hollow interior and formed in, for example, a tower shape.
  • a heavy oil for receiving heavy oil from a heavy oil supply source 11 is provided on, for example, an upper side wall portion of the reaction vessel.
  • a supply line 110 is connected.
  • the heavy oil supply source 11 is composed of, for example, a tank for storing heavy oil.
  • the heavy oil received from the heavy oil supply source 11 is increased to a critical pressure of water of 22.1 MPa or more, for example, 25 MPa to 30 MPa, and sent to the reactor 1.
  • a heating pump for heating the heavy oil supplied to the reactor 1 to 300 ° C. to 450 ° C., for example, is provided.
  • a heater 113 is interposed.
  • the heavy oil is supplied at a temperature lower than the temperature in the reactor 1 (for example, 374 ° C. to 500 ° C.) in order to prevent polycondensation in the heavy oil supply line 110 and the heater 113.
  • the heavy oil supply line 110, the heavy oil supply pump 111, the flow rate control valve 112, the heater 113, and the like correspond to the heavy oil supply unit of the present embodiment.
  • a supercritical water supply line 120 for supplying water received from a water supply source 12 such as a water storage tank to the reactor 1 in a supercritical state is connected to the lower side wall portion of the reaction vessel, for example. Yes.
  • a supercritical water supply pump 121 that boosts the water received from the water supply source 12 to a critical pressure (22.1 MPa) or higher, for example, 25 MPa to 30 MPa, and sends it to the reactor 1,
  • a flow control valve 122 that adjusts the supply amount of supercritical water, and a heating furnace for heating the supercritical water supplied to the reactor 1 to, for example, 450 ° C. to 600 ° C.
  • the heater 123 which consists of these etc. is interposed.
  • the heavy oil supplied from the heavy oil supply line 110 is supplied at a temperature lower than the temperature in the reactor 1 for the purpose of preventing polycondensation. Is supplied at a temperature higher than the temperature in the reactor 1 to supply heat necessary for the pyrolysis reaction of heavy oil.
  • the supercritical water supply line 120, the supercritical water supply pump 121, the flow control valve 122, the heater 123, and the like correspond to the supercritical water supply unit of the present embodiment.
  • a light oil component is extracted to extract a mixed fluid formed by extracting a light oil component obtained by decomposing heavy oil in the reactor 1 into the supercritical water.
  • Line 130 is connected.
  • a light oil content extraction line 130 includes a cooler 132 including a heat exchanger for cooling the mixed fluid flowing in the light oil content extraction line 130 to a temperature lower than the critical pressure of water, for example, 200 ° C. to 374 ° C.
  • a pressure adjusting valve 131 for adjusting the pressure in the reactor 1 to, for example, 25 MPa to 30 MPa is interposed.
  • the light oil content extraction line 130, the pressure adjustment valve 131, and the cooler 132 correspond to the second extraction portion of the present embodiment.
  • the mixed fluid cooled by the cooler 132 under a pressure substantially equal to the pressure in the reactor 1 is mixed with the light oil content (however, the light oil content also contains moisture).
  • a high-pressure separator 2 for separation into water A light oil component line 210 is connected to the upper side of the high pressure separator 2 to extract a light oil component and send it to the low pressure separator 3.
  • the light oil component line 210 cools the light oil component to a temperature of about 40 ° C. to 100 ° C.
  • a high-pressure separation water line 220 is provided on the bottom side of the high-pressure separator 2 for extracting water separated from the light oil under a pressure of about 25 MPa to 30 MPa and a temperature of about 200 ° C. to 374 ° C.
  • the high-pressure separation water line 220 is connected to a later-described recycle water line 510 so that the separation water from the high-pressure separator 2 can be supplied to the reactor 1 again.
  • a high-pressure separation water recycle pump 221 for feeding the separation water from the high-pressure separator 2 is provided in the high-pressure separation water line 220.
  • the low pressure separator 3 provided on the downstream side of the light oil content line 210 will be described.
  • the low pressure separator 3 has a pressure of about 0.2 MPa to 1.0 MPa with respect to the light oil content containing water flowing out from the high pressure separator 2, 40 Under the temperature condition of about 100 ° C. to 100 ° C., it again separates into light oil and water.
  • Reference numeral 320 denotes a synthetic crude oil line for delivering light oil separated from water as synthetic crude oil to the synthetic crude oil tank 62.
  • a low-pressure separation water recycling line 330 is connected to, for example, the bottom of the low-pressure separator 3, and the low-pressure separation water recycling line 330 extracts water separated from light oil and recycles it as supercritical water. It plays the role of sending liquid to the tank 5.
  • a drainage line 340 for extracting a part of the recycled water from the low-pressure separated water recycling line 330 to the wastewater treatment facility 63 is branched, and it is improved by increasing or decreasing the amount of liquid fed to the wastewater treatment facility 63.
  • the concentration of oil and salinity in the recycled water circulating in the quality device can be adjusted to a predetermined value or less.
  • reference numeral 310 denotes an exhaust gas line for sending gas to the exhaust gas treatment facility 61 that has volatilized from the light oil component.
  • a heavy oil extraction line 140 for extracting a mixed fluid of the heavy oil and supercritical water dissolved in the heavy oil is connected.
  • the heavy oil content extraction line 140 includes a cooler 141 including a heat exchanger for cooling the mixed fluid flowing in the line 140 to about 200 ° C. to 350 ° C., and a mixture from the bottom of the reactor 1.
  • a flow rate adjustment valve 142 is provided for adjusting the amount of fluid extracted and reducing the pressure of the mixed fluid flowing in the heavy oil content extraction line 140 to, for example, about 0.2 MPa to 1.0 MPa higher than normal pressure. It is installed.
  • the heavy oil content extraction line 140, the cooler 141, and the flow rate adjustment valve 142 correspond to the first extraction portion of the present embodiment.
  • the flow rate adjusting valve 142 is connected to the flash drum 4, and the flash drum 4 has a heavy oil component and the heavy oil component under a pressure condition of about 0.2 MPa to 1.0 MPa and a temperature condition of about 200 ° C. to 350 ° C. It plays the role of separating water dissolved in it.
  • 410 provided in the flash drum 4 is a drum separation water line for extracting water separated in the flash drum 4 toward the low-pressure separation water recycling line 330 and recycling the water, and 420 is a weight separated from the water.
  • This is a residual oil line for extracting the quality oil to the residual oil tank 64 as residual oil for boiler combustion, for example.
  • a crude oil mixing line 430 is branched.
  • the mixing amount of the heavy oil to the light oil is adjusted to a range in which the compatibility of the synthetic crude oil after mixing is ensured, in other words, a mixing amount in a range where the synthetic crude oil after mixing is not re-separated into the heavy light oil. It has become so.
  • CII Cold Instability Index
  • SARA analysis is performed, and saturated oils, aromatic hydrocarbons, resins, asphaltenes (saturated hydrocarbons, aromatics) Asphaltenes) is measured, CII is calculated from equation (1), and the amount of heavy oil mixed is adjusted so that the value is 0.5 or less.
  • CII ⁇ (saturated content + asphaltene content) / (aromatic content + resin content) ⁇ ⁇ 0.5 (1)
  • the recycled water tank 5 provided downstream of the low-pressure separation water recycling line 330 includes water separated from light oil by the low-pressure separator 3 and the flash drum 4.
  • the water separated from the heavy oil is received, and the water collected in the recycled water tank 5 is resupplied to the supercritical water supply line 120.
  • 510 is a recycle water line connecting the recycle water tank 5 and the supercritical water supply line 120
  • 511 is water discharged from the recycle water tank 5 that has a critical pressure (22.1 MPa) or more, for example, 22.1 MPa to This is a recycled water pump for raising the pressure to 40 MPa and sending it out toward the supercritical water supply line 120.
  • the recycle water line 510 is joined with the high pressure separation water line 220 for recycling the water separated by the high pressure separator 2.
  • the water used as supercritical water it is possible to reduce the amount of new water used, to easily secure the water necessary for reforming heavy oil, and to reduce the environmental load.
  • the reformer includes a control unit 7.
  • the control unit 7 includes a computer having a CPU and a storage unit, for example, and the storage unit is operated by the reformer, that is, the heavy oil and the supercritical water are brought into contact with each other in the reactor 1 to perform thermal decomposition. After proceeding and separating into heavy oil and light oil, water of each oil is removed, and light oil alone or synthetic oil in which light oil and heavy oil are mixed, and residual oil consisting of heavy oil A program in which a group of steps (commands) relating to the control related to the operation for obtaining is assembled is recorded. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
  • a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card
  • the reformer according to the present embodiment which has outlined the overall process flow as described above, includes (1) control that reduces the kinematic viscosity of the heavy oil while suppressing coke generation in the heavy oil, and (2) It is possible to adjust the control for reducing the kinematic viscosity of the light oil component while suppressing the gas generation accompanying the excessive decomposition of the light oil component using independent operating variables.
  • control that reduces the kinematic viscosity of the heavy oil while suppressing coke generation in the heavy oil
  • the detailed configuration will be described below.
  • FIG. 2 schematically shows the internal structure of the reactor 1 described above and the configuration of the control system provided in the reactor 1.
  • the heavy oil heated and heated through the heavy oil supply line 110 is supplied from the upper side of the reactor 1, while the supercritical water heated and heated through the supercritical water supply line 120 is It is supplied from the bottom side of the reactor 1. And when both fluids contact, the thermal decomposition of heavy oil will advance by the heat brought in by supercritical water, and the whole heavy oil will become light.
  • 101 is a heavy oil supply nozzle
  • 102 is a supercritical water supply nozzle.
  • the light oil contained in the heavy oil in advance is extracted into supercritical water, and the heavy oil remaining without being extracted in the supercritical water is thermally decomposed.
  • the light oil produced by the extraction into supercritical water forms a continuous phase consisting of supercritical water and light oil (hereinafter referred to as second phase), and heavy oil that has not been extracted into supercritical water.
  • the oil component forms a continuous phase (hereinafter referred to as the first phase) and separates into two phases. Since the heavy oil has a higher specific gravity than the mixed fluid of supercritical water and light oil, the first phase is formed on the lower side of the reactor 1 and the second phase is formed on the upper side of the reactor 1. Will be.
  • the heavy oil constituting the first phase contains heavy oil (dry condition standard containing no water). 3) to 100% by weight of supercritical water dissolves.
  • the first phase is composed of a mixed fluid of heavy oil and supercritical water.
  • supercritical water is supplied from the supercritical water supply nozzle 102 into the first phase on the lower side, and the heavy oil supply nozzle 101 is supplied into the second phase on the upper side. Will be supplied with heavy oil.
  • extraction of light oil to the supercritical water side and dissolution to the heavy oil side of the supercritical water settles the interface with the supercritical water (dispersed phase) that rises the first phase and the second phase. It proceeds at the interface with the heavy oil (dispersed phase) and the contact interface between the first phase and the second phase.
  • the present inventors have a very fast rising speed of supercritical water rising in the first phase, a very high sedimentation speed of heavy oil settling in the second phase, and each supercritical water and heavy oil is, for example, It is understood that it passes through the first and second phases in several seconds to several tens of seconds. For this reason, the pyrolysis of heavy oil actually proceeds with pyrolysis of the heavy oil in the first phase, and the resulting light oil is extracted to the second phase, and the second In this phase, further thermal decomposition of the light oil component and the light oil component supplied from the first phase side proceeds.
  • the mixed fluid constituting the first phase is extracted from the heavy oil content extraction line 140 and cooled by the cooler 141, whereby the thermal decomposition of the heavy oil content is stopped, while the second phase is configured.
  • the mixed fluid to be extracted is extracted from the light oil content extraction line 130 and cooled by the cooler 132, the thermal decomposition of the light oil content is stopped.
  • the degree of thermal decomposition of the heavy oil component is determined by the mixed fluid of the heavy oil component in the first phase and the supercritical water dissolved in the heavy oil component (hereinafter, It can be controlled by the residence time of the first mixed fluid).
  • the yield of light oil increases as the pyrolysis progresses, and supercritical water is dissolved in the heavy oil and the decomposition of the heavy oil is moderately advanced under the condition that the cage effect is exhibited.
  • the viscosity of the heavy oil component decreases, and handling of the synthetic crude oil becomes easier when used as boiler fuel or after being mixed with the light oil component.
  • pyrolysis proceeds to such an extent that the cage effect described above is offset, coke is generated in the heavy oil.
  • the kinematic viscosity at 350 ° C. of the heavy oil serving as the residual oil is set to 3.0 ⁇ 10 ⁇ 5 m 2 / s or less (30 cSt or less), and coke is generated.
  • the degree of progress of thermal decomposition of light oil is determined by the residence time of the mixed fluid of supercritical water in the second phase and the light oil extracted in the supercritical water (hereinafter referred to as the second mixed fluid). Can be adjusted.
  • the light oil component has a kinematic viscosity that decreases as the thermal decomposition proceeds. For example, even in cold regions, it is possible to transport synthetic crude oil without providing special heating equipment. On the other hand, if the light oil component is excessively decomposed, the amount of gas generated from the light oil component increases, and the yield of synthetic crude oil decreases.
