WO2011046187A1 - 電気式排気ガス処理方法および電気式排気ガス処理装置 - Google Patents

電気式排気ガス処理方法および電気式排気ガス処理装置 Download PDF

Info

Publication number
WO2011046187A1
WO2011046187A1 PCT/JP2010/068089 JP2010068089W WO2011046187A1 WO 2011046187 A1 WO2011046187 A1 WO 2011046187A1 JP 2010068089 W JP2010068089 W JP 2010068089W WO 2011046187 A1 WO2011046187 A1 WO 2011046187A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
temperature
gas
particulate matter
electric
Prior art date
Application number
PCT/JP2010/068089
Other languages
English (en)
French (fr)
Inventor
宗勝 古堅
義 牧野
滝川 一儀
Original Assignee
臼井国際産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臼井国際産業株式会社 filed Critical 臼井国際産業株式会社
Priority to JP2011536180A priority Critical patent/JP5688806B2/ja
Priority to KR1020127011374A priority patent/KR101335891B1/ko
Priority to EP10823455.0A priority patent/EP2489843A4/en
Priority to CN201080046139.XA priority patent/CN102549244B/zh
Publication of WO2011046187A1 publication Critical patent/WO2011046187A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/06Ionising electrode being a needle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor

Definitions

  • the present invention removes particulate matter (Particulate Matter: hereinafter referred to as “PM”) mainly composed of carbon contained in exhaust gas of a diesel engine and harmful gas, particularly for ships, power generation, industrial use, etc.
  • PM particulate Matter
  • the present invention relates to an exhaust gas processing technology for a large displacement diesel engine using low quality fuel less than heavy oil, and more specifically, an electric exhaust gas processing method using corona discharge in a large displacement diesel engine that exhausts high temperature exhaust gas.
  • the present invention also relates to an electric processing apparatus.
  • Diesel engines are widely used as power sources for various ships, generators, large construction machines, and various automobiles, but as is well known, PM contained in exhaust gas discharged from diesel engines is air pollution. In addition to toxic substances, it is a substance that is extremely harmful to the human body, so purification of the exhaust gas is extremely important. For this reason, many proposals have already been made, such as improvements in the combustion system of diesel engines, the use of various exhaust gas filters, and methods of electrical treatment using corona discharge, some of which have been put into practical use. .
  • the method of electrically treating using corona discharge is to charge PM in the exhaust gas by corona discharge by the discharge electrode, and collect the charged PM by electrostatic force.
  • a high voltage of several tens of thousands of volts is applied to the discharge electrode, and further, the discharge electrode is exposed to corrosive exhaust gas, it is desired to maintain stable performance over a long period of time. Furthermore, it is important to collect electrostatically charged PM efficiently.
  • components of PM (particulate matter) in exhaust gas of a diesel engine are organic solvent soluble (SOF: Soluble Organic Fractions, hereinafter referred to as “SOF”) and organic solvent insoluble (ISF: Insoluble Organic).
  • SOF organic solvent soluble
  • ISF organic solvent insoluble
  • the ISF component is mainly composed of carbon (soot) and sulfate (sulfate) components having low electrical resistivity.
  • the SOF component and the ISF component are affected as much as possible because of their effects on the human body and the environment. Less exhaust gas is desired. In particular, it is also said that the degree of adverse effects of PM in a living body is particularly problematic when the particle diameter is nm.
  • the present inventors have used an electrostatic cyclone type exhaust gas that combines an electrostatic precipitator and a cyclone precipitator as means for collecting and removing PM mainly composed of SOF and ISF components in the exhaust gas of a diesel engine.
  • a gas purification device (hereinafter, such an exhaust gas purification device is referred to as DPF: Diesel Particulate Filter) has been proposed (see Patent Document 1).
  • This purification device has a structure that maintains the insulation performance of the discharge electrode for performing corona discharge for a long period of time even at a high voltage of 50 kV DC that enables collection of PM containing carbon having low electrical resistivity in electrostatic dust collection.
  • the purification apparatus has an exhaust gas guide pipe 7 that protrudes from the main body wall 1-1 of the apparatus main body into the main body, and a main body wall 1- 1 of the exhaust gas guide pipe 7.
  • a seal gas pipe 5 which is inserted through an outer peripheral side wall on the outer side and whose tip reaches the vicinity of a tip opening in the exhaust gas guide pipe 7, and an exhaust gas passage partly by the seal gas pipe 5 1, an electrode needle 4 that is disposed so as to protrude from the distal end opening of the seal gas pipe 5 toward the downstream side of the exhaust gas passage 1, and the exhaust gas passage 1 in the apparatus main body.
  • the corona discharge part 2 which is comprised by the collection board 3 arrange
  • a discharge charging unit comprising a charging unit 2-2 for charging the corona electrons 10 to the particulate matter S mainly composed of carbon in the exhaust gas G1 is provided, and a collecting plate 3 for collecting the charged particulate matter S is provided.
  • the electrode needle 4 is configured to be disposed in the main body wall 1-1 of the apparatus main body, and the electrode needle 4 has a DC of 50 kV in order to enable collection of PM containing carbon having low electrical resistivity in electrostatic dust collection.
  • an exhaust gas purification device disclosed in Patent Document 2 is known as a method for electrostatically collecting charged PM.
  • this exhaust gas purification device when the SOF content in the exhaust gas is cooled, condensed and liquefied, it becomes sticky mist, and this mist-like SOF content is supplemented with ultra-fine particles by the "bird-mochi principle" Since the property of agglomerating and enlarging and the electrostatic aggregating action occur in the vicinity of the dust collecting electrode, the charged PM is utilized by utilizing the property that the electrostatic aggregating effect is promoted if the vicinity of the dust collecting electrode can be cooled.
  • the dust collecting electrode (see FIG. 1 of Patent Document 2, reference numeral 11a) is actively cooled, and the liquid SOF component adhering to the dust collecting electrode wall surface is used as a binder to electrically capture the dust. The components to be collected are aggregated.
  • JP 2008-19849 A Japanese Patent No. 4529013
  • Patent Document 2 for a diesel engine with a small displacement mounted on a vehicle that uses light oil, which is a high-quality fuel with a low sulfur content, has an electrostatic agglomeration effect as a dust collecting electrode. Because it occurs in the vicinity, it is not necessary to cool the entire gas, and if the vicinity of the dust collection electrode can be cooled, the electrostatic aggregation effect is promoted, so that it is cooled one after another in the vicinity of the dust collection electrode, allowing condensation and liquefaction. It is a technology that is charged and collected, but for diesel engines with high displacement and high exhaust gas temperature, such as marine vessels that use low quality fuel of heavy oil or less, or engines with high PM emissions.
  • the part that cools the PM in the exhaust gas at high temperature to the temperature at which it condenses and liquefies is limited to local cooling only in the vicinity of the dust collecting electrode, the cooling capacity is insufficient and the cooling becomes insufficient. of Feed is Otherwise most PM of cooling catch up, high temperatures while not cooled, exhaust gas containing PM becomes to be discharged. Furthermore, in the cooling only in the vicinity of the dust collection electrode, the SOF content and sulfate component in the exhaust gas flowing in the vicinity thereof are condensed and collected, but the exhaust gas flowing in the part away from the dust collection electrode is almost cooled. Therefore, the SOF content in the exhaust gas is not condensed and liquefied.
  • the present inventors have solved the above-mentioned problems of the conventional exhaust gas treatment technology of a diesel engine using corona discharge, and in particular, have a large displacement and high speed using a low quality fuel less than heavy oil.
  • / or diesel engine exhaust gas which can efficiently remove PM, particularly SOF and sulfate components, in diesel engine exhaust gas from which a large amount of exhaust gas is discharged, and can exhibit stable performance over a long period of time.
  • a first aspect of the present invention is a large displacement diesel engine that removes particulate matter mainly composed of SOF and ISF contained in exhaust gas of a diesel engine that uses low quality fuel of heavy oil or less by electric means.
  • a second aspect of the present invention is a large displacement diesel engine that removes particulate matter mainly composed of SOF and ISF contained in exhaust gas of a diesel engine using a low quality fuel less than heavy oil by an electric means.
  • a third invention of the present invention is a large displacement diesel engine that removes particulate matter mainly composed of SOF and ISF contained in exhaust gas of a diesel engine using a low quality fuel equal to or less than heavy oil by electric means.
  • a gas cooling part that lowers to a temperature indicated by .85 or less is arranged, and the particulate matter contained in the exhaust gas whose temperature has been lowered when passing through the gas cooling part is charged with electrons emitted by corona discharge, It is characterized by being removed by collecting.
  • a fourth aspect of the present invention is a large displacement diesel engine that removes particulate matter mainly composed of SOF and ISF contained in the exhaust gas of a diesel engine using a low quality fuel of heavy oil or less by electric means.
  • the gas cooling part which lowers to below the temperature shown in .85 is arranged, and when passing through the gas cooling part, the soluble content of the organic solvent constituting the particulate matter is 0.85 or less at an exhaust gas temperature / fuel boiling point temperature ratio R
  • the particulate matter in the supercooled gas state is removed by being charged and collected by electrons emitted by corona discharge.
  • the condensed water is separated and removed from the exhaust gas that has passed through the gas cooling section by the steam separator on the downstream side of the gas cooling section. To do.
  • a sixth aspect of the present invention is a large displacement for removing particulate matter mainly composed of SOF content and ISF content contained in exhaust gas of a diesel engine using low quality fuel less than heavy oil by electric means.
  • Discharge charging provided with a gas cooling part for lowering the temperature below .85, and having a corona discharge part for emitting electrons by corona discharge in the middle part of the exhaust gas passage and a charging part for charging the emitted corona electrons to the particulate matter
  • a collecting part that collects charged particulate matter downstream of the exhaust gas passage, and when the exhaust gas passes through the gas cooling part, It becomes a supercooled gas state represented by an exhaust gas temperature / fuel boiling point temperature ratio R range in which the agent soluble content is 0.85 or less, and is sent to the discharge charging portion to remove particulate matter by electrical means. It is characterized by this.
  • the seventh aspect of the present invention is a large displacement for removing particulate matter mainly composed of SOF content and ISF content contained in exhaust gas of a diesel engine using low quality fuel less than heavy oil by electric means.
  • Corona discharge that has a gas cooling part that lowers to a temperature indicated by .85, and that has an electrode needle whose outer periphery is covered with a multi-layer coating film in the middle part of the exhaust gas passage, and discharges electrons by corona discharge from the electrode needle
  • a discharge charging unit having a charging unit for charging the emitted corona electrons to the particulate matter, and collecting the charged particulate matter in the downstream portion of the exhaust gas passage
  • the organic substance soluble matter of the particulate matter becomes a supercooled gas state represented by an exhaust gas temperature / fuel boiling point temperature ratio R of 0.85 or less. It is characterized in that it is configured such that the particulate matter is fed into the part and removed by electric means.
  • a diesel engine exhaust gas electrical processing method and apparatus is a diesel engine exhaust gas purification treatment means widely used as a power source for ships, generators, large construction machines and various automobiles, particularly for ships, Diesel engine that uses high quality and / or high flow rate exhaust gas that uses low quality fuel with high sulfur content or less, such as for power generation and industrial equipment.
  • Diesel engine that uses high quality and / or high flow rate exhaust gas that uses low quality fuel with high sulfur content or less, such as for power generation and industrial equipment.
  • Efficient removal of PM which is a harmful particulate material mainly composed of ISF and SOF, such as carbon and sulfate, contained in the exhaust gas of diesel engines that use low-quality fuel of high temperature or lower heavy oil This makes it possible to achieve a high exhaust gas purification rate.
  • the removal of PM contained in the exhaust gas of diesel engines that use low-quality fuels that are less than heavy oil can be stably maintained with a high purification rate over a long period of time, and is required, for example, in automobile parts. It is possible to achieve a substantial maintenance-free effect even in the diesel engine for the above-mentioned use.
  • nm-size PM particles that adversely affect the living body can be significantly reduced, which greatly contributes to the improvement of the atmospheric environment.
  • the exhaust gas electrical processing method and processing apparatus according to the present invention is effective not only in diesel engines, but also in purification of exhaust gases in various engines and devices that use low quality fuels containing heavy oil or less containing a large amount of sulfur. It goes without saying that it can be used in the future.
  • the present inventors have provided an exhaust gas processing mechanism of a diesel engine with an electrostatic cyclone DPF device shown in FIG. 6 and FIG.
  • the PM trapping mechanism in exhaust gas was improved in various ways, and the exhaust gas purification status was intensively investigated.
  • the temperature of the exhaust gas introduced into the electrostatic cyclone DPF as shown in FIG. It has been found that it has a significant effect.
  • the PM concentration was measured by a method based on ISO / DIS8173-1.
  • PM refers to all substances collected on a collection filter by the method of ISO / DIS8173-1.
