WO2011043357A1 - Irradiation method of laser, frequency adjustment method of piezoelectric vibrator using same, and frequency-adjusted piezoelectric device using same - Google Patents

Irradiation method of laser, frequency adjustment method of piezoelectric vibrator using same, and frequency-adjusted piezoelectric device using same Download PDF

Info

Publication number
WO2011043357A1
WO2011043357A1 PCT/JP2010/067501 JP2010067501W WO2011043357A1 WO 2011043357 A1 WO2011043357 A1 WO 2011043357A1 JP 2010067501 W JP2010067501 W JP 2010067501W WO 2011043357 A1 WO2011043357 A1 WO 2011043357A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
piezoelectric vibrator
frequency
silicon material
piezoelectric
Prior art date
Application number
PCT/JP2010/067501
Other languages
French (fr)
Japanese (ja)
Inventor
耕三 多田
伊藤 義郎
Original Assignee
シチズンファインテックミヨタ株式会社
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンファインテックミヨタ株式会社, 国立大学法人長岡技術科学大学 filed Critical シチズンファインテックミヨタ株式会社
Priority to JP2011535410A priority Critical patent/JPWO2011043357A1/en
Publication of WO2011043357A1 publication Critical patent/WO2011043357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/38Conductors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0414Resonance frequency
    • H03H2003/0485Resonance frequency during the manufacture of a cantilever

