WO2011040536A1 - Heat treating apparatus for semiconductor substrate - Google Patents

Heat treating apparatus for semiconductor substrate Download PDF

Info

Publication number
WO2011040536A1
WO2011040536A1 PCT/JP2010/067102 JP2010067102W WO2011040536A1 WO 2011040536 A1 WO2011040536 A1 WO 2011040536A1 JP 2010067102 W JP2010067102 W JP 2010067102W WO 2011040536 A1 WO2011040536 A1 WO 2011040536A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction heating
graphite
semiconductor substrate
heat treatment
heating coil
Prior art date
Application number
PCT/JP2010/067102
Other languages
French (fr)
Japanese (ja)
Inventor
淳也 宮田
直喜 内田
Original Assignee
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井造船株式会社 filed Critical 三井造船株式会社
Publication of WO2011040536A1 publication Critical patent/WO2011040536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to a semiconductor substrate heat treatment apparatus, and more particularly to a single wafer type semiconductor substrate heat treatment apparatus.
  • FIGS. 5A and 5B when heating a large-diameter wafer in the zone control induction heating method, which is faster and superior to the temperature distribution control compared to the lamp heating method and the resistance heating method, A single-wafer heating method is employed (see Patent Document 1).
  • 5A is a block diagram illustrating a side configuration of the heat treatment apparatus
  • FIG. 5B is a block diagram illustrating a planar configuration.
  • a wafer placed on the graphite 3 by an apparatus having a plurality of circular induction heating coils 2 arranged on concentric circles and a heating body (graphite 3) arranged on the upper part of the circular coil 2. 4 is heated.
  • the graphite 3 is approximately the same size as the diameter of the induction heating coil 2 located on the outermost periphery, or smaller than the diameter of the induction heating coil 2 located on the outermost periphery. It had been.
  • the graphite 3 is slightly decentered with respect to the induction heating coil 2, an imbalance of the magnetic flux occurs in the vicinity of the end of the graphite 3, and a temperature deviation occurs.
  • the accuracy of uniform temperature distribution has been improved by adopting means for increasing the placement accuracy of the graphite 3 on the induction heating coil 2 and repeating fine adjustment while confirming the temperature distribution.
  • an object of the present invention is to provide a semiconductor substrate heat treatment apparatus that can obtain a desired temperature distribution in a heating element (graphite) without depending on intuition and skill level without requiring fine fine adjustment. .
  • a semiconductor substrate heat treatment apparatus includes a plurality of induction heating coils arranged concentrically and a plurality of induction heating coils connected to each of the plurality of induction heating coils, and input power to each induction heating coil.
  • the maximum value of the diameter D of the heating body is It is desirable to satisfy this relationship.
  • fine fine adjustment is not required when giving a uniform temperature distribution to the heating element.
  • fine adjustment since fine adjustment is not necessary, it does not depend on intuition or skill level.
  • FIG. 1 is a block diagram of the induction heating apparatus according to the embodiment.
  • FIG. 2 is an explanatory diagram of the principle for determining the size of graphite.
  • FIG. 3 is a diagram showing a conventional graphite shift and a heating range.
  • FIG. 4 is a diagram showing the shift of the graphite and the heating range according to the embodiment.
  • FIG. 5 is a diagram showing the configuration of a conventional single wafer induction heating apparatus.
  • the heat treatment apparatus 10 includes at least an induction heating coil 12 (12a to 12e), a graphite 14 as a heating body, and a power control unit 18, and a wafer 16 that is a semiconductor substrate is placed on the graphite 14. It is configured to do.
  • graphite 14 will be described as an example of the heating body, but the heating body applicable to the present application is not limited to graphite.
  • heating elements that can replace graphite include SiC, SiC-coated graphite, and refractory metals.
  • the induction heating coil 12 is a circular (C-type) coil, and when viewed as a whole, a plurality of circular coils having different radii (diameters) are arranged on a concentric circle, so that a so-called Baumkuchen-like body is formed. Make it.
  • a power control unit 18 is connected to the plurality of induction heating coils 12 arranged.
  • the power control unit 18 is configured based on, for example, a three-phase AC power supply 26, a converter 24, a chopper 22 (22a to 22e), and an inverter 20 (20a to 20e).
  • the converter 24 is a forward conversion unit that converts the three-phase alternating current input from the three-phase alternating current power supply 26 into direct current and outputs the direct current to the chopper 22 connected to the subsequent stage.
  • the chopper 22 is a voltage adjustment unit that changes the current conduction rate output from the converter 24 and changes the voltage of the current input to the inverter 20.
  • the inverter 20 is an inverse conversion unit that converts the direct current adjusted in voltage by the chopper 22 into an alternating current and supplies the alternating current to the induction heating coil 12.
  • the inverter 20 of the heat treatment apparatus 10 given as an example in the present embodiment is a series resonance type inverter in which the induction heating coil 12 and the resonance capacitor 19 are arranged in series.
  • an inverter 20 and a chopper 22 are individually connected to the plurality of induction heating coils 12 (five in this embodiment).
  • control of the output current from the inverter 20 to the induction heating coil 12 shall be performed based on the input signal from the drive control part which is not shown in figure.
  • the voltage of the current output from the converter 24 can be controlled by the chopper 22, the direct current output from the chopper 22 can be converted by the inverter 20, and the frequency can be adjusted. Therefore, the output power can be controlled by the chopper 22, and the inverter 20 can adjust the phase with the frequency of the current supplied to the induction heating coil 12 in which a plurality of coils are arranged adjacent to each other. Then, the phase of the frequency in the output current is synchronized (the phase difference is set to 0 or approximated to 0) or is maintained at a predetermined interval, so that mutual induction between the adjacent induction heating coils 12 is performed. The influence can be avoided. Further, by controlling the input power to each of the plurality of induction heating coils 12, it is possible to control the temperature distribution of the graphite 14 as a heating body and further the wafer 16 as a heating object.
  • the induction heating coil 12 has a hollow structure as shown in FIG. 1, and is formed so that a refrigerant (for example, water) can be inserted therein.
  • a refrigerant for example, water
  • the graphite 14 according to the present embodiment is formed in a flat disk shape.
  • the outer diameter of the graphite 14 is formed larger than the outer diameter of the induction heating coil 12e arranged on the outermost side among the induction heating coils 12 described above. Can be mentioned. The size of the graphite 14 will be specifically described with reference to FIG.
  • FIG. 2 is a diagram schematically showing the arrangement relationship between the graphite 14 and the induction heating coil 12.
  • the vertical distance between the induction heating coil 12 and the graphite 14 is d
  • the reach distance of the magnetic flux in the induction heating coil 12 (outermost induction heating coil 12e) is h.
  • L can be expressed by Equation 2.
  • the tip of the graphite 14 is not heated, and the ratio of the heat dissipation amount increases, thereby causing a uniform temperature distribution to be lost.
  • the outer diameter of the outermost induction heating coil and the outer diameter of the graphite are substantially equal to each other, and the arrangement position of the graphite is eccentric with respect to the induction heating coil. If this happens, the following phenomenon will occur. In other words, due to the influence of the penetration depth of the magnetic flux, the magnetic flux concentrates on the heating area (grid line area: particularly right side in the figure) by the narrowest outer induction heating coil, and local overheating occurs. . For this reason, the balance of heating as a whole of the graphite is lost, and the uniform temperature distribution control is adversely affected.
  • the end of the graphite 14 is arranged at the outermost position. It is not necessary to be located inside the position directly above 12e. And considering these conditions, the maximum value of the diameter D of the graphite 14 is As a range of the diameter D of graphite, It becomes.
  • the diameter D of the graphite 14 By determining the diameter D of the graphite 14 in such a range, even if the center position of the graphite 14 is decentered with respect to the center position of the induction heating coil 12, local overheating or a heat dissipation rate is achieved. As a result, the heating balance is not lost due to this increase, and the influence on the uniform temperature distribution control associated therewith is eliminated, and the semiconductor substrate can be heat-treated with high accuracy.
  • the portion of the graphite 14 that protrudes from the induction heating coil 12 is likely to be cooled due to a decrease in the reaching magnetic flux, but since heat is generated, there is almost no temperature drop. For this reason, it is difficult to affect the substantial heating portion, that is, the portion immediately above the induction heating coil 12 in the graphite 14 due to temperature change. Therefore, uniform temperature distribution control can be performed with the above configuration.
  • the wafer 16 is arranged so as to fit on the surface of the graphite 14, even if there is an eccentricity between the graphite 14 and the wafer 16 or between the induction heating coil 12 and the wafer 16, the heating system is not affected. It is thought that there is not. However, as a preferable condition, it is desirable that the center position of the wafer 16 is matched with the center position of the induction heating coil 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Induction Heating (AREA)

