WO2011039881A1 - Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion - Google Patents

Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion Download PDF

Info

Publication number
WO2011039881A1
WO2011039881A1 PCT/JP2009/067158 JP2009067158W WO2011039881A1 WO 2011039881 A1 WO2011039881 A1 WO 2011039881A1 JP 2009067158 W JP2009067158 W JP 2009067158W WO 2011039881 A1 WO2011039881 A1 WO 2011039881A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning pin
electrostatic chuck
coplanar
positioning
peripheral member
Prior art date
Application number
PCT/JP2009/067158
Other languages
French (fr)
Japanese (ja)
Inventor
ジュンミン ウ
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to PCT/JP2009/067158 priority Critical patent/WO2011039881A1/en
Priority to TW099133292A priority patent/TWI498489B/en
Publication of WO2011039881A1 publication Critical patent/WO2011039881A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B19/00Bolts without screw-thread; Pins, including deformable elements; Rivets
    • F16B19/02Bolts or sleeves for positioning of machine parts, e.g. notched taper pins, fitting pins, sleeves, eccentric positioning rings

Definitions

  • the present invention relates to a positioning pin, and more particularly to a positioning pin that can be adapted to deformation caused by a difference in thermal expansion coefficient.
  • a wafer to be processed is usually fixed by an electrostatic chuck (ESC).
  • the electrostatic chuck is positioned by a positioning pin with respect to the focus ring and the lower quartz ring located below the focus ring.
  • there are various electrostatic chucks, focus rings, and lower-layer quartz rings (hereinafter sometimes referred to as “members”) when the wafer is carried into and out of the etching chamber and during the etching period. Shifting due to the factor causes wafer arcing or electrostatic chuck arcing (ESC arcing). The factors of the shift can be roughly divided as follows. (1) Deviation occurs due to vacuum suction in the etching chamber.
  • Deviation occurs due to a pressure difference between the wafer load lock module (LLM, load-lock module) and the etching chamber. That is, when the wafer transfer system passes the wafer through the wafer load lock module and carries it into the etching chamber, the wafer load lock module is first evacuated and the gate located between the wafer load lock module and the etching chamber. Is opened after the inside of the wafer load lock module is evacuated, and the wafer transfer system carries the wafer into the etching chamber. A pressure difference occurs at the moment when the gate is opened and closed, thereby causing a shift in the member. (3) Deviation occurs due to temperature change.
  • LLM wafer load lock module
  • the temperature of the electrostatic chuck is repeatedly raised and lowered between about 0 ° C. and about 40 ° C., and each member has a different coefficient of thermal expansion, causing a shift in the member.
  • the problem of deviation due to the pressure difference (that is, deviation due to the above (1) and (2)) has already been improved.
  • the method of reducing the pressure difference during vacuum suction by controlling the flow rate of the low vacuum throttle at the exhaust port of the etching chamber, or the wafer load lock module before opening the gate by changing the startup sequence and pressure sensor Improvements such as reducing the pressure difference between the etching chamber and the etching chamber have been made.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a positioning pin capable of removing a shift caused by a difference in thermal expansion coefficient between members.
  • the present invention is a positioning pin, which is a first part that is a hollow cylindrical body and a hollow multi-sided pillar body having a plurality of side surfaces, and is integrally coaxially molded with the first part.
  • the plurality of side surfaces have a first side surface, a second side surface, and a third side surface, the first side surface is parallel to the second side surface, and the third side surface is A second portion located between the first side surface and the second side surface and perpendicular to the first side surface and the second side surface; and the first portion along the third side surface; A groove portion formed continuously with the second portion and penetrating the first portion and the second portion;
  • the positioning pin of the present invention is used for an electrostatic chuck and a peripheral member thereof, and when the positioning pin is inserted into the electrostatic chuck and the peripheral member, the first portion becomes a circular pin hole of the electrostatic chuck.
  • the first side surface and the second side surface of the second part can be in close contact with two opposite parallel long sides of the oval pin hole of the peripheral member.
  • an oval is a shape which consists of two opposing parallel long sides which are linear, and two opposing short sides which curve outside in a semicircular shape.
  • Another aspect of the present invention is a positioning pin, a first portion that is a hollow cylindrical body, A hollow polygonal column having a plurality of side surfaces, wherein the plurality of side surfaces have a first side surface, a second side surface, a third side surface, and a fourth side surface, of which the first The side surface is parallel to the second side surface, and the third side surface and the fourth side surface are located between the first side surface and the second side surface and the first side surface And a second portion perpendicular to the second side surface;
  • a hollow polygonal column having a plurality of side surfaces, integrally formed with the first part and the second part, and interposed between the first part and the plurality of side surfaces, A fifth side surface, a sixth side surface, a seventh side surface, and an eighth side surface, wherein the fifth side surface is parallel to the sixth side surface, the seventh side surface and the eighth side surface; Is located between the fifth side surface and the sixth side surface and is perpendicular to the fifth side surface and the sixth side surface, and the first
  • the first portion, the second portion, and the third portion are formed continuously along the third side surface and the seventh side surface that are coplanar, and the first portion, the second portion, and the first portion A first groove passing through the three parts;
  • the second groove portion formed on the fourth side surface of the second portion, penetrating the second portion, and parallel to the first groove portion.
  • Each of the second groove portions can extend to the first portion and the third portion in the axial direction of the positioning pin.
  • the first side surface and the fifth side surface may be non-coplanar, and the second side surface and the sixth side surface may be non-coplanar.
  • Each of the second groove portions can extend to the first portion and the third portion in the axial direction of the positioning pin.
  • the positioning pin of the present invention is used for an electrostatic chuck and its peripheral member, and the peripheral member has a focus ring and a lower quartz ring, and the positioning pin includes the electrostatic chuck, the focus ring, and the When inserted into the lower quartz ring, the first portion is tightly inserted into the circular pin hole of the electrostatic chuck, and the first side surface and the second side surface of the second portion are each of the lower quartz ring. In close contact with two opposite parallel long sides of the oval pin hole, the fifth side surface and the sixth side surface of the third portion being respectively opposite the two oval pin holes of the focus ring In close contact with the parallel long sides.
  • a shift caused by a difference in thermal expansion coefficient between the members can be removed.
  • FIG. 3A is a cross-sectional view taken along line aa in FIG. 3A
  • FIG. 3B is a cross-sectional view taken along line bb in FIG.
  • FIG. 6A is a front view of the positioning pin shown in FIG. 6,
  • FIG. 6B is a rear view of the positioning pin shown in FIG. 6, and
  • FIG. 6C is a sectional view taken along line ZZ in FIG. .
  • 6A is a cross-sectional view taken along line a′-a ′ in FIG. 6,
  • FIG. 6B is a cross-sectional view taken along line b′-b ′ in FIG. 6,
  • FIG. FIG. 6 is a cross-sectional view taken along c′-c ′.
  • FIG. 1 is an explanatory view showing a state in which the electrostatic chuck 3, the focus ring 5 and the lower layer quartz ring 7 are positioned by the positioning pins 1.
  • the positioning pins 1 are simultaneously inserted into the pin holes of the electrostatic chuck 3, the focus ring 5 and the lower quartz ring 7.
  • the positioning range of the positioning pin 1 includes the three members 3, 5, and 7.
  • the positioning pin 1 is made of a polyimide material (for example, Vespel (registered trademark of EI DuPont de Nemours and Company) SP-1) or other suitable material. Is done.
  • the electrostatic chuck 3 is made of aluminum.
  • the focus ring 5 is made of silicon.
  • the lower quartz ring 7 is made of quartz.
  • the pin holes of the electrostatic chuck 3 are circular, the pin holes of the focus ring 5 and the lower quartz ring 7 are both oval, and the outer shape of the positioning pin 1 is a solid cylindrical shape. .
  • the positioning pin 1 is inserted completely tightly into the circular pin hole of the electrostatic chuck 3 (not shown), and other portions of the positioning pin 1 are oval pin holes (in the focus ring 5 and the lower quartz ring 7). 2) can be inserted simultaneously.
