WO2011046090A1 - Magnet device - Google Patents

Magnet device Download PDF

Info

Publication number
WO2011046090A1
WO2011046090A1 PCT/JP2010/067786 JP2010067786W WO2011046090A1 WO 2011046090 A1 WO2011046090 A1 WO 2011046090A1 JP 2010067786 W JP2010067786 W JP 2010067786W WO 2011046090 A1 WO2011046090 A1 WO 2011046090A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic shield
protrusion
main body
shield
Prior art date
Application number
PCT/JP2010/067786
Other languages
French (fr)
Japanese (ja)
Inventor
眞子 隆志
敬仁 渡邊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011536126A priority Critical patent/JPWO2011046090A1/en
Publication of WO2011046090A1 publication Critical patent/WO2011046090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Definitions

  • the present invention relates to a magnetic device.
  • the present invention relates to a magnetic device provided with a magnetic shield.
  • a magnetic element using a magnetic substance is known.
  • a magnetoresistive element (MagnetoResistance Element) is a magnetic element whose resistance value changes according to the magnetization state of the magnetic substance.
  • a typical magnetoresistive element has a structure in which a non-magnetic layer is sandwiched between two magnetic layers. One magnetic layer is a magnetization fixed layer whose magnetization direction is fixed, and the other is a magnetization free layer whose magnetization direction can be reversed.
  • the resistance value of the magnetoresistive element configured in this way is higher when the magnetization fixed layer and the magnetization free layer are antiparallel than when the magnetization directions are parallel to each other.
  • a magnetic random access memory (MRAM) and various logic circuits can be configured.
  • a magnetic shield In a magnetic device using a magnetic element, it is important to prevent the magnetization state (magnetization direction, etc.) of the magnetic material from fluctuating due to external disturbances for its normal operation.
  • a “magnetic shield” is generally used.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-309196 discloses a magnetic shield package of a magnetic nonvolatile memory element.
  • FIG. 1 shows a cross-sectional structure of the magnetic shield package.
  • the magnetic shield package 110 includes an MRAM element 111, a wire 112, a lead frame 113, and a magnetic shield 114.
  • the MRAM element 111 is connected to the lead frame 113 by a wire 112. Further, the entire periphery of the MRAM element 111 is surrounded by a hollow magnetic shield 114.
  • the magnetic shield 114 is made of an insulating soft magnetic material and has a rectangular cross-sectional shape as shown in FIG.
  • FIG. 3 of Patent Document 2 Japanese Patent Laid-Open No. 2003-124538 shows a mode in which an information storage device is mounted on a BGA substrate and a radiator (heat sink) is mounted on the information storage device. Yes.
  • the radiator is formed to extend in the vertical direction from the surface of the information storage device, and has a function of releasing the heat of the information storage device.
  • This radiator is made of a high permeability material.
  • Patent Document 1 shown in FIG. 1 has the following problems. That is, in the case of the structure shown in FIG. 1, the magnetic shield 114 is horizontal (parallel to the device surface) above the MRAM element 111. When an external magnetic field He perpendicular to the horizontal magnetic shield 114 is applied, theoretically, the external magnetic field He penetrates the magnetic shield 114 and reaches the vicinity of the MRAM element 111 inside the magnetic shield 114. End up. That is, the desired shielding effect cannot be obtained sufficiently.
  • An object of the present invention is to provide a technique capable of further improving the shielding effect in a magnetic device including a magnetic shield.
  • a magnetic device in one aspect of the present invention, includes a substrate, at least one magnetic element mounted on the first main surface of the substrate, and a magnetic shield of a soft magnetic material disposed on the first main surface side of the substrate.
  • the magnetic shield includes a main body portion and at least one protrusion.
  • a main-body part is provided with the lower surface located in the 1st main surface side, and the upper surface located in the opposite side to the lower surface.
  • At least one protrusion is provided on the upper surface of the main body.
  • the at least one protrusion is provided in a cover region including a region where at least the magnetic shield and the magnetic element overlap when the first main surface is viewed from above.
  • the at least one protrusion is inclined in a direction other than the normal direction with respect to the upper surface of the main body.
  • the shielding effect is further improved in the magnetic device including the magnetic shield.
  • FIG. 1 is a cross-sectional view showing a typical magnetic shield package according to the related art.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic device according to the embodiment of the present invention.
  • FIG. 3 shows an example of a planar arrangement pattern of the protrusions of the magnetic shield according to the present embodiment.
  • FIG. 4 shows another example of the planar arrangement pattern of the protrusions of the magnetic shield according to the present embodiment.
  • FIG. 5 is a cross-sectional view showing the structure of the magnetic device according to the present embodiment.
  • FIG. 6 is a schematic diagram for explaining the effect of the magnetic shield according to the present embodiment.
  • FIG. 7 is a cross-sectional view showing a first modification of the magnetic device according to the present embodiment.
  • FIG. 8 is a conceptual diagram for explaining the magnetic field convergence point.
  • FIG. 9 shows still another example of the planar arrangement pattern of the protrusions of the magnetic shield according to the present embodiment.
  • FIG. 10 is a cross-sectional view showing a second modification of the magnetic device according to the present embodiment.
  • FIG. 11 is a cross-sectional view showing a third modification of the magnetic device according to the present embodiment.
  • FIG. 12 is a cross-sectional view showing a fourth modification of the magnetic device according to the present embodiment.
  • FIG. 13 is a cross-sectional view showing a fifth modification of the magnetic device according to the present embodiment.
  • FIG. 14 is a sectional view showing a sixth modification of the magnetic device according to the present embodiment.
  • FIG. 10 is a cross-sectional view showing a second modification of the magnetic device according to the present embodiment.
  • FIG. 11 is a cross-sectional view showing a third modification of the magnetic device according to the present embodiment.
  • FIG. 12 is a cross-sectional view
  • FIG. 15A is a cross-sectional view showing a seventh modification of the magnetic device according to the present embodiment.
  • FIG. 15B is a perspective view showing an example of a package of the magnetic device according to the present exemplary embodiment.
  • FIG. 16 is a conceptual diagram showing an example of a method for manufacturing a magnetic shield according to the present embodiment.
  • FIG. 17 is a conceptual diagram showing another example of the method for manufacturing a magnetic shield according to the present embodiment.
  • FIG. 18 is a conceptual diagram showing still another example of the magnetic shield manufacturing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic device 1 according to the embodiment of the present invention.
  • the magnetic device 1 includes a substrate 10, a magnetic element 20, and a magnetic shield 30.
  • the direction perpendicular to the surface of the substrate 10 is the Z direction
  • the plane directions perpendicular to the Z direction are the X direction and the Y direction.
  • the substrate 10 is a member on which the magnetic element 20 is mounted.
  • Examples of the substrate 10 include a wiring substrate, a lead frame, and a semiconductor substrate.
  • the substrate 10 has a first main surface (front surface) 11 on which the magnetic element 20 is mounted, and a second main surface (back surface) 12 opposite to the first main surface 11. ing.
  • the magnetic element 20 is an element using a magnetic material.
  • Examples of the magnetic element 20 include a magnetoresistive element, an MRAM chip, and a logic circuit using the magnetoresistive element.
  • at least one magnetic element 20 is mounted on the first main surface 11 of the substrate 10.
  • the magnetic shield 30 is made of a soft magnetic material.
  • This soft magnetic material has a sufficiently high relative magnetic permeability (preferably 1000 or more).
  • the soft magnetic material include iron, nickel, silicon steel, permalloy, ferrite, amorphous magnetic alloy, and nanocrystal magnetic alloy.
  • an insulating magnetic material eg, ferrite
  • the surface of the magnetic shield 30 made of a conductive magnetic material may be coated with an insulator.
  • the magnetic shield 30 is at least disposed on the first main surface 11 side of the substrate 10. Further, the magnetic shield 30 includes a main body portion 31 and at least one protruding portion 32.
  • the lower surface LS of the main body 31 is located on the first main surface 11 side of the substrate 10.
  • the upper surface US of the main body 31 is a surface on the opposite side of the lower surface LS and is located on the opposite side to the first main surface 11 of the substrate 10.
  • the protrusion 32 is provided on the upper surface US of the main body 31.
  • the region where the protrusion 32 is provided is hereinafter referred to as “cover region RC”. That is, the protrusion 32 is formed on the upper surface US of the main body 31 in the cover region RC.
  • the cover region RC includes at least a region where the magnetic shield 30 and the magnetic element 20 overlap.
  • the protruding portion 32 of the magnetic shield 30 is arranged so as to cover the magnetic element 20.
  • the cover region RC includes almost the entire area of the magnetic shield 30, and a plurality of protrusions 32 are formed on the upper surface US of the main body 31 in the cover region RC.
  • each protrusion 32 is formed “oblique” with respect to the upper surface US of the main body 31.
  • the protruding portion 32 is inclined with respect to the upper surface US of the main body portion 31 in a direction other than the normal direction.
  • the protrusion 32 forms an angle greater than 0 degrees and less than 90 degrees with respect to the upper surface US of the main body 31.
  • the plurality of protrusions 32 are inclined in the same direction with respect to the upper surface US of the main body 31.
  • FIG. 3 shows an example of a planar arrangement pattern of the protrusion 32 of the magnetic shield 30 and a cross-sectional structure taken along the line A-A ′.
  • plate-like (fin-like) protrusions 32 are arranged in a line along the X direction.
  • FIG. 4 shows another example of a planar arrangement pattern of the protrusion 32 of the magnetic shield 30 and a cross-sectional structure along the line A-A ′.
  • the column structure shown in FIG. 3 is arranged over a plurality of stages.
  • the column structure is shifted in the X direction between adjacent steps. That is, the plurality of protruding portions 32 are arranged in a staggered manner.
  • the space MC between the magnetic shield 30 and the magnetic element 20 is preferably “magnetically hollow”.
  • This space MC is hereinafter referred to as “magnetic cavity space MC”.
