WO2011047979A1 - Sonde géothermique pour une pompe à chaleur géothermique - Google Patents

Sonde géothermique pour une pompe à chaleur géothermique Download PDF

Info

Publication number
WO2011047979A1
WO2011047979A1 PCT/EP2010/065162 EP2010065162W WO2011047979A1 WO 2011047979 A1 WO2011047979 A1 WO 2011047979A1 EP 2010065162 W EP2010065162 W EP 2010065162W WO 2011047979 A1 WO2011047979 A1 WO 2011047979A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
geothermal
probe
roughness
din
Prior art date
Application number
PCT/EP2010/065162
Other languages
German (de)
English (en)
Inventor
Markus Hartmann
Andreas Dowe
Rainer Göring
Andreas Pawlik
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to AU2010309960A priority Critical patent/AU2010309960A1/en
Priority to CN2010800476893A priority patent/CN102713458A/zh
Priority to US13/502,767 priority patent/US20120199317A1/en
Priority to RU2012120569/06A priority patent/RU2012120569A/ru
Priority to EP10768913A priority patent/EP2491316A1/fr
Priority to CA2777344A priority patent/CA2777344A1/fr
Priority to MX2012004571A priority patent/MX2012004571A/es
Priority to JP2012534621A priority patent/JP2013508658A/ja
Publication of WO2011047979A1 publication Critical patent/WO2011047979A1/fr
Priority to ZA2012/02872A priority patent/ZA201202872B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention relates to a geothermal probe for the extraction of geothermal energy from a bore.
  • the extraction of geothermal heat from drilling is done by pumping thermal water from digested aquifers or by cooling the soil along a bore.
  • Soil is done with different geothermal probes.
  • vaporizable refrigerants can be used, which gain the energy by the evaporation.
  • Direct evaporator probes are on the rise. Compared to brine probes, they offer a significantly higher level of efficiency and are seen by experts as the technology of the future. For example, there are systems based on propane (R290), butane, ammonia (R7 7) or carbon dioxide (R744), with propane being preferred.
  • Deep geothermal probes with direct evaporators are also referred to as heat pipes or heat pipes.
  • DE 10 2007 005 270 A1 describes a geothermal probe which contains a condensate flow distributor with condensate guide devices arranged radially and / or tangentially to the wall of the probe tube. In this way, a radially distributed condensate film is to be generated.
  • EP 1 450 142 A2 describes a heat exchanger tube which consists of a filler-containing polymer material. The tube is used for
  • Geothermal probes are known in which the tubes have at least one layer of a polymer molding composition containing a mechanical resistance increasing filler or reinforcing material. So that should
  • the pipe arrangement is provided for the transport of a liquid heat transfer medium.
  • the invention has for its object to produce in a geothermal probe by simple means a complete falling film, so that the entire inner surface of the probe tube is wetted evenly.
  • This object is achieved by a geothermal probe designed as a direct evaporator probe for obtaining geothermal heat from a bore, in which the inner surface of the probe tube has the following roughness characteristics: a) an arithmetic mean roughness Ra according to DIN EN ISO 4287 in
  • the roughness measurement is carried out in accordance with DIN EN ISO 4288 using the profile method.
  • Stylus instrument becomes a probe tip made of diamond with constant
  • the measuring profile results from the vertical positional shift of the probe tip, which is usually detected by an inductive distance measuring system.
  • Ra is the arithmetic mean roughness from the amounts of all profile values.
  • Rz is the average of the five surface roughness values from the five
  • Rz1 max is the largest roughness depth from the five individual measuring sections.
  • the geothermal probe consists of a probe tube, which has a Verfullbaustoff, such as bentonite, is connected to the soil. The evaporation of the refrigerant condensate takes place on the inner surface of the probe tube. The transport of the resulting vapor upwards takes place in the center of the tube.
  • the inner diameter of the probe tube is usually in the range of 15 to 80 mm, preferably in the range of 20 to 55 mm and more preferably in the range of 26 mm to 32 mm.
  • the probe length is generally 60 to 200 m, in some cases larger or smaller lengths are possible. Preferably, the probe is 80 to 120 meters long.
  • the refrigerant used is, for example, propane (R290), butane, ammonia (R717) or carbon dioxide (R744).
  • Further suitable refrigerants are for example propene (R 270), tetrafluoroethane (R 34a), difluoromethane (R32), pentafluoroethane (R125), a mixture of R32, R125 and R134a in the ratio 23/25/52 (R407C) or a mixture of R32 and R125 in the
  • Ratio 50:50 (R410A). According to the physical laws, the probe interior is thus under relatively high pressure. The ascended refrigerant vapor is compressed in a compressor and liquefied with it. When compressing condensation heat is released, which is dissipated as useful heat. The cooled liquid refrigerant is via a
  • the probe tube may for example consist of metal.
  • the inner surface carries a rough coating.