Abstract

Disclosed is a heat treating apparatus (10) is provided with a plurality of induction heating coils (12 (12a-12e)) that are disposed concentrically, inverters (20 (20a-20e)) that are connected to the plurality of induction heating coils (12) and control the input of power to the induction heating coils (12), and a disc-shaped graphite member (14) that is disposed upon the surface formed by the plurality of induction heating coils (12), whereby a wafer (16) disposed on the graphite (14) is heated; therein, the graphite (14) has an outer diameter that is larger than the outer diameter of the outermost induction heating coil (12e) among the plurality of induction heating coils (12).

Description

半導体基板熱処理装置Semiconductor substrate heat treatment equipment
 本発明は、半導体基板熱処理装置に係り、特に枚葉型の半導体基板熱処理装置に関する。  The present invention relates to a semiconductor substrate heat treatment apparatus, and more particularly to a single wafer type semiconductor substrate heat treatment apparatus. *
 半導体製造工程のひとつとして熱処理工程がある。半導体製造工程における熱処理工程では、ウエハの温度を均一にする必要があり、熱処理装置の方式としてランプ加熱方式、抵抗加熱方式、ゾーンコントロール誘導加熱方式などが知られており、各加熱方式において種々の改良が重ねられてきている。 There is a heat treatment process as one of the semiconductor manufacturing processes. In the heat treatment process in the semiconductor manufacturing process, it is necessary to make the temperature of the wafer uniform, and the lamp heating method, the resistance heating method, the zone control induction heating method, and the like are known as a method of the heat treatment apparatus. Improvements have been repeated.
 ランプ加熱方式や抵抗加熱方式に比べて急速かつ温度分布制御に優位とされるゾーンコントロール誘導加熱方式において大径ウエハの加熱を行う場合には、図5(A)、(B)に示すように、枚葉型の加熱方式が採られている(特許文献1参照)。なお、図5において、図5(A)は熱処理装置の側面構成、図5(B)は平面構成を示すブロック図である。 As shown in FIGS. 5A and 5B, when heating a large-diameter wafer in the zone control induction heating method, which is faster and superior to the temperature distribution control compared to the lamp heating method and the resistance heating method, A single-wafer heating method is employed (see Patent Document 1). 5A is a block diagram illustrating a side configuration of the heat treatment apparatus, and FIG. 5B is a block diagram illustrating a planar configuration.
 具体的には、同心円上に配置された複数の円形誘導加熱コイル2と、この円形コイル2の上部に配置された加熱体(グラファイト3)を有する装置により、グラファイト3の上に載置したウエハ4を加熱するという方式である。このような基本構成を有する熱処理装置1では従来、グラファイト3は、最外周に位置する誘導加熱コイル2の直径と略同じサイズ、若しくは最外周に位置する誘導加熱コイル2の直径よりも小さいサイズとされていた。このため、グラファイト3が誘導加熱コイル2に対して少しでも偏心していると、グラファイト3の端部付近で磁束のアンバランスが生じ、温度の偏りが生じてしまう。このため従来では、誘導加熱コイル2に対するグラファイト3の載置精度を上げ、さらに温度分布を確認しながら微調整を繰り返すという手段を採ることで、均一温度分布の高精度化が図られていた。 Specifically, a wafer placed on the graphite 3 by an apparatus having a plurality of circular induction heating coils 2 arranged on concentric circles and a heating body (graphite 3) arranged on the upper part of the circular coil 2. 4 is heated. Conventionally, in the heat treatment apparatus 1 having such a basic configuration, the graphite 3 is approximately the same size as the diameter of the induction heating coil 2 located on the outermost periphery, or smaller than the diameter of the induction heating coil 2 located on the outermost periphery. It had been. For this reason, if the graphite 3 is slightly decentered with respect to the induction heating coil 2, an imbalance of the magnetic flux occurs in the vicinity of the end of the graphite 3, and a temperature deviation occurs. For this reason, conventionally, the accuracy of uniform temperature distribution has been improved by adopting means for increasing the placement accuracy of the graphite 3 on the induction heating coil 2 and repeating fine adjustment while confirming the temperature distribution.
特開2008-159759号公報JP 2008-159759 A
 確かに、上記のような微調整を繰り返すことによれば要求精度に見合った温度分布を得ることができる。しかし、微調整は調整者の勘や熟練度に依存するものであるため、調整時間と精度出しとの間のムラが大きかった。また、加熱体と最外のコイル外形とを同じにした場合には、偏心せずに加熱体を設置することが容易になるとも考えられるが、実際には微小なズレが生じてしまい、やはり微調整が必要となる。さらに、自動で加熱体のセンタリングを行う機構を熱処理装置に備えることも可能であるが、この場合には装置の大型化や高コスト化などが懸念される。 Certainly, by repeating the fine adjustment as described above, a temperature distribution commensurate with the required accuracy can be obtained. However, since the fine adjustment depends on the intuition and skill level of the adjuster, there is a large unevenness between the adjustment time and the accuracy. In addition, if the heating body and the outermost coil outer shape are the same, it may be easy to install the heating body without eccentricity, but in reality, a slight misalignment occurs. Fine adjustment is required. Furthermore, it is possible to provide the heat treatment apparatus with a mechanism for automatically centering the heating element. In this case, however, there is a concern about an increase in the size and cost of the apparatus.
