WO2011040041A1 - 無線送受信装置および無線通信システム - Google Patents
無線送受信装置および無線通信システム Download PDFInfo
- Publication number
- WO2011040041A1 WO2011040041A1 PCT/JP2010/005904 JP2010005904W WO2011040041A1 WO 2011040041 A1 WO2011040041 A1 WO 2011040041A1 JP 2010005904 W JP2010005904 W JP 2010005904W WO 2011040041 A1 WO2011040041 A1 WO 2011040041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- measurement result
- carrier
- base station
- cell
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 41
- 238000005259 measurement Methods 0.000 claims abstract description 276
- 230000002776 aggregation Effects 0.000 claims abstract description 95
- 238000004220 aggregation Methods 0.000 claims abstract description 95
- 230000005540 biological transmission Effects 0.000 claims abstract description 63
- 238000003860 storage Methods 0.000 claims abstract description 15
- 239000000969 carrier Substances 0.000 claims description 25
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 208000000649 small cell carcinoma Diseases 0.000 abstract 1
- 238000000034 method Methods 0.000 description 42
- 230000008569 process Effects 0.000 description 30
- 238000010586 diagram Methods 0.000 description 25
- 230000011664 signaling Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 206010048669 Terminal state Diseases 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/04—Reselecting a cell layer in multi-layered cells
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
Definitions
- the present invention relates to the technical field of wireless communication, and in particular, to a wireless communication base station device, a wireless communication terminal device, a wireless transmission method, and a wireless reception method.
- Standardization organization 3GPP (The 3rd Generation Partnership Project) is promoting standardization of LTE (Long Term Evolution) as the next generation communication standard of W-CDMA (Wideband Code Division Multiple Access).
- LTE Long Term Evolution
- W-CDMA Wideband Code Division Multiple Access
- one radio communication base station device (Evolved NodeB: eNB, hereinafter also referred to as a base station) manages a plurality of cells
- a radio communication terminal device (User Equipment: UE) is a plurality of cells managed by the base station. Belong to one cell.
- a terminal state As a terminal state (UE state), a state that does not have an individual connection with a base station is called an idle state (idle mode, idle mode, also called RRC_IDLE), and a state that has an individual connection with a base station is connected. State (also called connected mode, connected mode, RRC_CONNECTED).
- the terminal When the terminal is in an idle state, the terminal cannot transmit / receive individual data to / from the base station, and only receives incoming calls and broadcast information common to all terminals in the cell.
- the terminal When transmitting / receiving individual data between the terminal and the base station, the terminal performs a connection setup procedure. By setting up a dedicated radio bearer (Radio bearer) between the terminal and the base station, the terminal state transitions from the idle state to the connected state.
- Radio bearer Radio bearer
- a connected terminal accesses according to the settings related to the reception quality measurement (measurement control, measurement control) of the base station (serving cell, also called serving cell) and neighboring cell (neighbor cell, also called neighbor cell).
- the reception quality is measured by the pilot channel (Common-Pilot-Channel: CPICH) of the base station and the neighboring cell.
- the terminal reports the reception quality measurement result to the accessing base station periodically or for each set event.
- the base station also called source eNB
- the base station that the terminal is accessing determines other base stations (also called Target ⁇ ⁇ eNB) to which the terminal is handed over based on the measurement result report (measurement report). .
- femto cells small cells
- macro cell base station equipment macro eNB
- macro eNB macro eNB
- small cell base station devices femto base stations, small base stations, home base stations, Home Evoled B NodeB: HeNB
- cell Pico Cell, or pico cell
- the small cell base station apparatus studied by 3GPP has been studied to allow access only to a limited group member.
- Such a femtocell is referred to as a closed subscriber group (CSG) cell.
- CSG closed subscriber group
- FIG. 16 is a diagram illustrating a cell arrangement example of a macro cell and a CSG cell.
- the macrocell base station apparatus (macroeNB) 20 manages three different frequency bands (f1, f2, and f3).
- Home base station (HeNB) 40 is located on frequency f3.
- the terminal 60 When the terminal 60 detects the signal of the CSG cell A by measurement while accessing the macro cell base station apparatus 20, if the CSG cell A is a CSG cell that is allowed to be accessed by the terminal 60, the macro cell base station apparatus 20 Then, handover control is performed so that the terminal 60 is connected to the home base station 40.
- the terminal 60 maintains a list of CSG cells that are allowed to be accessed (also referred to as allowed CSG list).
- the CSG cell that can be accessed by the terminal is different for each terminal.
- FIG. 17 is a diagram illustrating a handover control method of the terminal 60 from the macro cell base station apparatus 20 to the home base station 40 in LTE.
- the terminal (UE) 60 accesses the macro cell base station apparatus (macro eNB) 20 and performs communication.
- the terminal (UE) 60 moves near the boundary of the CSG cell, the reception quality of the CSG cell is measured. At that time, the terminal (UE) 60 acquires the physical cell ID (Physical Cell Identification: PCI) of the CSG cell by receiving the synchronization channel (Synchronization Channel: SCH).
- PCI Physical Cell Identification
- SCH Synchronization Channel
- the terminal (UE) 60 receives the PCI (“PCI # 2” in FIG. 17) and the reception quality measurement result report (measurement report) (“MR (PCI #” in FIG. 2) ”) is notified to the macro cell base station apparatus (macroeNB) 20 (S0 in FIG. 17).
- PCI # 2 PCI # 2
- MR reception quality measurement result report
- the macro cell base station apparatus (macro eNB) 20 holds a list of CSG cells included in the macro cell.
- the list of CSG cells includes the PCI of each home eNB and the cell global ID (Cell Global Identify: CGI).
- the macro cell base station apparatus (macroeNB) 20 that has received the reception quality measurement result of the CSG cell notified from the terminal (UE) 60, from the list of CSG cells included in the macro cell, the home base station ( HeNB).
- eNB) 20 is terminal (UE) 60 with respect to the home base station (HeNB) 40 via a mobility management entity (Mobility
- MME mobility management entity
- Gateway (GateWay: GW). Transmits an inquiry (also referred to as an HO request or an HO request) as to whether or not to hand over (S1 to S3 in FIG. 17).
- the home base station (HeNB) 40 When the home base station (HeNB) 40 that has received the HO request allows the handover of the terminal (UE) 60, the home base station (HeNB) 40 reserves radio resources corresponding to the service provided to the terminal (UE) 60 in advance, and performs acceptance control. Do. Then, the home base station (HeNB) 40, together with the acceptance control, sends a response (Ack for a HO request, HO request Ack) that permits a handover of the terminal (UE) 60 to the macro cell base station device (macro eNB) 20. It transmits via MME / GW (S4 and S5 in FIG. 17).
- the macro cell base station apparatus (macro eNB) 20 When receiving the Ack for the HO request from the home base station (HeNB) 40, the macro cell base station apparatus (macro eNB) 20 instructs the terminal (UE) 60 to move to the CSG cell (HO command, HO command ) Is transmitted (S6 in FIG. 17).
- the terminal (UE) 60 transmits a random access preamble (RACH preamble) to the home base station ( HeNB) 40 (S7 in FIG. 17).
- RACH preamble random access preamble
- the terminal (UE) 60 When the terminal (UE) 60 receives a response (random access response: RACH response) from the home base station (HeNB) 40 (S8 in FIG. 17), the terminal (UE) 60 is connected to the home base station (HeNB) 40. And uplink transmission resources are allocated from the home eNB.
- RACH response random access response: RACH response
- the terminal (UE) 60 transmits a signal (HO confirm) indicating completion of handover to the home base station (HeNB) 40 (FIG. 17).
- HO confirm indicating completion of handover to the home base station (HeNB) 40
- LTE-A Long-Term Evolution-Advanced
- the standardization organization 3GPP is promoting standardization of LTE-Advanced (Long-Term Evolution-Advanced, hereinafter referred to as LTE-A) as a next-generation wireless communication standard compatible with LTE.
- LTE-A system is a next generation mobile communication system that has evolved from LTE, and aims to provide improved mobile communication services.
- carrier aggregation also called Carrier ⁇ ⁇ Aggregation or Band Aggregation
- a terminal simultaneously uses a plurality of carrier frequencies managed by one base station is considered.
- FIG. 18 is a diagram illustrating a set example of component carriers used by a terminal in carrier aggregation.
- the terminal uses three consecutive downlink component carriers (carrier A, carrier B, carrier C) of 20 MHz, and two uplink component carriers (carrier a, carrier b). Aggregation is in progress. For example, downlink carrier A and carrier B are used as a pair with uplink carrier a, and downlink carrier C is used as a pair with uplink carrier b. Thus, the use of a plurality of component carriers is expected to improve the communication throughput between the terminal and the base station.
- the terminal After the power is turned on, the terminal notifies the network of terminal information such as location information and terminal function (UE capability) in order to receive an incoming call (attach, registration).
- the UE-capability sent from the terminal to the network includes information such as a supportable bandwidth and whether or not a plurality of discontinuous bands can be supported.
- the instruction of carrier aggregation is performed by the base station.
- the base station selects a component carrier set to be used for carrier aggregation based on UE capability such as the bandwidth that the terminal can support and the number of component carriers, and instructs the terminal.
- the carrier aggregation start instruction and the component carrier set instruction are notified by individual signaling between the base station and the terminal.
- carrier aggregation starts together with a message (RRC connection reconfiguration) sent from the base station to the terminal to notify the setting of RRC (Radio Resource Control Protocol) at the time of terminal connection setup
- RRC Radio Resource Control Protocol
- the instruction of the component carrier and the instruction of the component carrier set are notified.
- it may be notified together with a message (HO command) sent from the source base station to instruct the handover to the terminal at the time of handover.
- it may be notified by dedicated signaling from the base station to the terminal at an arbitrary timing.
- the base station since the base station selects the component carrier to be used unilaterally and instructs the terminal, the base station may not select the carrier even if there is a carrier frequency band of the macro cell that the terminal wants to access preferentially. There is sex.
- a reception unit that receives a reference signal and control information, a measurement unit that measures the reference signal received by the reception unit, and a measurement result report based on the measurement result of the measurement unit
- a measurement result report creation unit to be created, a list indicating accessible small cells, a storage unit for storing identification information of previously accessed small cells among the accessible small cells, and a measurement result of the measurement unit;
- a small cell determination unit that determines whether or not the previously accessed small cell is within a detectable range of the device from the identification information of the small cell stored in the storage unit, and the measurement result report
- a wireless transmission / reception apparatus comprising: a transmission unit that transmits the measurement result report created by a creation unit.
- the measurement result report creation unit creates the measurement result report including carrier frequency information on the location of the previously accessed small cell based on the determination by the small cell determination unit.
- the measurement unit based on the determination of the small cell determination unit, can detect the carrier frequency band in which the small cell is located when the previously accessed small cell exists in the detectable range of the own device.
- the peripheral carrier frequency is measured, and the measurement result report creation unit creates a measurement result report including the measurement result of the peripheral carrier frequency in the carrier frequency band where the small cell is located.
- the small cell determination unit determines that the center frequencies of the small cell and the macro cell are different from each other, the small cell determination unit causes the measurement unit to Instruct to perform reception quality measurement.
- the small cell determination unit determines whether or not there is a component carrier in the frequency band and a paired component carrier, Instructs the measurement unit to perform reception quality measurement.
- a receiving unit that includes carrier frequency information where a small cell accessed by an external device previously is located and receives a measurement result report obtained by measuring a reference signal; and the receiving unit A measurement result report determination unit that determines the measurement result report received by the component, and a component carrier selection unit that selects a set of component carriers used by the external device for carrier aggregation based on information included in the measurement result report; A control message creation unit that creates a control message for instructing the external device to use the carrier selected by the component carrier selection unit; and a control message created by the control message creation unit is transmitted to the external device.
- a wireless transmission / reception device including the transmission unit
- the component carrier selection unit preferentially selects a component carrier including a carrier frequency with a small cell based on information included in the measurement result report.
- the component carrier selection unit preferentially selects a component carrier having a high reception quality based on information included in the measurement result report.
- a terminal device including the above wireless transmission / reception device is provided.
- a base station apparatus provided with the above-described radio transmission / reception apparatus is provided.
- a radio communication system including the terminal device and the base station device is provided.
- the present invention it is possible to provide a wireless transmission / reception device and a wireless communication system that enable carrier aggregation using a component carrier set appropriate for the wireless transmission / reception device.
- Block diagram showing a configuration of terminal 100 according to Embodiment 1 Block diagram showing a configuration of base station 200 according to Embodiment 1
- movement flow of the terminal 100 The figure which shows the operation
- movement flow of the terminal 300 The figure which shows the operation
- FIG. The figure which shows the operation
- FIG. The figure for demonstrating the operation example 2 of the radio
- FIG. The figure which shows the operation
- movement flow of the terminal 500 The figure which shows the cell arrangement example of a macrocell and a CSG cell
- the base station assigns component carrier sets within a range that can be supported by the terminal, based on the UE capability.
- the base station selects the component carrier to be used unilaterally and instructs the terminal, since there is a CSG cell accessible to the terminal, the carrier frequency band of the macro cell to be preferentially accessed for CSG cell detection Even if it exists, there is a possibility that the carrier will not be selected. In that case, because the CSG cell is not in a certain carrier frequency band, PCI detection of the CSG cell cannot be performed, and the CSG cell accessible to the terminal cannot be detected.
- the terminal device 100 (hereinafter referred to as the terminal 100) is notified at the time of carrier aggregation by notifying the network to preferentially select a carrier frequency band having a CSG cell accessible.
- a carrier frequency band with a CSG cell is included in the set of component carriers. That is, the terminal 100 can detect PCI of the CSG cell even during carrier aggregation, and can access the corresponding CSG cell.
- FIG. 1 is a block diagram showing a configuration of terminal 100.
- a terminal 100 shown in FIG. 1 includes a reception quality measurement unit 101, a CSG cell information storage unit 103, a CSG cell determination unit 105, a measurement report creation unit 107, a reception unit 109, a transmission unit 111, and a transmission / reception antenna 113.
- a reception quality measurement unit 101 includes a reception quality measurement unit 101, a CSG cell information storage unit 103, a CSG cell determination unit 105, a measurement report creation unit 107, a reception unit 109, a transmission unit 111, and a transmission / reception antenna 113.
- the reception quality measurement unit 101 measures the reception quality (measurement, measurement) of the cell that the device is camping on and the neighboring cells. Reception quality measurement section 101 then outputs the measurement result of the reception quality to measurement report creation section 107 and CSG cell determination section 105.
- the setting for measuring the reception quality is transmitted from the base station apparatus 200 and input from the reception unit 109 to the reception quality measurement unit 101.
- the CSG cell information storage unit 103 includes a list of CSG cells that can be accessed by the device itself (allowedallowCSG list, whitelist), and history information (fingerprint information, fingerprint information, proximity information) of previously accessed CSG cells. information, hereinafter referred to as fingerprint information).
- the CSG cell information storage unit 103 outputs a list of CSG cells accessible by the own device and fingerprint information to the CSG cell determination unit 105 as necessary.
- the list of CSG cells accessible by the device includes PCI of the CSG cell, global cell ID (CellIDGlobal Identity, hereinafter also referred to as CGI), and group ID of the CSG cell (Closed Subscriber Group Identity, hereinafter CSG ID) Also called).
- the fingerprint information includes PCI, CGI, CSG ID, carrier frequency information, location information by GPS, etc. of the CSG cell accessed before.
- the CSG cell determination unit 105 can access its own device by referring to the reception quality measurement result input from the reception quality measurement unit 101 and the fingerprint information among the information output from the CSG cell information storage unit 103. Whether a CSG cell is located nearby is determined.
- the CSG cell determination unit 105 positions the CSG cell in the vicinity of the own device. Judge that. Then, the CSG cell determination unit 105 outputs the determination result to the measurement report creation unit 107.
- the measurement report creation unit 107 creates a measurement result report (measurement report) to be transmitted to the base station apparatus 200 based on the reception quality measurement result input from the reception quality measurement unit 101, and creates the measurement A result report (measurement report) is output to the transmission unit 111.
- the measurement report creation unit 107 When the measurement report creation unit 107 outputs the created measurement result report (measurement report) to the transmission unit 111, the measurement report creation unit 107 inputs a determination result from the CSG cell determination unit 105 that an accessible CSG cell is located in the vicinity of the own device. If there is, the determination result is included in the created measurement result report (measurement report). For example, the measurement report creation unit 107 includes the accessible carrier frequency of the CSG cell in the measurement result report (measurement report).
- the reception unit 109 receives data from the base station apparatus 200, control information for measuring reception quality (measurement control), reference signals to be actually measured (reference symbol, reference signal), and the like via the transmission / reception antenna 113. Receive.
- the transmission unit 111 transmits data from its own device, a measurement result report, and the like via the transmission / reception antenna 113.
- FIG. 2 is a block diagram showing a configuration of base station 200.
- the base station 200 illustrated in FIG. 2 includes a measurement result report determination unit 201, a component carrier selection unit 203, a control message creation unit 205, a reception unit 207, a transmission unit 209, and a transmission / reception antenna 211.
- the measurement result report determination unit 201 refers to the measurement result report (measurement report) transmitted from the terminal 100. Then, if the measurement result report (measurement report) includes “the carrier frequency of the CSG cell accessible by the terminal 100”, the measurement result report determination unit 201 determines that “the carrier frequency of the CSG cell accessible by the terminal 100”. Is output to the component carrier selection unit 203.