  • the kinematic viscosity at 10 ° C. of light crude oil alone or mixed with heavy oil, for example, at 10 ° C. is set to 5.0 ⁇ 10 ⁇ 3 m 2 / s or less (5000 cSt or less), and gas Is provided with a mechanism for adjusting the residence time of the second mixed fluid in the second phase so that the thermal decomposition of the light oil proceeds to such an extent that the generation of is suppressed.
  • the synthetic crude oil mixed with the heavy oil component in order to set the kinematic viscosity of the synthetic crude oil mixed with the heavy oil component to 5.0 ⁇ 10 ⁇ 3 m 2 / s or less (5000 cSt or less), it is mixed with the heavy oil component having a relatively large kinematic viscosity.
  • the second residence time is adjusted so that the kinematic viscosity of the light oil alone becomes a lower value.
  • the residence time of the first mixed fluid in the first phase is ⁇ pitch
  • the residence time of the second mixed fluid in the second phase is ⁇ Lt
  • the unit time of heavy oil from the heavy oil supply line 110 is F Oin is the supply amount per unit time
  • F Win is the supply amount per unit time of supercritical water from the supercritical water supply line 120
  • the first mixed fluid is extracted from the heavy oil content extraction line 140 per unit time.
  • the proportion of the light oil extracted in the second phase varies depending on the properties of the heavy oil, the temperature and pressure conditions of the reactor 1, and the degree of progress of thermal decomposition of the heavy oil. For example, a fraction lighter than VGO (Vacuumed Gas Oil: vacuum gas oil) having a boiling point of 540 ° C. or less is extracted as a light oil component to the supercritical water side, and the fraction corresponding to VR (Vacuumed Residue) having a boiling point higher than 540 ° C.
  • VGO Vaumed Gas Oil: vacuum gas oil
  • ⁇ pitch is controlled within, for example, a fluctuation range of about ⁇ 1 minute of the target value, and the degree of progress of thermal decomposition is controlled within a certain range, thereby obtaining the VGO yield (ie, VR). ) Is assumed to be almost constant.
  • the first phase is increased or decreased by increasing / decreasing the extraction amount F W1 + Pitch of the first mixed fluid from the heavy oil content extraction line 140.
  • the residence time ⁇ pitch of the first mixed fluid can be adjusted.
  • the residence time ⁇ pitch within the range of “3 minutes ⁇ ⁇ pitch ⁇ 95 minutes” from the results of the examples described later, the coke in the heavy oil component is reduced. It has been confirmed that the formation can be suppressed and the kinematic viscosity of the residual oil at 350 ° C. can be adjusted to 3.0 ⁇ 10 ⁇ 5 m 2 / s or less (30 cSt or less).
  • the solubility of supercritical water in the heavy oil is constant under the conditions of constant temperature and pressure, if the outflow amount F Pitch of the heavy oil extracted from the first phase is determined, The amount F W1 of supercritical water dissolved in the refined oil is a constant value. If the supply amount F Win of the supercritical water is increased or decreased in this state, it is possible to increase or decrease the amount of supercritical water that does not dissolve in the heavy oil, that is, the amount F W2 of the supercritical water that forms the second phase. It becomes. Dissolution amount F W1 of supercritical water for outflow F Pitch of heavy oil, for example it is sufficient to understand due preliminary experiments.
  • the residence time ⁇ Lt of the second mixed fluid in the second phase can be adjusted.
  • the residence time ⁇ Lt within the range of “1 minute ⁇ ⁇ Lt ⁇ 25 minutes” from the results of the examples described later, the coke in the heavy oil component is reduced. It is possible to suppress the production and adjust the kinematic viscosity of light crude oil alone at 10 ° C. or the synthetic crude oil after mixing with heavy oil to 5.0 ⁇ 10 ⁇ 3 m 2 / s or less (5000 cSt or less). I have confirmed.
  • the heavy oil content extraction line 140 is provided with a flow rate controller 74 for adjusting the extraction amount FW1 + Pitch of the first mixed fluid, and the indicated value (b ) Is output to the control unit 7.
  • the control unit 7 calculates the residence time ⁇ pitch based on the equation (5), and increases or decreases the flow rate setting value (e) of the flow rate controller 74 so that the ⁇ pitch becomes a preset target value.
  • the opening degree of 142 is adjusted.
  • the supercritical water supply line 120 is provided with a flow rate controller 72 for adjusting the supply amount F Win (ie, F W2 ) of supercritical water, and the indicated value (a) of the flow rate controller 72 is a control unit. 7 is output.
  • the controller 7 calculates the residence time ⁇ Lt based on the equation (6), and increases or decreases the flow rate setting value (d) of the flow rate controller 74 so that the ⁇ Lt becomes a preset target value.
  • the opening degree of 122 is adjusted.
  • the reactor 1 is provided with an interface level meter 75 such as a differential pressure type, an ultrasonic type, an X-ray type, etc., which is an interface detection unit of the present embodiment, and the first phase in the reactor 1 and the first phase.
  • an interface level meter 75 such as a differential pressure type, an ultrasonic type, an X-ray type, etc., which is an interface detection unit of the present embodiment, and the first phase in the reactor 1 and the first phase.
  • a signal (c) indicating “high interface level” or “low interface level” is output to the control unit 7. .
  • the controller 7 increases or decreases the flow rate set value (f) of the flow rate controller 71 provided in the heavy oil supply line 110 so that the interface level returns to the height position within the set range, thereby supplying the heavy oil supply amount.
  • the volume V 1 of the first phase (that is, the volume V 2 of the second phase) is kept constant.
  • the pressure in the reactor 1 is performed by opening and closing the pressure reducing valve 211 by a pressure controller (not shown) provided in the light oil content line 210 of the high pressure separator 2 shown in FIG.
  • these fluids are dissolved in the first phase (heavy oil and the heavy oil by bringing heavy oil and supercritical water into contact in the reactor.
  • the second phase the phase consisting of the supercritical water and the light oil extracted in the supercritical water
  • the second phase mixed phase constituting the first phase.
  • Heavy oil and supercritical water so that the residence time of the fluid in the first phase becomes a preset first residence time (for example, set to a predetermined value within a range of 3 to 95 minutes). The amount of extraction of the mixed fluid (first mixed fluid) is adjusted.
  • the residence time in the second phase of the mixed fluid constituting the second phase becomes a preset second residence time (for example, set to a predetermined value in the range of 1 to 25 minutes).
  • the amount of the second mixed fluid (mixed fluid of light oil and supercritical water) is adjusted.
  • thermal decomposition proceeds in a range in which excessive decomposition of the light oil is suppressed and generation of gas is suppressed.
  • thermal decomposition can be advanced so that the kinematic viscosity of the synthetic crude oil obtained from the light oil is in a desired range.
  • an interface level meter 75 is provided to measure the interface between the first and second phases so that V 1 and V 2 are constant.
  • the level meter 75 may not be provided.
  • the yields of lighter fractions and VR fractions than VGO according to the oil type, temperature, pressure conditions, etc. of heavy oil are obtained by experiments in advance, and F Oin , F Win , F Pitch , F
  • the interface level in the reactor 1 is estimated from the values of Lt , F w1 , and F w2 , and V 1 and V 2 are kept constant based on the estimated interface level, and each of the values based on the equations (5) and (6)
  • the residence times ⁇ pitch and ⁇ Lt may be adjusted.
  • the residence time ⁇ pitch of the first mixed fluid in the first phase is adjusted by the extraction amount F Pitch of the first mixed fluid
  • the residence time of the second mixed fluid in the second phase is adjusted.
  • ⁇ Lt is adjusted by the supply amount F Win of supercritical water
  • these residence times are set to other operating variables shown in the equations (5) and (6), for example, the supply amount F of heavy oil It does not deny adjusting with Oin or the extraction amount FW2 + Ltout of the second mixed fluid.
  • the flash drum 4 is not necessarily provided.
  • the flash drum 4 can be omitted.
  • vaporization when used as boiler fuel is promoted by the effect of water dispersed in the residual oil, and the combustibility in the boiler can also be improved.
  • the heavy oil to be reformed by the reformer has been described for the case of processing ultra heavy crude oil such as oil sand bitumen or orinocotal, but can be processed by the reformer.
  • Heavy oil is not limited to crude oil.
  • the case of performing reforming treatment of atmospheric distillation residue oil or vacuum distillation residue oil is also included in the technical scope of the present invention.
  • Example 1 As a model device of the reformer shown in FIG. 1, the test device shown in FIG. 3 was manufactured and a heavy oil reforming experiment was conducted.
  • reference numeral 200 denotes a gas-liquid separation tank for separating the second mixed fluid extracted from the upper side of the reactor 1 into a mixed fluid of gas and light oil / water
  • 143 denotes the reactor 1.
  • It is a ball valve for extracting heavy oil (second mixed fluid) from the lower side.
  • the residence time ⁇ pitch of the first mixed fluid was controlled by the amount of extracted residual oil F Pitch
  • the residence time ⁇ Lt of the second mixed fluid was controlled by the supercritical water supply amount F Win .
  • As heavy oil Canadian oil sand bitumen having the properties shown in Table 1 was used. (Table 1)
  • Example 1 The experiment was performed under the following conditions. Reaction temperature in reactor 1: 430 ° C Reaction pressure in reactor 1: 25 MPa Water / oil weight ratio: 1.0 Residence time ⁇ Pitch of the first fluid mixture: 82 minutes Residence time ⁇ Lt of the second fluid mixture: 2.3 minutes (Example 2) Reaction temperature in reactor 1: 450 ° C The experiment was conducted under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 4.9 minutes and the residence time ⁇ Lt of the second fluid mixture was 11 minutes.
  • Example 3 Water / oil weight ratio: 0.5 The experiment was performed under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 38 minutes and the residence time ⁇ Lt of the second fluid mixture was 22 minutes.
  • Example 4 The experiment was performed under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 67 minutes and the residence time ⁇ Lt of the second fluid mixture was 1.8 minutes.
  • Comparative Example 1 The experiment was performed under the same conditions as in Example 1 except that the residence time ⁇ Pitch of the first mixed fluid was 105 minutes and the residence time ⁇ Lt of the second fluid mixture was 1.1 minutes.
  • Table 2 The experimental conditions of each example and comparative example are summarized in (Table 2). (Table 2)
  • Example 6 the yield of each fraction obtained as a result of treating the same oil sand bitumen as used in (Example 1) by a bisbreaker test and a delayed coker test was compared with the results of (Examples 1 and 2). The results are shown in (Table 6).
  • Examples 1 and 2 are obtained by synthesizing the yields of synthetic crude oil and residue wafers and converting them into a VGO fraction having a boiling point of 540 ° C. or lower and a VR fraction having a boiling point higher than 540 ° C. , (Table 3) may not match the yield. (Table 6)
  • Example 2 ( ⁇ Pitch : 4.9 minutes) ⁇ Example 3 (same: 32 minutes) ⁇ Example 1 (same: 95 minutes) and first residence time ⁇ Pitch
  • Example 3 (same: 32 minutes) ⁇ Example 1 (same: 95 minutes)
  • first residence time ⁇ Pitch As the oil length is increased, the yield of residual oil decreases while the yield of synthetic crude oil increases. Further, in Comparative Example 1 where the ⁇ pitch was 105 minutes, generation of coke (coking) was observed.
  • Example 4 ( ⁇ Pitch : 67 minutes) in which the first residence time ⁇ Pitch is longer than that in Example 3, the residual oil yield is higher than that in Example 3, while the synthetic crude oil yield is The reason for this is not clear, but I think it is due to fluctuation error.
  • Example 4 (same as 1.8 minutes) ⁇ Example 2 (same as 11: except for Example 1 ( ⁇ Lt : 2.3 minutes) with the highest gas yield).
  • Min ⁇ Example 3 (25 minutes in the same order)
  • the gas yield tends to increase as the second residence time ⁇ Lt is increased.
  • Example 4 ( ⁇ Lt : 1.8 minutes) ⁇ Example 1 (same: 2.3 minutes) ⁇ Example 2 (same: 11 minutes) ⁇ Example 3 (same: 25 minutes) and second
  • ⁇ Lt the residence time
  • the kinematic viscosity of the residual oil tends to increase. This is considered to be the result of the polymerization of the heavy oil proceeding against the cage effect of supercritical water dissolved in the heavy oil as the first residence time is increased. This can also be confirmed from the fact that the density of the residual oil increases as the first residence time increases.
  • the first residence time ⁇ Pitch should be in the range of about 3 minutes to 95 minutes.
  • the kinematic viscosity at 310 ° C. becomes 1.8 ⁇ 10 ⁇ 5 m 2 / s (18 cSt) or less while suppressing the generation of coke, and it can be seen that a residual oil that is easy to handle can be obtained.
  • the second residence time ⁇ Lt is about 1 to 25 minutes, and the gas generation is suppressed to about 4% by mass or less, and the kinematic viscosity at 10 ° C. is 2.8 ⁇ 10 ⁇ 5 m. It can be said that synthetic crude oil of 2 / s (28 cSt) or less can be obtained.
  • Example 2 A viewing window for internal observation is provided in the reactor 1 of the same experimental apparatus as in (Experiment 1), and it is confirmed that the fluid in the container is separated into the first phase and the second phase, and an interface is formed. did.
  • FIG. 4A shows the result of photographing the inside of the reactor 1 from the viewing window
  • FIG. 4B shows a schematic diagram thereof.
  • the lower side of the reactor 1 has a first phase composed of a heavy oil component and supercritical water dissolved in the heavy oil component, supercritical water, and supercritical water.
  • a second phase consisting of light oil extracted in critical water was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A device and method for reforming a heavy oil are provided with which it is possible to control the degree of progress of the thermal cracking of the heavy oil when the heavy oil is reformed using supercritical water. A reactor (1) is kept at a temperature and a pressure which are equal to or higher than the critical points of water, and a heavy oil is brought into contact with supercritical water. While thermal cracking of the heavy oil is allowed to proceed, the reaction mixture is separated into a first phase comprising heavy-oil matter obtained by the thermal cracking of the heavy oil and supercritical water dissolved in the heavy-oil matter and a second phase comprising supercritical water and light-oil matter extracted and dissolved in the supercritical water. An interface detector (75) detects the level of the interface between the first phase and the second phase in the reactor. A control unit (7) controls, on the basis of the volume of the first phase determined from the level of the interface, the discharge rate of the mixed fluid composed of the heavy-oil matter and the supercritical water dissolved therein, so that the residence time of the heavy-oil matter/supercritical water mixed fluid is a first residence time preset.