 そこで本発明では、細やかな微調整を必要とせず、勘や熟練度に依存する事無く加熱体(グラファイト)に所望する温度分布を得ることのできる半導体基板熱処理装置を提供することを目的とする。 In view of the above, an object of the present invention is to provide a semiconductor substrate heat treatment apparatus that can obtain a desired temperature distribution in a heating element (graphite) without depending on intuition and skill level without requiring fine fine adjustment. .
 上記目的を達成するための本発明に係る半導体基板熱処理装置は、同心円上に配置された複数の誘導加熱コイルと、複数の前記誘導加熱コイルのそれぞれに接続されて、各誘導加熱コイルに対する投入電力を制御するインバータと、複数の前記誘導加熱コイルにより構成される面上に配置される円盤型の加熱体とを有して前記加熱体に載置された半導体基板を加熱する半導体基板熱処理装置であって、前記加熱体は、その外径を複数の前記誘導加熱コイルのうち最外に配置された誘導加熱コイルの外径よりも大きくしたことを特徴とする。 In order to achieve the above object, a semiconductor substrate heat treatment apparatus according to the present invention includes a plurality of induction heating coils arranged concentrically and a plurality of induction heating coils connected to each of the plurality of induction heating coils, and input power to each induction heating coil. A semiconductor substrate heat treatment apparatus for heating a semiconductor substrate placed on the heating body, having an inverter for controlling the heating and a disk-shaped heating body disposed on a surface constituted by the plurality of induction heating coils And the said heating body made the outer diameter larger than the outer diameter of the induction heating coil arrange | positioned among the several said induction heating coils, It is characterized by the above-mentioned.
 また、上記特徴を有する半導体基板熱処理装置では、前記最外に配置された誘導加熱コイルの磁束到達距離をh、複数の前記誘導加熱コイルと前記加熱体との垂直距離をdとした場合に、前記加熱体の直径Dの最大値は、
Figure JPOXMLDOC01-appb-M000002
の関係を満たすようにすることが望ましい。
In the semiconductor substrate heat treatment apparatus having the above characteristics, when the magnetic flux arrival distance of the outermost induction heating coil is h, and the vertical distance between the plurality of induction heating coils and the heating body is d, The maximum value of the diameter D of the heating body is
Figure JPOXMLDOC01-appb-M000002
It is desirable to satisfy this relationship.
 加熱体の直径Dを上記のように定めることにより、加熱体のズレ量が最大、すなわちはみ出す側と反対側の端部が最外周の誘導加熱コイルの直上に位置する程度となった場合でも、はみ出した側の端部の放熱量の割合が極端に高くなり、均一な温度分布制御が出来なくなってしまうという事を避けることができる。 By determining the diameter D of the heating body as described above, even when the amount of deviation of the heating body is maximum, that is, when the end opposite to the protruding side is positioned just above the outermost induction heating coil, It can be avoided that the ratio of the heat radiation amount at the protruding end becomes extremely high and uniform temperature distribution control cannot be performed.
 上記のような特徴を有する半導体基板熱処理装置によれば、加熱体に均一な温度分布を与えるに際して、細やかな微調整を必要とすることが無い。また、微調整が不要となることにより、勘や熟練度に依存する事が無くなる。 According to the semiconductor substrate heat treatment apparatus having the above-described characteristics, fine fine adjustment is not required when giving a uniform temperature distribution to the heating element. In addition, since fine adjustment is not necessary, it does not depend on intuition or skill level.
図1は実施形態に係る誘導加熱装置のブロック図である。FIG. 1 is a block diagram of the induction heating apparatus according to the embodiment. 図2はグラファイトのサイズを定めるための原理の説明図である。FIG. 2 is an explanatory diagram of the principle for determining the size of graphite. 図3は従来のグラファイトのずれと加熱範囲を示す図である。FIG. 3 is a diagram showing a conventional graphite shift and a heating range. 図4は実施形態に係るグラファイトのずれと加熱範囲を示す図である。FIG. 4 is a diagram showing the shift of the graphite and the heating range according to the embodiment. 図5は従来の枚葉型誘導加熱装置の構成を示す図である。FIG. 5 is a diagram showing the configuration of a conventional single wafer induction heating apparatus.
 以下、本発明の半導体基板熱処理装置に係る実施の形態について図面を参照しつつ詳細に説明する。