Definitions

  • the present invention relates to a laser irradiation method, a frequency adjustment method of a piezoelectric vibrator using the same, and a piezoelectric device frequency-adjusted using the method.
  • Lasers are widely used in the field of electronic component manufacturing, and in particular in the field of semiconductor electronic component manufacturing, it is known that a laser beam is transmitted through a silicon material to irradiate a target object.
  • Patent Documents 1 and 2 For example, see Patent Documents 1 and 2)
  • FIG. 12 is a cross-sectional view schematically showing a part of the semiconductor electronic component manufacturing process.
  • the semiconductor electronic component shown here is an electronic component package formed by bonding a flat lid member (lid) 2 made of silicon material to a box-shaped substrate (package substrate) 1 made of silicon material.
  • This is a so-called package type piezoelectric device in which a plate-like piezoelectric vibrator 3 is hermetically sealed.
  • an excitation electrode (not shown) formed on the surface of the piezoelectric vibrator 3 is connected to an external connection provided on the outer surface of the package substrate 3 via a through wiring 4 provided on the bottom of the package substrate 1. It is electrically connected to the terminal 5, and electrical signals are input / output through the external connection terminal 5.
  • the resonance frequency of the piezoelectric vibrator 3 is adjusted as part of the manufacturing process.
  • Resonance frequency (hereinafter simply referred to as frequency) may be adjusted to the higher frequency side or to the lower frequency side, but mainly when adjusting the frequency to the higher frequency side.
  • a laser is used as one of the means.
  • the lid member 2 forming a part of the exterior of the piezoelectric device is irradiated with a laser L having a wavelength of about 1300 nm and transmitted.
  • the frequency is changed to the high frequency side.
  • the frequency adjustment using the laser is performed at an arbitrary stage of the manufacturing process, and can be selected before and after the lid member 2 is joined to the package substrate 1 in large steps. What is performed after the lid member 2 is bonded to the substrate 1 is that the frequency can be adjusted in a state closer to the final product. Therefore, the frequency is adjusted again in the manufacturing process after the frequency is adjusted once until the final product is obtained.
  • the effect of changing (frequency shift) can be suppressed, and there is an advantage that foreign matter such as dust can be prevented from entering the electronic component package during frequency adjustment. In many cases, it is more preferable in terms of the manufacturing process than before the lid member 2 is bonded to the first member.
  • the purpose of transmitting a laser beam to a silicon material is not limited to the example described above, but various. In any case, in the field of electronic component manufacturing, it is often required to transmit a laser beam to a silicon material.
  • FIG. 13 is a diagram schematically showing the mechanism of damage caused by laser.
  • the silicon material and its surface Excessive thermal shock is applied to the deposit, and further to the irradiation object itself, and there is a possibility that a portion that should not be processed is processed or deteriorated. Therefore, it is desirable to optimize various parameters that determine the properties of the laser when transmitting the laser through the silicon material.
  • the present invention has been made in view of the above problems, and is suitable for a target object by transmitting a laser beam to a silicon material while minimizing damage to the silicon material and its surrounding components. It is an object of the present invention to provide a laser irradiation method capable of irradiating a laser beam, a frequency adjustment method of a piezoelectric vibrator using the same, and a piezoelectric device frequency-adjusted using the method.
  • a laser that irradiates a silicon material with a laser and transmits the laser, and irradiates the transmitted object to a target object separated from the silicon material.
  • the laser is a pulse laser having a pulse width of 50 to 1000 fs.
  • the wavelength of the laser can be a laser irradiation method of 1200 to 4000 nm.
  • the resonance frequency of the piezoelectric vibrator is adjusted by irradiating the piezoelectric vibrator housed in the electronic component package at least partially made of a silicon material with a laser.
  • the frequency of the piezoelectric vibrator is adjusted by irradiating the child.
  • the resonance frequency of the piezoelectric vibrator may be adjusted by removing the mass film formed on the surface of the piezoelectric vibrator with the laser.
  • the resonance frequency of the piezoelectric vibrator may be adjusted by removing the base material of the piezoelectric vibrator with the laser.
  • the resonance frequency of the piezoelectric vibrator is adjusted by irradiating the piezoelectric vibrator housed in the electronic component package, at least part of which is made of a silicon material, with a laser.
  • the mass film formed on the inner surface is irradiated to scatter the mass film, and the scattered mass film is attached to the piezoelectric vibrator to adjust the resonance frequency of the piezoelectric vibrator.
  • a piezoelectric device in which a piezoelectric vibrator is housed in an electronic component package at least partially made of a silicon material, and the frequency of any of the above piezoelectric vibrators The frequency is adjusted using the adjustment method.
  • the parameters that determine the properties of the laser are optimized, so that damage to the silicon material is minimized and the object separated from the silicon material is separated.
  • a laser can be suitably irradiated. Further, if this technique is used when adjusting the frequency of the piezoelectric vibrator, it is possible to suitably adjust the frequency while minimizing damage to the electronic component package that accommodates the piezoelectric vibrator.
  • FIG. 1 is a diagram showing the principle of a laser irradiation method according to the present invention.
  • FIG. 2 is a graph showing the relationship between the laser wavelength and transmittance for a silicon single crystal.
  • FIG. 3 is a diagram showing an example of a laser irradiation apparatus used for carrying out the laser irradiation method according to the present invention.
  • FIG. 4 is a diagram showing a basic experiment method for evaluating the effectiveness of the laser irradiation method according to the present invention.
  • 5A and 5B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 4.
  • FIG. 5A shows a state in which the surface of the upper silicon substrate is viewed from the laser irradiation side, and FIG.
  • FIG. 6 is a diagram showing a basic experiment using a conventional laser irradiation method as a comparative example to the laser irradiation method according to the present invention.
  • 7A and 7B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 6.
  • FIG. 7A shows the state of the surface of the silicon substrate viewed from the laser irradiation side, and FIG. The surface is seen from the side opposite to the laser irradiation side.
  • FIG. 8 is a diagram illustrating a frequency adjustment method (first embodiment) of a piezoelectric vibrator according to the present invention.
  • FIG. 9 is a diagram illustrating a frequency adjustment method (Example 2) of a piezoelectric vibrator according to the present invention.
  • 10A and 10B are images observed by a laser microscope of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 10A shows the surface of the piezoelectric vibrator on the laser irradiation side.
  • 10B shows a state in which the lid member through which the laser is transmitted is viewed from the side opposite to the laser irradiation side.
  • 11A to 11D are SEM observation images of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG.
  • FIG. 11A shows the surface of the piezoelectric vibrator from the laser irradiation side.
  • FIG. 11B shows an enlarged view of a part of FIG. 11A (around the end of scanning 1)
  • FIG. 11C shows a part of FIG. 11A (around the start of scanning 2).
  • 11D shows a state seen from an enlarged view
  • FIG. 11D shows a state seen from an enlarged portion of FIG.
  • FIG. 12 is a cross-sectional view schematically showing a part of the manufacturing process of the semiconductor electronic component.
  • FIG. 13 is a diagram schematically showing a mechanism of occurrence of damage by a laser.
  • the laser irradiation method according to the present invention is characterized by setting a pulse width of 50 to 1000 fs (femtoseconds), which is one of the parameters that determine the properties of the laser used when transmitting the laser through the silicon material. .
  • Such a short-pulse-width laser is commonly called a femtosecond laser, and the photon absorption range is limited to a range of ⁇ m order because the irradiation time of the laser is extremely short. It is characterized by a narrower range of thermal shock than lasers, less damage to the irradiated object, and non-linear optical effects due to steep rising pulses, so it is usually difficult to absorb lasers and reflective materials.
  • the laser energy can be efficiently transmitted even to a material having a high rate, and the micro area can be selectively processed by focusing the micro area on the micro area.
  • the present applicant has found that by irradiating a silicon material with a femtosecond laser having such characteristics, it is possible to transmit the silicon material while minimizing damage to the silicon material.
  • the idea was to use a laser beam through a silicon material and irradiate the object ahead of it.
  • FIG. 1 is a diagram showing in principle the laser irradiation method according to the present invention
  • FIG. 2 is a graph showing the relationship between the wavelength and transmittance of a laser with respect to a silicon material.
  • the wavelength of the femtosecond laser to be used must be at least transmitted through the silicon material.
  • the wavelength for example, about 900 nm as shown in FIG.
  • a wavelength band of about 1200 nm or more in which the transmittance is about 50% or more is more preferable.
  • a laser having a wavelength band of 1200 to 4000 nm which has a particularly high transmittance.
  • visible light is generally used from a laser light source capable of outputting a femtosecond laser.
  • a laser having a wavelength of 780 nm as an area is output, and the wavelength is converted to 1200 to 4000 nm by passing it through a wavelength conversion element (OPO: Optical Parametric Oscillator).
  • OPO Optical Parametric Oscillator
  • the laser that has passed through the condensing optical system will damage the silicon material significantly. Without being given, it passes through the silicon material and irradiates the irradiation object ahead.
  • FIG. 3 is a diagram showing an example of a laser irradiation apparatus used for carrying out the laser irradiation method according to the present invention.
  • the laser irradiation apparatus shown here is configured based on the principle of the laser irradiation method according to the present invention shown in FIG. 1, and a laser light source 11 that outputs a femtosecond laser having a wavelength in the visible light region (for example, 780 nm).
  • the wavelength conversion element 12 that converts the wavelength of the laser output from the laser light source 11 into a wavelength in the near-infrared region (for example, 1200 to 4000 nm), and the laser that has been wavelength-converted by the wavelength conversion element 12 are condensed.
  • a condensing optical system 13 such as a lens, a triaxial direction (XYZ directions) orthogonal to each other, a movable table 14 movable around each axis, a vacuum chamber 15 for storing the movable table 14 in a vacuum atmosphere, And an N 2 chamber 16 for storing components other than the laser light source 11 in a nitrogen atmosphere (N 2 purge).
  • the movable table 14 is provided with a holding mechanism that holds the laser irradiation object 17 in a predetermined posture, so that the movable table 14 appropriately moves in the XYZ directions and the rotation directions around those axes while holding the irradiation object 17.
  • the position of the irradiation object 17 with respect to the laser can be arbitrarily changed.
  • the N 2 chamber 16 is mainly for preventing the laser from being attenuated. Since the laser converted into a wavelength of 1200 to 4000 nm by the wavelength conversion element 12 is significantly absorbed in moisture, it is in the optical path of the laser. It is filled with nitrogen, which is an inert gas, to eliminate moisture in the air.
  • the vacuum chamber 15 is for performing laser irradiation on the irradiation object 17 in a vacuum atmosphere, and an arbitrary degree of vacuum can be created by a vacuum exhaust means such as a vacuum pump 18.
  • the vacuum chamber 15 is necessary only when it is necessary to perform laser irradiation on the irradiation object 17 in a vacuum atmosphere due to the nature of the irradiation object 17, and may be omitted as appropriate depending on the situation. it can.
  • FIG. 4 is a diagram showing a basic experiment for evaluating the effectiveness of the laser irradiation method according to the present invention.
  • a single-crystal silicon substrate 23 having no deposit on the surface thereof is opposed to the Au thin film 21 on the silicon single crystal substrate 22 on which the Au thin film 21 is formed on one side (upper surface in the drawing) of the main surface.
  • the sample bonded through the spacer 24 is used as an evaluation sample, and the evaluation sample is slightly tilted with respect to the sample mounting surface, and the lower silicon single crystal from the upper silicon single crystal substrate 23 side.
  • the Au thin film 21 of the substrate 22 was focused and irradiated with the femtosecond laser L, and at the same time, it was scanned linearly in a certain direction without changing the focal length.
  • Laser type Fiber laser wavelength: 1552.5nm Pulse width: 800 fs Output intensity: 5 ⁇ J / pulse (average intensity 2.5 W, maximum intensity 0.8 MW or more) Repetition frequency: 100 kHz Beam diameter: 5 mm x 5 mm (during emission) Laser scanning speed: 1 mm / s Evaluation sample tilt angle: 0.96 °
  • FIG. 5A and 5B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 4.
  • FIG. 5A shows the surface of the upper silicon single crystal substrate viewed from the laser irradiation side
  • FIG. 5B shows the Au thin film. The surface is seen from the laser irradiation side.
  • two linear irradiation marks can be seen on the surface of the silicon single crystal substrate 23 (irradiation marks A and B), and the lower irradiation mark B in the figure directly focuses the laser beam. Focusing on this irradiation mark B, the surface layer of the silicon single crystal substrate 23 is physically removed along the laser irradiation region as a result of analysis.
  • the silicon single crystal substrate 23 was not significantly damaged.
  • no particularly large irradiation marks were found on the surface of the silicon single crystal substrate 23 opposite to the laser irradiation side.
  • the upper irradiation mark A in the drawing is considered to be a secondary irradiation mark formed by reflecting a part of the laser inside the silicon single crystal substrate 23 and focusing in the vicinity of the surface layer.
  • silicon materials are processed for the first time by focusing a short-pulse-width laser to produce a nonlinear optical effect, and conversely, a laser with a wavelength that passes through the silicon material. Even so, it means that the silicon material has no influence unless it is condensed to produce a nonlinear optical effect. That is, focusing on that point and reviewing the physical numerical conditions (parameters) of the laser, it is possible to process the target object by passing the laser through the silicon material without damaging the silicon material. I understand that.
  • the above results show that no large laser irradiation traces are formed on the surface of the silicon single crystal substrate 23 located immediately above the processing region of the Au thin film 21 on either the laser incident side or the opposite side.
  • FIG. 6 is a diagram showing a basic experiment using a laser irradiation method according to the prior art as a comparative example to the laser irradiation method according to the present invention.
  • a silicon single crystal substrate 32 having an Au thin film 31 formed on one side of the main surface (lower surface in the drawing) is used as an evaluation sample, and the side on which the Au thin film 31 is formed with respect to the evaluation sample.
  • the Au thin film 31 was focused from the opposite side to the high-power laser L having a longer pulse width than the femtosecond laser.
  • FIG. 7A and 7B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 6.
  • FIG. 7A shows the surface of the silicon single crystal substrate as viewed from the laser irradiation side
  • FIG. 7B shows the surface of the Au thin film. The state seen from the side opposite to the laser irradiation side is shown.
  • an irradiation mark is seen in the entire laser irradiation region on the surface of the silicon single crystal substrate 32, and a recess R formed by laser thermal shock can be confirmed particularly near the focal point. It turns out that there is a big damage in 32.
  • the basic experiment result of the comparative example and the basic experiment result using the laser irradiation method of the present invention shown in FIG. Although it cannot be compared, it can be sufficiently confirmed that the use of the laser irradiation method according to the present invention can process the Au thin film on the surface of the silicon material while minimizing damage to the silicon material substrate.
  • FIG. 8 is a diagram showing a frequency adjustment method for a piezoelectric vibrator according to the present invention.
  • the application of the laser irradiation method according to the present invention described above can be arbitrarily selected, and one of them is to use it when adjusting the resonance frequency of the piezoelectric vibrator.
  • an Au thin film 41 is formed as a mass film for frequency adjustment on the surface (the lower surface in the figure) of the lid member 2 facing the inside of the electronic component package at a position substantially opposite to the vibrating portion of the piezoelectric vibrator 3. ing.
  • the frequency of the piezoelectric vibrator 3 is set to a higher frequency side than the target value in the manufacturing stage in advance, and then formed on the surface of the lid member 2.
  • the femtosecond laser L is irradiated from the lid member 2 side so as to focus on the Au thin film 41, and at the same time, the locus of the laser L linearly scans in a certain direction so as to straddle the formation region of the Au thin film 41. To do.
  • the irradiated laser passes through the lid member 2 and is irradiated to the opposite Au thin film 41, and the Au thin film 41 is scattered by the thermal shock and adheres to the surface of the piezoelectric vibrator 3.
  • the frequency of the piezoelectric vibrator 3 can be adjusted to a desired value by controlling the laser irradiation time. .
  • the lid member 2 is not excessively damaged by the laser, and the lid member 2 is broken and a leak occurs between the inside and the outside. There is no such thing.
  • the laser beam that has passed through the lid member 2 causes secondary scattering of the particles of the Au thin film 41 adhering to the surface of the piezoelectric vibrator 3 (secondary sputtering), and damage to the piezoelectric vibrator 3 itself.
  • the frequency adjustment is performed stably without being affected.
  • the frequency adjusting mass film is formed on the surface of the lid member 2
  • the mass film can be scattered and attached to the surface of the piezoelectric vibrator 3.
  • the mass film may be formed in any region of the inner surface of the piezoelectric device.
  • the mass film may be formed on the inner surface of the package substrate 1.
  • FIG. 9 is a diagram showing a frequency adjustment method for a piezoelectric vibrator according to the present invention.
  • Example 1 shown in FIG. 8 the frequency of the piezoelectric vibrator 3 is adjusted from the high frequency side to the low frequency side.
  • the frequency adjusting method of the piezoelectric vibrator shown in FIG. Is adjusted from the low frequency side to the high frequency side.
  • a mass film for frequency adjustment is formed on the surface of the lid member 2 in the first embodiment, whereas a mass is formed on the surface of the lid member 2 in the second embodiment.
  • a mass film for frequency adjustment is formed on the surface of the piezoelectric vibrator 3 instead.
  • the mass film is formed only on the main surface (upper surface in the drawing) of the main surface of the piezoelectric vibrator 3 on the side facing the lid member 2.
  • the Au thin film 42 formed on the surface of the piezoelectric vibrator 3 is set in advance in the manufacturing stage after setting the frequency of the piezoelectric vibrator 3 to be lower than the target value.
  • the femtosecond laser L is irradiated from the lid member 2 side so as to be focused on, and at the same time, the locus of the laser L linearly scans in a certain direction so as to straddle the formation region of the Au thin film 43.
  • the irradiated laser is transmitted through the lid member 2 and irradiated onto the Au thin film 43 on the surface of the piezoelectric vibrator 3, and the Au thin film 43 is scattered and physically removed by the thermal shock.
  • the frequency of the piezoelectric vibrator 3 is controlled to a desired value by controlling the laser irradiation time. And can be adjusted.
  • FIGS. 10A and 10B are images observed by a laser microscope of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 10A shows the surface of the piezoelectric vibrator on the laser irradiation side.
  • FIG. 10B shows a state where the lid member through which the laser is transmitted is viewed from the side opposite to the laser irradiation side.
  • the applicant of the present application conducted a basic experiment using an evaluation sample.
  • a package-type piezoelectric device in which a piezoelectric vibrator 3 having a tuning-fork-type vibrating portion is hermetically sealed inside an electronic component package made of a silicon material as shown in FIG. 12 is used as an evaluation sample.
  • the laser was transmitted through the lid member 2 to irradiate the surface of the vibrating portion of the piezoelectric vibrator 3 and simultaneously the laser was sequentially scanned in three directions in the direction indicated by the arrows in FIG. 10A.
  • a laser is irradiated to the frequency adjusting mass film (Au thin film) formed on the surface of the vibrating portion, and the third scan (scan 3).
  • FIG. 10A shows only one end of the tuning-fork type vibration part
  • FIG. 10B shows the surface of the lid member facing the one end of the vibration part shown in FIG. 10A.
  • FIG. 10A it can be confirmed that laser irradiation traces are formed on the surface of the vibrating part by each scanning of the laser (scanning 1 to 3).
  • FIG. 10B the surface of the lid member through which the laser is transmitted. Although the Au thin film and the crystal particles which are thought to have been scattered by the laser irradiation are attached, it can be confirmed that there is no significant damage such as a crack in the lid member.
  • FIG. 11A to 11D are SEM observation images of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 11A shows the surface of the piezoelectric vibrator from the laser irradiation side.
  • 11B is an enlarged view of a part of FIG. 11A (around the end of the scanning 1 end)
  • FIG. 11C is an enlarged view of a part of FIG. 11A (around the starting end of the scanning 2)
  • FIG. 11D shows a state in which a part of FIG. 11A (the vicinity of the end portion of the scanning 3) is enlarged. Referring to FIG. 11B, it can be confirmed that only the Au thin film has been removed in scan 1, and with reference to FIG.
  • the lid member 2 and the piezoelectric vibrator 3 are excessively damaged by the laser similarly to the first embodiment.
  • the frequency adjustment is performed stably.
  • the mass film for frequency adjustment is formed on the upper surface of the piezoelectric vibrator 3 .
  • the mass film for frequency adjustment can be scattered and removed.
  • it may be formed on the other surface (lower surface or side surface) of the piezoelectric vibrator 3.
  • the mass film previously formed on the surface of the piezoelectric vibrator 3 is removed by the laser to reduce the mass of the piezoelectric vibrator.
  • the piezoelectric vibrating piece which is a base material of the piezoelectric vibrator 3 is removed. You may make it reduce the mass of the piezoelectric vibrator 3 by removing a part of itself with a laser.
  • various piezoelectric vibrators such as a so-called tuning fork-type piezoelectric vibrator having a tuning-fork type vibrating portion and a so-called AT-cut piezoelectric vibrator having a rectangular shape in plan view can be used.
  • a so-called tuning fork-type piezoelectric vibrator having a tuning-fork type vibrating portion and a so-called AT-cut piezoelectric vibrator having a rectangular shape in plan view can be used.
  • the mass film for adjusting the frequency is not limited to Au, and various other materials can be appropriately selected.
  • the pulse width of the laser used in the laser irradiation method of the present invention is not strictly limited to the numerical range defined in the present specification. As long as there is a critical point in the numerical range, some error can be allowed without departing from the spirit of the present invention.
  • the silicon material to be laser-transmitted in the present invention is not limited to the silicon single crystal shown in the embodiment, and covers all materials mainly composed of silicon (Si) without departing from the gist of the present invention. Become.
  • the laser irradiation method according to the present invention can be applied to any application that requires transmission of a laser through a silicon material without departing from the spirit of the present invention. Examples include, but are not limited to, cutting, modification, and melting of an object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Laser Beam Processing (AREA)

Abstract

Disclosed are an irradiation method of a laser, a frequency adjustment method of a piezoelectric vibrator using the same, and a frequency-adjusted piezoelectric device using the same capable of minimizing damage to silicon material or surrounding constituent elements, while the laser is transmitted through the silicon material and is irradiated preferably onto an object ahead of the same. Accordingly, as a laser to be used, a so-called "femtosecond laser" which is a pulse laser of a pulse width of 50 to 1000 fs (femtoseconds) is selected. This technology can, for example, preferably be used when irradiating a laser onto a piezoelectric vibrator contained in the interior of an electronic component package comprising silicon material to adjust the resonance frequency thereof.