Description

重質油の改質装置及び重質油の改質方法Heavy oil reforming apparatus and heavy oil reforming method
 本発明は、超臨界水を利用して重質油を改質する技術に関する。 The present invention relates to a technology for reforming heavy oil using supercritical water.
 今後、中国やインドなどの発展途上国を中心に原油需要の高まりが予想される中、従来から利用されてきた軽質原油の生産はピークを迎えつつあり、これまではあまり利用されていなかった重質原油や超重質原油を利用する必要性が高まってきている。超重質油の中でも、カナダのオイルサンドビチュメンやベネズエラのオリノコタールは、すでに経済的な生産手法も確立され、生産量は増加しつつある。 In the future, while demand for crude oil is expected to increase mainly in developing countries such as China and India, the production of light crude oil, which has been used in the past, is reaching its peak, and it has not been used so far. There is an increasing need to use high-quality and ultra-heavy crude oil. Among super heavy oils, Canadian oil sand bitumen and Venezuelan orinocotal have already established economical production methods and their production is increasing.
 これらの超重質原油は密度や粘度が非常に高いため、生産地の井戸から消費地の製油所まで輸送するために、そのままパイプラインなどを用いて輸送することができない。そのため、井戸元では、希釈剤を混合して粘度を低下させる希釈法と、すぐそばにアップグレーダーと呼ばれる熱分解や水素化処理を行うプラントを建設して軽質な合成原油を製造する改質法との2つの手法が選択されている。 These ultra-heavy crude oils have very high density and viscosity, so they cannot be transported as they are using pipelines to transport them from wells in production areas to refineries in consumption areas. Therefore, at the well site, a dilution method in which a diluent is mixed to lower the viscosity, and a reforming method to produce a light synthetic crude oil by constructing a plant called pyrolyzer and hydrotreating, which is called an upgrader, is nearby. The two methods are selected.
 しかしながら、希釈法ではコンデンセートなどの希釈剤を十分に確保しなければならない問題や、希釈する分だけ輸送量が増えるため輸送コストが増大するといった問題が発生する。また、改質法においても、井戸元に製油所並の大規模なプラントを必要とするため、大規模油田の近隣でしか経済性が成り立たないという問題や、コークスや硫黄などの副生成物処理の問題、改質に必要となる水素を確保しなければならないという問題が発生する。 However, the dilution method has a problem that a sufficient diluent such as condensate must be secured, and a problem that the transportation cost increases because the transportation amount increases by the amount of dilution. Also, the reforming method requires a large plant as well as a refinery at the well site, so there is a problem that it is economical only in the vicinity of a large oil field, and processing of by-products such as coke and sulfur. The problem of having to secure the hydrogen required for reforming occurs.
 また既存の重質油のアップグレーディング技術として、ディレードコーカーやフルードコーカーなどの熱分解プロセスやH-Oil、LC-Finingなどの水素化分解プロセスがある。熱分解プロセスは重質油を熱分解し、分解油とガス、コークスを製造する技術である。ここで大量に生成するコークスや硫黄などの副生成物は、用途がない地域では野積みにせざるを得ない場合があるなどの問題がある。 Also, existing heavy oil upgrading technologies include pyrolysis processes such as delayed coker and fluid coker, and hydrocracking processes such as H-Oil and LC-Fining. The pyrolysis process is a technology that pyrolyzes heavy oil to produce cracked oil, gas, and coke. The by-products such as coke and sulfur produced in large quantities here have problems such as being forced to pile up in areas where there is no use.
 一方、水素化分解プロセスは、高温高圧水素条件下で触媒を用いて重質油を分解する技術である。ここでは大量の水素が必要なことからナフサや天然ガスが必要となり、その供給が問題となる。さらに、触媒の供給や使用済み触媒の廃棄なども考慮しなければならない。 
 以上のように、既存の技術では副生成物の処理、水素の製造、触媒の供給、廃触媒の処理が問題となる。
On the other hand, the hydrocracking process is a technique for cracking heavy oil using a catalyst under high-temperature and high-pressure hydrogen conditions. Since a large amount of hydrogen is required here, naphtha and natural gas are required, and the supply thereof becomes a problem. Furthermore, it is necessary to consider the supply of the catalyst and the disposal of the used catalyst.
As described above, in the existing technology, processing of by-products, hydrogen production, catalyst supply, and waste catalyst processing become problems.
 これらの問題に対し、本件発明者らは超臨界水を利用して重質原油や超重質原油(以下、重質油という)を改質し、シンプルな改質スキームで、希釈剤を必要とせずにパイプライン輸送可能な合成原油を製造する技術に着目した。この技術では、反応器内部において、重質油と超臨界水とが接触することによる重質油の熱分解反応と、熱分解によって生成した軽質油分の超臨界水側への抽出とを並行して進行させ、抽出された軽質油分を分離回収することで、パイプライン輸送が可能な合成原油を得ることができる。また、超臨界水に抽出されなかった重質油分は残渣油としてボイラー燃料などの用途で使用することができる。 In response to these problems, the present inventors modified heavy crude oil and super heavy crude oil (hereinafter referred to as heavy oil) using supercritical water, and required a diluent with a simple reforming scheme. We focused on the technology to produce synthetic crude oil that can be transported by pipeline. In this technology, the pyrolysis reaction of heavy oil due to the contact between heavy oil and supercritical water inside the reactor and the extraction of light oil produced by pyrolysis to the supercritical water side are performed in parallel. The synthetic light crude oil that can be transported by pipeline can be obtained by separating and recovering the extracted light oil. In addition, heavy oil that has not been extracted into supercritical water can be used as residual oil in applications such as boiler fuel.
 超臨界水を利用して重質油の改質を行う技術として、例えば特許文献1には反応器の上部から鉛直下向きに重質油を供給し、下部から超臨界水(または亜臨界水)を供給して反応器内部で接触、改質することにより、超臨界水に溶解した軽質油分と、これに溶解しない重質油分とに分離する技術が記載されている。 As a technique for reforming heavy oil using supercritical water, for example, Patent Document 1 supplies heavy oil vertically downward from the upper part of the reactor, and supercritical water (or subcritical water) from the lower part. Is separated into a light oil dissolved in supercritical water and a heavy oil not dissolved in the supercritical water.
 また特許文献2には、縦型反応器内の下部で重質油を超臨界水と共に加熱・混合して原料の一部を軽質成分に分解して気化させる一次熱分解部と、同反応器内上下方向の中央部から上部にかけて、気化した軽質成分の一部をさらに高温にて改質成分に分解する二次分解部とを有する改質装置が提案されている。一次熱分解部には反応器内に熱分解容器を設けて、その内部で重質油を反応させる一方、熱分解せずにこの熱分解容器からオーバーフローした液体は残油として反応器の下部から排出される。このほか特許文献3には、反応器内で重質油を超臨界水と反応させて改質油のエマルションと共にコークスを生成し、改質油のエマルションを連続的に抜き出す一方、コークスを間欠的に抜き出す技術が開示されている。 Patent Document 2 discloses a primary pyrolysis section that heats and mixes heavy oil with supercritical water in the lower part of a vertical reactor, decomposes a part of the raw material into light components, and vaporizes the reactor. There has been proposed a reformer having a secondary decomposition section that decomposes a part of the vaporized light component into a reformed component at a higher temperature from the center to the top in the inner vertical direction. In the primary pyrolysis section, a pyrolysis vessel is provided in the reactor, and heavy oil is reacted in the reactor. On the other hand, the liquid overflowing from the pyrolysis vessel without pyrolysis is left as a residual oil from the bottom of the reactor. Discharged. In addition, in Patent Document 3, heavy oil is reacted with supercritical water in a reactor to produce coke together with the reformed oil emulsion, and the reformed oil emulsion is continuously extracted while the coke is intermittently discharged. The technology to be extracted is disclosed.
特許4171062号公報:請求項1、段落0030~段落0033、図1Japanese Patent No. 4117262: Claim 1, paragraphs 0030 to 0033, FIG. 特開2008-208170号公報:請求項1、段落0012~段落0017、図1JP 2008-208170 A: claim 1, paragraphs 0012 to 0017, FIG. 特開2007-51224号公報:請求項1、段落0024~段落0030、図3Japanese Patent Laying-Open No. 2007-51224: Claim 1, paragraphs 0024 to 0030, FIG.
 上述の各先行技術のうち特許文献1に記載の技術は、重質油を超臨界水と接触させて軽質油分を超臨界水側に溶解させることにより、重質油に含まれているバナジウムなどの重金属を除去し、高温腐食などを引き起こしにくいガスタービン燃料を得ている。このとき、重質油に含まれていた重金属は、超臨界水に溶解しない重質油分側に濃縮され、この重質油分はボイラーなどの燃料として使用される。 Among the above-mentioned prior arts, the technique described in Patent Document 1 is made by bringing heavy oil into contact with supercritical water and dissolving a light oil component on the supercritical water side, so that vanadium contained in heavy oil, etc. It removes heavy metals and has obtained gas turbine fuel that is unlikely to cause high temperature corrosion. At this time, the heavy metal contained in the heavy oil is concentrated on the heavy oil side that does not dissolve in the supercritical water, and this heavy oil is used as a fuel for a boiler or the like.
 特に特許文献1の段落0012には、重質油分を超臨界水と接触させる際に改質が進行するものの、当該技術の主眼は軽質油分を超臨界水側に溶解させることであり、これに溶解しない重質分はさらに改質することなく沈降分離される旨が明記されている。従って、当該特許文献1には超臨界水に溶解しなかった重質油分を改質して密度や粘度を低減して合成原油を製造するための技術は開示されていない。 In particular, in paragraph 0012 of Patent Document 1, although reforming proceeds when the heavy oil component is brought into contact with supercritical water, the main point of the technology is to dissolve the light oil component on the supercritical water side. It is specified that heavy components that do not dissolve are settled and separated without further modification. Therefore, Patent Document 1 does not disclose a technique for producing a synthetic crude oil by modifying a heavy oil that has not been dissolved in supercritical water to reduce density and viscosity.
 また特許文献2に記載の技術によれば、一次熱分解部を380℃~450℃に加熱し、その上部側の二次熱分解部については、一次熱分解部よりも高温の450℃~550℃に加熱することにより、超臨界水と接触させた重質油を軽質油分に分解し、さらに改質成分へと2段階で分解している。しかしながら当該技術のように軽質成分の分解を積極的に進行させると、過分解によるガス生成量の増大(液収率の低下)や、軽質成分中オレフィン濃度の上昇を引き起こしてしまうため、合成原油の製造技術に適した技術とはいえない。 Further, according to the technique described in Patent Document 2, the primary pyrolysis section is heated to 380 ° C. to 450 ° C., and the upper secondary pyrolysis section is 450 ° C. to 550 ° C. higher than the primary pyrolysis section. By heating to 0 ° C., heavy oil brought into contact with supercritical water is decomposed into light oil and further decomposed into reforming components in two stages. However, if the light components are actively decomposed as in the case of this technology, the amount of gas generated due to excessive decomposition (decrease in liquid yield) and the concentration of olefins in the light components will be increased. It cannot be said that the technology is suitable for the manufacturing technology.
 ここで特許文献2の段落0018には、一次熱分解部に配置された熱分解容器内における重質油の反応時間は重質油の供給量や熱分解容器の容積を変更することにより調整され、また二次熱分解部における反応時間は、超臨界水の流量を変更したり、二次熱分解部に充填物を詰めてその内容積を変えたりすることにより調整される旨が記載されている。 Here, in paragraph 0018 of Patent Document 2, the reaction time of heavy oil in the pyrolysis vessel arranged in the primary pyrolysis section is adjusted by changing the supply amount of heavy oil and the volume of the pyrolysis vessel. In addition, it is described that the reaction time in the secondary pyrolysis section is adjusted by changing the flow rate of supercritical water or by filling the secondary pyrolysis section with a filler and changing its internal volume. Yes.
 ところが特許文献2の明細書中には、例えば一次熱分解部と二次熱分解部との間の空間や一次熱分解部の反応器内に配置された熱分解容器と反応器との隙間、また熱分解容からオーバーフローした液体が溜まる反応器底部の温度条件などが開示されていない。しかしながら例えば380℃~550℃にもなる空間と接するこれらの空間においても当該空間を流れる軽質成分や液体の分解反応、重合反応が進行するものと考えられ、上述の手法では反応器内で進行する反応を十分に制御することは困難である。 However, in the specification of Patent Document 2, for example, the space between the primary pyrolysis unit and the secondary pyrolysis unit or the gap between the pyrolysis container and the reactor disposed in the reactor of the primary pyrolysis unit, Further, there is no disclosure of temperature conditions at the bottom of the reactor where liquid overflowing from the pyrolysis volume accumulates. However, it is considered that the light components and liquids that flow through the space, such as those that come into contact with the space that reaches 380 ° C. to 550 ° C., are decomposed and polymerized. It is difficult to control the reaction sufficiently.
 なお特許文献3に記載の技術は、積極的にコークスを生成する条件を選択して運転しており、コークスの処理が問題となる。またコークスを生成するほどの過酷な条件下では軽質油分の過分解によるガス生成量の増大(液収率の低下)や、改質油中オレフィン濃度の増大が懸念される。 The technique described in Patent Document 3 is operated by actively selecting conditions for generating coke, and coke processing becomes a problem. Moreover, under severe conditions that generate coke, there are concerns about an increase in gas production (reduction in liquid yield) and an increase in olefin concentration in the reformed oil due to excessive decomposition of light oil.
 本発明はこのような事情の下になされたものであり、その目的は、超臨界水を利用して重質油を改質するにあたって、重質油の熱分解の進行度を制御することが可能な重質油の改質装置及び改質方法を提供することにある。 The present invention has been made under such circumstances, and its purpose is to control the degree of thermal decomposition of heavy oil when reforming heavy oil using supercritical water. An object of the present invention is to provide a possible heavy oil reforming apparatus and reforming method.
 本発明に係る重質油の改質装置は、水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離するための反応器と、
 この反応器に重質油を供給する重質油供給部と、
 前記反応器に超臨界水を供給する超臨界水供給部と、
 前記第1の相から重質油分と超臨界水との混合流体を抜き出す第1の抜き出し部と、
 前記第2の相から超臨界水と軽質油分との混合流体を抜き出す第2の抜き出し部と、
 前記反応器における第1の相と第2の相との間の界面の高さ位置を検出する界面検出部と、
 この界面検出部で検出された界面の高さ位置に基づいて前記第1の相の体積を求め、この第1の相の体積に基づいて重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する制御部と、を備えたことを特徴とする。
The heavy oil reforming apparatus according to the present invention is maintained at a temperature and pressure above the critical point of water, while bringing the heavy oil and supercritical water into contact with each other while advancing thermal decomposition of the heavy oil. A first phase consisting of a heavy oil obtained by pyrolyzing the heavy oil and supercritical water dissolved in the heavy oil; the supercritical water; and the supercritical water extracted into the supercritical water. A reactor for separation into a second phase consisting of a light oil component,
A heavy oil supply section for supplying heavy oil to the reactor;
A supercritical water supply for supplying supercritical water to the reactor;
A first extraction portion for extracting a mixed fluid of heavy oil and supercritical water from the first phase;
A second extraction portion for extracting a mixed fluid of supercritical water and light oil from the second phase;
An interface detector for detecting a height position of an interface between the first phase and the second phase in the reactor;
The volume of the first phase is obtained based on the height position of the interface detected by the interface detector, and the heavy oil component and the supercritical dissolved in the heavy oil component are obtained based on the volume of the first phase. A control unit that controls the amount of the mixed fluid extracted from the heavy oil and the supercritical water so that the residence time of the mixed fluid of water becomes a preset first residence time. .
 また他の発明に係る重質油の改質装置は水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離するための反応器と、
 この反応器に重質油を供給する重質油供給部と、
 前記反応器に超臨界水を供給する超臨界水供給部と、
 前記第1の相から重質油分と超臨界水との混合流体を抜き出す第1の抜き出し部と、
 前記第2の相から超臨界水と軽質油分との混合流体を抜き出す第2の抜き出し部と、
 前記重質油の供給量に基づいて、重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する制御部と、を備えたことを特徴とする。
Further, the heavy oil reforming apparatus according to another invention is maintained at a temperature and pressure above the critical point of water, and the heavy oil and the supercritical water are brought into contact with each other to advance thermal decomposition of the heavy oil. However, the first phase comprising the heavy oil obtained by pyrolyzing the heavy oil and the supercritical water dissolved in the heavy oil, the supercritical water, and extraction into the supercritical water. A reactor for separating into a second phase consisting of
A heavy oil supply section for supplying heavy oil to the reactor;
A supercritical water supply for supplying supercritical water to the reactor;
A first extraction portion for extracting a mixed fluid of heavy oil and supercritical water from the first phase;
A second extraction portion for extracting a mixed fluid of supercritical water and light oil from the second phase;
Based on the supply amount of the heavy oil, the heavy oil component and the heavy oil component so that the residence time of the mixed fluid of supercritical water dissolved in the heavy oil component becomes a preset first residence time. And a control unit for controlling the amount of fluid extracted from the supercritical water.
 前記の重質油の改質装置は、以下の特徴を備えていてもよい。
 (a)前記重質油分におけるコークの形成を抑えるため、前記制御部は、前記第1の滞留時間が3分以上、95分以下となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御すること。
 (b)前記第1の滞留時間は、コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間であること。
 (c)前記第1の滞留時間は、350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間であること。
 (d)前記制御部は、前記界面検出部で検出された界面の高さ位置に基づいて前記第2の相の体積を求め、この第2の相の体積に基づいて超臨界水及びこの超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御することこと。
 (e)前記制御部は、前記重質油の供給量に基づいて、超臨界水及びこの超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御すること。
 (f)前記軽質油分の過分解を抑えるため、前記制御部は、前記第2の滞留時間が1分以上、25分以下となるように超臨界水の供給量を制御すること。
 (g)前記第2の滞留時間は、過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で当該重質油の熱分解を進行させる滞留時間であること。
 (h)前記第2の滞留時間は、10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間であること。
 (i)前記重質油は、オイルサンドビチュメン、オリノコタール、常圧蒸留残渣油、減圧蒸留残渣油からなる重質油群から選ばれること。
The heavy oil reforming apparatus may have the following characteristics.
(A) In order to suppress the formation of coke in the heavy oil, the control unit is a mixed fluid of the heavy oil and supercritical water so that the first residence time is 3 minutes or more and 95 minutes or less. Control the amount of extraction.
(B) The first residence time is a residence time during which the pyrolysis of the heavy oil proceeds within a range where the amount of coke produced is 0% by weight or more and 20% by weight or less of the heavy oil. .
(C) The first residence time is a residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the heavy oil at 350 ° C. becomes 3.0 × 10 −5 m 2 / s or less. There is.
(D) The control unit obtains the volume of the second phase based on the height position of the interface detected by the interface detection unit, and determines the supercritical water and the supercritical water based on the volume of the second phase. To control the supply amount of supercritical water so that the residence time of the mixed fluid of light oil extracted in the critical water becomes a preset second residence time.
