WO2011048230A1 - Dispositivo y método de multiplexación de flujos de datos - Google Patents
Dispositivo y método de multiplexación de flujos de datos Download PDFInfo
- Publication number
- WO2011048230A1 WO2011048230A1 PCT/ES2009/070445 ES2009070445W WO2011048230A1 WO 2011048230 A1 WO2011048230 A1 WO 2011048230A1 ES 2009070445 W ES2009070445 W ES 2009070445W WO 2011048230 A1 WO2011048230 A1 WO 2011048230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- data
- flows
- information
- signaling
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04H—BROADCAST COMMUNICATION
- H04H20/00—Arrangements for broadcast or for distribution combined with broadcast
- H04H20/10—Arrangements for replacing or switching information during the broadcast or the distribution
- H04H20/103—Transmitter-side switching
Definitions
- the present invention relates, in general, to an apparatus and method of multiplexing data streams, where part of the audiovisual and information contents associated with a data stream generated in a source of audiovisual content are replaced, for audiovisual and information content, of the same nature, generated by another source of audiovisual content, where the flow resulting from this substitution is identical and synchronized over time, regardless of where the substitution of part of the flow of data and the differences of the delays of the original signals, which constitutes a completely predictable multiplexing without uncertainties or deterministic.
- the audiovisual and information contents associated with them in the radio and television services are produced or collected centrally in a national source or center, also called header center, where they are also compressed, multiplexed and adapted to the network or transport networks used.
- the data flow thus formed reaches various second level centers or territorial centers, responsible for adapting the signal to the specific characteristics of its coverage area or territory, and where part of the contents of global interest are replaced by others of regional scope , which have been produced and compressed locally in these centers.
- This territorial signal reaches different third-level centers or sub-area issuers of coverage of the territory for adaptation to the final broadcast network to the user.
- the networks used for the diffusion of the signals may be of a diverse nature, the most common being terrestrial radio frequency networks and satellite networks. Cable networks with various protocols are also used for encapsulating data streams such as SDH, PDH, IP, etc.
- the distribution network to the end user is usually, although not exclusively, the terrestrial network.
- the first difficulty that a hierarchical organization of this type presents is the need to ensure that all the emitting centers of a territory, regardless of their location, disseminate to the end user exactly the same signal and, in addition, at the same time.
- the most widely used solution today to ensure the synchronization of the signals emitted by all the transmitting centers, especially in terrestrial networks, and that fully meets the needs presented, has been the adoption of equipment capable of supporting Single Frequency Network SFN protocols. , supported in turn in the performance of precision of Global Positioning System GPS receivers, for example.
- the second difficulty of the exposed architecture is, therefore, inherent in this mixed network organization, in which the sending centers can receive the signals to be broadcast from different subnets, and since the information contained must be the same, regardless of the sending center, inevitably implies that these signals are repeated at least as many times as different subnets are defined, with the consequent cost in the bandwidth used.
- the redundancy in equipment means over-dimensioning the number of these with other reserve ones, which come into operation replacing those elements with deficiencies in operation.
- For the redundancy of the network its hybrid architecture is used, composed of different subnets that can be of different characteristics, to transmit the same signal by at least two different subnets.
- all Solutions currently adopted are based on the inclusion of switching matrices that allow automatic switching between the equipment or subnets damaged by the backup ones, and on signal quality detectors to determine when such switching is necessary.
- a disadvantage of the foregoing is that the transmission of the same signals repeatedly by different subnets implies an extra demand for the necessary bandwidth, which means, being the scarce resource, a fairly high cost. This is especially dramatic in satellite broadcast networks.
- the present invention seeks to solve or reduce one or more of the drawbacks set forth above, by means of a device and a multiplexing method as defined in the claims. Embodiments of the invention are set forth in the dependent claims. [0019] Therefore, there is an improvement in the use of bandwidth in the broadcasting networks of audiovisual content services and information associated therewith, when part of the global contents are particularized according to territorial coverage areas.
- An object of the invention is to provide a method and an apparatus for replacing part of the content of a digital data flow, by the content of another flow of identical characteristics in a deterministic manner, where the flow resulting from the substitution always has exactly the same data composition and in the same order, regardless of the relative delays of the original flows, the time at which the substitution occurs and the place where it is made.
- Another object of the invention is to provide a method and apparatus that allows synchronizing and aligning in a deterministic or completely predictable manner, the flow with the data to be replaced with the flow carrying the replacement data, from the timestamps inserted into the flows or from an external timing.
- Still another object of the invention is to provide a method and an apparatus that determines in a completely predictable manner the moments from which the data of a flow will begin to be replaced by the data of the flow carrying the replacement data, using for this the available timestamps or an external time reference.
- Another object of the invention is to provide a method for classifying flow data into three groups: group with data that can be replaced, group of data that can potentially replace the previous group, and group with data that will not be seen altered
- Still another object of the invention is a method and apparatus that allows modifying or adapting the signaling, both particular and common, of the previous data groups in a unique and absolutely predictable manner, and make it effective in exactly the same instants of time, whatever the place where the device is located or the method is executed.
- another object of the invention is a method and apparatus for modifying the marks with temporary references of the flows to compensate for the distortions introduced therein by the replacement process, regardless of the relative accuracies of the clocks used in the process and that are specific to each specific location.
- An advantage of the embodiment is that it is not necessary to modify or replace the existing devices in the current broadcasting networks of audiovisual signals, and without altering the procedures currently used in the replacement of the global contents by those adapted to the various territorial coverage areas.
- the embodiment comprises a method and an apparatus adapted to generate a particularized data flow for a given territorial coverage area, from a global data flow and another data flow proper to said territorial coverage area, locally and deterministically, that is, in an absolutely predictable way in content and timing, simultaneously in various locations.
- Figure 1 shows a general block diagram describing the current state of the art
- Figure 2 shows a functional block diagram that, according to the invention, incorporates the necessary modifications to the current architecture for achieving bandwidth savings
- Figure 3 shows a functional block diagram describing the procedures and equipment objects of the present invention.
- Figure 1 schematically illustrates a telecommunications system for the dissemination of audiovisual and data services over a digital terrestrial television network, DTT, where three types of centers can be distinguished: national centers 1, territorial centers 2 and broadcasting centers 3.
- the video, audio and data productions that can be disseminated by all the coverage areas dependent on said national center or territories are collected.
- Some of these contents 12 will be disseminated without any alteration throughout the territories and will constitute a first group of contents called Gl, while a second group of contents 13, which from now on will be called G2, may or may not be replaced by a third group of territorial content 23, whose designation will be G2x, where the x represents the coverage area or selectable territory x.
- the multiplexed signal G1 + G2 after being adapted to the transmission medium, is distributed redundantly to the different destinations by two types of networks, terrestrial network 5 and satellite network 4, to reach territorial centers 2 and issuing centers 3.
- this signal When this signal reaches any territorial center, let's call it territorial center x, it enters a selection unit 21 that selects from which network this signal is to be received.
- the territorial centers produce or collect content adapted or particularized to the territory, forming the third group of signals 23 called G2x.
- the selected signal G1 + G2 and the territorial signal G2x are delivered to a multiplexing unit 22 to form the signal Gl + G2x, called territorial multiplex, and in which some global contents, G2, have been replaced by the contents desired territorial, G2x, while the rest of national content, Gl, remain unchanged.
- the Gl + G2x signal is formed by statistical multiplexing in a single group. This process of content regionalization is designated by the name generic "disconnections", and can occur permanently or only temporarily.