  • FIG. 2 is an explanatory view showing a state in which the conventional positioning pin 1 is inserted into the oval pin hole 51 of the focus ring 5. As shown in FIG.
  • the electrostatic chuck 3 has a disk-like structure and the focus ring 5 and the lower quartz ring 7 have a ring-like structure, the deviation of thermal expansion in the normal direction of these members 3, 5, 7 is It becomes even more significant compared to the volumetric thermal expansion shift.
  • the volume thermal expansion shift becomes more obvious. In such a situation, when thermal expansion occurs in the electrostatic chuck 3, the focus ring 5, the lower quartz ring 7 and the positioning pin 1, the volume thermal expansion shift of the positioning pin 1 is the other members 3, 5, 7.
  • FIG. 3A is a three-dimensional view of the positioning pin 100 according to the embodiment of the present invention
  • FIG. 3B is a cross-sectional view taken along line YY in FIG. 3A
  • the positioning pin 100 has a first part A and a second part B which are integrally coaxially molded, and has a hollow structure and a groove part 110, whereby “C A positioning effect is obtained by the spring tension forming a mold structure.
  • the groove 110 may form an opening of this “C” type structure.
  • 4A is a cross-sectional view taken along line aa in FIG. 3A, and shows a cross section of the first portion A.
  • FIG. 4B is a cross-sectional view taken along the line bb in FIG. 3A, and shows a cross section of the second portion B.
  • the first part A is a hollow cylinder.
  • the second part B is a hollow polygonal column and has a plurality of side surfaces. On these side surfaces of the second part B, the first side surface 120 and the second side surface 120 ′ (FIG. 4B) facing and parallel to each other have the positioning pin 100 in the focus ring 5 and the lower quartz ring 7.
  • the groove portion 110 is formed continuously from the first portion A and the second portion B along the other third side surface 130 between the first side surface 120 and the second side surface 120 ′. A and the second part B are penetrated. Also, the third side surface 130 is perpendicular to the first side surface 120 and the second side surface 120 '.
  • the positioning pin 100 has a hollow structure and the groove portion 110, when thermal expansion / cooling / shrinkage occurs in the electrostatic chuck 3, the focus ring 5, and the lower layer quartz ring 7, the positioning pin 100 is connected to the members 3, 5, 7. Adapts to deformation due to differences in thermal expansion coefficient and reduces shift due to deformation.
  • the positioning pin has a solid structure, the entire volume of the positioning pin changes depending on the temperature during the thermal expansion / cooling / shrinkage, so that the deformation cannot be applied to the other members 3, 5, 7.
  • the positioning pin 100 since the positioning pin 100 has the hollow structure and the groove 110, the form of thermal expansion is changed from volumetric thermal expansion to linear thermal expansion, and can be applied to deformations occurring in the other members 3, 5, and 7. .
  • the contact between the first side surface 120 and the second side surface 120 'of the second portion B of the positioning pin 100 and the long sides 51a and 51b changes from line contact to surface contact.
  • the contact area is larger than the contact area of the line contact, and therefore, it is difficult for plasma to enter the pin holes of each member during plasma etching, thereby extending the service life of the positioning pin 100 and the other members 3. 5 and 7 are prevented from being damaged by thermal expansion of the positioning pin 100.
  • the single positioning pin 100 performs circumferential positioning. When three or more positioning pins 100 are arranged at equal intervals on the same circumference of the electrostatic chuck 3, the focus ring 5 and the lower quartz ring 7, the normal direction due to thermal expansion or cooling contraction can be obtained. In response to the deviation, a positioning effect is produced for the members 3, 5, 7.
  • FIG. 6 is a three-dimensional view of a positioning pin 200 according to another embodiment of the present invention.
  • 7A is a front view of the positioning pin 200 shown in FIG. 6,
  • FIG. 7B is a rear view of the positioning pin 200 shown in FIG. 6,
  • FIG. 7C is FIG.
  • FIG. 6 is a sectional view taken along line ZZ.
  • the positioning pin 200 has a first portion A ′, a second portion B ′, and a third portion C ′ that are integrally coaxially molded, and has a hollow structure and a first groove portion 210.
  • a second groove portion 240 is a cross-sectional view taken along line a′-a ′ in FIG.
  • FIG. 8B is a cross-sectional view taken along line b′-b ′ in FIG. 6 and shows a cross section of the second portion B ′.
  • FIG. 8C is a cross-sectional view taken along the line c′-c ′ in FIG. 6 and shows a cross section of the third portion C ′.
  • the positioning pin 200 also has a “C” -type structure, and the first groove portion 210 may form an opening of this type of “C” -type structure, and a positioning effect is obtained by spring tension.
  • the first part A ' is a hollow cylinder.
  • the second portion B ' is a hollow polygonal column and has a plurality of side surfaces. On these side surfaces of the second part B ′, the opposing parallel first side surface 220 and second side surface 220 ′ are respectively the lengths of the lower quartz ring 7 when the positioning pin 200 is inserted into the lower quartz ring 7. Close contact with two opposite parallel long sides of the circular pin hole (similar to FIG. 5).
  • the third portion C ′ is also a hollow polygonal column and has a plurality of side surfaces.
  • the opposite parallel fifth side surface 230 and sixth side surface 230 ′ are respectively oblong pin holes of the focus ring 5 when the positioning pin 200 is inserted into the focus ring 5. In close contact with two opposite parallel long sides (similar to FIG. 5).
  • the seventh side surface 235 and the eighth side surface 235 ′ are the first side surface 235 ′. It is perpendicular to the fifth side surface 230 and the sixth side surface 230 ′.
  • the first side surface 220 and the fifth side surface 230 may be either a coplanar surface or a non-coplanar surface.
  • the second side surface 220 'and the sixth side surface 230' may be either coplanar or non-coplanar.
  • the first side surface 220 and the fifth side surface 230 are non-coplanar, and the second side surface 220 'and the sixth side surface 230' are also non-coplanar. That is, there is a step between the first side surface 220 and the fifth side surface 230, and there is also a step between the second side surface 220 'and the sixth side surface 230'.
  • the third side surface 225 and the seventh side surface 235 are coplanar, and the fourth side surface 225 'and the eighth side surface 235' are coplanar.
  • the first side surface 220 and the fifth side surface 230 are coplanar, and the second side surface 220 'and the sixth side surface 230' are also coplanar. That is, there is no step between the first side surface 220 and the fifth side surface 230, and there is no step between the second side surface 220 'and the sixth side surface 230'.
  • the first groove portion 210 is formed continuously with the first portion A ′, the second portion B ′, and the third portion C ′ along the coplanar third surface 225 and the seventh surface 235, and the first portion A ′.
  • the second groove part 240 is formed on the fourth side surface 225 ′ of the second part B ′, passes through the second part B ′, and the first groove part 210 is parallel to the second groove part 240.
  • the second groove portion 240 also extends in the axial direction of the positioning pin 200 to the columnar body of the first portion A ′ and the eighth side surface 235 ′ of the third portion C ′, respectively.
  • a groove portion penetrating in a part of 235 ′ is formed.
  • the positioning pin 200 Since the positioning pin 200 has a hollow structure and the first groove portion 210, the thermal expansion form changes from volume thermal expansion to linear thermal expansion, and can be adapted to deformation occurring in the other members 3, 5, and 7. is there. In addition, since the second portion B ′ of the positioning pin 200 has the second groove portion 240, the second portion B ′ itself has the function of a plate spring, and the adaptability to deformation of the positioning pin 200 is improved. To do.
  • the positioning pins 200 are also positioned in the semiconductor plasma etching facility by the arrangement method of the positioning pins 100, for example. Further, on the same circumference of the electrostatic chuck 3, the focus ring 5 and the lower layer quartz ring 7, three or more positioning pins 200 may be arranged on this circumference at equal intervals. In this case, a shift effect in the normal direction due to thermal expansion or cooling shrinkage is received, and a positioning effect is generated for the members 3, 5, 7.
  • the positioning pins of the present invention are not only used in semiconductor plasma etching equipment, but also other techniques that require positioning, such as positioning of members, structures, etc. that cause deviation due to differences in thermal expansion coefficients. Applicable to fields.
  • the positioning pin of the present invention may be used at a joint location of a bridge or a building, or may be applied to joint positioning of a motor vehicle component.
  • the present invention is useful for positioning members having different thermal expansion coefficients.