(E) Based on the supply amount of the heavy oil, the control unit has a second residence time set in advance for the mixed fluid of the supercritical water and the light oil extracted into the supercritical water. To control the amount of supercritical water supplied.
(F) In order to suppress excessive decomposition of the light oil, the control unit controls the supply amount of supercritical water so that the second residence time is 1 minute or more and 25 minutes or less.
(G) The second residence time is a residence time during which thermal decomposition of the heavy oil proceeds within a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil. Be.
(H) The second residence time is a residence time during which the thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C. is 5.0 × 10 −3 m 2 / s or less. thing.
(I) The heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil.
 さらに他の発明に係る重質油の改質方法は、反応器に重質油を供給する工程と、
 前記反応器に超臨界水を供給する工程と、
 前記反応器内を水の臨界点以上の温度、圧力に維持し、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離する工程と、
 前記第1の相から重質油分と超臨界水との混合流体を抜き出す工程と、
 前記第2の相から超臨界水と軽質油分との混合流体を抜き出す工程と、
 前記反応器における第1の相と第2の相との間の界面の高さ位置を検出する工程と、
 この工程で検出された界面の高さ位置に基づいて前記第1の相の体積を求め、この第1の相の体積に基づいて重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する工程と、を含むことを特徴とする。
A method for reforming heavy oil according to still another invention includes a step of supplying heavy oil to a reactor,
Supplying supercritical water to the reactor;
Maintaining the reactor at a temperature and pressure above the critical point of water, bringing the heavy oil into contact with the supercritical water and proceeding with the thermal decomposition of the heavy oil, A first phase comprising the heavy oil obtained in this manner and supercritical water dissolved in the heavy oil, a second phase comprising the supercritical water and the light oil extracted into the supercritical water. Separating into phases of
Extracting a mixed fluid of heavy oil and supercritical water from the first phase;
Extracting a fluid mixture of supercritical water and light oil from the second phase;
Detecting the height position of the interface between the first phase and the second phase in the reactor;
The volume of the first phase is obtained based on the height position of the interface detected in this step, and the heavy oil and supercritical water dissolved in the heavy oil are based on the volume of the first phase. And a step of controlling the extraction amount of the mixed fluid of the heavy oil and the supercritical water so that the residence time of the mixed fluid becomes a preset first residence time.
 また更に他の発明に係る重質油の改質方法は、反応器に重質油を供給する工程と、
 前記反応器に超臨界水を供給する工程と、
 前記反応器内を水の臨界点以上の温度、圧力に維持し、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離する工程と、
 前記第1の相から重質油分と超臨界水との混合流体を抜き出す工程と、
 前記第2の相から超臨界水と軽質油分との混合流体を抜き出す工程と、
 前記重質油の供給量に基づいて、重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する工程と、を含むことを特徴とする。
A method for reforming heavy oil according to still another invention includes a step of supplying heavy oil to a reactor,
Supplying supercritical water to the reactor;
Maintaining the reactor at a temperature and pressure above the critical point of water, bringing the heavy oil into contact with the supercritical water and proceeding with the thermal decomposition of the heavy oil, A first phase comprising the heavy oil obtained in this manner and supercritical water dissolved in the heavy oil, a second phase comprising the supercritical water and the light oil extracted into the supercritical water. Separating into phases of
Extracting a mixed fluid of heavy oil and supercritical water from the first phase;
Extracting a fluid mixture of supercritical water and light oil from the second phase;
Based on the supply amount of the heavy oil, the heavy oil component and the heavy oil component so that the residence time of the mixed fluid of supercritical water dissolved in the heavy oil component becomes a preset first residence time. And a step of controlling the extraction amount of the fluid mixture with the supercritical water.
 さらに前記重質油の改質方法は、以下の特徴を備えてもよい。
 (j)前記重質油分におけるコークの形成を抑えるため、前記第1の滞留時間を3分以上、95分以下の範囲内に調節すること。
 (k)前記第1の滞留時間は、コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間であること。
 (l)前記第1の滞留時間は、350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間であることを特徴とする。
 (m)前記第1の相と第2の相との間の界面の高さ位置を検出する工程にて検出された界面の高さ位置に基づいて前記第2の相の体積を求め、この第2の相における超臨界水及び超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御する工程を含むこと。
 (n)前記重質油の供給量に基づいて、超臨界水及びこの超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御する工程を含むこと。
 (o)前記軽質油分の過分解を抑えるため、前記第2の滞留時間を1分以上、25分以下の範囲内に調節すること。
 (p)前記第2の滞留時間は、過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で当該重質油の熱分解を進行させる滞留時間であること.
 (q)前記第2の滞留時間は、10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間であること。
Further, the heavy oil reforming method may include the following features.
(J) In order to suppress the formation of coke in the heavy oil component, the first residence time is adjusted within a range of 3 minutes to 95 minutes.
(K) The first residence time is a residence time during which pyrolysis of the heavy oil proceeds in a range where the amount of coke produced is 0% by weight or more and 20% by weight or less of the heavy oil. .
(L) The first residence time is a residence time during which thermal decomposition of the heavy oil proceeds until a kinematic viscosity of the heavy oil at 350 ° C. is 3.0 × 10 −5 m 2 / s or less. It is characterized by being.
(M) obtaining the volume of the second phase based on the height position of the interface detected in the step of detecting the height position of the interface between the first phase and the second phase, Including the step of controlling the supply amount of supercritical water so that the residence time of the supercritical water in the second phase and the mixed fluid of the light oil extracted in the supercritical water becomes a preset second residence time. .
(N) Based on the supply amount of the heavy oil, the supercritical water and the supercritical water so that the residence time of the mixed fluid of the light oil extracted in the supercritical water becomes a preset second residence time. Including a step of controlling the supply amount of
(O) adjusting the second residence time within a range of 1 minute to 25 minutes in order to suppress overdecomposition of the light oil.
(P) The second residence time is a residence time during which pyrolysis of the heavy oil proceeds within a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil. Be.
(Q) The second residence time is a residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C. is 5.0 × 10 −3 m 2 / s or less. thing.
 (r)前記第1の相から抜き出した重質油分と超臨界水との混合流体を降温、降圧して、重質油分と水とに分離する工程を含むこと。
 (s)前記第1の相から抜き出した重質油分と超臨界水との混合流体を降温して、重質油分中に水分を含んだ状態の燃料油を得る工程を含むこと。
 (t)前記第1の相から抜き出した重質油分と超臨界水との混合流体は、重質油分の3重量%以上、100重量%以下の範囲の水分を含んでいること。
 (u)前記第2の相から抜き出した超臨界水と軽質油分との混合流体を降温、降圧して、軽質油分と水とに分離する工程を含むこと。
 (v)前記反応器に供給される超臨界水として再利用するために、前記重質油分または軽質油分から分離された水を回収する工程を含むこと。
 (w)前記第1の相から抜き出した重質油分と超臨界水との混合流体を降温、降圧して、重質油分と水とに分離する工程と、
 前記第2の相から抜き出した超臨界水と軽質油分との混合流体を降温、降圧して、軽質油分と水とに分離する工程と、
 水と分離された後の重質油分と軽質油分とを混合する工程と、を含むこと。
 (x)前記重質油は、オイルサンドビチュメン、オリノコタール、常圧蒸留残渣油、減圧蒸留残渣油からなる重質油群から選ばれること。
(R) including a step of cooling and depressurizing the mixed fluid of the heavy oil extracted from the first phase and the supercritical water to separate it into the heavy oil and water.
(S) The step of lowering the temperature of the mixed fluid of the heavy oil extracted from the first phase and the supercritical water to obtain fuel oil containing moisture in the heavy oil is included.
(T) The fluid mixture of the heavy oil extracted from the first phase and the supercritical water contains water in the range of 3 wt% to 100 wt% of the heavy oil.
(U) A step of lowering the temperature of the mixed fluid of supercritical water and light oil extracted from the second phase and reducing the pressure to separate the oil into light oil and water.
(V) including a step of recovering water separated from the heavy oil or light oil for reuse as supercritical water supplied to the reactor.
(W) Lowering the temperature of the mixed fluid of the heavy oil extracted from the first phase and the supercritical water, lowering the pressure, and separating the fluid into the heavy oil and water;
Lowering the temperature of the mixed fluid of supercritical water and light oil extracted from the second phase and lowering the pressure to separate the oil into light oil and water;
Mixing the heavy oil and the light oil after being separated from water.
(X) The heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil.
 本発明によれば、重質油と超臨界水とを反応器内で接触させることによりこれらの流体を第1の相(重質油分とこの重質油分中に溶解した超臨界水との混合流体からなる相)と第2の相(前記超臨界水とこの超臨界水中に抽出された軽質油分との混合流体からなる相)との2つの相に分離させ、第1の相を構成する混合流体の当該第1の相内における滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を調節する。これにより、当該第1の相内で進行する重質油分の熱分解の進行度合いを制御することが可能となり、例えば重質油分からのコークスの生成が抑えられる範囲で最大限熱分解を進行させたり、重質油分の動粘度が所望の範囲となるように熱分解を進行させたりするなど、最適な条件で改質装置を稼動させることが可能となる。 According to the present invention, these fluids are brought into the first phase (mixing of heavy oil and supercritical water dissolved in this heavy oil by bringing heavy oil and supercritical water into contact in the reactor. The first phase is constituted by separating into two phases of a fluid phase) and a second phase (a phase consisting of a mixed fluid of the supercritical water and a light oil extracted into the supercritical water). The extraction amount of the mixed fluid of the heavy oil and the supercritical water is adjusted so that the residence time of the mixed fluid in the first phase becomes a preset first residence time. This makes it possible to control the degree of progress of thermal decomposition of the heavy oil that proceeds in the first phase. For example, the thermal decomposition is allowed to proceed to the maximum extent that coke generation from the heavy oil can be suppressed. It is possible to operate the reformer under optimum conditions, such as by allowing thermal decomposition to proceed so that the kinematic viscosity of the heavy oil falls within a desired range.
本実施の形態の重質油の改質装置に係るプロセスフロー図である。It is a process flow figure concerning the reforming device of heavy oil of this embodiment. 前記改質装置に設けられている反応器の構成を示す説明図である。It is explanatory drawing which shows the structure of the reactor provided in the said reformer. 実施例に係る実験装置のプロセスフロー図である。It is a process flow figure of the experimental device concerning an example. 反応器内に形成される第1の相と第2の相との界面を示す説明図である。It is explanatory drawing which shows the interface of the 1st phase and 2nd phase which are formed in a reactor.
 はじめに本実施の形態に係る重質油の改質装置の全体構成について図1のプロセスフロー図を参照しながら説明する。本実施の形態に係る改質装置は、例えばオイルサンドビチュメンやオリノコタールなどの高密度、高粘度の原油が生産される井戸元などに設置され、当該重質油を低密度、低粘度の合成原油に改質する役割を果たす。 First, the overall configuration of the heavy oil reforming apparatus according to the present embodiment will be described with reference to the process flow diagram of FIG. The reformer according to the present embodiment is installed at a well where a high-density, high-viscosity crude oil such as oil sand bitumen or orinocotal is produced, and the heavy oil is synthesized with low-density, low-viscosity. Plays a role in reforming crude oil.
 図1に示すように改質装置は、重質油と超臨界水とを接触させて当該重質油を改質し、重質油分と軽質油分とに分離する反応器1と、反応器1から流出した軽質油分と超臨界水との混合流体を例えば反応器1内の圧力と同程度の圧力条件下で油水分離する高圧セパレーター2と、この高圧セパレーター2から流出した軽質油と水との混合流体を高圧セパレーター2よりも低い圧力条件下で油水分離する低圧セパレーター3と、反応器1から流出した重質油分と超臨界水との混合流体を反応器1よりも低い圧力条件下で油水分離するフラッシュドラム4と、油水分離後の水をリサイクルするためのリサイクル水タンク5と、を備えている。 As shown in FIG. 1, the reformer reforms the heavy oil by bringing heavy oil and supercritical water into contact with each other, and separates the heavy oil into the light oil and the reactor 1. A high-pressure separator 2 that separates a mixed fluid of light oil and supercritical water flowing out of the oil under a pressure condition similar to that in the reactor 1, for example, and a combination of light oil and water flowing out of the high-pressure separator 2 The mixed fluid of the low pressure separator 3 that separates the mixed fluid into oil and water under a lower pressure condition than the high pressure separator 2 and the heavy oil and supercritical water that has flowed out of the reactor 1 A flash drum 4 for separation and a recycled water tank 5 for recycling the water after oil-water separation are provided.
 反応器1は、昇温、昇圧された重質油と超臨界水とを例えば向流接触させることにより当該重質油を熱分解し。これにより得られた軽質油分と重質油分とを別々に分離して抜き出す役割を果たす。反応器1は、内部が空洞で例えば塔形状に形成された耐圧容器であり、当該反応容器の例えば上部側側壁部には、重質油供給源11より重質油を受け入れるための重質油供給ライン110が接続されている。重質油供給源11は例えば重質油を貯蔵するタンクなどから構成される。 The reactor 1 thermally decomposes the heavy oil by bringing the heavy oil and supercritical water, which have been heated and pressurized, into contact with each other, for example, in countercurrent. This serves to separate and extract the light oil and heavy oil obtained separately. The reactor 1 is a pressure vessel having a hollow interior and formed in, for example, a tower shape. A heavy oil for receiving heavy oil from a heavy oil supply source 11 is provided on, for example, an upper side wall portion of the reaction vessel. A supply line 110 is connected. The heavy oil supply source 11 is composed of, for example, a tank for storing heavy oil.
 重質油供給ライン110には重質油供給源11から受け入れた重質油を水の臨界圧力である22.1MPa以上の例えば25MPa~30MPaに昇圧して反応器1へ向けて送り出す重質油供給ポンプ111と、当該重質油の供給量を調整する流量調節弁112と、反応器1に供給される重質油を例えば300℃~450℃に加熱するための、例えば加熱炉などからなる加熱器113とが介設されている。ここで重質油は重質油供給ライン110や加熱器113内における重縮合を防ぐため、反応器1内の温度(例えば374℃~500℃)よりも低い温度で供給される。重質油供給ライン110、重質油供給ポンプ111、流量調節弁112、加熱器113などは本実施の形態の重質油供給部に相当する。 In the heavy oil supply line 110, the heavy oil received from the heavy oil supply source 11 is increased to a critical pressure of water of 22.1 MPa or more, for example, 25 MPa to 30 MPa, and sent to the reactor 1. For example, a heating pump for heating the heavy oil supplied to the reactor 1 to 300 ° C. to 450 ° C., for example, is provided. A heater 113 is interposed. Here, the heavy oil is supplied at a temperature lower than the temperature in the reactor 1 (for example, 374 ° C. to 500 ° C.) in order to prevent polycondensation in the heavy oil supply line 110 and the heater 113. The heavy oil supply line 110, the heavy oil supply pump 111, the flow rate control valve 112, the heater 113, and the like correspond to the heavy oil supply unit of the present embodiment.
 一方、反応容器の例えば下部側側壁部には、貯水タンクなどからなる水供給源12より受け入れた水を超臨界状態にして反応器1へ供給するための超臨界水供給ライン120が接続されている。超臨界水供給ライン120には水供給源12から受け入れた水をその臨界圧力(22.1MPa)以上の例えば25MPa~30MPaに昇圧して反応器1へ向けて送り出す超臨界水供給ポンプ121と、超臨界水の供給量を調整する流量調節弁122と、反応器1に供給される超臨界水をその臨界温度(374℃)以上の例えば450℃~600℃に加熱するための、例えば加熱炉などからなる加熱器123とが介設されている。ここで既述のように重質油供給ライン110から供給される重質油は重縮合を防ぐ目的で反応器1内の温度よりも低い温度で供給されることから、超臨界水供給ライン120から供給される超臨界水を反応器1内の温度よりも高い温度で供給することにより、重質油の熱分解反応に必要な熱を供給している。超臨界水供給ライン120、超臨界水供給ポンプ121、流量調節弁122、加熱器123などは本実施の形態の超臨界水供給部に相当する。 On the other hand, a supercritical water supply line 120 for supplying water received from a water supply source 12 such as a water storage tank to the reactor 1 in a supercritical state is connected to the lower side wall portion of the reaction vessel, for example. Yes. In the supercritical water supply line 120, a supercritical water supply pump 121 that boosts the water received from the water supply source 12 to a critical pressure (22.1 MPa) or higher, for example, 25 MPa to 30 MPa, and sends it to the reactor 1, A flow control valve 122 that adjusts the supply amount of supercritical water, and a heating furnace for heating the supercritical water supplied to the reactor 1 to, for example, 450 ° C. to 600 ° C. above its critical temperature (374 ° C.) The heater 123 which consists of these etc. is interposed. As described above, the heavy oil supplied from the heavy oil supply line 110 is supplied at a temperature lower than the temperature in the reactor 1 for the purpose of preventing polycondensation. Is supplied at a temperature higher than the temperature in the reactor 1 to supply heat necessary for the pyrolysis reaction of heavy oil. The supercritical water supply line 120, the supercritical water supply pump 121, the flow control valve 122, the heater 123, and the like correspond to the supercritical water supply unit of the present embodiment.
 また反応器1の例えば塔頂部には、重質油が反応器1内で分解して得られた軽質油分がこの超臨界水中に抽出されて形成された混合流体を抜き出すための軽質油分抜出ライン130が接続されている。軽質油分抜出ライン130には軽質油分抜出ライン130内を流れる混合流体を、水の臨界圧力より低い例えば200℃~374℃の温度に冷却するための熱交換器などからなる冷却器132と、反応器1内の圧力を例えば25MPa~30MPaに調節するための圧力調整弁131とが介設されている。軽質油分抜出ライン130、圧力調整弁131、冷却器132は本実施の形態の第2の抜き出し部に相当する。 In addition, at the top of the reactor 1, for example, at the top of the column, a light oil component is extracted to extract a mixed fluid formed by extracting a light oil component obtained by decomposing heavy oil in the reactor 1 into the supercritical water. Line 130 is connected. A light oil content extraction line 130 includes a cooler 132 including a heat exchanger for cooling the mixed fluid flowing in the light oil content extraction line 130 to a temperature lower than the critical pressure of water, for example, 200 ° C. to 374 ° C. A pressure adjusting valve 131 for adjusting the pressure in the reactor 1 to, for example, 25 MPa to 30 MPa is interposed. The light oil content extraction line 130, the pressure adjustment valve 131, and the cooler 132 correspond to the second extraction portion of the present embodiment.