- the territorial multiplex x is sent by the terrestrial network 5 to all the emitting centers within its area of territorial coverage that have access to said network 5. Likewise, it is sent by terrestrial route 5 to a satellite upload center so that it can be disseminated to all the transmitting centers via satellite network 4 and reach 100% coverage.
- the emitting centers are responsible for broadcasting the Gl + G2x signal by radio frequency, with the territorial multiplex, to the end users. It is an important requirement that two transmitting centers in the same area of territorial coverage turn over the signal to the final broadcast network with very high synchronization requirements, that is, exactly at the same times. It is for this reason that national multiplexes, G1 + G2, and territorial multiplexes, Gl + G2x, are formatted according to SFN standards.
- the transmitting centers receive the Gl + G2x signal by satellite via an I D 31 receiver and by land.
- a selection unit 21 is adapted to select from which network the signal will be received for broadcast. This double track provides redundancy benefits to the broadcast system.
- This architecture although it adequately satisfies the dissemination needs of national G1 + G2 and territorial Gl + G2x signals, and gives a satisfactory answer to the problem of redundancy, has the disadvantage of high bandwidth use in networks terrestrial 5 and above all satellite 4. This is easily checked if we observe that all territorial multiplexes are partly made up of the Gl group of regionally unaltered national signals and, therefore, said set of signals will be repeated in satellite networks and terrestrial as many times as territories are defined, with their consequent bandwidth consumption. [0044] The embodiment described below solves this problem by proposing some modifications in the architecture, and a method and an apparatus that, introduced in the proposed new architecture, avoids the need to repeat in the networks the common signals Gl as many times as Different territorial areas are defined.
- Figure 2 schematically shows the new suggested architecture. It should be noted that a deterministic multiplexing unit 24 is included both in the territorial centers and in the emitting centers and, in addition, the deterministic multiplexer 24 is exactly the same in both cases. The other elements or modules of the exposed alternative architecture are exactly the same as those described in the original architecture. In this way it is confirmed that it is not necessary to replace any of the equipment already deployed.
- the headland or national center 1 does not undergo any modification in equipment. All elements remain unchanged with respect to the original architecture. It is only necessary to introduce a modification in the configuration of the statistical multiplexer 1 1, which will consist of performing a statistical multiplexing in two groups, that is, the national signals that will not be altered, 12 on the one hand, and the national signals susceptible to be altered, 13 by another. Its output will also be, as in the previous case, the national multiplex G1 + G2, only now that the bandwidth occupied by the signals of the Gl group is precisely limited at every moment of time.
- the signal G1 + G2 is received by land 5 and satellite 4 and its selector block 21, as in the previous case, is responsible for selecting where the signal will be taken from G1 + G2.
- This recovered signal will be delivered to multiplexer 22 and the new deterministic multiplexing module 24.
- the statistical multiplexer 22 in the same way as in the case above, it will have as inputs the G1 + G2 signals of the national multiplex and local production 23, only now it will no longer form the complete territorial multiplex. Instead, it will create a multiplex, which we will call G2x, composed of territorial production 23 at the time of disconnections or national production G2 the rest of the time.
- G2x composed of territorial production 23 at the time of disconnections or national production G2 the rest of the time.
- the only additional requirement that is required from the territorial center is that territorial production 23 can be coded with an occupation of bandwidth equal to or less than that used to compress national production that can be substituted 13.
- the new output signal of multiplexer 22 will be delivered to the new deterministic multiplexer 24 and to the land transport network 5 for upload to the satellite network 4.
- the deterministic multiplexer 24 will be responsible for forming the complete territorial multiplex Gl + G2x from the national multiplex G1 + G2 and the territorial production G2x, and will transmit it through the terrestrial network 5 to all the emitting centers of the territory that have access to said network.
- the formation of Gl + G2x will be carried out in a deterministic way, that is, with a predictable criterion without any type of indeterminacy, and consisting of replacing elementary unit of information to elementary unit of information, the signals of group G2 within the multiplex G1 + G2 , by the G2x group signals, regardless of whether it is in the process of territorial disconnection or not. In this way it is facilitated that it is not necessary to change any of the procedures or actions currently used in the disconnection processes.
- the signal received by the satellite network presents some peculiarities with respect to the previous case.
- Yes in the Current architecture received the complete territorial multiplex, Gl + G2x, now the national multiplex G1 + G2 is received on the one hand and, on the other, the G2x territorial group.
- the reception of these signals will be carried out by means of an ID module 31, and the recovered signals will be delivered to the deterministic multiplexer 24.
- Said deterministic multiplexer 24 is exactly the same as that introduced in the territorial centers, and also has the same inputs, that is, G1 + G2 and G2x. Therefore, it is capable of generating the full Gl + G2x territorial multiplex in the same way as it had been done in the territorial headers.
- the selector 21 is responsible for deciding whether the signal delivered to the final broadcast network comes from the terrestrial network 5 or comes from the deterministic multiplexer 24, which in turn has as its origin signal received by the satellite network 4.
- This new architecture already entails saving the bandwidth occupied in the different networks by the repeated transmission of the Gl group signals.
- the deterministic multiplexing multiplexer 24 meet strict functionality requirements and high performance benefits, which are the object of this invention.
- FIG. 3 shows an explanatory block diagram of the deterministic multiplexing module 24.
- the functionality to be fulfilled by this new module is, in general, the creation of the territorial multiplex Gl + G2x from its inputs, which are, on the one hand, the national multiplex G1 + G2 and, on the other, the incomplete territorial multiplex G2x
- the two inputs to the deterministic multiplexer 24 will be received by an adaptation and storage block 61 to avoid data loss in the necessary process of alignment and synchronization of the data.
- the data streams will be analyzed by the synchronization block 65 to extract from them the temporary information carried by the timestamps. In this exposed example of the DTT network, the timestamps will go on the MIB packets of the SFN structure.
- MIB packages carry information on the exact moment at which the information packets that follow must be issued, with a clock accuracy of 100 nsec provided by a GPS module. Any other temporary reference included in the transport structure of the flows could have been taken, for example from the DVB, ATSC or ISDB structure, or even external.
- This synchronization block 65 will also proceed to order the information packets of both flows, using any criteria. For example, you can consider the first package in the first flow as the first package in the G2 group that follows your MIB. As a first package of the second flow, for example, you could consider the separate package as an N number of basic information cells of its corresponding MIB. The number N could be any, as long as it allowed to compensate for the maximum lag allowed between both flows. In the first flow, only the G2 group packages will be sorted. In the second flow, only the G2x group packages will be sorted. After choosing the first package of each flow, the rest of the packages will increase their numbering in order of arrival.
- the two flows will leave storage and alignment units 61 in the order established by the synchronization module 65 and will enter a deterministic mixing unit 62.
- This mixer module 62 will be it will replace cell 1 of flow G1 + G2 with cell 1 of flow G2x, cell 2 with 2, and so on.
- G1 + G2 flow signals that are not ordered will pass unchanged.
- a signaling generation module 66 also analyzes the flows and extracts the signaling information from them. This signaling is analyzed and recomposed to collect the needs of the resulting flow according to the standard used for the final diffusion of the signal. As the new signaling has to be within mandatory standards, its result must be exactly identical regardless of the module location.
- a signaling insert block 63 will collect the output signal from the mixing module 62, in which the data of the G1 + G2 flow has already been replaced by the data of the G2x flow, but which still contains the signaling information of the flow G1 + G2 unmodified, and proceeds to replace all cells containing the original signaling, with the new signaling created in generator 66.
- the new signaling must be inserted in the final flow Gl + G2x at exactly the same times, regardless of the deterministic multiplexer chosen.