 まず、本発明の半導体基板熱処理装置(以下、単に熱処理装置と称す)に係る実施形態について、図1を参照して説明する。本実施形態に係る熱処理装置10は少なくとも、誘導加熱コイル12(12a~12e)と、加熱体としてのグラファイト14、及び電力制御部18を備え、グラファイト14上に半導体基板であるウエハ16を載置する構成としている。なお、以下の実施形態においては前述したように、加熱体としてグラファイト14を例に挙げて説明するが、本願に適用可能な加熱体はグラファイトに限るものでは無い。グラファイトに代わる加熱体としては例えば、SiC、SiCコートグラファイト、及び耐熱金属などを挙げることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to a semiconductor substrate heat treatment apparatus of the present invention will be described in detail below with reference to the drawings.
First, an embodiment of a semiconductor substrate heat treatment apparatus (hereinafter simply referred to as a heat treatment apparatus) of the present invention will be described with reference to FIG. The heat treatment apparatus 10 according to this embodiment includes at least an induction heating coil 12 (12a to 12e), a graphite 14 as a heating body, and a power control unit 18, and a wafer 16 that is a semiconductor substrate is placed on the graphite 14. It is configured to do. In the following embodiments, as described above, graphite 14 will be described as an example of the heating body, but the heating body applicable to the present application is not limited to graphite. Examples of heating elements that can replace graphite include SiC, SiC-coated graphite, and refractory metals.
 前記誘導加熱コイル12は、円形(C型)のコイルであり、全体として見た場合、半径(直径)の異なる複数の円形コイルが同心円上に配置されていることから、いわゆるバウムクーヘン状の体を成す。複数配置された誘導加熱コイル12には、電力制御部18が接続されている。 The induction heating coil 12 is a circular (C-type) coil, and when viewed as a whole, a plurality of circular coils having different radii (diameters) are arranged on a concentric circle, so that a so-called Baumkuchen-like body is formed. Make it. A power control unit 18 is connected to the plurality of induction heating coils 12 arranged.
 電力制御部18は、例えば、三相交流電源26、コンバータ24、チョッパ22(22a~22e)、およびインバータ20(20a~20e)を基本として構成される。
 コンバータ24は、三相交流電源26から入力される三相交流電流を直流に変換して、後段に接続されるチョッパ22へと出力する順変換部である。
The power control unit 18 is configured based on, for example, a three-phase AC power supply 26, a converter 24, a chopper 22 (22a to 22e), and an inverter 20 (20a to 20e).
The converter 24 is a forward conversion unit that converts the three-phase alternating current input from the three-phase alternating current power supply 26 into direct current and outputs the direct current to the chopper 22 connected to the subsequent stage.
 前記チョッパ22は、コンバータ24から出力される電流の通流率を変化させ、インバータ20に入力する電流の電圧を変化させる電圧調整部である。
 前記インバータ20は、チョッパ22により電圧調整された直流電流を、交流電流へと変換して誘導加熱コイル12へ供給する逆変換部である。なお、本実施形態で例に挙げる熱処理装置10のインバータ20は、誘導加熱コイル12と共振コンデンサ19とを直列に配置した直列共振型のインバータとする。また、複数(本実施形態の場合は5つ)の誘導加熱コイル12にはそれぞれ、個別にインバータ20、およびチョッパ22が接続されている。なお、インバータ20から誘導加熱コイル12への出力電流の制御は、図示しない駆動制御部からの入力信号に基づいて行うものとする。
The chopper 22 is a voltage adjustment unit that changes the current conduction rate output from the converter 24 and changes the voltage of the current input to the inverter 20.
The inverter 20 is an inverse conversion unit that converts the direct current adjusted in voltage by the chopper 22 into an alternating current and supplies the alternating current to the induction heating coil 12. In addition, the inverter 20 of the heat treatment apparatus 10 given as an example in the present embodiment is a series resonance type inverter in which the induction heating coil 12 and the resonance capacitor 19 are arranged in series. Further, an inverter 20 and a chopper 22 are individually connected to the plurality of induction heating coils 12 (five in this embodiment). In addition, control of the output current from the inverter 20 to the induction heating coil 12 shall be performed based on the input signal from the drive control part which is not shown in figure.