Description

レーザーの照射方法、及びそれを用いた圧電振動子の周波数調整方法、並びにそれを用いて周波数調整された圧電デバイスLaser irradiation method, frequency adjustment method of piezoelectric vibrator using the same, and piezoelectric device frequency adjusted using the same
 本発明は、レーザーの照射方法、及びそれを用いた圧電振動子の周波数調整方法、並びにそれを用いて周波数調整された圧電デバイスに関するものである。 The present invention relates to a laser irradiation method, a frequency adjustment method of a piezoelectric vibrator using the same, and a piezoelectric device frequency-adjusted using the method.
 電子部品製造の分野においてはレーザーが広く利用されており、特に半導体電子部品製造の分野においては、シリコン材料にレーザーを透過させてその先の対象物に照射することが知られている。(例えば、特許文献1、2参照) Lasers are widely used in the field of electronic component manufacturing, and in particular in the field of semiconductor electronic component manufacturing, it is known that a laser beam is transmitted through a silicon material to irradiate a target object. (For example, see Patent Documents 1 and 2)
 図12は、半導体電子部品の製造プロセスの一部を模式的に示す断面図である。まず、ここに示す半導体電子部品は、シリコン材料から成る箱型の基板(パッケージ基板)1に同じくシリコン材料から成る平板状の蓋部材(リッド)2を接合することで形成された電子部品パッケージの内部に平板状の圧電振動子3が気密封止された所謂パッケージ型の圧電デバイスである。この圧電デバイスにおいて、圧電振動子3の表面に形成された励振電極(不図示)は、パッケージ基板1の底部に設けられた貫通配線4を介してパッケージ基板3の外表面に設けられた外部接続端子5と電気的に接続され、その外部接続端子5を介して電気信号の入出力が成される。 FIG. 12 is a cross-sectional view schematically showing a part of the semiconductor electronic component manufacturing process. First, the semiconductor electronic component shown here is an electronic component package formed by bonding a flat lid member (lid) 2 made of silicon material to a box-shaped substrate (package substrate) 1 made of silicon material. This is a so-called package type piezoelectric device in which a plate-like piezoelectric vibrator 3 is hermetically sealed. In this piezoelectric device, an excitation electrode (not shown) formed on the surface of the piezoelectric vibrator 3 is connected to an external connection provided on the outer surface of the package substrate 3 via a through wiring 4 provided on the bottom of the package substrate 1. It is electrically connected to the terminal 5, and electrical signals are input / output through the external connection terminal 5.
 以上のような圧電デバイスを製造するに当たっては、その製造プロセスの一環として、圧電振動子3の共振周波数を調整することが行われる。共振周波数(以下、単に周波数)の調整は、周波数をより高周波側へ調整する場合と、それとは逆により低周波側へ調整する場合とがあるが、主に周波数を高周波側へ調整する場合には、その手段の一つとしてレーザーが利用される。 In manufacturing the piezoelectric device as described above, the resonance frequency of the piezoelectric vibrator 3 is adjusted as part of the manufacturing process. Resonance frequency (hereinafter simply referred to as frequency) may be adjusted to the higher frequency side or to the lower frequency side, but mainly when adjusting the frequency to the higher frequency side. A laser is used as one of the means.
 レーザーを利用して周波数の調整を行う場合には、例えば、図12に示すように圧電デバイスの外装の一部を成す蓋部材2に波長が1300nm程度のレーザーLを照射して透過させ、透過したレーザーLを圧電振動子3の表面に予め形成した周波数調整用の質量膜(金属膜等)6に照射して段階的に除去し、圧電振動子3の励振駆動に寄与する部位(振動部)の質量を減じることで周波数を高周波側へと変化させる。 In the case of adjusting the frequency using a laser, for example, as shown in FIG. 12, the lid member 2 forming a part of the exterior of the piezoelectric device is irradiated with a laser L having a wavelength of about 1300 nm and transmitted. A portion (vibration unit) that contributes to excitation drive of the piezoelectric vibrator 3 by irradiating the laser L that has been formed on a surface of the piezoelectric vibrator 3 in advance to a mass film (metal film or the like) 6 for frequency adjustment that is removed in stages. ), The frequency is changed to the high frequency side.
 以上のようにレーザーを利用した周波数の調整は、製造プロセスの任意の段階で行われ、大きく別けてパッケージ基板1に蓋部材2を接合する前と後の何れかが選択され得るが、とりわけパッケージ基板1に蓋部材2を接合した後に行うことは、周波数の調整を最終製品により近い状態で行えることから、一度周波数の調整を行った後から最終製品になるまでの製造プロセス中で周波数が再度変化してしまうこと(周波数シフト)による影響を抑えることができ、また、周波数の調整中に電子部品パッケージ内へゴミなどの異物が侵入するのを防止できるなどの利点があることから、パッケージ基板1に蓋部材2を接合する前に行うよりも製造プロセス上好適な場合が多い。 As described above, the frequency adjustment using the laser is performed at an arbitrary stage of the manufacturing process, and can be selected before and after the lid member 2 is joined to the package substrate 1 in large steps. What is performed after the lid member 2 is bonded to the substrate 1 is that the frequency can be adjusted in a state closer to the final product. Therefore, the frequency is adjusted again in the manufacturing process after the frequency is adjusted once until the final product is obtained. The effect of changing (frequency shift) can be suppressed, and there is an advantage that foreign matter such as dust can be prevented from entering the electronic component package during frequency adjustment. In many cases, it is more preferable in terms of the manufacturing process than before the lid member 2 is bonded to the first member.
 シリコン材料にレーザーを透過させる目的は、以上説明した例に限らず様々であるが、何れにしても電子部品製造の分野においては、シリコン材料にレーザーを透過させることが求められる場合が少なくない。 The purpose of transmitting a laser beam to a silicon material is not limited to the example described above, but various. In any case, in the field of electronic component manufacturing, it is often required to transmit a laser beam to a silicon material.
 シリコン材料にレーザーを透過させるに当たっては、少なくともシリコン材料を透過する性質のレーザーを用いることが求められるが、レーザーの性質を決定付ける各種パラメーター(波長、パルス幅、強度、焦点距離等)の値によっては、レーザーの熱衝撃によりシリコン材料やその周辺の構成要素が過度のダメージを受けて破損や変質するだけでなく、破損により生じた破片が飛散して周辺の構成要素に悪影響を及ぼす虞がある。 When transmitting a laser through a silicon material, it is necessary to use a laser that transmits at least the silicon material. Depending on the values of various parameters (wavelength, pulse width, intensity, focal length, etc.) that determine the properties of the laser In addition to excessive damage to the silicon material and its surrounding components due to the thermal shock of the laser, the silicon material and its surrounding components may be damaged or altered, and the fragments generated by the damage may scatter and adversely affect the surrounding components. .
 図13は、レーザーによるダメージの発生メカニズムを模式的に示す図で、ここに示すように、使用するレーザーの性質がシリコン材料を透過させるのに適していない場合には、シリコン材料やその表面の堆積物、更には照射対象物自体などに過度の熱衝撃が加わり、本来加工すべきでない部位が加工されたり変質する虞がある。従って、シリコン材料にレーザーを透過させるに当たっては、レーザーの性質を決定付ける各種パラメーターを最適化することが望まれる。 FIG. 13 is a diagram schematically showing the mechanism of damage caused by laser. As shown here, when the nature of the laser used is not suitable for transmitting the silicon material, the silicon material and its surface Excessive thermal shock is applied to the deposit, and further to the irradiation object itself, and there is a possibility that a portion that should not be processed is processed or deteriorated. Therefore, it is desirable to optimize various parameters that determine the properties of the laser when transmitting the laser through the silicon material.
特開平7-37911号公報JP 7-37911 A 特表2007-512739号公報Special table 2007-512739
 本発明は、以上の問題点に鑑みて成されたものであり、シリコン材料やその周辺の構成要素に対するダメージを最小限に抑えつつ、シリコン材料にレーザーを透過させてその先の対象物に好適に照射することが可能なレーザーの照射方法、及びそれを用いた圧電振動子の周波数調整方法、並びにそれを用いて周波数調整された圧電デバイスを提供することを目的とする。 The present invention has been made in view of the above problems, and is suitable for a target object by transmitting a laser beam to a silicon material while minimizing damage to the silicon material and its surrounding components. It is an object of the present invention to provide a laser irradiation method capable of irradiating a laser beam, a frequency adjustment method of a piezoelectric vibrator using the same, and a piezoelectric device frequency-adjusted using the method.
 上記目的を達成するために、本発明のうち第1の態様に係るものは、シリコン材料にレーザーを照射して透過させ、透過したレーザーを前記シリコン材料を隔てた先の対象物に照射するレーザーの照射方法であって、前記レーザーは、パルス幅が50~1000fsのパルスレーザーであるものである。 In order to achieve the above object, according to the first aspect of the present invention, there is provided a laser that irradiates a silicon material with a laser and transmits the laser, and irradiates the transmitted object to a target object separated from the silicon material. The laser is a pulse laser having a pulse width of 50 to 1000 fs.
 前記レーザーの波長は、1200~4000nmであるレーザーの照射方法とされ得る。 The wavelength of the laser can be a laser irradiation method of 1200 to 4000 nm.
 本発明のうち第2の態様に係るものは、少なくとも一部がシリコン材料で構成された電子部品パッケージの内部に収容された圧電振動子にレーザーを照射して当該圧電振動子の共振周波数を調整する圧電振動子の周波数調整方法であって、前記レーザーとして上記何れかのレーザーの照射方法におけるパルスレーザーを前記電子部品パッケージのシリコン材料領域に照射して透過させ、透過した前記レーザーを前記圧電振動子に照射することにより前記圧電振動子の周波数を調整するものである。 According to the second aspect of the present invention, the resonance frequency of the piezoelectric vibrator is adjusted by irradiating the piezoelectric vibrator housed in the electronic component package at least partially made of a silicon material with a laser. A method of adjusting a frequency of a piezoelectric vibrator, wherein the pulsed laser in any one of the above laser irradiation methods is irradiated as a laser to the silicon material region of the electronic component package and the transmitted laser is transmitted through the piezoelectric vibration. The frequency of the piezoelectric vibrator is adjusted by irradiating the child.
 前記圧電振動子の表面に形成された質量膜を前記レーザーにより除去することにより前記圧電振動子の共振周波数を調整しても良い。 The resonance frequency of the piezoelectric vibrator may be adjusted by removing the mass film formed on the surface of the piezoelectric vibrator with the laser.
 前記圧電振動子の母材を前記レーザーにより除去することにより前記圧電振動子の共振周波数を調整しても良い。 The resonance frequency of the piezoelectric vibrator may be adjusted by removing the base material of the piezoelectric vibrator with the laser.
 本発明のうち第3の態様に係るものは、少なくとも一部がシリコン材料で構成された電子部品パッケージの内部に収容された圧電振動子にレーザーを照射して当該圧電振動子の共振周波数を調整する圧電振動子の周波数調整方法であって、前記レーザーとして上記何れかのレーザーの照射方法におけるパルスレーザーを前記電子部品パッケージのシリコン領域に照射して透過させ、透過した前記レーザーを前記電子部品パッケージの内面に形成された質量膜に照射して当該質量膜を飛散させ、飛散した質量膜を前記圧電振動子に付着させることにより前記圧電振動子の共振周波数を調整するものである。 According to the third aspect of the present invention, the resonance frequency of the piezoelectric vibrator is adjusted by irradiating the piezoelectric vibrator housed in the electronic component package, at least part of which is made of a silicon material, with a laser. A method of adjusting a frequency of a piezoelectric vibrator, the pulse laser in any of the laser irradiation methods as the laser is irradiated to and transmitted through a silicon region of the electronic component package, and the transmitted laser is transmitted to the electronic component package The mass film formed on the inner surface is irradiated to scatter the mass film, and the scattered mass film is attached to the piezoelectric vibrator to adjust the resonance frequency of the piezoelectric vibrator.
 本発明のうち第4の態様に係るものは、少なくとも一部がシリコン材料で構成された電子部品パッケージの内部に圧電振動子を収容した圧電デバイスであって、上記何れかの圧電振動子の周波数調整方法を用いて周波数調整されたものである。 According to a fourth aspect of the present invention, there is provided a piezoelectric device in which a piezoelectric vibrator is housed in an electronic component package at least partially made of a silicon material, and the frequency of any of the above piezoelectric vibrators The frequency is adjusted using the adjustment method.
 本発明によれば、シリコン材料にレーザーを透過させるに当たって、レーザーの性質を決定付けるパラメーターを最適化することで、シリコン材料に対するダメージを最小限に抑えつつ、シリコン材料を隔てた先の対象物にレーザーを好適に照射することができる。また、その技術を圧電振動子の周波数を調整する際に利用すれば、圧電振動子を収容する電子部品パッケージへのダメージを最小限に抑えつつ、周波数の調整を好適に行うことができる。
 本発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
According to the present invention, when the laser is transmitted through the silicon material, the parameters that determine the properties of the laser are optimized, so that damage to the silicon material is minimized and the object separated from the silicon material is separated. A laser can be suitably irradiated. Further, if this technique is used when adjusting the frequency of the piezoelectric vibrator, it is possible to suitably adjust the frequency while minimizing damage to the electronic component package that accommodates the piezoelectric vibrator.