  • FIG. 1 shows that the PM collection rate improves as the temperature of the exhaust gas decreases. That is, it can be seen that as the exhaust gas is cooled, the collection rate of the total PM (SOF component + ISF component) increases, and the upward trend is ISF component ⁇ PM ⁇ SOF component.
  • the component that is most affected by the temperature of the exhaust gas is the SOF component, and the collection rate ( ⁇ SOF) of the SOF component is significantly improved as the temperature of the exhaust gas decreases.
  • the reason why the SOF component cannot be collected is that the temperature of the exhaust gas at the stage of being discharged from the diesel engine is high, and therefore the majority of the SOF component is considered to be in a gas state. From this, solid or liquid particles can be collected but gas cannot be collected. A JIS collection filter or a mechanical filter such as a ceramic DPF cannot collect SOF. Therefore, a large-displacement diesel engine for ships, power generation, industrial equipment, etc., where the exhaust gas temperature is high, the flow rate is high, the flow rate is high, and the exhaust gas temperature drop is small before it is discharged to the outside.
  • FIG. 2 is a diagram showing the boiling point of heavy oil fuel, which is a hydrocarbon used in a diesel engine.
  • the horizontal axis represents the number of carbon (C) of the hydrocarbon component contained in the fuel, and the vertical axis represents the boiling point of the component.
  • C carbon
  • the boiling points of the respective components are shown connected by curves.
  • C n H m of hydrocarbon corresponding to the notation of carbon number n on the horizontal axis, m depends on the chemical structure of the hydrocarbon.
  • the SOF component is mainly generated from the unburned fuel or lubricating oil
  • the temperature of the exhaust gas flowing into the DPF and the boiling point of the fuel will be considered.
  • the temperature of the exhaust gas is higher than the boiling point of the fuel on the DPF inlet side provided in the exhaust pipe system of the diesel engine, most of the SOF component is in a gaseous state, and conversely, the temperature of the exhaust gas is the fuel. If the boiling point is lower than the boiling point of the gas, the SOF content in the exhaust gas seems to be condensed into a liquid state, but in reality the SOF content remains an unstable supercooled gas and is therefore trapped.
  • the SOF component in the gaseous state cannot be collected only by a mechanical collection mechanism such as a collection filter or a ceramic filter.
  • the sulfate component is mainly composed of the sulfur component contained in the fuel that is oxidized, and the condensed form is considered to exhibit the same form as the SOF component.
  • the present inventors installed a cooling device for cooling the entire amount of exhaust gas on the inlet side of the electric exhaust gas processing device as shown in FIGS.
  • the PM collection rate is improved by lowering the temperature of the exhaust gas as shown in FIG. That is, before the exhaust gas is introduced into the discharge charging unit of the exhaust gas processing apparatus, the temperature of all exhaust gases is lowered to reduce the degree of cooling of the SOF (temperature difference between the boiling point of the component and the temperature of the exhaust gas).
  • the gaseous (gaseous) SOF and sulfate components in the supercooled state are condensed and liquefied by the stimulation of the electrons. This phenomenon is thought to be similar to that known in Wilson's cloud chamber. If the liquefied SOF particles are charged by corona discharge, the SOF content can be collected by electrostatic dust collection. The sulfate component is considered to be the same. This is the mechanism of SOF and sulfate trapping in electrostatic dust collection as inferred by the present inventors. According to this mechanism, the higher the degree of cooling of the SOF content and the sulfate content, that is, the lower the temperature of the exhaust gas, the more the condensation of the SOF content and the sulfate content is promoted. improves.
  • a heat exchange device such as an existing recuperator may be provided as an exhaust gas cooling device in the ship on the inlet side of the device that performs electrostatic dust collection.
  • a method of installing a spray device for water or seawater, etc., completely evaporating the water droplets without agglomerating, and then taking the heat of vaporization from the exhaust gas to lower the temperature can be applied.
  • the material of the apparatus can be coped with, for example, stainless steel having corrosion resistance, sulfuric acid dew-point corrosion steel (for example, trade name: S-TEN1 manufactured by Nippon Steel Corporation).
  • the temperature of all exhaust gases discharged from the gas cooling unit and flowing into the discharge charging unit of the gas processing apparatus is limited to 100 ° C. or higher.
  • the temperature of the total exhaust gas flowing into the discharge charging portion of the gas processing apparatus discharged from the gas cooling portion is about 130 ° C., the above-mentioned problems hardly occur and it is preferable for the post-processing of the PM particulates.
  • the temperature of the total exhaust gas is preferably 130 ° C. or higher. Also, by providing a steam separator on the downstream side of the gas cooling section and upstream of the electrostatic dust collection section, water vapor, SOF content, sulfate content, carbon generated by combustion from the exhaust gas that has passed through the gas cooling section. Since the condensed water in which etc. are suspended can be separated and removed in advance, the temperature of all exhaust gases may be cooled to about 100 ° C.
  • an exhaust gas temperature / fuel boiling point temperature ratio R defined by the following formula 1 is used as an index representing the degree of cooling of the exhaust gas temperature.
  • the boiling point of each component contained in the heavy oil of diesel engine fuel is naturally different, but in the present invention, the lower limit component of the carbon number of the heavy oil component used is used as a reference, and the boiling point is used to determine the exhaust gas temperature / fuel boiling point.
  • the temperature ratio R is calculated. The reason for this is that if the “exhaust gas temperature / fuel boiling point temperature ratio R” is determined on the basis of the boiling point of the lower limit component of the carbon number, the higher the boiling point, the higher the component having a higher carbon number. This is because the average degree of supercooling for the components is greater and the result is advantageous from the point of PM collection.
  • the preferable range of the exhaust gas temperature / fuel boiling point temperature ratio R on the inlet side of the discharge charging unit that performs electrostatic dust collection is desirably 0.85 or less, and more preferably 0.70 or less. .
  • the reason is that when the exhaust gas temperature / fuel boiling point temperature ratio R exceeds 0.85, most of the SOF and sulfate components cannot be liquefied. That is, in the exhaust gas that has passed through the gas cooling section, the SOF component and the sulfate component, which are organic solvent soluble components of PM particles, are in a supercooled gas state where the exhaust gas temperature / fuel boiling point temperature ratio R is 0.85 or less.
  • the exhaust gas temperature / fuel boiling point temperature ratio R exceeds 0.85, it is desirable that the gas is charged in the discharge charging unit, and a sufficient amount of SOF and sulfate in the gaseous state remains and a sufficient amount of SOF and sulfate. This is because a supercooled gas state that is condensed and charged in the next charging / discharging portion cannot be formed, and a satisfactory purification effect cannot be obtained.
  • the temperature of all exhaust gas discharged from the diesel engine on the inlet side of the exhaust gas treatment device is cooled to a temperature appropriate for exhaust gas treatment, so that PM in all exhaust gas can be efficiently obtained.
  • This is especially effective when the temperature of the exhaust gas is higher than the boiling point of the hydrocarbon component constituting the main component of the fuel used.
  • a fuel that is heated or mixed with heated A heavy oil (contains a large amount of SOF and sulfate components), and a fuel that contains a large amount of sulfur added to the tar (pitch), etc. It is.
  • the configuration of the electric exhaust gas treatment apparatus of the present invention is an apparatus provided with only an electrostatic dust collection unit comprising a discharge charging unit 2 and a collection plate 3 as shown in FIG.
  • an apparatus provided with a second collection unit for example, a cyclone dust collection unit disclosed in Patent Document 1, may be provided next to the electrostatic dust collection unit.
  • the present invention will be described in more detail using examples.
  • the following tests were carried out by applying the electric exhaust gas treatment device of the present invention to a marine diesel engine using A heavy oil as fuel.
  • the PM collection rate was measured by a method based on the ISO / DIS8173-1.
  • a diesel particulate meter (SMPS; scanning mobility particle sizer) that measures the number of particles per unit volume with a particle size of 500 nm or less is used.
  • the number of PM particles in the exhaust gas immediately after being discharged from the engine was compared with the number of PM particles in the exhaust gas after all exhaust gas was treated by the purification method of the present invention.
  • the unit of the number of particles is expressed by number / cm 3 .
  • the first to fifth embodiments which are the first embodiment, use an apparatus having an arrangement configuration shown in FIG. 3 using an electrostatic cyclone DPF device provided with an electrostatic dust collecting section and a cyclone dust collecting section.
  • Examples 6 to 9 which are the second example, an apparatus having an arrangement configuration shown in FIG. 4 using an electrostatic dust collecting unit including a discharge charging unit and a collecting unit was used.
  • an exhaust gas cooling device including a known water-cooled multitubular heat exchanger was used as an exhaust gas cooling method.
  • This embodiment which is the first embodiment, uses the apparatus shown in FIG. 3 to cool all exhaust gas from the engine with a gas cooling device, and set the exhaust gas temperature on the DPF inlet side to 247 ° C.
  • the SOF collection rate ( ⁇ SOF), PM collection rate ( ⁇ PM), and ISF collection rate ( ⁇ ISF) were measured by setting the temperature / fuel boiling point temperature ratio R to 0.82.
  • the results are shown in Table 1.
  • the temperature of the exhaust gas on the DPF entry side represents the temperature of the exhaust gas cooled by the cooling device having the device configuration shown in FIGS.
  • the collection efficiency is evaluated as “ ⁇ ” when the PM collection rate is 80% or more, the SOF collection rate is 70% or more, the ISF collection rate is 85% or more, the PM collection rate is 70% or more, and the SOF collection rate is 60%.
  • ISF collection rate of 80% or more “ ⁇ ”, PM collection rate of 60% or more, SOF collection rate of 50%, ISF collection rate of 70% or more “ ⁇ ”, PM collection rate of less than 60%, SOF A collection rate of less than 50% and an ISF collection rate of less than 80% are evaluated as “x”.
  • the collection state of nm-sized PM particles was measured.
  • the result is shown in FIG. From the results shown in FIG. 5, the distribution state of the number of PM particles at the peak value of the PM particles contained in the exhaust gas immediately after being discharged from the diesel engine (indicated by a dotted line) is 1.5 ⁇ 10 7 particles / cm 3.
  • the distribution state (shown by the solid line) of the number of PM particles after pre-cooling all exhaust gas and then performing purification treatment is 1.7 ⁇ 10 6 particles / cm 3
  • the total number of PM particles of nm size is It can be seen that it is greatly reduced. This is because most of the PM particles of nm size are SOF and sulfate, so by lowering the exhaust gas temperature, the SOF and sulfate are condensed and collected by the electrostatic dust collection unit. It is considered a thing.
  • Example 2 the test was performed in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was set to 223 ° C. and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 0.74.
  • ⁇ SOF ⁇ SOF
  • PM collection rate ⁇ PM
  • ISF ISF collection rate
  • Example 2 the test was performed in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was set to 198 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 0.66. ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.
  • Example 2 the test was conducted in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was 177 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was 0.59. ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.
  • Example 2 the test was performed in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was 155 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was 0.52, and the SOF collection rate ( ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.
  • This embodiment which is the second embodiment, uses the apparatus shown in FIG. 4 except that the temperature of the exhaust gas on the DPF side is 240 ° C. and the exhaust gas temperature / fuel boiling point temperature ratio R is 0.80.
  • ⁇ SOF SOF collection rate
  • PM collection rate ⁇ PM
  • ISF collection rate ⁇ ISF
  • Example 6 tests were conducted in the same manner as in Example 6 except that the temperature of the exhaust gas on the DPF side was set to 200 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 0.67. ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.
  • Example 6 the test was performed in the same manner as in Example 6 except that the temperature of the exhaust gas on the DPF side was set to 151 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 0.50. ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.
  • Example 6 tests were conducted in the same manner as in Example 6 except that the temperature of the exhaust gas on the DPF side was set to 105 ° C. and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 0.35. ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.
  • Comparative Example 1 In this comparative example, the test was performed in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was set to 357 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 1.19. ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1. This comparative example corresponds to the case where the electrical purification process is performed without actually cooling the exhaust gas.
  • Example 2 Comparative Example 2
  • the test was performed in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was set to 300 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was set to 1.00.
  • ⁇ SOF ⁇ SOF
  • PM collection rate ⁇ PM
  • ISF ISF collection rate
  • Comparative Example 3 This comparative example was tested in the same manner as in Example 1 except that the temperature of the exhaust gas on the DPF side was 274 ° C., and the exhaust gas temperature / fuel boiling point temperature ratio R was 0.91, and the SOF collection rate ( ( ⁇ SOF), PM collection rate ( ⁇ PM) and ISF collection rate ( ⁇ ISF) were measured. The results are also shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrostatic Separation (AREA)