  • the outer surface may be coated, for example for reasons of corrosion protection.
  • the metal may be aluminum, an aluminum alloy, Steel, such as stainless steel, or any other metal.
  • Coating may be accomplished by powder coating or by coating with the melt of a molding compound described below, for example by extrusion coating.
  • the tube is preferably made of plastic and particularly preferably of a thermoplastic molding compound.
  • Such pipes can be wound, so that the need is eliminated during assembly comparatively short pieces with each other z. B. to connect by welding.
  • the molding compound used must have sufficient rigidity so that the wall thickness can be made thin for reasons of heat transfer.
  • Forming mass be sufficiently resistant to the refrigerant and the moisture of the soil. This means that the wall must not swell, as this would be associated with undesirable changes in length.
  • Suitable plastics are, for example, fluoropolymers such as PVDF, PTFE or ETFE, polyarylene ether ketones such as PEEK, polyolefins such as polyethylene or polypropylene and polyamides.
  • the monomer units can be derived from lactams or ⁇ -aminocarboxylic acids.
  • Dicarboxylic acid at least 8, at least 9 or at least 10.
  • Suitable polyamides are, for example: PA610 (preparable from
  • PA88 can be prepared from octamethylenediamine and 1 .8-octanedioic acid
  • PA8 preparable from capryllactam
  • the preparation of the polyamides is state of the art.
  • copolyamides based thereon can also be used, it also being possible for monomers such as caprolactam to be used as well.
  • Polyamide combinations are known in the art; For example, here are the combination PA12 / PA1012, PA12 / PA1212, PA612 / PA12,
  • the thermoplastic molding compound may be filled with reinforcing fibers and / or fillers.
  • the fibers or filler particles which press through on the surface thereby produce the required roughness.
  • the molding composition contains 0.1 to 50 wt .-%, preferably 0.5 to 20 wt .-% and particularly preferably 3 to 10 wt .-% fillers and / or fibers.
  • the molding composition here contains only fibers.
  • the molding compound contains only fillers.
  • the molding composition contains a mixture of fibers and fillers.
  • Suitable reinforcing fibers are, for example, glass fibers, basalt fibers, carbon fibers, aramid fibers and potassium titanate whiskers, as well as fibers of higher melting polymers.
  • suitable fillers are titanium dioxide, zinc sulfide, silicates, chalk, aluminum oxide and glass beads.
  • suitable reinforcing fibers or fillers the thermal conductivity of the probe wall can be increased.
  • fiber material metal fibers or as a filler metal powder carbon black, graphite, CNTs (carbon nanotubes), hexagonal boron nitride or combinations or mixtures of different materials can be used.
  • the molding composition may contain the customary auxiliaries or additives, for example impact modifiers, plasticizers, stabilizers and / or processing aids.
  • the surface roughness is produced by compounding a second polymer which is compatible with the
  • Matrix polymer is incompatible or only slightly compatible and therefore only relatively coarse dispersed. Suitable material combinations are
  • polyamide / polypropylene for example, polyamide / polypropylene or polyamide / ethylene acrylic ester acrylic acid copolymer / polypropylene.
  • the probe tube may be single-layered and thus consist of one of the above-described molding compositions over the entire wall thickness. In a further embodiment this is
  • Multi-layer probe tube wherein the inner layer consists of one of the molding compositions described above and the other layers have functions that are not sufficiently perceived by the layer of the surface-gray molding compound, such as flexibility,
  • adhesion promoters can be used according to the prior art.
  • Suitable layer sequences from the inside to the outside are, for example: Polyamide (for example PA12) / adhesion promoter / polypropylene or
  • Polyamide for example PA12
  • adhesion promoter / adhesion promoter / ethylene-vinyl alcohol copolymer (EVOH) / adhesion promoter / polyamide;
  • EVOH ethylene-vinyl alcohol copolymer
  • Polyamide / coupling agent / fluoropolymer for example PVDF or ETFE
  • Suitable adhesion promoters for the combination of polyamide and polyolefins are, for example, with maleic anhydride functionalized polyolefins.
  • polyamides such as PA12 and EVOH can be used
  • maleic acid-functionalized polyolefins are suitable as adhesion promoters.
  • Adhesion promoters for the combination of polyamides and fluoropolymers are known, for example, from EP 0 618 390 A1, while
  • adhesion-modified fluoropolymers for example, by admixing small amounts of polyglutarimide according to EP 0 637 51 1 A1, by
  • Carbonate groups according to EP 0 992 518 A1 can be prepared.
  • Probe tube additionally contain internals, as they are known from the prior art, for example, DE 10 2007 005 270 A1.
  • the falling film over the circumference of the probe has a uniform layer thickness; Stripping or tearing of the film is prevented. Due to the enlarged surface, a better heat exchange is possible; at the same time the