- the synchronization information provided by the synchronization module 65 is used. Any criterion can be adopted, such as making it effective after an M number of cells has passed since the last MIB of the first flow.
- a final adaptation block and storage memory 64 will be necessary to adapt the resulting signal, Gl + G2x, before exiting the final broadcast network.
- This set of modules or blocks that constitute the deterministic multiplexer 24 allows the creation of an identical territorial multiplex, whatever the location of said multiplexer 24, since it ensures a substitution of identical bit-to-bit flows with the mixer block 62 , perfectly synchronized by the synchronization block 65, and with a reconstructed signaling in the generator 66 and perfectly inserted and timed by means of the insert block 63.
- the deterministic multiplexing procedure of encrypted data streams can be performed by a computer, loadable within an internal memory of a computer with input and output units and, also, with processor units.
- the computer program comprises for this purpose codes configured to execute the steps of the above process when executed by the computer.
- executable codes can be recorded on a carrier medium readable within a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Método y dispositivo de multiplexación (24) de flujos de datos basada en grupos y con sincronización por marcas temporales, que permiten reemplazar parte de las señales digitales que componen un flujo de datos general (G1+G2), dotado con marcas de tiempo para su sincronización, por parte de las señales que componen otro flujo de datos particular (G2x), también sincronizado con marcas de tiempo, de forma determinística, entendiéndose por este término que el flujo de datos resultante (G1+G2x) es siempre el mismo en composición y en sincronización, independientemente del lugar donde se ejecute el método o donde se ubique el aparato, y de los retardos relativos de los flujos originales. La multiplexación determinística se aplica sobre flujos de datos que portan contenidos de naturaleza audiovisual y de información, y permite una reducción efectiva del ancho de banda necesario en la adaptación territorial de dichos flujos.
Description
DISPOSITIVO Y MÉTODO DE MULTIPLEXACIÓN DE FLUJOS DE DATOS
CAMPO DE LA INVENCIÓN
[0001] La presente invención se refiere, en general, a un aparato y un método de multiplexación de flujos de datos, donde son reemplazados parte de los contenidos audiovisuales y de información asociados a un flujo de datos generado en una fuente de contenidos audiovisuales, por contenidos audiovisuales y de información, de la misma naturaleza, generados por otra fuente de contenidos audiovisuales, donde el flujo resultante de esta sustitución sea idéntico y sincronizado en el tiempo, independientemente del lugar en el que se produzca la sustitución de parte del flujo de datos y de las diferencias de los retardos de las señales originales, lo que constituye una multiplexación completamente predecible sin incertidumbres o determinística.
ESTADO DE LA TÉCNICA
[0002] En las sociedades actuales se considera un derecho básico de los ciudadanos su libre acceso a los servicios digitales de información, y es una obligación de los estados, ya sea a través de entidades públicas o privadas, el asegurarlo con unos parámetros de calidad y disponibilidad muy exigentes. Esta vocación de acceso universal implica, a su vez, dotar a las redes y aparatos empleados en la difusión de estos servicios, de los medios suficientes para que se ejerza de forma efectiva ese derecho. En líneas generales, el esfuerzo necesario crece, en coste económico y recursos técnicos, de forma exponencial a medida que se pretende llegar a un porcentaje más amplio de la población. En esta situación se encuentran, por excelencia y entre otros, todos los servicios asociados a la difusión de las señales de radio y televisión.
[0003] De forma muy general, los contenidos audiovisuales y de información asociada a los mismos en los servicios de radio y televisión, son producidos o recolectados de forma centralizada en una fuente o centro nacional, también
llamado centro de cabeceras, donde también son comprimidos, multiplexados y adaptados a la red o redes de transporte empleadas. El flujo de datos así formado llega a diversos centros de segundo nivel o centros territoriales, encargados de adaptar la señal a las características especificas de su área de cobertura o territorio, y donde parte de los contenidos de interés global son sustituidos por otros de ámbito regional, que han sido producidos y comprimidos localmente en estos centros. Esta señal territorial llega a diferentes centros de tercer nivel o centros emisores de subáreas de cobertura del territorio para su adaptación a la red de difusión final al usuario.
[0004] En este entorno, las redes empleadas para la difusión de las señales pueden ser de diversa naturaleza, siendo las más comunes las redes terrestres por radiofrecuencia y las redes de satélite. También se utilizan redes de cable con diversos protocolos para el encapsulado de los flujos de datos como SDH, PDH, IP, etc. En el entorno de la radio y televisión la red de distribución al usuario final suele ser, aunque no de forma exclusiva, la red terrestre.
[0005] La primera dificultad que presenta una organización jerárquica de este tipo, es la necesidad de asegurar que todos los centros emisores de un territorio, independientemente de su ubicación, difundan al usuario final exactamente la misma señal y, además, al mismo tiempo. La solución mas ampliamente extendida en la actualidad para asegurar la sincronización de las señales emitidas por todos los centros emisores, sobretodo en las redes terrestres, y que satisface completamente las necesidades presentadas, ha sido la adopción de equipos capaces de soportar protocolos Single Frequency Network SFN, apoyados a su vez en las prestaciones de precisión de tiempos de receptores Global Positioning System GPS, por ejemplo.
[0006] Por otra parte, puede ocurrir que no todos los centros emisores o territoriales sean accesibles utilizando el mismo tipo de redes. Si bien a algunos lugares se puede llegar a través de redes de cable o por medio de redes terrestres, muchos otros puntos solo pueden ser alcanzados desde una difusión
por satélite. Esto implica la aparición de complejas redes híbridas de transporte y difusión, compuestas por diferentes subredes que pueden ser, a su vez, de diferente tipo, con los consiguientes problemas, y también ventajas, asociados a este tipo de organización.
[0007] La segunda dificultad de la arquitectura expuesta es, por lo tanto, inherente a esta organización mixta de la red, en la cual los centros emisores pueden recibir las señales a difundir desde subredes diferentes, y dado que la información contenida debe ser la misma, independientemente del centro emisor, implica inevitablemente, que esas señales se repitan al menos tantas veces como subredes diferentes se definan, con el consiguiente coste en el ancho de banda utilizado.
[0008] Además, como las características físicas de estas subredes, en especial las características de retardo de las mismas, no tienen por que ser iguales entre si, es necesario asegurar la correcta sincronización de las señales a difundir, aun cuando estas contengan la misma información o incluso sean iguales. Este aspecto se solventa, como en el punto anterior, con la utilización de equipos que soportan los protocolos SFN y GPS.
[0009] Por otra parte, las exigencias de calidad y disponibilidad de los servicios obligan a dotar a toda la arquitectura de unas características de robustez tales que aseguren la transmisión de la señal, desde el punto de origen hasta el receptor final, incluso aunque algunos de los elementos intermedios de la red, o parte de la misma, dejen de funcionar correctamente. Esta problemática es conocida, genéricamente, con el término de "redundancia".
[0010] La redundancia en equipos significa sobredimensionar el número de éstos con otros de reserva, que entren en funcionamiento reemplazando aquellos elementos con deficiencias en el funcionamiento. Para la redundancia de la red se aprovecha su arquitectura híbrida, compuesta por diferentes subredes que pueden ser de características diferentes, para transmitir la misma señal por, al menos, dos subredes diferentes. En cualquier caso, todas las
soluciones actualmente adoptadas se basan en la inclusión de matrices de conmutación que permitan el cambio automático entre los equipos o subredes averiados por los de reserva, y en detectores de calidad de las señales para determinar cuando es necesaria dicha conmutación.