Abstract

 コロナ放電を利用した従来のディーゼルエンジンの排気ガス処理技術の問題点を解消し、特に重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中のPM、特にSOFを高効率で除去できるとともに、長期にわたって安定した性能を発揮し得るディーゼルエンジン排気ガスの電気式処理方法およびその装置を提供する。 重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、ガス冷却手段により前記粒状物質を含む全排気ガスの温度を、100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げた後、前記粒状物質を電気的手段によって除去することを特徴とする。

Description

電気式排気ガス処理方法および電気式排気ガス処理装置
 本発明は、ディーゼルエンジンの排気ガスに含まれるカーボンを主体とする粒状物質(Particulate Matter:以下「PM」と称する)や有害ガスを除去し、浄化する船舶用、発電用、産業用などの特に重油以下の低質燃料を使用する大排気量ディーゼルエンジンの排気ガス処理技術に係り、より詳しくは高い温度の排気ガスを排出する大排気量ディーゼルエンジンにおけるコロナ放電を利用した排気ガスの電気式処理方法並びに電気式処理装置に関する。
 各種船舶や発電機並びに大型建機、さらには各種自動車等の動力源としてディーゼルエンジンが広範囲に採用されているが、このディーゼルエンジンから排出される排気ガスに含まれるPMは、周知の通り大気汚染をきたすのみならず、人体に極めて有害な物質であるため、その排気ガスの浄化は極めて重要である。このため、ディーゼルエンジンの燃焼方式の改善や各種排気ガスフィルタの採用、そしてコロナ放電を利用して電気的に処理する方法等、既に数多くの提案がなされ、その一部は実用に供されている。
 このような排気ガス浄化技術において、コロナ放電を利用して電気的に処理する方法は、排気ガス中のPMを放電電極によるコロナ放電により帯電させ、その帯電しているPMを静電気力で捕集するものであるが、その放電電極には数万ボルトの高電圧が印加され、さらには腐食性を有する排気ガスに晒されることから長期間にわたって安定した性能の維持が望まれている。さらに、帯電したPMを効率よく静電集塵することも重要である。
 ここで、ディーゼルエンジンの排気ガス中のPM(粒状物質)の成分は、有機溶剤可溶分(SOF:Soluble Organic Fractions、以下「SOF」と称す)と有機溶剤非可溶分(ISF:Insoluble Organic Fractions、以下「ISF」と称す)の2つに分けられるが、そのうちSOF分は、燃料や潤滑油の未燃分が主な成分で、発ガン作用のある多環芳香族等の有害物質が含まれる。一方、ISF分は、電気抵抗率の低いカーボン(すす)とサルフェート(Sulfate:硫酸塩)成分を主成分とするもので、このSOF分およびISF分は、その人体、環境に与える影響から、極力少ない排気ガスが望まれている。特に、生体におけるPMの悪影響の度合いは、その粒子径がnmサイズになる場合に特に問題であるとも言われている。
 そこで、本発明者らはディーゼルエンジンの排気ガス中のSOF分とISF分を主な成分とするPMを捕集除去する手段として、静電集塵機とサイクロン集塵機を組み合わせた、静電サイクロン式の排気ガス浄化装置(以下、このような排気ガスの浄化装置をDPF:Diesel Particulate Filterと称す)を先に提案した(特許文献1参照)。この浄化装置では、静電集塵において電気抵抗率の低いカーボンを含有するPMの捕集を可能にするDC50kVの高電圧においても、そのコロナ放電を行う放電電極の絶縁性能を長期間維持する構造を提案している。
 すなわち、この浄化装置は図6にその構造を示すように、装置本体の本体壁1-1から本体内に突出して設けられる排気ガス誘導管7と、該排気ガス誘導管7の本体壁1-1外側の外周部側壁を貫いて嵌挿され、その先端が排気ガス誘導管7内における先端開口部付近に達して設けられるシールガス管5と、該シールガス管5によって部分的に排気ガス通路1から隔てられ、その放電極の先端をシールガス管5の先端開口部から、排気ガス通路1の下流側に向けて突出して配置される電極針4と、当該装置本体内における排気ガス通路1の下流側に配設される捕集板3と、電極針4に高圧直流電圧を印加する高圧電源装置6とによって構成され、さらに電極針4によるコロナ放電によって電子10を放出するコロナ放電部2-1と、放出されたコロナ電子10を排気ガスG1中のカーボンを主体とする粒状物質Sに帯電させる帯電部2-2とからなる放電帯電部が設けられ、帯電した粒状物質Sを捕集する捕集板3を、装置本体の本体壁1-1内に配置するように構成したもので、電極針4は静電集塵における電気抵抗率の低いカーボンを含有するPMの捕集を可能にするために、DC50kVにもなる高電圧の印加に際してもコロナ放電の電極針4の絶縁性能を維持できる構造、すなわち図7に示すように電極針4の外周部を、絶縁材料で被覆した第1層絶縁体被覆4-a、第2層導体被覆4-b、第3層絶縁体被覆4-cからなる多層被覆層によって被覆し、かつ先端部4-1はシールガス管5の開口端から所定長さ突出した構造となっているもので、ディーゼルエンジンの排気ガスのPMの捕集効率の向上とその維持・持続に大きく寄与するものである。なお、4-dはアース導体線、G2はシールガスである。
 一方、帯電したPMを静電集塵する方法として、特許文献2に開示される排気ガス浄化装置が知られている。この排気ガス浄化装置は、排気ガス中のSOF分が冷却、凝縮して液化されると、粘着性を持つミストとなり、このミスト状のSOF分は「鳥もちの原理」により超微小粒子を補足して凝集肥大化する性質、並びに、その静電凝集作用は集塵電極近傍で起きるため、その集塵電極近傍が冷却できれば静電凝集効果が促進されるという性質を利用して、帯電したPMが凝集する集塵電極(特許文献2の図1、符号11a参照)壁面のみを積極的に冷却し、その集塵電極壁面に付着した液体SOF成分をバインダーとして利用することにより、電気的に捕集対象成分を凝集させるものである。
特開2008-19849号公報 特許第4529013号公報
 しかしながら、コロナ放電などを利用して電気的に排気ガス中のPMを処理するディーゼルエンジンの排気ガス処理技術においては、以下に記載する課題が生じている。
 すなわち、発電用や船舶用エンジンなどの、硫黄分の少ない軽油を使用する自動車用ディーゼルエンジンと比較して格段に大きな排気量を有しかつ重油以下の低質で硫黄分を多く含有する(重油は軽油に対し10~70倍程度の硫黄分を含有:JIS K2204「軽油」、K2205「重油」による)燃料を使用する大排気量ディーゼルエンジンに、例えば先の特許文献1に記載の排気ガス浄化装置を用いた場合には、重油以下の低質燃料中の硫黄分が排気ガスにSOFとして含まれるだけでなくサルフェートとなりエンジン構成部品、特に排気関係部品を腐食するという課題を克服する必要がある。
 また、硫黄分の含有量の少ない上質な燃料である軽油を使用する自動車用に搭載した小排気量のディーゼルエンジン用である特許文献2に開示される技術は、静電凝集作用は集塵極近傍で起きるため、ガス全体を冷却する必要がなく、集塵極近傍が冷却できれば静電凝集効果が促進されるので、集塵極近傍のみにおいて次々に冷却されて凝縮、液体化が可能となり、帯電され、捕集する技術であるが、重油以下の低質燃料を使用する舶用などの大排気量であって流速が速くかつ排気ガスの温度の高いディーゼルエンジン、あるいはPMの排出量の多いエンジンでは、高い温度の排気ガス中のPMの凝縮・液体化する温度まで冷却する部分を集塵電極近傍のみでの局部的な冷却に限定したのでは冷却能力が不足して不十分な冷却となり、PMの供給が多くてPMの冷却が追い付かない場合は、冷却されないままで温度が高く、PMを含有した排気ガスが排出されることになってしまう。さらに、集塵電極近傍のみでの冷却ではその近傍を流れる排ガス中のSOF分やサルフェート成分は凝縮液化され捕集されるが、集塵電極から離れた部分を流れる排ガスはほとんど冷却されることがないから、当該排ガス中のSOF分は凝縮液化されることがない。したがって、集塵電極から離れた部分を流れる排ガス中のSOF分は、捕集されることなく排出されることになる。このように、前記重油以下の低質燃料を使用する大排気量ディーゼルエンジンに、硫黄分の含有量の少ない上質な燃料である軽油を使用する特許文献2に記載の排気ガス浄化装置を用いた場合には、前記サルフェート成分によるエンジン構成部品の腐食の問題のみならず、排気ガス中のPM、特にSOF分の除去が十分に行われないという問題がある。
 そこで本発明者らは、このような問題に鑑み、コロナ放電を利用した従来のディーゼルエンジンの排気ガス処理技術の前記問題点を解消し、特に重油以下の低質燃料を使用する大排気量で高速及び/又は大流量の排気ガスが排出されるディーゼルエンジンの排気ガス中のPM、特にSOF分やサルフェート成分を高効率で除去できるとともに、長期にわたって安定した性能を発揮し得るディーゼルエンジン排気ガスの電気式処理方法およびその装置を提案しようとするものである。
 本発明の第一の発明は、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有するSOF分およびISF分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、ガス冷却手段により粒状物質を含む全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げた後、その粒状物質を電気的手段によって除去することを特徴とするものである。