The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、本発明によるレーザーの照射方法を原理的に示す図である。FIG. 1 is a diagram showing the principle of a laser irradiation method according to the present invention. 図2は、シリコン単結晶に対するレーザーの波長と透過率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the laser wavelength and transmittance for a silicon single crystal. 図3は、本発明によるレーザーの照射方法の実施に用いるレーザー照射装置の一例を示す図である。FIG. 3 is a diagram showing an example of a laser irradiation apparatus used for carrying out the laser irradiation method according to the present invention. 図4は、本発明によるレーザーの照射方法の有効性を評価するための基礎実験の方法を示す図である。FIG. 4 is a diagram showing a basic experiment method for evaluating the effectiveness of the laser irradiation method according to the present invention. 図5A及び図5Bは、図4に示す基礎実験を経た評価サンプルの平面図であり、図5Aは上側のシリコン基板の表面をレーザーの照射側から見た状態を表しており、図5BはAu薄膜の表面をレーザーの照射側から見た状態を表している。5A and 5B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 4. FIG. 5A shows a state in which the surface of the upper silicon substrate is viewed from the laser irradiation side, and FIG. The surface of the thin film is viewed from the laser irradiation side. 図6は、本発明によるレーザーの照射方法に対する比較例として、従来技術によるレーザーの照射方法を用いた基礎実験を示す図である。FIG. 6 is a diagram showing a basic experiment using a conventional laser irradiation method as a comparative example to the laser irradiation method according to the present invention. 図7A及び図7Bは、図6に示す基礎実験を経た評価サンプルの平面図であり、図7Aはシリコン基板の表面をレーザーの照射側から見た状態を表しており、図7BはAu薄膜の表面をレーザーの照射側とは反対側から見た状態を表している。7A and 7B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 6. FIG. 7A shows the state of the surface of the silicon substrate viewed from the laser irradiation side, and FIG. The surface is seen from the side opposite to the laser irradiation side. 図8は、本発明による圧電振動子の周波数調整方法(実施例1)を示す図である。FIG. 8 is a diagram illustrating a frequency adjustment method (first embodiment) of a piezoelectric vibrator according to the present invention. 図9は、本発明による圧電振動子の周波数調整方法(実施例2)を示す図である。FIG. 9 is a diagram illustrating a frequency adjustment method (Example 2) of a piezoelectric vibrator according to the present invention. 図10A及び図10Bは、図9に示す圧電振動子の周波数調整方法を用いて周波数調整を行った評価サンプルのレーザー顕微鏡による観察画像であり、図10Aは圧電振動子の表面をレーザーの照射側から見た状態を表しており、図10Bはレーザーを透過させた蓋部材をレーザーの照射側とは反対側から見た状態を表している。10A and 10B are images observed by a laser microscope of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 10A shows the surface of the piezoelectric vibrator on the laser irradiation side. 10B shows a state in which the lid member through which the laser is transmitted is viewed from the side opposite to the laser irradiation side. 図11A~図11Dは、図9に示す圧電振動子の周波数調整方法を用いて周波数調整を行った評価サンプルのSEMによる観察画像であり、図11Aは圧電振動子の表面をレーザーの照射側から見た状態を表しており、図11Bは図11Aの一部(走査1終端部周辺)を拡大して見た状態を表しており、図11Cは図11Aの一部(走査2始端部周辺)を拡大して見た状態を表しており、図11Dは図11Aの一部(走査3終端部周辺)を拡大して見た状態を表している。11A to 11D are SEM observation images of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 11A shows the surface of the piezoelectric vibrator from the laser irradiation side. FIG. 11B shows an enlarged view of a part of FIG. 11A (around the end of scanning 1), and FIG. 11C shows a part of FIG. 11A (around the start of scanning 2). 11D shows a state seen from an enlarged view, and FIG. 11D shows a state seen from an enlarged portion of FIG. 図12は、半導体電子部品の製造プロセスの一部を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing a part of the manufacturing process of the semiconductor electronic component. 図13は、レーザーによるダメージの発生メカニズムを模式的に示す図である。FIG. 13 is a diagram schematically showing a mechanism of occurrence of damage by a laser.
 本発明によるレーザーの照射方法は、シリコン材料にレーザーを透過させるに当たって、使用するレーザーの性質を決定付けるパラメーターの一つであるパルス幅を50~1000fs(フェムト秒)に設定することを特徴としている。 The laser irradiation method according to the present invention is characterized by setting a pulse width of 50 to 1000 fs (femtoseconds), which is one of the parameters that determine the properties of the laser used when transmitting the laser through the silicon material. .
 そのような短パルス幅のレーザーは、通称フェムト秒レーザーと呼ばれ、レーザーの照射時間が極めて短いことから光子吸収範囲がμmオーダーの範囲に限定され、それよりも長いナノ秒以上のパルス幅のレーザーよりも熱衝撃が及ぶ範囲が狭く、照射対象物へのダメージが小さいという特徴があり、また、急峻な立上りパルスによって非線形光学効果が発現することから、通常はレーザーを吸収し難い材料や反射率が高い材料に対してもレーザーのエネルギーを効率的に伝えることができ、μmサイズの微小領域に集光することで微小領域を選択的に加工することができるという特徴がある。 Such a short-pulse-width laser is commonly called a femtosecond laser, and the photon absorption range is limited to a range of μm order because the irradiation time of the laser is extremely short. It is characterized by a narrower range of thermal shock than lasers, less damage to the irradiated object, and non-linear optical effects due to steep rising pulses, so it is usually difficult to absorb lasers and reflective materials. The laser energy can be efficiently transmitted even to a material having a high rate, and the micro area can be selectively processed by focusing the micro area on the micro area.
 本願出願人は、そのような特徴を有するフェムト秒レーザーをシリコン材料に照射することで、シリコン材料に対するダメージを最小限に抑えつつシリコン材料を透過させることが可能であることを見出し、そのことを利用してシリコン材料にレーザーを透過させてその先の対象物に照射することを発案した。 The present applicant has found that by irradiating a silicon material with a femtosecond laser having such characteristics, it is possible to transmit the silicon material while minimizing damage to the silicon material. The idea was to use a laser beam through a silicon material and irradiate the object ahead of it.
 図1は、本発明によるレーザーの照射方法を原理的に示す図であり、図2は、シリコン材料に対するレーザーの波長と透過率との関係を示すグラフである。本発明によるレーザーの照射方法を実施するに当たっては、まず、使用するフェムト秒レーザーの波長を少なくともシリコン材料を透過するものとする必要があり、その波長としては、例えば図2に示すように約900nm以上であるが、透過率が約50%以上となる約1200nm以上の波長帯域のものがより好適である。 FIG. 1 is a diagram showing in principle the laser irradiation method according to the present invention, and FIG. 2 is a graph showing the relationship between the wavelength and transmittance of a laser with respect to a silicon material. In carrying out the laser irradiation method according to the present invention, first, the wavelength of the femtosecond laser to be used must be at least transmitted through the silicon material. As the wavelength, for example, about 900 nm as shown in FIG. As described above, a wavelength band of about 1200 nm or more in which the transmittance is about 50% or more is more preferable.
 ここでは、その中でも特に透過率が高い1200~4000nmの波長帯域のレーザーを使用することを考え、それに当たってまず、図1に示すようにフェムト秒レーザーを出力可能なレーザー光源から一般的に可視光領域とされる波長が780nmのレーザーを出力させ、それを波長変換素子(OPO:Optical Parametric Oscillator)を通過させることにより波長を1200~4000nmへと変換する。そして、波長変換されたレーザーをレンズなどの集光光学系により集光した上で照射対象物に照射する。 Here, it is considered to use a laser having a wavelength band of 1200 to 4000 nm, which has a particularly high transmittance. First, as shown in FIG. 1, from a laser light source capable of outputting a femtosecond laser, visible light is generally used. A laser having a wavelength of 780 nm as an area is output, and the wavelength is converted to 1200 to 4000 nm by passing it through a wavelength conversion element (OPO: Optical Parametric Oscillator). Then, the wavelength-converted laser is condensed by a condensing optical system such as a lens and then irradiated onto the irradiation object.
 ここで、レーザーの焦点を照射対象物の任意の点に合わせ、焦点と集光光学系との間にシリコン材料を配置すれば、集光光学系を通過したレーザーは、シリコン材料に大きなダメージを与えること無くシリコン材料を透過してその先の照射対象物に照射されることとなる。 Here, if the focus of the laser is adjusted to an arbitrary point on the irradiation object and a silicon material is placed between the focus and the condensing optical system, the laser that has passed through the condensing optical system will damage the silicon material significantly. Without being given, it passes through the silicon material and irradiates the irradiation object ahead.
 図3は、本発明によるレーザーの照射方法の実施に用いるレーザー照射装置の一例を示す図である。ここに示すレーザー照射装置は、図1に示した本発明によるレーザーの照射方法の原理を基に構成されたもので、可視光領域の波長(例えば780nm)のフェムト秒レーザーを出力するレーザー光源11と、レーザー光源11から出力されたレーザーの波長を近中赤外領域の波長(例えば1200~4000nm)へと変換する波長変換素子12と、波長変換素子12により波長変換されたレーザーを集光するレンズなどの集光光学系13と、互いに直交する3軸方向(XYZ方向)とそれらの各軸回りに移動可能な可動テーブル14と、可動テーブル14を真空雰囲気中に格納する真空チャンバー15と、レーザー光源11以外の構成要素を窒素雰囲気(Nパージ)中に格納するNチャンバー16とを備えている。 FIG. 3 is a diagram showing an example of a laser irradiation apparatus used for carrying out the laser irradiation method according to the present invention. The laser irradiation apparatus shown here is configured based on the principle of the laser irradiation method according to the present invention shown in FIG. 1, and a laser light source 11 that outputs a femtosecond laser having a wavelength in the visible light region (for example, 780 nm). Then, the wavelength conversion element 12 that converts the wavelength of the laser output from the laser light source 11 into a wavelength in the near-infrared region (for example, 1200 to 4000 nm), and the laser that has been wavelength-converted by the wavelength conversion element 12 are condensed. A condensing optical system 13 such as a lens, a triaxial direction (XYZ directions) orthogonal to each other, a movable table 14 movable around each axis, a vacuum chamber 15 for storing the movable table 14 in a vacuum atmosphere, And an N 2 chamber 16 for storing components other than the laser light source 11 in a nitrogen atmosphere (N 2 purge).
 可動テーブル14は、レーザーの照射対象物17を所定の姿勢に保持する保持機構を備え、それにより照射対象物17を保持した状態でXYZ方向とそれらの各軸回りである回転方向に適宜移動することで、照射対象物17のレーザーに対する位置を任意に変更することができる。 The movable table 14 is provided with a holding mechanism that holds the laser irradiation object 17 in a predetermined posture, so that the movable table 14 appropriately moves in the XYZ directions and the rotation directions around those axes while holding the irradiation object 17. Thus, the position of the irradiation object 17 with respect to the laser can be arbitrarily changed.
 Nチャンバー16は、主にレーザーの減衰を防止するためのもので、波長変換素子12により1200~4000nmの波長へと波長変換されたレーザーは水分への吸収が著しいことから、レーザーの光路中に不活性ガスである窒素を充填して空気中の水分を排除している。 The N 2 chamber 16 is mainly for preventing the laser from being attenuated. Since the laser converted into a wavelength of 1200 to 4000 nm by the wavelength conversion element 12 is significantly absorbed in moisture, it is in the optical path of the laser. It is filled with nitrogen, which is an inert gas, to eliminate moisture in the air.
 真空チャンバー15は、照射対象物17に対するレーザーの照射を真空雰囲気中で行うためのもので、真空ポンプ18などの真空排気手段により任意の真空度を作り出すことができるようになっている。尚、真空チャンバー15は、照射対象物17の性質上、照射対象物17に対するレーザーの照射を真空雰囲気中で行う必要がある場合にのみ必要なものであり、状況に応じて適宜省略することができる。 The vacuum chamber 15 is for performing laser irradiation on the irradiation object 17 in a vacuum atmosphere, and an arbitrary degree of vacuum can be created by a vacuum exhaust means such as a vacuum pump 18. The vacuum chamber 15 is necessary only when it is necessary to perform laser irradiation on the irradiation object 17 in a vacuum atmosphere due to the nature of the irradiation object 17, and may be omitted as appropriate depending on the situation. it can.
 図4は、本発明によるレーザーの照射方法の有効性を評価するための基礎実験を示す図である。基礎実験としては、主面片側(図中上面)にAu薄膜21を形成したシリコン単結晶基板22に、表面に堆積物が存在しない素板状のシリコン単結晶基板23をAu薄膜21と対向するようにスペーサー24を介して貼り合わせたものを評価サンプルとして用い、その評価サンプルをサンプル設置面に対して僅かに傾斜させた状態で、上側のシリコン単結晶基板23側から下側のシリコン単結晶基板22のAu薄膜21に焦点を合わせてフェムト秒レーザーLを照射すると同時に、そのまま焦点距離を変えずに一定方向に向けて直線的に走査した。 FIG. 4 is a diagram showing a basic experiment for evaluating the effectiveness of the laser irradiation method according to the present invention. As a basic experiment, a single-crystal silicon substrate 23 having no deposit on the surface thereof is opposed to the Au thin film 21 on the silicon single crystal substrate 22 on which the Au thin film 21 is formed on one side (upper surface in the drawing) of the main surface. In this manner, the sample bonded through the spacer 24 is used as an evaluation sample, and the evaluation sample is slightly tilted with respect to the sample mounting surface, and the lower silicon single crystal from the upper silicon single crystal substrate 23 side. The Au thin film 21 of the substrate 22 was focused and irradiated with the femtosecond laser L, and at the same time, it was scanned linearly in a certain direction without changing the focal length.
 以上の基礎実験において、レーザーLの走査方向を傾斜した評価サンプルの低位側から高位側へ向かう方向(図中矢印方向)としてレーザーLを走査すると、評価サンプルが傾斜していることから、レーザーLの照射位置が移動するに連れてレーザーLの焦点位置が下側のシリコン単結晶基板22寄りに相対的かつ連続的に移動しながらAu薄膜21の加工が行われる。尚、この実験方法では、レーザーLの焦点位置の変化に応じたAu薄膜21の加工状態の変化も同時に観察することができる。 In the above basic experiment, when the laser L is scanned as the direction from the lower side to the higher side of the evaluation sample inclined in the scanning direction of the laser L (arrow direction in the figure), the evaluation sample is inclined. As the irradiation position moves, the Au thin film 21 is processed while the focal position of the laser L moves relatively and continuously toward the lower silicon single crystal substrate 22. In this experimental method, a change in the processing state of the Au thin film 21 in accordance with a change in the focal position of the laser L can be observed simultaneously.
 基礎実験の仕様は、以下の通りである。
レーザーの種類   :ファイバーレーザー
波長        :1552.5nm
パルス幅      :800fs
出力強度      :5μJ/パルス(平均強度2.5W、最大強度0.8MW以上)
繰り返し周波数   :100kHz
ビーム径      :5mm×5mm(出射時)
レーザー走査速度  :1mm/s
評価サンプル傾斜角 :0.96°
The specifications of the basic experiment are as follows.
Laser type: Fiber laser wavelength: 1552.5nm
Pulse width: 800 fs
Output intensity: 5 μJ / pulse (average intensity 2.5 W, maximum intensity 0.8 MW or more)
Repetition frequency: 100 kHz
Beam diameter: 5 mm x 5 mm (during emission)
Laser scanning speed: 1 mm / s
Evaluation sample tilt angle: 0.96 °
 評価サンプルの仕様は、以下の通りである。
シリコン単結晶基板の外形  :20mm角
シリコン単結晶基板の厚さ  :350μm
金(Au)薄膜の膜厚    :200Å(200オングストローム)
シリコン単結晶基板間の隙間 :64μm
The specifications of the evaluation sample are as follows.