[0011] No obstante, si bien la redundancia aporta una mayor robustez y fiabilidad a la arquitectura, incide de nuevo en las dificultades anteriormente expuestas y que son inherentes a la utilización de diversas subredes para alcanzar los diferentes elementos, es decir, el sobrecoste en ancho de banda y la necesidad de sincronización de los flujos de datos antes de proceder a una conmutación de los mismos. Las soluciones adoptadas también son las mismas que en los casos anteriores.
[0012] Una desventaja de lo antedicho es que la transmisión de las mismas señales de forma repetida por diferentes subredes, implica una demanda extra del ancho de banda necesario, lo que supone, al ser el recurso más escaso, un coste bastante elevado. Esto es especialmente dramático en las redes de difusión por satélite.
[0013] Un esfuerzo importante a la hora de reducir ancho de banda demandado, ha sido incluir multiplexores estadísticos, es decir, elementos capaces de reducir el ancho de banda de la señal global, manteniendo unas prestaciones de calidad de la misma, mediante el aprovechamiento de la circunstancia de que las necesidades de ancho de banda de sus señales componentes no son las mismas en el tiempo. Esto conlleva a su vez, que dos multiplexores estadísticos, alimentados por las mismas señales, generen salidas diferentes según los retardos relativos entre dichas señales de entrada.
[0014] Una característica importante que se exige a la difusión de este tipo de servicios digitales, es la posibilidad de diferenciar parte de la información que se hace llegar al usuario final según el territorio, en al menos determinados momentos llamados "desconexiones". En estas situaciones suele haber unos elementos comunes de información para todos los usuarios, y una
componente específica para algunos de ellos, asociada generalmente a la organización territorial.
[0015] Otra desventaja de la arquitectura de red descrita se deriva de que, aunque las desconexiones territoriales constituyen una mejora en la utilidad de la información difundida, refuerzan los problemas expuestos anteriormente, y contribuyen de forma decisiva a incrementar la complejidad de la red y a dificultar notablemente los problemas asociados a la redundancia. En cualquier caso, obligan a incrementar el número de las señales que tienen que ser difundidas por diferentes caminos.
[0016] Actualmente, las soluciones adoptadas afrontan el problema de acuerdo a los mismos criterios que en el caso de que no haya posibilidad de desconexiones regionales, es decir, tal y como se ha comentado con anterioridad, se transmiten por diferentes vías tanto la señal general para todos los usuarios, como todas las señales territoriales particularizadas para cada zona territorial.
[0017] Si bien estas soluciones permiten resolver el problema, no lo hacen de una forma óptima, ya que como todas las zonas territoriales presentan una componte común de señales entre ellas y la señal global, las señales comunes se estarán transmitiendo repetidas, al menos tantas veces como zonas territoriales existan. Y aunque este hecho supone un importante desaprovechamiento del ancho de banda, la incertidumbre en la composición de las señales introducida por la existencia de los multiplexores estadísticos, dificulta notablemente alcanzar otras soluciones más satisfactorias.
DESCRIPCIÓN DE LA INVENCIÓN
[0018] La presente invención busca resolver o reducir uno o más de los inconvenientes expuestos anteriormente, mediante un dispositivo y un método de multiplexación como es definido en las reivindicaciones. Realizaciones de la invención son establecidas en las reivindicaciones dependientes.
[0019] Por tanto, se suministra una mejora en la utilización del ancho de banda en las redes de difusión de servicios de contenidos audiovisuales y de información asociada a los mismos, cuando parte de los contenidos globales son particularizados según áreas territoriales de cobertura.
[0020] Un objeto de la invención es proporcionar un método y un aparato para sustituir parte del contenido de un flujo de datos digital, por parte del contenido de otro flujo de iguales característica de forma determinística, donde el flujo resultante de la sustitución tenga siempre exactamente la misma composición de datos y con el mismo orden, independientemente de los retardos relativos de los flujos originales, del momento en el que se produzca la sustitución y del lugar en que se realice.
[0021] Otro objeto de la invención es proporcionar un procedimiento y un aparato que permita sincronizar y alinear de manera determinística o completamente predecible, el flujo con los datos a sustituir con el flujo que porta los datos reemplazantes, a partir de las marcas de tiempo insertadas en los flujos o desde una temporización externa.
[0022] Aun otro objeto de la invención es proporcionar un método y un aparato que determine de forma completamente predecible los momentos a partir de los cuales los datos de un flujo empezarán a ser sustituidos por los datos del flujo que porta los datos reemplazantes, utilizando para ello las marcas de tiempo disponibles o una referencia temporal externa.
[0023] Otro objeto de la invención es proporcionar un método para clasificar los datos de los flujos en tres grupos: grupo con datos susceptibles de ser reemplazados, grupo de datos que potencialmente puede reemplazar al grupo anterior, y grupo con datos que no se verán alterados.
[0024] Todavía otro objeto de la invención es un método y aparato que permita modificar o adaptar la señalización, tanto particular como común, de los grupos de datos anteriores de forma única y absolutamente predecible, y
hacerla efectiva exactamente en los mismos instantes de tiempo, cualquiera que sea el lugar donde se ubique el aparato o se ejecute el método.
[0025] Adicionalmente, otro objeto de la invención es un método y aparato para modificar las marcas con referencias temporales de los flujos para compensar las distorsiones introducidas en las mismas por el proceso de sustitución, independientemente de las precisiones relativas de los relojes empleados en el proceso y que son específicas de cada localización concreta.
[0026] Una ventaja del modo de realización es que no es necesario modificar o sustituir los aparatos existentes en las actuales redes de difusión de señales audiovisuales, y sin alterar los procedimientos actualmente utilizados en la sustitución de los contenidos globales por los adaptados a las diversas zonas de cobertura territorial.
[0027] Por lo tanto, el modo de realización comprende un método y un aparato adaptado para generar un flujo de datos particularizado para una zona de cobertura territorial determinada, a partir de un flujo de datos global y de otro flujo de datos propio de dicha zona de cobertura territorial, de forma local y determinística, es decir, de manera absolutamente predecible en contenido y temporización, simultáneamente en diversas ubicaciones.
[0028] Consecuentemente, si es posible generar el flujo asociado a un área de cobertura territorial determinísticamente en cualquier ubicación, a partir del flujo general y los contendidos propios de la misma área de cobertura territorial, no es necesario transmitir por todas las subredes de la arquitectura de difusión, el flujo del área de cobertura territorial íntegro, si no solo las diferencias de éste con el flujo global, es decir, solo los contenidos particulares de dicha área territorial, y ahorrándose, por lo tanto, el ancho de banda consumido por los contenidos no susceptibles de ser modificados en la referida área de cobertura territorial.
[0029] Resumiendo, sin reemplazar ningún equipo y sin modificar ninguno
de los procedimientos establecidos, con un simple cambio en la organización de los contenidos audiovisuales por medio de grupos, y con la inclusión de un nuevo elemento en la cadena capaz de realizar los procedimientos descritos, se consigue un efectivo y permanente ahorro del ancho de banda en las redes de difusión de contenidos audiovisuales en los procesos de distribución a áreas de cobertura territorial de contenidos adaptados a dichas áreas, con la consiguiente disminución de los costes sin pérdida ninguna de prestaciones.