  • Magnetically hollow means that the magnetic permeability is extremely low (relative magnetic permeability ⁇ 1) compared to the magnetic shield 30 having high magnetic permeability (relative magnetic permeability> 1000).
  • the magnetic cavity space MC is physically hollow.
  • the magnetic cavity space MC may be filled with a nonmagnetic insulator 40.
  • the nonmagnetic insulator 40 is, for example, a molding resin.
  • the high-permeability magnetic shield 30 has the protrusion 32 on the upper surface US of the main body 31. Further, the protruding portion 32 is inclined with respect to the upper surface US of the main body portion 31. Accordingly, as shown in FIG. 6, the magnetic flux of the external magnetic field He is smoothly guided into the main body 31 through the protrusion 32.
  • the protruding portion 32 can also be referred to as a “magnetic flux guide portion” that efficiently guides the magnetic flux to the magnetic shield 30.
  • the magnetic flux of the external magnetic field He is bent in the direction away from the Z direction by the magnetic flux guide portion 32 and is efficiently guided inside the magnetic shield 30.
  • the cover region RC in which the protrusion 32 is provided covers the magnetic element 20. Therefore, the magnetic flux of the external magnetic field He is bent in the direction away from the magnetic element 20 above the magnetic element 20 and is prevented from penetrating the magnetic shield 30. Therefore, the shielding effect is improved.
  • the cover region RC in which the protrusion 32 is provided covers the entire magnetic cavity space MC described above. It is preferable (refer FIG. 2).
  • the upper surface US of the main body 31 is not visible at all (see FIGS. 3 and 4). That is, when viewed from above, it is preferable that the upper surface US of the main body 31 in the cover region RC is covered with the plurality of protrusions 32. Thereby, the magnetic flux is effectively guided over the entire cover region RC.
  • the upper surface US of the main body 31 is somewhat visible from above, the same effect is still obtained.
  • the magnetic shield effect can be further improved.
  • the magnetic flux of the external magnetic field He reaching the vicinity of the magnetic element 20 is significantly reduced. That is, the shielding effect by the magnetic shield is improved.
  • the shielding effect is not limited to the external magnetic field in the Z direction.
  • the shielding effect with respect to all directions is similarly realized by the magnetic shield 30 having the protrusion 32.
  • the inclination direction of the protrusion 32 is uniform.
  • the inclination direction of the protrusion 32 may not be uniform as long as it forms an angle greater than 0 degrees and less than 90 degrees with respect to the upper surface US of the main body section 31.
  • FIG. 7 is a cross-sectional view showing a first modification of the magnetic device 1.
  • the cover region RC in which the protrusion 32 is formed includes a first cover region RC1 and a second cover region RC2 that is different from the first cover region RC1.
  • the first cover region RC1 and the second cover region RC2 do not overlap each other.
  • the boundary is a boundary line BND.
  • the first cover region RC1 is provided with at least one first protrusion 32-1.
  • the second cover region RC2 is provided with at least one second protrusion 32-2.
  • the inclination direction of the main body 31 with respect to the upper surface US is opposite between the first protrusion 32-1 and the second protrusion 32-2. More specifically, as shown in FIG. 7, the first protrusion 32-1 is inclined so as to guide the magnetic flux to the left ( ⁇ X direction), and the second protrusion 32-2 It is inclined to guide to the right (+ X direction). In other words, each of the first projecting portion 32-1 and the second projecting portion 32-2 is inclined so as to approach the upper surface US of the main body 31 as the distance from the boundary line BND increases. As a result of such a structure, as shown in FIG. 7, the magnetic flux of the external magnetic field is “branched” left and right in the magnetic shield 30. This is preferable from the viewpoint of saturation magnetization of the magnetic shield 30.
  • the boundary line BND is preferably located near the center of the cover region RC.
  • Fig. 8 shows an inappropriate example.
  • the inclination directions of the first protrusion 32-1 and the second protrusion 32-2 are reversed as compared with the case of FIG.
  • the left first protrusion 32-1 guides the magnetic flux to the right
  • the right second protrusion 32-2 guides the magnetic flux to the left. Therefore, as shown in FIG. 8, a magnetic field convergence point CON is generated.
  • the magnetic flux collected at the magnetic field convergence point CON has to come out from the main body 31 to the magnetic cavity space MC, which is not preferable. In other words, it is only necessary that the plurality of protrusions 32 be arranged so that the magnetic field convergence point CON does not occur.
  • planar arrangement pattern of the protrusion part 32 in this modification is also arbitrary.
  • the structure according to this modification can be realized with the same planar arrangement pattern as that shown in FIG. 3 or FIG. Or as FIG. 9 shows, the structure which concerns on this modification may be implement
  • FIG. 10 is a cross-sectional view showing a second modification of the magnetic device 1.
  • the protrusion 32 of the magnetic shield 30 does not have to be linear, and may be curved as shown in FIG.
  • FIG. 11 is a cross-sectional view showing a third modification of the magnetic device 1.
  • the shape of the main body 31 of the magnetic shield 30 is arbitrary.
  • the main body 31 of the magnetic shield 30 may be curved so as to be convex when viewed from the substrate 10.
  • the protrusion 32 may be provided on the top of the curved main body 31.
  • FIG. 12 is a cross-sectional view showing a fourth modified example of the magnetic device 1.
  • magnetic shields 30 may be provided on both sides of the substrate 10 as shown in FIG. More specifically, the first magnetic shield 30A is arranged on the first main surface 11 side, and the second magnetic shield 30B is arranged on the second main surface 12 side.
  • Each of the magnetic shields 30 ⁇ / b> A and 30 ⁇ / b> B is the same as the magnetic shield 30.
  • the first magnetic shield 30A includes a main body 31A and at least one protrusion 32A.
  • the lower surface LS of the main body 31 ⁇ / b> A is located on the first main surface 11 side of the substrate 10.
  • the upper surface US of the main body 31 ⁇ / b> A is located on the side opposite to the first main surface 11 of the substrate 10.
  • the protrusion 32A is provided on the upper surface US of the main body 31A in the cover area RCA. Each protrusion 32A is formed "obliquely" with respect to the upper surface US of the main body 31A.
  • the second magnetic shield 30B includes a main body 31B and at least one protrusion 32B.
  • the lower surface LS of the main body portion 31 ⁇ / b> B is located on the second main surface 12 side of the substrate 10.
  • the upper surface US of the main body portion 31B is located on the opposite side of the second main surface 12 of the substrate 10.
  • the protruding portion 32B is provided on the upper surface US of the main body portion 31B in the cover region RCB.
  • Each protrusion 32B is formed "obliquely" with respect to the upper surface US of the main body 31B.
  • the magnetic shielding effect is further improved.
  • the first magnetic shield 30A and the second magnetic shield 30B are preferably symmetrical with the substrate 10 in between.
  • the arrangement pattern of the protrusions 32A and 32B is symmetrical with respect to the substrate 10.
  • FIG. 13 is a cross-sectional view illustrating a fifth modification of the magnetic device 1.
  • the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) is covered with an external mold resin 50. Thereby, corrosion of the magnetic shield 30 is prevented, and workability is also improved.
  • magnetic powder may be mixed in the external mold resin 50 outside the magnetic shield 30. That is, the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) may be covered with the external mold resin 50 mixed with magnetic powder. Thereby, the shielding effect as a whole further increases. Further, the magnetic flux emitted from the end of the magnetic shield 30 can be collected not on the magnetic cavity space MC but on the external mold resin 50 side due to the difference in magnetic permeability. The penetration of the magnetic flux into the magnetic cavity space MC is further suppressed, which is preferable.
  • FIG. 14 is a cross-sectional view showing a sixth modification of the magnetic device 1.
  • the magnetic shield 30 is a metal magnetic shield formed of a conductive magnetic material.
  • the metal magnetic shield 30 is grounded.
  • the ground pad 61 is provided on the substrate 10, and the metal magnetic shield 30 is electrically connected to the ground pad 61 via the solder 62.
  • the grounded metal magnetic shield 30 also serves as an electromagnetic wave shield, which is preferable.
  • FIG. 15A is a cross-sectional view showing a seventh modification of the magnetic device 1.
  • a plurality of magnetic elements 20 are mounted on the substrate 10, and the magnetic shield 30 is provided in common so as to cover all of the plurality of magnetic elements 20.
  • two MRAM chips 20-1 and 20-2 are mounted on the wiring board 10, and the magnetic shield 30 is provided in common so as to cover both of the MRAM chips 20-1 and 20-2.
  • FIG. 15A shows a mode in which two MRAM chips 20-1 and 20-2 are arranged in the X-axis direction, but a mode in which a plurality of MRAM chips are arranged in the Y-axis direction, 2 in the X-axis direction and the Y-axis direction.
  • a dimensional arrangement is also possible.
  • FIG. 15B shows an example of a multi-chip module package.
  • a plurality of MRAM chips 20 ⁇ / b> A are mounted on the substrate 10.
  • the MRAM chip 20A and another semiconductor chip 20B may be mixedly mounted in one package.
  • the magnetic shield 30 is provided so as to cover all the chips.
  • the present invention includes BGA (Ball Grid Array) package, FCBGA (Flip Chip Ball Grid Array) package, QFP (Quad It can be applied to various packages (magnetic shield package) such as Flat Package) and multichip module packages.
  • a groove is formed in the magnetic plate that becomes the main body 31.
  • a magnetic material plate serving as the protrusion 32 is driven into the groove.
  • the magnetic platelet is bent in a desired direction.
  • an oblique cut is formed by a blade in the magnetic body plate that becomes the main body 31. Subsequently, a magnetic platelet serving as the protrusion 32 is driven into the oblique cut.
  • the press teeth are lifted to form the protrusions 32 at once.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Disclosed is a magnet device provided with a substrate, at least one magnet element mounted on a first principal surface of the substrate, and a soft-magnetic magnetic shield disposed on the first-principal-surface side of the substrate. The magnetic shield is provided with a main section and at least one protruding section. The main section is provided with a bottom surface, located on the first-principal-surface side, and a top surface, located on the side opposite the bottom surface. At least one protruding section is provided on the top surface of the main section. At least one protruding section is provided in a cover region that includes at least the region where the magnetic shield and a magnet element overlap, as seen from above the first principal surface. At least one protruding section is angled with respect to the top surface of the main section, in a direction other than the normal direction.