- the component carrier selection unit 203 When the component carrier selection unit 203 instructs the terminal 100 to perform carrier aggregation, the component carrier selection unit 203 includes “the carrier frequency of the CSG cell accessible by the terminal 100” input from the measurement result report determination unit 201, Select Component Carrier. Then, the component carrier selection unit 203 outputs the selected “component carrier of the carrier frequency of the macro cell” to the control message creation unit 205.
- the control message creation unit 205 creates a control message that instructs the terminal 100 to perform carrier aggregation.
- the control message creation unit 205 includes the “component carrier of the carrier frequency of the macro cell” input from the component carrier selection unit 203 in the created control message. Then, the control message creation unit 205 outputs the created control message to the transmission unit 209.
- the receiving unit 207 transmits data from the terminal 100, a measurement result report, and the like via the transmission / reception antenna 211.
- the transmission unit 209 transmits data from the own device, control information for reception quality measurement, a reference signal to be actually measured, and the like to the terminal 100 via the transmission / reception antenna 211.
- FIG. 3 is a diagram illustrating an operation flow of the terminal 100.
- step S30 the terminal 100 performs normal reception quality measurement (S30).
- the start timing of normal reception quality measurement is set by control information from the base station 200. For example, when the reception quality level of the currently accessed cell (serving cell) is lower than the threshold set by the base station 200, the terminal 100 determines that the serving cell and neighboring cells (neighbor cell, neighbor cell, neighbor cell) Measurement of reception quality (also called measurement) is started. And it changes to step S31.
- step S31 the terminal 100 determines whether a CSG cell accessible by the terminal 100 is located in the vicinity of the terminal based on the fingerprint information.
- the process proceeds to step S32, and when it is determined that the accessible CSG cell of the own device is not located in the vicinity of the own device ( No), the process proceeds to step S33.
- step S32 the terminal 100 includes the carrier frequency information of the CSG cell in the reception quality measurement result report (measurement report) of the serving cell and the neighboring cells, and transmits it to the base station 200. And it changes to step S34.
- step S33 the terminal 100 transmits a normal measurement result report to the base station 200.
- step S34 the terminal 100 determines whether or not there is a carrier aggregation instruction from the base station 200. In step S34, if there is a carrier aggregation instruction from the base station 200 (Yes), the process proceeds to step S35, and if there is no carrier aggregation instruction from the base station 200 (No), the process proceeds to step S36.
- step S35 the terminal 100 starts carrier aggregation using the instructed component carrier based on the carrier aggregation instruction from the base station 200.
- step S36 the terminal 100 does not perform carrier aggregation since there is no instruction for carrier aggregation from the base station 200. Therefore, terminal 100 continues communication with the currently connected macro cell unless there is an instruction other than carrier aggregation from base station 200.
- FIG. 4 is a diagram illustrating an operation flow of the base station 200.
- step S40 the base station 200 receives the reception quality measurement result report from the terminal 100. And it changes to step S41.
- step S41 the base station 200 determines whether the frequency information of the CSG cell is included in the reception quality measurement result report received from the terminal 100. If the CSG cell frequency information is included in the reception quality measurement result report (Yes), the process proceeds to step S42, and the CSG cell frequency information is not included in the reception quality measurement result report. (No), the process proceeds to step S44.
- step S42 the base station 200 selects the component carrier including the carrier frequency of the CSG cell at the time of carrier aggregation since the frequency information of the CSG cell is included in the reception quality measurement result report. And it changes to step S43.
- step S43 the base station 200 creates a message instructing the start of carrier aggregation and the set of component carriers used by the terminal 100. And it changes to step S45.
- step S44 since the frequency information of the CSG cell is not included in the reception quality measurement result report, the base station 200 indicates the start of normal carrier aggregation and the set of component carriers used by the terminal 100 Create And it changes to step S45.
- step S45 the base station 200 transmits to the terminal 100 a message instructing the start of carrier aggregation and the set of component carriers used by the terminal 100.
- FIG. 5 is a diagram illustrating signaling between the terminal 100 and the base station 200.
- step S51 the terminal 100 performs normal reception quality measurement.
- step S52 when the terminal 100 determines that the accessible CSG cell is located in the vicinity by the fingerprint information, in step S53, the terminal 100 reports the reception quality measurement result (measurement report) of the serving cell and the neighboring cell.
- the carrier frequency information of the CSG cell is put into the base station 200 and transmitted to the base station 200.
- step S54 the base station 200 selects a component carrier having a carrier frequency of a macro cell including a carrier frequency of a CSG cell accessible by the terminal 100. Then, in step S55, the selected component carrier is included in a control message instructing carrier aggregation and transmitted to terminal 100 together with the RRC signal (RRCRRsignaling).
- RRCRRsignaling the RRC signal
- step S56 the terminal 100 starts carrier aggregation using the component carrier instructed from the base station 200.
- the radio communication system As described above, according to the radio communication system according to Embodiment 1, there is a corresponding CSG cell at the time of carrier aggregation by notifying the network to preferentially select a carrier frequency band with a CSG cell accessible to terminal 100.
- a carrier frequency band is included in the set of component carriers. That is, terminal 100 according to Embodiment 1 can detect PCI of the CSG cell even during carrier aggregation, and can access the corresponding CSG cell.
- the CSG cell information notified to base station 200 by terminal 100 according to Embodiment 1 is not limited to the carrier frequency of the CSG cell, and for example, CSG ID may be included in the CSG cell information notified to base station 200. good.
- terminal 100 according to Embodiment 1 may notify base station 200 of the carrier frequency of the macro cell including the carrier frequency of the corresponding CSG cell, instead of notifying the carrier frequency of the CSG cell.
- terminal 100 according to Embodiment 1 may notify the carrier frequency of the CSG cell and the carrier frequency of the macro cell together.
- the information of the CSG cell which the terminal 100 which concerns on Embodiment 1 notifies to the base station 200 is not only transmitted in the measurement result report, but also the terminal and the base station other than the signaling for transmitting the measurement result report It may be sent using dedicated signaling between the two. Further, it may be sent in a message other than the measurement result report message, such as an RRC connection setup completion message.
- terminal 100 according to Embodiment 1 has carrier frequency with CSG cell in base station 200 only when the carrier frequency of the macro cell accessed by terminal 100 does not include the carrier frequency of accessible CSG cell.
- the terminal 100 does not notify the base station 200 of the carrier frequency with the CSG cell. It is also possible to use this.
- Embodiment 2 In the radio communication system according to Embodiment 1, it is possible to preferentially include a carrier frequency band including a CSG cell accessible to terminal 100 in carrier aggregation.
- the base station 200 does not always select an appropriate component carrier for the terminal 100 only with the carrier frequency information including the CSG cell. For example, if the base carrier 200 selects a macro cell that includes the same carrier frequency band as the CSG cell when the center carrier frequencies of the macro cell and the CSG cell are shifted, it is considered that the interference of the CSG cell is strongly received. .
- terminal apparatus 300 notifies base station apparatus 400 of the reception quality measurement results of neighboring carriers together with the carrier frequency of accessible CSG cells. Therefore, in the radio communication system according to Embodiment 2, it is possible for terminal 300 to detect a CSG cell while performing carrier aggregation using an appropriate component carrier set.
- FIG. 6 is a block diagram showing the configuration of terminal 300.
- 5 includes a reception quality measurement unit 301, a CSG cell information storage unit 303, a CSG cell determination unit 305, a measurement report creation unit 307, a reception unit 309, a transmission unit 311, and a transmission / reception antenna 313. And comprising.
- the reception quality measurement unit 301 performs measurement (measurement) of the reception quality of the cell where the device is camping and the neighboring cells. Reception quality measuring section 301 then outputs the measurement result of the reception quality to measurement report creation section 307 and CSG cell determination section 305.
- the setting for measuring the reception quality is transmitted from the base station apparatus 400 and input from the reception unit 309 to the reception quality measurement unit 301.
- the CSG cell information storage unit 303 includes a list of CSG cells accessible by the own device (also referred to as allowed CSG list, whitelist), and history information of previously accessed CSG cells (fingerprint information, fingerprint information, proximity information) information, hereinafter referred to as fingerprint information).
- the CSG cell information storage unit 303 outputs a list of CSG cells accessible by the own device, reception quality measurement results of neighboring cells of the own device, and fingerprint information to the CSG cell determining unit 305 as necessary. .
- the CSG cell PCI in the list of CSG cells that can be accessed by the own device, the CSG cell PCI, global cell ID (hereinafter also referred to as CGI), CSG cell group ID (Closed) Subscriber Group Identity, (hereinafter also referred to as CSG ID).
- CGI global cell ID
- CSG cell group ID Closed Subscriber Group Identity
- the fingerprint information includes PCI, CGI, CSG ID, carrier frequency information, location information by GPS, etc. of the CSG cell accessed before.
- the CSG cell determination unit 305 can access its own device by referring to the reception quality measurement result input from the reception quality measurement unit 301 and the fingerprint information among the information output from the CSG cell information storage unit 303. Whether a CSG cell is located nearby is determined. The CSG cell determination unit 305 determines, for example, that the CSG cell is located in the vicinity of the own device when the carrier frequency of the measured cell is the same band as the carrier frequency of the CSG cell included in the fingerprint information. To do. Then, the CSG cell determination unit 305 outputs the determination result to the measurement report creation unit 307.
- reception quality measuring section 301 receives a neighboring cell of a carrier frequency having a CSG cell. Perform quality measurements. At this time, it is assumed that reception quality measurement is performed only for frequencies that can be carrier-aggregated by the function (UE capability) of terminal 300.
- a method of finding a cell around the carrier frequency is, for example, carrier frequency information (Carrier Frequency Info, Inter Freq Carrier Freq Info, also referred to as inter-frequency carrier frequency information). Since the carrier frequency information includes carrier frequency information of the peripheral frequency band, PCI of the adjacent cell, and the like, the carrier frequency of the CSG cell and its surrounding macro cell can be found from the carrier frequency information.
- the measurement report creation unit 307 creates a measurement result report (measurement report) to be transmitted to the base station apparatus 400 based on the reception quality measurement result input from the reception quality measurement unit 301, and creates the measurement A result report (measurement report) is output to the transmission unit 311.
- the measurement report creation unit 307 receives the reception quality input from the reception quality measurement unit 301. Based on the measurement result, a measurement result report (measurement report, measurement report) to be transmitted to the base station apparatus 400 including the reception quality measurement (measurement) of the neighboring cells of the carrier frequency with the CSG cell is created and the created measurement A result report (measurement report) is output to the transmission unit 311.
- the CSG cell determination unit 305 inputs a determination result indicating that an accessible CSG cell is located near the own device. If there is, the determination result is included in the created measurement result report (measurement report).
- the measurement report creation unit 307 includes, in the measurement result report, the reception quality measurement result report of the neighboring cells of the carrier frequency of the CSG cell together with the carrier frequency of the accessible CSG cell.
- the receiving unit 309 receives data from the base station apparatus 400, control information for measurement of reception quality (measurement control, measurement control), reference signals to be actually measured (reference symbol, reference signal), and the like via the transmission / reception antenna 313. Receive.
- the transmission unit 311 transmits data from its own device, a measurement result report, and the like via the transmission / reception antenna 313.
- the terminal 300 starts carrier aggregation using the component carrier instructed from the base station apparatus 400.
- FIG. 7 is a block diagram showing a configuration of base station 400.
- the base station 400 illustrated in FIG. 7 includes a measurement result report determination unit 401, a component carrier selection unit 403, a control message creation unit 405, a reception unit 407, a transmission unit 409, and a transmission / reception antenna 411.
- the measurement result report determination unit 401 refers to the measurement result report (measurement report) transmitted from the terminal 300. Then, if the measurement result report (measurement) report) includes “the carrier frequency of the CSG cell accessible by the terminal 300”, the measurement result report determination unit 401 determines “the carrier frequency of the CSG cell accessible by the terminal 300”. Is output to the component carrier selection unit 403.
- the measurement result report (measurement ⁇ report) from the terminal 300 includes the “result of reception quality measurement of carrier frequencies (f1, f2, f3) of neighboring macrocells”, the measurement result report determination unit 401 Alternatively, based on a value set in advance by the upper node, it is determined at which carrier frequency of the peripheral macrocell the terminal 300 performs carrier aggregation. The determination method will be described in an operation example described later.
- the component carrier selection unit 403 instructs the terminal 300 to perform carrier aggregation
- the component carrier selection unit 403 includes “the carrier frequency of the CSG cell accessible by the terminal 300” input from the measurement result report determination unit 401, Select Component Carrier. Then, the component carrier selection unit 403 outputs the selected “component carrier of the carrier frequency of the macro cell” to the control message creation unit 405.
- the component carrier selection unit 403 selects the carrier frequency of the neighboring macro cell for which the terminal 300 performs carrier aggregation, and outputs the neighboring macro cell including the selected carrier frequency to the control message creation unit 405.
- the control message creation unit 405 creates a control message that instructs the terminal 300 to perform carrier aggregation.
- the control message creation unit 405 includes the “component carrier of the carrier frequency of the macro cell” or the “neighboring macro cell including the carrier frequency” input from the component carrier selection unit 403 in the created control message. Then, the control message creation unit 405 outputs the created control message to the transmission unit 409.
- the receiving unit 407 transmits data from the terminal 300, a measurement result report, and the like via the transmission / reception antenna 411.
- the transmission unit 409 transmits data from the own device, control information for reception quality measurement, a reference signal to be actually measured, and the like to the terminal 300 via the transmission / reception antenna 411.
- FIG. 8 is a diagram illustrating an operation flow of the terminal 300.
- step S70 the terminal 300 performs normal reception quality measurement.
- the start timing of normal reception quality measurement is set by control information from the base station 400. For example, when the reception quality level of the currently accessed cell (serving cell) is below a threshold set by the base station 400, the terminal 100 determines that the serving cell and neighboring cells (neighbor cell, neighbor cell, neighboring cell) Measurement of reception quality (also called measurement) is started. And it changes to step S71.
- step S71 the terminal 300 determines whether a CSG cell accessible by the terminal 300 is located in the vicinity of the terminal based on the fingerprint information.
- the process proceeds to step S72, and when it is determined that the accessible CSG cell of the own device is not located in the vicinity of the own device ( No), the process proceeds to step S73.
- step S72 the terminal 300 performs reception quality measurement (measurement) of neighboring cells of a carrier frequency having a CSG cell. At this time, it is assumed that reception quality is measured only for frequencies that can be subjected to carrier aggregation by the function of the terminal (UE (capability). And it changes to step S74.
- step S73 the terminal 300 transmits a normal measurement result report to the base station 400.
- step S74 the terminal 300 transmits the measurement result report (measurement report) to the base station apparatus 400 including the carrier frequency information of the CSG cell and the reception quality measurement (measurement) of the neighboring cells of the carrier frequency with the CSG cell. To do. And it changes to step S75.
- step S75 the terminal 300 determines whether or not there is a carrier aggregation instruction from the base station 400. Then, when there is an instruction for carrier aggregation from the base station 400 (Yes), the process proceeds to step S76, and when there is no instruction for carrier aggregation from the base station 400 (Yes), the process proceeds to step S77.
- step S76 based on the carrier aggregation instruction from the base station 400, the terminal 300 starts carrier aggregation using the instructed component carrier.
- step S77 the terminal 300 does not perform carrier aggregation since there is no instruction for carrier aggregation from the base station 400. Therefore, terminal 300 continues communication with the currently connected macro cell unless there is an instruction from base station 400 other than carrier aggregation.
- FIG. 9 is a diagram showing a basic operation flow of the base station 400.
- step S90 the base station 400 receives the reception quality measurement result report from the terminal 300. And it changes to step S91.
- step S91 the base station 400 determines whether the frequency information of the CSG cell is included in the reception quality measurement result report received from the terminal 300. If the CSG cell frequency information is included in the reception quality measurement result report (Yes), the process proceeds to step S92, and the CSG cell frequency information is not included in the reception quality measurement result report. (No), the process proceeds to step S95.
- step S92 the base station 400 selects the component carrier including the carrier frequency of the CSG cell at the time of carrier aggregation since the frequency information of the CSG cell is included in the reception quality measurement result report. And it changes to step S93.
- step S93 the base station 400 further determines whether or not the reception quality measurement result report received from the terminal 300 includes the reception quality measurement results of the neighboring macro cells of the CSG cell. If the reception quality measurement result report includes the reception quality measurement result of the neighboring macro cell of the CSG cell (Yes), the process proceeds to step S94, and the reception quality measurement result report includes the neighboring macro cell of the CSG cell. When the reception quality measurement result is not included (No), the process proceeds to step S95.
- step S94 the base station 400 preferentially selects a neighboring macro cell with good reception quality as a component carrier. And it changes to step S95.
- step S95 the base station 400 creates a message instructing the start of carrier aggregation and the set of component carriers used by the terminal 300. And it changes to step S96.
- step S96 the base station 400 transmits a message instructing the start of carrier aggregation and the set of component carriers used by the terminal 300 to the terminal 300.
- FIG. 10 is a diagram for explaining an operation example 1 of the radio communication system according to the second embodiment.
- the center carrier frequencies of the macro cell and the CSG cell are different.
- the difference from the first embodiment will be mainly described.
- the carrier frequency of the macro cell is (f1, f2, f3, f4, f5).
- the bandwidth of each carrier frequency is 20 MHz.
- the carrier frequency (f6, f7) of the CSG cell is in the same frequency band as the carrier frequency of the macro cell of frequency f3.
- the bandwidth of each carrier frequency f6, f7 is 10 MHz.
- FIG. 11 is a diagram showing an operation flow of the terminal 300 in FIG.
- step S111 the terminal 300 performs normal reception quality measurement.