 この軽質油分抜出ライン130の下流には、反応器1内の圧力とほぼ同等の圧力下で、冷却器132にて冷却された混合流体を軽質油分(但し当該軽質油分中にも水分が含まれている)と水とに分離するための高圧セパレーター2が設けられている。高圧セパレーター2の上部側には軽質油分を抜き出して低圧セパレーター3へと送り出す軽質油分ライン210が接続されており、当該軽質油分ライン210には軽質油分を40℃~100℃程度の温度に冷却するための熱交換器などからなる冷却器212と、このライン210内を流れる当該軽質油分の圧力を例えば常圧よりも高い0.2MPa~1.0MPa程度まで減圧するための減圧弁211と、が介設されている。 Downstream of the light oil content extraction line 130, the mixed fluid cooled by the cooler 132 under a pressure substantially equal to the pressure in the reactor 1 is mixed with the light oil content (however, the light oil content also contains moisture). And a high-pressure separator 2 for separation into water. A light oil component line 210 is connected to the upper side of the high pressure separator 2 to extract a light oil component and send it to the low pressure separator 3. The light oil component line 210 cools the light oil component to a temperature of about 40 ° C. to 100 ° C. And a pressure reducing valve 211 for reducing the pressure of the light oil flowing in the line 210 to, for example, about 0.2 MPa to 1.0 MPa higher than normal pressure. It is installed.
 一方、高圧セパレーター2の底部側には25MPa~30MPa程度の圧力、200℃~374℃程度の温度条件下で軽質油分から分離した水を抜き出すための高圧分離水ライン220が設けられている。高圧分離水ライン220は後述のリサイクル水ライン510に接続されていて、高圧セパレーター2からの分離水を再度反応器1へと供給することができるようになっている。高圧分離水ライン220に介設された221は高圧セパレーター2からの分離水を送液するための高圧分離水リサイクルポンプである。 On the other hand, a high-pressure separation water line 220 is provided on the bottom side of the high-pressure separator 2 for extracting water separated from the light oil under a pressure of about 25 MPa to 30 MPa and a temperature of about 200 ° C. to 374 ° C. The high-pressure separation water line 220 is connected to a later-described recycle water line 510 so that the separation water from the high-pressure separator 2 can be supplied to the reactor 1 again. A high-pressure separation water recycle pump 221 for feeding the separation water from the high-pressure separator 2 is provided in the high-pressure separation water line 220.
 次に軽質油分ライン210の下流側に設けられた低圧セパレーター3について説明すると、低圧セパレーター3は、高圧セパレーター2から流出した水分を含む軽質油分について、0.2MPa~1.0MPa程度の圧力、40℃~100℃程度の温度条件下で、再度、軽質油分と水とに分離する役割を果たす。320は水と分離された軽質油分を合成原油として合成原油タンク62へ払い出すための合成原油ラインである。 Next, the low pressure separator 3 provided on the downstream side of the light oil content line 210 will be described. The low pressure separator 3 has a pressure of about 0.2 MPa to 1.0 MPa with respect to the light oil content containing water flowing out from the high pressure separator 2, 40 Under the temperature condition of about 100 ° C. to 100 ° C., it again separates into light oil and water. Reference numeral 320 denotes a synthetic crude oil line for delivering light oil separated from water as synthetic crude oil to the synthetic crude oil tank 62.
 一方、低圧セパレーター3の例えば底部には、低圧分離水リサイクルライン330が接続されており、低圧分離水リサイクルライン330は軽質油分から分離された水を抜き出し、超臨界水としてリサイクルするためのリサイクル水タンク5へと送液する役割を果たしている。また低圧分離水リサイクルライン330からはリサイクルされる水の一部を排水処理設備63へ向けて抜き出す排水ライン340が分岐しており、排水処理設備63への送液量を増減することにより、改質装置内を循環するリサイクル水中の油分の濃度や塩分の濃度を所定の値以下に調節することができるようになっている。図中310は、軽質油分から揮発したがガスを排ガス処理設備61へ送るための排ガスラインである。 On the other hand, a low-pressure separation water recycling line 330 is connected to, for example, the bottom of the low-pressure separator 3, and the low-pressure separation water recycling line 330 extracts water separated from light oil and recycles it as supercritical water. It plays the role of sending liquid to the tank 5. In addition, a drainage line 340 for extracting a part of the recycled water from the low-pressure separated water recycling line 330 to the wastewater treatment facility 63 is branched, and it is improved by increasing or decreasing the amount of liquid fed to the wastewater treatment facility 63. The concentration of oil and salinity in the recycled water circulating in the quality device can be adjusted to a predetermined value or less. In the figure, reference numeral 310 denotes an exhaust gas line for sending gas to the exhaust gas treatment facility 61 that has volatilized from the light oil component.
 以上に説明した反応器1の塔頂系のプロセスフローに対し、反応器1の例えば塔底部には、反応器1内で分解させた重質油のうち、超臨界水中に抽出されなかった重質油分とこの重質油分中に溶解した超臨界水との混合流体を抜き出すための重質油分抜出ライン140が接続されている。重質油分抜出ライン140には、当該ライン140内を流れる混合流体を200℃~350℃程度まで冷却するための熱交換器などからなる冷却器141と、反応器1の塔底部からの混合流体の抜き出し量を調節すると共に、重質油分抜出ライン140内を流れる混合流体の圧力を例えば常圧よりも高い0.2MPa~1.0MPa程度まで減圧するための流量調節弁142とが介設されている。重質油分抜出ライン140、冷却器141、流量調節弁142は本実施の形態の第1の抜き出し部に相当する。 In contrast to the above-described process flow at the top of the reactor 1, heavy oil that has not been extracted into supercritical water from the heavy oil decomposed in the reactor 1, for example, at the bottom of the reactor 1. A heavy oil extraction line 140 for extracting a mixed fluid of the heavy oil and supercritical water dissolved in the heavy oil is connected. The heavy oil content extraction line 140 includes a cooler 141 including a heat exchanger for cooling the mixed fluid flowing in the line 140 to about 200 ° C. to 350 ° C., and a mixture from the bottom of the reactor 1. A flow rate adjustment valve 142 is provided for adjusting the amount of fluid extracted and reducing the pressure of the mixed fluid flowing in the heavy oil content extraction line 140 to, for example, about 0.2 MPa to 1.0 MPa higher than normal pressure. It is installed. The heavy oil content extraction line 140, the cooler 141, and the flow rate adjustment valve 142 correspond to the first extraction portion of the present embodiment.
 流量調節弁142はフラッシュドラム4に接続されており、フラッシュドラム4は0.2MPa~1.0MPa程度の圧力条件、200℃~350℃程度の温度条件下で、重質油分とこの重質油分中に溶解した水とを分離する役割を果たす。フラッシュドラム4に設けられた410は、フラッシュドラム4内で分離した水を低圧分離水リサイクルライン330に向けて抜き出して水のリサイクルを行うためのドラム分離水ライン、420は水と分離された重質油分を例えばボイラー燃焼用の残渣油として残渣油タンク64に抜き出すための残渣油ラインである。 The flow rate adjusting valve 142 is connected to the flash drum 4, and the flash drum 4 has a heavy oil component and the heavy oil component under a pressure condition of about 0.2 MPa to 1.0 MPa and a temperature condition of about 200 ° C. to 350 ° C. It plays the role of separating water dissolved in it. 410 provided in the flash drum 4 is a drum separation water line for extracting water separated in the flash drum 4 toward the low-pressure separation water recycling line 330 and recycling the water, and 420 is a weight separated from the water. This is a residual oil line for extracting the quality oil to the residual oil tank 64 as residual oil for boiler combustion, for example.
 前記残渣油ライン420にはフラッシュドラム4から抜き出された重質油分の全量または一部を、低圧セパレーター3側から抜き出された軽質油分と混合して合成原油タンク62へと送り出すための合成原油混合ライン430が分岐して設けられている。軽質油分に重質油分を混合することにより、ボイラー燃料と比べて付加価値の高い合成原油の収率を向上させることができる。ここで軽質油分に対する重質油分の混合量は、混合後の合成原油の相溶性が確保される範囲、言い替えると、混合後の合成原油が重軽質油分に再分離しない範囲の混合量に調整されるようになっている。 In the residual oil line 420, a total amount or a part of the heavy oil extracted from the flash drum 4 is mixed with the light oil extracted from the low-pressure separator 3 side and sent to the synthetic crude oil tank 62. A crude oil mixing line 430 is branched. By mixing the heavy oil with the light oil, it is possible to improve the yield of synthetic crude oil with high added value compared to boiler fuel. Here, the mixing amount of the heavy oil to the light oil is adjusted to a range in which the compatibility of the synthetic crude oil after mixing is ensured, in other words, a mixing amount in a range where the synthetic crude oil after mixing is not re-separated into the heavy light oil. It has become so.
 合成原油の相溶性を判断する指標としては、例えば以下の(1)式に示すCII (Colloidal Instability Index)が挙げられる。CIIは、重軽質油分の混合後の合成原油について、例えばSARA分析を実施し、合成原油に含まれる飽和分(Saturated hydrocarbons)、芳香族分(Aromatic hydrocarbons)、レジン分(Resins)、アスファルテン分(Asphaltenes)の量を測定し、(1)式からCIIを求めてその値が0.5以下となるように重質油分の混合量が調整される。 
 CII={(飽和分+アスファルテン分)/(芳香族分+レジン分)}≦0.5   …(1)
As an index for judging the compatibility of synthetic crude oil, for example, CII (Colloidal Instability Index) shown in the following formula (1) can be cited. CII is a synthetic crude oil mixed with heavy and light oils. For example, SARA analysis is performed, and saturated oils, aromatic hydrocarbons, resins, asphaltenes (saturated hydrocarbons, aromatics) Asphaltenes) is measured, CII is calculated from equation (1), and the amount of heavy oil mixed is adjusted so that the value is 0.5 or less.
CII = {(saturated content + asphaltene content) / (aromatic content + resin content)} ≦ 0.5 (1)
 次に超臨界水用の水のリサイクル系統について説明すると、低圧分離水リサイクルライン330の下流に設けられたリサイクル水タンク5は、低圧セパレーター3にて軽質油分から分離された水、及びフラッシュドラム4にて重質油分から分離された水を受け入れ、リサイクル水タンク5内に集められた水を超臨界水供給ライン120に再供給する役割を果たす。ここで510はリサイクル水タンク5と超臨界水供給ライン120とを接続するリサイクル水ライン、511はリサイクル水タンク5から払い出された水を臨界圧力(22.1MPa)以上の例えば22.1MPa~40MPaに昇圧して超臨界水供給ライン120へ向けて送り出すためのリサイクル水ポンプである。また既述のようにリサイクル水ライン510には高圧セパレーター2にて分離された水をリサイクルするための高圧分離水ライン220が合流している。超臨界水として用いる水をリサイクル利用することによって新水の使用量を削減し、重質油の改質に必要な水の確保を容易にするとともに、環境負荷を小さくすることが可能となる。 Next, a water recycling system for supercritical water will be described. The recycled water tank 5 provided downstream of the low-pressure separation water recycling line 330 includes water separated from light oil by the low-pressure separator 3 and the flash drum 4. The water separated from the heavy oil is received, and the water collected in the recycled water tank 5 is resupplied to the supercritical water supply line 120. Here, 510 is a recycle water line connecting the recycle water tank 5 and the supercritical water supply line 120, and 511 is water discharged from the recycle water tank 5 that has a critical pressure (22.1 MPa) or more, for example, 22.1 MPa to This is a recycled water pump for raising the pressure to 40 MPa and sending it out toward the supercritical water supply line 120. As described above, the recycle water line 510 is joined with the high pressure separation water line 220 for recycling the water separated by the high pressure separator 2. By recycling the water used as supercritical water, it is possible to reduce the amount of new water used, to easily secure the water necessary for reforming heavy oil, and to reduce the environmental load.
 また図2に示すように、改質装置は制御部7を備えている。制御部7は例えばCPUと記憶部とを備えたコンピュータからなり、記憶部には当該改質装置の作用、即ち、重質油と超臨界水とを反応器1内で接触させて熱分解を進行させ、重質油分と軽質油分とに分離した後、各油分の水分を除去し、軽質油分単独、または軽質油分と重質油分とが混合された合成原油、及び重質油分からなる残渣油を得る動作に係わる制御についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。 Further, as shown in FIG. 2, the reformer includes a control unit 7. The control unit 7 includes a computer having a CPU and a storage unit, for example, and the storage unit is operated by the reformer, that is, the heavy oil and the supercritical water are brought into contact with each other in the reactor 1 to perform thermal decomposition. After proceeding and separating into heavy oil and light oil, water of each oil is removed, and light oil alone or synthetic oil in which light oil and heavy oil are mixed, and residual oil consisting of heavy oil A program in which a group of steps (commands) relating to the control related to the operation for obtaining is assembled is recorded. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
 以上にプロセスフロー全体の概要を説明した本実施の形態に係る改質装置は、(1)重質油分におけるコークス発生の抑制しつつ、重質油分の動粘度を低下させる制御と、(2)軽質油分の過分解に伴うガス生成を抑制しつつ軽質油分の動粘度を低下させる制御とを、各々独立した操作変数を用いて調整することが可能な構成を備えている。以下、その詳細な構成について説明する。 The reformer according to the present embodiment, which has outlined the overall process flow as described above, includes (1) control that reduces the kinematic viscosity of the heavy oil while suppressing coke generation in the heavy oil, and (2) It is possible to adjust the control for reducing the kinematic viscosity of the light oil component while suppressing the gas generation accompanying the excessive decomposition of the light oil component using independent operating variables. The detailed configuration will be described below.
 図2は既述の反応器1の内部構造及び当該反応器1に設けられた制御系統の構成を模式的に示している。重質油供給ライン110を通って昇温、加熱された重質油は反応器1の上部側から供給される一方、超臨界水供給ライン120を通って昇温、加熱された超臨界水は反応器1の底部側から供給される。そして、両流体が接触すると超臨界水により持ち込まれた熱により重質油の熱分解が進行して重質油全体が軽質化することになる。ここで図2に示した101は重質油の供給ノズル、102は超臨界水の供給ノズルである。 FIG. 2 schematically shows the internal structure of the reactor 1 described above and the configuration of the control system provided in the reactor 1. The heavy oil heated and heated through the heavy oil supply line 110 is supplied from the upper side of the reactor 1, while the supercritical water heated and heated through the supercritical water supply line 120 is It is supplied from the bottom side of the reactor 1. And when both fluids contact, the thermal decomposition of heavy oil will advance by the heat brought in by supercritical water, and the whole heavy oil will become light. 2, 101 is a heavy oil supply nozzle, and 102 is a supercritical water supply nozzle.
 またこれらの流体を接触させると、まず重質油に予め含まれている軽質油分が超臨界水へ抽出され、超臨界水中に抽出されずに残った重質油分が熱分解し、この熱分解により生成した軽質油分が超臨界水中に抽出さることにより、超臨界水と軽質油分とからなる連続相(以下、第2の相という)を形成し、また超臨界水中に抽出されなかった重質油分が連続相(以下、第1の相という)を形成して2つの相に分離する。重質油分は超臨界水と軽質油分との混合流体よりも比重が大きいことから、第1の相は反応器1の下部側に形成され、第2の相は反応器1の上部側に形成されることになる。 When these fluids are brought into contact with each other, the light oil contained in the heavy oil in advance is extracted into supercritical water, and the heavy oil remaining without being extracted in the supercritical water is thermally decomposed. The light oil produced by the extraction into supercritical water forms a continuous phase consisting of supercritical water and light oil (hereinafter referred to as second phase), and heavy oil that has not been extracted into supercritical water. The oil component forms a continuous phase (hereinafter referred to as the first phase) and separates into two phases. Since the heavy oil has a higher specific gravity than the mixed fluid of supercritical water and light oil, the first phase is formed on the lower side of the reactor 1 and the second phase is formed on the upper side of the reactor 1. Will be.
 また実際には、重質油の種類や反応器1の温度、圧力条件にもよるが、第1の相を構成する重質油分中には、重質油分(水分を含んでいないドライ状態基準)の3重量%~100重量%程度の超臨界水が溶解する。この観点においては、第1の相は重質油分と超臨界水との混合流体から構成されているといえる。このように重質油分中に超臨界水が溶解することによって、熱分解が進行する重質油分を構成する例えば多環芳香族の分子間に水分子が入り込んで、多環芳香族同士の重縮合によるアスファルテンの生成、アスファルテン同士の重縮合によるコークスの生成を抑制するケージ効果を発揮させることができる。 In practice, depending on the type of heavy oil and the temperature and pressure conditions of the reactor 1, the heavy oil constituting the first phase contains heavy oil (dry condition standard containing no water). 3) to 100% by weight of supercritical water dissolves. In this respect, it can be said that the first phase is composed of a mixed fluid of heavy oil and supercritical water. Thus, when supercritical water dissolves in the heavy oil component, water molecules enter, for example, between the polycyclic aromatic molecules constituting the heavy oil component that undergoes thermal decomposition, and the polycyclic aromatic molecules are separated from each other. The cage effect which suppresses the production | generation of asphaltenes by condensation and the production | generation of coke by the polycondensation of asphaltenes can be exhibited.
 本実施の形態に係る反応器1では、下部側の第1の相内に超臨界水供給ノズル102から超臨界水が供給され、また上部側の第2の相内に重質油供給ノズル101から重質油が供給されることになる。このとき軽質油分の超臨界水側への抽出、超臨界水の重質油分側への溶解は、第1の相を上昇する超臨界水(分散相)との界面、第2の相を沈降する重質油(分散相)との界面、及び第1の相と第2の相との接触界面にて進行することになる。 In the reactor 1 according to the present embodiment, supercritical water is supplied from the supercritical water supply nozzle 102 into the first phase on the lower side, and the heavy oil supply nozzle 101 is supplied into the second phase on the upper side. Will be supplied with heavy oil. At this time, extraction of light oil to the supercritical water side and dissolution to the heavy oil side of the supercritical water settles the interface with the supercritical water (dispersed phase) that rises the first phase and the second phase. It proceeds at the interface with the heavy oil (dispersed phase) and the contact interface between the first phase and the second phase.
 一方で、本発明者らは第1の相を上昇する超臨界水の上昇速度、第2の相を沈降する重質油の沈降速度は非常に速く、各超臨界水及び重質油は例えば数秒~数十秒程度で第1、第2の相内を通過してしまうことを把握している。このため重質油の熱分解は、実際には第1の相内にて重質油分の熱分解が進行し、その結果生成した軽質油分が第2の相側に抽出されると共に、第2の相内にて軽質油分及び第1の相側から供給された軽質油分のさらなる熱分解が進行することになる。 On the other hand, the present inventors have a very fast rising speed of supercritical water rising in the first phase, a very high sedimentation speed of heavy oil settling in the second phase, and each supercritical water and heavy oil is, for example, It is understood that it passes through the first and second phases in several seconds to several tens of seconds. For this reason, the pyrolysis of heavy oil actually proceeds with pyrolysis of the heavy oil in the first phase, and the resulting light oil is extracted to the second phase, and the second In this phase, further thermal decomposition of the light oil component and the light oil component supplied from the first phase side proceeds.
 そして第1の相を構成する混合流体が重質油分抜出ライン140より抜き出されて冷却器141で冷却されることにより重質油分の熱分解が停止される一方、第2の相を構成する混合流体が軽質油分抜出ライン130より抜き出されて冷却器132で冷却されることにより軽質油分の熱分解が停止されることになる。 Then, the mixed fluid constituting the first phase is extracted from the heavy oil content extraction line 140 and cooled by the cooler 141, whereby the thermal decomposition of the heavy oil content is stopped, while the second phase is configured. When the mixed fluid to be extracted is extracted from the light oil content extraction line 130 and cooled by the cooler 132, the thermal decomposition of the light oil content is stopped.