Description

磁性体装置Magnetic device
 本発明は、磁性体装置に関する。特に、本発明は、磁気シールドを備えた磁性体装置に関する。 The present invention relates to a magnetic device. In particular, the present invention relates to a magnetic device provided with a magnetic shield.
 磁性体を利用した磁性体素子が知られている。例えば、磁気抵抗素子(MagnetoResistance
Element)は、磁性体の磁化状態に応じて抵抗値が変わる磁性体素子である。典型的な磁気抵抗素子は、2層の磁性体層に非磁性体層が挟まれた構造を有している。一方の磁性体層は、磁化方向が固定された磁化固定層であり、他方は、磁化方向が反転可能な磁化自由層である。このように構成された磁気抵抗素子の抵抗値は、磁化固定層と磁化自由層の磁化方向が互いに平行である場合よりも、それらが反平行である場合により高くなる。このような磁気抵抗素子を利用することによって、磁気ランダムアクセスメモリ(MRAM: Magnetic Random Access Memory)や様々な論理回路を構成可能である。
A magnetic element using a magnetic substance is known. For example, a magnetoresistive element (MagnetoResistance
Element) is a magnetic element whose resistance value changes according to the magnetization state of the magnetic substance. A typical magnetoresistive element has a structure in which a non-magnetic layer is sandwiched between two magnetic layers. One magnetic layer is a magnetization fixed layer whose magnetization direction is fixed, and the other is a magnetization free layer whose magnetization direction can be reversed. The resistance value of the magnetoresistive element configured in this way is higher when the magnetization fixed layer and the magnetization free layer are antiparallel than when the magnetization directions are parallel to each other. By using such a magnetoresistive element, a magnetic random access memory (MRAM) and various logic circuits can be configured.
 磁性体素子を用いた磁性体装置では、その正常動作のために、磁性体の磁化状態(磁化方向等)が外部擾乱によって変動することを防ぐことが重要である。そのために、一般的に、「磁気シールド(magnetic shield)」が利用される。 In a magnetic device using a magnetic element, it is important to prevent the magnetization state (magnetization direction, etc.) of the magnetic material from fluctuating due to external disturbances for its normal operation. For this purpose, a “magnetic shield” is generally used.
 特許文献1(特開2003-309196号公報)には、磁気不揮発性メモリ素子の磁気シールドパッケージが開示されている。図1は、その磁気シールドパッケージの断面構造を示している。磁気シールドパッケージ110は、MRAM素子111、ワイヤ112、リードフレーム113、及び磁気シールド114を備えている。MRAM素子111は、ワイヤ112でリードフレーム113に接続されている。更に、MRAM素子111は、その周囲全体が中空の磁気シールド114に囲まれている。磁気シールド114は、絶縁性の軟磁性材料で形成され、図1に示されるように矩形の断面形状を有している。 Patent Document 1 (Japanese Patent Laid-Open No. 2003-309196) discloses a magnetic shield package of a magnetic nonvolatile memory element. FIG. 1 shows a cross-sectional structure of the magnetic shield package. The magnetic shield package 110 includes an MRAM element 111, a wire 112, a lead frame 113, and a magnetic shield 114. The MRAM element 111 is connected to the lead frame 113 by a wire 112. Further, the entire periphery of the MRAM element 111 is surrounded by a hollow magnetic shield 114. The magnetic shield 114 is made of an insulating soft magnetic material and has a rectangular cross-sectional shape as shown in FIG.
 特許文献2(特開2003-124538号公報)の図3には、BGA基板上に情報記憶装置が搭載され、その情報記憶装置上に放熱器(ヒートシンク)が載置された形態が示されている。この放熱器は、情報記憶装置の表面から鉛直方向に延びるように形成されており、情報記憶装置の熱を逃がす機能を有している。この放熱器は、高透磁率材料で形成される。 FIG. 3 of Patent Document 2 (Japanese Patent Laid-Open No. 2003-124538) shows a mode in which an information storage device is mounted on a BGA substrate and a radiator (heat sink) is mounted on the information storage device. Yes. The radiator is formed to extend in the vertical direction from the surface of the information storage device, and has a function of releasing the heat of the information storage device. This radiator is made of a high permeability material.
特開2003-309196号公報JP 2003-309196 A 特開2003-124538号公報JP 2003-124538 A
 しかしながら、図1で示された特許文献1の構造の場合、以下に示すような問題点が存在する。即ち、図1で示された構造の場合、MRAM素子111の上方において、磁気シールド114は水平(デバイス面に平行)である。その水平磁気シールド114に対して垂直な外部磁界Heが印加された場合、理論的には、その外部磁界Heは磁気シールド114を貫通して、磁気シールド114より内側のMRAM素子111近傍に達してしまう。すなわち、所望のシールド効果が十分に得られない。 However, the structure of Patent Document 1 shown in FIG. 1 has the following problems. That is, in the case of the structure shown in FIG. 1, the magnetic shield 114 is horizontal (parallel to the device surface) above the MRAM element 111. When an external magnetic field He perpendicular to the horizontal magnetic shield 114 is applied, theoretically, the external magnetic field He penetrates the magnetic shield 114 and reaches the vicinity of the MRAM element 111 inside the magnetic shield 114. End up. That is, the desired shielding effect cannot be obtained sufficiently.
 一方、特許文献2の図3に示された構造の場合、情報記憶装置の表面から高透磁率材料が鉛直方向に延びているため、垂直な外部磁界Heが印加された場合、鉛直方向に延びる部材が外部磁界Heを情報記憶装置へ集めてしまう。 On the other hand, in the case of the structure shown in FIG. 3 of Patent Document 2, since the high magnetic permeability material extends in the vertical direction from the surface of the information storage device, it extends in the vertical direction when a vertical external magnetic field He is applied. The member collects the external magnetic field He into the information storage device.
 本発明の目的は、磁気シールドを備える磁性体装置において、シールド効果をより向上させることができる技術を提供することにある。 An object of the present invention is to provide a technique capable of further improving the shielding effect in a magnetic device including a magnetic shield.
 本発明の1つの観点において、磁性体装置が提供される。その磁性体装置は、基板と、基板の第1主面上に搭載された少なくとも1つの磁性体素子と、基板の第1主面側に配置された軟磁性体の磁気シールドと、を備える。磁気シールドは、本体部と、少なくとも1つの突出部とを備える。本体部は、第1主面側に位置する下面と、その下面と反対側に位置する上面と、を備える。少なくとも1つの突出部は、本体部の上面上に設けられる。少なくとも1つの突出部は、第1主面を上から見て少なくとも磁気シールドと磁性体素子とがオーバーラップする領域を含むカバー領域に備えられる。少なくとも1つの突出部は、本体部の上面に対して、法線方向を除く方向に傾いている。 In one aspect of the present invention, a magnetic device is provided. The magnetic device includes a substrate, at least one magnetic element mounted on the first main surface of the substrate, and a magnetic shield of a soft magnetic material disposed on the first main surface side of the substrate. The magnetic shield includes a main body portion and at least one protrusion. A main-body part is provided with the lower surface located in the 1st main surface side, and the upper surface located in the opposite side to the lower surface. At least one protrusion is provided on the upper surface of the main body. The at least one protrusion is provided in a cover region including a region where at least the magnetic shield and the magnetic element overlap when the first main surface is viewed from above. The at least one protrusion is inclined in a direction other than the normal direction with respect to the upper surface of the main body.
 本発明によれば、磁気シールドを備える磁性体装置において、シールド効果がより向上する。 According to the present invention, the shielding effect is further improved in the magnetic device including the magnetic shield.
 上記及び他の目的、長所、特徴は、次の図面と共に説明される本発明の実施の形態により明らかになるであろう。 The above and other objects, advantages, and features will become apparent from the embodiments of the present invention described in conjunction with the following drawings.
図1は、関連技術に係る典型的な磁気シールドパッケージを示す断面図である。FIG. 1 is a cross-sectional view showing a typical magnetic shield package according to the related art. 図2は、本発明の実施の形態に係る磁性体装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the magnetic device according to the embodiment of the present invention. 図3は、本実施の形態に係る磁気シールドの突出部の平面配置パターンの一例を示している。FIG. 3 shows an example of a planar arrangement pattern of the protrusions of the magnetic shield according to the present embodiment. 図4は、本実施の形態に係る磁気シールドの突出部の平面配置パターンの他の例を示している。FIG. 4 shows another example of the planar arrangement pattern of the protrusions of the magnetic shield according to the present embodiment. 図5は、本実施の形態に係る磁性体装置の構造を示す断面図である。FIG. 5 is a cross-sectional view showing the structure of the magnetic device according to the present embodiment. 図6は、本実施の形態に係る磁気シールドによる効果を説明するための概略図である。FIG. 6 is a schematic diagram for explaining the effect of the magnetic shield according to the present embodiment. 図7は、本実施の形態に係る磁性体装置の第1の変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a first modification of the magnetic device according to the present embodiment. 図8は、磁界収束点を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining the magnetic field convergence point. 図9は、本実施の形態に係る磁気シールドの突出部の平面配置パターンの更に他の例を示している。