- the start timing of normal reception quality measurement is set by the control information from the base station 400. For example, when the reception quality level of the currently accessed cell (serving cell) is below a threshold set by the base station 400, the terminal 100 determines that the serving cell and neighboring cells (neighbor cell, neighbor cell, neighboring cell) Measurement of reception quality (also called measurement) is started. And it changes to step S112.
- step S112 terminal 300 determines from the fingerprint information that there is a CSG cell that can access carrier frequency f6 of the CSG cell (Yes). And it changes to step S113. If there is no accessible CSG cell from the fingerprint information (No), the process proceeds to step S119, and the result of normal reception quality measurement is transmitted to the base station 400.
- step S113 the terminal 300 determines whether the center frequency of the macro cell and the center frequency of the CSG cell are the same.
- the process proceeds to step S114. To do. If the center frequencies of the macro cell and the CSG cell are the same, the process proceeds to step S120, and the frequency information of the CSG cell is added to the normal measurement result report and transmitted to the base station 400.
- the determination of the center frequency of the CSG cell and the macro cell in step S113 is performed by, for example, accessing the frequency information of the accessible CSG cell in the fingerprint information and the frequency information of the neighboring cell described in the carrier frequency information broadcast in the macro cell. There is a way to do it by reference.
- step S114 the terminal 300 performs reception quality measurement (measurement) of, for example, carrier frequencies (f2, f3, ⁇ ⁇ ⁇ ⁇ f4) among the carrier frequencies of neighboring macro cells. And it changes to step S115.
- carrier frequencies f2, f3, ⁇ ⁇ ⁇ ⁇ f4
- step S115 terminal 300 transmits the result of reception quality measurement of carrier frequencies (f2, f3, f4) to base station 400 together with information on carrier frequency f6 having an accessible CSG cell.
- step S116 the terminal 300 determines whether or not there is a carrier aggregation instruction from the base station 400. Then, when there is an instruction for carrier aggregation from the base station 400 (Yes), the process proceeds to step S117, and when there is no instruction for carrier aggregation from the base station 400 (No), the process proceeds to step S118.
- step S117 based on the carrier aggregation instruction from base station 400, terminal 300 starts carrier aggregation using the instructed component carrier.
- step S118 the terminal 300 does not perform carrier aggregation since there is no instruction for carrier aggregation from the base station 400. Therefore, terminal 300 continues communication with the currently connected macro cell unless there is an instruction from base station 400 other than carrier aggregation.
- the base station 400 receives the measurement result report (measurement report) from the terminal 300 by the measurement result report determination unit 401, and the reception quality measurement result of the carrier frequencies (f1, f2, f3, f4, f5) of the neighboring macro cells.
- the terminal 300 is instructed on which carrier frequency of the surrounding macrocell the terminal 300 performs carrier aggregation.
- the criterion for determining the carrier frequency of which neighboring macro cell the terminal 300 performs carrier aggregation is The value set by the station 400 or the upper node is used.
- the base station 400 determines that the carrier frequency f3 Considers that the CSG cell interference is strong, and outputs information on carrier frequencies (f1, f2, f4, f5) other than the carrier frequency f3 to the component carrier selection section 403.
- the range of surrounding macrocells of the CSG cell measured by the terminal 300 and components selected by the base station 400 explain the carrier set.
- terminal 300 When terminal 300 can support three consecutive frequency bands of 20 MHz each, terminal 300 measures the reception quality of the macrocell of carrier frequencies f1 to f5 and notifies the measurement result report to base station 400.
- the base station 400 receives the measurement result report from the terminal 300, the base station 400 selects a carrier frequency having a continuous 60 MHz bandwidth including the CSG cell with the best reception quality as a set of component carriers.
- the component carrier set is considered to be three patterns of component carrier sets (f1, f2, f3), (f2, f3, f4), and (f3, f4, f5).
- the carrier frequency f6 In order to measure the reception quality, the base station 400 is notified of a request for reducing the number of supported bands for carrier aggregation in the measurement result report.
- a notification method for example, a format of [number of supported terminals that can be banded by -1] is conceivable.
- the component carrier sets are considered to be four patterns of component carrier sets (f1, f2), (f2, f3), (f3, f4), and (f4, f5).
- terminal 300 When terminal 300 can support two continuous frequency bands of 20 MHz each, terminal 300 measures the reception quality of the macrocell of carrier frequencies f1 to f5 and notifies the measurement result report to base station 400.
- the base station 400 receives the measurement result report from the terminal 300, the base station 400 calculates the carrier frequency of the continuous 40 MHz bandwidth with the best reception quality within the continuous 60 MHz bandwidth range including the CSG cell. Select as a set.
- the component carrier sets are considered to be four patterns of component carrier sets (f1, f2), (f2, f3), (f3, f4), and (f4, f5).
- terminal 300 measures the reception quality of the macrocells of carrier frequencies f1 to f5 and notifies the measurement result report to base station 400.
- the base station 400 receives the measurement result report from the terminal 300, the base station 400 sets the carrier frequency of the bandwidth corresponding to 40 MHz with the best reception quality within the continuous bandwidth of 60 MHz including the CSG cell to the component carrier set. Choose as.
- component carrier sets (f1, f2), (f2, f3), (f3, f4), (f4, f5), (f1, f3) (f2, f4) ) And (f3, f5).
- the base station 400 has a macro cell of the carrier frequency f3.
- the carrier frequency f3 is not selected as the set of component carriers, assuming that the interference of the CSG cell of f6 is strong.
- the center carrier frequencies of the macro cell and the CSG cell are different, the influence of interference between the two is minimized, and carrier aggregation and detection of the CSG cell in the component carrier set having the best reception quality are possible.
- FIG. 12 is a diagram for explaining an operation example 2 of the radio communication system according to the second embodiment.
- the operation example 2 as in the operation example 1, points different from the first embodiment will be mainly described.
- the terminal 300 it is assumed that the terminal 300 can simultaneously support the 800 MHz band / 2 GHz band.
- FIG. 12 there are macrocells having a carrier frequency (f1, f2) in the 800 MHz band and a carrier frequency (f3, f4) in the 2 GHz band.
- the terminal 300 finds a CSG cell in a different frequency band 2 (for example, 2 GHz band) based on the fingerprint information while moving (arrow in FIG. 12) while accessing a certain frequency band 1 (for example, 800 MHz band). An example will be described. Also, in FIG. 12, it is assumed that there is a CSG cell in which terminal 300 can access the same carrier frequency as carrier frequency f3.
- FIG. 13 is a diagram showing an operation flow of the terminal 300 in FIG.
- step S131 the terminal 300 performs normal reception quality measurement.
- the start timing of normal reception quality measurement is set by the control information from the base station 400. For example, when the reception quality level of a currently accessed cell (serving cell) is lower than a threshold set by the base station 400, the terminal 300 may serve as a serving cell and a neighboring cell (neighbor cell, neighbor cell, neighboring cell). Measurement of reception quality (also called measurement) is started. And it changes to step S132.
- the terminal 300 is moving to the cell B (cell B) of the same f1 while accessing the cell A (cell A) of the carrier frequency f1.
- terminal 300 can receive the signal of cell B.
- step S132 the terminal 300 determines from the fingerprint information that there is a CSG cell that can access a different carrier frequency f3 in the same location area (Yes). And it changes to step S133. If there is no CSG cell that can access the carrier frequency f3 of the CSG cell from the fingerprint information (No), the process proceeds to step S140, and a normal reception quality measurement result is transmitted to the base station 400.
- step S133 the terminal 300 determines that the CSG cell having the carrier frequency f3 exists in a frequency band (for example, 2 GHz) different from the currently accessed frequency band (for example, 800 MHz), and proceeds to step S134. If the frequency band is not in a frequency band different from the currently accessed frequency band (No), the process proceeds to step S141, and the frequency information of the CSG cell is added to the normal measurement result report and transmitted to the base station 400.
- a frequency band for example, 2 GHz
- the currently accessed frequency band for example, 800 MHz
- step S134 the terminal 300 determines whether simultaneous support of 800 MHz band / 2 GHz band is possible. Since the terminal 300 can simultaneously support the 800 MHz band / 2 GHz band, the process proceeds to step S135.
- step S142 terminal 300 notifies base station 400 that there is an accessible CSG cell, and requests measurementmeasuregap for measuring the reception quality in the 2 GHz band.
- Terminal 300 receives a measurement gap instruction for measuring the reception quality in the 2 GHz band from base station 400, stops communication at carrier frequency f1 during the measurementmeasuregap period, and receives reception quality of other carrier frequencies. Measure.
- the terminal is in discontinuous reception mode (Discontinuous Reception: DRX)
- DRX discontinuous Reception
- step S135 terminal 300 performs reception quality measurement (measurement) of a neighboring cell including carrier frequency f3 having an accessible CSG cell (that is, f3, f4 in FIG. 12). And it changes to step S136.
- the terminal 300 includes the frequency information of the CSG cell and the reception quality measurement result of (f3, f4) of the neighboring cell in the measurement result report (measurement report), and transmits the result to the base station 400.
- the base station 400 receives the measurement result report from the terminal 300, and selects component carrier sets in the order of good measurement results, including the carrier frequency with the CSG cell accessible by the terminal 300.
- the terminal 300 may report the reception quality measurement result report to the base station including the reception quality measurement results of both the 800 MHz band (f1, f2) and the 2 GHz band (f3, f4).
- the base station 400 receives the measurement result report from the terminal 300, and if the terminal 300 can support the 800 MHz band / 2 GHz band simultaneously, the base station 400 selects a carrier frequency (f3) with a CSG cell accessible by the terminal 300. Including the component carrier sets in the order of good measurement results.
- the base station 400 can select either the reception quality of the 800 MHz band (f1, f2) or the reception quality of the 2 GHz band (f3, ⁇ ⁇ ⁇ f4).
- the component carrier set is selected with the better carrier frequency.
- the measurement result is weighted on the terminal 300 side or the base station 400 side so that a certain frequency band (here, f3, f4) of the CSG cell is preferentially selected over the 800 MHz band (f1, f2). Also good.
- step S137 the terminal 300 determines whether or not there is a carrier aggregation instruction from the base station 400. In step S137, if there is a carrier aggregation instruction from the base station 400 (Yes), the process proceeds to step S138. If there is no carrier aggregation instruction from the base station 400 (No), the process proceeds to step S139.
- step S138 the terminal 300 starts carrier aggregation using the instructed component carrier based on the carrier aggregation instruction from the base station 400.
- step S139 the terminal 300 does not perform carrier aggregation because there is no instruction for carrier aggregation from the base station 400. Therefore, terminal 300 continues communication with the currently connected macro cell unless there is an instruction other than carrier aggregation from the base station.
- the terminal 300 notifies itself of the reception quality measurement result of the peripheral carrier together with the carrier frequency of the CSG cell accessible by the terminal 300, so that the terminal 300 While performing carrier aggregation using a component carrier set appropriate for a device, it is possible to detect a CSG cell accessible by the device itself.
- the signaling for sending the frequency information of the CSG cell and the signaling for sending the reception quality measurement result report of the neighboring cell of the carrier frequency with the CSG cell may be different signaling.
- the terminal 300 measures the reception quality of the neighboring cells of the carrier frequency with the CSG cell, and further reports the measurement result report to the base station 400. May be notified.
- terminal 300 measures the reception quality of the neighboring macro cell at the carrier frequency of the accessible CSG cell and reports the measurement result to base station 400. May be notified.
- operation example 1 and operation example 2 are not necessarily independent, and operations and operations combining operation example 1 and operation example 2 are also conceivable.
- the terminal 300 when the center frequencies of the CSG cell and the macro cell are further different, the terminal 300 performs an operation combining the operation flows of FIG. 11 and FIG.
- Embodiment 3 In the radio communication system according to Embodiment 3, when the carrier frequency of an accessible CSG cell is an extension carrier that is not operated independently as one cell, terminal 500 cannot synchronize alone. Since reception quality measurement is not possible, it is possible to measure reception quality by detecting a component carrier that is a pair of extension carriers using a neighbor cell list, while performing carrier aggregation with a component carrier set optimal for the terminal 500, Allows detection of CSG cells.
- the 3GPP defines three types of component carriers used in LTE-A carrier aggregation.
- the first component carrier type is a backward compatible carrier (also called Backward compatible carrier or BCC) that is compatible with legacy terminals and is operated independently as one cell.
- the second component carrier type is a non-backward compatible carrier (also referred to as NBCC) that is not compatible with legacy terminals and is operated independently as one cell.
- the third component carrier type is not operated independently as a single cell, but is always operated in pairs with a backward-compatible carrier or a non-backward-compatible carrier. ).
- the extension carrier Since the extension carrier is not operated as one cell, it does not transmit a signal for the terminal 500 to synchronize or broadcast information necessary for the terminal 500 to access the cell or establish a connection with the base station 600. Is assumed. Therefore, when the extension carrier is used for carrier aggregation, terminal 500 estimates the center frequency of the extension carrier by being instructed by base station 600 as a pair with an adjacent backward compatible carrier or non-backward compatible carrier. And it becomes possible to access the extension carrier.
- FIG. 14 (b) shows a conceptual diagram of the component carrier in the present embodiment.
- the component carriers having carrier frequencies f1 to f5 are adjacent on the frequency axis, and the frequency increases from the carrier frequency f1 to f5.
- carrier frequencies f1 and f5 are backward compatible carriers.
- the carrier frequency f3 is a non-backward compatible carrier.
- Carrier frequencies f2 and f4 are extensions. It is assumed that there is a CSG cell accessible by terminal 500 on the carrier frequency of f2.
- the extension carrier of the carrier frequency f2 is operated in a pair with the backward compatible carrier of the carrier frequency f1 or the non-backward compatible carrier of the carrier frequency f3 adjacent at the time of carrier aggregation.
- the extension carrier of the carrier frequency f4 is operated in pairs with a non-backward compatible carrier of the carrier frequency f3 or a non-backward compatible carrier of the carrier frequency f5 at the time of carrier aggregation.
- FIG. 15 is a diagram illustrating an operation flow of the terminal 500.
- the configuration of terminal 500 is the same as that of terminal 100 shown in FIG. 1, and detailed description thereof is omitted.
- base station 600 in the present embodiment has the same configuration as base station 200 shown in FIG. 2, and a detailed description thereof will be omitted.
- the operation flow of the terminal 500 in FIG. 15 is an example of the conceptual diagram in FIG. 14, and the extension carrier of f2 is assumed to be operated in a pair with the backward compatible carrier of the carrier frequency f1.
- step S151 the terminal 500 performs normal reception quality measurement.
- the start timing of normal reception quality measurement is set by control information from the base station 600. For example, when the reception quality level of a currently accessed cell (serving cell) is lower than a threshold set by the base station 600, the terminal 500 may serve as a serving cell and a neighboring cell (neighbor cell, neighbor cell, neighboring cell). Measurement of reception quality (also called measurement) is started. And it changes to step S152.
- step S152 the terminal 500 determines whether there is an accessible CSG cell from the fingerprint information.
- terminal 500 since there is a CSG cell accessible by terminal 500 on the carrier frequency of f2, terminal 500 determines that there is a CSG cell accessible by f2. And it changes to step S153.
- step S152 when there is no CSG cell accessible by terminal 500 in carrier frequency f2 of the CSG cell (No), the process proceeds to step S160, and the result of normal reception quality measurement is transmitted to base station 600. To do.
- step S153 terminal 500 determines whether or not a carrier frequency f2 having a CSG cell is an extension carrier.
- the component carrier of the macro cell corresponding to the carrier frequency of f2 is the extension carrier, it is determined that the carrier frequency f2 in which the CSG cell is present is the extension carrier. And it changes to step S154.
- step S154 the terminal 500 detects the component carrier f1 that is paired with the extension carrier f2.
- a method of detecting f1 paired with extension carrier f2 it is conceivable to use a neighbor cell list broadcast in the currently accessed macro cell. That is, a macro cell having a carrier frequency closest to the carrier frequency determined to have an accessible CSG cell is determined as a component carrier that is a pair of the corresponding extension carrier. Then, the process proceeds to step S155.
- step S155 the terminal 500 performs reception quality measurement (measurement) on the extension carrier f2 and the pair f1. And it changes to step S156.
- step S156 the terminal 500 notifies the base station 600 of a measurement result report (measurement report) including the reception quality measurement results of the extension carrier f2 and the pair f1. And it changes to step S157.
- step S157 terminal 500 determines whether or not there is an instruction for carrier aggregation from base station 600. Then, when there is a carrier aggregation instruction from the base station 600 (Yes), the process proceeds to step S158, and when there is no carrier aggregation instruction from the base station 600 (No), the process proceeds to step S159.
- step S158 terminal 500 starts carrier aggregation using the instructed component carrier based on the carrier aggregation instruction from base station 600.
- step S159 terminal 500 does not perform carrier aggregation since there is no instruction for carrier aggregation from base station 600. Therefore, terminal 500 continues communication with the currently connected macro cell unless otherwise instructed from base station 600 other than carrier aggregation.
- step S153 when the terminal 500 determines that the carrier frequency f2 with the CSG cell is not an extension carrier, the terminal 500 transits to step S161. Then, in step S161, terminal 500 performs measurement of neighboring cells in a frequency band with a CSG cell. Then, the process proceeds to step S156, and a measurement result report is transmitted to the base station 600, including measurements of neighboring cells in a certain frequency band of the CSG cell.
- terminal 500 uses the neighbor cell list to detect a component carrier that is a pair of extension carriers. As a result, reception quality can be measured, and CSG cells can be detected while performing carrier aggregation using a component carrier set that is optimal for the terminal 500.
- a certain carrier frequency of the CSG cell is an extension carrier
- the backward compatible carrier or the non-backward compatible carrier that is a pair of the corresponding extension carrier and the peripheral carrier carrier The reception quality may be measured and notified to the base station.