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne une sonde géothermique pour la récupération de chaleur géothermique à partir d'un forage, la surface intérieure du tuyau de sonde présentant les valeurs de rugosité suivantes: a) une valeur de rugosité moyenne arithmétique Ra selon DIN EN ISO 4287 de l'ordre de 1 à 15 μm, b) une profondeur de rugosité moyenne Rz selon DIN EN ISO 4287 de l'ordre de 8 à 80 μm, et c) une profondeur de rugosité maximale Rz1max selon DIN EN ISO 4287 de l'ordre de 10 à 500 μm. La sonde selon l'invention présente en fonctionnement un meilleur film tombant de telle manière que toute la surface du tuyau de sonde est mouillée uniformément.
PCT/EP2010/065162 2009-10-21 2010-10-11 Sonde géothermique pour une pompe à chaleur géothermique WO2011047979A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2010309960A AU2010309960A1 (en) 2009-10-21 2010-10-11 Downhole heat exchanger for a geothermal heat pump
CN2010800476893A CN102713458A (zh) 2009-10-21 2010-10-11 用于地热热泵的地热探针
US13/502,767 US20120199317A1 (en) 2009-10-21 2010-10-11 Downhole heat exchanger for a geothermal heat pump
RU2012120569/06A RU2012120569A (ru) 2009-10-21 2010-10-11 Геотермический зонд для геотермального теплового насоса
EP10768913A EP2491316A1 (fr) 2009-10-21 2010-10-11 Sonde géothermique pour une pompe à chaleur géothermique
CA2777344A CA2777344A1 (fr) 2009-10-21 2010-10-11 Sonde geothermique pour une pompe a chaleur geothermique
MX2012004571A MX2012004571A (es) 2009-10-21 2010-10-11 Termopermutador del fondo del pozo para una bomba de calor geotermico.
JP2012534621A JP2013508658A (ja) 2009-10-21 2010-10-11 地中熱ヒートポンプ用のボアホール地中熱交換器
ZA2012/02872A ZA201202872B (en) 2009-10-21 2012-04-19 Downhole heat exchanger for a geothermal heat pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009045882.4 2009-10-21
DE102009045882A DE102009045882A1 (de) 2009-10-21 2009-10-21 Erdwärmesonde für eine geotherme Wärmepumpe

Publications (1)

Publication Number Publication Date
WO2011047979A1 true WO2011047979A1 (fr) 2011-04-28