Outline of silicon single crystal substrate: 20 mm square silicon single crystal substrate thickness: 350 μm
Gold (Au) thin film thickness: 200 mm (200 angstroms)
Gap between silicon single crystal substrates: 64 μm
 図5A及び図5Bは、図4に示す基礎実験を経た評価サンプルの平面図であり、図5Aは上側のシリコン単結晶基板の表面をレーザーの照射側から見た状態、図5BはAu薄膜の表面をレーザーの照射側から見た状態を示している。まず、図5Aを参照すると、シリコン単結晶基板23の表面に直線状の照射痕が2本見て取れ(照射痕A、B)、そのうち図中下側の照射痕Bがレーザーを集光して直接的に照射することにより生じた照射痕であり、この照射痕Bに着目すると、解析の結果、シリコン単結晶基板23の表層がレーザーの照射領域に沿って物理的に除去されてはいるものの、シリコン単結晶基板23に大きなダメージは見られなかった。また、図示は省略するが、レーザーの照射側と反対側のシリコン単結晶基板23表面にも特に大きな照射痕は見られなかった。 5A and 5B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 4. FIG. 5A shows the surface of the upper silicon single crystal substrate viewed from the laser irradiation side, and FIG. 5B shows the Au thin film. The surface is seen from the laser irradiation side. First, referring to FIG. 5A, two linear irradiation marks can be seen on the surface of the silicon single crystal substrate 23 (irradiation marks A and B), and the lower irradiation mark B in the figure directly focuses the laser beam. Focusing on this irradiation mark B, the surface layer of the silicon single crystal substrate 23 is physically removed along the laser irradiation region as a result of analysis. The silicon single crystal substrate 23 was not significantly damaged. Although not shown, no particularly large irradiation marks were found on the surface of the silicon single crystal substrate 23 opposite to the laser irradiation side.
 尚、図中上側の照射痕Aは、レーザーの一部がシリコン単結晶基板23の内部で反射して表層付近で焦点を結ぶことにより形成された副次的な照射痕であると思われ、このことは、レーザーの実際の焦点とは異なる領域も加工されることを示している。更にこのことは、シリコン材料は、短パルス幅のレーザーを集光して非線形光学効果を生じさせることで初めて加工されることを意味し、逆に言えば、たとえシリコン材料を透過する波長のレーザーであっても、集光して非線形光学効果を生じさせない限りはシリコン材料には何ら影響がないことを意味する。即ち、その点に着目してレーザーの物理的数値条件(パラメーター)を見直せば、シリコン材料に大きなダメージを与えることなくシリコン材料にレーザーを透過させてその先の対象物を加工することができる、ということが理解できる。 Incidentally, the upper irradiation mark A in the drawing is considered to be a secondary irradiation mark formed by reflecting a part of the laser inside the silicon single crystal substrate 23 and focusing in the vicinity of the surface layer. This indicates that regions different from the actual focus of the laser are also processed. This also means that silicon materials are processed for the first time by focusing a short-pulse-width laser to produce a nonlinear optical effect, and conversely, a laser with a wavelength that passes through the silicon material. Even so, it means that the silicon material has no influence unless it is condensed to produce a nonlinear optical effect. That is, focusing on that point and reviewing the physical numerical conditions (parameters) of the laser, it is possible to process the target object by passing the laser through the silicon material without damaging the silicon material. I understand that.
 また、図5Bを参照すると、Au薄膜21の表面に直線状の照射痕が3本見て取れ(照射痕C、D、E)、各々は図中下側から順にレーザーの出力強度が5μJ、2.5μJ、1μJの場合の照射痕を示しており、特にその中で今回の基礎実験において設定した5μJに対応する照射痕Eに着目すると、Au薄膜21がレーザーの照射領域に沿って物理的に除去されて下層のシリコン単結晶22が露出しており、上側のシリコン単結晶23を透過したレーザーによりAu薄膜21が加工されていることが分かる。 5B, three linear irradiation marks can be seen on the surface of the Au thin film 21 (irradiation marks C, D, E), and the laser output intensity is 5 μJ, 2. The irradiation traces in the case of 5 μJ and 1 μJ are shown. In particular, when attention is paid to the irradiation trace E corresponding to 5 μJ set in this basic experiment, the Au thin film 21 is physically removed along the laser irradiation area. As a result, the lower silicon single crystal 22 is exposed, and it can be seen that the Au thin film 21 is processed by the laser that has passed through the upper silicon single crystal 23.
 即ち、以上の結果は、Au薄膜21の加工領域の直上に位置するシリコン単結晶基板23の表面には、レーザーの入射側及びその反対側の何れにも大きなレーザーの照射痕が形成されず、シリコン材料を損傷させずシリコン材料越しにレーザーで対象物(Au薄膜21)を加工することができたことを示している。 That is, the above results show that no large laser irradiation traces are formed on the surface of the silicon single crystal substrate 23 located immediately above the processing region of the Au thin film 21 on either the laser incident side or the opposite side. This shows that the object (Au thin film 21) can be processed with a laser through the silicon material without damaging the silicon material.
 図6は、本発明によるレーザーの照射方法に対する比較例として、従来技術によるレーザーの照射方法を用いた基礎実験を示す図である。基礎実験としては、図に示すように主面片側(図中下面)にAu薄膜31を形成したシリコン単結晶基板32を評価サンプルとして用い、その評価サンプルに対してAu薄膜31が形成された側とは反対側からAu薄膜31に焦点を合わせてフェムト秒レーザーよりも長パルス幅の高出力レーザーLを照射した。 FIG. 6 is a diagram showing a basic experiment using a laser irradiation method according to the prior art as a comparative example to the laser irradiation method according to the present invention. As a basic experiment, as shown in the drawing, a silicon single crystal substrate 32 having an Au thin film 31 formed on one side of the main surface (lower surface in the drawing) is used as an evaluation sample, and the side on which the Au thin film 31 is formed with respect to the evaluation sample. The Au thin film 31 was focused from the opposite side to the high-power laser L having a longer pulse width than the femtosecond laser.
 基礎実験の仕様は、以下の通りである。
レーザーの種類  :ホルミウムYAGレーザー
波長       :2080nm
パルス幅     :250μs(半値150μs)
出力強度     :2J/パルス(10W)
照射回数     :2パルス
ビーム径     :200~300μm
対物レンズのf値 :f=20
The specifications of the basic experiment are as follows.
Laser type: Holmium YAG laser wavelength: 2080 nm
Pulse width: 250 μs (half value 150 μs)
Output intensity: 2J / pulse (10W)
Number of irradiations: 2 pulse beam diameter: 200-300 μm
F value of objective lens: f = 20
 評価サンプルの仕様は、以下の通りである。
シリコン単結晶基板の外形 :30mm角
シリコン単結晶基板の厚さ :370μm(表面は鏡面加工)
Au薄膜の膜厚      :0.1μm(スパッタ成膜)
The specifications of the evaluation sample are as follows.
Outline of silicon single crystal substrate: 30 mm square silicon single crystal substrate thickness: 370 μm (surface is mirror finished)
Au thin film thickness: 0.1 μm (sputter deposition)
 図7A及び図7Bは、図6に示す基礎実験を経た評価サンプルの平面図であり、図7Aはシリコン単結晶基板の表面をレーザーの照射側から見た状態、図7BはAu薄膜の表面をレーザーの照射側とは反対側から見た状態を示している。図7Aを参照すると、シリコン単結晶基板32の表面にはレーザーの照射領域一帯に照射痕が見られ、特に焦点付近にはレーザーの熱衝撃により形成された凹部Rが確認でき、シリコン単結晶基板32に大きなダメージがあることが分かる。 7A and 7B are plan views of an evaluation sample that has undergone the basic experiment shown in FIG. 6. FIG. 7A shows the surface of the silicon single crystal substrate as viewed from the laser irradiation side, and FIG. 7B shows the surface of the Au thin film. The state seen from the side opposite to the laser irradiation side is shown. Referring to FIG. 7A, an irradiation mark is seen in the entire laser irradiation region on the surface of the silicon single crystal substrate 32, and a recess R formed by laser thermal shock can be confirmed particularly near the focal point. It turns out that there is a big damage in 32.
 また、図7Bを参照すると、Au薄膜31の一部が物理的に除去されて下層のシリコン単結晶基板32が露出しており、シリコン単結晶基板32を透過したレーザーによりAu薄膜31が加工されてはいるものの、加工領域の輪郭は不規則に乱れ、加工残り(残渣)も見られ、加工精度は決して高いとは言えない。 7B, a part of the Au thin film 31 is physically removed to expose the lower silicon single crystal substrate 32, and the Au thin film 31 is processed by a laser transmitted through the silicon single crystal substrate 32. However, the contour of the machining area is irregularly disordered, and machining residues (residues) are also seen, so it cannot be said that the machining accuracy is high.
 尚、基礎実験の仕様と評価サンプルの仕様が互いに完全には一致しないため、上記比較例の基礎実験結果と、図4に示した本発明のレーザー照射方法を用いた基礎実験結果とを厳密に対比することはできないが、本発明によるレーザーの照射方法を用いれば、シリコン材料基板へのダメージを最小に抑えつつ、シリコン材料の表面にあるAu薄膜の加工が可能であることは十分確認できる。 Since the specifications of the basic experiment and the specifications of the evaluation sample do not completely match each other, the basic experiment result of the comparative example and the basic experiment result using the laser irradiation method of the present invention shown in FIG. Although it cannot be compared, it can be sufficiently confirmed that the use of the laser irradiation method according to the present invention can process the Au thin film on the surface of the silicon material while minimizing damage to the silicon material substrate.
 図8は、本発明による圧電振動子の周波数調整方法を示す図である。以上説明した本発明によるレーザー照射方法の用途は任意に選択することができるが、その一つとして圧電振動子の共振周波数を調整する際に利用することが挙げられる。 FIG. 8 is a diagram showing a frequency adjustment method for a piezoelectric vibrator according to the present invention. The application of the laser irradiation method according to the present invention described above can be arbitrarily selected, and one of them is to use it when adjusting the resonance frequency of the piezoelectric vibrator.
 まず、ここに示す圧電振動子の周波数調整方法においては、図12に示したような、シリコン材料から成る電子部品パッケージの内部に圧電振動子3を気密封止したパッケージ型の圧電デバイスに対してレーザーを照射するものとする。 First, in the frequency adjustment method of the piezoelectric vibrator shown here, for a package-type piezoelectric device in which the piezoelectric vibrator 3 is hermetically sealed inside an electronic component package made of a silicon material as shown in FIG. It shall be irradiated with a laser.
 ここで、電子部品パッケージの内側に面する蓋部材2の表面(図中下面)には、圧電振動子3の振動部と概ね対向する位置に周波数調整用の質量膜としてAu薄膜41が形成されている。 Here, an Au thin film 41 is formed as a mass film for frequency adjustment on the surface (the lower surface in the figure) of the lid member 2 facing the inside of the electronic component package at a position substantially opposite to the vibrating portion of the piezoelectric vibrator 3. ing.
 以上の圧電デバイスに対して圧電振動子3の周波数調整を行う際には、予め製作段階で圧電振動子3の周波数を目標値よりも高周波側に設定した上で、蓋部材2の表面に形成されたAu薄膜41に焦点を結ぶように蓋部材2側からフェムト秒レーザーLを照射し、それと同時にレーザーLの軌跡がAu薄膜41の形成領域を跨ぐように一定方向に向けて直線的に走査する。 When the frequency of the piezoelectric vibrator 3 is adjusted with respect to the above piezoelectric device, the frequency of the piezoelectric vibrator 3 is set to a higher frequency side than the target value in the manufacturing stage in advance, and then formed on the surface of the lid member 2. The femtosecond laser L is irradiated from the lid member 2 side so as to focus on the Au thin film 41, and at the same time, the locus of the laser L linearly scans in a certain direction so as to straddle the formation region of the Au thin film 41. To do.
 照射されたレーザーは、蓋部材2を透過して反対側のAu薄膜41に照射され、その熱衝撃によりAu薄膜41が飛散して圧電振動子3の表面に付着する。 The irradiated laser passes through the lid member 2 and is irradiated to the opposite Au thin film 41, and the Au thin film 41 is scattered by the thermal shock and adheres to the surface of the piezoelectric vibrator 3.
 圧電振動子3の表面にAu薄膜41の飛散粒子が付着すると、圧電振動子3の振動部の実質的な質量が増加して圧電振動子3の周波数が低周波側へと変化する。ここで、レーザーの照射時間と周波数の変化量との相関関係を予め把握しておけば、レーザーの照射時間を制御することで圧電振動子3の周波数を所望の値へと調整することができる。 When the scattering particles of the Au thin film 41 adhere to the surface of the piezoelectric vibrator 3, the substantial mass of the vibrating portion of the piezoelectric vibrator 3 increases and the frequency of the piezoelectric vibrator 3 changes to the low frequency side. Here, if the correlation between the laser irradiation time and the amount of change in the frequency is grasped in advance, the frequency of the piezoelectric vibrator 3 can be adjusted to a desired value by controlling the laser irradiation time. .
 以上の周波数調整方法においては、レーザーにフェムト秒レーザーを用いているため、蓋部材2にはレーザーによる過度のダメージはなく、蓋部材2が破損して内部と外部との間でリークが発生するようなことはない。 In the above frequency adjustment method, since the femtosecond laser is used for the laser, the lid member 2 is not excessively damaged by the laser, and the lid member 2 is broken and a leak occurs between the inside and the outside. There is no such thing.
 また、蓋部材2を透過したレーザーによって、圧電振動子3の表面に付着したAu薄膜41の粒子が二次的に飛散されるようなこと(二次スパッタ)や圧電振動子3自体がダメージを受けるようなこともなく、周波数の調整が安定して行われる。 Further, the laser beam that has passed through the lid member 2 causes secondary scattering of the particles of the Au thin film 41 adhering to the surface of the piezoelectric vibrator 3 (secondary sputtering), and damage to the piezoelectric vibrator 3 itself. The frequency adjustment is performed stably without being affected.
 尚、以上の実施例では、周波数調整用の質量膜が蓋部材2の表面に形成されている場合について説明したが、質量膜を飛散させて圧電振動子3の表面に付着させることができるのであれば、質量膜は圧電デバイス内面のどの領域に形成されていてもよく、例えば、パッケージ基板1の内表面に質量膜が形成されていてもよい。 In the above embodiment, the case where the frequency adjusting mass film is formed on the surface of the lid member 2 has been described. However, the mass film can be scattered and attached to the surface of the piezoelectric vibrator 3. If present, the mass film may be formed in any region of the inner surface of the piezoelectric device. For example, the mass film may be formed on the inner surface of the package substrate 1.