FIG. 9 shows still another example of the planar arrangement pattern of the protrusions of the magnetic shield according to the present embodiment. 図10は、本実施の形態に係る磁性体装置の第2の変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a second modification of the magnetic device according to the present embodiment. 図11は、本実施の形態に係る磁性体装置の第3の変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a third modification of the magnetic device according to the present embodiment. 図12は、本実施の形態に係る磁性体装置の第4の変形例を示す断面図である。FIG. 12 is a cross-sectional view showing a fourth modification of the magnetic device according to the present embodiment. 図13は、本実施の形態に係る磁性体装置の第5の変形例を示す断面図である。FIG. 13 is a cross-sectional view showing a fifth modification of the magnetic device according to the present embodiment. 図14は、本実施の形態に係る磁性体装置の第6の変形例を示す断面図である。FIG. 14 is a sectional view showing a sixth modification of the magnetic device according to the present embodiment. 図15Aは、本実施の形態に係る磁性体装置の第7の変形例を示す断面図である。FIG. 15A is a cross-sectional view showing a seventh modification of the magnetic device according to the present embodiment. 図15Bは、本実施の形態に係る磁性体装置のパッケージの例を示す斜視図である。FIG. 15B is a perspective view showing an example of a package of the magnetic device according to the present exemplary embodiment. 図16は、本実施の形態に係る磁気シールドの製造方法の一例を示す概念図である。FIG. 16 is a conceptual diagram showing an example of a method for manufacturing a magnetic shield according to the present embodiment. 図17は、本実施の形態に係る磁気シールドの製造方法の他の例を示す概念図である。FIG. 17 is a conceptual diagram showing another example of the method for manufacturing a magnetic shield according to the present embodiment. 図18は、本実施の形態に係る磁気シールドの製造方法の更に他の例を示す概念図である。FIG. 18 is a conceptual diagram showing still another example of the magnetic shield manufacturing method according to the present embodiment.
 添付図面を参照して、本発明の実施の形態に係る磁性体装置を説明する。 A magnetic device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 1.基本構造
 図2は、本発明の実施の形態に係る磁性体装置1の構造を示す断面図である。図2に示されるように、磁性体装置1は、基板10、磁性体素子20、及び磁気シールド30を備えている。以下の説明において、基板10の表面に垂直な方向はZ方向であり、Z方向に直交する平面方向は、X方向及びY方向である。
1. Basic Structure FIG. 2 is a cross-sectional view showing the structure of the magnetic device 1 according to the embodiment of the present invention. As shown in FIG. 2, the magnetic device 1 includes a substrate 10, a magnetic element 20, and a magnetic shield 30. In the following description, the direction perpendicular to the surface of the substrate 10 is the Z direction, and the plane directions perpendicular to the Z direction are the X direction and the Y direction.
 基板10は、磁性体素子20が搭載される部材である。基板10としては、配線基板、リードフレーム、半導体基板などが挙げられる。図2に示されるように、基板10は、磁性体素子20が搭載される第1主面(表面)11と、第1主面11の逆側の第2主面(裏面)12を有している。 The substrate 10 is a member on which the magnetic element 20 is mounted. Examples of the substrate 10 include a wiring substrate, a lead frame, and a semiconductor substrate. As shown in FIG. 2, the substrate 10 has a first main surface (front surface) 11 on which the magnetic element 20 is mounted, and a second main surface (back surface) 12 opposite to the first main surface 11. ing.
 磁性体素子20は、磁性体を利用した素子である。磁性体素子20としては、磁気抵抗素子、MRAMチップ、磁気抵抗素子を利用した論理回路などが挙げられる。本実施の形態では、少なくとも1つの磁性体素子20が、基板10の第1主面11上に搭載される。 The magnetic element 20 is an element using a magnetic material. Examples of the magnetic element 20 include a magnetoresistive element, an MRAM chip, and a logic circuit using the magnetoresistive element. In the present embodiment, at least one magnetic element 20 is mounted on the first main surface 11 of the substrate 10.
 磁気シールド30は、軟磁性体材料で形成されている。この軟磁性体材料は、十分に高い比透磁率(好ましくは、1000以上)を有している。軟磁性体材料としては、鉄、ニッケル、珪素鋼、パーマロイ、フェライト、アモルファス磁性合金、ナノクリスタル磁性合金などが挙げられる。尚、磁気シールド30とボンディングワイヤ等の内部構造との間のショートが懸念される場合、磁気シールド30の材料として、絶縁性磁性体(例:フェライト)が用いられてもよい。あるいは、導電性磁性体の磁気シールド30の表面が、絶縁体でコーティングされてもよい。 The magnetic shield 30 is made of a soft magnetic material. This soft magnetic material has a sufficiently high relative magnetic permeability (preferably 1000 or more). Examples of the soft magnetic material include iron, nickel, silicon steel, permalloy, ferrite, amorphous magnetic alloy, and nanocrystal magnetic alloy. If there is a concern about a short circuit between the magnetic shield 30 and an internal structure such as a bonding wire, an insulating magnetic material (eg, ferrite) may be used as the material of the magnetic shield 30. Alternatively, the surface of the magnetic shield 30 made of a conductive magnetic material may be coated with an insulator.
 図2に示されるように、磁気シールド30は、基板10の第1主面11側に少なくとも配置されている。更に、磁気シールド30は、本体部31と、少なくとも1つの突出部32とを備えている。本体部31の下面LSは、基板10の第1主面11側に位置している。一方、本体部31の上面USは、下面LSの逆側の面であり、基板10の第1主面11と反対側に位置している。 As shown in FIG. 2, the magnetic shield 30 is at least disposed on the first main surface 11 side of the substrate 10. Further, the magnetic shield 30 includes a main body portion 31 and at least one protruding portion 32. The lower surface LS of the main body 31 is located on the first main surface 11 side of the substrate 10. On the other hand, the upper surface US of the main body 31 is a surface on the opposite side of the lower surface LS and is located on the opposite side to the first main surface 11 of the substrate 10.
 突出部32は、本体部31の上面US上に設けられている。突出部32が設けられる領域は、以下「カバー領域RC」と参照される。つまり、突出部32は、カバー領域RCにおける本体部31の上面US上に形成されている。本実施の形態では、カバー領域RCは、少なくとも、磁気シールド30と磁性体素子20とがオーバーラップしている領域を含む。言い換えれば、磁気シールド30の突出部32は、磁性体素子20の上方を覆うように配置される。図2で示された例では、カバー領域RCは磁気シールド30のほぼ全域を含んでおり、そのカバー領域RCにおいて、複数の突出部32が本体部31の上面US上に形成されている。 The protrusion 32 is provided on the upper surface US of the main body 31. The region where the protrusion 32 is provided is hereinafter referred to as “cover region RC”. That is, the protrusion 32 is formed on the upper surface US of the main body 31 in the cover region RC. In the present embodiment, the cover region RC includes at least a region where the magnetic shield 30 and the magnetic element 20 overlap. In other words, the protruding portion 32 of the magnetic shield 30 is arranged so as to cover the magnetic element 20. In the example shown in FIG. 2, the cover region RC includes almost the entire area of the magnetic shield 30, and a plurality of protrusions 32 are formed on the upper surface US of the main body 31 in the cover region RC.
 更に、図2に示されるように、各突出部32は、本体部31の上面USに対して“斜め”に形成されている。言い換えれば、突出部32は、本体部31の上面USに対して、法線方向を除く方向に傾いている。つまり、突出部32は、本体部31の上面USに対して、0度より大きく90度未満の角度をなしている。図2で示された例では、複数の突出部32が、本体部31の上面USに対して同じ方向に傾いている。 Furthermore, as shown in FIG. 2, each protrusion 32 is formed “oblique” with respect to the upper surface US of the main body 31. In other words, the protruding portion 32 is inclined with respect to the upper surface US of the main body portion 31 in a direction other than the normal direction. In other words, the protrusion 32 forms an angle greater than 0 degrees and less than 90 degrees with respect to the upper surface US of the main body 31. In the example shown in FIG. 2, the plurality of protrusions 32 are inclined in the same direction with respect to the upper surface US of the main body 31.
 図3は、磁気シールド30の突出部32の平面配置パターンの一例、及び線A-A’に沿った断面構造を示している。図3の例では、板状(フィン状)の突出部32が、X方向に沿って一列に配置されている。 FIG. 3 shows an example of a planar arrangement pattern of the protrusion 32 of the magnetic shield 30 and a cross-sectional structure taken along the line A-A ′. In the example of FIG. 3, plate-like (fin-like) protrusions 32 are arranged in a line along the X direction.
 図4は、磁気シールド30の突出部32の平面配置パターンの他の例、及び線A-A’に沿った断面構造を示している。図4の例では、図3で示された列構造が複数段にわたって配置されている。また、隣り合う段間で列構造がX方向にずれている。すなわち、複数の突出部32が千鳥状に配置されている。 FIG. 4 shows another example of a planar arrangement pattern of the protrusion 32 of the magnetic shield 30 and a cross-sectional structure along the line A-A ′. In the example of FIG. 4, the column structure shown in FIG. 3 is arranged over a plurality of stages. In addition, the column structure is shifted in the X direction between adjacent steps. That is, the plurality of protruding portions 32 are arranged in a staggered manner.