BREVE DESCRIPCIÓN DE LAS FIGURAS
[0030] Una explicación más detallada de la invención se da en la siguiente descripción basada en las figuras adjuntas, en las que:
[0031] la figura 1 muestra un diagrama de bloques general descriptivo del estado actual de la técnica,
[0032] la figura 2 muestra un diagrama de bloques funcionales que, de acuerdo a la invención, incorpora las modificaciones necesarias a la arquitectura actual para la consecución del ahorro del ancho de banda , y
[0033] la figura 3 muestra un diagrama de bloques funcionales que describe los procedimientos y el equipo objetos de la presente invención.
MODO DE REALIZACIÓN DE LA INVENCIÓN
[0034] La figura 1 ilustra esquemáticamente un sistema de telecomunicaciones para la difusión de servicios audiovisuales y de datos sobre una red de televisión digital terrestre, TDT, dónde se pueden diferenciar tres tipos de centros: centros nacionales 1, centros territoriales 2 y centros emisores 3.
[0035] En los centros nacionales, también llamados centro de cabeceras, se recogen las producciones de video, audio y datos que pueden ser difundidos por todas las áreas de cobertura dependientes de dicho centro nacional o territorios. Algunos de estos contenidos 12 se difundirán sin ninguna alteración por todos los territorios y constituirán un primer grupo de
contenidos llamado Gl, mientras que un segundo grupo de contenidos 13, que a partir de ahora se denominará G2, pueden ser o no sustituidos por un tercer grupo de contenidos de ámbito territorial 23, cuya designación a partir de ahora será G2x, donde la x representa el área de cobertura o territorio seleccionable x.
[0036] Estos centros nacionales son los encargados de realizar la codificación y multiplexación de las diferentes señales, así como su adaptación según el protocolo SFN y de red. Hay que destacar también que la multiplexación de todos los servicios es estadística en un solo grupo, del que forman parte tanto las señales nacionales Gl como las señales susceptibles de ser sustituidas por contenidos regionales G2. Por lo tanto, la salida de la unidad de multiplexación estadística 1 1 será un múltiplex nacional, que a partir de ahora se denominará G1+G2.
[0037] La señal multiplexada G1+G2, después de ser adaptada al medio de transmisión, se distribuye a los diferentes destinos de forma redundante por dos tipos de redes, red terrestre 5 y red de satélite 4, para llegar a los centros territoriales 2 y centros emisores 3.
[0038] Cuando esta señal llega a un centro territorial cualquiera, llamémoslo centro territorial x, entra en una unidad de selección 21 que selecciona desde que red se va a recibir dicha señal. Los centros territoriales producen o recogen contenidos adaptados o particularizados al territorio, formando el tercer grupo de señales 23 denominado G2x.
[0039] La señal seleccionada G1+G2 y la señal territorial G2x son entregadas a una unidad de multiplexación 22 para formar la señal Gl+G2x, llamada múltiplex territorial, y en la que algunos contenidos globales, G2, han sido sustituidos por los contenidos territoriales deseados, G2x, mientras que el resto de contenidos nacionales, Gl, permanecen sin alteración. La señal Gl+G2x se forma mediante una multiplexación estadística en un solo grupo. Este proceso de regionalización de contenidos se designa con el nombre
genérico de "desconexiones", y se pueden producir de forma permanente o solo temporal.
[0040] El múltiplex territorial x se envía por la red terrestre 5 a todos los centros emisores dentro de su área de cobertura territorial que tengan acceso a dicha red 5. Así mismo, se envía por vía terrestre 5 a un centro de subida a satélite para que lo difunda a todos los centros emisores por la red de satélite 4 y alcanzar un 100% de cobertura.
[0041] Los centros emisores son los encargados de difundir por radiofrecuencia la señal Gl+G2x, con el múltiplex territorial, a los usuarios finales. Es un requisito importante que dos centros emisores de una misma área de cobertura territorial vuelquen la señal a la red de difusión final con unos requisitos de sincronización muy elevados, es decir, exactamente en los mismos momentos. Es por esta razón por la que los múltiplex nacionales, G1+G2, y los territoriales, Gl+G2x, vienen formateados de acuerdo a los estándares SFN.
[0042] Los centros emisores reciben la señal Gl+G2x por vía satélite por medio de un receptor I D 31 y por vía terrestre. Una unidad de selección 21 está adaptada para seleccionar a partir de que red se recibirá la señal para su difusión. Esta doble vía proporciona prestaciones de redundancia al sistema de difusión.
[0043] Esta arquitectura, aunque satisface adecuadamente las necesidades de difusión de las señales nacionales G1+G2 y territoriales Gl+G2x, y da respuesta satisfactoria al problema de la redundancia, presenta el inconveniente de un uso elevado de ancho de banda en las redes terrestres 5 y sobretodo de satélite 4. Esto se comprueba fácilmente si observamos que todos los múltiplex territoriales están compuestos en parte por el grupo Gl de señales nacionales inalteradas regionalmente y, por lo tanto, dicho conjunto de señales estará repetido en las redes de satélite y terrestre tantas veces como territorios se definan, con su consiguiente consumo de ancho de banda.
[0044] El modo de realización descrito a continuación solventa este problema proponiendo unas modificaciones en la arquitectura, y un método y un aparato que, introducido en la nueva arquitectura propuesta, evite la necesidad de repetir en las redes las señales comunes Gl tantas veces como diferentes áreas territoriales se definan.
[0045] La figura 2 muestra esquemática la nueva arquitectura sugerida. Se ha de observar que una unidad de multiplexación determinística 24 es incluida tanto en los centros territoriales como en los centros emisores y, además, el multiplexor determinístico 24 es exactamente el mismo en ambos casos. Los demás elementos o módulos de la arquitectura alternativa expuesta son exactamente los mismos que los descritos en la arquitectura original. De esta manera se constata que no es necesario reemplazar ninguno de los equipos ya desplegados.
[0046] El centro de cabeceras o nacional 1 no sufre ninguna modificación en equipamiento. Todos los elementos permanecen inalterados con respecto a la arquitectura original. Solo es preciso introducir una modificación en la configuración del multiplexor estadístico 1 1, que consistirá en realizar una multiplexación estadística en dos grupos, es decir, las señales nacionales que no se van a alterar, 12 por una parte, y las señales nacionales susceptibles de ser alteradas, 13 por otra. Su salida también será, como en el caso anterior, el múltiplex nacional G1+G2, solo que ahora el ancho de banda ocupado por las señales del grupo Gl está limitado de forma precisa en cada instante de tiempo.
[0047] En el centro territorial x, 2 se recibe la señal G1+G2 por vía terrestre 5 y por vía satélite 4 y su bloque selector 21, al igual que en el caso anterior, se encarga de seleccionar de donde se tomará la señal G1+G2. Esta señal recuperada se entregará al multiplexor 22 y al nuevo módulo de multiplexación determinística 24.
[0048] El multiplexor estadístico 22, de la misma manera que en el caso
anterior, tendrá como entradas las señales G1+G2 del múltiplex nacional y la producción local 23, solo que ahora ya no formará el múltiplex territorial completo. En su lugar creará un múltiplex, que llamaremos G2x, compuesto por la producción territorial 23 en los momentos de las desconexiones o por la producción nacional G2 el resto del tiempo. La única exigencia adicional que se requiere al centro territorial es que la producción territorial 23 se pueda codificar con una ocupación de ancho de banda igual o inferior al utilizado para comprimir la producción nacional susceptible de ser sustituida 13.
[0049] La nueva señal de salida del multiplexor 22 será entregada al nuevo multiplexor determinístico 24 y a la red de transporte terrestre 5 para su subida a la red de satélite 4.