Family

ID=43763568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/065162 WO2011047979A1 (fr) 2009-10-21 2010-10-11 Sonde géothermique pour une pompe à chaleur géothermique

Country Status (13)

Country Link
US (1) US20120199317A1 (fr)
EP (1) EP2491316A1 (fr)
JP (1) JP2013508658A (fr)
KR (1) KR20120099015A (fr)
CN (1) CN102713458A (fr)
AU (1) AU2010309960A1 (fr)
CA (1) CA2777344A1 (fr)
CO (1) CO6531462A2 (fr)
DE (1) DE102009045882A1 (fr)
MX (1) MX2012004571A (fr)
RU (1) RU2012120569A (fr)
WO (1) WO2011047979A1 (fr)
ZA (1) ZA201202872B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012141320A1 (ja) * 2011-04-13 2014-07-28 日本電気株式会社 冷却装置の配管構造、その製造方法、及び配管接続方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044224A1 (de) * 2008-12-01 2010-06-02 Evonik Degussa Gmbh Verwendung einer Zusammensetzung für den Kontakt mit überkritischen Medien
EP2374942B1 (fr) * 2010-04-01 2015-01-07 SPS Energy GmbH Dispositif et procédé de production de chaleur à partir de l'environnement
DE102010003909A1 (de) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexibles Rohr mit mehrschichtigem Aufbau
DE102010003916A1 (de) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexibles Rohr und Verfahren zu dessen Herstellung
DE102010003920A1 (de) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexibles Rohr mit höherer Temperaturbeständigkeit
DE102011017811A1 (de) 2011-04-29 2012-10-31 Evonik Degussa Gmbh Temperierbare Rohrleitung für Offshoreanwendungen
DE102011075383A1 (de) 2011-05-06 2012-11-08 Evonik Degussa Gmbh Temperierbare Rohrleitung für Offshoreanwendungen
ITCO20110023A1 (it) * 2011-07-08 2013-01-09 Sergio Bonfiglio Metodo di preparazione di campi geotermali
DE102013205614A1 (de) 2013-03-28 2014-10-02 Evonik Industries Ag Verfahren zur Herstellung eines mit einem Inliner ausgekleideten Rohres
DE102013205616A1 (de) 2013-03-28 2014-10-02 Evonik Industries Ag Mehrschichtrohr mit Polyamidschicht
WO2018009633A1 (fr) 2016-07-07 2018-01-11 Bull Moose Tube Company Structures métalliques revêtues d'acier et leurs procédés de fabrication
EP3477176A1 (fr) 2017-10-25 2019-05-01 Evonik Degussa GmbH Procédé de fabrication d'un tube revêtu d'une gaine intérieure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114158A (en) * 1976-03-22 1977-09-24 Agency Of Ind Science & Technol Manufacturing of terrestrial heat power generation heat transfer pipe
DE4211576A1 (de) 1991-07-06 1993-01-07 Poehlmann Anwendungstechnik Gm Heizanlage mit einer waermepumpe und mindestens einer erdreichsonde
EP0618390A1 (fr) 1993-04-02 1994-10-05 Hüls Aktiengesellschaft Tuyau multi-couche en matière plastique
EP0637511A1 (fr) 1993-08-04 1995-02-08 Hüls Aktiengesellschaft Stratifiés thermoplastiques
EP0992518A1 (fr) 1997-06-23 2000-04-12 Daikin Industries, Limited Copolymere de tetrafluoroethylene et son utilisation
WO2001004550A1 (fr) 1999-07-09 2001-01-18 Klett-Ingenieur-Gmbh Dispositif permettant d'utiliser l'energie geothermique et son procede de fonctionnement
DE29824676U1 (de) 1998-12-24 2002-05-02 Fkw Hannover Forschungszentrum Wärmeübertrager
EP1216826A2 (fr) 2000-12-21 2002-06-26 Degussa AG Film multicouche avec une couche d'EVOH
EP1450142A2 (fr) 2003-02-20 2004-08-25 Yazaki Corporation Capteur de niveau de liquide et procédé de sa fabrication
JP2004309124A (ja) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd 地中熱交換器
DE202004018559U1 (de) 2004-12-01 2005-03-10 Dietz, Erwin Wärmeerzeuger
DE202007004346U1 (de) * 2007-03-21 2007-10-31 Rehau Ag + Co Rohranordnung
DE102007005270A1 (de) 2007-01-26 2008-07-31 Blz Geotechnik Gmbh Erdwärmesonde
DE202007016938U1 (de) * 2007-12-03 2009-04-09 Moser Patente Gmbh Anlage zur geothermischen Energiegewinnung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579170A (en) * 1983-04-18 1986-04-01 The Dow Chemical Company Container for thermal energy storage materials
US5509462A (en) * 1994-05-16 1996-04-23 Ground Air, Inc. Ground source cooling system
DE10253457B3 (de) * 2002-11-16 2004-07-22 Stiebel Eltron Gmbh & Co. Kg Wärmeübertragungswandung
US6955219B2 (en) * 2003-07-03 2005-10-18 Enlink Geoenergy Services, Inc. Earth loop installation with sonic drilling
JP4393854B2 (ja) * 2003-09-01 2010-01-06 臼井国際産業株式会社 フィン部材を外装した伝熱管
US7347059B2 (en) * 2005-03-09 2008-03-25 Kelix Heat Transfer Systems, Llc Coaxial-flow heat transfer system employing a coaxial-flow heat transfer structure having a helically-arranged fin structure disposed along an outer flow channel for constantly rotating an aqueous-based heat transfer fluid flowing therewithin so as to improve heat transfer with geological environments
US20070036926A1 (en) * 2005-08-12 2007-02-15 Fish Robert B Jr Multilayered pipes
FR2892172B1 (fr) * 2005-10-13 2007-12-14 Arkema Sa Tube multicouche a base de polymere fluore modifie