 図9は、本発明による圧電振動子の周波数調整方法を示す図である。図8に示した実施例1では、圧電振動子3の周波数を高周波側から低周波側へと調整しているが、図9に示す圧電振動子の周波数調整方法においては、それとは逆に周波数を低周波側から高周波側へ調整するものとしている。 FIG. 9 is a diagram showing a frequency adjustment method for a piezoelectric vibrator according to the present invention. In Example 1 shown in FIG. 8, the frequency of the piezoelectric vibrator 3 is adjusted from the high frequency side to the low frequency side. However, in the frequency adjusting method of the piezoelectric vibrator shown in FIG. Is adjusted from the low frequency side to the high frequency side.
 まず、本実施例2の構成上の特徴として、実施例1では蓋部材2の表面に周波数調整用の質量膜を形成していたに対し、本実施例2では蓋部材2の表面には質量膜を形成せず、代わりに圧電振動子3の表面に周波数調整用の質量膜(Au薄膜42)を形成している。特にここでは、質量膜は圧電振動子3の主面のうち蓋部材2と対向する側の主面(図中上面)にのみ形成されているものとする。 First, as a structural feature of the second embodiment, a mass film for frequency adjustment is formed on the surface of the lid member 2 in the first embodiment, whereas a mass is formed on the surface of the lid member 2 in the second embodiment. Instead of forming a film, a mass film for frequency adjustment (Au thin film 42) is formed on the surface of the piezoelectric vibrator 3 instead. In particular, here, it is assumed that the mass film is formed only on the main surface (upper surface in the drawing) of the main surface of the piezoelectric vibrator 3 on the side facing the lid member 2.
 圧電振動子3の周波数を調整する際には、予め製作段階で圧電振動子3の周波数を目標値よりも低周波側に設定した上で、圧電振動子3の表面に形成されたAu薄膜42に焦点を結ぶように蓋部材2側からフェムト秒レーザーLを照射し、それと同時にレーザーLの軌跡がAu薄膜43の形成領域を跨ぐように一定方向に向けて直線的に走査する。 When the frequency of the piezoelectric vibrator 3 is adjusted, the Au thin film 42 formed on the surface of the piezoelectric vibrator 3 is set in advance in the manufacturing stage after setting the frequency of the piezoelectric vibrator 3 to be lower than the target value. The femtosecond laser L is irradiated from the lid member 2 side so as to be focused on, and at the same time, the locus of the laser L linearly scans in a certain direction so as to straddle the formation region of the Au thin film 43.
 照射されたレーザーは、蓋部材2を透過して圧電振動子3表面のAu薄膜43に照射され、その熱衝撃によりAu薄膜43が飛散して物理的に除去される。 The irradiated laser is transmitted through the lid member 2 and irradiated onto the Au thin film 43 on the surface of the piezoelectric vibrator 3, and the Au thin film 43 is scattered and physically removed by the thermal shock.
 圧電振動子3の表面からAu薄膜43が飛散すると、圧電振動子3の振動部の実質的な質量が減少して圧電振動子3の周波数が高周波側へと変化する。 When the Au thin film 43 scatters from the surface of the piezoelectric vibrator 3, the substantial mass of the vibration part of the piezoelectric vibrator 3 decreases, and the frequency of the piezoelectric vibrator 3 changes to the high frequency side.
 ここで、実施例1と同様にレーザーの照射時間と周波数の変化量との相関関係を予め把握しておけば、レーザーの照射時間を制御することで圧電振動子3の周波数を所望の値へと調整することができる。 Here, as in the first embodiment, if the correlation between the laser irradiation time and the amount of change in frequency is grasped in advance, the frequency of the piezoelectric vibrator 3 is controlled to a desired value by controlling the laser irradiation time. And can be adjusted.
 図10A及び図10Bは、図9に示す圧電振動子の周波数調整方法を用いて周波数調整を行った評価サンプルのレーザー顕微鏡による観察画像であり、図10Aは圧電振動子の表面をレーザーの照射側から見た状態、図10Bはレーザーを透過させた蓋部材をレーザーの照射側とは反対側から見た状態を示している。本願出願人は、図9に示す圧電振動子の周波数調整方法の有効性を評価するため、評価サンプルを用いて基礎実験を行った。基礎実験としては、図12に示したようなシリコン材料から成る電子部品パッケージの内部に音叉型の振動部を備えた圧電振動子3が気密封止されたパッケージ型の圧電デバイスを評価サンプルとして用い、蓋部材2にレーザーを透過させて圧電振動子3の振動部表面に照射すると同時にレーザーを図10A中矢印で示す方向へ3回に分けて順次走査した。1回目の走査(走査1)と2回目の走査(走査2)では、振動部表面に形成された周波数調整用の質量膜(Au薄膜)にレーザーを照射し、3回目の走査(走査3)では、振動部の母材(水晶)にレーザーを直接照射し、それによって、それぞれ26.4ppm、56.8ppm、21.6ppmの周波数の変化量を得た。尚、図10Aでは、音叉型の振動部の片側先端のみを示し、図10Bでは、図10Aに示した振動部の片側先端と対向する蓋部材表面を示してある。 10A and 10B are images observed by a laser microscope of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 10A shows the surface of the piezoelectric vibrator on the laser irradiation side. FIG. 10B shows a state where the lid member through which the laser is transmitted is viewed from the side opposite to the laser irradiation side. In order to evaluate the effectiveness of the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, the applicant of the present application conducted a basic experiment using an evaluation sample. As a basic experiment, a package-type piezoelectric device in which a piezoelectric vibrator 3 having a tuning-fork-type vibrating portion is hermetically sealed inside an electronic component package made of a silicon material as shown in FIG. 12 is used as an evaluation sample. The laser was transmitted through the lid member 2 to irradiate the surface of the vibrating portion of the piezoelectric vibrator 3 and simultaneously the laser was sequentially scanned in three directions in the direction indicated by the arrows in FIG. 10A. In the first scan (scan 1) and the second scan (scan 2), a laser is irradiated to the frequency adjusting mass film (Au thin film) formed on the surface of the vibrating portion, and the third scan (scan 3). Then, the base material (quartz crystal) of the vibration part was directly irradiated with a laser, thereby obtaining frequency change amounts of 26.4 ppm, 56.8 ppm, and 21.6 ppm, respectively. 10A shows only one end of the tuning-fork type vibration part, and FIG. 10B shows the surface of the lid member facing the one end of the vibration part shown in FIG. 10A.
 レーザーの仕様は、以下の通りである。
波長   :1552.5nm
パルス幅 :800fs
最大強度 :0.8MW以上
The specifications of the laser are as follows.
Wavelength: 1552.5nm
Pulse width: 800 fs
Maximum strength: 0.8 MW or more
 図10Aを参照すると、レーザーの各走査(走査1~3)により振動部表面にレーザーの照射痕が形成されていることが確認でき、図10Bを参照すると、レーザーを透過させた蓋部材の表面にレーザーの照射により飛散したと思われるAu薄膜や水晶の粒子が付着しているものの、蓋部材にクラック等の大きなダメージは無いことが確認できる。 Referring to FIG. 10A, it can be confirmed that laser irradiation traces are formed on the surface of the vibrating part by each scanning of the laser (scanning 1 to 3). Referring to FIG. 10B, the surface of the lid member through which the laser is transmitted. Although the Au thin film and the crystal particles which are thought to have been scattered by the laser irradiation are attached, it can be confirmed that there is no significant damage such as a crack in the lid member.
 図11A~図11Dは、図9に示す圧電振動子の周波数調整方法を用いて周波数調整を行った評価サンプルのSEMによる観察画像であり、図11Aは圧電振動子の表面をレーザーの照射側から見た状態、図11Bは図11Aの一部(走査1終端部周辺)を拡大して見た状態、図11Cは図11Aの一部(走査2始端部周辺)を拡大して見た状態、図11Dは図11Aの一部(走査3終端部周辺)を拡大して見た状態を示している。図11Bを参照すると、走査1ではAu薄膜のみが除去されていることが確認でき、図11Cを参照すると、走査2ではAu薄膜と共に下層の水晶が一部除去されていることが確認でき、図11Dを参照すると、走査3では水晶のみがある程度の深さまで除去されていることが確認できる。以上の結果から、シリコンから成る電子部品パッケージ内に気密封止された圧電振動子の周波数を、電子部品パッケージを透過したフェムト秒レーザーにより調整可能であることが理解できる。 11A to 11D are SEM observation images of an evaluation sample subjected to frequency adjustment using the frequency adjustment method of the piezoelectric vibrator shown in FIG. 9, and FIG. 11A shows the surface of the piezoelectric vibrator from the laser irradiation side. 11B is an enlarged view of a part of FIG. 11A (around the end of the scanning 1 end), FIG. 11C is an enlarged view of a part of FIG. 11A (around the starting end of the scanning 2), FIG. 11D shows a state in which a part of FIG. 11A (the vicinity of the end portion of the scanning 3) is enlarged. Referring to FIG. 11B, it can be confirmed that only the Au thin film has been removed in scan 1, and with reference to FIG. 11C, it can be confirmed that a part of the lower-layer crystal has been removed together with the Au thin film. Referring to 11D, it can be confirmed that in scanning 3, only the quartz crystal is removed to a certain depth. From the above results, it can be understood that the frequency of the piezoelectric vibrator hermetically sealed in the electronic component package made of silicon can be adjusted by the femtosecond laser transmitted through the electronic component package.
 以上のように、周波数調整用の質量膜が圧電振動子3の表面に形成されていた場合であっても、実施例1と同様に蓋部材2や圧電振動子3がレーザーによって過度のダメージを受けることはなく、周波数の調整が安定して行われる。 As described above, even if the mass film for frequency adjustment is formed on the surface of the piezoelectric vibrator 3, the lid member 2 and the piezoelectric vibrator 3 are excessively damaged by the laser similarly to the first embodiment. The frequency adjustment is performed stably.
 尚、以上の実施例では、周波数調整用の質量膜が圧電振動子3の上面に形成されている場合について説明したが、周波数調整用の質量膜を飛散させて除去することができるのであれば、圧電振動子3の他の表面(下面や側面)に形成されていてもよい。 In the above embodiment, the case where the mass film for frequency adjustment is formed on the upper surface of the piezoelectric vibrator 3 has been described. However, if the mass film for frequency adjustment can be scattered and removed. Alternatively, it may be formed on the other surface (lower surface or side surface) of the piezoelectric vibrator 3.
 また、以上の実施例では、圧電振動子の質量を減ずるに当たって、予め圧電振動子3の表面に形成した質量膜をレーザーにより除去しているが、圧電振動子3の母材である圧電振動片自体の一部をレーザーにより除去することで圧電振動子3の質量を減ずるようにしてもよい。 In the above embodiment, the mass film previously formed on the surface of the piezoelectric vibrator 3 is removed by the laser to reduce the mass of the piezoelectric vibrator. However, the piezoelectric vibrating piece which is a base material of the piezoelectric vibrator 3 is removed. You may make it reduce the mass of the piezoelectric vibrator 3 by removing a part of itself with a laser.
 また、以上の実施例1、2において、圧電振動子としては、音叉型の振動部を持つ所謂音叉型圧電振動子や平面視矩形状の所謂ATカット圧電振動子など種々のものが挙げられるが、それらに限定されるものではない。 In the first and second embodiments, various piezoelectric vibrators such as a so-called tuning fork-type piezoelectric vibrator having a tuning-fork type vibrating portion and a so-called AT-cut piezoelectric vibrator having a rectangular shape in plan view can be used. However, it is not limited to them.
 また、周波数調整用の質量膜としては、Auに限らずその他種々の材料のものが適宜選択され得る。 Further, the mass film for adjusting the frequency is not limited to Au, and various other materials can be appropriately selected.
 また、本発明のレーザーの照射方法において使用するレーザーのパルス幅は、本明細書中で定義した数値範囲に厳密に限定されるものではなく、本発明特有の作用及び効果か少なからず得られるのであれば、数値範囲の臨界点については、本発明の趣旨を逸脱しない範囲で多少の誤差が許容され得るものである。 In addition, the pulse width of the laser used in the laser irradiation method of the present invention is not strictly limited to the numerical range defined in the present specification. As long as there is a critical point in the numerical range, some error can be allowed without departing from the spirit of the present invention.
 また、本発明においてレーザーの透過対象となるシリコン材料は、実施例で示したシリコン単結晶に限らず、本発明の主旨を逸脱しない範囲でシリコン(Si)を主成分とする材料全般が対象となる。 In addition, the silicon material to be laser-transmitted in the present invention is not limited to the silicon single crystal shown in the embodiment, and covers all materials mainly composed of silicon (Si) without departing from the gist of the present invention. Become.
 本出願は、2009年10月7日に日本国に本出願人により出願された特願2009-233031号に基づくものであり、その全内容は参照により本出願に組み込まれる。さらに、本発明の背景技術として引用した特開平7-37911号公報、及び特表2007-512739号公報の全内容は、参照により本出願に組み込まれる。 This application is based on Japanese Patent Application No. 2009-233301, filed by the applicant in Japan on October 7, 2009, the entire contents of which are incorporated into this application by reference. Further, the entire contents of JP-A-7-37911 and JP-T-2007-512739 cited as the background art of the present invention are incorporated into the present application by reference.
 本発明の特定の実施の形態についての上記説明は、例示を目的として提示したものである。それらは、網羅的であったり、記載した形態そのままに本発明を制限したりすることを意図したものではない。数多くの変形や変更が、上記の記載内容に照らして可能であることは当業者に自明である。 The above description of specific embodiments of the present invention has been presented for purposes of illustration. They are not intended to be exhaustive or to limit the invention to the precise form described. It will be apparent to those skilled in the art that many modifications and variations are possible in light of the above description.
 本発明によるレーザーの照射方法は、本発明の趣旨を逸脱しない範囲でシリコン材料にレーザーを透過させることが求められるあらゆる用途に適用することが可能であり、透過したレーザーの使用目的としては、照射対象物の切削加工、改質、溶解などが挙げられるが、これらに限定されるものではない。 The laser irradiation method according to the present invention can be applied to any application that requires transmission of a laser through a silicon material without departing from the spirit of the present invention. Examples include, but are not limited to, cutting, modification, and melting of an object.
 1  パッケージ基板
 2  蓋部材(リッド)
 3  圧電振動子
 4  貫通配線
 5  外部接続端子
 6  質量膜
 11 レーザー光源
 12 波長変換素子
 13 集光光学系
 14 可動テーブル
 15 真空チャンバー
 16 Nチャンバー
 17 照射対象物
 18 真空ポンプ
 21 Au薄膜
 22 シリコン単結晶基板
 23 シリコン単結晶基板
 24 スペーサー
 31 Au薄膜
 32 シリコン単結晶基板
 41 質量膜(Au薄膜)
 42 質量膜(Au薄膜)
1 Package substrate 2 Lid member
DESCRIPTION OF SYMBOLS 3 Piezoelectric vibrator 4 Through wiring 5 External connection terminal 6 Mass film | membrane 11 Laser light source 12 Wavelength conversion element 13 Condensing optical system 14 Movable table 15 Vacuum chamber 16 N 2 chamber 17 Irradiation target 18 Vacuum pump 21 Au thin film 22 Silicon single crystal Substrate 23 Silicon single crystal substrate 24 Spacer 31 Au thin film 32 Silicon single crystal substrate 41 Mass film (Au thin film)
42 Mass film (Au thin film)