 本発明の第2の発明は、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有するSOF分およびISF分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、電気式排気ガス処理装置における排気ガス通路の上流部に全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を配し、そのガス冷却部を通過した際に温度が下げられた排気ガスに含まれる粒状物質を電気的手段により帯電させて捕集することによって除去することを特徴とするものである。
 本発明の第3の発明は、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有するSOF分およびISF分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、電気式排気ガス処理装置における排気ガス通路の上流部に全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を配し、そのガス冷却部を通過した際に温度が下げられた排気ガスに含まれる粒状物質を、コロナ放電によって放出された電子により帯電させて、捕集することによって除去することを特徴とするものである。
 本発明の第4の発明は、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有するSOF分およびISF分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、電気式排気ガス処理装置における排気ガス通路の上流部に全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を配し、そのガス冷却部を通過した際に粒状物質を構成する有機溶剤可溶分を0.85以下の排気ガス温度/燃料沸点温度比Rで表わされる過冷却気体状態とした粒状物質を、コロナ放電によって放出された電子により帯電させて捕集することによって除去することを特徴とするものである。
 本発明の電気式排気ガス処理方法においては、第5の発明として、ガス冷却部の下流側において気水分離器によりガス冷却部を通過した排気ガスから凝縮水を分離除去することを好ましい態様とするものである。
 本発明の第6の発明は、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有するSOF分およびISF分を主体とする粒状物質を、電気的手段によって除去するための大排気量ディーゼルエンジン用電気式排気ガス処理装置において、その処理装置における排気ガス通路の上流部に、全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を備え、排気ガス通路の中流部にコロナ放電によって電子を放出するコロナ放電部と放出されたコロナ電子を粒状物質に帯電させる帯電部とを備える放電帯電部を有し、排気ガス通路の下流部に帯電した粒状物質を捕集する捕集部を備え、排気ガスがガス冷却部を通過した際に、粒状物質の有機溶剤可溶分が0.85以下の排気ガス温度/燃料沸点温度比R範囲で表わされる過冷却気体状態となって放電帯電部に送り込まれて粒状物質を電気的手段によって除去する構成となしたことを特徴とするものである。
 本発明の第7の発明は、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有するSOF分およびISF分を主体とする粒状物質を、電気的手段によって除去するための大排気量ディーゼルエンジン用電気式排気ガス処理装置において、その処理装置における排気ガス通路の上流部に、全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を備え、排気ガス通路の中流部に外周を多層構造の被膜で覆れた電極針を配置し、その電極針によるコロナ放電によって電子を放出するコロナ放電部と放出されたコロナ電子を粒状物質に帯電させる帯電部とを備える放電帯電部を有し、排気ガス通路の下流部に帯電した粒状物質を捕集する捕集部を備え、排気ガスがガス冷却部を通過する際に、粒状物質の有機溶剤可溶分が0.85以下の排気ガス温度/燃料沸点温度比Rで表わされる過冷却気体状態となって放電帯電部に送り込まれて粒状物質を電気的手段によって除去する構成となしたことを特徴とするものである。
 本発明の電気式排気ガス処理装置においては、第8の発明として、ガス冷却部の下流側においてガス冷却部を通過した排気ガスから凝縮水を分離除去する気水分離器を設けることを好ましい態様とするものである。
 本発明によるディーゼルエンジン排気ガスの電気式処理方法および装置は、船舶、発電機、大型建機および各種自動車の動力源として広く用いられるディーゼルエンジン排気ガスの浄化処理手段であって、特に船舶用、発電用、産業機器用などの硫黄分が多く含有される重油以下の低質燃料を使用する大排気量で高速及び/又は大流量の排気ガスが排出されるディーゼルエンジン、もしくは排出される排気ガスの温度が高い重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含まれるカーボン、サルフェートなどのISF分およびSOF分を主体とする有害な粒状物質であるPMを、効率的に除去することを可能とし、排気ガスの浄化率を高いレベルで達成することができる。
 さらに、重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含まれるPMの除去が、長期間にわたって高い浄化率を以って安定的に持続可能となる上、例えば自動車部品などにおいて要求される実質的メンテナンスフリーを前記用途のディーゼルエンジンにおいても達成できる等の優れた効果を奏する。
 また、生体に悪影響を及ぼすnmサイズのPM粒子の大幅な低減が可能となり、大気環境の改善に大きく寄与するものである。
 なお、本発明による排気ガスの電気式処理方法および処理装置は、ディーゼルエンジンのみならず、硫黄分が多く含有される重油以下の低質燃料を使用する各種機関・装置の排気ガスの浄化においても有効に活用できることはいうまでもない。
本発明におけるディーゼルエンジンの排気ガスの温度と捕集率の関係を示す図である。 ディーゼルエンジンに使用する重油燃料の沸点を示す図である。 本発明に係るディーゼルエンジンの電気式排気ガス処理装置の配置構成の第一の実施例を示すブロック図である。 本発明に係るディーゼルエンジンの電気式排気ガス処理装置の配置構成の第二の実施例を示すブロック図である。 本発明の実施例1におけるPM粒子の粒子径分布を示す図である。 従来のディーゼルエンジンの電気式排気ガス処理装置の静電集塵部の一例を示す概略断面図である。 図6に示す電気式排気ガス処理装置のコロナ放電極部を拡大した断面図である。
 本発明者らは排気ガスの厳しい規制に対応するために、ディーゼルエンジンの排気ガス処理機構について、ディーゼルエンジンの排気管に図6、図7に示す静電サイクロンDPF装置及び後述する本発明の排気ガス冷却手段を用い、排気ガス中のPMの捕集機構を種々に改良して排気ガスの浄化状況を鋭意調査した。
 その結果、排気ガス配管に熱交換器を設けて全排気ガスを予め冷却することにより、図1に示すように静電サイクロンDPFに導入される排気ガスの温度の高低が、PM捕集率に大きく影響することを知見した。ここで、PM捕集率は、「捕集率=1-(DPF処理後のPM濃度)/(DPF処理前のPM濃度)」と定義する。またPM濃度は、ISO/DIS8173-1に準拠した方法で計測した。
 なお、本発明でのPMとは、前記ISO/DIS8173-1の方法で捕集フィルター上に捕集された全ての物質を云う。
 図1において、全PM(SOF分+ISF分)の捕集率をηPM、SOF分の捕集率をηSOF、ISF分の捕集率をηISFと表示する。図1からは、排気ガスの温度が低下するにつれて、PM捕集率が向上してくることがわかる。すなわち、排気ガスを冷やすほど全PM(SOF分+ISF分)の捕集率は上昇し、その上昇傾向はISF分<PM<SOF分となることがわかる。
 特に、排気ガスの温度の影響を最も大きく受ける成分はSOF分で、排気ガスの温度が低くなるにつれSOF分の捕集率(ηSOF)は顕著に向上している。すなわち排気ガスの温度が高い状態、例えば300℃を超える排気ガスの温度では、SOF分の高い捕集は困難となることがわかる。一方、ISF分については排気ガスの温度の影響は比較的小さいことがわかる。
 ここで、SOF分捕集の温度傾向に関しては、参考文献「日本マリンエンジニアリング学会編:平成17年度船舶排出大気汚染物質削減技術検討調査報告書,日本マリンエンジニアリング学会,2006年3月,p58-60. 」、および参考文献「日本マリンエンジニアリング学会編:マリンエンジニアリング技術者継続教育基礎コース,日本マリンエンジニアリング学会,2009年7月,p315-3170. 」から、JISZ8808に定められたPM濃度測定法では、排気管中に捕集用フィルタを挿入して排気ガスを吸引するが、この排気ガスは高温のままでフィルタを通過するために、この方法では排気ガス中のPMのうちISF分は捕集できるが、SOF分は捕集できないと言われている。