- a method for detecting a component carrier that is a pair of extension carriers information on the types and pairs of all component carriers described in the neighboring cell list may be used. It is also conceivable that the extension carrier is not described in the adjacent cell list, and the extension carrier is always defined as a pair with a neighboring high frequency (or low frequency) component carrier. In the present embodiment, it is also conceivable to use carrier frequency information transmitted by broadcast information in addition to the neighboring cell list.
- An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna or the like composed of a plurality of antennas. For example, in LTE, it is not defined how many physical antennas an antenna port is composed of, but is defined as a minimum unit in which a base station can transmit different Reference signals. The antenna port may be defined as a minimum unit for multiplying the weight of Precoding vector.
- each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
- the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
- circuit integration is not limited to LSI, and implementation using dedicated circuitry or general purpose processors is also possible.
- An FPGA Field Programmable Gate Array
- reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- the wireless transmission / reception apparatus and the wireless communication system according to the present invention have an effect of enabling carrier aggregation by a component carrier set suitable for the wireless transmission / reception apparatus, and are useful as wireless transmission / reception.
- Terminal device terminal 101
- 301 Reception quality measurement unit 103 CSG cell information storage unit 105
- 305 CSG cell determination unit 107 307 Measurement report creation unit 109
- 309 Reception unit 111 311 Transmission unit 113, 313 Transmission / reception antenna 200, 400, 600 Base Station equipment (base station) 201, 401 Measurement result report determination unit 203, 403 Component carrier selection unit 205, 405
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線送受信装置にとって適切なコンポーネントキャリアセットによるキャリアアグリゲーションを可能とし、無線送受信がアクセス可能なCSGセルを検出可能とすること。本発明の無線送受信装置は、参照信号と制御情報を受信する受信部と、前記受信部により受信した前記参照信号を測定する測定部と、前記測定部の測定結果に基づいて、測定結果報告を作成する測定結果報告作成部と、アクセス可能な小セルを示すリスト及び前記アクセス可能な小セルの中で以前にアクセスした小セルの識別情報を記憶する記憶部と、前記測定部の測定結果と、前記記憶部に記憶された前記小セルの識別情報とから、前記以前にアクセスした小セルが自装置の検出可能範囲に存在するか否かを判定する小セル判定部と、前記測定結果報告作成部により作成された前記測定結果報告を送信する送信部と、を具備する。
Description
本発明は、無線通信の技術分野に関し、特に、無線通信基地局装置、無線通信端末装置、無線送信方法及び無線受信方法に関する。
標準化団体3GPP(The 3rd Generation Partnership Project)は、W-CDMA(Wideband Code Division Multiple Access)方式の次世代の通信規格として、LTE(Long Term Evolution)の標準化を進めている。
LTEでは、1つの無線通信基地局装置(Evolved NodeB:eNB、以下基地局ともいう)が複数のセルを管理しており、無線通信端末装置(User Equipment:UE)は、基地局が管理する複数のセルうち、1つのセルに属する。
端末の状態(UE state)として、基地局との個別コネクションを持っていない状態をアイドル状態(idle mode、アイドルモード、RRC_IDLEともいう)といい、基地局との個別コネクションを持っている状態をコネクテッド状態(connected mode、コネクテッドモード、RRC_CONNECTEDともいう)という。
端末は、アイドル状態の時、基地局と個別データの送受信を行うことができず、着信やセル内の全端末共通の報知情報などを受信するのみとなる。端末と基地局との間で個別データの送受信を行う場合、端末は、コネクションセットアップの手続きを行う。端末と基地局との間に専用の無線ベアラ(Radio bearer、レディオベアラ)を張ることで、端末の状態が、アイドル状態からコネクテッド状態へと遷移する。
通常、コネクテッド状態の端末は、アクセスしている基地局(serving cell、サービングセルともいう)及び隣接セル(neighbor cell、ネイバーセルともいう)の受信品質測定に関する設定(measurement control, メジャメントコントロール)に従い、アクセスしている基地局及び隣接セルのパイロットチャネル(Common Pilot Channel:CPICH)によって受信品質を測定する。そして、端末は、その受信品質測定結果を定期的に、または、設定されたイベント毎に、アクセスしている基地局に報告する。端末がアクセスしている基地局(source eNBともいう)は、その測定結果報告(measurement report, メジャメントレポート)を基にして、端末のハンドオーバ先の他の基地局(Target eNBともいう)を決定する。
また、LTEでは、主に屋外に設置される、セル半径の大きなマクロセル基地局装置(macro eNB)に加えて、家庭やオフィス、レストランやショッピングセンターなどの屋内施設に、フェムトセル(Femto Cell、小セル、Pico Cell、ピコセルともいう)と呼ばれる、数十メートル程度のセル半径の小セル基地局装置(フェムト基地局、小型基地局、ホーム基地局、Home Evoled NodeB:HeNBともいう)の設置が検討されている。3GPPで検討されている小セル基地局装置は、限られたグループメンバにだけアクセスを許可することが検討されている。このようなフェムトセルは、限定加入者グループ(Closed Subscriber Group:CSG)セルと呼ばれる。
以下、図16を参照して、LTEにおける、マクロセルとCSGセルとのセル配置例について説明する。図16は、マクロセルとCSGセルとのセル配置例を示す図である。図16に示すように、マクロセル基地局装置(macro eNB)20は、3つの異なる周波数帯(f1、f2、f3)を管理する。ホーム基地局(HeNB)40は、周波数f3上に位置する。
端末60が、マクロセル基地局装置20にアクセスしながら、measurementによりCSGセルAの信号を検出した時、CSGセルAが端末60にとってアクセスが許可されたCSGセルであれば、マクロセル基地局装置20は、端末60に対してホーム基地局40に接続するようハンドオーバの制御を行う。端末60は、アクセスを許可されているCSGセルのリスト(allowed CSG listともいう)を保持している。端末がアクセス可能なCSGセルは、端末ごとに異なる。
以下、図17を参照して、LTEにおける、マクロセル基地局装置(macro eNB)20からホーム基地局(HeNB)40への端末(UE)60のハンドオーバ制御方法について説明する。図17は、LTEにおける、マクロセル基地局装置20からホーム基地局40への端末60のハンドオーバ制御方法を示す図である。なお、図17において、端末(UE)60は、マクロセル基地局装置(macro eNB)20にアクセスして通信を行っているものとする。
端末(UE)60が、CSGセルの境界付近に移動すると、CSGセルの受信品質測定を行う。その際に、端末(UE)60は、同期チャネル(Synchronization Channel:SCH)の受信によってCSGセルの物理セルID(Physical Cell Identify: PCI)を取得する。
そして、端末(UE)60は、受信品質測定を行ったCSGセルのPCI(図17中、”PCI #2”)及び受信品質測定結果報告(measurement report)(図17中、”MR(PCI #2)”)を、マクロセル基地局装置(macro eNB)20へ通知する(図17中、S0)。
ここで、マクロセル基地局装置(macro eNB)20は、マクロセル内に含まれるCSGセルのリストを保持しているものとする。CSGセルのリストには、各ホームeNBのPCI及び、セルグローバルID(Cell Global Identify: CGI)が含まれる。
端末(UE)60から通知されたCSGセルの受信品質測定結果を受信したマクロセル基地局装置(macro eNB)20は、マクロセル内に含まれるCSGセルのリストから、対応するPCIを持つホーム基地局(HeNB)を判別する。
そして、マクロセル基地局装置(macro eNB)20は、移動管理エンティティ(Mobility Management Entity:MME)/ゲートウェイ(GateWay:GW)を介して、ホーム基地局(HeNB)40に対して、端末(UE)60がハンドオーバしても良いかどうかの問い合わせ(HOリクエスト、HO requestともいう)を送信する(図17中、S1からS3)。
HOリクエストを受信したホーム基地局(HeNB)40は、端末(UE)60のハンドオーバを許容する場合、端末(UE)60に提供しているサービスに見合った無線リソースを予め確保し、受け入れ制御を行う。そして、ホーム基地局(HeNB)40は、受け入れ制御とともに、マクロセル基地局装置(macro eNB)20に対して端末(UE)60のハンドオーバを許可する応答(HOリクエストに対するAck、HO request Ack)を、MME/GWを介して送信する(図17中、S4及びS5)。
マクロセル基地局装置(macro eNB)20は、ホーム基地局(HeNB)40からのHOリクエストに対するAckを受信すると、端末(UE)60に対してCSGセルに移動するように指示(HOコマンド、HO command)を送信する(図17中、S6)。
そして、端末(UE)60は、マクロセル基地局装置(macro eNB)20指示されたホーム基地局(HeNB)40との同期を確立するために、ランダムアクセスプリアンブル(RACH preamble)を、ホーム基地局(HeNB)40へ送信する(図17中、S7)。
端末(UE)60がホーム基地局(HeNB)40からの応答(ランダムアクセスレスポンス:RACH response)を受信すると(図17中、S8)、端末(UE)60は、ホーム基地局(HeNB)40との同期を確立し、上り方向送信リソースをホームeNBから割り当てられる。
そして、ホーム基地局(HeNB)40との同期が確率すると、端末(UE)60は、ハンドオーバの完了を示す信号(HOコンファーム)をホーム基地局(HeNB)40に対して送信する(図17中、S9)。
3GPP TSG RAN WG2 #66bis Tdoc-R2-093969, "HeNB inbound handover for Rel-9 UE", NTT DOCOMO, INC.
標準化団体3GPPは、LTEと互換性のある次世代の無線通信規格として、LTE-Advanced(Long Term Evolution Advanced, 以下、LTE-Aともいう)の標準化を進めている。LTE-Aシステムは、LTEから進化した次世代移動通信システムであり、より向上した移動通信サービスの提供を目標とする。
LTE-Aでは、端末が1つの基地局の管理する複数のキャリア周波数を同時に使用するキャリアアグリゲーション(Carrier Aggregation, Band Aggregationともいう)の導入が考えられている。
以下、図18を参照し、端末(UE)が、キャリアアグリゲーションで使用するコンポーネントキャリアのセット例について説明する。図18は、端末がキャリアアグリゲーションで使用するコンポーネントキャリアのセット例を示す図である。
図18に示す例では、端末は、各20MHzの連続する3つのダウンリンクコンポーネントキャリア(キャリアA、キャリアB、キャリアC)、2つのアップリンクコンポーネントキャリア(キャリアa、キャリアb)を用いて、キャリアアグリゲーションを行っている。例えば、ダウンリンクのキャリアA、キャリアBはアップリンクのキャリアaと対で、ダウンリンクのキャリアCはアップリンクのキャリアbと対で使用される。このように、複数のコンポーネントキャリアを使用することにより、端末と基地局間の通信のスループット向上が期待されている。
端末は、電源投入後、着信を受けるために、位置情報や端末の機能(UE capability)などの端末情報をネットワークに通知する(アタッチ、登録)。この時、端末がネットワークに送るUE capabilityとして、サポート可能な帯域幅、不連続な複数の帯域をサポート可能かどうか、などの情報が含まれる。キャリアアグリゲーションの指示は、基地局主導で行われる。基地局は、端末のサポート可能な帯域幅やコンポーネントキャリアの数などのUE capabilityを基に、キャリアアグリゲーションに用いるコンポーネントキャリアのセットを選択し、端末に指示する。
キャリアアグリゲーション開始の指示及びコンポーネントキャリアセットの指示は、基地局と端末との間の個別シグナリングによって通知される。通知のタイミングとしては、例えば、端末のコネクションセットアップ時にRRC(Radio Resource Control、無線リソース制御プロトコル)コネクションの設定を通知するために基地局から端末に送られるメッセージ(RRC connection reconfiguration)と共に、キャリアアグリゲーション開始の指示及びコンポーネントキャリアセットの指示が通知されることが考えられる。また、ハンドオーバ時にソース基地局から端末にハンドオーバを指示するために送られるメッセージ(HO command)と共に通知されて良い。さらに、また、任意のタイミングで基地局から端末への個別シグナリングによって通知されても良い。
しかしながら、基地局は、一方的に使用するコンポーネントキャリアを選択して端末に指示するため、端末にとって優先的にアクセスしたいマクロセルのキャリア周波数帯があっても、基地局が、そのキャリアを選択しない可能性がある。
本発明は、無線送受信装置にとって適切なコンポーネントキャリアセットによるキャリアアグリゲーションを可能とする無線送受信装置及び無線通信システムを提供することを目的とする。
本発明の一実施形態として、参照信号と制御情報を受信する受信部と、前記受信部により受信した前記参照信号を測定する測定部と、前記測定部の測定結果に基づいて、測定結果報告を作成する測定結果報告作成部と、アクセス可能な小セルを示すリスト及び前記アクセス可能な小セルの中で以前にアクセスした小セルの識別情報を記憶する記憶部と、前記測定部の測定結果と、前記記憶部に記憶された前記小セルの識別情報とから、前記以前にアクセスした小セルが自装置の検出可能範囲に存在するか否かを判定する小セル判定部と、前記測定結果報告作成部により作成された前記測定結果報告を送信する送信部と、を具備する無線送受信装置を提供する。
上記無線送受信装置では、前記測定結果報告作成部は、前記小セル判定部の判定に基づき、前記以前にアクセスした小セルの位置するキャリア周波数情報を含めた前記測定結果報告を作成する。
上記無線送受信装置では、前記測定部は、前記小セル判定部の判定に基づき、前記以前にアクセスした小セルが自装置の検出可能範囲に存在する場合に、小セルの位置するキャリア周波数帯の周辺キャリア周波数の測定を行い、前記測定結果報告作成部は、前記小セルの位置するキャリア周波数帯の周辺キャリア周波数の測定結果を含めた測定結果報告を作成する。
上記無線送受信装置では、前記小セル判定部は、小セルとマクロセルの中心周波数が異なると判定する場合に、前記測定部に、前記小セルの周辺キャリア周波数帯の周辺キャリア周波数上の、セルの受信品質測定を行うことを指示する。
上記無線送受信装置では、前記小セル判定部は、小セルの存在する周波数帯域にマクロセルがないと判定する場合に、当該周波数帯域のコンポーネントキャリア及び、対となるコンポーネントキャリアの有無を判定し、前記測定部に受信品質測定を行うことを指示する。
また、本発明の一実施形態として、外部装置が以前にアクセスした小セルの位置するキャリア周波数情報を含み、参照信号を測定することで得られる測定結果報告を受信する受信部と、前記受信部により受信した前記測定結果報告を判定する測定結果報告判定部と、前記測定結果報告に含まれる情報に基づいて、前記外部装置がキャリアアグリゲーションで使用するコンポーネントキャリアのセットを選択するコンポーネントキャリア選択部と、前記コンポーネントキャリア選択部によって選択されたキャリアの使用を前記外部装置へ指示するための制御メッセージを作成する制御メッセージ作成部と、前記制御メッセージ作成部により作成された制御メッセージを前記外部装置へ送信する送信部と、を具備する無線送受信装置を提供する。
上記無線送受信装置では、前記コンポーネントキャリア選択部は、前記測定結果報告に含まれる情報に基づいて、小セルのあるキャリア周波数を含むコンポーネントキャリアを優先的に選択する。
上記無線送受信装置では、前記コンポーネントキャリア選択部は、前記測定結果報告に含まれる情報に基づいて、受信品質の高いコンポーネントキャリアを優先的に選択する。
また、本発明の一実施形態として、上記無線送受信装置を具備する端末装置を提供する。
また、本発明の一実施形態として、上記無線送受信装置を具備する基地局装置を提供する。
また、本発明の一実施形態として、上記端末装置と上記基地局装置からなる無線通信システムを提供する。
本発明によれば、無線送受信装置にとって適切なコンポーネントキャリアセットによるキャリアアグリゲーションを可能とする無線送受信装置及び無線通信システムを提供することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。ただし、実施の形態において、同一機能を有する構成には、同一符号を付し、重複する説明は省略する。
(実施の形態1)
キャリアアグリゲーションにおいて、基地局は端末の機能(UE capability)をもとに、端末のサポート可能な範囲でのコンポーネントキャリアセットをそれぞれ割り当てる。しかし、基地局は一方的に使用するコンポーネントキャリアを選択して端末に指示するため、端末にとってアクセス可能なCSGセルがあるために、CSGセル検出のため優先的にアクセスしたいマクロセルのキャリア周波数帯があっても、そのキャリアを選択してもらえない可能性がある。その場合、CSGセルのあるキャリア周波数帯にいないためにCSGセルのPCI検出ができず、端末にとってアクセス可能なCSGセルを検出できなくなってしまう。