Abstract

Disclosed is a positioning pin comprised of a first portion, a second portion, and a groove portion. The first portion is composed of a hollow cylindrical element. The second portion is composed of a hollow polygonal column element having a plurality of side surfaces, and is coaxially and integrally formed with the first portion. The side surfaces are comprised of a first side surface, a second side surface, and a third side surface. The first side surface is in parallel with the second side surface. The third side surface is positioned between the first side surface and the second side surface, and is perpendicular to the first side surface and the second side surface. The groove portion is continuously formed in the first portion and the second portion along the third portion, and penetrates through the first portion and the second portion.

Description

熱膨張係数の差異によって生じる変形に適応可能な位置決めピンPositioning pin adaptable to deformation caused by difference in thermal expansion coefficient
 本発明は位置決めピンに関し、特に熱膨張係数の差異によって生じる変形に適応可能な位置決めピンに関する。 The present invention relates to a positioning pin, and more particularly to a positioning pin that can be adapted to deformation caused by a difference in thermal expansion coefficient.
 半導体プラズマエッチング技術において、被処理ウェハは通常静電チャック(ESC、electrostatic chuck)により固定される。静電チャックは位置決めピンにより、フォーカスリング及びこのフォーカスリング下方に位置する下層石英リングとの位置決めが行われる。しかし、ウェハをエッチング処理室へ搬入、搬出する際や、エッチングを行っている期間に、静電チャック、フォーカスリング及び下層石英リング(以下、「部材」と記載する場合がある。)が様々な要因により偏移(shift)し、ウェハアーキング(wafer arcing)または静電チャックアーキング(ESC arcing)が発生する。前記偏移の要因はおおよそ次のように分けられる。(1)エッチング処理室内の真空吸引により偏移が生じる。即ちチャンバー内の大気を真空にする瞬間の非常に大きな圧力差により前記部材に偏移が生じる。(2)ウェハロードロックモジュール(LLM、load-lock module)とエッチング処理室間の圧力差により偏移が生じる。即ちウェハ搬送システムがウェハをウェハロードロックモジュール内を通過させてエッチング処理室に搬入する際、ウェハロードロックモジュール内を先ず真空にして、ウェハロードロックモジュールとエッチング処理室との間に位置するゲートはウェハロードロックモジュール内が真空にされた後に開かれ、ウェハ搬送システムはウェハをエッチング処理室内へ搬入する。このゲートの開閉の瞬間に圧力差が生じ、それにより前記部材に偏移が生じる。(3)温度変化により偏移が生じる。即ちエッチング処理中に、静電チャックは約0℃から約40℃の間で繰り返し温度の上げ下げの操作が行われ、各部材の熱膨張係数がいずれも異なるため、前記部材に偏移が生じる。従来の改良方法においては、圧力差による偏移の問題(即ち前記(1)及び(2)による偏移)については、既に改良が行われている。例えば、エッチング処理室の排気口の低真空スロットルの流量を制御して真空吸引時の圧力差を小さくする方法や、また、起動順序と圧力センサの変更によりゲートを開く前に、ウェハロードロックモジュールとエッチング処理室との間の圧力差を小さくするなどの改良が行われている。しかし、最も根本的な問題点である、各部材の熱膨張係数の差異による偏移(即ち、前記(3)による偏移)が依然残されている。よって、各部材の熱膨張係数の差異によって生じる偏移が除去可能な位置決めピンの開発が急務である。 In the semiconductor plasma etching technology, a wafer to be processed is usually fixed by an electrostatic chuck (ESC). The electrostatic chuck is positioned by a positioning pin with respect to the focus ring and the lower quartz ring located below the focus ring. However, there are various electrostatic chucks, focus rings, and lower-layer quartz rings (hereinafter sometimes referred to as “members”) when the wafer is carried into and out of the etching chamber and during the etching period. Shifting due to the factor causes wafer arcing or electrostatic chuck arcing (ESC arcing). The factors of the shift can be roughly divided as follows. (1) Deviation occurs due to vacuum suction in the etching chamber. That is, the member is shifted due to a very large pressure difference at the moment when the atmosphere in the chamber is evacuated. (2) Deviation occurs due to a pressure difference between the wafer load lock module (LLM, load-lock module) and the etching chamber. That is, when the wafer transfer system passes the wafer through the wafer load lock module and carries it into the etching chamber, the wafer load lock module is first evacuated and the gate located between the wafer load lock module and the etching chamber. Is opened after the inside of the wafer load lock module is evacuated, and the wafer transfer system carries the wafer into the etching chamber. A pressure difference occurs at the moment when the gate is opened and closed, thereby causing a shift in the member. (3) Deviation occurs due to temperature change. That is, during the etching process, the temperature of the electrostatic chuck is repeatedly raised and lowered between about 0 ° C. and about 40 ° C., and each member has a different coefficient of thermal expansion, causing a shift in the member. In the conventional improvement method, the problem of deviation due to the pressure difference (that is, deviation due to the above (1) and (2)) has already been improved. For example, the method of reducing the pressure difference during vacuum suction by controlling the flow rate of the low vacuum throttle at the exhaust port of the etching chamber, or the wafer load lock module before opening the gate by changing the startup sequence and pressure sensor Improvements such as reducing the pressure difference between the etching chamber and the etching chamber have been made. However, the most fundamental problem, the shift due to the difference in the thermal expansion coefficient of each member (that is, the shift according to the above (3)) still remains. Therefore, there is an urgent need to develop a positioning pin that can eliminate the deviation caused by the difference in thermal expansion coefficient of each member.
 本発明は、上記事情を考慮してなされたもので、その目的とするところは、部材間の熱膨張係数の差異によって生じる偏移が除去可能な位置決めピンを提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a positioning pin capable of removing a shift caused by a difference in thermal expansion coefficient between members.
 前述した目的を達成するため、本発明は、位置決めピンであって、中空円柱体である第一部分と、複数の側表面を有する中空多辺形柱体であり、前記第一部分と一体同軸成型され、前記複数の側表面は第一側表面、第二側表面及び第三側表面を有し、前記第一側表面は前記第二側表面に対して平行であり、前記第三側表面は前記第一側表面と前記第二側表面との間に位置し、且つ前記第一側表面と前記第二側表面に垂直である第二部分と、前記第三側表面に沿って前記第一部分と前記第二部分に連続して形成され、且つ前記第一部分と前記第二部分を貫通している溝部と、有する。 In order to achieve the above-described object, the present invention is a positioning pin, which is a first part that is a hollow cylindrical body and a hollow multi-sided pillar body having a plurality of side surfaces, and is integrally coaxially molded with the first part. The plurality of side surfaces have a first side surface, a second side surface, and a third side surface, the first side surface is parallel to the second side surface, and the third side surface is A second portion located between the first side surface and the second side surface and perpendicular to the first side surface and the second side surface; and the first portion along the third side surface; A groove portion formed continuously with the second portion and penetrating the first portion and the second portion;
 本発明の位置決めピンは、静電チャック及びその周辺部材に用いられ、前記位置決めピンが前記静電チャック及び前記周辺部材内に挿入されたとき、前記第一部分が前記静電チャックの円形ピン穴に緊密に挿入され、前記第二部分の前記第一側表面及び前記第二側表面がそれぞれ前記周辺部材の長円形ピン穴の二つの対向する平行な長辺に緊密に接触できる。なお、長円形は、直線状の二つの対向する平行な長辺と、半円状に外側に湾曲する二つの対向する短辺からなる形状である。 The positioning pin of the present invention is used for an electrostatic chuck and a peripheral member thereof, and when the positioning pin is inserted into the electrostatic chuck and the peripheral member, the first portion becomes a circular pin hole of the electrostatic chuck. The first side surface and the second side surface of the second part can be in close contact with two opposite parallel long sides of the oval pin hole of the peripheral member. In addition, an oval is a shape which consists of two opposing parallel long sides which are linear, and two opposing short sides which curve outside in a semicircular shape.
 別な観点の本発明は、位置決めピンであって、中空円柱体である第一部分と、
 複数の側表面を有する中空多辺形柱体であり、前記複数の側表面は、第一側表面、第二側表面、第三側表面及び第四側表面を有し、そのうち、前記第一側表面は前記第二側表面に対し平行であり、前記第三側表面と前記第四側表面は、前記第一側表面と前記第二側表面との間に位置し且つ前記第一側表面と前記第二側表面とに対し垂直である第二部分と、
 複数の側表面を有する中空多辺形柱体であり、前記第一部分と前記第二部分と一体同軸成型され、前記第二部分を前記第一部分との間に介し、前記複数の側表面は、第五側表面、第六側表面、第七側表面及び第八側表面を有し、前記第五側表面は前記第六側表面に対し平行であり、前記第七側表面と前記八側表面は、前記第五側表面と前記第六側表面との間に位置し且つ前記第五側表面と前記第六側表面に垂直であり、前記第一側表面と前記第五側表面は共平面であり、前記第二側表面と前記第六側表面が共平面であり、前記第三側表面と前記第七側表面が共平面であり、及び前記第四側表面と第八側表面が共平面である第三部分と、
 共平面である前記第三側表面と前記第七側表面に沿って前記第一部分、前記第二部分及び前記第三部分に連続して形成され、且つ前記第一部分、前記第二部分及び前記第三部分を貫通する第一溝部と、
 前記第二部分の前記第四側表面に形成され、前記第二部分を貫通し、前記第一溝部に対して平行である前記第二溝部と、を有する。
 前記第二溝部はそれぞれ前記位置決めピンの軸方向に前記第一部分と前記第三部分まで延伸可能である。前記第一側表面と前記第五側表面は非共平面でもよく、また前記第二側表面と前記第六側表面は非共平面でもよい。前記第二溝部はそれぞれ前記位置決めピンの軸方向に前記第一部分と前記第三部分まで延伸可能である。
Another aspect of the present invention is a positioning pin, a first portion that is a hollow cylindrical body,
A hollow polygonal column having a plurality of side surfaces, wherein the plurality of side surfaces have a first side surface, a second side surface, a third side surface, and a fourth side surface, of which the first The side surface is parallel to the second side surface, and the third side surface and the fourth side surface are located between the first side surface and the second side surface and the first side surface And a second portion perpendicular to the second side surface;