 このSOF分が捕集できない理由は、ディーゼルエンジンから排出された段階での排気ガスの温度は高く、したがってSOF分の大部分は気体状態と考えられる。このことから固体や液体の粒子は捕集できるが気体は捕集できないJISの捕集用フィルタやセラミックDPFのような機械式のフィルタでは、SOF分は捕集できないこととなる。
 したがって、排気ガスの温度自体が高く、かつ大流量で流速が速く、また外部に排出されるまでに排気ガスの温度低下の小さい船舶用、発電用、産業機器用などの大排気量のディーゼルエンジンに、従来からの自動車などの小排気量ディーゼルエンジンの排気ガス処理に対応する機構の排気ガス浄化装置を使用した場合には、排気ガス浄化装置に取り込まれる直前の排気ガスの温度が高く、排気ガス中のSOF分は気体状態となっているために、十分にSOF分を除去できなかったものと考えられる。
 一方、静電集塵の場合に関しても捕集が可能な物質は、コロナ電子が帯電できる固体、あるいは液体の粒子であり、気体は帯電されないので静電捕集ができない。
 したがって、静電集塵においてSOF分を捕集するとすれば、エンジンから排出された直後の排気ガスにおいて気体であったSOF分が何等かの作用により気体の状態から凝縮して液体の状態に変化し、静電集塵部(例えば図6に示す帯電放電部2、特に帯電部2-2から捕集板3近傍にかけての領域)に存在していることが必要であると考えられる。
 また、排気ガスの温度が高くなるにつれてSOF分の気体成分組成が多くなると考えられることからもSOF分の捕集率は、排気ガスが高温になるほど低下する図1に示される捕集率の温度傾向が理解できる。
 以下、本発明の静電集塵におけるSOF分、サルフェート成分の捕集メカニズムについて説明する。
 図2は、ディーゼルエンジンに使用する炭化水素である重油燃料の沸点を示す図で、横軸は燃料に含有される炭化水素成分の炭素(C)数、縦軸は当該成分の沸点である。図2では各成分の沸点を曲線で結んで表示してある。横軸の炭素数nの標記に対応する炭化水素の一般化学式Cにおいて、mは炭化水素の化学構造に依存し、例えば、アルカン類(鎖式飽和炭化水素)であればCnH2n+2であり、炭素数nが17より大きい一般の重油燃料の場合は、比較的沸点の高い炭化水素成分・多環芳香族成分を軽油より多く含有している。なお、標準的な軽油の炭素数nは14<n<20である。
 ここで、SOF分が燃料や潤滑油の未燃分として生じるものを主な成分とすることからDPFに流入する排気ガスの温度と燃料の沸点を考えてみる。
 ディーゼルエンジンの排気管系に設けられるDPFの入口側において、排気ガスの温度の方が燃料の沸点より高い場合では、SOF分は気体状態でその多くが存在し、逆に排気ガスの温度が燃料の沸点より低い場合には、排気ガス中のSOF分は凝縮して液体状態になっていると思われるが、実際にはSOF分は不安定な過冷却状態の気体のままであり、したがって捕集用フィルタやセラミックフィルタなどのメカニカルな捕集機構のみでは、この気体状態のSOF分は捕集できない。
 なお、サルフェート分は燃料中に含まれる硫黄分が酸化して生じるものを主な成分とするもので、その凝縮形態においては前記SOF分と同様の形態を呈するものと考えられる。
 そこで、本発明者らは、図3、図4に示すように、電気式排気ガス処理装置の入口側に排気ガスの全量を冷却する冷却装置を設置して、排気ガス処理装置に導入する全排気ガスの温度を種々に変更する実験を行った結果、図1に示すように排気ガスの温度を低下させることによりPMの捕集率が向上することを見出した。
 すなわち、排気ガス処理装置の放電帯電部に排気ガスが導入される以前に、全排気ガスの温度を低下させてSOF分の冷却度(当該成分の沸点と排気ガスの温度との温度差)を大きくし、その状態で排気ガスにコロナ放電による電子を放射すると、過冷却状態にある気体状(ガス状)のSOF分やサルフェート分は、電子の刺激により凝縮液化する。この現象は、ウイルソンの霧箱で知られるものと類似の現象と考えられる。この液化したSOF粒子をコロナ放電により帯電すれば、静電集塵によりSOF分を捕集できるのである。また、サルフェート成分も同様であると考えられる。これが本発明者らの推論する静電集塵におけるSOF分およびサルフェート分捕集のメカニズムである。
 このメカニズムによれば、SOF分、サルフェート分の冷却度が大きいほど、すなわち排気ガスの温度が低いほど、SOF分やサルフェート成分の凝縮が促進されることからSOF分およびサルフェート成分の捕集率は向上する。
 このように排気ガスの温度を低下させることにより、SOF分、サルフェート分の捕集率は向上する。その排気ガスの温度を低下させる方法としては、静電集塵を行う装置の入口側に、船舶では既設のレキュペレータなどの熱交換装置を排気ガス冷却装置として設ければ良い。また、その他の排気ガス冷却装置としては、水や海水の噴霧装置等を設置し、その水滴を凝集させないで完全に蒸発させ、その時に排気ガスから気化熱を奪って温度を下げる方法も適用できるが、水滴が完全に蒸発せずに凝集して水滴のまま静電集塵装置に溜まると装置の腐食の原因となるので、注意が必要である。しかし、装置の材料を耐食性を備えた例えばステンレス鋼、耐硫酸露点腐食鋼(例えば、新日本製鉄株式会社製の商品名:S-TEN1)などにより対応することができる。
 なお、水滴を凝集させないで完全に蒸発させる点からは、高温水や高温海水の噴霧が望ましい。この高温噴霧は、参考文献「特開2001-132937号公報、段落0007」で指摘される通り、第一に高温水であるために水滴粒子が過飽和蒸気圧になることがなく、よって水滴同士の凝集が発生せず、そのまま蒸発消滅して排気ガスの急速冷却が可能となる点、第二に水の粘度が常温時の約1/3程度迄下がることから、水滴の粒が非常に細かい状態で噴霧できる点にある。ここで、噴霧するものは海上航海の船舶ならば海水が経済的には有利である。
 なお、また、排気ガスの温度を下げる方法としては、前記したレキュペレータなどの熱交換装置、水や海水の噴霧装置を単独で用いるのみならず、これらを組み合わせて用いてもよいことはいうまでもない。
 本発明において、ガス冷却部から排出されてガス処理装置の放電帯電部に流入する全排気ガスの温度を100℃以上に限定した理由は、100℃未満では排気ガス中の水分などが捕集面に大量に凝縮し、捕集面に堆積したPM微粒子が凝縮した水分により粘着されて捕集面から剥離し難くなり、排気ガスのガス流中に砂嵐状あるいは吹雪状に分散・舞い上がった状態での流下がされ難くなってその後の処理が難しくなるためである。なお、現実にはガス冷却部から排出されるガス処理装置の放電帯電部に流入する全排気ガスの温度は130℃程度であれば前記不具合はほとんど発生せずPM微粒子の後処理上好ましい。このため、本発明では前記全排気ガスの温度を好ましくは130℃以上とした。
 また、ガス冷却部の下流側で静電集塵部の上流側に気水分離器を設けることにより、ガス冷却部を通過した排気ガス中から燃焼により生じた水蒸気、SOF分、サルフェート分、カーボンなどが懸濁した凝縮水を予め分離除去することができるので、全排気ガスの温度を100℃程度まで冷却しても良い。
 本発明において、排気ガスの温度の冷却程度を表す指標としては、下記式1で定義する排気ガス温度/燃料沸点温度比Rを用いることとする。
[式1]
 排気ガス温度/燃料沸点温度比R=排気ガスの温度÷重油燃料の沸点
 なお、ディーゼルエンジンの燃料の重油などに含まれる各成分の沸点は当然異なるが、本発明では使用する重油成分の炭素数の下限の成分を基準にとり、その沸点を用いて排気ガス温度/燃料沸点温度比Rを算出している。その理由は、炭素数の下限の成分の沸点を基準に取って「排気ガス温度/燃料沸点温度比R」を決定すれば、炭素数が多い成分ほど沸点が高いことから、重油に含まれる全成分についての平均的な過冷却度はより大きくなり、結果PM捕集の点からは有利になるからである。
 この排気ガス温度/燃料沸点温度比Rの適正値は、船舶用ディーゼルエンジンを用い、燃料にA重油を使用した実験を行って求めた。試験に使用した重油成分の炭素数の下限成分として、ヘプタデカンC17H36(C=17)を採り、その沸点(約300℃)を用いて排気ガス温度/燃料沸点温度比Rを算出した。その結果、静電集塵を行う放電帯電部の入口側における排気ガス温度/燃料沸点温度比Rの好ましい範囲としては、0.85以下であることが望ましく、より好ましくは0.70以下である。その理由は、排気ガス温度/燃料沸点温度比Rが0.85を超えると、ほとんどのSOF分、サルフェート分を液状化させられないためである。すなわち、ガス冷却部を通過した排気ガスにおいて、PM粒子の有機溶剤可溶分であるSOF分およびサルフェート分は、排気ガス温度/燃料沸点温度比Rが0.85以下の過冷却気体状態で、放電帯電部に送り込まれることが望ましく、その排気ガス温度/燃料沸点温度比Rが0.85を超える状態では、気体状態のSOF分及びサルフェート分が多く残存して十分な量のSOF分及びサルフェート分を、次の帯電放電部において凝縮液化、帯電する過冷却気体状態を形成できず、満足する浄化効果が得られないためである。
 このように、本発明では排気ガス処理装置の入側におけるディーゼルエンジンから排出される全排気ガスの温度を、排気ガス処理に適正な温度に冷却することにより、全排気ガス中のPMを効率良く捕集するもので、特に排気ガスの温度が使用する燃料の主成分を構成する炭化水素成分の沸点より高い場合に、その効果をより発揮する。特に、船舶用、発電用、産業機器用などの大型、大排気量で高速及び/又は大流量の排気ガスが排出されるディーゼルエンジンの燃料に用いられる原油残渣分の多いC重油、C重油を加熱、あるいは加熱したA重油を混合した燃料(SOF分やサルフェート成分を多く含む)、タール分(ピッチ分)に水素添加した硫黄分の多い燃料などを用いた場合には顕著な効果をもたらすものである。