キャリアアグリゲーションにおいて、基地局は端末の機能(UE capability)をもとに、端末のサポート可能な範囲でのコンポーネントキャリアセットをそれぞれ割り当てる。しかし、基地局は一方的に使用するコンポーネントキャリアを選択して端末に指示するため、端末にとってアクセス可能なCSGセルがあるために、CSGセル検出のため優先的にアクセスしたいマクロセルのキャリア周波数帯があっても、そのキャリアを選択してもらえない可能性がある。その場合、CSGセルのあるキャリア周波数帯にいないためにCSGセルのPCI検出ができず、端末にとってアクセス可能なCSGセルを検出できなくなってしまう。
実施の形態1に係る無線通信システムでは、端末装置100(以下、端末100という)にとってアクセス可能なCSGセルがあるキャリア周波数帯を優先的に選択するようネットワークに通知することによって、キャリアアグリゲーション時に該当CSGセルのあるキャリア周波数帯がコンポーネントキャリアのセットに含まれる。すなわち、端末100は、キャリアアグリゲーション中にもCSGセルのPCIの検出が可能になり、該当CSGセルへのアクセスが可能になる。
<端末装置100の構成>
以下、図1を参照し、実施の形態1に係る無線通信システムにおける端末100の構成について、説明する。図1は、端末100の構成を示すブロック図である。図1に示す端末100は、受信品質測定部101と、CSGセル情報記憶部103と、CSGセル判定部105と、測定報告作成部107と、受信部109と、送信部111と、送受信アンテナ113とを備える。
以下、図1を参照し、実施の形態1に係る無線通信システムにおける端末100の構成について、説明する。図1は、端末100の構成を示すブロック図である。図1に示す端末100は、受信品質測定部101と、CSGセル情報記憶部103と、CSGセル判定部105と、測定報告作成部107と、受信部109と、送信部111と、送受信アンテナ113とを備える。
受信品質測定部101は、自装置がキャンプ(camp)しているセル及び周辺セルの受信品質の測定(measurement、メジャメント)を行う。そして、受信品質測定部101は、その受信品質の測定結果を、測定報告作成部107及びCSGセル判定部105に出力する。
なお、受信品質の測定のための設定は、基地局装置200から送信され、受信部109から受信品質測定部101に入力される。
なお、受信品質の測定のための設定は、基地局装置200から送信され、受信部109から受信品質測定部101に入力される。
CSGセル情報記憶部103は、自装置がアクセス可能なCSGセルのリスト(allowed CSG list, whitelist、ホワイトリストともいう)と、以前にアクセスしたCSGセルの履歴情報(fingerprint情報、フィンガープリント情報、proximity informationともいう、以下fingerprint情報とする)とを記憶する。CSGセル情報記憶部103は、自装置がアクセス可能なCSGセルのリストとfingerprint情報とを、必要に応じてCSGセル判定部105に出力する。
ここで、自装置がアクセス可能なCSGセルのリストには、CSGセルのPCI、グローバルなセルID(Cell Global Identity, 以下CGIともいう)、CSGセルのグループID(Closed Subscriber Group Identity, 以下CSG IDともいう)などが含まれる。また、fingerprint情報には、以前にアクセスしたCSGセルのPCI、CGI、CSG ID、キャリア周波数情報、GPSなどによる位置情報などが含まれる。
CSGセル判定部105は、受信品質測定部101から入力された受信品質の測定結果と、CSGセル情報記憶部103から出力される情報のうち、fingerprint情報とを参照して、自装置のアクセス可能なCSGセルが付近に位置するかどうかを判定する。
また、CSGセル判定部105は、例えば、測定を行ったセルのキャリア周波数が、fingerprint情報に含まれるCSGセルのキャリア周波数と同帯域である場合に、そのCSGセルが、自装置の付近に位置すると判定する。そして、CSGセル判定部105は、判定結果を測定報告作成部107に出力する。
測定報告作成部107は、受信品質測定部101から入力された受信品質の測定結果に基づいて、基地局装置200に送信する測定結果報告(measurement report、メジャメントレポート)を作成して、作成した測定結果報告(measurement report)を送信部111に出力する。
測定報告作成部107は、作成した測定結果報告(measurement report)を送信部111に出力する時、CSGセル判定部105から、アクセス可能なCSGセルが自装置の付近に位置するという判定結果の入力があれば、その判定結果を、作成した測定結果報告(measurement report)に含める。例えば、測定報告作成部107は、アクセス可能なCSGセルのキャリア周波数を、測定結果報告(measurement report)に含める。
受信部109は、基地局装置200からのデータ、受信品質測定のための制御情報(measurement control、メジャメントコントロール)、実際に測定する参照信号(reference symbol、reference signal)などを、送受信アンテナ113を介して受信する。
送信部111は、自装置からのデータ、測定結果報告(measurement report)などを、送受信アンテナ113を介して送信する。
<基地局装置200の構成>
以下、図2を参照し、実施の形態1に係る無線通信システムにおける基地局装置200(以下、基地局200という)の構成について、説明する。図2は、基地局200の構成を示すブロック図である。図2に示す基地局200は、測定結果報告判定部201と、コンポーネントキャリア選択部203と、制御メッセージ作成部205と、受信部207と、送信部209と、送受信アンテナ211と、を備える。
以下、図2を参照し、実施の形態1に係る無線通信システムにおける基地局装置200(以下、基地局200という)の構成について、説明する。図2は、基地局200の構成を示すブロック図である。図2に示す基地局200は、測定結果報告判定部201と、コンポーネントキャリア選択部203と、制御メッセージ作成部205と、受信部207と、送信部209と、送受信アンテナ211と、を備える。
測定結果報告判定部201は、端末100から送信された測定結果報告(measurement report)を参照する。そして、測定結果報告判定部201は、「端末100がアクセス可能なCSGセルのキャリア周波数」が測定結果報告(measurement report)に含まれていたら、「端末100がアクセス可能なCSGセルのキャリア周波数」の情報をコンポーネントキャリア選択部203に出力する。
コンポーネントキャリア選択部203は、端末100にキャリアアグリゲーションを指示する際に、測定結果報告判定部201から入力された「端末100がアクセス可能なCSGセルのキャリア周波数」を含む、「マクロセルのキャリア周波数のコンポーネントキャリア」を選択する。そして、コンポーネントキャリア選択部203は、選択した「マクロセルのキャリア周波数のコンポーネントキャリア」を、制御メッセージ作成部205に出力する。
制御メッセージ作成部205は、端末100にキャリアアグリゲーションを指示する制御メッセージを作成する。制御メッセージ作成部205は、コンポーネントキャリア選択部203から入力された「マクロセルのキャリア周波数のコンポーネントキャリア」を、作成する制御メッセージに含める。そして、制御メッセージ作成部205は、作成した制御メッセージを送信部209に出力する。
受信部207は、端末100からのデータ、測定結果報告(measurement report)などを、送受信アンテナ211を介して送信する。
送信部209は、自装置からのデータ、受信品質測定のための制御情報、実際に測定する参照信号などを、送受信アンテナ211を介して、端末100へ送信する。
<端末100の動作>
以下、図3を参照して、端末100の動作フローについて説明する。図3は、端末100の動作フローを示す図である。
以下、図3を参照して、端末100の動作フローについて説明する。図3は、端末100の動作フローを示す図である。
ステップS30で、端末100は、通常の受信品質測定(measurement)を行う(S30)。ここで、通常の受信品質測定(measurement)の開始のタイミングは、基地局200からの制御情報によって設定されている。例えば、現在アクセスしているセル(serving cell、サービングセル)の受信品質レベルが、基地局200から設定された閾値を下回った時に、端末100は、サービングセル及び周辺セル(neighbor cell、ネイバーセル、隣接セルともいう)の受信品質測定(measurement)を開始する。そして、ステップS31へ遷移する。
ステップS31で、端末100は、fingerprint情報に基づき、自装置のアクセス可能なCSGセルが自装置の周辺に位置するか否かを、判定する。そして、自装置のアクセス可能なCSGセルが自装置の周辺に位置すると判定すると(Yes)、ステップS32へ遷移し、自装置のアクセス可能なCSGセルが自装置の周辺に位置しないと判定すると(No)、ステップS33へ遷移する。
ステップS32で、端末100は、サービングセル及び周辺セルの受信品質測定結果報告(measurement report)の中に、CSGセルのキャリア周波数情報を含めて、基地局200に送信する。そして、ステップS34へ遷移する。
ステップS33で、端末100は、通常の測定結果報告を基地局200に送信する。
ステップS34で、端末100は、基地局200からキャリアアグリゲーションの指示があるか否かを、判定する。そして、ステップS34で、基地局200からキャリアアグリゲーションの指示がある場合(Yes)、ステップS35へ遷移し、基地局200からキャリアアグリゲーションの指示がない場合(No)、ステップS36へ遷移する。
ステップS35で、端末100は、基地局200からのキャリアアグリゲーションの指示に基づき、指示されたコンポーネントキャリアを用いて、キャリアアグリゲーションを開始する。
ステップS36で、端末100は、基地局200からキャリアアグリゲーションの指示がないので、キャリアアグリゲーションを行わない。そこで、端末100は、基地局200からキャリアアグリゲーション以外の指示が特にない限り、現在接続しているマクロセルとの通信を継続する。
<基地局200の動作>
以下、図4を参照して、基地局200の動作フローについて、説明する。図4は、基地局200の動作フローを示す図である。
以下、図4を参照して、基地局200の動作フローについて、説明する。図4は、基地局200の動作フローを示す図である。
ステップS40で、基地局200は、端末100からの受信品質測定結果報告を受信する。そして、ステップS41へ遷移する。
ステップS41で、基地局200は、端末100から受信した受信品質測定結果報告の中にCSGセルの周波数情報が含まれているかどうかを判定する。そして、受信品質測定結果報告の中にCSGセルの周波数情報が含まれている場合(Yes)、ステップS42へ遷移し、受信品質測定結果報告の中にCSGセルの周波数情報が含まれていない場合(No)、ステップS44へ遷移する。
ステップS42で、基地局200は、受信品質測定結果報告の中にCSGセルの周波数情報が含まれているので、キャリアアグリゲーション時にCSGセルのキャリア周波数を含んだコンポーネントキャリアを選択する。そして、ステップS43へ遷移する。
ステップS43で、基地局200は、キャリアアグリゲーションの開始及び端末100が使用するコンポーネントキャリアのセットを指示するメッセージを作成する。そして、ステップS45へ遷移する。
ステップS44で、基地局200は、受信品質測定結果報告の中にCSGセルの周波数情報が含まれていないので、通常通りのキャリアアグリゲーションの開始及び端末100が使用するコンポーネントキャリアのセットを指示するメッセージを作成する。そして、ステップS45へ遷移する。
ステップS45で、基地局200は、キャリアアグリゲーションの開始及び端末100が使用するコンポーネントキャリアのセットを指示するメッセージを、端末100に送信する。
<端末100と基地局200との間のシグナリング>
以下、図5を参照して、端末100と基地局200との間のシグナリングについて、説明する。図5は、端末100と基地局200との間のシグナリングを示す図である。
以下、図5を参照して、端末100と基地局200との間のシグナリングについて、説明する。図5は、端末100と基地局200との間のシグナリングを示す図である。
ステップS51で、端末100は、通常の受信品質測定(measurement)を行う。ステップS52で、端末100は、fingerprint情報によって、自装置のアクセス可能なCSGセルが周辺に位置すると判定すると、ステップS53で、端末100は、サービングセル及び周辺セルの受信品質測定結果報告(measurement report)の中に、CSGセルのキャリア周波数情報を入れて、基地局200に送信する。
ステップS54で、基地局200は、端末100がアクセス可能なCSGセルのキャリア周波数を含むマクロセルのキャリア周波数のコンポーネントキャリアを選択する。そして、ステップS55で、選択したコンポーネントキャリアを、キャリアアグリゲーションを指示する制御メッセージに含めて、RRC信号(RRC signaling)と共に、端末100へ送信する。
ステップS56で、端末100は、基地局200から指示されたコンポーネントキャリアを用いてキャリアアグリゲーションを開始する。
以上、実施の形態1に係る無線通信システムによれば、端末100にとってアクセス可能なCSGセルがあるキャリア周波数帯を優先的に選択するようネットワークに通知することによって、キャリアアグリゲーション時に該当CSGセルのあるキャリア周波数帯がコンポーネントキャリアのセットに含まれる。すわなち、実施の形態1に係る端末100は、キャリアアグリゲーション中にもCSGセルのPCIの検出が可能になり、該当CSGセルへのアクセスが可能になる。
なお、実施の形態1に係る端末100が基地局200に通知するCSGセルの情報は、CSGセルのキャリア周波数に限らず、例えばCSG IDを基地局200に通知するCSGセルの情報に含めても良い。
なお、実施の形態1に係る端末100は、CSGセルのキャリア周波数を通知するのではなく、該当CSGセルのキャリア周波数を含むマクロセルのキャリア周波数を、基地局200に通知しても良い。
なお、実施の形態1に係る端末100は、上記CSGセルのキャリア周波数とマクロセルのキャリア周波数を併せて通知しても良い。
なお、実施の形態1に係る端末100が基地局200に通知するCSGセルの情報は、測定結果報告に含めて送信するだけでなく、測定結果報告を送るシグナリングとは別の端末と基地局との間の個別シグナリング(dedicated signaling)を用いて送っても良い。また、測定結果報告メッセージ以外の、例えばRRCコネクションセットアップ完了メッセージなどのメッセージに含めて送っても良い。
なお、実施の形態1に係る端末100は、端末100がアクセスしているマクロセルのキャリア周波数が、アクセス可能なCSGセルのキャリア周波数を含んでいない場合のみ、基地局200にCSGセルのあるキャリア周波数を通知することとし、端末100がアクセスしているマクロセルのキャリア周波数が、アクセス可能なCSGセルのキャリア周波数を含んでいる場合は、端末100は基地局200にCSGセルのあるキャリア周波数を通知しないという運用も考えられる。
(実施の形態2)
実施の形態1に係る無線通信システムにおいて、端末100にとってアクセス可能なCSGセルを含むキャリア周波数帯を優先的にキャリアアグリゲーションに含めることを可能にしている。しかし、CSGセルを含むコンポーネントキャリアセットの候補が複数ある場合に、CSGセルを含むキャリア周波数情報のみでは、基地局200が、端末100にとって適切なコンポーネントキャリアが選択するとは限らない。例えば、マクロセルとCSGセルの中心キャリア周波数がずれている場合に、基地局200が、CSGセルと同じキャリア周波数帯を含むマクロセルを選択すると、かえってCSGセルの干渉を強く受けてしまうことが考えられる。
実施の形態1に係る無線通信システムにおいて、端末100にとってアクセス可能なCSGセルを含むキャリア周波数帯を優先的にキャリアアグリゲーションに含めることを可能にしている。しかし、CSGセルを含むコンポーネントキャリアセットの候補が複数ある場合に、CSGセルを含むキャリア周波数情報のみでは、基地局200が、端末100にとって適切なコンポーネントキャリアが選択するとは限らない。例えば、マクロセルとCSGセルの中心キャリア周波数がずれている場合に、基地局200が、CSGセルと同じキャリア周波数帯を含むマクロセルを選択すると、かえってCSGセルの干渉を強く受けてしまうことが考えられる。
そこで、実施の形態2に係る無線通信システムにおいて、端末装置300は、アクセス可能なCSGセルのキャリア周波数と共に、周辺キャリアの受信品質測定結果を、基地局装置400に通知する。そのため、実施の形態2に係る無線通信システムでは、端末300にとって、適切なコンポーネントキャリアセットによるキャリアアグリゲーションを行いながら、端末装置300によるCSGセルの検出を可能にする。
<端末装置300の構成>
以下、図6を参照して、実施の形態2の端末装置300(以下、端末300という)の構成について、説明する。図6は、端末300の構成を示すブロック図である。図5に示す端末300は、受信品質測定部301と、CSGセル情報記憶部303と、CSGセル判定部305と、測定報告作成部307と、受信部309と、送信部311と、送受信アンテナ313と、を備える。
以下、図6を参照して、実施の形態2の端末装置300(以下、端末300という)の構成について、説明する。図6は、端末300の構成を示すブロック図である。図5に示す端末300は、受信品質測定部301と、CSGセル情報記憶部303と、CSGセル判定部305と、測定報告作成部307と、受信部309と、送信部311と、送受信アンテナ313と、を備える。
受信品質測定部301は、自装置がキャンプ(camp)しているセル及び周辺セルの受信品質の測定(measurement、メジャメント)を行う。そして、受信品質測定部301は、その受信品質の測定結果を、測定報告作成部307及びCSGセル判定部305に出力する。なお、受信品質の測定のための設定は、基地局装置400から送信され、受信部309から受信品質測定部301に入力される。
CSGセル情報記憶部303は、自装置がアクセス可能なCSGセルのリスト(allowed CSG list, whitelist、ホワイトリストともいう)と、以前にアクセスしたCSGセルの履歴情報(fingerprint情報、フィンガープリント情報、proximity informationともいう、以下fingerprint情報とする)とを記憶する。CSGセル情報記憶部303は、自装置がアクセス可能なCSGセルのリストと、自装置の周辺セルの受信品質測定結果と、fingerprint情報とを、必要に応じてCSGセル判定部305に出力される。
ここで、自装置がアクセス可能なCSGセルのリストには、実施の形態1と同様、CSGセルのPCI、グローバルなセルID(Cell Global Identity, 以下CGIともいう)、CSGセルのグループID(Closed Subscriber Group Identity, 以下CSG IDともいう)などが含まれる。また、fingerprint情報には、以前にアクセスしたCSGセルのPCI、CGI、CSG ID、キャリア周波数情報、GPSなどによる位置情報などが含まれる。
CSGセル判定部305は、受信品質測定部301から入力された受信品質の測定結果と、CSGセル情報記憶部303から出力される情報のうち、fingerprint情報とを参照して、自装置のアクセス可能なCSGセルが付近に位置するかどうかを判定する。CSGセル判定部305は、例えば、測定を行ったセルのキャリア周波数が、fingerprint情報に含まれるCSGセルのキャリア周波数と同帯域である場合に、そのCSGセルが、自装置の付近に位置すると判定する。そして、CSGセル判定部305は、判定結果を測定報告作成部307に出力する。
ここで、本実施の形態では、CSGセル判定部305が、自装置のアクセス可能なCSGセルが付近に位置すると判定すると、受信品質測定部301が、CSGセルのあるキャリア周波数の周辺セルの受信品質測定(measurement)を行う 。この時、端末300の機能(UE capability)によってキャリアアグリゲーション可能な周波数のみについて受信品質測定を行うものとする。自装置のアクセス可能なCSGセルが周辺に位置すると判定した時に、そのキャリア周波数周辺のセルを見つける方法は、例えば、現在アクセスしているマクロセルで報知されているキャリア周波数情報(Carrier Frequency Info、Inter Freq Carrier Freq Info、周波数間キャリア周波数情報ともいう)を用いることが考えられる。キャリア周波数情報には、周辺周波数帯のキャリア周波数情報や隣接セルのPCIなどが含まれているので、キャリア周波数情報から、CSGセルのキャリア周波数及びその周辺のマクロセルを見つけることができる。
測定報告作成部307は、受信品質測定部301から入力された受信品質の測定結果に基づいて、基地局装置400に送信する測定結果報告(measurement report、メジャメントレポート)を作成して、作成した測定結果報告(measurement report)を送信部311に出力する。