 上記のような電力制御部18によれば、コンバータ24から出力された電流の電圧をチョッパ22により制御し、チョッパ22から出力された直流電流をインバータ20により変換、周波数調整することができる。このため、チョッパ22により出力電力が制御することができ、インバータ20により、複数のコイルが隣接して配置された誘導加熱コイル12へ投入される電流の周波数との位相調整を行うことができる。そして、出力電流における周波数の位相を同期(位相差を0にする事または0に近似させる事)、あるいは定められた間隔に保つことで、隣接配置された誘導加熱コイル12の間の相互誘導の影響を回避することができる。また、複数の誘導加熱コイル12のそれぞれに対する投入電力を制御することで、加熱体であるグラファイト14、さらには加熱対象物であるウエハ16の温度分布制御を行うことができる。 According to the power control unit 18 as described above, the voltage of the current output from the converter 24 can be controlled by the chopper 22, the direct current output from the chopper 22 can be converted by the inverter 20, and the frequency can be adjusted. Therefore, the output power can be controlled by the chopper 22, and the inverter 20 can adjust the phase with the frequency of the current supplied to the induction heating coil 12 in which a plurality of coils are arranged adjacent to each other. Then, the phase of the frequency in the output current is synchronized (the phase difference is set to 0 or approximated to 0) or is maintained at a predetermined interval, so that mutual induction between the adjacent induction heating coils 12 is performed. The influence can be avoided. Further, by controlling the input power to each of the plurality of induction heating coils 12, it is possible to control the temperature distribution of the graphite 14 as a heating body and further the wafer 16 as a heating object.
 また、本実施形態に係る誘導加熱コイル12は、図1に示すように中空構造とされており、内部に冷媒(例えば水)を挿通可能に形成されている。このような構成とすることにより、熱源となるグラファイト14からの輻射や伝熱を受けて、誘導加熱コイル12自体が過熱されてしまうことを防止することができる。 Further, the induction heating coil 12 according to the present embodiment has a hollow structure as shown in FIG. 1, and is formed so that a refrigerant (for example, water) can be inserted therein. By adopting such a configuration, it is possible to prevent the induction heating coil 12 itself from being overheated by receiving radiation or heat transfer from the graphite 14 serving as a heat source.
 本実施形態に係るグラファイト14は、平板円板状に形成されている。また、本実施形態に係るグラファイト14の特徴的な形態としてその外径を、上述した誘導加熱コイル12のうち、最外に配置された誘導加熱コイル12eの外径よりも大きく形成されている点を挙げることができる。グラファイト14の大きさについて、図2を参照して具体的に説明する。 The graphite 14 according to the present embodiment is formed in a flat disk shape. In addition, as a characteristic form of the graphite 14 according to the present embodiment, the outer diameter of the graphite 14 is formed larger than the outer diameter of the induction heating coil 12e arranged on the outermost side among the induction heating coils 12 described above. Can be mentioned. The size of the graphite 14 will be specifically described with reference to FIG.
 図2は、グラファイト14と誘導加熱コイル12の配置関係を模式的に示す図である。図2では、誘導加熱コイル12とグラファイト14との垂直距離をd、誘導加熱コイル12(最外の誘導加熱コイル12e)における磁束の到達距離をhとしている。ここで、最外の誘導加熱コイル12eの直上位置から、その外周側における磁束の到達距離の範囲までの距離(はみ出し距離)をLとした場合Lは、数式2で表すことができる。
Figure JPOXMLDOC01-appb-M000003
FIG. 2 is a diagram schematically showing the arrangement relationship between the graphite 14 and the induction heating coil 12. In FIG. 2, the vertical distance between the induction heating coil 12 and the graphite 14 is d, and the reach distance of the magnetic flux in the induction heating coil 12 (outermost induction heating coil 12e) is h. Here, when the distance from the position immediately above the outermost induction heating coil 12e to the reach range of the magnetic flux on the outer peripheral side (the protruding distance) is L, L can be expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000003
 Lが数式2の範囲を超えた場合には、グラファイト14の先端が加熱されず、放熱量の割合が増加してしまうため、均一な温度分布を崩す原因となってしまうからである。
 また、図3に示す従来のグラファイトのように、最外に配置された誘導加熱コイルの外径とグラファイトの外径が略等しい大きさであり、誘導加熱コイルに対してグラファイトの配置位置が偏心した場合次のような現象が生じてしまう。すなわち、磁束の浸透深さの影響により、狭まった最外の誘導加熱コイルによる加熱領域(格子線の領域:特に図中右側)に対して磁束が集中し、局所的な過加熱が生ずるのである。このためグラファイト全体としての加熱のバランスが崩れ、均一な温度分布制御に悪影響を与えるのである。
This is because when L exceeds the range of Equation 2, the tip of the graphite 14 is not heated, and the ratio of the heat dissipation amount increases, thereby causing a uniform temperature distribution to be lost.
Further, like the conventional graphite shown in FIG. 3, the outer diameter of the outermost induction heating coil and the outer diameter of the graphite are substantially equal to each other, and the arrangement position of the graphite is eccentric with respect to the induction heating coil. If this happens, the following phenomenon will occur. In other words, due to the influence of the penetration depth of the magnetic flux, the magnetic flux concentrates on the heating area (grid line area: particularly right side in the figure) by the narrowest outer induction heating coil, and local overheating occurs. . For this reason, the balance of heating as a whole of the graphite is lost, and the uniform temperature distribution control is adversely affected.