 なお、本発明の電気式排気ガス処理装置の構成は、ガス冷却装置の次位に図6に示すような放電帯電部2と捕集板3とからなる静電集塵部のみを備えた装置でも、さらに静電集塵部の次位に第2の捕集部、例えば特許文献1のサイクロン集塵部などを備えた装置でも良い。
 次に、実施例を用いて本発明をより詳細に説明する。
 本発明の効果を確認するため、燃料としてA重油を用い舶用ディーゼルエンジンに本発明の電気式排気ガス処理装置を適用して以下の試験を実施した。なお、以下の実施例における[式1]による排気ガス温度/燃料沸点温度比Rの計算における重油燃料の沸点は、ヘプタデカンC17H36(C=17)の沸点(約300℃)を用いた。
 以下の実施例ではまず、前記ISO/DIS8173-1に準拠した方法によりPM捕集率の計測を行った。
 次いで、排気ガス中のnmサイズのPM粒子の捕集状況を調べるため、粒子径が500nm以下の単位体積当たりの個数を計測する微粒子計測器(SMPS;走査式モビリティーパーティクルサイザー)を使用し、ディーゼルエンジンから排出された直後の排気ガスのPM粒子個数と本発明の浄化方法で全排気ガスを処理した後の排気ガスのPM粒子個数を比較した。粒子個数の単位は、個/cmで表わしている。
 また、第一の実施例である実施例1~5は、静電集塵部とサイクロン集塵部を備えた静電サイクロンDPF装置を用いた図3に示す配置構成の装置を使用し、第二の実施例である実施例6~9は、放電帯電部と捕集部を備えた静電集塵部を用いた図4に示す配置構成の装置を使用した。なお、各実施例では排気ガスの冷却方法に、公知の水冷の多管式熱交換器からなる排気ガス冷却装置を使用した。
 第一の実施例である本実施例は、図3に示す装置を使用してエンジンからの全排気ガスをガス冷却装置により冷却し、DPF入側の排気ガスの温度を247℃として、排気ガス温度/燃料沸点温度比Rを0.82に設定してSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に示す。
 なお、表1において、DPF入り側の排気ガスの温度は、図3、図4に示す装置構成の冷却装置で冷却された排気ガスの温度を表わしている。また捕集性の評価は、PM捕集率80%以上、SOF捕集率70%以上、ISF捕集率85%以上を「◎」、PM捕集率70%以上、SOF捕集率60%以上、ISF捕集率80%以上を「○」、PM捕集率60%以上、SOF捕集率50%、ISF捕集率70%以上を「△」、PM捕集率60%未満、SOF捕集率50%未満、ISF捕集率80%未満を「×」と評価している。
 さらに本実施例において、nmサイズのPM粒子の捕集状況を測定した。その結果を図5に示す。図5に示す結果より、ディーゼルエンジンからの排出直後の排気ガスに含まれるPM粒子のピーク値の粒子個数の分布状況(点線で示す)が1.5×10個/cmであるのに対して、全排気ガスを予め冷却した後浄化処理を施した後のPM粒子個数の分布状況(実線で示す)は1.7×10個/cmとなり、nmサイズのPM粒子の総数を大きく低減していることがわかる。これは、nmサイズのPM粒子の大部分がSOF分とサルフェート分であることから、排気ガス温度を低くすることによって、SOF分とサルフェート分が凝縮して静電集塵部で捕集されたものと考えられる。
 本実施例は、DPF入り側の排気ガスの温度を223℃とし、排気ガス温度/燃料沸点温度比Rを0.74とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 本実施例は、DPF入り側の排気ガスの温度を198℃とし、排気ガス温度/燃料沸点温度比Rを0.66とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 本実施例は、DPF入り側の排気ガスの温度を177℃とし、排気ガス温度/燃料沸点温度比Rを0.59とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 本実施例は、DPF入り側の排気ガスの温度を155℃とし、排気ガス温度/燃料沸点温度比Rを0.52とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 第二の実施例である本実施例は、図4に示す装置を使用し、DPF入り側の排気ガスの温度を240℃とし、排気ガス温度/燃料沸点温度比Rを0.80とした以外は、実施例1と同様に試験を行い、SOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 本実施例は、DPF入り側の排気ガスの温度を200℃とし、排気ガス温度/燃料沸点温度比Rを0.67とした以外は、実施例6と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 本実施例は、DPF入り側の排気ガスの温度を151℃とし、排気ガス温度/燃料沸点温度比Rを0.50とした以外は、実施例6と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
 本実施例は、DPF入り側の排気ガスの温度を105℃とし、排気ガス温度/燃料沸点温度比Rを0.35とした以外は、実施例6と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
(比較例1)
 本比較例は、DPF入り側の排気ガスの温度を357℃とし、排気ガス温度/燃料沸点温度比Rを1.19とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。この比較例は、実際に排気ガスを冷却せずに電気式浄化処理を行った場合に相当する。
(比較例2)
 本比較例は、DPF入り側の排気ガスの温度を300℃とし、排気ガス温度/燃料沸点温度比Rを1.00とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
(比較例3)
 本比較例は、DPF入り側の排気ガスの温度を274℃とし、排気ガス温度/燃料沸点温度比Rを0.91とした以外は、実施例1と同様に試験を行いSOF捕集率(ηSOF)、PM捕集率(ηPM)およびISF捕集率(ηISF)を測定した。その結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、排気ガス温度/燃料沸点温度比Rが0.85以下になれば、SOF捕集率(ηSOF)が60%以上、PM捕集率(ηPM)が75%以上、ISF捕集率(ηISF)が80%以上の高い捕集率が得られた。
 一方、排気ガス温度が高いままの比較例では、満足すべき結果が得られなかった。
 この結果は、船舶用ディーゼルエンジンの平均的なPM排出率が通常0.6g/kWh程度であることから、PM捕集率(ηPM)が75%以上の実施例に示す大排気量ディーゼルエンジン用電気式排気ガス処理装置を装備した船舶からのPM排出率は0.6×(1-0.75)=0.15g/kWh以下とすることが可能であることを示している。
 この値は、すでに船舶からのPM排出規制を実施している米国の2012年度第3次規制案における規制値(参考文献「日本マリンエンジニアリング学会編:平成19年度船舶排出大気汚染物質削減技術検討調査報告書,日本マリンエンジニアリング学会,2008年3月,p90. 」参照)0.27g/kWhを大きく満足しているものである。
 なお、実施例1~5で使用した図3に示す装置では,静電集塵部で捕集されたPMの凝集堆積厚みが増加して過大になると、PMの凝集塊として剥離する。この剥離したPM凝集塊は、後段のサイクロン集塵部で捕集され、ダストボックスに回収し蓄積される。また、実施例6~9で使用した図4に示す装置の場合には、静電集塵部で捕集されたPMはメカニカルな振動や掻落(ブラッシング)機構などによりダストボックスに回収し蓄積させても良い。
 また、本発明は図3、図4に示す装置において、排気ガス冷却装置の下流側に気水分離器を設置することにより、排気ガスから凝縮水を分離・除去することができる。この凝縮水を予め除去しておくことにより、凝縮水に硫黄起源生成物や窒素起源生成物が含有されて排気ガス内から減少し、凝縮水に付着するPM中のISF(すす)に硫黄起源生成物や窒素起源生成物が吸着されて減少し、排気ガス中のPM(SOF、ISF)並びに窒素起源生成物の含有量を減らし、DPFの負荷を軽減させると共に、エンジンおよび関連部品の耐久性を損ねる危惧をさらに減らすことができる。このような効果は、排気ガス冷却装置から排出される排気ガス温度が100℃程度付近の場合に特に顕著である。なお、前記気水分離器では凝縮水を完全に除去する必要はなく、大きな粒子をバッフル(分離板)に衝突させて分離し、微細な液状粒子と固体粒子を後段のコロナ放電により帯電させてクーロン力により捕集板に吸着させて捕集・集塵させることにより除去すればよい。
1   排気ガス通路
1-1 本体壁
2   放電帯電部
2-1 コロナ放電部
2-2 帯電部
3   捕集板
4   電極針
4-a 第1層絶縁体被覆
4-b 第2層導体被覆
4-c 第3層絶縁体被覆
4-d アース導体線
5   シールガス管
6   高圧電源装置
7   排気ガス誘導管
8   PM
10  コロナ電子
G1  排気ガス
G2  シールガス