ここで、本実施の形態において、CSGセル判定部305が自装置のアクセス可能なCSGセルが付近に位置すると判定した場合、測定報告作成部307は、受信品質測定部301から入力された受信品質の測定結果に基づき、CSGセルのあるキャリア周波数の周辺セルの受信品質測定(measurement)を含む、基地局装置400に送信する測定結果報告(measurement report、メジャメントレポート)を作成して、作成した測定結果報告(measurement report)を送信部311に出力する。
測定報告作成部307は、作成した測定結果報告(measurement report)を送信部311に出力する時、CSGセル判定部305から、アクセス可能なCSGセルが自装置の付近に位置するという判定結果の入力があれば、その判定結果を、作成した測定結果報告(measurement report)に含める。例えば、測定報告作成部307は、アクセス可能なCSGセルのキャリア周波数と共に、CSGセルのあるキャリア周波数の周辺セルの受信品質測定結果報告を、測定結果報告(measurement report)に含める。
受信部309は、基地局装置400からのデータ、受信品質測定のための制御情報(measurement control、メジャメントコントロール)、実際に測定する参照信号(reference symbol、reference signal)などを、送受信アンテナ313を介して受信する。
送信部311は、自装置からのデータ、測定結果報告(measurement report)などを、送受信アンテナ313を介して送信する。
なお、端末300は、基地局装置400から、キャリアアグリゲーションの指示がある場合、端末300は、基地局装置400から指示されたコンポーネントキャリアを用いてキャリアアグリゲーションを開始する。
<基地局装置400の構成>
以下、図7を参照し、実施の形態2に係る無線通信システムにおける基地局装置400(以下、基地局400という)の構成について、説明する。図7は、基地局400の構成を示すブロック図である。図7に示す基地局400は、測定結果報告判定部401と、コンポーネントキャリア選択部403と、制御メッセージ作成部405と、受信部407と、送信部409と、送受信アンテナ411と、を備える。
以下、図7を参照し、実施の形態2に係る無線通信システムにおける基地局装置400(以下、基地局400という)の構成について、説明する。図7は、基地局400の構成を示すブロック図である。図7に示す基地局400は、測定結果報告判定部401と、コンポーネントキャリア選択部403と、制御メッセージ作成部405と、受信部407と、送信部409と、送受信アンテナ411と、を備える。
測定結果報告判定部401は、端末300から送信された測定結果報告(measurement report)を参照する。そして、測定結果報告判定部401は、「端末300がアクセス可能なCSGセルのキャリア周波数」が測定結果報告(measurement report)に含まれていたら、「端末300がアクセス可能なCSGセルのキャリア周波数」の情報をコンポーネントキャリア選択部403に出力する。
また、測定結果報告判定部401は、「周辺マクロセルのキャリア周波数(f1, f2, f3)の受信品質測定の結果」が端末300からの測定結果報告(measurement report)に含まれていたら、自装置又は上位ノードで予め設定されている値に基づき、どの周辺マクロセルのキャリア周波数で、端末300がキャリアアグリゲーションを行うかを判定する。なお、判定方法については、後述する動作例で説明する。
コンポーネントキャリア選択部403は、端末300にキャリアアグリゲーションを指示する際に、測定結果報告判定部401から入力された「端末300がアクセス可能なCSGセルのキャリア周波数」を含む、「マクロセルのキャリア周波数のコンポーネントキャリア」を選択する。そして、コンポーネントキャリア選択部403は、選択した「マクロセルのキャリア周波数のコンポーネントキャリア」を、制御メッセージ作成部405に出力する。
また、コンポーネントキャリア選択部403は、端末300がキャリアアグリゲーションを行う周辺マクロセルのキャリア周波数を選択し、選択したキャリア周波数を含む周辺マクロセルを、制御メッセージ作成部405に出力する。
制御メッセージ作成部405は、端末300にキャリアアグリゲーションを指示する制御メッセージを作成する。制御メッセージ作成部405は、コンポーネントキャリア選択部403から入力された「マクロセルのキャリア周波数のコンポーネントキャリア」又は「キャリア周波数を含む周辺マクロセル」を、作成する制御メッセージに含める。そして、制御メッセージ作成部405は、作成した制御メッセージを送信部409に出力する。
受信部407は、端末300からのデータ、測定結果報告(measurement report)などを、送受信アンテナ411を介して送信する。
送信部409は、自装置からのデータ、受信品質測定のための制御情報、実際に測定する参照信号などを、送受信アンテナ411を介して、端末300へ送信する。
<端末300の動作>
以下、図8を参照して、端末300の動作フローを説明する。図8は、端末300の動作フローを示す図である。
以下、図8を参照して、端末300の動作フローを説明する。図8は、端末300の動作フローを示す図である。
ステップS70で、端末300は、通常の受信品質測定(measurement)を行う。ここで、通常の受信品質測定(measurement)の開始のタイミングは、基地局400からの制御情報によって設定されている。例えば、現在アクセスしているセル(serving cell、サービングセル)の受信品質レベルが、基地局400から設定された閾値を下回った時に、端末100は、サービングセル及び周辺セル(neighbor cell、ネイバーセル、隣接セルともいう)の受信品質測定(measurement)を開始する。そして、ステップS71へ遷移する。
ステップS71で、端末300は、fingerprint情報に基づき、自装置のアクセス可能なCSGセルが自装置の周辺に位置するか否かを、判定する。そして、自装置のアクセス可能なCSGセルが自装置の周辺に位置すると判定すると(Yes)、ステップS72へ遷移し、自装置のアクセス可能なCSGセルが自装置の周辺に位置しないと判定すると(No)、ステップS73へ遷移する。
ステップS72で、端末300は、CSGセルのあるキャリア周波数の周辺セルの受信品質測定(measurement)を行う。この時、端末の機能(UE capability)によってキャリアアグリゲーション可能な周波数のみについて、受信品質測定を行うものとする。そして、ステップS74へ遷移する。
ステップS73で、端末300は、通常の測定結果報告を基地局400に送信する。
ステップS74で、端末300は、CSGセルのキャリア周波数情報及びCSGセルのあるキャリア周波数の周辺セルの受信品質測定(measurement)を含む、測定結果報告(measurement report、メジャメントレポート)基地局装置400に送信する。そして、ステップS75へ遷移する。
ステップS75で、端末300は、基地局400からキャリアアグリゲーションの指示があるか否かを、判定する。そして、基地局400からキャリアアグリゲーションの指示がある場合(Yes)、ステップS76へ遷移し、基地局400からキャリアアグリゲーションの指示がない場合(Yes)、ステップS77へ遷移する。
ステップS76で、端末300は、基地局400からのキャリアアグリゲーションの指示に基づき、指示されたコンポーネントキャリアを用いて、キャリアアグリゲーションを開始する。
ステップS77で、端末300は、基地局400からキャリアアグリゲーションの指示がないので、キャリアアグリゲーションを行わない。そこで、端末300は、基地局400からキャリアアグリゲーション以外の指示が特にない限り、現在接続しているマクロセルとの通信を継続する。
<基地局400の動作>
以下、図9を参照して、基地局400の動作フローについて、説明する。図9は、基地局400の基本動作フローを示す図である。
以下、図9を参照して、基地局400の動作フローについて、説明する。図9は、基地局400の基本動作フローを示す図である。
ステップS90で、基地局400は、端末300からの受信品質測定結果報告を受信する。そして、ステップS91へ遷移する。
ステップS91で、基地局400は、端末300から受信した受信品質測定結果報告の中にCSGセルの周波数情報が含まれているかどうかを判定する。そして、受信品質測定結果報告の中にCSGセルの周波数情報が含まれている場合(Yes)、ステップS92へ遷移し、受信品質測定結果報告の中にCSGセルの周波数情報が含まれていない場合(No)、ステップS95へ遷移する。
ステップS92で、基地局400は、受信品質測定結果報告の中にCSGセルの周波数情報が含まれているので、キャリアアグリゲーション時にCSGセルのキャリア周波数を含んだコンポーネントキャリアを選択する。そして、ステップS93へ遷移する。
ステップS93で、基地局400は、さらに、端末300から受信した受信品質測定結果報告の中にCSGセルの周辺マクロセルの受信品質測定結果が含まれているかどうかを判定する。そして、受信品質測定結果報告の中にCSGセルの周辺マクロセルの受信品質測定結果が含まれている場合(Yes)、ステップS94へ遷移し、受信品質測定結果報告の中にCSGセルの周辺マクロセルの受信品質測定結果が含まれていない場合、(No)、ステップS95へ遷移する。
ステップS94で、基地局400は、受信品質の良い周辺マクロセルを優先的にコンポーネントキャリアとして選択する。そして、ステップS95へ遷移する。
ステップS95で、基地局400は、キャリアアグリゲーションの開始及び端末300が使用するコンポーネントキャリアのセットを指示するメッセージを作成する。そして、ステップS96へ遷移する。
ステップS96で、基地局400は、キャリアアグリゲーションの開始及び端末300が使用するコンポーネントキャリアのセットを指示するメッセージを、端末300に送信する。
<動作例1>
以下、図10を参照して、実施の形態2に係る無線通信システムの動作例1について説明する。図10は、実施の形態2に係る無線通信システムの動作例1を説明するための図である。実施の形態2に係る無線通信システムでは、マクロセルとCSGセルの中心キャリア周波数が異なる。動作例1では、実施の形態1と相違する点を中心に説明する。
以下、図10を参照して、実施の形態2に係る無線通信システムの動作例1について説明する。図10は、実施の形態2に係る無線通信システムの動作例1を説明するための図である。実施の形態2に係る無線通信システムでは、マクロセルとCSGセルの中心キャリア周波数が異なる。動作例1では、実施の形態1と相違する点を中心に説明する。
図10 に示すように、マクロセルのキャリア周波数は(f1, f2, f3, f4, f5)である。各キャリア周波数の帯域幅は、20MHzである。また、周波数f3のマクロセルのキャリア周波数と同じ周波数帯域に、CSGセルのキャリア周波数(f6, f7)がある。各キャリア周波数f6, f7の帯域幅は、10MHzである。
ここで、動作例1では、CSGセルのキャリア周波数f6に、端末300がアクセス可能なCSGセルがあるものとする。
[端末300の動作]
図11を参照して、図10に示す動作例1での端末300の動作フローについて説明する。図11は、図10における端末300の動作フローを示す図である。
図11を参照して、図10に示す動作例1での端末300の動作フローについて説明する。図11は、図10における端末300の動作フローを示す図である。
ステップS111で、端末300は、通常の受信品質測定(measurement)を行う。ここで、通常受信品質測定(measurement)の開始のタイミングは、基地局400からの制御情報によって設定されている。例えば、現在アクセスしているセル(serving cell、サービングセル)の受信品質レベルが、基地局400から設定された閾値を下回った時に、端末100は、サービングセル及び周辺セル(neighbor cell、ネイバーセル、隣接セルともいう)の受信品質測定(measurement)を開始する。そして、ステップS112へ遷移する。
ステップS112で、端末300は、fingerprint情報から、CSGセルのキャリア周波数f6にアクセス可能なCSGセルがある(Yes)ことを判定する。そして、ステップS113へ遷移する。なお、fingerprint情報から、アクセス可能なCSGセルがない場合(No)には、ステップS119へ遷移し、通常の受信品質測定の結果を基地局400へ送信する。
ステップS113で、端末300は、マクロセルの中心周波数とCSGセルの中心周波数が同じかどうか判定する。ここで、図10における動作例1では、マクロセルの中心周波数とCSGセルの中心周波数が異なるので、マクロセルの中心周波数とCSGセルの中心周波数が同じであると判定(Yes)し、ステップS114へ遷移する。なお、マクロセルとCSGセルの中心周波数が同じ場合は、ステップS120へ遷移し、通常の測定結果報告にCSGセルの周波数情報を入れて基地局400へ送信する。
ここで、ステップS113におけるCSGセルとマクロセルの中心周波数の判定は、例えばfingerprint情報にあるアクセス可能なCSGセルの周波数情報と、マクロセルで報知されているキャリア周波数情報に記載の隣接セルの周波数情報を参照して行う方法がある。
ステップS114で、端末300は、周辺マクロセルのキャリア周波数のうち、例えば、キャリア周波数(f2, f3, f4)の受信品質測定(measurement)を行う。そして、ステップS115へ遷移する。
ステップS115で、端末300は、キャリア周波数(f2, f3, f4)の受信品質測定の結果を、アクセス可能なCSGセルのあるキャリア周波数f6の情報と共に基地局400に送信する。
ステップS116で、端末300は、基地局400からキャリアアグリゲーションの指示があるか否かを、判定する。そして、基地局400からキャリアアグリゲーションの指示がある場合(Yes)、ステップS117へ遷移し、基地局400からキャリアアグリゲーションの指示がない場合(No)、ステップS118へ遷移する。
ステップS117で、端末300は、基地局400からのキャリアアグリゲーションの指示に基づき、指示されたコンポーネントキャリアを用いて、キャリアアグリゲーションを開始する。
ステップS118で、端末300は、基地局400からキャリアアグリゲーションの指示がないので、キャリアアグリゲーションを行わない。そこで、端末300は、基地局400からキャリアアグリゲーション以外の指示が特にない限り、現在接続しているマクロセルとの通信を継続する。
[基地局400の動作]
基地局400は、測定結果報告判定部401により、端末300からの測定結果報告(measurement report)を受けて、周辺マクロセルのキャリア周波数(f1, f2, f3, f4, f5)の受信品質測定の結果に基づき、どの周辺マクロセルのキャリア周波数で、端末300がキャリアアグリゲーションを行うかを指示する。
基地局400は、測定結果報告判定部401により、端末300からの測定結果報告(measurement report)を受けて、周辺マクロセルのキャリア周波数(f1, f2, f3, f4, f5)の受信品質測定の結果に基づき、どの周辺マクロセルのキャリア周波数で、端末300がキャリアアグリゲーションを行うかを指示する。
ここで、周辺マクロセルのキャリア周波数(f1, f2, f3, f4, f5)の受信品質測定の結果に基づき、どの周辺マクロセルのキャリア周波数で、端末300がキャリアアグリゲーションを行うかの判定基準は、基地局400又は上位ノードによって設定された値を用いる。
基地局400は、測定結果報告判定部401により、キャリア周波数f3の受信品質測定結果が、他のキャリア周波数(f1, f2, f4, f5)の受信品質測定結果と比べて悪ければ、キャリア周波数f3はCSGセルの干渉が強いとみなして、キャリア周波数f3以外のキャリア周波数(f1, f2, f4, f5)の情報をコンポーネントキャリア選択部403に出力する。
ここで、図10に示す動作例1において、UE capabilityとして最大60MHzの周波数帯域をサポートできる端末300を例に、端末300が測定するCSGセルの周辺マクロセルの範囲と、基地局400が選択するコンポーネントキャリアのセットを説明する。
<ケース1>
端末300が各20MHzの連続した周波数帯域3つ分をサポート可能な場合、端末300は、キャリア周波数f1~f5のマクロセルの受信品質測定を行い、測定結果報告を基地局400に通知する。基地局400は、端末300からの測定結果報告を受信すると、受信品質の最もよい、CSGセルを含む連続した60MHzの帯域幅のキャリア周波数をコンポーネントキャリアのセットとして選択する。この時、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2, f3)、(f2, f3, f4)、(f3, f4, f5)の3パターンとなる。
端末300が各20MHzの連続した周波数帯域3つ分をサポート可能な場合、端末300は、キャリア周波数f1~f5のマクロセルの受信品質測定を行い、測定結果報告を基地局400に通知する。基地局400は、端末300からの測定結果報告を受信すると、受信品質の最もよい、CSGセルを含む連続した60MHzの帯域幅のキャリア周波数をコンポーネントキャリアのセットとして選択する。この時、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2, f3)、(f2, f3, f4)、(f3, f4, f5)の3パターンとなる。
また、この時、60MHzの帯域幅のキャリア周波数をフルに使ってキャリアアグリゲーションしながら、同時にキャリア周波数f6の受信品質測定を行うことが不可能なUE capabilityを有する端末300の場合、キャリア周波数f6の受信品質測定のために、キャリアアグリゲーションのサポート帯域数を減らしてもらう要求を、測定結果報告に含めて基地局400に通知する。通知方法としては、例えば、[端末が帯域可能なサポート数 -1]といった形式が考えられる。この場合、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2)、(f2, f3)、(f3, f4)、(f4, f5)の4パターンとなる。
<ケース2>
端末300が、各20MHzの連続した周波数帯域2つ分をサポート可能な場合、端末300は、キャリア周波数f1~f5のマクロセルの受信品質測定を行い、測定結果報告を基地局400に通知する。基地局400は、端末300からの測定結果報告を受信すると、CSGセルを含む連続した60MHzの帯域幅の範囲内の、受信品質の最もよい、連続した40MHzの帯域幅のキャリア周波数をコンポーネントキャリアのセットとして選択する。この時、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2)、(f2, f3)、(f3, f4)、(f4, f5)の4パターンとなる。
端末300が、各20MHzの連続した周波数帯域2つ分をサポート可能な場合、端末300は、キャリア周波数f1~f5のマクロセルの受信品質測定を行い、測定結果報告を基地局400に通知する。基地局400は、端末300からの測定結果報告を受信すると、CSGセルを含む連続した60MHzの帯域幅の範囲内の、受信品質の最もよい、連続した40MHzの帯域幅のキャリア周波数をコンポーネントキャリアのセットとして選択する。この時、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2)、(f2, f3)、(f3, f4)、(f4, f5)の4パターンとなる。
<ケース3>
端末300が、各20MHzの不連続な周波数帯域2つ分をサポート可能な場合、端末300は、キャリア周波数f1~f5のマクロセルの受信品質測定を行い、測定結果報告を基地局400に通知する。基地局400は、端末300からの測定結果報告を受信すると、CSGセルを含む連続した60MHzの帯域幅の範囲内の、受信品質の最もよい、40MHz分の帯域幅のキャリア周波数をコンポーネントキャリアのセットとして選択する。この時、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2)、(f2, f3)、(f3, f4)、(f4, f5)、(f1, f3)(f2, f4)、(f3, f5)の7パターンとなる。
端末300が、各20MHzの不連続な周波数帯域2つ分をサポート可能な場合、端末300は、キャリア周波数f1~f5のマクロセルの受信品質測定を行い、測定結果報告を基地局400に通知する。基地局400は、端末300からの測定結果報告を受信すると、CSGセルを含む連続した60MHzの帯域幅の範囲内の、受信品質の最もよい、40MHz分の帯域幅のキャリア周波数をコンポーネントキャリアのセットとして選択する。この時、コンポーネントキャリアのセットとして考えられるのは、コンポーネントキャリアのセット(f1, f2)、(f2, f3)、(f3, f4)、(f4, f5)、(f1, f3)(f2, f4)、(f3, f5)の7パターンとなる。