[0050] Como se puede observar, ahora las redes terrestre 5 y de satélite 4 solo transportarán las señales G2x, en vez de las señales Gl+G2x como en la arquitectura actual, con el consiguiente ahorro de ancho de banda al no ser necesario transmitir Gl tantas veces como centros territoriales existan.
[0051] El multiplexor determinístico 24 se encargará de formar el múltiplex territorial completo Gl+G2x a partir del múltiplex nacional G1+G2 y de la producción territorial G2x, y lo transmitirá por la red terrestre 5 a todos los centros emisores del territorio que tengan acceso a dicha red. La formación de Gl+G2x se realizará de forma determinista, es decir, con un criterio predecible sin ningún tipo de indeterminación, y consistente en reemplazar unidad elemental de información a unidad elemental de información, las señales del grupo G2 dentro del múltiplex G1+G2, por las señales del grupo G2x, independientemente de que se esté en proceso de desconexión territorial o no. De esta manera se facilita que no sea necesario cambiar ninguno de los procedimientos o actuaciones actualmente utilizadas en los procesos de desconexión.
[0052] En los centros emisores, la señal recibida por la red de satélite presenta algunas particularidades con respecto al caso anterior. Si en la
arquitectura actual se recibía el múltiplex territorial completo, Gl+G2x, ahora se reciben, por una parte, el múltiplex nacional G1+G2 y, por otra, el grupo territorial G2x. La recepción de estas señales se realizará por medio de un módulo I D 31, y las señales recuperadas se entregarán al multiplexor determinístico 24.
[0053] Dicho multiplexor determinístico 24 es exactamente el mismo que el introducido en los centros territoriales, y además tiene las mismas entradas, es decir, G1+G2 y G2x. Por lo tanto, es capaz de generar el múltiplex territorial Gl+G2x completo de igual forma que se había realizado en las cabeceras territoriales.
[0054] De igual forma que en la arquitectura actual, el selector 21 se encarga de decidir si la señal entregada a la red de difusión final procede de la red terrestre 5 o proviene del multiplexor determinístico 24, que a su vez tiene como origen de señal la recibida por la red de satélite 4.
[0055] Esta nueva arquitectura ya conlleva el ahorro del ancho de banda ocupado en las diferentes redes por la repetida transmisión de las señales del grupo Gl . Sin embargo, es necesario que el multiplexor 24 de multiplexación determinística cumpla unos estrictos requisitos de funcionalidad y unas altas prestaciones de comportamiento, que son el objetivo de esta invención.
[0056] La figura 3 muestra un diagrama de bloques explicativo del módulo 24 de multiplexación determinística. La funcionalidad a cumplir por este nuevo módulo es, de forma general, la creación del múltiplex territorial Gl+G2x a partir de sus entradas, que son, por una parte, el múltiplex nacional G1+G2 y, por otra, el múltiplex territorial incompleto G2x.
[0057] El múltiplex territorial Gl+G2x generado por dos multiplexores determinísticos 24 distintos, sea cual sea la ubicación de los mismos, y siempre que tengan como entradas las mismas señales, G1+G2 y G2x, aunque desfasadas entre ellas de forma aleatoria según la situación espacial, tiene que
ser idéntico de tal manera que los dos flujos sean bit a bit exactamente iguales y además en el mismo orden.
[0058] Las dos entradas al multiplexor determinístico 24 serán recibidas por un bloque de adaptación y almacenamiento 61 para evitar la pérdida de datos en el necesario proceso de alineamiento y sincronización de los datos. Los flujos de datos serán analizados por el bloque de sincronización 65 para extraer de ellos la información temporal que llevan las marcas de tiempo. En este ejemplo expuesto de la red TDT, las marcas de tiempo irán en los paquetes MIB de la estructura SFN.
[0059] Los paquetes MIB portan información sobre el exacto momento en el que tienen que ser emitidos los paquetes de información que le siguen, con una precisión de reloj de 100 nseg proporcionada por un módulo GPS. Podría haberse tomado cualquier otra referencia temporal incluida en la estructura de transporte de los flujos, por ejemplo de la estructura DVB, ATSC o ISDB, o incluso externa.
[0060] Este bloque de sincronización 65 procederá también a ordenar los paquetes de información de ambos flujos, utilizando para ello cualquier criterio. Por ejemplo, puede considerar como primer paquete del primer flujo el primer paquete del grupo G2 que siga a su MIB. Como primer paquete del segundo flujo podría considerar, por ejemplo, el paquete separado un número N de celdas básicas de información de su correspondiente MIB. El número N podría ser cualquiera, siempre que permitiera compensar el máximo desfase permitido entre ambos flujos. En el primer flujo solo se ordenarán los paquetes del grupo G2. En el segundo flujo solo se ordenarán los paquetes del grupo G2x. Después de elegido el primer paquete de cada flujo, el resto de paquetes irá incrementando su numeración por orden de llegada.
[0061] Los dos flujos saldrán de unidades de almacenamiento y alineación 61 según el orden establecido por el módulo de sincronización 65 y entrarán en una unidad de mezcla determinística 62. Este módulo mezclador 62 se
encargará de sustituir la celda 1 del flujo G1+G2 por la celda 1 del flujo G2x, la celda 2 por la 2, y así sucesivamente. Las señales del flujo G1+G2 que no estén ordenadas pasarán de forma inalterada.
[0062] Cabe destacar que como la información de tiempos se ha extraído directamente de los flujos, y como el criterio de ordenación de los paquetes de los flujos es fijo y predecible cualquiera que sea la ubicación del aparato, la mezcla de flujos siempre producirá los mismos resultados, independientemente del multiplexor determinístico que la realice. Es decir, es una mezcla determinística.
[0063] Un módulo de generación de señalización 66 también analiza los flujos y extrae la información de señalización de los mismos. Esta señalización la analiza y recompone para recoger las necesidades del flujo resultado de acuerdo al estándar utilizado para la difusión final de la señal. Como la nueva señalización tiene que estar dentro de unas normas de obligado cumplimiento, su resultado tiene que ser exactamente idéntico independientemente de la ubicación del módulo.
[0064] Un bloque de inserción de señalización 63 recogerá la señal de salida del módulo de mezcla 62, en el que ya se ha reemplazado los datos del flujo G1+G2 por los del flujo G2x, pero que todavía contiene la información de señalización del flujo G1+G2 sin modificar, y procede a reemplazar todas las celdas conteniendo la señalización original, por la nueva señalización creada en el generador 66.
[0065] La nueva señalización debe ser insertada en el flujo final Gl+G2x exactamente en los mismos momentos, independientemente del multiplexor determinístico elegido. Para esto se utiliza la información de sincronización proporcionada por el módulo de sincronización 65. Se puede adoptar cualquier criterio, como por ejemplo hacerla efectiva después de que haya pasado un número M de celdas desde la última MIB del primer flujo.
[0066] Un bloque final de adaptación y memoria de almacenamiento 64 será necesario para adaptar la señal resultante, Gl+G2x, antes de salir a la red final de difusión.
[0067] Este conjunto de módulos o bloques que constituyen el multiplexor determinístico 24 permiten la creación de un múltiplex territorial idéntico, sea cual sea la ubicación de dicho multiplexor 24, ya que asegura una sustitución de flujos bit a bit idéntica con el bloque mezclador 62, perfectamente sincronizada por el bloque de sincronización 65, y con una señalización reconstruida en el generador 66 y perfectamente insertada y temporizada por medio del bloque de inserción 63.