Claims (8)

  1.  重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、
     ガス冷却手段により前記粒状物質を含む全排気ガスの温度を、100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げた後、前記粒状物質を電気的手段によって除去することを特徴とする電気式排気ガス処理方法。
  2.  重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、
     電気式排気ガス処理装置における排気ガス通路の上流部に全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を配し、前記ガス冷却部を通過した際に温度が下げられた排気ガスに含まれる粒状物質を電気的手段により帯電させて捕集することによって除去することを特徴とする電気式排気ガス処理方法。
  3.  重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、
     電気式排気ガス処理装置における排気ガス通路の上流部に全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を配し、前記ガス冷却部を通過した際に温度が下げられた排気ガスに含まれる粒状物質を、コロナ放電によって放出された電子により帯電させて、捕集することによって除去することを特徴とする電気式排気ガス処理方法。
  4.  重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去する大排気量ディーゼルエンジンの電気式排気ガス処理方法において、
     電気式排気ガス処理装置における排気ガス通路の上流部に全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を配し、前記ガス冷却部を通過した際に粒状物質を構成する有機溶剤可溶分を0.85以下の排気ガス温度/燃料沸点温度比Rで表わされる過冷却気体状態とした前記粒状物質を、コロナ放電によって放出された電子により帯電させて捕集することによって除去することを特徴とする電気式排気ガス処理方法。
  5.  前記ガス冷却部の下流側において気水分離器によりガス冷却部を通過した排気ガスから凝縮水を分離除去することを特徴とする請求項1~4のいずれか1項に記載の電気式排気ガス処理方法。
  6.  重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去するための大排気量ディーゼルエンジン用電気式排気ガス処理装置において、
     前記処理装置における排気ガス通路の上流部に、全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を備え、前記排気ガス通路の中流部に、コロナ放電によって電子を放出するコロナ放電部と放出されたコロナ電子を前記粒状物質に帯電させる帯電部とを備える放電帯電部を有し、前記排気ガス通路の下流部に、帯電した前記粒状物質を捕集する捕集部を備え、前記排気ガスが前記ガス冷却部を通過する際に前記粒状物質の有機溶剤可溶分が0.85以下の排気ガス温度/燃料沸点温度比R範囲で表わされる過冷却気体状態となって前記放電帯電部に送り込まれて、前記粒状物質を電気的手段によって除去する構成となしたことを特徴とする電気式排気ガス処理装置。
  7.  重油以下の低質燃料を使用するディーゼルエンジンの排気ガス中に含有する有機溶剤不溶性分および有機溶剤可溶性分を主体とする粒状物質を、電気的手段によって除去するための大排気量ディーゼルエンジン用電気式排気ガス処理装置において、
     前記処理装置における排気ガス通路の上流部に、全排気ガスの温度を100℃以上、好ましくは130℃以上、排気ガス温度/燃料沸点温度比R=0.85で示す温度以下に下げるガス冷却部を備え、前記排気ガス通路の中流部に、外周を多層構造の被膜で覆れた電極針を配置し、前記電極針によるコロナ放電によって電子を放出するコロナ放電部と放出されたコロナ電子を前記粒状物質に帯電させる帯電部とを備える放電帯電部を有し、前記排気ガス通路の下流部に、帯電した前記粒状物質を捕集する捕集部を備え、前記排気ガスが前記ガス冷却部を通過する際に前記粒状物質の有機溶剤可溶分が0.85以下の排気ガス温度/燃料沸点温度比Rで表わされる過冷却気体状態となって前記放電帯電部に送り込まれて、前記粒状物質を電気的手段によって除去する構成となしたことを特徴とする電気式排気ガス処理装置。
  8.  前記ガス冷却部の下流側においてガス冷却部を通過した排気ガスから凝縮水を分離除去する気水分離器を設けることを特徴とする請求項6または7に記載の電気式排気ガス処理装置。
PCT/JP2010/068089 2009-10-14 2010-10-14 電気式排気ガス処理方法および電気式排気ガス処理装置 WO2011046187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011536180A JP5688806B2 (ja) 2009-10-14 2010-10-14 電気式排気ガス処理方法および電気式排気ガス処理装置
KR1020127011374A KR101335891B1 (ko) 2009-10-14 2010-10-14 전기식 배기가스 처리 방법 및 전기식 배기가스 처리 장치
EP10823455.0A EP2489843A4 (en) 2009-10-14 2010-10-14 ELECTRICAL EXHAUST PROCESSING AND ELECTRICAL EXHAUST PROCESSING DEVICE
CN201080046139.XA CN102549244B (zh) 2009-10-14 2010-10-14 电气式排气处理方法以及电气式排气处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009237745 2009-10-14
JP2009-237745 2009-10-14