Claims (7)

  1.  シリコン材料に、パルス幅が50~1000fsのパルスレーザーを照射して透過させることと、
     透過した前記レーザーを前記シリコン材料を隔てた先の対象物に照射することと、を備えるレーザーの照射方法。
    Irradiating a silicon material with a pulse laser having a pulse width of 50 to 1000 fs to transmit the silicon material;
    Irradiating the laser beam that has passed through a target object that is separated from the silicon material.
  2.  前記レーザーの波長は、1200~4000nmである請求項1に記載のレーザーの照射方法。 2. The laser irradiation method according to claim 1, wherein a wavelength of the laser is 1200 to 4000 nm.
  3.  少なくとも一部がシリコン材料で構成された電子部品パッケージの内部に収容された圧電振動子にレーザーを照射して当該圧電振動子の共振周波数を調整する圧電振動子の周波数調整方法であって、
     前記レーザーとして請求項1又は2に記載のパルスレーザーを前記電子部品パッケージのシリコン材料領域に照射して透過させることと、
     透過した前記レーザーを前記圧電振動子に照射することにより前記圧電振動子の共振周波数を調整することと、を備える圧電振動子の周波数調整方法。
    A method of adjusting a frequency of a piezoelectric vibrator, wherein a resonance frequency of the piezoelectric vibrator is adjusted by irradiating a laser on a piezoelectric vibrator housed in an electronic component package at least part of which is made of a silicon material,
    Irradiating and transmitting the pulse laser according to claim 1 or 2 to the silicon material region of the electronic component package as the laser;
    Irradiating the transmitted laser to the piezoelectric vibrator to adjust the resonance frequency of the piezoelectric vibrator.
  4.  前記圧電振動子の共振周波数を調整することは、前記圧電振動子の表面に形成された質量膜を前記レーザーにより除去することにより前記圧電振動子の共振周波数を調整することを含む、請求項3に記載の圧電振動子の周波数調整方法。 The adjusting the resonance frequency of the piezoelectric vibrator includes adjusting a resonance frequency of the piezoelectric vibrator by removing a mass film formed on a surface of the piezoelectric vibrator with the laser. The method for adjusting the frequency of the piezoelectric vibrator according to claim 1.
  5.  前記圧電振動子の共振周波数を調整することは、前記圧電振動子の母材を前記レーザーにより除去することにより前記圧電振動子の共振周波数を調整することを含む、請求項3に記載の圧電振動子の周波数調整方法。 The piezoelectric vibration according to claim 3, wherein adjusting a resonance frequency of the piezoelectric vibrator includes adjusting a resonance frequency of the piezoelectric vibrator by removing a base material of the piezoelectric vibrator with the laser. Child frequency adjustment method.
  6.  少なくとも一部がシリコン材料で構成された電子部品パッケージの内部に収容された圧電振動子にレーザーを照射して当該圧電振動子の共振周波数を調整する圧電振動子の周波数調整方法であって、
     前記レーザーとして請求項1又は2に記載のパルスレーザーを前記電子部品パッケージのシリコン材料領域に照射して透過させることと、
     透過した前記レーザーを前記電子部品パッケージの内面に形成された質量膜に照射して当該質量膜を飛散させることと、
     飛散した前記質量膜を前記圧電振動子に付着させることにより前記圧電振動子の共振周波数を調整することと、を備える圧電振動子の周波数調整方法。
    A method of adjusting a frequency of a piezoelectric vibrator, wherein a resonance frequency of the piezoelectric vibrator is adjusted by irradiating a laser on a piezoelectric vibrator housed in an electronic component package at least part of which is made of a silicon material,
    Irradiating and transmitting the pulse laser according to claim 1 or 2 to the silicon material region of the electronic component package as the laser;
    Irradiating the mass film formed on the inner surface of the electronic component package with the transmitted laser to scatter the mass film;
    Adjusting the resonance frequency of the piezoelectric vibrator by attaching the scattered mass film to the piezoelectric vibrator.
  7.  少なくとも一部がシリコン材料で構成された電子部品パッケージと、
     当該電子部品パッケージの内部に収容された圧電振動子と、を備え、
     当該圧電振動子の共振周波数が、請求項3乃至6の何れか一つに記載の圧電振動子の周波数調整方法を用いて調整されている圧電デバイス。
    An electronic component package at least partially composed of a silicon material;
    A piezoelectric vibrator housed inside the electronic component package,
    A piezoelectric device in which the resonance frequency of the piezoelectric vibrator is adjusted using the frequency adjustment method for a piezoelectric vibrator according to any one of claims 3 to 6.
PCT/JP2010/067501 2009-10-07 2010-10-06 Irradiation method of laser, frequency adjustment method of piezoelectric vibrator using same, and frequency-adjusted piezoelectric device using same WO2011043357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011535410A JPWO2011043357A1 (en) 2009-10-07 2010-10-06 Laser irradiation method, frequency adjustment method of piezoelectric vibrator using the same, and piezoelectric device frequency adjusted using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009233031 2009-10-07
JP2009-233031 2009-10-07