 再度図2を参照して説明する。磁気シールド30と磁性体素子20との間の空間MCは、“磁気的に空洞”であることが好ましい。この空間MCは、以下「磁気空洞空間MC」と参照される。“磁気的に空洞”とは、高透磁率の磁気シールド30(比透磁率>1000)に比べて、透磁率が極めて低い(比透磁率~1)ことを意味する。例えば、図2に示されるように、磁気空洞空間MCは、物理的に空洞である。あるいは、図5に示されるように、磁気空洞空間MCは、非磁性絶縁体40で充填されていてもよい。非磁性絶縁体40は、例えば、モールド樹脂(molding compound)である。 Explanation will be made with reference to FIG. 2 again. The space MC between the magnetic shield 30 and the magnetic element 20 is preferably “magnetically hollow”. This space MC is hereinafter referred to as “magnetic cavity space MC”. “Magnetically hollow” means that the magnetic permeability is extremely low (relative magnetic permeability˜1) compared to the magnetic shield 30 having high magnetic permeability (relative magnetic permeability> 1000). For example, as shown in FIG. 2, the magnetic cavity space MC is physically hollow. Alternatively, as shown in FIG. 5, the magnetic cavity space MC may be filled with a nonmagnetic insulator 40. The nonmagnetic insulator 40 is, for example, a molding resin.
 2.作用、効果
 図6を参照して、本実施の形態に係る構造による効果を説明する。ここでは、デバイス面(基板10の表面)に垂直なZ方向の外部磁界Heを考える。
2. Action and Effect With reference to FIG. 6, the effect of the structure according to the present embodiment will be described. Here, an external magnetic field He in the Z direction perpendicular to the device surface (the surface of the substrate 10) is considered.
 上述の通り、高透磁率の磁気シールド30は、本体部31の上面US上に突出部32を有している。更に、突出部32は、本体部31の上面USに対して斜めである。従って、図6に示されるように、外部磁界Heの磁束は、突出部32を通して、本体部31の内部にスムーズにガイドされる。突出部32は、磁気シールド30に磁束を効率的にガイドする「磁束ガイド部」と呼ぶこともできる。外部磁界Heの磁束は、磁束ガイド部32によってZ方向から離れる方向に曲げられ、磁気シールド30内部に効率的にガイドされる。特に、突出部32が設けられるカバー領域RCは、磁性体素子20の上方を覆っている。そのため、外部磁界Heの磁束は、磁性体素子20の上方において、磁性体素子20から離れる方向に曲げられ、磁気シールド30を貫通することが防止される。従って、シールド効果が向上する。 As described above, the high-permeability magnetic shield 30 has the protrusion 32 on the upper surface US of the main body 31. Further, the protruding portion 32 is inclined with respect to the upper surface US of the main body portion 31. Accordingly, as shown in FIG. 6, the magnetic flux of the external magnetic field He is smoothly guided into the main body 31 through the protrusion 32. The protruding portion 32 can also be referred to as a “magnetic flux guide portion” that efficiently guides the magnetic flux to the magnetic shield 30. The magnetic flux of the external magnetic field He is bent in the direction away from the Z direction by the magnetic flux guide portion 32 and is efficiently guided inside the magnetic shield 30. In particular, the cover region RC in which the protrusion 32 is provided covers the magnetic element 20. Therefore, the magnetic flux of the external magnetic field He is bent in the direction away from the magnetic element 20 above the magnetic element 20 and is prevented from penetrating the magnetic shield 30. Therefore, the shielding effect is improved.
 磁気シールド30と磁性体素子20との間に磁気空洞空間MCを設けた場合、磁気シールド効果の観点から言えば、突出部32が設けられるカバー領域RCは、上述の磁気空洞空間MC全体をカバーしていることが好ましい(図2参照)。また、カバー領域RCにおいて、本体部31の上面USが上から全く見えないことが好ましい(図3、図4参照)。すなわち、上から見たとき、カバー領域RCにおける本体部31の上面USが、複数の突出部32によって覆われていることが好ましい。これにより、カバー領域RC全体にわたって効果的に磁束がガイドされる。但し、本体部31の上面USが上から多少見えていても、同様の効果が得られることに変わりはない。 When the magnetic cavity space MC is provided between the magnetic shield 30 and the magnetic element 20, from the viewpoint of the magnetic shield effect, the cover region RC in which the protrusion 32 is provided covers the entire magnetic cavity space MC described above. It is preferable (refer FIG. 2). In the cover region RC, it is preferable that the upper surface US of the main body 31 is not visible at all (see FIGS. 3 and 4). That is, when viewed from above, it is preferable that the upper surface US of the main body 31 in the cover region RC is covered with the plurality of protrusions 32. Thereby, the magnetic flux is effectively guided over the entire cover region RC. However, even if the upper surface US of the main body 31 is somewhat visible from above, the same effect is still obtained.
 磁気シールド30と磁性体素子20との間の磁気空洞空間MCの透磁率は、磁気シールド30の透磁率に比べて極めて低いため、高透磁率の磁気シールド30内部に一旦ガイドされた磁束が、磁気空洞空間MCに漏れ出すことが効果的に防止される。従って、磁気シールド効果をより向上させることができる。 Since the magnetic permeability of the magnetic cavity space MC between the magnetic shield 30 and the magnetic element 20 is extremely lower than the magnetic permeability of the magnetic shield 30, the magnetic flux once guided inside the magnetic shield 30 having a high magnetic permeability is Leaking into the magnetic cavity space MC is effectively prevented. Therefore, the magnetic shield effect can be further improved.
 このように、本実施の形態によれば、磁性体素子20の近傍にまで到達する外部磁界Heの磁束が大幅に低減される。すなわち、磁気シールドによるシールド効果が向上する。尚、シールド効果は、Z方向の外部磁界に対してだけに限られない。突出部32を有する磁気シールド30によって、全方位に対するシールド効果が同様に実現される。 As described above, according to the present embodiment, the magnetic flux of the external magnetic field He reaching the vicinity of the magnetic element 20 is significantly reduced. That is, the shielding effect by the magnetic shield is improved. The shielding effect is not limited to the external magnetic field in the Z direction. The shielding effect with respect to all directions is similarly realized by the magnetic shield 30 having the protrusion 32.
 3.変形例
 3-1.第1の変形例
 既出の例において、突出部32の傾き方向は一様であった。しかしながら、突出部32の傾き方向は、本体部31の上面USに対して0度より大きく90度未満の角度をなしていれば、一様でなくてもよい。
3. Modified example 3-1. First Modification In the above-described example, the inclination direction of the protrusion 32 is uniform. However, the inclination direction of the protrusion 32 may not be uniform as long as it forms an angle greater than 0 degrees and less than 90 degrees with respect to the upper surface US of the main body section 31.
 図7は、磁性体装置1の第1の変形例を示す断面図である。本変形例において、突出部32が形成されるカバー領域RCは、第1カバー領域RC1と、第1カバー領域RC1と異なる第2カバー領域RC2を含んでいる。第1カバー領域RC1と第2カバー領域RC2とは、互いに重ならない。図7では説明の便宜上、その境界を境界線BNDとしている。第1カバー領域RC1には、少なくとも1つの第1突出部32-1が設けられている。第2カバー領域RC2には、少なくとも1つの第2突出部32-2が設けられている。 FIG. 7 is a cross-sectional view showing a first modification of the magnetic device 1. In the present modification, the cover region RC in which the protrusion 32 is formed includes a first cover region RC1 and a second cover region RC2 that is different from the first cover region RC1. The first cover region RC1 and the second cover region RC2 do not overlap each other. In FIG. 7, for the convenience of explanation, the boundary is a boundary line BND. The first cover region RC1 is provided with at least one first protrusion 32-1. The second cover region RC2 is provided with at least one second protrusion 32-2.
 本体部31の上面USに対する傾き方向は、第1突出部32-1と第2突出部32-2とで逆である。より詳細には、図7に示されるように、第1突出部32-1は、磁束を左向き(-X方向)にガイドするように傾いており、第2突出部32-2は、磁束を右向き(+X方向)にガイドするように傾いている。言い換えれば、第1突出部32-1及び第2突出部32-2の各々は、境界線BNDから離れるにつれて本体部31の上面USに近づくように傾いている。このような構造の結果、図7に示されるように、外部磁界の磁束は、磁気シールド30において左右に“分流”される。このことは、磁気シールド30の飽和磁化の観点から好適である。分流量を均等にするためには、境界線BNDは、カバー領域RCの中心付近に位置することが好ましい。 The inclination direction of the main body 31 with respect to the upper surface US is opposite between the first protrusion 32-1 and the second protrusion 32-2. More specifically, as shown in FIG. 7, the first protrusion 32-1 is inclined so as to guide the magnetic flux to the left (−X direction), and the second protrusion 32-2 It is inclined to guide to the right (+ X direction). In other words, each of the first projecting portion 32-1 and the second projecting portion 32-2 is inclined so as to approach the upper surface US of the main body 31 as the distance from the boundary line BND increases. As a result of such a structure, as shown in FIG. 7, the magnetic flux of the external magnetic field is “branched” left and right in the magnetic shield 30. This is preferable from the viewpoint of saturation magnetization of the magnetic shield 30. In order to equalize the divided flow rate, the boundary line BND is preferably located near the center of the cover region RC.