[0068] Como consecuencia, al ser posible la generación del múltiplex territorial de forma distribuida y determinísticamente, a partir del múltiplex nacional y de solo la información cambiante del territorio, no es necesario enviar por todas las redes terrestres 4 y de satélite 5 dicho múltiplex completamente formado, con el consiguiente ahorro de ancho de banda en dichas redes por la inclusión de las señales nacionales comunes no susceptibles de ser alteradas territorialmente.
[0069] El procedimiento de multiplexación determinístico de flujos de datos cifrado puede ser realizado por un ordenador, cargable dentro de una memoria interna de una computadora con unidades de entrada y salida y, también, con unidades de procesadores.
[0070] El programa de ordenador comprende para este fin códigos configurados para ejecutar los pasos del antedicho proceso cuando es ejecutado por la computadora. Además, los códigos ejecutables pueden ser grabados en un medio portador legible dentro de una computadora.
Claims
1. Un dispositivo de multiplexación de flujos de datos, adaptable para ser instalado en centros territoriales (2) y centros emisores (3) de una red de difusión de contenidos audiovisuales y de información, caracterizado porque la unidad de multiplexación determinística (24) genera, a partir de un primer flujo de datos general (G1+G2) válido para todos los territorios y de un segundo flujo de datos particular (G2x) válido para un territorio deseado o concreto, un tercer flujo de datos (Gl+G2x), donde algunos de los contenidos generales del primer flujo (G2) reemplazables han sido reemplazados por contenidos territoriales del segundo flujo (G2x) reemplazantes, y donde el flujo de datos resultante (Gl+G2x), puede ser difundible por todo el área de cobertura del centro territorial, siendo siempre el mismo, independientemente de la ubicación concreta dentro del territorio del dispositivo multiplexor (24) que lo ha generado, y de los retardos relativos entre los flujos de datos general (G1+G2) y particular (G2x) empleados para su generación.
2. Dispositivo de acuerdo a la reivindicación 1 , caracterizado porque el multiplexor determinístico (24) comprende al menos un módulo de memoria (61) que almacena flujos de datos presentes en al menos una de sus entradas, y una unidad de sincronización (65) configurada para sincronizar la salida de los flujos de datos de sus respectivas unidades de memoria (61), de acuerdo a la referencia temporal que dicha unidad de sincronización ha establecido a partir de las marcas temporales presentes en los flujos y/o a partir de cualquier otra entrada temporal externa, para que dichos flujos de datos sean suministrados a un módulo mezclador (62) determinístico adaptado para reemplazar los paquetes de información del primer flujo, por paquetes de información del segundo, según su orden de llegada, suministrando en una de sus salidas un tercer flujo de datos que comprende paquetes de información del primer flujo irreemplazables y paquetes de información del segundo flujo reemplazantes, además de información de señalización del primer flujo.
3. Dispositivo de acuerdo a la reivindicación 2, caracterizado porque el multiplexor determinístico (24) comprende, además, un módulo de inserción de señalización (63), que recibe el tercer flujo de datos, configurado para sustituir todos los paquetes de señalización presentes en el flujo de datos recibido en una de sus entradas por paquetes de señalización creados por un módulo generador de señalización (66) a partir de paquetes de señalización presentes en las entradas de los flujos originales, siendo esta señalización sincronizada con la referencia temporal establecida por el módulo de sincronización (65), resultando que la salida de este bloque de inserción de señalización (63) es un nuevo flujo de datos que portará los datos compuestos según la composición efectuada por el mezclador determinístico (62) con una señalización adicional y válida para el flujo así generado, y que será suministrado a una entrada de un módulo final de adaptación (64) que puede hacer adaptar el flujo de entrada recibido para que pueda ser emitido a la red de difusión concreta y conectable a la salida del multiplexor determinístico (24).
4. Método de multiplexación de un primer flujo portador de datos difundible globalmente y un segundo flujo de datos particularizable regionalmente y distribuible territorialmente;, caracterizado porque el método comprende las etapas de: almacenamiento del primer y segundo flujo en al menos una unidad de almacenamiento (61) donde pueden ser alineados y sincronizados ambos primer y segundo flujo; sincronización de ambos flujos por medio de un módulo de sincronización (65) que puede extraer marcas temporales incluidas en ambos flujos y/o introducidas externamente y seleccionar cual de ellas se utilizará en un proceso de sincronización de los flujos; sustitución de las unidades básicas de información del primer flujo con contenidos susceptibles de ser reemplazables, por unidades básicas de información seleccionables del segundo flujo con contenidos susceptible de ser reemplazantes, mediante un módulo mezclador determinístico (62) adaptado para efectuar la sustitución unidad básica a unidad básica de ambos flujos ya sincronizados, según el criterio reproducible con certeza independientemente de la distribución temporal de los flujos.
5. Método de acuerdo a la reivindicación 4; caracterizado porque el método comprende además una etapa de generación e inserción de datos de señalización dentro del flujo generado en un módulo mezclador (62), mediante un módulo generador de señalización (66) que puede extraer información de señalización de los flujos originales de entrada y elaborar señalización que recoja las características del flujo generado; inserción de señalización mediante un módulo insertador de señalización (63) que es capaz de reemplazar unidades básicas de señalización dentro del flujo de datos de salida del bloque mezclador (62) con unidades básicas de señalización generadas en el módulo generador de señalización (66) de acuerdo a criterios de temporización y sincronización establecidos por el módulo de señalización (65); adaptación final del flujo de salida a las condiciones específicas de la red utilizada para su transporte por medio de un bloque de adaptación (64).
6. Método de acuerdo a la reivindicación 5; caracterizado porque la etapa de sincronización de los flujos se realizará mediante la ordenación de las unidades básicas de información de ambos flujos de acuerdo al criterio de numerar solo las unidades de información del primer flujo susceptibles de ser reemplazadas estrictamente según orden de llegada, y de acuerdo al criterio de numerar solo las unidades de información del segundo flujo susceptibles de ser reemplazantes estrictamente según orden de llegada, y donde se elegirá como primera celda básica de información del primer flujo aquella que presente una separación predefinida con la marca temporal utilizada como referencia por el módulo de sincronización (65), y como primera celda básica de información del segundo flujo aquella que presente una separación predefinida, y no necesariamente igual a la del primer flujo, con la referencia temporal utilizada por el módulo de sincronización (65), y donde el criterio seguido por el módulo mezclador (62) será completamente determinístico y consistirá en reemplazar la primera unidad básica de información del primer flujo por la primera unidad básica de información del segundo, la segunda por la segunda y así sucesivamente.
7. Método de acuerdo a alguna de las reivindicaciones 5 o 6; caracterizado porque la multiplexación se puede realizar determinísticamente en el multiplexor determinístico (24) sobre flujos donde los datos, además de haber sido agrupados con los criterios de territorialidad, han sido creados por un proceso de multiplexación estadística mediante los multiplexadores (1 1) y (12) de mform aindependietne entre ellos, que, permite hacer una sustitución de cada unidad básica de información del primer grupo por una unidad básica de información del segundo, directamente según el orden de llegada al módulo mezclador (62), y a partir de la marca temporal elegida para la sincronización por el módulo de sincronización (65).
8. Método de acuerdo a la reivindicación 7, caracterizado porque la multiplexación se puede realizar determinísticamente en el multiplexor determinístico (24) sobre flujos de datos donde los datos, además de haber sido agrupados con los criterios de territorialidad, han sido formateados según un protocolo del tipo SFN en los multiplexores (1 1) y (22), poseyendo dichos flujos marcas temporales del tipo MIB, que serán seleccionabas por el módulo de sincronización (65) como marcas temporales para alinear y sincronizar dichos flujos, y que pueden ser empleadas para definir como método de sustitución de los datos globales del primer flujo por los particulares del segundo flujo, en el módulo de mezcla determinística (63), de acuerdo al criterio de que la primera celda básica de información a sustituir sea la que dista de la primera marca MIB recibida del primer flujo un número determinado de celdas, y la celda básica de información que la reemplazará sea la que dista o antecede un número también determinado, y no necesariamente igual que el anterior, de celdas a la primera marca temporal MIB recibida del segundo flujo.