A hollow polygonal column having a plurality of side surfaces, integrally formed with the first part and the second part, and interposed between the first part and the plurality of side surfaces, A fifth side surface, a sixth side surface, a seventh side surface, and an eighth side surface, wherein the fifth side surface is parallel to the sixth side surface, the seventh side surface and the eighth side surface; Is located between the fifth side surface and the sixth side surface and is perpendicular to the fifth side surface and the sixth side surface, and the first side surface and the fifth side surface are coplanar The second side surface and the sixth side surface are coplanar, the third side surface and the seventh side surface are coplanar, and the fourth side surface and the eighth side surface are coplanar. A third part which is a plane;
The first portion, the second portion, and the third portion are formed continuously along the third side surface and the seventh side surface that are coplanar, and the first portion, the second portion, and the first portion A first groove passing through the three parts;
The second groove portion formed on the fourth side surface of the second portion, penetrating the second portion, and parallel to the first groove portion.
Each of the second groove portions can extend to the first portion and the third portion in the axial direction of the positioning pin. The first side surface and the fifth side surface may be non-coplanar, and the second side surface and the sixth side surface may be non-coplanar. Each of the second groove portions can extend to the first portion and the third portion in the axial direction of the positioning pin.
 別な観点の本発明の位置決めピンは、静電チャック及びその周辺部材に用いられ、前記周辺部材はフォーカスリング及び下層石英リングを有し、前記位置決めピンが前記静電チャック、前記フォーカスリング及び前記下層石英リングに挿入されたとき、前記第一部分が前記静電チャックの円形ピン穴内に緊密に挿入され、前記第二部分の前記第一側表面及び前記第二側表面がそれぞれ前記下層石英リングの長円形ピン穴の二つの対向して平行な長辺と緊密に接触し、前記第三部分の前記第五側表面及び前記第六側表面がそれぞれ前記フォーカスリングの長円形ピン穴の二つの対向して平行な長辺に緊密に接触する。 In another aspect, the positioning pin of the present invention is used for an electrostatic chuck and its peripheral member, and the peripheral member has a focus ring and a lower quartz ring, and the positioning pin includes the electrostatic chuck, the focus ring, and the When inserted into the lower quartz ring, the first portion is tightly inserted into the circular pin hole of the electrostatic chuck, and the first side surface and the second side surface of the second portion are each of the lower quartz ring. In close contact with two opposite parallel long sides of the oval pin hole, the fifth side surface and the sixth side surface of the third portion being respectively opposite the two oval pin holes of the focus ring In close contact with the parallel long sides.
 本発明によれば、位置決めピンを用いて部材を位置決めする際に、当該部材間の熱膨張係数の差異によって生じる偏移を除去することができる。 According to the present invention, when a member is positioned using the positioning pin, a shift caused by a difference in thermal expansion coefficient between the members can be removed.
位置決めピンが静電チャック、フォーカスリング及び下層石英リングに対し位置決めを行った状態を示す説明図である。It is explanatory drawing which shows the state which the positioning pin performed positioning with respect to an electrostatic chuck, a focus ring, and a lower layer quartz ring. 従来の位置決めピンがフォーカスリングの長円形ピン穴に挿入された状態を示す説明図である。It is explanatory drawing which shows the state by which the conventional positioning pin was inserted in the oval pin hole of the focus ring. (A)は本発明の実施形態に基づく位置決めピンの立体図であり、(B)は図3(A)の線Y-Yに沿った断面図である。(A) is a three-dimensional view of a positioning pin according to an embodiment of the present invention, and (B) is a cross-sectional view taken along line YY in FIG. 3 (A). (A)は図3(A)の線a-aに沿った断面図であり、(B)は図3(A)の線b-bに沿った断面図である。FIG. 3A is a cross-sectional view taken along line aa in FIG. 3A, and FIG. 3B is a cross-sectional view taken along line bb in FIG. 本発明の実施形態に基づいた位置決めピンがフォーカスリングの長円形ピン穴に挿入された状態を示す説明図である。It is explanatory drawing which shows the state by which the positioning pin based on embodiment of this invention was inserted in the oval pin hole of the focus ring. 本発明の別の実施形態に基づいた位置決めピンの立体図である。It is a three-dimensional view of a positioning pin based on another embodiment of the present invention. (A)は図6が示す位置決めピンの正面図であり、(B)は図6が示す位置決めピンの背面図であり、(C)は図6の線Z-Zに沿った断面図である。6A is a front view of the positioning pin shown in FIG. 6, FIG. 6B is a rear view of the positioning pin shown in FIG. 6, and FIG. 6C is a sectional view taken along line ZZ in FIG. . (A)は図6の線a’-a’に沿った断面図であり、(B)は図6の線b’-b’に沿った断面図であり、(C)は図6の線c’-c’に沿った断面図である。6A is a cross-sectional view taken along line a′-a ′ in FIG. 6, FIG. 6B is a cross-sectional view taken along line b′-b ′ in FIG. 6, and FIG. FIG. 6 is a cross-sectional view taken along c′-c ′.
 1 位置決めピン
 3 静電チャック
 5 フォーカスリング
 7 下層石英リング
 51 ピン穴
 51a 長辺
 51b 長辺
 100 位置決めピン
 110 溝部
 120 第一側表面
 120’ 第二側表面
 130 第三側表面
 200 位置決めピン
 210 第一溝部
 220 第一側表面
 220’ 第二側表面
 225 第三側表面
 225’ 第四側表面
 230 第五側表面
 230’ 第六側表面
 235 第七側表面
 235’ 第八側表面
 240 第二溝部
 A 第一部分
 B 第二部分
 A’ 第一部分
 B’ 第二部分
 C’ 第三部分
DESCRIPTION OF SYMBOLS 1 Positioning pin 3 Electrostatic chuck 5 Focus ring 7 Lower layer quartz ring 51 Pin hole 51a Long side 51b Long side 100 Positioning pin 110 Groove 120 First side surface 120 'Second side surface 130 Third side surface 200 Positioning pin 210 First Groove 220 First surface 220 'Second surface 225 Third surface 225' Fourth surface 230 Fifth surface 230 'Sixth surface 235 Seventh surface 235' Eighth surface 240 Second groove A 1st part B 2nd part A '1st part B' 2nd part C '3rd part
 本発明の実施形態及び優位点は、以下及び本発明の原理を図示した図面とあわせた詳細な説明により明白になる。 Embodiments and advantages of the present invention will become apparent from the following and detailed description taken in conjunction with the drawings which illustrate the principles of the invention.
 本明細書に付随の図面を用いて、本発明の例示的な実施形態とこの実施形態の優位点及び特徴をより明瞭に説明する。ここで、各図面は例示的な説明図に過ぎず、実際の比例に基づいて製図したものではなく、これら図面が示した比例によって実施の根拠とするものではない。 The exemplary embodiments of the present invention and the advantages and features of the embodiments will be described more clearly with reference to the accompanying drawings. Here, each drawing is merely an illustrative diagram, and is not drawn based on actual proportions, and is not based on the proportions shown in these drawings.
 図1は、位置決めピン1により、静電チャック3、フォーカスリング5及び下層石英リング7を位置決めしている状態を示す説明図である。図1が示すように、位置決めを行うとき、位置決めピン1は静電チャック3、フォーカスリング5及び下層石英リング7のピン穴内に同時に挿入される。このとき、位置決めピン1は下層石英リング7を貫通するため、位置決めピン1の位置決め範囲は前記三つの部材3、5、7を含んでいる。一般的に、位置決めピン1は、ポリイミド材料(例えばVespel(イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニーの登録商標) SP-1)により製造されるか、又は、その他適切な材料により製造される。静電チャック3はアルミニウムにより製造される。フォーカスリング5はシリコンにより製造される。下層石英リング7は石英により製造される。 FIG. 1 is an explanatory view showing a state in which the electrostatic chuck 3, the focus ring 5 and the lower layer quartz ring 7 are positioned by the positioning pins 1. As shown in FIG. 1, when positioning is performed, the positioning pins 1 are simultaneously inserted into the pin holes of the electrostatic chuck 3, the focus ring 5 and the lower quartz ring 7. At this time, since the positioning pin 1 penetrates the lower quartz ring 7, the positioning range of the positioning pin 1 includes the three members 3, 5, and 7. Generally, the positioning pin 1 is made of a polyimide material (for example, Vespel (registered trademark of EI DuPont de Nemours and Company) SP-1) or other suitable material. Is done. The electrostatic chuck 3 is made of aluminum. The focus ring 5 is made of silicon. The lower quartz ring 7 is made of quartz.
 従来のプラズマエッチング設備において、静電チャック3のピン穴は円形であり、フォーカスリング5と下層石英リング7のピン穴はいずれも長円形であり、位置決めピン1の外形はソリッド状円柱形である。そのうち、位置決めピン1は、静電チャック3の円形ピン穴に完全に緊密に挿入され(図示せず)、位置決めピン1のその他の部分はフォーカスリング5と下層石英リング7の長円形ピン穴(図2)に同時に挿入することができる。図2は、従来の位置決めピン1をフォーカスリング5の長円形ピン穴51に挿入した状態を示す説明図である。図2が示すように、位置決めピン1がフォーカスリング5の長円形ピン穴51に挿入されたとき、位置決めピン1の円周両側がピン穴51の二つの対向する平行な長辺51a及び51bと緊密に接触してフォーカスリング5を固定する。同様に、下層石英リング7もまたこの方法により固定される。しかし、プラズマエッチング処理中、静電チャック3の温度の上昇、下降の操作が繰り返し行われるため、静電チャック3、フォーカスリング5、下層石英リング7及び位置決めピン1に温度変化による膨張と収縮が生じる。更に、静電チャック3は円盤状構造を有し、フォーカスリング5と下層石英リング7はリング状構造を有するため、これら部材3、5、7の法線方向の熱膨張の偏移は、その体積熱膨張偏移と比較して更に顕著になる。この他、ソリッド構造を有する位置決めピン1に熱膨張が生じた時に、その体積熱膨張偏移はより明白になる。このような状況では、静電チャック3、フォーカスリング5、下層石英リング7及び位置決めピン1に熱膨張が生じたとき、位置決めピン1は、その体積熱膨張偏移がその他部材3、5、7の熱膨張偏移に適応できないために、その他部材の損傷(特にフォーカスリング5の損傷)、又は位置決めピン1自体の破砕、又は位置決めピン1のピン穴からの脱落が生じて、位置決め効果が失われる。また、位置決めピン1はピン穴51に密接挿入する時、位置決めピン1の円周とピン穴51の長辺51a、51bはほぼ線接触しており、故にその接触面積は小さい。よって、プラズマエッチングを行っているとき、プラズマがピン穴51内に非常に侵入しやすく、位置決めピン1を侵食するので、部材3、5、7に偏移が生じる。またこの現象は、位置決めピン1の使用寿命も短縮させる。 In the conventional plasma etching equipment, the pin holes of the electrostatic chuck 3 are circular, the pin holes of the focus ring 5 and the lower quartz ring 7 are both oval, and the outer shape of the positioning pin 1 is a solid cylindrical shape. . Among them, the positioning pin 1 is inserted completely tightly into the circular pin hole of the electrostatic chuck 3 (not shown), and other portions of the positioning pin 1 are oval pin holes (in the focus ring 5 and the lower quartz ring 7). 