 図8は、不適切な例を示している。図8の例では、第1突出部32-1及び第2突出部32-2の傾き方向が、図7の場合と比較して反転している。この場合、左側の第1突出部32-1は磁束を右向きにガイドし、右側の第2突出部32-2は磁束を左向きにガイドする。そのため、図8に示されるように、磁界収束点CONが発生してしまう。磁界収束点CONに集まった磁束は、本体部31から磁気空洞空間MCに出ていかざるを得ず、これは好ましくない。逆に言えば、磁界収束点CONが発生しないように複数の突出部32が配置されていればよい。 Fig. 8 shows an inappropriate example. In the example of FIG. 8, the inclination directions of the first protrusion 32-1 and the second protrusion 32-2 are reversed as compared with the case of FIG. In this case, the left first protrusion 32-1 guides the magnetic flux to the right, and the right second protrusion 32-2 guides the magnetic flux to the left. Therefore, as shown in FIG. 8, a magnetic field convergence point CON is generated. The magnetic flux collected at the magnetic field convergence point CON has to come out from the main body 31 to the magnetic cavity space MC, which is not preferable. In other words, it is only necessary that the plurality of protrusions 32 be arranged so that the magnetic field convergence point CON does not occur.
 尚、本変形例における突出部32の平面配置パターンも任意である。例えば、既出の図3あるいは図4で示されたものと同様の平面配置パターンで、本変形例に係る構造は実現され得る。あるいは、図9に示されるように、複数の同心円錐台によっても、本変形例に係る構造は実現され得る。 In addition, the planar arrangement pattern of the protrusion part 32 in this modification is also arbitrary. For example, the structure according to this modification can be realized with the same planar arrangement pattern as that shown in FIG. 3 or FIG. Or as FIG. 9 shows, the structure which concerns on this modification may be implement | achieved also by several concentric truncated cones.
 3-2.第2の変形例
 図10は、磁性体装置1の第2の変形例を示す断面図である。磁気シールド30の突出部32は、直線的でなくてよく、図10に示されるように湾曲していてもよい。
3-2. Second Modification FIG. 10 is a cross-sectional view showing a second modification of the magnetic device 1. The protrusion 32 of the magnetic shield 30 does not have to be linear, and may be curved as shown in FIG.
 3-3.第3の変形例
 図11は、磁性体装置1の第3の変形例を示す断面図である。磁気シールド30の本体部31の形状は任意である。例えば図11に示されるように、磁気シールド30の本体部31は、基板10から見て凸になるように湾曲していてもよい。また、湾曲した本体部31の頭頂部に突出部32が設けられていてもよい。
3-3. Third Modification FIG. 11 is a cross-sectional view showing a third modification of the magnetic device 1. The shape of the main body 31 of the magnetic shield 30 is arbitrary. For example, as shown in FIG. 11, the main body 31 of the magnetic shield 30 may be curved so as to be convex when viewed from the substrate 10. Further, the protrusion 32 may be provided on the top of the curved main body 31.
 3-4.第4の変形例
 図12は、磁性体装置1の第4の変形例を示す断面図である。パッケージ構造が許せば、図12に示されるように、基板10の両側に磁気シールド30が設けられてもよい。より詳細には、第1磁気シールド30Aが第1主面11側に配置され、第2磁気シールド30Bが第2主面12側に配置されている。磁気シールド30A、30Bの各々は、磁気シールド30と同様である。
3-4. Fourth Modified Example FIG. 12 is a cross-sectional view showing a fourth modified example of the magnetic device 1. If the package structure permits, magnetic shields 30 may be provided on both sides of the substrate 10 as shown in FIG. More specifically, the first magnetic shield 30A is arranged on the first main surface 11 side, and the second magnetic shield 30B is arranged on the second main surface 12 side. Each of the magnetic shields 30 </ b> A and 30 </ b> B is the same as the magnetic shield 30.
 第1磁気シールド30Aは、本体部31Aと、少なくとも1つの突出部32Aとを備えている。本体部31Aの下面LSは、基板10の第1主面11側に位置している。一方、本体部31Aの上面USは、基板10の第1主面11と反対側に位置している。突出部32Aは、カバー領域RCAにおける本体部31Aの上面US上に設けられている。各突出部32Aは、本体部31Aの上面USに対して“斜め”に形成されている。 The first magnetic shield 30A includes a main body 31A and at least one protrusion 32A. The lower surface LS of the main body 31 </ b> A is located on the first main surface 11 side of the substrate 10. On the other hand, the upper surface US of the main body 31 </ b> A is located on the side opposite to the first main surface 11 of the substrate 10. The protrusion 32A is provided on the upper surface US of the main body 31A in the cover area RCA. Each protrusion 32A is formed "obliquely" with respect to the upper surface US of the main body 31A.
 第2磁気シールド30Bは、本体部31Bと、少なくとも1つの突出部32Bとを備えている。本体部31Bの下面LSは、基板10の第2主面12側に位置している。一方、本体部31Bの上面USは、基板10の第2主面12と反対側に位置している。突出部32Bは、カバー領域RCBにおける本体部31Bの上面US上に設けられている。各突出部32Bは、本体部31Bの上面USに対して“斜め”に形成されている。 The second magnetic shield 30B includes a main body 31B and at least one protrusion 32B. The lower surface LS of the main body portion 31 </ b> B is located on the second main surface 12 side of the substrate 10. On the other hand, the upper surface US of the main body portion 31B is located on the opposite side of the second main surface 12 of the substrate 10. The protruding portion 32B is provided on the upper surface US of the main body portion 31B in the cover region RCB. Each protrusion 32B is formed "obliquely" with respect to the upper surface US of the main body 31B.
 本変形例によれば、磁気シールド効果が更に向上する。尚、磁束の流れの観点から言えば、図12に示されるように、第1磁気シールド30Aと第2磁気シールド30Bは、基板10を挟んで対称的であることが好ましい。特に、突出部32A、32Bの配置パターンが、基板10を挟んで対称的であると好適である。 れ ば According to this modification, the magnetic shielding effect is further improved. From the viewpoint of the flow of magnetic flux, as shown in FIG. 12, the first magnetic shield 30A and the second magnetic shield 30B are preferably symmetrical with the substrate 10 in between. In particular, it is preferable that the arrangement pattern of the protrusions 32A and 32B is symmetrical with respect to the substrate 10.
 3-5.第5の変形例
 磁気シールド30の外周面は露出していてもよいが、腐食防止や加工性を考えると、磁気シールド30の外側も樹脂封止した方が望ましい。図13は、磁性体装置1の第5の変形例を示す断面図である。図13において、磁気シールド30の外周面(磁気空洞空間MC側と逆側の面)は、外部モールド樹脂50によって覆われている。これにより、磁気シールド30の腐食が防止され、また、加工性も向上する。
3-5. Fifth Modification Although the outer peripheral surface of the magnetic shield 30 may be exposed, it is desirable that the outer side of the magnetic shield 30 is also resin-sealed in view of corrosion prevention and workability. FIG. 13 is a cross-sectional view illustrating a fifth modification of the magnetic device 1. In FIG. 13, the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) is covered with an external mold resin 50. Thereby, corrosion of the magnetic shield 30 is prevented, and workability is also improved.
 更に、磁気シールド30の外側の外部モールド樹脂50には、磁性体粉が混合されていてもよい。すなわち、磁気シールド30の外周面(磁気空洞空間MC側と逆側の面)は、磁性体粉が混合された外部モールド樹脂50によって覆われていてもよい。これにより、全体としてのシールド効果が更に高まる。また、磁気シールド30の端部から放出される磁束を、透磁率の差により、磁気空洞空間MCではなく外部モールド樹脂50側に集めることができる。磁束の磁気空洞空間MCへの侵入が更に抑制され、好適である。 Furthermore, magnetic powder may be mixed in the external mold resin 50 outside the magnetic shield 30. That is, the outer peripheral surface of the magnetic shield 30 (surface opposite to the magnetic cavity space MC side) may be covered with the external mold resin 50 mixed with magnetic powder. Thereby, the shielding effect as a whole further increases. Further, the magnetic flux emitted from the end of the magnetic shield 30 can be collected not on the magnetic cavity space MC but on the external mold resin 50 side due to the difference in magnetic permeability. The penetration of the magnetic flux into the magnetic cavity space MC is further suppressed, which is preferable.
 3-6.第6の変形例
 図14は、磁性体装置1の第6の変形例を示す断面図である。本変形例において、磁気シールド30は、導電性磁性材料で形成された金属磁気シールドである。そして、その金属磁気シールド30が接地されている。例えば、基板10上にグランドパッド61が設けられ、金属磁気シールド30は半田62を介してそのグランドパッド61に電気的に接続される。このように接地した金属磁気シールド30は、電磁波シールドの役割も果たすことになり、好適である。
3-6. Sixth Modification FIG. 14 is a cross-sectional view showing a sixth modification of the magnetic device 1. In this modification, the magnetic shield 30 is a metal magnetic shield formed of a conductive magnetic material. The metal magnetic shield 30 is grounded. For example, the ground pad 61 is provided on the substrate 10, and the metal magnetic shield 30 is electrically connected to the ground pad 61 via the solder 62. The grounded metal magnetic shield 30 also serves as an electromagnetic wave shield, which is preferable.
 3-7.第7の変形例
 図15Aは、磁性体装置1の第7の変形例を示す断面図である。本変形例において、基板10上には複数の磁性体素子20が搭載され、磁気シールド30はそれら複数の磁性体素子20の全てをカバーするように共通に設けられる。例えば、配線基板10上に2つのMRAMチップ20-1、20-2が搭載され、磁気シールド30はそれらMRAMチップ20-1、20-2の両方をカバーするように共通に設けられる。
3-7. Seventh Modification FIG. 15A is a cross-sectional view showing a seventh modification of the magnetic device 1. In this modification, a plurality of magnetic elements 20 are mounted on the substrate 10, and the magnetic shield 30 is provided in common so as to cover all of the plurality of magnetic elements 20. For example, two MRAM chips 20-1 and 20-2 are mounted on the wiring board 10, and the magnetic shield 30 is provided in common so as to cover both of the MRAM chips 20-1 and 20-2.