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114158A (en) * 1976-03-22 1977-09-24 Agency Of Ind Science & Technol Manufacturing of terrestrial heat power generation heat transfer pipe
DE4211576A1 (de) 1991-07-06 1993-01-07 Poehlmann Anwendungstechnik Gm Heizanlage mit einer waermepumpe und mindestens einer erdreichsonde
EP0618390A1 (fr) 1993-04-02 1994-10-05 Hüls Aktiengesellschaft Tuyau multi-couche en matière plastique
EP0637511A1 (fr) 1993-08-04 1995-02-08 Hüls Aktiengesellschaft Stratifiés thermoplastiques
EP0992518A1 (fr) 1997-06-23 2000-04-12 Daikin Industries, Limited Copolymere de tetrafluoroethylene et son utilisation
DE29824676U1 (de) 1998-12-24 2002-05-02 Fkw Hannover Forschungszentrum Wärmeübertrager
WO2001004550A1 (fr) 1999-07-09 2001-01-18 Klett-Ingenieur-Gmbh Dispositif permettant d'utiliser l'energie geothermique et son procede de fonctionnement
EP1216826A2 (fr) 2000-12-21 2002-06-26 Degussa AG Film multicouche avec une couche d'EVOH
EP1450142A2 (fr) 2003-02-20 2004-08-25 Yazaki Corporation Capteur de niveau de liquide et procédé de sa fabrication
JP2004309124A (ja) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd 地中熱交換器
DE202004018559U1 (de) 2004-12-01 2005-03-10 Dietz, Erwin Wärmeerzeuger
DE102007005270A1 (de) 2007-01-26 2008-07-31 Blz Geotechnik Gmbh Erdwärmesonde
DE202007004346U1 (de) * 2007-03-21 2007-10-31 Rehau Ag + Co Rohranordnung
WO2008113569A1 (fr) 2007-03-21 2008-09-25 Rehau Ag + Co Agencement de tuyaux
DE202007016938U1 (de) * 2007-12-03 2009-04-09 Moser Patente Gmbh Anlage zur geothermischen Energiegewinnung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOGONIN I I: "The dependence of boiling heat transfer on the properties and geometric parameters of heat-transfer wall", HIGH TEMPERATURE, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 44, no. 6, 1 November 2006 (2006-11-01), pages 913 - 921, XP019465404, ISSN: 1608-3156, DOI: DOI:10.1007/S10740-006-0110-3 *
JABARDO J M S ET AL: "Roughness and surface material effects on nucleate boiling heat transfer from cylindrical surfaces to refrigerants R-134a and R-123", EXPERIMENTAL THERMAL AND FLUID SCIENCE, ELSEVIER SCIENCE INC, NEW YORK, US, vol. 33, no. 4, 1 April 2009 (2009-04-01), pages 579 - 590, XP026067542, ISSN: 0894-1777, [retrieved on 20090401], DOI: DOI:10.1016/J.EXPTHERMFLUSCI.2008.12.004 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012141320A1 (ja) * 2011-04-13 2014-07-28 日本電気株式会社 冷却装置の配管構造、その製造方法、及び配管接続方法