9. Un centro territorial o de segundo nivel en la jerarquía de red que comprende un dispositivo de multiplexación determinístico (24) de acuerdo a alguna de las reivindicaciones 1 a 3.
10. Centro territorial de acuerdo a la reivindicación 9: caracterizado porque el centro territorial incluye un dispositivo que puede ejecutar el método de multiplexación de flujos de datos de acuerdo a alguna de las reivindicaciones 4 a 8 cuando es ejecutado por la computadora.
11. Un centro emisor o de tercer nivel en la jerarquía de red que comprende un dispositivo de multiplexación determinístico (24) de acuerdo a alguna de las reivindicaciones 1 a 3.
12. Centro emisor de acuerdo a la reivindicación 1 1 : caracterizado porque el centro emisor incluye un dispositivo que puede ejecutar el método de multiplexación de flujos de datos de acuerdo a alguna de las reivindicaciones 4 a 8 cuando es ejecutado por la computadora.
13. Un programa de ordenador puede ser cargable en una memoria interna de una computadora con unidades de entrada, salida y una unidad de procesamiento, donde el programa de ordenador comprende códigos ejecutables configurados para realizar los pasos del procedimiento de multiplexación de flujos de datos generados por un dispositivo de multiplexación de flujos de datos de acuerdo a alguna de las reivindicaciones 4 a 8 cuando es ejecutado por la computadora.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2009/070445 WO2011048230A1 (es) | 2009-10-20 | 2009-10-20 | Dispositivo y método de multiplexación de flujos de datos |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/ES2009/070445 WO2011048230A1 (es) | 2009-10-20 | 2009-10-20 | Dispositivo y método de multiplexación de flujos de datos |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011048230A1 true WO2011048230A1 (es) | 2011-04-28 |
Family
ID=43899857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2009/070445 WO2011048230A1 (es) | 2009-10-20 | 2009-10-20 | Dispositivo y método de multiplexación de flujos de datos |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011048230A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014090928A1 (fr) * | 2012-12-13 | 2014-06-19 | Enensys Technologies | Procédé de génération et de transfert d'au moins un flux de données |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998053562A1 (en) * | 1997-05-23 | 1998-11-26 | Mci Communications Corporation | Method of and system for providing geographically targeted broadcast satellite service |
FR2902591A1 (fr) * | 2006-06-20 | 2007-12-21 | Tdf Sa | Procede d'insertion d'au moins une c0mposante dans un flux numerique, dispositif d'insertion et produit programme d'ordinateur correspondants |
WO2009000982A2 (fr) * | 2007-06-25 | 2008-12-31 | Thomson Licensing | Procédés de génération de flux finaux et de flux secondaires de contenus primaires et secondaires à transmettre, pour des réseaux sfn, et dispositifs de génération et stations associés |
-
2009
- 2009-10-20 WO PCT/ES2009/070445 patent/WO2011048230A1/es active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998053562A1 (en) * | 1997-05-23 | 1998-11-26 | Mci Communications Corporation | Method of and system for providing geographically targeted broadcast satellite service |
FR2902591A1 (fr) * | 2006-06-20 | 2007-12-21 | Tdf Sa | Procede d'insertion d'au moins une c0mposante dans un flux numerique, dispositif d'insertion et produit programme d'ordinateur correspondants |
WO2009000982A2 (fr) * | 2007-06-25 | 2008-12-31 | Thomson Licensing | Procédés de génération de flux finaux et de flux secondaires de contenus primaires et secondaires à transmettre, pour des réseaux sfn, et dispositifs de génération et stations associés |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014090928A1 (fr) * | 2012-12-13 | 2014-06-19 | Enensys Technologies | Procédé de génération et de transfert d'au moins un flux de données |
FR2999853A1 (fr) * | 2012-12-13 | 2014-06-20 | Enensys Technologies | Procede de generation et de transfert d'au moins un flux de donnees |
CN105009600A (zh) * | 2012-12-13 | 2015-10-28 | 爱尼塞斯技术公司 | 用于生成并传送至少一个数据流的方法 |
RU2637502C2 (ru) * | 2012-12-13 | 2017-12-05 | Эненсис Текнолоджиз | Способ генерирования и передачи по меньшей мере одного потока данных |
US10051339B2 (en) | 2012-12-13 | 2018-08-14 | Enensys Technologies | Method for generating and transferring at least one data stream |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8275003B2 (en) | Method and apparatus for generating multiplexed signals | |
KR101088599B1 (ko) | DVB-H(Digital VideoBroadcasting-Handheld)형 전송스트림을 프로세싱하는 방법 및 장치 | |
TW408540B (en) | Signaling protocol for satellite direct radio broadcast system | |
CN101517944B (zh) | 向通信装置提供分组的方法、同步分组分配的方法和系统 | |
RU2564537C2 (ru) | Способ вещания dvb-t2 со вставкой регионального контента и устройство, используемое в этом способе | |
KR100900531B1 (ko) | 단일 주파수 네트워크에서 전송 스트림을 동기시키기 위한시스템 및 방법 | |
BRPI0607484B1 (pt) | método, aparelho e sistema para a produção de uma pluralidade de símbolos coerentes a partir de uma pluralidade de transmissores de rf digitais | |
CN101326792A (zh) | 产生优化贡献信号并对其去复用的方法和区域化数据广播系统 | |
US20120147807A1 (en) | Data synchronization method and system | |
ES2632344T3 (es) | Remultiplexación determinística para redes SFN | |
US10750220B2 (en) | Method for generating a STL stream, local adapter and corresponding computer program | |
BR102012022173A2 (pt) | Sistema de comunicações e dispositivo de tipo equipamento intermediário ligado a uma rede de comunicações | |
ES2477281T3 (es) | Método y aparato para el procesamiento de la sincronización | |
CN105846884B (zh) | 一种适用于天基网组网的通信方法 | |
RU2720705C1 (ru) | Детерминированное ремультиплексирование для одночастотных сетей цифрового телевизионного вещания | |
ES2702494T3 (es) | Sistema de difusión de programas de vídeo | |
WO2009077120A1 (en) | Method for synchronizing at least two streams | |
CN102342051A (zh) | 用于通过经由至少一个时间分发协议分开传输第一和第二数据来同步时钟的方法和相关的系统及模块 | |
WO2011048230A1 (es) | Dispositivo y método de multiplexación de flujos de datos | |
CN105009600B (zh) | 用于生成流的方法、装置和系统 | |
JP2013207761A (ja) | デジタル放送システム、放送ts多重化局、連結送信局及びデジタル放送方法 | |
CN101515832A (zh) | 一种产生多路系统时钟的方法和设备 | |
ES2914520T3 (es) | Método y equipo de generación de un flujo global de origen, respectivamente, de un flujo global modificado, destinado a ser difundido por un sitio de difusión, respectivamente, un sitio de redifusión | |
EP1583266A3 (en) | Synchronisation for TDM services in packet networks | |
ES2887198T3 (es) | Procedimiento de tratamiento de un flujo global original que comprende al menos un conducto de capa física que encapsula un flujo de transporte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09850521 Country of ref document: EP Kind code of ref document: A1 |