 なお、図15Aは2つのMRAMチップ20-1、20-2がX軸方向に並んだ態様であるが、複数のMRAMチップがY軸方向に並んだ態様、X軸方向及びY軸方向に2次元的に並んだ態様も、もちろん可能である。 FIG. 15A shows a mode in which two MRAM chips 20-1 and 20-2 are arranged in the X-axis direction, but a mode in which a plurality of MRAM chips are arranged in the Y-axis direction, 2 in the X-axis direction and the Y-axis direction. Of course, a dimensional arrangement is also possible.
 図15Bは、マルチチップモジュールパッケージの例を示している。例えば、基板10上に、複数のMRAMチップ20Aが搭載される。また、1パッケージ内に、MRAMチップ20Aと他の半導体チップ20Bが混載されていてもよい。いずれの場合であっても、磁気シールド30は全てのチップをカバーするように設けられる。 FIG. 15B shows an example of a multi-chip module package. For example, a plurality of MRAM chips 20 </ b> A are mounted on the substrate 10. Further, the MRAM chip 20A and another semiconductor chip 20B may be mixedly mounted in one package. In either case, the magnetic shield 30 is provided so as to cover all the chips.
 矛盾しない限りにおいて、上述の変形例同士の組み合わせも可能である。 As long as there is no contradiction, combinations of the above-described modifications are possible.
 本発明は、BGA(Ball Grid Array)パッケージ、FCBGA(Flip Chip Ball Grid Array)パッケージ、QFP(Quad
Flat Package)、マルチチップモジュールパッケージ等の様々なパッケージ(磁気シールドパッケージ)に適用可能である。
The present invention includes BGA (Ball Grid Array) package, FCBGA (Flip Chip Ball Grid Array) package, QFP (Quad
It can be applied to various packages (magnetic shield package) such as Flat Package) and multichip module packages.
 4.製造方法
 本実施の形態に係る突出部32を製造する方法は様々考えられる。
4). Manufacturing Method Various methods for manufacturing the protrusion 32 according to the present embodiment are conceivable.
 例えば、図16に示されるように、本体部31となる磁性体板に、まず、溝が形成される。次に、突出部32となる磁性体小板が溝に打ち込まれる。続いて、その磁性体小板が所望方向に折り曲げられる。 For example, as shown in FIG. 16, first, a groove is formed in the magnetic plate that becomes the main body 31. Next, a magnetic material plate serving as the protrusion 32 is driven into the groove. Subsequently, the magnetic platelet is bent in a desired direction.
 あるいは、図17に示されるように、本体部31となる磁性体板に、ブレードで斜めの切りこみが形成される。続いて、その斜めの切りこみに、突出部32となる磁性体小板が打ち込まれる。 Alternatively, as shown in FIG. 17, an oblique cut is formed by a blade in the magnetic body plate that becomes the main body 31. Subsequently, a magnetic platelet serving as the protrusion 32 is driven into the oblique cut.
 あるいは、図18に示されるように、磁性体板にプレス歯で切りこんだ後、プレス歯を持ち上げて突出部32を一気に形成する。 Alternatively, as shown in FIG. 18, after cutting into the magnetic plate with the press teeth, the press teeth are lifted to form the protrusions 32 at once.
 以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。 The embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed by those skilled in the art without departing from the gist.
 本出願は、2009年10月13日に出願された日本国特許出願2009-236266を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-236266 filed on Oct. 13, 2009, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  基板と、
     前記基板の第1主面上に搭載された少なくとも1つの磁性体素子と、
     前記基板の前記第1主面側に配置された軟磁性体の磁気シールドと
     を備え、
     前記磁気シールドは、
      前記第1主面側に位置する下面と、前記下面と反対側に位置する上面と、を備える本体部と、
      前記本体部の前記上面上に設けられた少なくとも1つの突出部と
     を備え、
     前記少なくとも1つの突出部は、前記第1主面を上から見て少なくとも前記磁気シールドと前記磁性体素子とがオーバーラップする領域を含むカバー領域に備えられ、
     前記少なくとも1つの突出部は、前記本体部の前記上面に対して、法線方向を除く方向に傾いている
     磁性体装置。
    A substrate,
    At least one magnetic element mounted on the first main surface of the substrate;
    A magnetic shield of soft magnetic material disposed on the first main surface side of the substrate,
    The magnetic shield is
    A main body comprising: a lower surface located on the first main surface side; and an upper surface located on the opposite side of the lower surface;
    And at least one protrusion provided on the upper surface of the main body,
    The at least one protrusion is provided in a cover region including a region where at least the magnetic shield and the magnetic element overlap when the first main surface is viewed from above,
    The at least one protrusion is inclined in a direction other than a normal direction with respect to the upper surface of the main body.
  2.  請求項1に記載の磁性体装置であって、
     前記突出部の数は複数である
     磁性体装置。
    The magnetic device according to claim 1,
    The number of the protrusions is plural.
  3.  請求項2に記載の磁性体装置であって、
     前記本体部の前記上面側から見たとき、前記カバー領域における前記上面は、前記複数の突出部によって覆われている
     磁性体装置。
    The magnetic device according to claim 2,
    When viewed from the upper surface side of the main body, the upper surface of the cover region is covered with the plurality of protrusions.
  4.  請求項2又は3に記載の磁性体装置であって、
     前記複数の突出部が、前記上面に対して同じ方向に傾いている
     磁性体装置。
    The magnetic device according to claim 2 or 3,
    The plurality of protrusions are inclined in the same direction with respect to the upper surface.
  5.  請求項2又は3に記載の磁性体装置であって、
     前記カバー領域は、第1カバー領域と、前記第1カバー領域と異なる第2カバー領域とを含み、
     前記複数の突出部は、
      前記第1カバー領域に設けられた少なくとも1つの第1突出部と、
      前記第2カバー領域に設けられた少なくとも1つの第2突出部と
     を含み、
     前記第1突出部及び前記第2突出部の各々は、前記第1カバー領域と前記第2カバー領域との境界から離れるにつれて前記上面に近づくように傾いている
     磁性体装置。
    The magnetic device according to claim 2 or 3,
    The cover area includes a first cover area and a second cover area different from the first cover area;
    The plurality of protrusions are
    At least one first protrusion provided in the first cover region;
    And at least one second protrusion provided in the second cover region,
    Each of the first protrusion and the second protrusion is inclined so as to approach the upper surface as the distance from the boundary between the first cover area and the second cover area increases.
  6.  請求項1乃至5のいずれか一項に記載の磁性体装置であって、
     前記磁気シールドと前記磁性体素子との間の空間は、磁気的に空洞である
     磁性体装置。
    It is a magnetic body device according to any one of claims 1 to 5,
    A space between the magnetic shield and the magnetic element is a magnetic cavity.
  7.  請求項6に記載の磁性体装置であって、
     前記磁気シールドと前記磁性体素子との間には非磁性絶縁体が充填されている、または、前記磁気シールドと前記磁性体素子の間の空間は空洞である
     磁性体装置。
    The magnetic device according to claim 6,
    A nonmagnetic insulator is filled between the magnetic shield and the magnetic element, or a space between the magnetic shield and the magnetic element is a cavity.
  8.  請求項1乃至7のいずれか一項に記載の磁性体装置であって、
     前記磁性体素子の数は複数であり、
     前記カバー領域は、前記複数の磁性体素子の全てをカバーする
     磁性体装置。
    A magnetic device according to any one of claims 1 to 7,
    The number of the magnetic elements is plural,
    The cover region covers all of the plurality of magnetic elements.
  9.  請求項1乃至8のいずれか一項に記載の磁性体装置であって、
     更に、軟磁性体の他の磁気シールドを備え、
     前記他の磁気シールドは、前記基板の前記第1主面と逆側の第2主面側に配置され、
     前記他の磁気シールドは、
      前記第2主面側に位置する下面と、前記下面と反対側に位置する上面と、を備える他の本体部と、
      前記他の本体部の前記上面上に設けられた少なくとも1つの他の突出部と
     を備え、
     前記少なくとも1つの他の突出部は、前記第2主面を下から見て少なくとも前記他の磁気シールドと前記磁性体素子とがオーバーラップする領域を含む他のカバー領域に備えられ、
     前記少なくとも1つの他の突出部は、前記他の本体部の前記上面に対して、法線方向を除く方向に傾いている
     磁性体装置。
    A magnetic device according to any one of claims 1 to 8,
    In addition, it has another magnetic shield of soft magnetic material,
    The other magnetic shield is disposed on the second main surface side opposite to the first main surface of the substrate,
    The other magnetic shield is
    Another main body comprising a lower surface located on the second main surface side and an upper surface located on the opposite side of the lower surface;
    And at least one other protrusion provided on the upper surface of the other body part,
    The at least one other protrusion is provided in another cover region including a region where at least the other magnetic shield and the magnetic element overlap when the second main surface is viewed from below.
    The at least one other projecting portion is inclined with respect to the upper surface of the other main body portion in a direction other than a normal direction.
PCT/JP2010/067786 2009-10-13 2010-10-08 Magnet device WO2011046090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011536126A JPWO2011046090A1 (en) 2009-10-13 2010-10-08 Magnetic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-236266 2009-10-13
JP2009236266 2009-10-13