 このような実状を踏まえ、グラファイト14は図4に示すように、例え誘導加熱コイル12に対して偏心して配置された場合であっても、その端部が、最外に配置された誘導加熱コイル12eの直上位置の内側に位置しない必要がある。そしてこれらの条件を勘案すると、グラファイト14の直径Dの最大値は、
Figure JPOXMLDOC01-appb-M000004
となり、グラファイトの直径Dの範囲としては、
Figure JPOXMLDOC01-appb-M000005
となる。
In consideration of such a situation, as shown in FIG. 4, even if the graphite 14 is arranged eccentrically with respect to the induction heating coil 12, the end of the graphite 14 is arranged at the outermost position. It is not necessary to be located inside the position directly above 12e. And considering these conditions, the maximum value of the diameter D of the graphite 14 is
Figure JPOXMLDOC01-appb-M000004
As a range of the diameter D of graphite,
Figure JPOXMLDOC01-appb-M000005
It becomes.
 グラファイト14の直径Dをこのような範囲で定めることによれば、誘導加熱コイル12の中心位置に対してグラファイト14の中心位置が偏心した場合であっても、局所的な過加熱や、放熱割合の増加による加熱バランスの崩れ、およびこれらに伴う均一温度分布制御への影響が無くなり、高精度な半導体基板の熱処理を行うことが可能となる。グラファイト14のうち、誘導加熱コイル12からはみ出した部分は、到達する磁束が少なくなる事により冷え易くなるが、発熱自体は生じているために実質的な温度低下は殆ど無い。このため、実質的な加熱部分、すなわちグラファイト14のうちの誘導加熱コイル12の直上にある部分に対して温度変化の影響を与え難い。よって、上記のような構成とすることで、均一温度分布制御を行うことが可能となる。 By determining the diameter D of the graphite 14 in such a range, even if the center position of the graphite 14 is decentered with respect to the center position of the induction heating coil 12, local overheating or a heat dissipation rate is achieved. As a result, the heating balance is not lost due to this increase, and the influence on the uniform temperature distribution control associated therewith is eliminated, and the semiconductor substrate can be heat-treated with high accuracy. The portion of the graphite 14 that protrudes from the induction heating coil 12 is likely to be cooled due to a decrease in the reaching magnetic flux, but since heat is generated, there is almost no temperature drop. For this reason, it is difficult to affect the substantial heating portion, that is, the portion immediately above the induction heating coil 12 in the graphite 14 due to temperature change. Therefore, uniform temperature distribution control can be performed with the above configuration.
 なお、グラファイト14に対するウエハ16の載置形態については、グラファイト14が均一加熱されれば当然、グラファイト14により間接加熱されるウエハ16も均一加熱される。このため、ウエハ16は、グラファイト14の表面に収まるように配置されていれば、グラファイト14とウエハ16や、誘導加熱コイル12とウエハ16の間で偏心があったとしても、加熱体系に影響は無いと考えられる。しかし、好適条件としては、ウエハ16の中心位置は、誘導加熱コイル12の中心位置に合わせることが望ましい。 In addition, as for the mounting form of the wafer 16 on the graphite 14, if the graphite 14 is uniformly heated, the wafer 16 indirectly heated by the graphite 14 is naturally heated. For this reason, if the wafer 16 is arranged so as to fit on the surface of the graphite 14, even if there is an eccentricity between the graphite 14 and the wafer 16 or between the induction heating coil 12 and the wafer 16, the heating system is not affected. It is thought that there is not. However, as a preferable condition, it is desirable that the center position of the wafer 16 is matched with the center position of the induction heating coil 12.
 上記のような構成の熱処理装置10によれば、誘導加熱コイル12に対してグラファイト14の配置形態が偏心していた場合であっても、グラファイト14の端部付近における磁束のアンバランスが生じ難く、均一な温度分布制御が可能となる。これにより、グラファイト14の配置を微調整する手間を省く事ができる。すなわち、調整者の勘や経験、あるいはセンタリングのための特別な機構に頼る精度出しが不要となる。 According to the heat treatment apparatus 10 configured as described above, even when the arrangement of the graphite 14 is eccentric with respect to the induction heating coil 12, magnetic flux imbalance near the end of the graphite 14 hardly occurs. Uniform temperature distribution control is possible. Thereby, the trouble of finely adjusting the arrangement of the graphite 14 can be saved. That is, it is not necessary to obtain accuracy by relying on the intuition and experience of the adjuster or a special mechanism for centering.
10………熱処理装置(半導体基板熱処理装置)
12(12a~12e)………誘導加熱コイル
14………グラファイト
16………ウエハ
18………電力制御部
20(20a~20e)………インバータ
22(22a~22e)………チョッパ
24………コンバータ
26………三相交流電源
10 .... Heat treatment equipment (semiconductor substrate heat treatment equipment)
12 (12a to 12e) ..... Induction heating coil 14 ..... Graphite 16 ..... Wafer 18 ..... Power control unit 20 (20a to 20e) .......... Inverter 22 (22a to 22e) ........ Chopper 24 ……… Converter 26 ………… Three-phase AC power supply