また、上記ケース1~ケース3において、キャリア周波数f3の受信品質が他のキャリア周波数と比較して、基地局400により設定された閾値よりも悪い場合、基地局400は、キャリア周波数f3のマクロセルがf6のCSGセルの干渉が強いとみなして、キャリア周波数f3をコンポーネントキャリアのセットには選択しない。これによって、マクロセルとCSGセルの中心キャリア周波数が異なる場合に、両者の干渉の影響が最小限となり、受信品質の最もよいコンポーネントキャリアセットでのキャリアアグリゲーション及びCSGセルの検出が可能となる。
上述した動作例1により、実施の形態2に係る無線通信システムでは、マクロセルとCSGセルの中心キャリア周波数が異なる場合に、両セルの干渉の影響が最小限となるコンポーネントキャリアセットでのキャリアアグリゲーション及びCSGセルの検出が可能となる。
<動作例2>
以下、図12を参照して、実施の形態2に係る無線通信システムの動作例2について説明する。図12は、実施の形態2に係る無線通信システムの動作例2を説明するための図である。動作例2では、動作例1と同様、実施の形態1と相違する点を中心に説明する。動作例2では、端末300は、800MHz帯/2GHz帯の同時サポートが可能であるとする。
以下、図12を参照して、実施の形態2に係る無線通信システムの動作例2について説明する。図12は、実施の形態2に係る無線通信システムの動作例2を説明するための図である。動作例2では、動作例1と同様、実施の形態1と相違する点を中心に説明する。動作例2では、端末300は、800MHz帯/2GHz帯の同時サポートが可能であるとする。
図12に示すように、800MHz帯にキャリア周波数(f1, f2)と2GHz帯にキャリア周波数(f3, f4)のマクロセルが存在する。そして、端末300は、ある周波数帯域1(例えば800MHz帯)にアクセスしながら移動中(図12中、矢印)に、fingerprint情報により異なる周波数帯域2(例えば2GHz帯)のCSGセルを見つけた場合の例を説明する。また、図12において、キャリア周波数f3と同じキャリア周波数に端末300がアクセス可能なCSGセルがあるとする。
[端末300及び基地局400の動作]
図13を参照して、図12に示す動作例2での端末300の動作フローについて説明する。図13は、図12における端末300の動作フローを示す図である。
図13を参照して、図12に示す動作例2での端末300の動作フローについて説明する。図13は、図12における端末300の動作フローを示す図である。
ステップS131で、端末300は、通常の受信品質測定(measurement)を行う。ここで、通常受信品質測定(measurement)の開始のタイミングは、基地局400からの制御情報によって設定されている。例えば、現在アクセスしているセル(serving cell、サービングセル)の受信品質レベルが、基地局400から設定された閾値を下回った時に、端末300は、サービングセル及び周辺セル(neighbor cell、ネイバーセル、隣接セルともいう)の受信品質測定(measurement)を開始する。そして、ステップS132へ遷移する。
ここで、図12で、端末300は、キャリア周波数f1のセルA(cell A)にアクセスしながら、同f1のセルB(cell B)に移動している。端末300がセルBのエリアに近づくと、端末300は、セルBの信号を受信することができる。
ステップS132で、端末300は、fingerprint情報から、同じ位置エリア内の異なるキャリア周波数f3にアクセス可能なCSGセルがある(Yes)ことを判定する。そして、ステップS133へ遷移する。なお、fingerprint情報から、CSGセルのキャリア周波数f3にアクセス可能なCSGセルがない場合(No)には、ステップS140へ遷移し、通常の受信品質測定の結果を基地局400へ送信する。
ステップS133で、端末300は、キャリア周数f3のCSGセルが現在アクセス中の周波数帯域(例えば800MHz)とは異なる周波数帯域(例えば2GHz)に存在すると判定し、ステップS134へ遷移する。なお、現在アクセス中の周波数帯域とは異なる周波数帯域に存在しない場合(No)、ステップS141へ遷移し、通常の測定結果報告にCSGセルの周波数情報を入れて基地局400へ送信する。
ステップS134で、端末300は、800MHz帯/2GHz帯の同時サポートが可能かどうかを判定する。端末300は、800MHz帯/2GHz帯の同時サポートが可能なので、ステップS135へ遷移する。
なお、端末300が800MHz帯/2GHz帯の同時サポートが不可能な場合、ステップS142へ遷移する。そして、ステップS142で、端末300は、アクセス可能なCSGセルがあることを基地局400に通知し、2GHz帯の受信品質測定を行うためのmeasurement gapを要求する。そして、端末300は、基地局400から2GHz帯の受信品質測定を行うためのmeasurement gapを指示を受けて、measurement gap期間中にキャリア周波数f1での通信を中断し、他のキャリア周波数の受信品質測定を行う。この時、端末が間欠受信モード(Discontinuous Reception: DRX)中であれば、基地局からmeasurement gapを指示してもらう必要なく、アクセス可能なCSGセルのあるキャリア周波数f3を含む隣接セルの受信品質測定を行うことができる。
ステップS135で、端末300は、アクセス可能なCSGセルのあるキャリア周波数f3を含む隣接セル(すなわち図12ではf3, f4)の受信品質測定(measurement)を行う。そして、ステップS136へ遷移する。
ステップS136で、端末300は、CSGセルの周波数情報、隣接セルの(f3, f4)の受信品質測定結果を、測定結果報告(measurement report)に含めて、基地局400に送る。そして、基地局400は端末300からの測定結果報告を受け、端末300がアクセス可能なCSGセルのあるキャリア周波数を含めて、測定結果のよい順に、コンポーネントキャリアセットを選択する。
なお、端末300は受信品質測定結果報告に800MHz帯(f1, f2)、2GHz帯(f3, f4)両方の受信品質測定結果を含めて基地局に報告してもよいものとする。この時、基地局400は、端末300からの測定結果報告を受け、端末300が800MHz帯/2GHz帯の同時サポートが可能ならば、端末300がアクセス可能なCSGセルのあるキャリア周波数(f3)を含めて、測定結果の良い順に、コンポーネントキャリアセットを選択する。
また、端末300が800MHz帯/2GHz帯の同時サポートが不可能な場合、基地局400は、800MHz帯(f1, f2)の受信品質と、2GHz帯(f3, f4)の受信品質のうち、いずれか良い方のキャリア周波数で、コンポーネントキャリアセットを選択する。この場合、CSGセルのある周波数帯(ここではf3, f4)が、800MHz帯(f1, f2)よりも優先的に選択されるよう、端末300側もしくは基地局400側で測定結果に重み付けしてもよい。
ステップS137で、端末300は、基地局400からキャリアアグリゲーションの指示があるか否かを、判定する。そして、ステップS137で、基地局400からキャリアアグリゲーションの指示がある場合(Yes)、ステップS138へ遷移し、基地局400からキャリアアグリゲーションの指示がない場合(No)、ステップS139へ遷移する。
ステップS138で、端末300は、基地局400からのキャリアアグリゲーションの指示に基づき、指示されたコンポーネントキャリアを用いて、キャリアアグリゲーションを開始する。
ステップS139で、端末300は、基地局400からキャリアアグリゲーションの指示がないので、キャリアアグリゲーションを行わない。そこで、端末300は、基地局からキャリアアグリゲーション以外の指示が特にない限り、現在接続しているマクロセルとの通信を継続する。
以上、実施の形態2に係る無線通信システムによれば、端末300がアクセス可能なCSGセルのキャリア周波数と共に、周辺キャリアの受信品質測定結果を基地局400に通知することで、端末300は、自装置にとって適切なコンポーネントキャリアセットによるキャリアアグリゲーションを行いながら、自装置がアクセス可能なCSGセルを検出できる。
なお、本実施の形態において、CSGセルの周波数情報を送るシグナリングと、CSGセルのあるキャリア周波数の周辺セルの受信品質測定結果報告を送るシグナリングは、別のシグナリングでもよい。例えば、最初の測定結果報告でCSGセルの周波数情報を基地局400に通知した後、端末300がCSGセルのあるキャリア周波数の周辺セルの受信品質測定を行い、その測定結果報告をさらに基地局400に通知してもよい。
なお、本実施の形態において、マクロセルとCSGセルの中心周波数が同一の場合でも、端末300は、アクセス可能なCSGセルのキャリア周波数の周辺マクロセルの受信品質測定を行い、測定結果報告を基地局400に通知してもよい。
なお、本実施の形態において、動作例1と動作例2は必ずしも独立のものではなく、動作例1と動作例2とを組み合わせた運用、動作も考えられる。例えば、動作例2において、さらにCSGセルとマクロセルの中心周波数が異なる場合は、端末300は、図11と図13の動作フローを組み合わせた動作を行う。
(実施の形態3)
実施の形態3に係る無線通信システムでは、アクセス可能なCSGセルのキャリア周波数が、1つのセルとして独立に運用されていないエクステンションキャリアである場合に、単体では端末500が同期を取ることができず、受信品質測定ができないため、隣接セルリストを用いてエクステンションキャリアのペアとなるコンポーネントキャリアを検出することで、受信品質測定を可能にし、端末500にとって最適なコンポーネントキャリアセットによるキャリアアグリゲーションを行いながら、CSGセルの検出を可能にする。
実施の形態3に係る無線通信システムでは、アクセス可能なCSGセルのキャリア周波数が、1つのセルとして独立に運用されていないエクステンションキャリアである場合に、単体では端末500が同期を取ることができず、受信品質測定ができないため、隣接セルリストを用いてエクステンションキャリアのペアとなるコンポーネントキャリアを検出することで、受信品質測定を可能にし、端末500にとって最適なコンポーネントキャリアセットによるキャリアアグリゲーションを行いながら、CSGセルの検出を可能にする。
3GPPでは、LTE-Aのキャリアアグリゲーションで用いるコンポーネントキャリアとして、3つのタイプを定義している。第1のコンポーネントキャリアのタイプは、レガシー端末との互換性を持ち、1つのセルとして独立に運用されるバックワードコンパチブルキャリア(Backward compatible carrier, BCCともいう)である。第2のコンポーネントキャリアのタイプは、レガシー端末との互換性を持たず、1つのセルとして独立に運用されるノンバックワードコンパチブルキャリア(Non-backward compatible carrier、NBCCともいう)である。第3のコンポーネントキャリアのタイプは、1つのセルとして独立に運用されず、常にバックワードコンパチブルキャリアまたはノンバックワードコンパチブルキャリアとペアで運用される、キャリアアグリゲーション専用のエクステンションキャリア(Extension carrier, ECともいう)である。
エクステンションキャリアは、1つのセルとして運用されないので、端末500が同期を取るための信号や、端末500がセルにアクセスしたり基地局600とコネクションを張るために必要となる報知情報などを送信しないことが想定される。そのため、エクステンションキャリアを、キャリアアグリゲーションで使用する時は、基地局600から隣接するバックワードコンパチブルキャリアまたはノンバックワードコンパチブルキャリアとペアで指示されることによって、端末500はエクステンションキャリアの中心周波数を推定することができ、エクステンションキャリアにアクセスすることが可能になる。
図14 に、本実施の形態における、コンポーネントキャリアの概念図を示す。図14において、キャリア周波数f1からf5の各コンポーネントキャリアは、周波数軸上で隣接しており、キャリア周波数f1からf5に向かって周波数が高くなっている。
また、図14において、キャリア周波数f1, f5はバックワードコンパチブルキャリアである。キャリア周波数f3はノンバックワードコンパチブルキャリアである。キャリア周波数f2, f4はエクステンションである。そして、f2のキャリア周波数上に、端末500がアクセス可能なCSGセルがあるものとする。
図14に示すコンポーネントキャリアの構成では、キャリア周波数f2のエクステンションキャリアは、キャリアアグリゲーション時に隣接するキャリア周波数f1のバックワードコンパチブルキャリアまたはキャリア周波数f3のノンバックワードコンパチブルキャリアとペアで運用される。一方、キャリア周波数f4のエクステンションキャリアは、キャリアアグリゲーション時にキャリア周波数f3のノンバックワードコンパチブルキャリアまたはキャリア周波数f5のノンバックワードコンパチブルキャリアとペアで運用される。
<端末の動作>
図15を参照して、本実施の形態における端末500の動作について説明する。図15は端末500の動作フローを示す図である。端末500の構成は、図1に示す端末100と同じ構成であり、その詳細な説明を省略する。同様に、本実施の形態における基地局600は、図2に示す基地局200と同じ構成であり、その詳細な説明を省略する。
図15を参照して、本実施の形態における端末500の動作について説明する。図15は端末500の動作フローを示す図である。端末500の構成は、図1に示す端末100と同じ構成であり、その詳細な説明を省略する。同様に、本実施の形態における基地局600は、図2に示す基地局200と同じ構成であり、その詳細な説明を省略する。
また、図15の端末500の動作フローは、図14の概念図を例としており、f2のエクステンションキャリアは、キャリア周波数f1のバックワードコンパチブルキャリアとペアで運用されるものとする。
ステップS151で、端末500は、通常の受信品質測定(measurement)を行う。ここで、通常受信品質測定(measurement)の開始のタイミングは、基地局600からの制御情報によって設定されている。例えば、現在アクセスしているセル(serving cell、サービングセル)の受信品質レベルが、基地局600から設定された閾値を下回った時に、端末500は、サービングセル及び周辺セル(neighbor cell、ネイバーセル、隣接セルともいう)の受信品質測定(measurement)を開始する。そして、ステップS152へ遷移する。
ステップS152で、端末500は、fingerprint情報から、アクセス可能なCSGセルがあるかどうか判定する。ここで、本実施の形態では、f2のキャリア周波数上に、端末500がアクセス可能なCSGセルがあるので、端末500は、f2にアクセス可能なCSGセルがあると判定する。そして、ステップS153へ遷移する。なお、ステップS152で、CSGセルのキャリア周波数f2に、端末500がアクセス可能なCSGセルがない場合(No)には、ステップS160へ遷移し、通常の受信品質測定の結果を基地局600へ送信する。
ステップS153で、端末500は、CSGセルのあるキャリア周波数f2がエクステンションキャリアかどうかを判定する。ここで、本実施の形態では、f2のキャリア周波数に相当するマクロセルのコンポーネントキャリアがエクステンションキャリアであるので、CSGセルのあるキャリア周波数f2がエクステンションキャリアであると判定する。そして、ステップS154へ遷移する。
ステップS154で、端末500は、エクステンションキャリアであるf2とペアとなる、コンポーネントキャリアf1を検出する。ここで、エクステンションキャリアであるf2とペアとなるf1を検出する方法として、現在アクセスしているマクロセルで報知されている隣接セルリストを用いることが考えられる。つまり、アクセス可能なCSGセルがあると判定されたキャリア周波数に最も近いキャリア周波数のマクロセルを、該当エクステンションキャリアのペアとなるコンポーネントキャリアと判定する。そして、ステップS155へ遷移する。
ステップS155で、端末500は、エクステンションキャリアであるf2とそのペアであるf1との受信品質測定(measurement)を行う。そして、ステップS156へ遷移する。
ステップS156で、端末500は、エクステンションキャリアであるf2とそのペアであるf1との受信品質測定結果を含めて、測定結果報告(measurement report)を基地局600に通知する。そして、ステップS157へ遷移する。
ステップS157で、端末500は、基地局600からキャリアアグリゲーションの指示があるか否かを、判定する。そして、基地局600からキャリアアグリゲーションの指示がある場合(Yes)、ステップS158へ遷移し、基地局600からキャリアアグリゲーションの指示がない場合(No)、ステップS159へ遷移する。
ステップS158で、端末500は、基地局600からのキャリアアグリゲーションの指示に基づき、指示されたコンポーネントキャリアを用いて、キャリアアグリゲーションを開始する。
ステップS159で、端末500は、基地局600からキャリアアグリゲーションの指示がないので、キャリアアグリゲーションを行わない。そこで、端末500は、基地局600からキャリアアグリゲーション以外の指示が特にない限り、現在接続しているマクロセルとの通信を継続する。
なお、ステップS153で、端末500が、CSGセルのあるキャリア周波数f2がエクステンションキャリアでないと判定した場合、ステップS161へ遷移する。そして、ステップS161では、端末500は、CSGセルのある周波数帯域の周辺セルのmeasurementを行う。そして、ステップS156へ遷移し、CSGセルのある周波数帯域の周辺セルのmeasurementを含めて、測定結果報告を基地局600へ送信する。
以上、実施の形態3の無線通信システムによれば、アクセス可能なCSGセルのキャリア周波数がエクステンションキャリアである場合でも、端末500が隣接セルリストを用いてエクステンションキャリアのペアとなるコンポーネントキャリアを検出することで、受信品質測定を可能になり、端末500にとって最適なコンポーネントキャリアセットによるキャリアアグリゲーションを行いながら、CSGセルの検出が可能になる。
なお、本実施の形態において、CSGセルのあるキャリア周波数がエクステンションキャリアである場合に、該当エクステンションキャリアとそのペアとなるバックワードコンパチブルキャリアまたはノンバックワードコンパチブルキャリアに加えて、その周辺のコンポーネントキャリアの受信品質測定を行い、基地局に通知してもよい。
なお、本実施の形態において、エクステンションキャリアのペアとなるコンポーネントキャリアの検出方法として、隣接セルリストに記載された、全コンポーネントキャリアのタイプ及びペアの情報を用いてもよい。また、隣接セルリストにエクステンションキャリアは記載されておらず、エクステンションキャリアは必ず隣接する高い周波数(または低い周波数)のコンポーネントキャリアとペアとなると既定されていることも考えられる。なお、本実施の形態において、隣接セルリストに加えて報知情報で送られているキャリア周波数情報を使用することも考えられる。
なお、上記実施の形態ではアンテナとして説明したが、アンテナポートでも同様に適用できる。アンテナポート(antenna port)とは、1本または複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。例えば、LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なるReference signalを送信できる最小単位として規定されている。また、アンテナポートはPrecoding vectorの重み付けを乗算する最小単位として規定されることもある。
また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2009年9月30日出願の日本特許出願(特願2009-228278)に基づくものであり、その内容はここに参照として取り込まれる。
本発明に係る無線送受信装置及び無線通信システムは、無線送受信装置にとって適切なコンポーネントキャリアセットによるキャリアアグリゲーションを可能とする効果を有し、無線送受信等として有用である。
100、300、500 端末装置(端末)
101、301 受信品質測定部
103、303 CSGセル情報記憶部
105、305 CSGセル判定部
107、307 測定報告作成部
109、309 受信部
111、311 送信部
113、313 送受信アンテナ
200、400、600 基地局装置(基地局)
201、401 測定結果報告判定部
203、403 コンポーネントキャリア選択部
205、405 制御メッセージ作成部
207、407 受信部
209、409 送信部
211、411 送受信アンテナ
101、301 受信品質測定部
103、303 CSGセル情報記憶部
105、305 CSGセル判定部
107、307 測定報告作成部
109、309 受信部
111、311 送信部
113、313 送受信アンテナ
200、400、600 基地局装置(基地局)
201、401 測定結果報告判定部
203、403 コンポーネントキャリア選択部
205、405 制御メッセージ作成部
207、407 受信部
209、409 送信部
211、411 送受信アンテナ
Claims (11)
- 参照信号と制御情報を受信する受信部と、
前記受信部により受信した前記参照信号を測定する測定部と、
前記測定部の測定結果に基づいて、測定結果報告を作成する測定結果報告作成部と、