Publications (1)

Publication Number Publication Date
WO2011046090A1 true WO2011046090A1 (en) 2011-04-21

Family

ID=43876140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067786 WO2011046090A1 (en) 2009-10-13 2010-10-08 Magnet device

Country Status (2)

Country Link
JP (1) JPWO2011046090A1 (en)
WO (1) WO2011046090A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052571A (en) * 2013-09-09 2015-03-19 株式会社東芝 Distortion detection device and method for manufacturing the same
JP2016171114A (en) * 2015-03-11 2016-09-23 新光電気工業株式会社 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124538A (en) * 2001-10-16 2003-04-25 Sony Corp Information storage device and electronic equipment mounted with the same information storage device
JP2003309196A (en) * 2002-04-16 2003-10-31 Sony Corp Magnetic shielding package for magnetic nonvolatile memory element
JP2004349476A (en) * 2003-05-22 2004-12-09 Toshiba Corp Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002344189A (en) * 2001-05-17 2002-11-29 Hitachi Metals Ltd Magnetic material for magnetic shield and structure thereof, and magnetic shield device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124538A (en) * 2001-10-16 2003-04-25 Sony Corp Information storage device and electronic equipment mounted with the same information storage device
JP2003309196A (en) * 2002-04-16 2003-10-31 Sony Corp Magnetic shielding package for magnetic nonvolatile memory element
JP2004349476A (en) * 2003-05-22 2004-12-09 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052571A (en) * 2013-09-09 2015-03-19 株式会社東芝 Distortion detection device and method for manufacturing the same
JP2016171114A (en) * 2015-03-11 2016-09-23 新光電気工業株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPWO2011046090A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US9466784B2 (en) Semiconductor device having multiple magnetic shield members
US20060019422A1 (en) Magnetic shield for integrated circuit packaging
WO2011046091A1 (en) Magnet device
JP6010005B2 (en) Semiconductor device and manufacturing method thereof
US9685605B2 (en) Magnetic memory device having a magnetic shield structure
KR102437673B1 (en) Semiconductor device
KR102378232B1 (en) Devices and methods having magnetic shielding layer
US10109596B2 (en) Semiconductor device and method of manufacturing the same
JP6235598B2 (en) Semiconductor device and manufacturing method thereof
US8018048B2 (en) Semiconductor device
WO2011046090A1 (en) Magnet device
US20230361050A1 (en) Package structure and method for fabricating the same
US9659880B2 (en) Semiconductor device
WO2011111789A1 (en) Magnetic device and process for production thereof
US20220344578A1 (en) Package structure and manufacturing method thereof
JP2010016250A (en) Semiconductor device
JP5574281B2 (en) Magnetic device
KR102624903B1 (en) MRAM Package with Magnetic Shielding Layer and Method of Manufacturing the Same
JP2005340237A (en) Magnetic storage device
JP2017183629A (en) Semiconductor device and method of manufacturing the same
JP5858335B2 (en) Semiconductor device
CN115411175A (en) Magnetic assembly and packaging method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823358

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536126

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823358

Country of ref document: EP

Kind code of ref document: A1