2) can be inserted simultaneously. FIG. 2 is an explanatory view showing a state in which the conventional positioning pin 1 is inserted into the oval pin hole 51 of the focus ring 5. As shown in FIG. 2, when the positioning pin 1 is inserted into the oval pin hole 51 of the focus ring 5, two opposite parallel long sides 51 a and 51 b of the pin hole 51 are arranged on both circumferential sides of the positioning pin 1. The focus ring 5 is fixed in close contact. Similarly, the lower quartz ring 7 is also fixed by this method. However, since the operation of raising and lowering the temperature of the electrostatic chuck 3 is repeatedly performed during the plasma etching process, the electrostatic chuck 3, the focus ring 5, the lower quartz ring 7, and the positioning pin 1 are expanded and contracted due to temperature changes. Arise. Furthermore, since the electrostatic chuck 3 has a disk-like structure and the focus ring 5 and the lower quartz ring 7 have a ring-like structure, the deviation of thermal expansion in the normal direction of these members 3, 5, 7 is It becomes even more significant compared to the volumetric thermal expansion shift. In addition, when thermal expansion occurs in the positioning pin 1 having a solid structure, the volume thermal expansion shift becomes more obvious. In such a situation, when thermal expansion occurs in the electrostatic chuck 3, the focus ring 5, the lower quartz ring 7 and the positioning pin 1, the volume thermal expansion shift of the positioning pin 1 is the other members 3, 5, 7. Since this is not adaptable to the thermal expansion deviation of the positioning pin, damage to other members (particularly, damage to the focus ring 5), crushing of the positioning pin 1 itself, or dropping from the pin hole of the positioning pin 1 occurs, and the positioning effect is lost. Is called. Further, when the positioning pin 1 is closely inserted into the pin hole 51, the circumference of the positioning pin 1 and the long sides 51a and 51b of the pin hole 51 are almost in line contact with each other, and therefore the contact area is small. Therefore, when plasma etching is performed, the plasma is very likely to enter the pin hole 51 and erodes the positioning pin 1, so that the members 3, 5, and 7 are shifted. This phenomenon also shortens the service life of the positioning pin 1.
 図3(A)は、本発明の実施形態に基づく位置決めピン100の立体図であり、図3(B)は図3(A)の線Y-Yに沿った断面図である。図3(A)と図3(B)に示すように、位置決めピン100は、一体同軸成型の第一部分Aと第二部分Bを有し、且つ中空構造及び溝部110を備えることにより、「C」型構造を形成してばね張力によって位置決め効果が得られる。このうち、溝部110はこの「C」型構造の開口を形成してもよい。図4(A)は、図3(A)の線a-aの断面図であり、第一部分Aの断面を表示している。図4(B)は、図3(A)の線b-bの断面図であり、第二部分Bの断面を表示している。第一部分Aは中空円柱体である。位置決めピン100が静電チャック3内に挿入された時、第一部分Aは静電チャック3の円形ピン穴内に緊密に挿入される。第二部分Bは中空多辺形柱体であり、複数の側表面を有する。第二部分Bのこれら側表面において、対向して平行する第一側表面120と第二側表面120’(図4(B))は、位置決めピン100がフォーカスリング5及び下層石英リング7内に挿入された時、それぞれフォーカスリング5及び下層石英リング7の長円形ピン穴の二つの対向する平行な長辺に緊密に接触して、法線方向の熱膨張冷却収縮の偏移を受承し、且つ円周間の間隙を最小にすることができる。具体的には、図5に示すように、フォーカスリング5を例にすると、位置決めピン100がフォーカスリング5のピン穴51に挿入された時、第二部分Bの第一側表面120と第二側表面120’がそれぞれピン穴51の二つの対向する平行な長辺51a及び51bに緊密に接触することができる。また、下層石英リング7の状況も上述と同様である。この他、溝部110が第一側表面120と第二側表面120’との間のもう一方の第三側表面130に沿って第一部分Aと第二部分Bに連続して形成され、第一部分A及び第二部分Bを貫通する。また、第三側表面130は第一側表面120と第二側表面120’に垂直である。 3A is a three-dimensional view of the positioning pin 100 according to the embodiment of the present invention, and FIG. 3B is a cross-sectional view taken along line YY in FIG. 3A. As shown in FIG. 3A and FIG. 3B, the positioning pin 100 has a first part A and a second part B which are integrally coaxially molded, and has a hollow structure and a groove part 110, whereby “C A positioning effect is obtained by the spring tension forming a mold structure. Of these, the groove 110 may form an opening of this “C” type structure. 4A is a cross-sectional view taken along line aa in FIG. 3A, and shows a cross section of the first portion A. FIG. 4B is a cross-sectional view taken along the line bb in FIG. 3A, and shows a cross section of the second portion B. FIG. The first part A is a hollow cylinder. When the positioning pin 100 is inserted into the electrostatic chuck 3, the first portion A is tightly inserted into the circular pin hole of the electrostatic chuck 3. The second part B is a hollow polygonal column and has a plurality of side surfaces. On these side surfaces of the second part B, the first side surface 120 and the second side surface 120 ′ (FIG. 4B) facing and parallel to each other have the positioning pin 100 in the focus ring 5 and the lower quartz ring 7. When inserted, it is in close contact with the two opposite parallel long sides of the oval pin hole of the focus ring 5 and the lower quartz ring 7, respectively, and accepts the deviation of normal thermal expansion and cooling shrinkage. And the gap between the circumferences can be minimized. Specifically, as shown in FIG. 5, when the focus ring 5 is taken as an example, when the positioning pin 100 is inserted into the pin hole 51 of the focus ring 5, the first side surface 120 and the second portion B of the second part B The side surface 120 ′ can be in intimate contact with two opposing parallel long sides 51 a and 51 b of the pin hole 51, respectively. The situation of the lower quartz ring 7 is the same as described above. In addition, the groove portion 110 is formed continuously from the first portion A and the second portion B along the other third side surface 130 between the first side surface 120 and the second side surface 120 ′. A and the second part B are penetrated. Also, the third side surface 130 is perpendicular to the first side surface 120 and the second side surface 120 '.
 位置決めピン100は中空構造及び溝部110を有すため、静電チャック3、フォーカスリング5及び下層石英リング7に熱膨張冷却収縮が生じたとき、位置決めピン100は、前記部材3、5、7の熱膨張係数の差異による変形に適応して、変形による偏移を減少させる。ここで、位置決めピンがソリッド構造を有している場合、熱膨張冷却収縮中に、その全体の体積が温度により変化するため、その他部材3、5、7に生じる変形に適応できない。しかし、位置決めピン100は中空構造及び溝部110を有しているため、その熱膨張の形態は体積熱膨張から線熱膨張となり、その他部材3、5、7に生じた変形にも適応可能である。また、位置決めピン100の第二部分Bの第一側表面120、第二側表面120’と長辺51a、51bの接触は、線接触から面接触へ変化する。この時、接触面積は線接触の接触面積よりも大きく、故に、プラズマエッチングの際に、プラズマが各部材のピン穴内に侵入しづらいので、位置決めピン100の使用寿命を延長させ、且つその他部材3、5、7が位置決めピン100の熱膨張により損傷することを防止する。単一位置決めピン100は円周方向の位置決めを行う。静電チャック3、フォーカスリング5及び下層石英リング7の同一円周上において、3本以上の位置決めピン100を等間隔にこの円周上に配置する場合、熱膨張または冷却収縮による法線方向の偏移を受承して、前記部材3、5、7に対し位置決め効果が生じる。 Since the positioning pin 100 has a hollow structure and the groove portion 110, when thermal expansion / cooling / shrinkage occurs in the electrostatic chuck 3, the focus ring 5, and the lower layer quartz ring 7, the positioning pin 100 is connected to the members 3, 5, 7. Adapts to deformation due to differences in thermal expansion coefficient and reduces shift due to deformation. Here, when the positioning pin has a solid structure, the entire volume of the positioning pin changes depending on the temperature during the thermal expansion / cooling / shrinkage, so that the deformation cannot be applied to the other members 3, 5, 7. However, since the positioning pin 100 has the hollow structure and the groove 110, the form of thermal expansion is changed from volumetric thermal expansion to linear thermal expansion, and can be applied to deformations occurring in the other members 3, 5, and 7. . Further, the contact between the first side surface 120 and the second side surface 120 'of the second portion B of the positioning pin 100 and the long sides 51a and 51b changes from line contact to surface contact. At this time, the contact area is larger than the contact area of the line contact, and therefore, it is difficult for plasma to enter the pin holes of each member during plasma etching, thereby extending the service life of the positioning pin 100 and the other members 3. 5 and 7 are prevented from being damaged by thermal expansion of the positioning pin 100. The single positioning pin 100 performs circumferential positioning. When three or more positioning pins 100 are arranged at equal intervals on the same circumference of the electrostatic chuck 3, the focus ring 5 and the lower quartz ring 7, the normal direction due to thermal expansion or cooling contraction can be obtained. In response to the deviation, a positioning effect is produced for the members 3, 5, 7.