Publications (1)

Publication Number Publication Date
WO2011046187A1 true WO2011046187A1 (ja) 2011-04-21

Family

ID=43876236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068089 WO2011046187A1 (ja) 2009-10-14 2010-10-14 電気式排気ガス処理方法および電気式排気ガス処理装置

Country Status (5)

Country Link
EP (1) EP2489843A4 (ja)
JP (1) JP5688806B2 (ja)
KR (1) KR101335891B1 (ja)
CN (1) CN102549244B (ja)
WO (1) WO2011046187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172380A1 (ja) * 2012-05-15 2013-11-21 臼井国際産業株式会社 重油より低質な燃料を使用する船舶用ディーゼルエンジン排ガス処理装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6041418B2 (ja) * 2010-12-16 2016-12-07 臼井国際産業株式会社 重油以下の低質燃料を使用する大排気量船舶用ディーゼルエンジンの排気ガス浄化装置
JP6319794B2 (ja) * 2013-04-26 2018-05-09 臼井国際産業株式会社 高濃度に硫黄成分を含有する重油等の低質燃料を使用する船舶用ディーゼルエンジンの排気ガス浄化装置
JP6172714B2 (ja) * 2013-05-09 2017-08-02 臼井国際産業株式会社 重油を使用する船舶用ディーゼルエンジンの排ガス処理装置
JP6238823B2 (ja) * 2014-04-08 2017-11-29 臼井国際産業株式会社 高濃度に硫黄成分を含有する低質燃料を使用する船舶用ディーゼルエンジンの排ガス処理装置
CN105275545A (zh) * 2014-05-27 2016-01-27 苏州水兴绿源生物科技有限公司 防水汽车尾气净化装置
EP3168450A1 (en) * 2015-11-12 2017-05-17 Winterthur Gas & Diesel Ltd. Internal combustion engine, method for cleaning exhaust from an internal combustion engine and method for refitting an internal combustion engine
CN108049940B (zh) * 2017-09-07 2020-10-02 同济大学 一种内燃机尾气中水的分离回收装置
CN108561208A (zh) * 2018-04-28 2018-09-21 中国计量大学 一种汽车尾气净化装置
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
WO2020083100A1 (zh) * 2018-10-22 2020-04-30 上海必修福企业管理有限公司 一种发动机排放处理系统和方法
CN111577423B (zh) * 2020-04-01 2021-04-23 广州盛康动力设备有限公司 一种高能减排的柴油发电机组
CN112547310B (zh) * 2020-12-18 2023-04-14 华能秦煤瑞金发电有限责任公司 一种高效的直流叠加脉冲电源的静电除尘装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126613A (en) * 1980-02-06 1981-10-03 Gen Motors Corp Controller for exhaust from diesel engine
JPH04183913A (ja) * 1990-11-16 1992-06-30 Nagao Kogyo:Kk 舶用ディーゼル機関の排気ガス浄化装置
JP2001132937A (ja) 1999-11-08 2001-05-18 Ne Project:Kk 焼却炉排気ガスの急速冷却方法とその装置
JP2005248792A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006102575A (ja) * 2004-10-01 2006-04-20 Isuzu Motors Ltd ガス処理装置
JP2008019849A (ja) 2006-06-14 2008-01-31 Munekatsu Furukata ディーゼルエンジン排気ガスの電気式処理方法およびその装置
JP2009052440A (ja) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd 舶用排ガス処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244022B2 (ja) * 2004-04-28 2009-03-25 日新電機株式会社 ガス処理装置
GB0611296D0 (en) * 2006-06-08 2006-07-19 Horne Lucas Electroinertial gas cleaner
JP4251300B2 (ja) * 2007-05-01 2009-04-08 株式会社日立プラントテクノロジー 排ガス処理方法及び装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126613A (en) * 1980-02-06 1981-10-03 Gen Motors Corp Controller for exhaust from diesel engine
JPH04183913A (ja) * 1990-11-16 1992-06-30 Nagao Kogyo:Kk 舶用ディーゼル機関の排気ガス浄化装置
JP2001132937A (ja) 1999-11-08 2001-05-18 Ne Project:Kk 焼却炉排気ガスの急速冷却方法とその装置
JP2005248792A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006102575A (ja) * 2004-10-01 2006-04-20 Isuzu Motors Ltd ガス処理装置
JP4529013B2 (ja) 2004-10-01 2010-08-25 いすゞ自動車株式会社 ガス処理装置
JP2008019849A (ja) 2006-06-14 2008-01-31 Munekatsu Furukata ディーゼルエンジン排気ガスの電気式処理方法およびその装置
JP2009052440A (ja) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd 舶用排ガス処理装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"2005 report of examination and research of marine exhaust air pollutant reduction technology", March 2006, HE JAPAN INSTITUTE OF MARINE ENGINEERING, pages: 58 - 60
"2007 report of examination and research of marine exhaust air pollutant reduction technology", March 2008, THE JAPAN INSTITUTE OF MARINE ENGINEERING, pages: 90
"Marine engineering technician continuous education basic course", July 2009, THE JAPAN INSTITUTE OF MARINE ENGINEERING, pages: 315 - 3170
See also references of EP2489843A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172380A1 (ja) * 2012-05-15 2013-11-21 臼井国際産業株式会社 重油より低質な燃料を使用する船舶用ディーゼルエンジン排ガス処理装置
JP2013238172A (ja) * 2012-05-15 2013-11-28 Usui Kokusai Sangyo Kaisha Ltd 重油より低質な燃料を使用する船舶用ディーゼルエンジン排ガス処理装置
CN104302880A (zh) * 2012-05-15 2015-01-21 臼井国际产业株式会社 使用比重油低质的燃料的船舶用柴油发动机废气处理装置

Also Published As

Publication number Publication date
EP2489843A4 (en) 2014-11-05
KR101335891B1 (ko) 2013-12-02
CN102549244A (zh) 2012-07-04
EP2489843A1 (en) 2012-08-22
KR20120065438A (ko) 2012-06-20
CN102549244B (zh) 2014-09-24
JPWO2011046187A1 (ja) 2013-03-07
JP5688806B2 (ja) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5688806B2 (ja) 電気式排気ガス処理方法および電気式排気ガス処理装置
JP4823027B2 (ja) ディーゼルエンジン排気ガスの電気式処理方法およびその装置
WO2012081290A1 (ja) 重油以下の低質燃料を使用するディーゼルエンジンの排気ガス浄化装置
EP2868880B1 (en) Exhaust gas treatment device for marine diesel engine using fuel of lower quality than heavy oil
JP2012140928A5 (ja)
Wang et al. Micro-structural and components evolution mechanism of particular matter from diesel engines with non-thermal plasma technology
Saiyasitpanich et al. Removal of diesel particulate matter (DPM) in a tubular wet electrostatic precipitator
US8771600B2 (en) Electrostatic filter and non-thermal plasma system for air pollution control of hydrocarbon combustion engines
KR20070100940A (ko) 디젤 엔진의 배기 가스용 전기식 처리 방법 및 그 장치
Sudrajad et al. Review of electrostatic precipitator device for reduce of diesel engine particulate matter
KR20110109808A (ko) 가스 스트림으로부터 pah를 흡수하는 장치 및 방법
Su et al. An experimental study on the removal of submicron fly ash and black carbon in a gravitational wet scrubber with electrostatic enhancement
Krupa et al. Diesel nanoparticles removal by charged spray
Kim et al. Collection performance of an electrostatic filtration system combined with a metallic flow-through filter for ultrafine diesel particulate matters
Parker Effective capture of respirable-sized particulates using electrostatic precipitator technology
US8721767B2 (en) Electrostatic screen device and method for emission control
Sobczyk et al. Particulate matter emission reduction from marine diesel engines by electrohydrodynamic Methods
Srinivaas et al. Design and Optimisation of Electrostatic Precipitator for Diesel Exhaust
George et al. Cyclone as a precleaner to ESP‐a need for Indian coal based thermal power plants
Ariana et al. Development of Electrostatic Precipitator to Reduce Marine Diesel Particulate Matter
Mutushev et al. Reducing the Toxicity of Diesel Exhausts with Electrical Filters.
Wu et al. Hydrophobic Black Carbon Capture from Ship Emissions Based on a Charger-Coupled Wet Scrubber
Saiyasitpanich Control of diesel particulate and gaseous emissions using a single-stage tubular wet electrostatic precipitator
Farnoud Electrostatic removal of diesel particulate matter
Ariana et al. Using Water-Plate Collector and Water Spray on ESP to Reduce Marine Diesel Exhaust Emission.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046139.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536180

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127011374

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010823455

Country of ref document: EP