Claims (2)

  1.  同心円上に配置された複数の誘導加熱コイルと、複数の前記誘導加熱コイルのそれぞれに接続されて、各誘導加熱コイルに対する投入電力を制御するインバータと、複数の前記誘導加熱コイルにより構成される面上に配置される円盤型の加熱体とを有して前記加熱体に載置された半導体基板を加熱する半導体基板熱処理装置であって、
     前記加熱体は、その外径を複数の前記誘導加熱コイルのうち最外に配置された誘導加熱コイルの外径よりも大きくしたことを特徴とする半導体基板熱処理装置。
    A plurality of induction heating coils arranged on concentric circles, an inverter connected to each of the plurality of induction heating coils to control input power to each induction heating coil, and a surface constituted by the plurality of induction heating coils A semiconductor substrate heat treatment apparatus that heats a semiconductor substrate placed on the heating body having a disk-shaped heating body disposed on the heating body,
    The semiconductor substrate heat treatment apparatus, wherein an outer diameter of the heating body is larger than an outer diameter of an induction heating coil arranged at an outermost position among the plurality of induction heating coils.
  2.  前記最外に配置された誘導加熱コイルの磁束到達距離をh、
     複数の前記誘導加熱コイルと前記加熱体との垂直距離をdとした場合に、
     前記加熱体の直径Dの最大値は、
    Figure JPOXMLDOC01-appb-I000001
    の関係を満たすことを特徴とする請求項1に記載の半導体基板熱処理装置。
         
         
         
         
    The magnetic flux reach distance of the induction heating coil arranged on the outermost side is h,
    When the vertical distance between the plurality of induction heating coils and the heating body is d,
    The maximum value of the diameter D of the heating body is
    Figure JPOXMLDOC01-appb-I000001
    The semiconductor substrate heat treatment apparatus according to claim 1, wherein the relationship is satisfied.