アクセス可能な小セルを示すリスト及び前記アクセス可能な小セルの中で以前にアクセスした小セルの識別情報を記憶する記憶部と、
前記測定部の測定結果と、前記記憶部に記憶された前記小セルの識別情報とから、前記以前にアクセスした小セルが自装置の検出可能範囲に存在するか否かを判定する小セル判定部と、
前記測定結果報告作成部により作成された前記測定結果報告を送信する送信部と、
を具備する無線送受信装置。 - 前記測定結果報告作成部は、
前記小セル判定部の判定に基づき、前記以前にアクセスした小セルの位置するキャリア周波数情報を含めた前記測定結果報告を作成することを特徴とする、請求項1に記載の無線送受信装置。 - 前記測定部は、
前記小セル判定部の判定に基づき、前記以前にアクセスした小セルが自装置の検出可能範囲に存在する場合に、小セルの位置するキャリア周波数帯の周辺キャリア周波数の測定を行い、
前記測定結果報告作成部は、
前記小セルの位置するキャリア周波数帯の周辺キャリア周波数の測定結果を含めた測定結果報告を作成することを特徴とする、
請求項2に記載の無線送受信装置。 - 前記小セル判定部は、小セルとマクロセルの中心周波数が異なると判定する場合に、前記測定部に、前記小セルの周辺キャリア周波数帯の周辺キャリア周波数上の、セルの受信品質測定を行うことを指示することを特徴とする、
請求項3に記載の無線送受信装置。 - 前記小セル判定部は、小セルの存在する周波数帯域にマクロセルがないと判定する場合に、当該周波数帯域のコンポーネントキャリア及び、対となるコンポーネントキャリアの有無を判定し、前記測定部に受信品質測定を行うことを指示することを特徴とする、
請求項3に記載の無線送受信装置。 - 外部装置が以前にアクセスした小セルの位置するキャリア周波数情報を含み、参照信号を測定することで得られる測定結果報告を受信する受信部と、前記受信部により受信した前記測定結果報告を判定する測定結果報告判定部と、前記測定結果報告に含まれる情報に基づいて、前記外部装置がキャリアアグリゲーションで使用するコンポーネントキャリアのセットを選択するコンポーネントキャリア選択部と、前記コンポーネントキャリア選択部によって選択されたキャリアの使用を前記外部装置へ指示するための制御メッセージを作成する制御メッセージ作成部と、前記制御メッセージ作成部により作成された制御メッセージを前記外部装置へ送信する送信部と、
を具備する無線送受信装置。 - 前記コンポーネントキャリア選択部は、前記測定結果報告に含まれる情報に基づいて、小セルのあるキャリア周波数を含むコンポーネントキャリアを優先的に選択することを特徴とする、
請求項6に記載の無線送受信装置。 - 前記コンポーネントキャリア選択部は、前記測定結果報告に含まれる情報に基づいて、受信品質の高いコンポーネントキャリアを優先的に選択することを特徴とする、
請求項7に記載の無線送受信装置。 - 請求項1から請求項5のいずれか1項に記載の無線送受信装置を具備する端末装置。
- 請求項6から請求項8のいずれか1項に記載の無線送受信装置を具備する基地局装置。
- 請求項9に記載の端末装置と請求項10に記載の基地局装置からなる無線通信システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011534089A JPWO2011040041A1 (ja) | 2009-09-30 | 2010-09-30 | 無線送受信装置および無線通信システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009228278 | 2009-09-30 | ||
JP2009-228278 | 2009-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011040041A1 true WO2011040041A1 (ja) | 2011-04-07 |
Family
ID=43825885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/005904 WO2011040041A1 (ja) | 2009-09-30 | 2010-09-30 | 無線送受信装置および無線通信システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011040041A1 (ja) |
WO (1) | WO2011040041A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013024574A1 (ja) * | 2011-08-12 | 2013-02-21 | パナソニック株式会社 | ハンドオーバ制御方法、無線通信端末及び無線通信装置 |
WO2014020998A1 (ja) * | 2012-07-31 | 2014-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | 通信システム、マクロ基地局装置、移動端末装置及び通信方法 |
WO2014054201A1 (ja) * | 2012-10-05 | 2014-04-10 | 日本電気株式会社 | 無線通信システム、無線局、無線端末、通信制御方法、及びコンピュータ可読媒体 |
WO2014203620A1 (ja) * | 2013-06-19 | 2014-12-24 | ソニー株式会社 | 通信制御装置、通信制御方法及び端末装置 |
WO2019161741A1 (zh) * | 2018-02-24 | 2019-08-29 | 维沃移动通信有限公司 | 辅小区组添加方法、终端设备及主节点 |
US20230141890A1 (en) * | 2021-11-10 | 2023-05-11 | Harris Global Communications, Inc. | Systems and methods for supporting near-real time propagation prediction and frequency management |
-
2010
- 2010-09-30 WO PCT/JP2010/005904 patent/WO2011040041A1/ja active Application Filing
- 2010-09-30 JP JP2011534089A patent/JPWO2011040041A1/ja not_active Withdrawn
Non-Patent Citations (5)
Title |
---|
ALCATEL-LUCENT: "Inbound Mobility Proximity report options", 3GPP TSG-RAN WG2 MEETING #67, - 24 August 2009 (2009-08-24) * |
MOTOROLA: "[66b#5] UMTSLTE: Inbound CSG mobility LTE", 3GPP TSG-RAN WG2#67 R2-094632, 24 August 2009 (2009-08-24) * |
NTT DOCOMO, INC.: "HeNB inbound handover for Rel-9 UE", 3GPP TSG-RAN WG2 #66BIS, 29 June 2009 (2009-06-29) * |
NTT DOCOMO: "Views on Component Carrier Types for Carrier Aggregation in LTE-Advanced", 3GPP TSG RAN WG1 MEETING #58, - 24 August 2009 (2009-08-24) * |
PANASONIC: "CSG measurement with proximity indication", 3GPP TSG RAN WG2#67 R2-094188, 24 August 2009 (2009-08-24) * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9591545B2 (en) | 2011-08-12 | 2017-03-07 | Panasonic Intellectual Property Corporation Of America | Handover control method, wireless communication terminal, and wireless communication device |
WO2013024574A1 (ja) * | 2011-08-12 | 2013-02-21 | パナソニック株式会社 | ハンドオーバ制御方法、無線通信端末及び無線通信装置 |
JPWO2013024574A1 (ja) * | 2011-08-12 | 2015-03-05 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | ハンドオーバ制御方法、無線通信端末及び無線通信装置 |
WO2014020998A1 (ja) * | 2012-07-31 | 2014-02-06 | 株式会社エヌ・ティ・ティ・ドコモ | 通信システム、マクロ基地局装置、移動端末装置及び通信方法 |
CN104488307B (zh) * | 2012-07-31 | 2018-11-02 | 株式会社Ntt都科摩 | 通信系统、宏基站装置、移动终端装置以及通信方法 |
CN104488307A (zh) * | 2012-07-31 | 2015-04-01 | 株式会社Ntt都科摩 | 通信系统、宏基站装置、移动终端装置以及通信方法 |
JP2021184651A (ja) * | 2012-10-05 | 2021-12-02 | 日本電気株式会社 | 無線通信システム、無線局、無線端末、及びこれらの通信制御方法 |
JPWO2014054201A1 (ja) * | 2012-10-05 | 2016-08-25 | 日本電気株式会社 | 無線通信システム、無線局、無線端末、通信制御方法、及びプログラム |
CN104704900A (zh) * | 2012-10-05 | 2015-06-10 | 日本电气株式会社 | 无线电通信系统、无线电站、无线电终端、通信控制方法和计算机可读介质 |
CN108934076B (zh) * | 2012-10-05 | 2024-02-27 | 日本电气株式会社 | 无线电终端、基站、无线电通信系统及其方法 |
US9743448B2 (en) | 2012-10-05 | 2017-08-22 | Nec Corporation | Establishing simultaneous radio connection between a user equipment and two eNodeBs |
KR101817969B1 (ko) * | 2012-10-05 | 2018-01-12 | 닛본 덴끼 가부시끼가이샤 | 무선 통신 시스템, 무선국, 무선 단말, 통신 제어 방법, 및 컴퓨터 판독 가능한 매체 |
CN104704900B (zh) * | 2012-10-05 | 2018-07-20 | 日本电气株式会社 | 无线电通信系统、无线电站、无线电终端、通信控制方法和计算机可读介质 |
US10757746B1 (en) | 2012-10-05 | 2020-08-25 | Nec Corporation | Establishing simultaneous radio connection between a user equipment and two eNodeBs |
CN108934076A (zh) * | 2012-10-05 | 2018-12-04 | 日本电气株式会社 | 无线电终端、基站、无线电通信系统及其方法 |
CN108934077A (zh) * | 2012-10-05 | 2018-12-04 | 日本电气株式会社 | 无线电站、无线电终端及其方法 |
CN108934077B (zh) * | 2012-10-05 | 2024-02-23 | 日本电气株式会社 | 无线电站、无线电终端及其方法 |
JP7428229B2 (ja) | 2012-10-05 | 2024-02-06 | 日本電気株式会社 | 無線局、無線端末、及びこれらの方法 |
JP7207475B2 (ja) | 2012-10-05 | 2023-01-18 | 日本電気株式会社 | 無線通信システム、無線局、無線端末、及びこれらの通信制御方法 |
US10448445B2 (en) | 2012-10-05 | 2019-10-15 | Nec Corporation | Establishing simultaneous radio connection between a user equipment and two eNodeBs |
WO2014054201A1 (ja) * | 2012-10-05 | 2014-04-10 | 日本電気株式会社 | 無線通信システム、無線局、無線端末、通信制御方法、及びコンピュータ可読媒体 |
US10869350B2 (en) | 2012-10-05 | 2020-12-15 | Nec Corporation | Establishing simultaneous radio connection between a user equipment and two eNodeBs |
WO2014203620A1 (ja) * | 2013-06-19 | 2014-12-24 | ソニー株式会社 | 通信制御装置、通信制御方法及び端末装置 |
US10660099B2 (en) | 2013-06-19 | 2020-05-19 | Sony Corporation | Communication control device, communication control method, and terminal device |
US10499397B2 (en) | 2013-06-19 | 2019-12-03 | Sony Corporation | Communication control device, communication control method, and terminal device |
US10244533B2 (en) | 2013-06-19 | 2019-03-26 | Sony Corporation | Communication control device, communication control method, and terminal device |
US9661507B2 (en) | 2013-06-19 | 2017-05-23 | Sony Corporation | Communication control device, communication control method, and terminal device |
CN110198545B (zh) * | 2018-02-24 | 2021-12-14 | 维沃移动通信有限公司 | 一种辅小区组添加方法、终端设备及主节点 |
US11546817B2 (en) | 2018-02-24 | 2023-01-03 | Vivo Mobile Communication Co., Ltd. | Method of adding secondary cell group, terminal device, and master node |
CN110198545A (zh) * | 2018-02-24 | 2019-09-03 | 维沃移动通信有限公司 | 一种辅小区组添加方法、终端设备及主节点 |
WO2019161741A1 (zh) * | 2018-02-24 | 2019-08-29 | 维沃移动通信有限公司 | 辅小区组添加方法、终端设备及主节点 |
US20230141890A1 (en) * | 2021-11-10 | 2023-05-11 | Harris Global Communications, Inc. | Systems and methods for supporting near-real time propagation prediction and frequency management |
US12041010B2 (en) * | 2021-11-10 | 2024-07-16 | Harris Global Communications, Inc. | Systems and methods for supporting near-real time propagation prediction and frequency management |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011040041A1 (ja) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2767119B1 (en) | A user equipment and a radio network node, and methods therein for device-to-device communication | |
EP2732661B1 (en) | Method and apparatus providing multi-level proximity indication and small cell discovery | |
US20210400548A1 (en) | Mobile communications network, communications device, infrastructure equipment and methods | |
US20130044627A1 (en) | Method of Handling Mobile Device Mobility and Related Communication Device | |
US20110319085A1 (en) | Controller, radio network controller, base station apparatus, and communication control method | |
US20130225168A1 (en) | Method and apparatus for base station identification discovery in wireless communications | |
US9277584B2 (en) | Carrier aggregation support for home base stations | |
JP6695893B2 (ja) | ミリメートル波ネットワークにおけるバックホール動作のための方法 | |
KR20130042617A (ko) | 통신 네트워크에서 셀을 선택하는 방법 및 장치 | |
KR20110048468A (ko) | 무선 통신 시스템에서 csg 셀을 검출하는 방법 및 이를 위한 장치 | |
US20140233529A1 (en) | Selecting a type of circuit switched fallback | |
WO2014180599A1 (en) | Rrc connection re-establishment in the presence of pci confusion | |
WO2011040041A1 (ja) | 無線送受信装置および無線通信システム | |
JP2022119926A (ja) | 測定報告とセル識別子に基づいた隣接セル間のハンドオーバのターゲットセルの決定 | |
CN103999542B (zh) | 通信系统 | |
JP6473163B2 (ja) | 隣接セルに近い移動局を識別する方法 | |
EP3462783A1 (en) | Access method, user equipment, control device, and communication system | |
US11082902B2 (en) | Method and apparatus for enabling a user equipment to use cells having different frequencies | |
EP2627121B1 (en) | A method for efficient mobility handling in a mobile communication system | |
TW201626838A (zh) | 用於控制訊胞重選的通訊終端及方法 | |
WO2013123637A1 (en) | Enhanced measurement for new carrier type | |
KR20110046817A (ko) | 이동 통신 시스템 및 이를 이용한 사용자 장치의 핸드오버 방법 | |
KR20160058677A (ko) | 비면허대역에서 채널 측정 방법 및 그 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10820162 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011534089 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10820162 Country of ref document: EP Kind code of ref document: A1 |