 以上に説明した熱分解機構によれば、重質油分の熱分解の進行度合いは、第1の相内における重質油分とこの重質油分中に溶解した超臨界水との混合流体(以下、第1の混合流体という)の滞留時間にて制御することができる。重質油は熱分解を進行させるほど軽質油分の収率が増え、また重質油分中に超臨界水を溶解させてケージ効果が発揮される条件下で重質油分の分解を適度に進行させることにより、重質油分の粘度が低下してボイラー燃料などとして使用する際や軽質油分と混合された後の合成原油のハンドリングが容易になる。一方で、既述のケージ効果が相殺される程度まで熱分解が進行してしまうと重質油分中にコークスが生成される。 According to the thermal decomposition mechanism described above, the degree of thermal decomposition of the heavy oil component is determined by the mixed fluid of the heavy oil component in the first phase and the supercritical water dissolved in the heavy oil component (hereinafter, It can be controlled by the residence time of the first mixed fluid). For heavy oil, the yield of light oil increases as the pyrolysis progresses, and supercritical water is dissolved in the heavy oil and the decomposition of the heavy oil is moderately advanced under the condition that the cage effect is exhibited. As a result, the viscosity of the heavy oil component decreases, and handling of the synthetic crude oil becomes easier when used as boiler fuel or after being mixed with the light oil component. On the other hand, if pyrolysis proceeds to such an extent that the cage effect described above is offset, coke is generated in the heavy oil.
 そこで本実施の形態に係る改質装置においては残渣油となる重質油分の例えば350℃における動粘度を3.0×10-5/s以下(30cSt以下)とし、且つ、コークスの生成が抑制される程度に重質油分の熱分解を進行させるように第1の相内における第1の混合流体の滞留時間を調節する機構を備えている。 Therefore, in the reformer according to the present embodiment, the kinematic viscosity at 350 ° C. of the heavy oil serving as the residual oil is set to 3.0 × 10 −5 m 2 / s or less (30 cSt or less), and coke is generated. A mechanism for adjusting the residence time of the first mixed fluid in the first phase so that the thermal decomposition of the heavy oil component proceeds to such an extent that the oil is suppressed.
 また軽質油分の熱分解の進行度合いについては、第2の相内における超臨界水とこの超臨界水中に抽出された軽質油分との混合流体(以下、第2の混合流体という)の滞留時間にて調節することができる。軽質油分は熱分解を進行させるほど動粘度が低下して、例えば寒冷地などにおいても特別な加熱設備を設けることなく合成原油の輸送が可能になる。一方で、軽質油分が過分解すると軽質油分からのガス生成量が増大して、合成原油の収率が低下してしまう。 The degree of progress of thermal decomposition of light oil is determined by the residence time of the mixed fluid of supercritical water in the second phase and the light oil extracted in the supercritical water (hereinafter referred to as the second mixed fluid). Can be adjusted. The light oil component has a kinematic viscosity that decreases as the thermal decomposition proceeds. For example, even in cold regions, it is possible to transport synthetic crude oil without providing special heating equipment. On the other hand, if the light oil component is excessively decomposed, the amount of gas generated from the light oil component increases, and the yield of synthetic crude oil decreases.
 そこで本改質装置においては軽質油分単独、または重質油分と混合後の合成原油の例えば10℃における動粘度を5.0×10-3/s以下(5000cSt以下)とし、且つ、ガスの生成が抑制される程度に軽質油分の熱分解を進行させるように第2の相内における第2の混合流体の滞留時間を調節する機構を備えている。ここで重質油分と混合後の合成原油の動粘度を5.0×10-3/s以下(5000cSt以下)とするためには、比較的動粘度の大きな重質油分と混合される軽質油分単独の動粘度はさらに低い値となるように第2の滞留時間が調整される。 Therefore, in this reformer, the kinematic viscosity at 10 ° C. of light crude oil alone or mixed with heavy oil, for example, at 10 ° C. is set to 5.0 × 10 −3 m 2 / s or less (5000 cSt or less), and gas Is provided with a mechanism for adjusting the residence time of the second mixed fluid in the second phase so that the thermal decomposition of the light oil proceeds to such an extent that the generation of is suppressed. Here, in order to set the kinematic viscosity of the synthetic crude oil mixed with the heavy oil component to 5.0 × 10 −3 m 2 / s or less (5000 cSt or less), it is mixed with the heavy oil component having a relatively large kinematic viscosity. The second residence time is adjusted so that the kinematic viscosity of the light oil alone becomes a lower value.
 例えば第1の相内における第1混合流体の滞留時間をθpitch、第2の相内における第2混合流体の滞留時間をθLtとし、重質油供給ライン110からの重質油の単位時間当たりの供給量をFOin、超臨界水供給ライン120からの超臨界水の単位時間当たりの供給量をFWin、重質油分抜出ライン140からの第1の混合流体の単位時間当たりの抜き出し量をFW1+Pitch、軽質油分抜出ライン130からの第2の混合流体の単位時間当たりの抜き出し量をFW2+Ltと表すと、反応器1への流体の供給、抜き出しバランスは、以下の(2)式で表される。
 FOin+FWin=FW1+Pitch+FW2+Lt…(2)
For example, the residence time of the first mixed fluid in the first phase is θ pitch , the residence time of the second mixed fluid in the second phase is θ Lt, and the unit time of heavy oil from the heavy oil supply line 110 is F Oin is the supply amount per unit time, F Win is the supply amount per unit time of supercritical water from the supercritical water supply line 120, and the first mixed fluid is extracted from the heavy oil content extraction line 140 per unit time. When the amount is expressed as FW1 + Pitch and the extraction amount of the second mixed fluid from the light oil content extraction line 130 per unit time is expressed as FW2 + Lt , the supply and extraction balance of the fluid to the reactor 1 is as follows (2) It is expressed by a formula.
F Oin + F Win = F W1 + Pitch + F W2 + Lt (2)
 また、第2の相に抽出される軽質油分の割合は、重質油の性状や反応器1の温度、圧力条件、重質油分の熱分解の進行度合いによっても変化するが、本例においては、例えば沸点が540℃以下のVGO(Vacuumed Gas Oil:減圧軽油)より軽質な留分が軽質油分として超臨界水側に抽出され、540℃よりも沸点の高いVR(Vacuumed Residue)に相当する留分が超臨界水中に抽出されない重質油分として抜き出される重質油を用いる場合について考える。ここで本実施の形態においては、θpitchを例えば目標値の±1分程度の変動範囲内で制御し、熱分解の進行度を一定の範囲内に制御することによりVGOの得率(即ちVRの得率)は、ほぼ一定として取り扱えるものとする。 Further, the proportion of the light oil extracted in the second phase varies depending on the properties of the heavy oil, the temperature and pressure conditions of the reactor 1, and the degree of progress of thermal decomposition of the heavy oil. For example, a fraction lighter than VGO (Vacuumed Gas Oil: vacuum gas oil) having a boiling point of 540 ° C. or less is extracted as a light oil component to the supercritical water side, and the fraction corresponding to VR (Vacuumed Residue) having a boiling point higher than 540 ° C. Consider the case of using heavy oil extracted as heavy oil not extracted in supercritical water. Here, in the present embodiment, θ pitch is controlled within, for example, a fluctuation range of about ± 1 minute of the target value, and the degree of progress of thermal decomposition is controlled within a certain range, thereby obtaining the VGO yield (ie, VR). ) Is assumed to be almost constant.
 また、反応器1に供給される重質油のうち、重質油分として抜き出される流量をFPitch、軽質油分として抜き出される流量をFLtとし、同じく反応器1に供給される超臨界水のうち重質油分に溶解して第1の相から抜き出される流量をFw1、軽質油分を抽出して第2の相から抜き出される流量をFw2とすると、第1の流体、第2の流体の抜き出し量は以下の(3)式、(4)式で表される。 
 FW1+Pitch=FW1+FPitch…(3)
 FW2+Lt=FW2+FLt…(4)
Also, of the heavy oil to be supplied to the reactor 1, the flow rate withdrawn a flow rate withdrawn as heavy oil F Pitch, as light oil and F Lt, supercritical water is also fed to the reactor 1 flow rate F w1 withdrawn from the first phase by dissolving the heavy oil of, when a flow rate withdrawn from the second phase by extracting light oil and F w2, the first fluid, the second The amount of fluid extracted is expressed by the following equations (3) and (4).
F W1 + Pitch = F W1 + F Pitch (3)
FW2 + Lt = FW2 + FLt (4)
 そして、反応器1内における第1の相の体積をV、第2の相の体積をVと表すとき、第1の相内における第1混合流体の滞留時間θpitch、第2の相内における第2混合流体の滞留時間θLtは以下の(5)式、(6)式で表される。 
 θpitch=V/FW1+Pitch 
   =V/(FW1+FPitch)…(5) 
 θLt=V/FW2+Lt 
   =V/(FW2+FLt)…(6)
When the volume of the first phase in the reactor 1 is expressed as V 1 and the volume of the second phase is expressed as V 2 , the residence time θ pitch of the first mixed fluid in the first phase, the second phase The residence time θ Lt of the second mixed fluid is expressed by the following equations (5) and (6).
θ pitch = V 1 / F W1 + Pitch
= V 1 / (F W1 + F Pitch ) (5)
θ Lt = V 2 / F W2 + Lt
= V 2 / (F W2 + F Lt ) (6)
 (5)式によれば、第1の相の体積Vが一定の場合、重質油分抜出ライン140からの第1の混合流体の抜き出し量FW1+Pitchを増減することにより、第1の相内における第1の混合流体の滞留時間θpitchを調節することができる。本実施の形態に係る改質装置においては、後述の実施例の結果から「3分≦θpitch≦95分」の範囲内で滞留時間θpitchを設定することにより、重質油分中のコークスの生成を抑制し、且つ350℃における残渣油の動粘度を3.0×10-5/s以下(30cSt以下)に調節することができることを確認している。 According to the equation (5), when the volume V 1 of the first phase is constant, the first phase is increased or decreased by increasing / decreasing the extraction amount F W1 + Pitch of the first mixed fluid from the heavy oil content extraction line 140. The residence time θ pitch of the first mixed fluid can be adjusted. In the reformer according to the present embodiment, by setting the residence time θ pitch within the range of “3 minutes ≦ θ pitch ≦ 95 minutes” from the results of the examples described later, the coke in the heavy oil component is reduced. It has been confirmed that the formation can be suppressed and the kinematic viscosity of the residual oil at 350 ° C. can be adjusted to 3.0 × 10 −5 m 2 / s or less (30 cSt or less).
 また温度、圧力が一定の条件の下では重質油分中への超臨界水の溶解度は一定となるので、第1の相から抜き出される重質油分の流出量FPitchが決まれば、この重質油分中に溶解する超臨界水の量FW1は一定の値となる。この状態で超臨界水の供給量FWinを増減すると、重質油分中に溶解しない超臨界水の量、即ち、第2の相を形成する超臨界水の量FW2を増減することが可能となる。重質油分の流出量FPitchに対する超臨界水の溶解量FW1は、例えば予備実験などにより把握しておけばよい。 In addition, since the solubility of supercritical water in the heavy oil is constant under the conditions of constant temperature and pressure, if the outflow amount F Pitch of the heavy oil extracted from the first phase is determined, The amount F W1 of supercritical water dissolved in the refined oil is a constant value. If the supply amount F Win of the supercritical water is increased or decreased in this state, it is possible to increase or decrease the amount of supercritical water that does not dissolve in the heavy oil, that is, the amount F W2 of the supercritical water that forms the second phase. It becomes. Dissolution amount F W1 of supercritical water for outflow F Pitch of heavy oil, for example it is sufficient to understand due preliminary experiments.
 以上の関係から、第2の相の体積Vが一定の場合、超臨界水供給ライン120からの超臨界水の供給量FWinを増減することによって(6)式中のFW2が増減し、第2の相内における第2の混合流体の滞留時間θLtを調節することができる。本実施の形態に係る改質装置においては、後述の実施例の結果から「1分≦θLt≦25分」の範囲内で滞留時間θLtを設定することにより、重質油分中のコークスの生成を抑制し、且つ10℃における軽質油分単独、または重質油分と混合後の合成原油の動粘度を5.0×10-3/s以下(5000cSt以下)に調節することができることを確認している。 From the above relationship, when the volume V 2 of the second phase is constant, increasing / decreasing the supply amount F Win of supercritical water from the supercritical water supply line 120 increases / decreases F W2 in the equation (6). The residence time θ Lt of the second mixed fluid in the second phase can be adjusted. In the reformer according to the present embodiment, by setting the residence time θ Lt within the range of “1 minute ≦ θ Lt ≦ 25 minutes” from the results of the examples described later, the coke in the heavy oil component is reduced. It is possible to suppress the production and adjust the kinematic viscosity of light crude oil alone at 10 ° C. or the synthetic crude oil after mixing with heavy oil to 5.0 × 10 −3 m 2 / s or less (5000 cSt or less). I have confirmed.
 以上に説明した考え方に基づき、重質油分抜出ライン140には第1の混合流体の抜き出し量FW1+Pitchを調節するための流量コントローラー74が設けられており、この流量コントローラー74の指示値(b)が制御部7へ出力されるようになっている。制御部7では(5)式に基づいて滞留時間θpitchが計算され、当該θpitchが予め設定した目標値となるように、流量コントローラー74の流量設定値(e)を増減して流量調節弁142の開度が調節される。 Based on the concept described above, the heavy oil content extraction line 140 is provided with a flow rate controller 74 for adjusting the extraction amount FW1 + Pitch of the first mixed fluid, and the indicated value (b ) Is output to the control unit 7. The control unit 7 calculates the residence time θ pitch based on the equation (5), and increases or decreases the flow rate setting value (e) of the flow rate controller 74 so that the θ pitch becomes a preset target value. The opening degree of 142 is adjusted.
 また、超臨界水供給ライン120には超臨界水の供給量FWin(即ちFW2)を調節するための流量コントローラー72が設けられており、この流量コントローラー72の指示値(a)が制御部7へ出力されるようになっている。制御部7では(6)式に基づいて滞留時間θLtが計算され、当該θLtが予め設定した目標値となるように、流量コントローラー74の流量設定値(d)を増減して流量調節弁122の開度が調節される。 The supercritical water supply line 120 is provided with a flow rate controller 72 for adjusting the supply amount F Win (ie, F W2 ) of supercritical water, and the indicated value (a) of the flow rate controller 72 is a control unit. 7 is output. The controller 7 calculates the residence time θ Lt based on the equation (6), and increases or decreases the flow rate setting value (d) of the flow rate controller 74 so that the θ Lt becomes a preset target value. The opening degree of 122 is adjusted.
 また反応器1には本実施の形態の界面検出部である例えば差圧式、超音波式、X線式などの界面レベル計75が設けられており、反応器1内の第1の相と第2の相との界面のレベルが予め設定した範囲を上回るか、下回るかすると「界面レベル高」または「界面レベル低」を示す信号(c)が制御部7へ出力されるようになっている。制御部7では前記界面レベルが設定範囲内の高さ位置に復帰するように重質油供給ライン110に設けられた流量コントローラー71の流量設定値(f)を増減して重質油の供給量供給量FOinを調節することにより第1の相の体積V(即ち第2の相の体積V)を一定に保つ構成となっている。 
 ここで反応器1内の圧力は図1に示す高圧セパレーター2の軽質油分ライン210に設けられた不図示の圧力コントローラーにより、減圧弁211を開閉することにより行われる。
Further, the reactor 1 is provided with an interface level meter 75 such as a differential pressure type, an ultrasonic type, an X-ray type, etc., which is an interface detection unit of the present embodiment, and the first phase in the reactor 1 and the first phase. When the level of the interface with the second phase exceeds or falls below a preset range, a signal (c) indicating “high interface level” or “low interface level” is output to the control unit 7. . The controller 7 increases or decreases the flow rate set value (f) of the flow rate controller 71 provided in the heavy oil supply line 110 so that the interface level returns to the height position within the set range, thereby supplying the heavy oil supply amount. By adjusting the supply amount F Oin , the volume V 1 of the first phase (that is, the volume V 2 of the second phase) is kept constant.
Here, the pressure in the reactor 1 is performed by opening and closing the pressure reducing valve 211 by a pressure controller (not shown) provided in the light oil content line 210 of the high pressure separator 2 shown in FIG.
 以上説明した構成を備えた改質装置において、各滞留時間θpitch、θLtを調節する動作について説明する。今、第1の相における第1の混合流体の滞留時間θpitchが設定値を上回ったとすると、(5)式によれば第1の混合流体の抜き出し量FPitchを増やすことによりθpitchを低下させ、設定値に復帰させることができる。ところがFPitchを増やすと界面レベルが低下するので界面レベル計75から「界面レベル低」の信号が出力され、流量調節弁112を作動させて重質油供給ライン110からの重質油の供給量FOinを増加させる。 An operation of adjusting the residence times θ pitch and θ Lt in the reformer having the above-described configuration will be described. Now, assuming that the residence time θ pitch of the first mixed fluid in the first phase exceeds the set value, according to the equation (5), θ pitch is reduced by increasing the extraction amount F Pitch of the first mixed fluid. Can be restored to the set value. However, if the F Pitch is increased, the interface level is lowered, so the interface level meter 75 outputs a “interface level low” signal, and operates the flow control valve 112 to supply the heavy oil supply amount from the heavy oil supply line 110. Increase F Oin .
 このとき重質油の供給量の増分ΔFOinのうち「ΔFPitch」は第1の相に分配されるが、「ΔFLt」は第2の相側に分配される。この結果、(6)式よりθLtが小さくなることになるが、この変化については超臨界水の供給量FWin(即ちFW2)を減らすことによりθLtを上昇させて設定値に復帰させることができる。 At this time, “ΔF Pitch ” of the increment ΔF Oin of the heavy oil supply amount is distributed to the first phase, while “ΔF Lt ” is distributed to the second phase side. As a result, θ Lt becomes smaller than the equation (6). With regard to this change, θ Lt is raised and returned to the set value by reducing the supercritical water supply amount F Win (ie, F W2 ). be able to.
 また反対に、第2の相における第2の混合流体の滞留時間θLtが設定値を上回ったとすると(6)式によれば超臨界流体の供給量FWin(即ちFW2)を増やすことによりθLtを低下させ、設定値に復帰させる。FWinを増やしても例えば反応器1内の圧力を一定にするようにFWin(FW2)の増加量にあわせて第2の相からの抜き出し量がFW2+Ltが増え、第1の相と第2の相との界面が一定レベルに保たれる。 On the other hand, if the residence time θ Lt of the second mixed fluid in the second phase exceeds the set value, the supply amount F Win (ie, F W2 ) of the supercritical fluid is increased by the equation (6). θ Lt is lowered and returned to the set value. Even if F Win is increased, for example, the amount of extraction from the second phase F F 2 + Lt increases in accordance with the amount of increase in F Win (F W2 ) so that the pressure in the reactor 1 becomes constant. The interface with the second phase is kept at a constant level.
 本実施の形態に係る改質装置によれば、重質油と超臨界水とを反応器内で接触させることによりこれらの流体を第1の相(重質油分及びこの重質油分中に溶解した超臨界水からなる相)と第2の相(前記超臨界水及びこの超臨界水中に抽出された軽質油分からなる相)との2つの相に分離させ、第1の相を構成する混合流体の当該第1の相内における滞留時間が予め設定した第1の滞留時間(例えば3分~95分の範囲内の所定の値に設定される)となるように重質油分と超臨界水との混合流体(第1の混合流体)の抜き出し量を調節する。これにより、当該第1の相内で進行する重質油分の熱分解の進行度合いを制御することが可能となり、例えば重質油分からのコークスの生成が抑えられる範囲で熱分解を進行させたり、重質油の動粘度が所望の範囲となるように熱分解を進行させたりするなど、最適な条件で改質装置を稼動させることが可能となる。 According to the reformer according to the present embodiment, these fluids are dissolved in the first phase (heavy oil and the heavy oil by bringing heavy oil and supercritical water into contact in the reactor. And the second phase (the phase consisting of the supercritical water and the light oil extracted in the supercritical water) and the second phase (mixed phase constituting the first phase). Heavy oil and supercritical water so that the residence time of the fluid in the first phase becomes a preset first residence time (for example, set to a predetermined value within a range of 3 to 95 minutes). The amount of extraction of the mixed fluid (first mixed fluid) is adjusted. This makes it possible to control the degree of progress of thermal decomposition of the heavy oil that proceeds in the first phase, for example, to proceed with thermal decomposition in a range where the production of coke from the heavy oil is suppressed, It is possible to operate the reformer under optimum conditions, such as by causing thermal decomposition to proceed so that the kinematic viscosity of the heavy oil falls within a desired range.