PCT/JP2010/067102 2009-09-30 2010-09-30 Heat treating apparatus for semiconductor substrate WO2011040536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-226868 2009-09-30
JP2009226868A JP4668343B1 (en) 2009-09-30 2009-09-30 Semiconductor substrate heat treatment equipment

Publications (1)

Publication Number Publication Date
WO2011040536A1 true WO2011040536A1 (en) 2011-04-07

Family

ID=43826348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067102 WO2011040536A1 (en) 2009-09-30 2010-09-30 Heat treating apparatus for semiconductor substrate

Country Status (3)

Country Link
JP (1) JP4668343B1 (en)
TW (1) TW201131658A (en)
WO (1) WO2011040536A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101605717B1 (en) * 2014-07-16 2016-03-23 세메스 주식회사 Apparatus and method for treating substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235501A (en) * 1994-02-25 1995-09-05 Stanley Electric Co Ltd Crystal growth device
JPH11340236A (en) * 1998-05-26 1999-12-10 Seiko Epson Corp Substrate heating apparatus
JP2003142243A (en) * 2001-11-06 2003-05-16 Koyo Thermo System Kk Induction heating device
JP2004221138A (en) * 2003-01-09 2004-08-05 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for semiconductor thermal process
JP2005019547A (en) * 2003-06-24 2005-01-20 Mitsui Eng & Shipbuild Co Ltd Thermal treatment method by induction heating and semiconductor wafer structure for quick induction heating
JP2005267863A (en) * 2004-03-16 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus
JP2006278150A (en) * 2005-03-29 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Induction heating method and device
JP2007042324A (en) * 2005-08-01 2007-02-15 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device
JP2008159759A (en) * 2006-12-22 2008-07-10 Mitsui Eng & Shipbuild Co Ltd Heat treating method and apparatus using induction heating

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235501A (en) * 1994-02-25 1995-09-05 Stanley Electric Co Ltd Crystal growth device
JPH11340236A (en) * 1998-05-26 1999-12-10 Seiko Epson Corp Substrate heating apparatus
JP2003142243A (en) * 2001-11-06 2003-05-16 Koyo Thermo System Kk Induction heating device
JP2004221138A (en) * 2003-01-09 2004-08-05 Mitsui Eng & Shipbuild Co Ltd Method and apparatus for semiconductor thermal process
JP2005019547A (en) * 2003-06-24 2005-01-20 Mitsui Eng & Shipbuild Co Ltd Thermal treatment method by induction heating and semiconductor wafer structure for quick induction heating
JP2005267863A (en) * 2004-03-16 2005-09-29 Mitsui Eng & Shipbuild Co Ltd Induction heating apparatus
JP2006278150A (en) * 2005-03-29 2006-10-12 Mitsui Eng & Shipbuild Co Ltd Induction heating method and device
JP2007042324A (en) * 2005-08-01 2007-02-15 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device
JP2008159759A (en) * 2006-12-22 2008-07-10 Mitsui Eng & Shipbuild Co Ltd Heat treating method and apparatus using induction heating

Also Published As

Publication number Publication date
TW201131658A (en) 2011-09-16
JP2011077276A (en) 2011-04-14
JP4668343B1 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5063755B2 (en) Induction heating apparatus and induction heating method
US9287146B2 (en) Induction heating apparatus and induction heating method
WO2012011203A1 (en) Apparatus for heat-treating semiconductor substrate
JP2016536803A (en) Heated substrate support with temperature profile control device
US20160138185A1 (en) Method of manufacturing silicon carbide single crystal
JP4313775B2 (en) Induction heating method and apparatus
JP2010245002A (en) Induction heating device, method for controlling the same and program
WO2011040536A1 (en) Heat treating apparatus for semiconductor substrate
JP4901998B1 (en) Induction heating device
JP5127987B1 (en) Induction heating device
JP2006302635A (en) Cam shaft high-frequency induction heating coil, and method of cam shaft high frequency induction heating using the heating coil
JP2011228524A (en) Semiconductor heat treatment apparatus and semiconductor heat treatment method
JP2004221138A (en) Method and apparatus for semiconductor thermal process
JP4406588B2 (en) Induction heating method and induction heating apparatus
JP2004342450A (en) High frequency induction heating device and semiconductor fabrication device
WO2012132078A1 (en) Induction heating device
JP5443228B2 (en) Semiconductor heat treatment equipment
JP5216153B2 (en) Temperature control method
JP5264220B2 (en) Wafer heat treatment equipment
JP5616271B2 (en) Induction heating device and magnetic pole
JP4417660B2 (en) Heat treatment method by induction heating
JP5084069B2 (en) Induction heating apparatus and induction heating method
JP2012089775A (en) Susceptor and semiconductor substrate heating apparatus
JP5535566B2 (en) Semiconductor substrate heat treatment equipment
JP2003142242A (en) Induction heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820651

Country of ref document: EP

Kind code of ref document: A1