Also Published As

Publication number Publication date
AU2010309960A1 (en) 2012-06-07
EP2491316A1 (fr) 2012-08-29
JP2013508658A (ja) 2013-03-07
RU2012120569A (ru) 2013-11-27
CO6531462A2 (es) 2012-09-28
ZA201202872B (en) 2012-12-27
KR20120099015A (ko) 2012-09-06
MX2012004571A (es) 2012-06-08
US20120199317A1 (en) 2012-08-09
DE102009045882A1 (de) 2011-04-28
CA2777344A1 (fr) 2011-04-28
CN102713458A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
EP2491316A1 (fr) Sonde géothermique pour une pompe à chaleur géothermique
EP2783835B1 (fr) Procédé de fabrication d'un tube revêtu d'un habillage intérieur
EP2367883B1 (fr) Utilisation d'une composition pour le contact avec des substances supercritiques
DE102007040683A1 (de) Umhüllte Rohrleitung
EP2399058B1 (fr) Utilisation d'un tube pour la fabrication d'une conduite tubulaire posée sous l'eau
WO2009050031A1 (fr) Utilisation d'une matière de moulage polyamide pour habiller des canalisations
CN101570677A (zh) 粘合剂组合物及包括至少一个所述组合物层的结构体
DE102012208020A1 (de) Verfahren zur Herstellung eines beheizbaren Rohrs
CN101305237A (zh) 通过感应加热将衬里粘结在管子表面上的方法
CN110027262A (zh) 多层管状结构体和其用途
EP2511430B1 (fr) Pieux d'acier pour l'usage off-shore
DE102013205616A1 (de) Mehrschichtrohr mit Polyamidschicht
EP3670578A1 (fr) Matière à mouler polyamide pour le moulage par extrusion-soufflage
CN108518536A (zh) 耐高温多层塑料管及其生产方法
JP2014224607A (ja) エアブレーキ配管
EP3701180B1 (fr) Procédé de fabrication d'un tube revêtu d'une gaine intérieure
WO2012175373A1 (fr) Feuille complexe, utilisation de cette feuille complexe et feuille crêpée comprenant cette feuille complexe
DE102008036602B4 (de) Rohr zum Transport strömender Medien
JP5886675B2 (ja) 既設管更生用ライニング材及びその製造方法、並びにそれを用いた既設管更生工法
JP2016104561A (ja) 既設管更生用ライニング材及びそれを用いた既設管の更生方法
WO2022029276A1 (fr) Gaine de chemisage pour l'assainissement de systèmes de canalisations assurant l'acheminement de fluides et systèmes composites multicouches
GB2420165A (en) Jetting resistant sewer pipe fittings
DE102012106061A1 (de) Verwendung einer Polymerzusammensetzung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047689.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10768913

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2777344

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010768913

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3529/CHENP/2012

Country of ref document: IN

Ref document number: MX/A/2012/004571

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20127010174

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12065762

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012534621

Country of ref document: JP

Ref document number: 13502767

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010309960

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: A201206036

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2012120569

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010309960

Country of ref document: AU

Date of ref document: 20101011

Kind code of ref document: A