Publications (1)

Publication Number Publication Date
WO2011043357A1 true WO2011043357A1 (en) 2011-04-14

Family

ID=43856810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067501 WO2011043357A1 (en) 2009-10-07 2010-10-06 Irradiation method of laser, frequency adjustment method of piezoelectric vibrator using same, and frequency-adjusted piezoelectric device using same

Country Status (2)

Country Link
JP (1) JPWO2011043357A1 (en)
WO (1) WO2011043357A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141196A (en) * 2015-11-24 2018-06-08 株式会社村田制作所 Resonance device and its manufacturing method
CN109155615A (en) * 2016-06-01 2019-01-04 株式会社村田制作所 Harmonic oscillator and resonance device
JP2019036643A (en) * 2017-08-17 2019-03-07 株式会社ディスコ Wafer processing method
US10333490B2 (en) 2013-12-27 2019-06-25 Murata Manufacturing Co., Ltd. Piezoelectric vibrator and frequency adjustment method for piezoelectric vibrator
CN110048689A (en) * 2018-01-16 2019-07-23 精工电子水晶科技股份有限公司 Piezoelectric vibration piece, piezoelectric vibrator and manufacturing method
JP2019125897A (en) * 2018-01-16 2019-07-25 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrating piece, piezoelectric vibrator, and manufacturing method
US11063568B2 (en) 2016-06-08 2021-07-13 Murata Manufacturing Co., Ltd. Resonance device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529863A (en) * 1991-07-22 1993-02-05 Matsushita Electric Ind Co Ltd Production of crystal vibrator
JPH1117488A (en) * 1997-06-24 1999-01-22 Tdk Corp Piezoelectric vibration parts
JP2000106515A (en) * 1998-09-28 2000-04-11 Kyocera Corp Package for piezoelectric vibrator, piezoelectric vibrator and its manufacture
JP2004289237A (en) * 2003-03-19 2004-10-14 Seiko Epson Corp Crystal oscilation piece and working method thereof, crystal device and mobile phone employing the crystal device, and electronic equipment employing the crystal device
JP2007163452A (en) * 2005-11-18 2007-06-28 Citizen Holdings Co Ltd Device and method for regulating leakage vibration of piezoelectric vibrator
JP2008078869A (en) * 2006-09-20 2008-04-03 Citizen Holdings Co Ltd Method for manufacturing oscillator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529863A (en) * 1991-07-22 1993-02-05 Matsushita Electric Ind Co Ltd Production of crystal vibrator
JPH1117488A (en) * 1997-06-24 1999-01-22 Tdk Corp Piezoelectric vibration parts
JP2000106515A (en) * 1998-09-28 2000-04-11 Kyocera Corp Package for piezoelectric vibrator, piezoelectric vibrator and its manufacture
JP2004289237A (en) * 2003-03-19 2004-10-14 Seiko Epson Corp Crystal oscilation piece and working method thereof, crystal device and mobile phone employing the crystal device, and electronic equipment employing the crystal device
JP2007163452A (en) * 2005-11-18 2007-06-28 Citizen Holdings Co Ltd Device and method for regulating leakage vibration of piezoelectric vibrator
JP2008078869A (en) * 2006-09-20 2008-04-03 Citizen Holdings Co Ltd Method for manufacturing oscillator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333490B2 (en) 2013-12-27 2019-06-25 Murata Manufacturing Co., Ltd. Piezoelectric vibrator and frequency adjustment method for piezoelectric vibrator
CN108141196A (en) * 2015-11-24 2018-06-08 株式会社村田制作所 Resonance device and its manufacturing method
CN109155615A (en) * 2016-06-01 2019-01-04 株式会社村田制作所 Harmonic oscillator and resonance device
CN109155615B (en) * 2016-06-01 2022-08-26 株式会社村田制作所 Harmonic oscillator and resonance device
US11063568B2 (en) 2016-06-08 2021-07-13 Murata Manufacturing Co., Ltd. Resonance device manufacturing method
JP2019036643A (en) * 2017-08-17 2019-03-07 株式会社ディスコ Wafer processing method
CN110048689A (en) * 2018-01-16 2019-07-23 精工电子水晶科技股份有限公司 Piezoelectric vibration piece, piezoelectric vibrator and manufacturing method
JP2019125897A (en) * 2018-01-16 2019-07-25 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrating piece, piezoelectric vibrator, and manufacturing method
JP2019125896A (en) * 2018-01-16 2019-07-25 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrating piece, piezoelectric vibrator, and manufacturing method
JP7079607B2 (en) 2018-01-16 2022-06-02 エスアイアイ・クリスタルテクノロジー株式会社 Piezoelectric vibrating pieces, piezoelectric vibrators, and manufacturing methods

Also Published As

Publication number Publication date
JPWO2011043357A1 (en) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2011043357A1 (en) Irradiation method of laser, frequency adjustment method of piezoelectric vibrator using same, and frequency-adjusted piezoelectric device using same
JP4838531B2 (en) Plate cutting method and laser processing apparatus
JP4322881B2 (en) Laser processing method and laser processing apparatus
US9102007B2 (en) Method and apparatus for performing laser filamentation within transparent materials
KR102226678B1 (en) Laser processing apparatus and laser processing method
JP4835927B2 (en) Method of splitting hard and brittle plate
TWI580507B (en) Laser processing device and laser processing method
TWI430351B (en) Method and apparatus for processing substrates and use thereof
WO2008004394A1 (en) Laser working method
JP4837320B2 (en) Processing object cutting method
JP2010519746A (en) Laser bonding method, substrates bonded by the method, and use of such substrates
TWI404330B (en) Tuning-fork type crystal unit and method of frequency adjustment thereof
JP2000301372A (en) Laser beam machining method for transparent material
JP2018523291A (en) Method for scribing semiconductor workpiece
KR101181719B1 (en) Substrate Dicing Method by Nano Void Array Formation using Femtosecond Pulse Lasers
WO2012063348A1 (en) Laser processing method and device
JP3867109B2 (en) Laser processing method
KR101232008B1 (en) The depth of the modified cutting device through a combination of characteristics
JP2006272430A (en) Laser beam machining apparatus
JP2007281598A (en) Process for manufacturing piezoelectric device
JP3867110B2 (en) Laser processing method
de Pablos-Martín et al. Evaluation of the bond quality of laser-joined sapphire wafers using a fresnoite-glass sealant
JP2002273592A (en) Method and apparatus for laser beam machining
RU2720791C1 (en) Method of laser processing of transparent brittle material and device for its implementation
JP3997526B2 (en) Quartz crystal resonator element, processing method thereof, crystal device, mobile phone device using crystal device, and electronic device using crystal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535410

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10822027

Country of ref document: EP

Kind code of ref document: A1