 図6は本発明の別の実施形態に基づく位置決めピン200の立体図である。図7(A)は図6に図示された位置決めピン200の正面図であり、図7(B)は図6に図示された位置決めピン200の背面図であり、図7(C)は図6の線Z-Zに沿った断面図である。図6から図7(C)に示すように、位置決めピン200は一体同軸成型である第一部分A’、第二部分B’及び第三部分C’を有し、且つ中空構造及び第一溝部210と第二溝部240を備える。図8(A)は図6の線a’-a’に沿った断面図であり、第一部分A’の断面を表示している。図8(B)は図6の線b’-b’に沿った断面図であり、第二部分B’の断面を表示している。図8(C)は図6の線c’-c’に沿った断面図であり、第三部分C’の断面を表示している。位置決めピン100と同様、位置決めピン200もまた「C」型構造を有し、第一溝部210はこの種の「C」型構造の開口を形成してもよく、ばね張力により位置決め効果が得られる。第一部分A’は中空円柱体である。位置決めピン200が静電チャック3に挿入された時、第一部分A’は、静電チャック3の円形ピン穴に緊密に挿入される。第二部分B’は、中空多辺形柱体であり、複数の側表面を有する。第二部分B’のこれら側表面において、対向する平行な第一側表面220と第二側表面220’は、位置決めピン200が下層石英リング7に挿入された時、それぞれ下層石英リング7の長円形ピン穴の二つの対向する平行な長辺に緊密に接触する(図5に類似)。第一側表面220と第二側表面220’の間に対向する平行な第三側表面225と第四側表面225’が存在し、第三側表面225と第四側表面225’は第一側表面220と第二側表面220’に垂直である。第三部分C’もまた中空多辺形柱体であり、複数の側表面を有する。第一部分C’のこれら側表面において、対向する平行な第五側表面230と第六側表面230’は、位置決めピン200がフォーカスリング5に挿入された時、それぞれフォーカスリング5の長円形ピン穴の二つの対向する平行な長辺に緊密に接触する(図5に類似)。第五側表面230と第六側表面230’との間に対向する平行な第七側表面235と第八側表面235’が存在し、第七側表面235と第八側表面235’は第五側表面230と第六側表面230’に垂直である。 FIG. 6 is a three-dimensional view of a positioning pin 200 according to another embodiment of the present invention. 7A is a front view of the positioning pin 200 shown in FIG. 6, FIG. 7B is a rear view of the positioning pin 200 shown in FIG. 6, and FIG. 7C is FIG. FIG. 6 is a sectional view taken along line ZZ. As shown in FIGS. 6 to 7C, the positioning pin 200 has a first portion A ′, a second portion B ′, and a third portion C ′ that are integrally coaxially molded, and has a hollow structure and a first groove portion 210. And a second groove portion 240. FIG. 8A is a cross-sectional view taken along line a′-a ′ in FIG. 6 and shows a cross section of the first portion A ′. FIG. 8B is a cross-sectional view taken along line b′-b ′ in FIG. 6 and shows a cross section of the second portion B ′. FIG. 8C is a cross-sectional view taken along the line c′-c ′ in FIG. 6 and shows a cross section of the third portion C ′. Like the positioning pin 100, the positioning pin 200 also has a “C” -type structure, and the first groove portion 210 may form an opening of this type of “C” -type structure, and a positioning effect is obtained by spring tension. . The first part A 'is a hollow cylinder. When the positioning pin 200 is inserted into the electrostatic chuck 3, the first portion A ′ is tightly inserted into the circular pin hole of the electrostatic chuck 3. The second portion B 'is a hollow polygonal column and has a plurality of side surfaces. On these side surfaces of the second part B ′, the opposing parallel first side surface 220 and second side surface 220 ′ are respectively the lengths of the lower quartz ring 7 when the positioning pin 200 is inserted into the lower quartz ring 7. Close contact with two opposite parallel long sides of the circular pin hole (similar to FIG. 5). There are a parallel third side surface 225 and a fourth side surface 225 ′ opposite to each other between the first side surface 220 and the second side surface 220 ′, and the third side surface 225 and the fourth side surface 225 ′ are the first side surface 225 ′. It is perpendicular to the side surface 220 and the second side surface 220 ′. The third portion C ′ is also a hollow polygonal column and has a plurality of side surfaces. On these side surfaces of the first portion C ′, the opposite parallel fifth side surface 230 and sixth side surface 230 ′ are respectively oblong pin holes of the focus ring 5 when the positioning pin 200 is inserted into the focus ring 5. In close contact with two opposite parallel long sides (similar to FIG. 5). Between the fifth side surface 230 and the sixth side surface 230 ′, there are parallel seventh side surface 235 and eighth side surface 235 ′ opposite to each other, and the seventh side surface 235 and the eighth side surface 235 ′ are the first side surface 235 ′. It is perpendicular to the fifth side surface 230 and the sixth side surface 230 ′.
 第一側表面220と第五側表面230は、共平面(coplane)又は非共平面(non-coplane)のいずれであってもよい。第二側表面220’と第六側表面230’は、共平面又は非共平面のいずれであってもよい。図6において、第一側表面220と第五側表面230は非共平面であり、第二側表面220’と第六側表面230’も非共平面である。即ち、第一側表面220と第五側表面230との間に段差があり、第二側表面220’と第六側表面230’との間にも段差がある。第三側表面225と第七側表面235は共平面であり、また第四側表面225’と第八側表面235’は共平面である。本発明のもう一つの実施形態において、第一側表面220と第五側表面230は共平面であり、第二側表面220’と第六側表面230’も共平面である。即ち、第一側表面220と第五側表面230との間には段差がなく、第二側表面220’と第六側表面230’との間にも段差がない。第一溝部210は共平面の第三側表面225と第七側表面235に沿って、第一部分A’、第二部分B’及び第三部分C’に連続して形成され、第一部分A’、第二部分B’及び第三部分C’を貫通する。第二溝部240は、第二部分B’の第四側表面225’に形成され、第二部分B’を貫通し、第一溝部210は、第二溝部240に対して平行である。この他、第二溝部240もそれぞれ第一部分A’の円柱体及び第三部分C’の第八側表面235’へ位置決めピン200の軸方向に延伸して、それぞれこの円柱体及び第八側表面235’の一部分に貫通する溝部を形成する。 The first side surface 220 and the fifth side surface 230 may be either a coplanar surface or a non-coplanar surface. The second side surface 220 'and the sixth side surface 230' may be either coplanar or non-coplanar. In FIG. 6, the first side surface 220 and the fifth side surface 230 are non-coplanar, and the second side surface 220 'and the sixth side surface 230' are also non-coplanar. That is, there is a step between the first side surface 220 and the fifth side surface 230, and there is also a step between the second side surface 220 'and the sixth side surface 230'. The third side surface 225 and the seventh side surface 235 are coplanar, and the fourth side surface 225 'and the eighth side surface 235' are coplanar. In another embodiment of the invention, the first side surface 220 and the fifth side surface 230 are coplanar, and the second side surface 220 'and the sixth side surface 230' are also coplanar. That is, there is no step between the first side surface 220 and the fifth side surface 230, and there is no step between the second side surface 220 'and the sixth side surface 230'. The first groove portion 210 is formed continuously with the first portion A ′, the second portion B ′, and the third portion C ′ along the coplanar third surface 225 and the seventh surface 235, and the first portion A ′. , Through the second part B ′ and the third part C ′. The second groove part 240 is formed on the fourth side surface 225 ′ of the second part B ′, passes through the second part B ′, and the first groove part 210 is parallel to the second groove part 240. In addition, the second groove portion 240 also extends in the axial direction of the positioning pin 200 to the columnar body of the first portion A ′ and the eighth side surface 235 ′ of the third portion C ′, respectively. A groove portion penetrating in a part of 235 ′ is formed.
 位置決めピン200は、中空構造及び第一溝部210を有しているので、その熱膨張形態は、体積熱膨張から線熱膨張になり、その他の部材3、5、7に生じる変形に適応可能である。この他、位置決めピン200の第二部分B’は第二溝部240を有しているために、第二部分B’自体が板状ばねの機能を備え、位置決めピン200の変形に対する適応度が向上する。位置決めピン200も例えば上記位置決めピン100の配置方式により、半導体プラズマエッチング設備において位置決めを実施する。また、静電チャック3、フォーカスリング5及び下層石英リング7の同一円周上において、3本以上の位置決めピン200を等間隔にこの円周上に配置してもよい。この場合、熱膨張または冷却収s縮による法線方向の偏移を受承して、前記部材3、5、7に対し位置決め効果が生じる。 Since the positioning pin 200 has a hollow structure and the first groove portion 210, the thermal expansion form changes from volume thermal expansion to linear thermal expansion, and can be adapted to deformation occurring in the other members 3, 5, and 7. is there. In addition, since the second portion B ′ of the positioning pin 200 has the second groove portion 240, the second portion B ′ itself has the function of a plate spring, and the adaptability to deformation of the positioning pin 200 is improved. To do. The positioning pins 200 are also positioned in the semiconductor plasma etching facility by the arrangement method of the positioning pins 100, for example. Further, on the same circumference of the electrostatic chuck 3, the focus ring 5 and the lower layer quartz ring 7, three or more positioning pins 200 may be arranged on this circumference at equal intervals. In this case, a shift effect in the normal direction due to thermal expansion or cooling shrinkage is received, and a positioning effect is generated for the members 3, 5, 7.
 この他、本発明の位置決めピンは半導体プラズマエッチング設備にのみ用いられるだけではなく、例えば、熱膨張係数の差異により偏移が生じる部材、構造などの位置決めのように、位置決めが必要な他の技術分野にも応用可能である。例を挙げれば、本発明の位置決めピンを橋や建築物の接合箇所に用いたり、又はモータービークル部品の接合位置決めに応用してもよい。 In addition, the positioning pins of the present invention are not only used in semiconductor plasma etching equipment, but also other techniques that require positioning, such as positioning of members, structures, etc. that cause deviation due to differences in thermal expansion coefficients. Applicable to fields. For example, the positioning pin of the present invention may be used at a joint location of a bridge or a building, or may be applied to joint positioning of a motor vehicle component.
 本発明は既に実施形態及び図面にて詳細に説明したが、本発明分野において通常の知識を有する者が本発明の本質と範疇を超えない状況のもと、各種改良、変更及び同等効果の置換を行うことができるが、これら改良、変更及び同等効果の置換は、依然本発明の特許を請求しようとする範囲内である。 Although the present invention has been described in detail with reference to the embodiments and drawings, various improvements, changes, and substitutions of equivalent effects can be made by those who have ordinary knowledge in the field of the present invention without exceeding the essence and scope of the present invention. However, these improvements, changes and substitutions of equivalent effects are still within the scope of the claims of the present invention.
 本発明は、熱膨張係数に差異がある部材の位置決めに有用である。 The present invention is useful for positioning members having different thermal expansion coefficients.