 また第2の相を構成する混合流体の当該第2の相内における滞留時間が予め設定した第2の滞留時間(例えば1分~25分の範囲内の所定の値に設定される)となるように第2の混合流体(軽質油分と超臨界水との混合流体)の抜き出し量を調節する。これにより、当該第2の相内で進行する軽質油分の熱分解の進行度合いを制御することが可能となり、例えば軽質油分の過分解を抑制してガスの生成が抑えられる範囲で熱分解を進行させたり、軽質油分からえられる合成原油の動粘度が所望の範囲となるように熱分解を進行させたりすることもできる。 In addition, the residence time in the second phase of the mixed fluid constituting the second phase becomes a preset second residence time (for example, set to a predetermined value in the range of 1 to 25 minutes). In this way, the amount of the second mixed fluid (mixed fluid of light oil and supercritical water) is adjusted. As a result, it is possible to control the degree of progress of thermal decomposition of the light oil that proceeds in the second phase. For example, thermal decomposition proceeds in a range in which excessive decomposition of the light oil is suppressed and generation of gas is suppressed. Or thermal decomposition can be advanced so that the kinematic viscosity of the synthetic crude oil obtained from the light oil is in a desired range.
 ここで図2に示した例では界面レベル計75を設け、第1、第2の相の界面を実測してV、Vが一定となるようにしているが、改質装置は必ずしも界面レベル計75を備えていなくてもよい。例えば、重質油の油種や温度、圧力条件などに応じたVGOより軽質の留分、VR留分の得率を予め実験などにより把握しておき、FOin、FWin、FPitch、FLt、Fw1、Fw2の値から反応器1内の界面レベルを推定し、この推定界面レベルに基づいてV、Vを一定に保ち、(5)、(6)式に基づいて各滞留時間θpitch、θLtを調節してもよい。 Here, in the example shown in FIG. 2, an interface level meter 75 is provided to measure the interface between the first and second phases so that V 1 and V 2 are constant. The level meter 75 may not be provided. For example, the yields of lighter fractions and VR fractions than VGO according to the oil type, temperature, pressure conditions, etc. of heavy oil are obtained by experiments in advance, and F Oin , F Win , F Pitch , F The interface level in the reactor 1 is estimated from the values of Lt , F w1 , and F w2 , and V 1 and V 2 are kept constant based on the estimated interface level, and each of the values based on the equations (5) and (6) The residence times θ pitch and θ Lt may be adjusted.
 また図2に示した例では、V、Vを一定に保ち、各滞留時間θpitch、θLtを調節する例を示したがV、Vを変化させつつ滞留時間θpitch、θLtを調節することも可能である。例えば第1の相における第1の混合流体の滞留時間θpitchが設定値を上回ったとき、(5)式より第1の混合流体の抜き出し量FPitchを増やすと共に第1の相の体積Vを小さくすることにより、θpitchを低下させ、設定値に復帰させる。この結果、第2の相の体積Vが増大することになり、第2の混合流体の滞留時間θLtに影響を与えるが、体積Vの増大分を相殺するように超臨界水の供給量FWin(即ちFW2)を増やすことによりθLtを設定値に復帰させることができる。 In the example shown in FIG. 2, an example in which V 1 and V 2 are kept constant and the residence times θ pitch and θ Lt are adjusted is shown. However, the residence times θ pitch and θ are changed while V 1 and V 2 are changed. It is also possible to adjust Lt. For example, when the residence time θ pitch of the first mixed fluid in the first phase exceeds the set value, the extraction amount F Pitch of the first mixed fluid is increased from the equation (5) and the volume V 1 of the first phase is increased. Is reduced to reduce θ pitch and return to the set value. As a result, the volume V 2 of the second phase increases, which affects the residence time θ Lt of the second mixed fluid, but supplies supercritical water so as to offset the increase in volume V 2. By increasing the amount F Win (ie, F W2 ), θ Lt can be returned to the set value.
 さらに上述の各例では、第1の相内における第1混合流体の滞留時間θpitchを第1の混合流体の抜き出し量FPitchにより調節し、第2の相内における第2混合流体の滞留時間θLtを超臨界水の供給量FWinにより調節する例を示したが、これらの滞留時間を(5)式、(6)式に示した他の操作変数、例えば重質油の供給量FOinや第2の混合流体の抜き出し量FW2+Ltoutで調節することを否定するものではない。 Further, in each of the above-described examples, the residence time θ pitch of the first mixed fluid in the first phase is adjusted by the extraction amount F Pitch of the first mixed fluid, and the residence time of the second mixed fluid in the second phase is adjusted. Although the example in which θ Lt is adjusted by the supply amount F Win of supercritical water has been shown, these residence times are set to other operating variables shown in the equations (5) and (6), for example, the supply amount F of heavy oil It does not deny adjusting with Oin or the extraction amount FW2 + Ltout of the second mixed fluid.
 図1に示したプロセスフロー図では、フラッシュドラム4にて重質油分から水を分離し、残渣油として残渣油タンク64に送液する例を示したが、かならずしもフラッシュドラム4は設けなくてもよい。例えば改質装置の近接のプラントにて残渣油をボイラー燃料として利用する場合には、フラッシュドラム4を省略することもできる。例えば第1の流体の降圧操作を行わずに残渣油中に水分が分散した状態のままボイラー燃料とすることにより、残渣油の粘度をさらに低下させて残渣油をよりハンドリングし易くすることが可能となると共に、残渣油中に分散した水の効果によりボイラー燃料として使用する際のベーパライズが促進されて、ボイラーにおける燃焼性を改善することもできる。 In the process flow diagram shown in FIG. 1, an example is shown in which water is separated from heavy oil by the flash drum 4 and is sent to the residual oil tank 64 as residual oil, but the flash drum 4 is not necessarily provided. Good. For example, when the residual oil is used as boiler fuel in a plant near the reformer, the flash drum 4 can be omitted. For example, it is possible to make the residual oil easier to handle by further reducing the viscosity of the residual oil by using the boiler fuel while the water is dispersed in the residual oil without performing the pressure reduction operation of the first fluid. At the same time, vaporization when used as boiler fuel is promoted by the effect of water dispersed in the residual oil, and the combustibility in the boiler can also be improved.
 そして上述の実施の形態においては、改質装置にて改質される重質油はオイルサンドビチュメンやオリノコタールなどの超重質原油を処理する場合について説明したが、本改質装置にて処理可能な重質油は原油に限られない。例えば常圧蒸留残渣油や減圧蒸留残渣油の改質処理を行う場合についても本発明の技術的範囲に含まれる。 In the above-described embodiment, the heavy oil to be reformed by the reformer has been described for the case of processing ultra heavy crude oil such as oil sand bitumen or orinocotal, but can be processed by the reformer. Heavy oil is not limited to crude oil. For example, the case of performing reforming treatment of atmospheric distillation residue oil or vacuum distillation residue oil is also included in the technical scope of the present invention.
 (実験1) 
 図1に示した改質装置のモデル装置として、図3に記載の試験装置を製作し、重質油の改質実験を行った。
(Experiment 1)
As a model device of the reformer shown in FIG. 1, the test device shown in FIG. 3 was manufactured and a heavy oil reforming experiment was conducted.
 A.実験条件
 図3中、200は反応器1の上部側から抜き出された第2の混合流体をガスと軽質油分/水の混合流体に分離するための気液分離タンク、143は反応器1の下部側から重質油分(第2の混合流体)を抜き出さすためのボール弁である。本装置では第1の混合流体の滞留時間θpitchは残渣油の抜き出し量FPitch、第2の混合流体の滞留時間θLtは超臨界水の供給量FWinにて制御した。重質油としては(表1)に示す性状のカナダ産のオイルサンドビチュメンを使用した。 
 (表1)
Figure JPOXMLDOC01-appb-I000001
A. Experimental conditions In FIG. 3, reference numeral 200 denotes a gas-liquid separation tank for separating the second mixed fluid extracted from the upper side of the reactor 1 into a mixed fluid of gas and light oil / water, and 143 denotes the reactor 1. It is a ball valve for extracting heavy oil (second mixed fluid) from the lower side. In this apparatus, the residence time θ pitch of the first mixed fluid was controlled by the amount of extracted residual oil F Pitch , and the residence time θ Lt of the second mixed fluid was controlled by the supercritical water supply amount F Win . As heavy oil, Canadian oil sand bitumen having the properties shown in Table 1 was used.
(Table 1)
Figure JPOXMLDOC01-appb-I000001
 (実施例1)
 以下の条件で実験を行った。
 反応器1内の反応温度:430℃
 反応器1内の反応圧力:25MPa
 水/油重量比:1.0
 第1の混合流体の滞留時間θPitch:82分
 第2の混合流体の滞留時間θLt:2.3分
 (実施例2)
 反応器1内の反応温度:450℃
 第1の混合流体の滞留時間θPitch:4.9分
 第2の混合流体の滞留時間θLt:11分
 とした他は(実施例1)同様の条件で実験を行った。
 (実施例3)
 水/油重量比:0.5
 第1の混合流体の滞留時間θPitch:38分
 第2の混合流体の滞留時間θLt:22分
 とした他は(実施例1)同様の条件で実験を行った。
 (実施例4)
 第1の混合流体の滞留時間θPitch:67分
 第2の混合流体の滞留時間θLt:1.8分
 とした他は(実施例1)同様の条件で実験を行った。
 (比較例1)
 第1の混合流体の滞留時間θPitch:105分
 第2の混合流体の滞留時間θLt:1.1分
 とした他は(実施例1)同様の条件で実験を行った。
 各実施例、比較例の実験条件を(表2)にまとめた。
 (表2)
Figure JPOXMLDOC01-appb-I000002
Example 1
The experiment was performed under the following conditions.
Reaction temperature in reactor 1: 430 ° C
Reaction pressure in reactor 1: 25 MPa
Water / oil weight ratio: 1.0
Residence time θ Pitch of the first fluid mixture: 82 minutes Residence time θ Lt of the second fluid mixture: 2.3 minutes (Example 2)
Reaction temperature in reactor 1: 450 ° C
The experiment was conducted under the same conditions as in Example 1 except that the residence time θ Pitch of the first mixed fluid was 4.9 minutes and the residence time θ Lt of the second fluid mixture was 11 minutes.
(Example 3)
Water / oil weight ratio: 0.5
The experiment was performed under the same conditions as in Example 1 except that the residence time θ Pitch of the first mixed fluid was 38 minutes and the residence time θ Lt of the second fluid mixture was 22 minutes.
Example 4
The experiment was performed under the same conditions as in Example 1 except that the residence time θ Pitch of the first mixed fluid was 67 minutes and the residence time θ Lt of the second fluid mixture was 1.8 minutes.
(Comparative Example 1)
The experiment was performed under the same conditions as in Example 1 except that the residence time θ Pitch of the first mixed fluid was 105 minutes and the residence time θ Lt of the second fluid mixture was 1.1 minutes.
The experimental conditions of each example and comparative example are summarized in (Table 2).
(Table 2)
Figure JPOXMLDOC01-appb-I000002
 B.実験結果
 (表3)に各実施例、比較例におけるガス、合成原油(軽質油分)、残渣油(重質油分)の収率を示す。(表4)に合成原油性状、(表5)に残渣油性状を示す。
 (表3)
Figure JPOXMLDOC01-appb-I000003
 (表4)
Figure JPOXMLDOC01-appb-I000004
 (表5)
Figure JPOXMLDOC01-appb-I000005
B. Experimental results (Table 3) show the yields of gas, synthetic crude oil (light oil), and residual oil (heavy oil) in each Example and Comparative Example. Table 4 shows the properties of the synthetic crude oil, and Table 5 shows the properties of the residual oil.
(Table 3)
Figure JPOXMLDOC01-appb-I000003
(Table 4)
Figure JPOXMLDOC01-appb-I000004
(Table 5)
Figure JPOXMLDOC01-appb-I000005
 また(実施例1)で使用したものと同じオイルサンドビチュメンをビスブレーカー試験、ディレードコーカー試験にて処理した結果得られた各留分の得率を(実施例1、2)の結果と比較した結果を(表6)に示す。なお、(実施例1、2)は、合成原油と残渣ウエハの得率を合成して沸点540℃以下のVGO留分と沸点が540℃より高いVR留分とに換算して示してあるので、(表3)に示した得率とは一致しない場合がある。
 (表6)
Figure JPOXMLDOC01-appb-I000006
Moreover, the yield of each fraction obtained as a result of treating the same oil sand bitumen as used in (Example 1) by a bisbreaker test and a delayed coker test was compared with the results of (Examples 1 and 2). The results are shown in (Table 6). In addition, (Examples 1 and 2) are obtained by synthesizing the yields of synthetic crude oil and residue wafers and converting them into a VGO fraction having a boiling point of 540 ° C. or lower and a VR fraction having a boiling point higher than 540 ° C. , (Table 3) may not match the yield.
(Table 6)
Figure JPOXMLDOC01-appb-I000006
 (実験1)の結果によれば、実施例2(θPitch:4.9分)→実施例3(同:32分)→実施例1(同:95分)と第1の滞留時間θPitchを長くするに連れて、残渣油収率が低下する一方、合成原油収率が上昇する結果が得られている。また、θPitchが105分の比較例1ではコークスの発生(コーキング)が観察された。ここで第1の滞留時間θPitchが実施例3よりも長い実施例4(θPitch:67分)において残渣油収率が実施例3よりも高くなる一方、合成原油収率が実施例3と同程度となった理由は明らかでないが、変動誤差の影響ではないかと考える。 According to the results of (Experiment 1), Example 2 (θ Pitch : 4.9 minutes) → Example 3 (same: 32 minutes) → Example 1 (same: 95 minutes) and first residence time θ Pitch As the oil length is increased, the yield of residual oil decreases while the yield of synthetic crude oil increases. Further, in Comparative Example 1 where the θ pitch was 105 minutes, generation of coke (coking) was observed. Here, in Example 4 (θ Pitch : 67 minutes) in which the first residence time θ Pitch is longer than that in Example 3, the residual oil yield is higher than that in Example 3, while the synthetic crude oil yield is The reason for this is not clear, but I think it is due to fluctuation error.
 またガス収率についてみると、ガス収率が最も多かった実施例1(θLt:2.3分)を除いて、実施例4(同:1.8分)→実施例2(同:11分)→実施例3(同25分)の順に、第2の滞留時間θLtを長くするに連れてガスの収率が増大する傾向が見られる。第2の滞留時間θLtが2番目に短い実施例1においてガスの収率が4重量%と最大になった理由は明らかでないが、これも変動誤差の影響ではないかと考える。 Further, regarding the gas yield, Example 4 (same as 1.8 minutes) → Example 2 (same as 11: except for Example 1 (θ Lt : 2.3 minutes) with the highest gas yield). Min) → Example 3 (25 minutes in the same order), the gas yield tends to increase as the second residence time θ Lt is increased. Although the reason why the yield of gas was maximized at 4% by weight in Example 1 in which the second residence time θ Lt is the second shortest is not clear, it is considered that this is also the influence of the fluctuation error.
 そして(表4)に示した合成原油の動粘度の計測結果によれば、各実施例において、10℃において最大でも2.8×10-5/s(28cSt)(規格値5.0×10-3/s(5000cSt))と、実用上問題のない動粘度の合成原油が得られた。ここで実施例4(θLt:1.8分)→実施例1(同:2.3分)→実施例2(同:11分)→実施例3(同:25分)と第2の滞留時間θLtを長くするにつれて合成原油の動粘度が低下する傾向が見られる。これは第2の滞留時間を長くするに従って、軽質油分の分解が進行した結果ではないかと考えられる。このことは、第2の滞留時間が長くなるに従って合成原油の密度が小さくなっていることからも確認できる。 According to the measurement results of the kinematic viscosity of the synthetic crude oil shown in (Table 4), in each example, the maximum was 2.8 × 10 −5 m 2 / s (28 cSt) (standard value 5.0) at 10 ° C. Synthetic crude oil having a kinematic viscosity with no practical problems was obtained, × 10 −3 m 2 / s (5000 cSt)). Here, Example 4 ( θLt : 1.8 minutes) → Example 1 (same: 2.3 minutes) → Example 2 (same: 11 minutes) → Example 3 (same: 25 minutes) and second There is a tendency that the kinematic viscosity of the synthetic crude oil decreases as the residence time θ Lt is increased. This is considered to be a result of the progress of decomposition of the light oil as the second residence time is increased. This can also be confirmed from the fact that the density of the synthetic crude oil decreases as the second residence time increases.
 次いで(表5)に示した残渣油の動粘度の計測結果によれば、各実施例において、310℃において最大でも1.8×10-5/s(18cSt)と、実用上問題のない動粘度の残渣油が得られた。当該残渣油を350℃まで加熱した場合には、動粘度はさらに小さくなる。そして、実施例2(θPitch:4.9分)、実施例3(同:32分)→実施例4(同:67分)→実施例1(同:95分)の順に第1の滞留時間θPitchを長くするに従って、残渣油の動粘度が増大する傾向が見られる。これは第1の滞留時間を長くするに従って、重質油分中に溶解する超臨界水のケージ効果に抗して重質油分の重合が進行した結果ではないかと考えられる。このことは、第1の滞留時間が長くなるに従って残渣油の密度が大きくなっていることからも確認できる。 Next, according to the measurement results of the kinematic viscosity of the residual oil shown in (Table 5), in each example, the maximum is 1.8 × 10 −5 m 2 / s (18 cSt) at 310 ° C., which is a practical problem. A residual oil with no kinematic viscosity was obtained. When the residual oil is heated to 350 ° C., the kinematic viscosity is further reduced. Then, the first residence is performed in the order of Example 2 (θ Pitch : 4.9 minutes), Example 3 (same: 32 minutes) → Example 4 (same: 67 minutes) → Example 1 (same: 95 minutes). As the time θ Pitch is lengthened, the kinematic viscosity of the residual oil tends to increase. This is considered to be the result of the polymerization of the heavy oil proceeding against the cage effect of supercritical water dissolved in the heavy oil as the first residence time is increased. This can also be confirmed from the fact that the density of the residual oil increases as the first residence time increases.
 実施例1~4及び比較例1の結果を総合すると、オイルサンドビチュメンを原料の重質油としたとき、第1の滞留時間θPitchについては、およそ3分以上、95分以下の範囲であれば、コークスの発生を抑えつつ、310℃における動粘度が1.8×10-5/s(18cSt)以下となって、ハンドリングの容易な残渣油が得られることが分かる。また、第2の滞留時間θLtについては、およそ1分以上、25分以下の範囲において、ガスの生成を4質量%程度以下に抑え、10℃における動粘度が2.8×10-5/s(28cSt)以下の合成原油が得られるといえる。 Summarizing the results of Examples 1 to 4 and Comparative Example 1, when oil sand bitumen is used as the raw material heavy oil, the first residence time θ Pitch should be in the range of about 3 minutes to 95 minutes. For example, the kinematic viscosity at 310 ° C. becomes 1.8 × 10 −5 m 2 / s (18 cSt) or less while suppressing the generation of coke, and it can be seen that a residual oil that is easy to handle can be obtained. The second residence time θ Lt is about 1 to 25 minutes, and the gas generation is suppressed to about 4% by mass or less, and the kinematic viscosity at 10 ° C. is 2.8 × 10 −5 m. It can be said that synthetic crude oil of 2 / s (28 cSt) or less can be obtained.
 また(表6)に示した結果によれば、コークスの生成が抑えられている一方、VGO留分の得率がビスブレーカーよりも高くなっており、実施例1ではディレードコーカーと同程度のVGO留分得率が得られている。このことから、超臨界水を利用した重質油の熱分解は、第1、第2の滞留時間を適切に制御することにより、コークスやガスの発生を抑えつつ、高得率でVGO留分(軽質油分)を得ることが可能な熱分解プロセスであることが分かる。 Further, according to the results shown in (Table 6), while the generation of coke is suppressed, the yield of the VGO fraction is higher than that of the bisbreaker, and in Example 1, VGO comparable to the delayed coker is obtained. A fraction yield is obtained. From this, the pyrolysis of heavy oil using supercritical water can control the VGO fraction with high yield while suppressing the generation of coke and gas by appropriately controlling the first and second residence times. It can be seen that this is a pyrolysis process capable of obtaining (light oil content).
 (実験2) 
 (実験1)と同様の実験装置の反応器1に内部観察用の覗き窓を設け、容器内の流体が第1の相と第2の相とに分離し、界面が形成されることを確認した。覗き窓から反応器1内の様子を撮影した結果を図4(a)に示し、その模式図を図4(b)に示す。図4(a)の結果によれば、反応器1の下部側には、重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、超臨界水とこの超臨界水中に抽出された軽質油分とからなる第2の相とが確認された。
(Experiment 2)
A viewing window for internal observation is provided in the reactor 1 of the same experimental apparatus as in (Experiment 1), and it is confirmed that the fluid in the container is separated into the first phase and the second phase, and an interface is formed. did. FIG. 4A shows the result of photographing the inside of the reactor 1 from the viewing window, and FIG. 4B shows a schematic diagram thereof. According to the result of FIG. 4A, the lower side of the reactor 1 has a first phase composed of a heavy oil component and supercritical water dissolved in the heavy oil component, supercritical water, and supercritical water. A second phase consisting of light oil extracted in critical water was confirmed.
1     反応器
110   重質油供給ライン
112   流量調節弁
120   超臨界水供給ライン
122   流量調節弁
130   軽質油分抜出ライン
131   圧力調整弁
140   重質油分抜出ライン
142   流量調節弁
2     高圧セパレーター
3     低圧セパレーター
4     フラッシュドラム
5     リサイクル水タンク
7     制御部
71、72、74
      流量コントローラー
73    圧力コントローラー
75    界面レベル計
 