Claims (8)

  1. 位置決めピンであって、
     中空円柱体である第一部分と、
     複数の側表面を有する中空多辺形柱体であり、前記第一部分と一体同軸成型され、前記複数の側表面は第一側表面、第二側表面及び第三側表面を有し、前記第一側表面は前記第二側表面に対して平行であり、前記第三側表面は前記第一側表面と前記第二側表面との間に位置し、且つ前記第一側表面と前記第二側表面に垂直である第二部分と、
     前記第三側表面に沿って前記第一部分と前記第二部分に連続して形成され、且つ前記第一部分と前記第二部分を貫通している溝部と、
    を有する。
    A positioning pin,
    A first portion that is a hollow cylinder,
    A hollow polygonal column having a plurality of side surfaces, integrally molded with the first portion, the plurality of side surfaces having a first side surface, a second side surface and a third side surface; The one side surface is parallel to the second side surface, the third side surface is located between the first side surface and the second side surface, and the first side surface and the second side surface A second part that is perpendicular to the side surface;
    A groove formed continuously with the first part and the second part along the third side surface, and passing through the first part and the second part;
    Have
  2. 請求項1に記載の位置決めピンであって、
     前記位置決めピンは、静電チャック及びその周辺部材に用いられ、前記位置決めピンが前記静電チャック及び前記周辺部材内に挿入されることにより、前記第一部分が前記静電チャックの円形ピン穴に緊密に挿入され且つ前記第二部分の前記第一側表面及び前記第二側表面がそれぞれ前記周辺部材の長円形ピン穴の二つの対向する平行な長辺に緊密に接触し、
     前記静電チャックと前記周辺部材の同一円周上に等間隔で少なくとも3本の前記位置決めピンが設置される。
    The positioning pin according to claim 1,
    The positioning pin is used for an electrostatic chuck and a peripheral member thereof, and the first portion is tightly fitted into a circular pin hole of the electrostatic chuck by inserting the positioning pin into the electrostatic chuck and the peripheral member. And the first side surface and the second side surface of the second portion are in close contact with two opposite parallel long sides of the oval pin hole of the peripheral member,
    At least three positioning pins are installed at equal intervals on the same circumference of the electrostatic chuck and the peripheral member.
  3. 請求項2に記載の位置決めピンであって、
     前記周辺部材がフォーカスリング及び下層石英リングを有する。
    The positioning pin according to claim 2,
    The peripheral member has a focus ring and a lower quartz ring.
  4. 位置決めピンであって、
     中空円柱体である第一部分と、
     複数の側表面を有する中空多辺形柱体であって、前記複数の側表面は、第一側表面、第二側表面、第三側表面及び第四側表面を有し、前記第一側表面は前記第二側表面に対向して平行であり、前記第三側表面と前記第四側表面は前記第一側表面と前記第二側表面との間に位置し、且つ前記第一側表面と前記第二側表面に垂直である第二部分と、
     複数の側表面を有する中空多辺形柱体であって、且つ前記第一部分及び前記第二部分と一体同軸成型され、前記第二部分を前記第一部分との間に介し、前記複数の側表面は第五側表面、第六側表面、第七側表面及び第八側表面を有し、前記第五側表面は前記第六側表面に対向して平行であり、前記第七側表面と前記第八側表面は前記第五側表面と前記第六側表面との間に位置し且つ前記第五側表面と第六側表面に垂直であり、前記第一側表面と前記第五側表面は共平面であり、前記第二側表面と前記第六側表面は共平面であり、前記第三側表面と前記第七側表面は共平面であり、前記第四側表面と前記第八側表面は共平面である第三部分と、
     共平面である前記第三側表面と前記第七側表面に沿って、前記第一部分、前記第二部分及び前記第三部分に連続して形成され、且つ前記第一部分、前記第二部分及び前記第三部分を貫通する第一溝部と、
     前記第二部分の前記第四側表面に形成され、前記第二部分を貫通し、前記第一溝部に対向して平行である第二溝部と、
    を有する。
    A positioning pin,
    A first portion that is a hollow cylinder,
    A hollow polygonal column having a plurality of side surfaces, wherein the plurality of side surfaces have a first side surface, a second side surface, a third side surface, and a fourth side surface, and the first side The surface is parallel to the second side surface, the third side surface and the fourth side surface are located between the first side surface and the second side surface, and the first side A second portion that is perpendicular to the surface and said second side surface;
    A hollow polygonal column having a plurality of side surfaces, which is integrally formed with the first part and the second part, and the plurality of side surfaces are interposed between the second part and the first part. Has a fifth side surface, a sixth side surface, a seventh side surface and an eighth side surface, and the fifth side surface is parallel to the sixth side surface, and the seventh side surface and the The eighth side surface is located between the fifth side surface and the sixth side surface and is perpendicular to the fifth side surface and the sixth side surface, and the first side surface and the fifth side surface are The second side surface and the sixth side surface are coplanar, the third side surface and the seventh side surface are coplanar, the fourth side surface and the eighth side surface. Is a third part that is coplanar,
    Along the third surface and the seventh surface that are coplanar, the first portion, the second portion, and the third portion are formed continuously, and the first portion, the second portion, and the A first groove passing through the third portion;
    A second groove part formed on the fourth side surface of the second part, penetrating the second part, and facing and parallel to the first groove part;
    Have
  5. 請求項4に記載の位置決めピンであって、
     前記位置決めピンは、静電チャック及びその周辺部材に用いられ、前記周辺部材はフォーカスリング及び下層石英リングを有し、前記位置決めピンが前記静電チャック、前記フォーカスリング及び前記下層石英リングに挿入されることにより、前記第一部分が前記静電チャックの円形ピン穴に緊密に挿入され、前記第二部分の前記第一側表面及び前記第二側表面がそれぞれ前記下層石英リングの長円形ピン穴の二つの対向する平行な長辺と緊密に接触し、且つ前記第三部分の前記第五側表面及び前記第六側表面がそれぞれ前記フォーカスリングの長円形ピン穴の二つの対向する平行な長辺に緊密に接触し、
     前記静電チャックと前記周辺部材の同一円周上に等間隔で、少なくとも3本の前記位置決めピンが設置される。
    The positioning pin according to claim 4,
    The positioning pin is used for an electrostatic chuck and its peripheral member. The peripheral member has a focus ring and a lower layer quartz ring, and the positioning pin is inserted into the electrostatic chuck, the focus ring and the lower layer quartz ring. Thus, the first part is tightly inserted into the circular pin hole of the electrostatic chuck, and the first side surface and the second side surface of the second part are respectively the oval pin hole of the lower quartz ring. Two opposing parallel long sides in close contact with two opposing parallel long sides, and wherein the fifth side surface and the sixth side surface of the third portion are each an oval pin hole of the focus ring. In close contact with
    At least three positioning pins are installed at equal intervals on the same circumference of the electrostatic chuck and the peripheral member.
  6. 請求項4に記載の位置決めピンであって、
     前記第一側表面と前記第五側表面が非共平面であり、前記第二側表面と前記第六側表面が非共平面である。
    The positioning pin according to claim 4,
    The first side surface and the fifth side surface are non-coplanar, and the second side surface and the sixth side surface are non-coplanar.
  7. 請求項4に記載の位置決めピンであって、
     前記第二溝部はそれぞれ前記位置決めピンの軸方向に前記第一部分及び前記第三部分まで延伸可能である。
    The positioning pin according to claim 4,
    Each of the second groove portions can extend to the first portion and the third portion in the axial direction of the positioning pin.
  8. 請求項6に記載の位置決めピンであって、
     前記第二溝部はそれぞれ前記位置決めピンの軸方向に前記第一部分及び前記第三部分まで延伸可能である。
    The positioning pin according to claim 6,
    Each of the second groove portions can extend to the first portion and the third portion in the axial direction of the positioning pin.
PCT/JP2009/067158 2009-10-01 2009-10-01 Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion WO2011039881A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/067158 WO2011039881A1 (en) 2009-10-01 2009-10-01 Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion
TW099133292A TWI498489B (en) 2009-10-01 2010-09-30 Locating pin and semiconductor manufacturing device capable of deforming due to difference in thermal expansion coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067158 WO2011039881A1 (en) 2009-10-01 2009-10-01 Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion

Publications (1)

Publication Number Publication Date
WO2011039881A1 true WO2011039881A1 (en) 2011-04-07

Family

ID=43825735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067158 WO2011039881A1 (en) 2009-10-01 2009-10-01 Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion

Country Status (2)

Country Link
TW (1) TWI498489B (en)
WO (1) WO2011039881A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810507A (en) * 2020-06-29 2020-10-23 北京汽车集团越野车有限公司 Dowel pin assembly, manufacturing method and manufacturing device
WO2023120426A1 (en) * 2021-12-23 2023-06-29 東京エレクトロン株式会社 Substrate support device and plasma processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631518A (en) * 1979-08-23 1981-03-30 Fischer Artur Pin shaped combining member
JPS6256625A (en) * 1985-09-05 1987-03-12 Iseki & Co Ltd Wet type clutch device
JPH0311114U (en) * 1989-06-19 1991-02-04
JP2004042269A (en) * 2002-07-08 2004-02-12 Sano Seisakusho:Kk Guide pin and guide bush
JP2008249073A (en) * 2007-03-30 2008-10-16 Nsk Ltd Slider fall-out preventive structure of linear guide
JP2009187990A (en) * 2008-02-01 2009-08-20 Tokyo Electron Ltd Plasma processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595515B2 (en) * 2001-06-26 2004-12-02 三菱重工業株式会社 Electrostatic chuck
DE102006005091A1 (en) * 2006-02-04 2007-08-09 Tox-Dübel-Werk, R. W. Heckhausen GmbH & Co. KG expansion anchor
TWI348864B (en) * 2007-12-19 2011-09-11 Aten Int Co Ltd Video splitter with video compensation function and compensation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5631518A (en) * 1979-08-23 1981-03-30 Fischer Artur Pin shaped combining member
JPS6256625A (en) * 1985-09-05 1987-03-12 Iseki & Co Ltd Wet type clutch device
JPH0311114U (en) * 1989-06-19 1991-02-04
JP2004042269A (en) * 2002-07-08 2004-02-12 Sano Seisakusho:Kk Guide pin and guide bush
JP2008249073A (en) * 2007-03-30 2008-10-16 Nsk Ltd Slider fall-out preventive structure of linear guide
JP2009187990A (en) * 2008-02-01 2009-08-20 Tokyo Electron Ltd Plasma processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111810507A (en) * 2020-06-29 2020-10-23 北京汽车集团越野车有限公司 Dowel pin assembly, manufacturing method and manufacturing device
CN111810507B (en) * 2020-06-29 2021-10-22 北京汽车集团越野车有限公司 Dowel pin assembly, manufacturing method and manufacturing device
WO2023120426A1 (en) * 2021-12-23 2023-06-29 東京エレクトロン株式会社 Substrate support device and plasma processing device

Also Published As

Publication number Publication date
TW201131082A (en) 2011-09-16
TWI498489B (en) 2015-09-01

Similar Documents

Publication Publication Date Title
KR102586274B1 (en) Method for sealing an access opening to a cavity and mems component comprising a sealing element
US20050241771A1 (en) Substrate carrier for processing substrates
US10497858B1 (en) Methods for forming structures for MRAM applications
US9646807B2 (en) Sealing groove methods for semiconductor equipment
EP2541590B1 (en) Plasma processing device
WO2011039881A1 (en) Positioning pin compatible with deformation caused by difference in coefficient of thermal expansion
JP2023540294A (en) Pedestal support design for precise chamber matching and process control
JP5612408B2 (en) Positioning pin and semiconductor manufacturing apparatus adaptable to deformation caused by difference in thermal expansion coefficient
JP5667012B2 (en) Ring-shaped shield member, component thereof, and substrate mounting table provided with ring-shaped shield member
KR102124737B1 (en) SiC FILM STRUCTURE AND MENUFACTURING METHOD OF THE SAME
US10276354B2 (en) Segmented focus ring assembly
KR20190083371A (en) Low particle protection flapper valve
US7667282B2 (en) Micromechanical component and method for manufacturing such a component
JP2003314705A (en) Sealing device utilizing magnetic fluid
JP6198305B2 (en) Charged particle beam equipment
US10633247B2 (en) Semiconductor device and manufacture thereof
KR20060112012A (en) Gate assembly of semiconductor product device
KR20220137719A (en) shower head assembly
US20080242117A1 (en) Apparatus to reduce wafer edge temperature and breakage of wafers
CN104347381A (en) Method of manufacturing semiconductor device
KR20080060142A (en) Method of fabricating semiconductor device
JPH07211762A (en) Wafer transfer treater
US20200273999A1 (en) Low-temperature polysilicon (ltps) thin film transistor (tft) and the manufacturing method thereof
CN111326471B (en) Electrostatic chuck, chuck assembly and method of securing an electrostatic chuck
US20230307211A1 (en) Process Chamber And Process Kits For Advanced Packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850072

Country of ref document: EP

Kind code of ref document: A1