1 Reactor 110 Heavy Oil Supply Line 112 Flow Control Valve 120 Supercritical Water Supply Line 122 Flow Control Valve 130 Light Oil Extraction Line 131 Pressure Control Valve 140 Heavy Oil Extraction Line 142 Flow Control Valve 2 High Pressure Separator 3 Low Pressure Separator 4 Flash drum 5 Recycled water tank 7 Control units 71, 72, 74
Flow controller 73 Pressure controller 75 Interface level meter

Claims (30)

  1.  水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離するための反応器と、
     この反応器に重質油を供給する重質油供給部と、
     前記反応器に超臨界水を供給する超臨界水供給部と、
     前記第1の相から重質油分と超臨界水との混合流体を抜き出す第1の抜き出し部と、
     前記第2の相から超臨界水と軽質油分との混合流体を抜き出す第2の抜き出し部と、
     前記反応器における第1の相と第2の相との間の界面の高さ位置を検出する界面検出部と、
     この界面検出部で検出された界面の高さ位置に基づいて前記第1の相の体積を求め、この第1の相の体積に基づいて重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する制御部と、を備えたことを特徴とする重質油の改質装置。
    Maintained at a temperature and pressure above the critical point of water, obtained by thermally decomposing this heavy oil while bringing the heavy oil and supercritical water into contact with each other and advancing thermal decomposition of the heavy oil Separation into a first phase comprising a heavy oil and supercritical water dissolved in the heavy oil, and a second phase comprising the supercritical water and a light oil extracted into the supercritical water And a reactor to
    A heavy oil supply section for supplying heavy oil to the reactor;
    A supercritical water supply for supplying supercritical water to the reactor;
    A first extraction portion for extracting a mixed fluid of heavy oil and supercritical water from the first phase;
    A second extraction portion for extracting a mixed fluid of supercritical water and light oil from the second phase;
    An interface detector for detecting a height position of an interface between the first phase and the second phase in the reactor;
    The volume of the first phase is obtained based on the height position of the interface detected by the interface detector, and the heavy oil component and the supercritical dissolved in the heavy oil component are obtained based on the volume of the first phase. A control unit that controls the amount of the mixed fluid extracted from the heavy oil and the supercritical water so that the residence time of the mixed fluid of water becomes a preset first residence time. Heavy oil reforming equipment.
  2.  水の臨界点以上の温度、圧力に維持され、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離するための反応器と、
     この反応器に重質油を供給する重質油供給部と、
     前記反応器に超臨界水を供給する超臨界水供給部と、
     前記第1の相から重質油分と超臨界水との混合流体を抜き出す第1の抜き出し部と、
     前記第2の相から超臨界水と軽質油分との混合流体を抜き出す第2の抜き出し部と、
     前記重質油の供給量に基づいて、重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する制御部と、を備えたことを特徴とする重質油の改質装置。
    Maintained at a temperature and pressure above the critical point of water, obtained by thermally decomposing this heavy oil while bringing the heavy oil and supercritical water into contact with each other and advancing thermal decomposition of the heavy oil Separation into a first phase comprising a heavy oil and supercritical water dissolved in the heavy oil, and a second phase comprising the supercritical water and a light oil extracted into the supercritical water And a reactor to
    A heavy oil supply section for supplying heavy oil to the reactor;
    A supercritical water supply for supplying supercritical water to the reactor;
    A first extraction portion for extracting a mixed fluid of heavy oil and supercritical water from the first phase;
    A second extraction portion for extracting a mixed fluid of supercritical water and light oil from the second phase;
    Based on the supply amount of the heavy oil, the heavy oil component and the heavy oil component so that the residence time of the mixed fluid of supercritical water dissolved in the heavy oil component becomes a preset first residence time. A heavy oil reforming apparatus, comprising: a control unit that controls the amount of fluid extracted from the supercritical water.
  3.  前記重質油分におけるコークの形成を抑えるため、前記制御部は、前記第1の滞留時間が3分以上、95分以下となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御することを特徴とする請求項1または2に記載の重質油の改質装置。 In order to suppress the formation of coke in the heavy oil component, the control unit extracts the mixed fluid of the heavy oil component and the supercritical water so that the first residence time is 3 minutes or more and 95 minutes or less. The heavy oil reforming apparatus according to claim 1 or 2, wherein the reforming apparatus is controlled.
  4.  前記第1の滞留時間は、コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間であることを特徴とする請求項1または2に記載の重質油の改質装置。 The first residence time is a residence time in which thermal decomposition of the heavy oil proceeds within a range where the amount of coke produced is 0 wt% or more and 20 wt% or less of the heavy oil. The heavy oil reforming apparatus according to claim 1 or 2.
  5.  前記第1の滞留時間は、350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間であることを特徴とする請求項1または2に記載の重質油の改質装置。 The first residence time is a residence time during which thermal decomposition of the heavy oil proceeds until a kinematic viscosity at 350 ° C. of 3.0 × 10 −5 m 2 / s or less. The heavy oil reforming apparatus according to claim 1 or 2, characterized in that:
  6.  前記制御部は、前記界面検出部で検出された界面の高さ位置に基づいて前記第2の相の体積を求め、この第2の相の体積に基づいて超臨界水及びこの超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御することを特長とする請求項1に記載の重質油の改質装置。 The control unit obtains the volume of the second phase based on the height position of the interface detected by the interface detection unit, and in the supercritical water and the supercritical water based on the volume of the second phase. The reforming of heavy oil according to claim 1, wherein the supply amount of supercritical water is controlled so that the residence time of the extracted light oil mixed fluid becomes a preset second residence time. apparatus.
  7.  前記制御部は、前記重質油の供給量に基づいて、超臨界水及びこの超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御することを特長とする請求項2に記載の重質油の改質装置。 Based on the supply amount of the heavy oil, the control unit is configured so that the residence time of the mixed fluid of the supercritical water and the light oil extracted into the supercritical water becomes a preset second residence time. The heavy oil reforming apparatus according to claim 2, wherein the supply amount of critical water is controlled.
  8.  前記軽質油分の過分解を抑えるため、前記制御部は、前記第2の滞留時間が1分以上、25分以下となるように超臨界水の供給量を制御することを特徴とする請求項6または7に記載の重質油の改質装置。 The control unit controls the supply amount of supercritical water so that the second residence time is 1 minute or more and 25 minutes or less in order to suppress excessive decomposition of the light oil component. Or the heavy oil reforming apparatus according to 7;
  9.  前記第2の滞留時間は、過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で当該重質油の熱分解を進行させる滞留時間であることをと特徴とする請求項6または7に記載の重質の改質装置。 The second residence time is a residence time during which thermal decomposition of the heavy oil proceeds in a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil. The heavy reforming apparatus according to claim 6 or 7, wherein:
  10.  前記第2の滞留時間は、10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間であることを特徴とする請求項6または7に記載の重質油の改質装置。 The second residence time is a residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C. is 5.0 × 10 −3 m 2 / s or less. The heavy oil reforming apparatus according to claim 6 or 7.
  11.  前記重質油は、オイルサンドビチュメン、オリノコタール、常圧蒸留残渣油、減圧蒸留残渣油からなる重質油群から選ばれることを特徴とする請求項1または2に記載の重質油の改質装置。 The heavy oil modification according to claim 1 or 2, wherein the heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil. Quality equipment.
  12.  反応器に重質油を供給する工程と、
     前記反応器に超臨界水を供給する工程と、
     前記反応器内を水の臨界点以上の温度、圧力に維持し、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離する工程と、
     前記第1の相から重質油分と超臨界水との混合流体を抜き出す工程と、
     前記第2の相から超臨界水と軽質油分との混合流体を抜き出す工程と、
     前記反応器における第1の相と第2の相との間の界面の高さ位置を検出する工程と、
     この工程で検出された界面の高さ位置に基づいて前記第1の相の体積を求め、この第1の相の体積に基づいて重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する工程と、を含むことを特徴とする重質油の改質方法。
    Supplying heavy oil to the reactor;
    Supplying supercritical water to the reactor;
    Maintaining the reactor at a temperature and pressure above the critical point of water, bringing the heavy oil into contact with the supercritical water and proceeding with the thermal decomposition of the heavy oil, A first phase comprising the heavy oil obtained in this manner and supercritical water dissolved in the heavy oil, a second phase comprising the supercritical water and the light oil extracted into the supercritical water. Separating into phases of
    Extracting a mixed fluid of heavy oil and supercritical water from the first phase;
    Extracting a fluid mixture of supercritical water and light oil from the second phase;
    Detecting the height position of the interface between the first phase and the second phase in the reactor;
    The volume of the first phase is obtained based on the height position of the interface detected in this step, and the heavy oil and supercritical water dissolved in the heavy oil are based on the volume of the first phase. A step of controlling the amount of extraction of the mixed fluid of the heavy oil and the supercritical water so that the residence time of the mixed fluid becomes a preset first residence time. Modification method.
  13.  反応器に重質油を供給する工程と、
     前記反応器に超臨界水を供給する工程と、
     前記反応器内を水の臨界点以上の温度、圧力に維持し、重質油と超臨界水とを接触させて、当該重質油の熱分解を進行させつつ、この重質油が熱分解して得られた重質油分とこの重質油分中に溶解した超臨界水とからなる第1の相と、前記超臨界水と、この超臨界水中に抽出された軽質油分とからなる第2の相とに分離する工程と、
     前記第1の相から重質油分と超臨界水との混合流体を抜き出す工程と、
     前記第2の相から超臨界水と軽質油分との混合流体を抜き出す工程と、
     前記重質油の供給量に基づいて、重質油分及び当該重質油分中に溶解した超臨界水の混合流体の滞留時間が予め設定した第1の滞留時間となるように前記重質油分と超臨界水との混合流体の抜き出し量を制御する工程と、を含むことを特徴とする重質油の改質方法。
    Supplying heavy oil to the reactor;
    Supplying supercritical water to the reactor;
    Maintaining the reactor at a temperature and pressure above the critical point of water, bringing the heavy oil into contact with the supercritical water and proceeding with the thermal decomposition of the heavy oil, A first phase comprising the heavy oil obtained in this manner and supercritical water dissolved in the heavy oil, a second phase comprising the supercritical water and the light oil extracted into the supercritical water. Separating into phases of
    Extracting a mixed fluid of heavy oil and supercritical water from the first phase;
    Extracting a fluid mixture of supercritical water and light oil from the second phase;
    Based on the supply amount of the heavy oil, the heavy oil component and the heavy oil component so that the residence time of the mixed fluid of supercritical water dissolved in the heavy oil component becomes a preset first residence time. And a step of controlling a drawing amount of the fluid mixture with supercritical water.
  14.  前記重質油分におけるコークの形成を抑えるため、前記第1の滞留時間を3分以上、95分以下の範囲内に調節することを特徴とする請求項12または13に記載の重質油の改質方法。 The heavy oil reforming according to claim 12 or 13, wherein the first residence time is adjusted within a range of 3 minutes to 95 minutes in order to suppress coke formation in the heavy oil component. Quality method.
  15.  前記第1の滞留時間は、コークスの生成量が前記重質油分の0重量%以上、20重量%以下となる範囲内で前記重質油の熱分解を進行させる滞留時間であることを特徴とする請求項12または13に記載の重質油の改質方法。 The first residence time is a residence time in which thermal decomposition of the heavy oil proceeds within a range where the amount of coke produced is 0 wt% or more and 20 wt% or less of the heavy oil. The heavy oil reforming method according to claim 12 or 13.
  16.  前記第1の滞留時間は、350℃における前記重質油分の動粘度が3.0×10-5/s以下となるまで前記重質油の熱分解を進行させる滞留時間であることを特徴とする請求項12または13に記載の重質油の改質方法。 The first residence time is a residence time during which thermal decomposition of the heavy oil proceeds until a kinematic viscosity at 350 ° C. of 3.0 × 10 −5 m 2 / s or less. The heavy oil reforming method according to claim 12 or 13, characterized in that:
  17.  前記第1の相と第2の相との間の界面の高さ位置を検出する工程にて検出された界面の高さ位置に基づいて前記第2の相の体積を求め、この第2の相における超臨界水及び超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御する工程を含むことを特徴とする請求項12に記載の重質油の改質方法。 The volume of the second phase is determined based on the height position of the interface detected in the step of detecting the height position of the interface between the first phase and the second phase. A step of controlling the supply amount of supercritical water so that the residence time of the supercritical water in the phase and the mixed fluid of the light oil extracted in the supercritical water becomes a second residence time set in advance. The heavy oil reforming method according to claim 12.
  18.  前記重質油の供給量に基づいて、超臨界水及びこの超臨界水中に抽出された軽質油分の混合流体の滞留時間が予め設定した第2の滞留時間となるように超臨界水の供給量を制御する工程を含むことを特徴とする請求項13に記載の重質油の改質方法。 Based on the supply amount of the heavy oil, the supply amount of the supercritical water so that the residence time of the mixed fluid of the supercritical water and the light oil extracted into the supercritical water becomes a preset second residence time. The heavy oil reforming method according to claim 13, comprising a step of controlling the oil.
  19.  前記軽質油分の過分解を抑えるため、前記第2の滞留時間を1分以上、25分以下の範囲内に調節することを特徴とする請求項17または18に記載の重質油の改質方法。 The heavy oil reforming method according to claim 17 or 18, wherein the second residence time is adjusted within a range of 1 minute to 25 minutes in order to suppress overdecomposition of the light oil. .
  20.  前記第2の滞留時間は、過分解によるガスの生成量が前記重質油の0重量%以上、5重量%以下となる範囲内で当該重質油の熱分解を進行させる滞留時間であることを特徴とする請求項17または18に記載の重質油の改質方法。 The second residence time is a residence time during which thermal decomposition of the heavy oil proceeds in a range where the amount of gas generated by overdecomposition is 0% by weight or more and 5% by weight or less of the heavy oil. The heavy oil reforming method according to claim 17 or 18, characterized in that:
  21.  前記第2の滞留時間は、10℃における前記軽質油分の動粘度が5.0×10-3/s以下となるまで前記重質油の熱分解を進行させる滞留時間であることを特徴とする請求項17または18に記載の重質油の改質方法。 The second residence time is a residence time during which thermal decomposition of the heavy oil proceeds until the kinematic viscosity of the light oil at 10 ° C. is 5.0 × 10 −3 m 2 / s or less. The heavy oil reforming method according to claim 17 or 18.
  22.  前記第1の相から抜き出した重質油分と超臨界水との混合流体を降温、降圧して、重質油分と水とに分離する工程を含むことを特徴とする請求項12または13に記載の重質油の改質方法。 14. The method according to claim 12, further comprising a step of lowering the temperature and reducing the pressure of the mixed fluid of the heavy oil extracted from the first phase and the supercritical water and separating the fluid into the heavy oil and water. Of reforming heavy oil.
  23.  前記第1の相から抜き出した重質油分と超臨界水との混合流体を降温して、重質油分中に水分を含んだ状態の燃料油を得る工程を含むことを特徴とする請求項12または13に記載の重質油の改質方法。 13. The method includes a step of lowering a temperature of a mixed fluid of heavy oil extracted from the first phase and supercritical water to obtain a fuel oil containing moisture in the heavy oil. Or the heavy oil reforming method according to 13;
  24.  前記第1の相から抜き出した重質油分と超臨界水との混合流体は、重質油分の3重量%以上、100重量%以下の範囲の水分を含んでいることを特徴とする請求項22に記載の重質油の改質方法。 23. The mixed fluid of heavy oil and supercritical water extracted from the first phase contains water in a range of 3 wt% to 100 wt% of the heavy oil. The heavy oil reforming method described in 1.
  25.  前記第1の相から抜き出した重質油分と超臨界水との混合流体は、重質油分の3重量%以上、100重量%以下の範囲の水分を含んでいることを特徴とする請求項23に記載の重質油の改質方法。 The mixed fluid of the heavy oil extracted from the first phase and the supercritical water contains moisture in the range of 3 wt% to 100 wt% of the heavy oil. The heavy oil reforming method described in 1.
  26.  前記第2の相から抜き出した超臨界水と軽質油分との混合流体を降温、降圧して、軽質油分と水とに分離する工程を含むことを特徴とする請求項12または13に記載の重質油の改質方法。 The heavy fluid according to claim 12 or 13, further comprising a step of lowering the temperature and reducing the pressure of the mixed fluid of the supercritical water extracted from the second phase and the light oil to separate the light oil and the water. Quality oil reforming method.
  27.  前記反応器に供給される超臨界水として再利用するために、前記重質油分または軽質油分から分離された水を回収する工程を含むことを特徴とする請求項22に記載の重質油の改質方法。 The heavy oil according to claim 22, further comprising a step of recovering water separated from the heavy oil or light oil to be reused as supercritical water supplied to the reactor. Modification method.
  28.  前記反応器に供給される超臨界水として再利用するために、前記重質油分または軽質油分から分離された水を回収する工程を含むことを特徴とする請求項26に記載の重質油の改質方法。 27. The heavy oil according to claim 26, further comprising a step of recovering water separated from the heavy oil or light oil for reuse as supercritical water supplied to the reactor. Modification method.
  29.  前記第1の相から抜き出した重質油分と超臨界水との混合流体を降温、降圧して、重質油分と水とに分離する工程と、
     前記第2の相から抜き出した超臨界水と軽質油分との混合流体を降温、降圧して、軽質油分と水とに分離する工程と、
     水と分離された後の重質油分と軽質油分とを混合する工程と、を含むことを特徴とする請求項12または13に記載の重質油の改質方法。
    Lowering the temperature of the mixed fluid of the heavy oil extracted from the first phase and the supercritical water, lowering the pressure, and separating the fluid into the heavy oil and water;
    Lowering the temperature of the mixed fluid of supercritical water and light oil extracted from the second phase and lowering the pressure to separate the oil into light oil and water;
    The method for reforming heavy oil according to claim 12 or 13, comprising a step of mixing the heavy oil and the light oil after being separated from water.
  30.  前記重質油は、オイルサンドビチュメン、オリノコタール、常圧蒸留残渣油、減圧蒸留残渣油からなる重質油群から選ばれることを特徴とする請求項12または13に記載の重質油の改質方法。
     
    The heavy oil modification according to claim 12 or 13, wherein the heavy oil is selected from the group of heavy oils consisting of oil sand bitumen, orinocotal, atmospheric distillation residue oil, and vacuum distillation residue oil. Quality method.
PCT/JP2009/006855 2009-10-20 2009-12-14 Device for reforming heavy oil and method of reforming heavy oil WO2011048642A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EA201270444A EA022662B1 (en) 2009-10-20 2009-12-14 Device for reforming heavy oil and method of reforming heavy oil
CA2774062A CA2774062C (en) 2009-10-20 2009-12-14 Heavy oil upgrading apparatus and heavy oil upgrading method
ECSP12011824 ECSP12011824A (en) 2009-10-20 2012-04-20 HEAVY OIL IMPROVEMENT EQUIPMENT AND HEAVY OIL IMPROVEMENT METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009241766A JP2011088964A (en) 2009-10-20 2009-10-20 Apparatus and method for modifying heavy oil
JP2009-241766 2009-10-20

Publications (1)

Publication Number Publication Date
WO2011048642A1 true WO2011048642A1 (en) 2011-04-28

Family

ID=43899896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006855 WO2011048642A1 (en) 2009-10-20 2009-12-14 Device for reforming heavy oil and method of reforming heavy oil

Country Status (6)

Country Link
JP (1) JP2011088964A (en)
CA (1) CA2774062C (en)
CO (1) CO6511243A2 (en)
EA (1) EA022662B1 (en)
EC (1) ECSP12011824A (en)
WO (1) WO2011048642A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894846B2 (en) 2010-12-23 2014-11-25 Stephen Lee Yarbro Using supercritical fluids to refine hydrocarbons
US9771527B2 (en) 2013-12-18 2017-09-26 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
CN111701276A (en) * 2020-08-19 2020-09-25 东营正大金属制品有限公司 Supercritical carbon dioxide extraction kettle
US10920158B2 (en) 2019-06-14 2021-02-16 Saudi Arabian Oil Company Supercritical water process to produce bottom free hydrocarbons

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2772095C (en) * 2011-04-19 2015-05-05 Jgc Corporation Method for producing upgraded oil, and apparatus for producing upgraded oil
US9783742B2 (en) 2013-02-28 2017-10-10 Aduro Energy, Inc. System and method for controlling and optimizing the hydrothermal upgrading of heavy crude oil and bitumen
US10900327B2 (en) 2013-02-28 2021-01-26 Aduro Energy, Inc. System and method for hydrothermal upgrading of fatty acid feedstock
US9644455B2 (en) 2013-02-28 2017-05-09 Aduro Energy Inc. System and method for controlling and optimizing the hydrothermal upgrading of heavy crude oil and bitumen
US10144874B2 (en) 2013-03-15 2018-12-04 Terrapower, Llc Method and system for performing thermochemical conversion of a carbonaceous feedstock to a reaction product
EP3119858B1 (en) * 2014-03-18 2021-04-21 Aduro Energy, Inc. Optimizing the hydrothermal upgrading of heavy crude
US11035839B2 (en) 2015-06-08 2021-06-15 Schlumberger Technology Corporation Automated method and apparatus for measuring saturate, aromatic, resin, and asphaltene fractions using microfluidics and spectroscopy
US10577546B2 (en) * 2017-01-04 2020-03-03 Saudi Arabian Oil Company Systems and processes for deasphalting oil
CA3056784A1 (en) 2017-03-24 2018-09-27 Terrapower, Llc Method and system for recycling pyrolysis tail gas through conversion into formic acid
US10787610B2 (en) 2017-04-11 2020-09-29 Terrapower, Llc Flexible pyrolysis system and method
US11414606B1 (en) 2018-11-08 2022-08-16 Aduro Energy, Inc. System and method for producing hydrothermal renewable diesel and saturated fatty acids
US11905470B1 (en) 2023-04-03 2024-02-20 Saudi Arabian Oil Company Methods for reducing coke formation in heavy oil upgrading using supercritical water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626909A (en) * 1992-07-10 1994-02-04 Japan Tobacco Inc Method and device for controlling contact interface position in pressure vessel
JPH10314765A (en) * 1997-05-21 1998-12-02 Japan Organo Co Ltd Supercritical water reaction apparatus
JP2003049180A (en) * 2001-08-07 2003-02-21 Hitachi Ltd Method for converting heavy oil to light oil
JP2007051224A (en) * 2005-08-18 2007-03-01 Chubu Electric Power Co Inc Method and apparatus for modifying heavy oil
JP2008163346A (en) * 2008-02-25 2008-07-17 Hitachi Ltd Method for treating heavy oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626909A (en) * 1992-07-10 1994-02-04 Japan Tobacco Inc Method and device for controlling contact interface position in pressure vessel
JPH10314765A (en) * 1997-05-21 1998-12-02 Japan Organo Co Ltd Supercritical water reaction apparatus
JP2003049180A (en) * 2001-08-07 2003-02-21 Hitachi Ltd Method for converting heavy oil to light oil
JP2007051224A (en) * 2005-08-18 2007-03-01 Chubu Electric Power Co Inc Method and apparatus for modifying heavy oil
JP2008163346A (en) * 2008-02-25 2008-07-17 Hitachi Ltd Method for treating heavy oil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN'ICHIRO KAWASAKI ET AL.: "Mizu o Tsukatta Jushitsuyu Shori Cho Rinkaisui no Seishitsu", J.JPN.INST.ENERGY, vol. 88, no. 3, 2009, pages 176 - 179 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8894846B2 (en) 2010-12-23 2014-11-25 Stephen Lee Yarbro Using supercritical fluids to refine hydrocarbons
US9771527B2 (en) 2013-12-18 2017-09-26 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
US10059891B2 (en) 2013-12-18 2018-08-28 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
US10472578B2 (en) 2013-12-18 2019-11-12 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
US10723962B2 (en) 2013-12-18 2020-07-28 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
US10927312B2 (en) 2013-12-18 2021-02-23 Saudi Arabian Oil Company Production of upgraded petroleum by supercritical water
US10920158B2 (en) 2019-06-14 2021-02-16 Saudi Arabian Oil Company Supercritical water process to produce bottom free hydrocarbons
US11149215B2 (en) 2019-06-14 2021-10-19 Saudi Arabian Oil Company Supercritical water process to produce bottom free hydrocarbons
CN114008178A (en) * 2019-06-14 2022-02-01 沙特阿拉伯石油公司 Supercritical water process for producing residue-free hydrocarbons
CN111701276A (en) * 2020-08-19 2020-09-25 东营正大金属制品有限公司 Supercritical carbon dioxide extraction kettle
CN111701276B (en) * 2020-08-19 2021-01-05 白婷婷 Supercritical carbon dioxide extraction kettle

Also Published As

Publication number Publication date
CA2774062C (en) 2014-06-17
ECSP12011824A (en) 2012-07-31
JP2011088964A (en) 2011-05-06
EA022662B1 (en) 2016-02-29
CA2774062A1 (en) 2011-04-28
EA201270444A1 (en) 2012-09-28
CO6511243A2 (en) 2012-08-31

Similar Documents

Publication Publication Date Title
WO2011048642A1 (en) Device for reforming heavy oil and method of reforming heavy oil
JP5514118B2 (en) Method to improve the quality of whole crude oil with hot pressurized water and recovered fluid
KR101818804B1 (en) Supercritical water process to upgrade petroleum
CN101203586B (en) Bitumen production-upgrade with same or different solvents
US20090166261A1 (en) Upgrading heavy hydrocarbon oils
EP3565871B1 (en) Processes for deasphalting oil
US20170166819A1 (en) Supercritical water upgrading process to produce high grade coke
KR20170089904A (en) Process for heavy oil upgrading in a double-wall reactor
US10907455B2 (en) System and process for recovering hydrocarbons using a supercritical fluid
WO2012143972A1 (en) Reformate production method and reformate production apparatus
JP2012532961A (en) Delayed coking method
JP2012532962A (en) Delayed coking method
US20220220396A1 (en) Systems and processes for hydrocarbon upgrading
US9988890B2 (en) System and a method of recovering and processing a hydrocarbon mixture from a subterranean formation
KR20110111588A (en) Method of upgrading extra-heavy crude oil
JP2008208170A (en) Reforming apparatus for hydrocarbon-based heavy raw material and method for reforming thereof
CA2878359C (en) A method and a system of recovering and processing a hydrocarbon mixture from a subterranean formation
JP2009073906A (en) Solvent deasphalting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2774062

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12044979

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 201270444

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 09850540

Country of ref document: EP

Kind code of ref document: A1