WO2011038537A1 - 败血症以及败血症休克的预测、预防和治疗方法及试剂盒 - Google Patents

败血症以及败血症休克的预测、预防和治疗方法及试剂盒 Download PDF

Info

Publication number
WO2011038537A1
WO2011038537A1 PCT/CN2009/074302 CN2009074302W WO2011038537A1 WO 2011038537 A1 WO2011038537 A1 WO 2011038537A1 CN 2009074302 W CN2009074302 W CN 2009074302W WO 2011038537 A1 WO2011038537 A1 WO 2011038537A1
Authority
WO
WIPO (PCT)
Prior art keywords
crispld2
protein
bacterial
lps
serum
Prior art date
Application number
PCT/CN2009/074302
Other languages
English (en)
French (fr)
Inventor
王志勤
江宏铨
张新
Original Assignee
上海南方基因科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海南方基因科技有限公司 filed Critical 上海南方基因科技有限公司
Priority to PCT/CN2009/074302 priority Critical patent/WO2011038537A1/zh
Publication of WO2011038537A1 publication Critical patent/WO2011038537A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid

Definitions

  • the present invention is in the field of biotechnology and medicine, and in particular, the present invention provides a sepsis and septic shock-associated protein-CRISPLD2 protein, and its use in the prediction, prevention and treatment of sepsis and septic shock.
  • CRISPLD2 protein By increasing the concentration of CRISPLD2 protein in serum, sepsis and septic shock can be prevented and treated.
  • Septicemia caused by bacterial infection is still an acute syndrome that endangers human health. Septicemia is currently the 10th leading cause of death in the United States, and the incidence and mortality of sepsis in China is not optimistic.
  • the main cause of sepsis caused by gram-negative and positive bacteria is caused by bacterial or bacterial toxins invading the bloodstream. After the invasion of pathogens, healthy people usually only show transient bacteremia. The bacteria can be quickly eliminated by the body's immune defense system, and it does not cause obvious symptoms. However, various immune defense function defects (including local and systemic barrier functions) Loss), are easy to induce sepsis.
  • the use of radiation therapy, broad-spectrum antibiotics, cytotoxic drugs, and various major surgeries to severe open wounds are important causes of sepsis.
  • the agonist comprises: a TLRs activator secreted by CRISPLD2, and an expression inducer that induces expression of CRISPLD2.
  • the TLRs activator comprises: bacterial polylipopolysaccharide (LPS), flagellin (FLA), bacterial polysaccharide (PGN), and bacterial DNA (CPG-DNA);
  • LPS bacterial polylipopolysaccharide
  • FLA flagellin
  • PPN bacterial polysaccharide
  • CPG-DNA bacterial DNA
  • the expression inducing agent comprises: a histone deacetylase inhibitor (such as trichostatin)
  • retinoic acid especially all-trans retinoic acid
  • the medicament comprises a CRISPLD2 protein and/or an agonist thereof, and a pharmaceutically acceptable carrier.
  • the pharmaceutical dosage form is an oral dosage form or an injection.
  • a method for preventing or treating sepsis and septic shock comprising the steps of: administering a CRISPLD2 protein or an agonist thereof to a mammalian subject in need thereof, thereby increasing the concentration of CRISPLD2 protein in the serum thereof.
  • a pharmaceutical composition for the preparation of a prophylactic or therapeutic septicemia and septic shock comprising a pharmaceutically acceptable carrier and one or more agents for increasing the concentration of CRISPLD2 in serum Substances from the following group:
  • the TLRs activators include: bacterial LPS, flagellin (FLA), bacterial polysaccharide (PGN), and bacterial DNA (CPG-DNA) and
  • Histone deacetylase inhibitors such as trichostatin A
  • all-trans retinoic acid
  • a CRISPLD2 protein or gene for use in the preparation of a kit or reagent for predicting or detecting susceptibility to sepsis and septic shock.
  • the kit comprises: a container and an agent in the container for detecting the serum concentration of CRISPLD2.
  • the reagent comprises: an antibody against CRISPLD2 (especially a monoclonal antibody).
  • kits for susceptibility comprising: a container and a reagent for detecting the serum concentration of CRISPLD2 in the container.
  • the reagent comprises: an antibody against CRISPLD2.
  • a method of predicting susceptibility to septicemia and septicemia and septic shock comprising the steps of:
  • the serum concentration of CRISPLD2 in the individual to be tested is detected and compared with the serum concentration of CRISPLD2 in the normal population, wherein higher than the normal population indicates that the individual has low susceptibility to septicemia and septicemia and septic shock. In the normal population; lower than the normal population indicates that the susceptibility to sepsis and septicemia and septic shock is higher in this individual than in the normal population.
  • an antibody which specifically binds to the CRISPLD2 polypeptide described above In an eighth aspect of the invention, there is provided a compound which mimics, promotes, antagonizes the activity of a CRISPLD2 polypeptide, and a compound which promotes expression of a CRISPLD2 polypeptide. Methods for screening for these compounds are also provided.
  • a method for qualitatively and quantitatively detecting the presence or absence of a CRISPLD2 protein in a sample comprising: contacting a sample with a specific antibody of a CRISPLD2 protein, observing whether an antibody complex and its amount are formed, wherein the formation The antibody complex indicates the presence of the CRISPLD2 protein in the sample.
  • Figure 1 shows the ELISA standard curve.
  • Figure 2 shows the results of the identification of recombinant CRISPLD2.
  • Figure 2A 10% SDS-PAGE gel separation and purification of recombinant CRISPLD2 molecule, Coomassie blue identification;
  • Figure 2B anti-CRISPLD2 antibody immunoblotting;
  • Figure 2C anti-c-myc-labeled antibody immunoblotting.
  • the lanes were as follows: 1, 3 and 5: CRISPLD2 in the medium; M: molecular weight standard; 2 and 4: control medium.
  • Figure 3 shows the molecular interactions determined using the BIAcore technique.
  • E. col i LPS combined with CRISPLD2 sensorgram.
  • S. aureus (5: aureus) sensorgram of LTA binding to CRISPLD2.
  • E. coli LPS or S. aureus LTA (0.3, 1. 0, 3. 0, 10 and 30 ⁇ M) flows through CRISPLD2, k fixed on the surface of the chip.
  • Ff and k. n is the combined parameter obtained by the sensor map calculation, LPS
  • the dissociation constant (K D ) (k. ff / k. n ) .
  • C Molecular binding kinetics curve: RU reflects the binding ability of E.
  • Figure 4 shows the time profile of serum Cri spld2 concentration after intraperitoneal injection of different doses of LPS.
  • Figure 5 shows that recombinant CRISPLD2 blocks LPS binding to cellular receptors and inhibits inflammatory factor release from target cells.
  • Figure A-B Recombinant CERISPLD2 protein blocks E. coli LPS and Salmonella LPS binding to target cell receptors.
  • Figure C-D Recombinant CERISPLD2 protein blocks E. coli LPS-induced inflammatory factor release.
  • Figure 6 shows the correlation between serum CRISPLD2 concentration and lethal dose of E col i-LPS in recombinant human CRISPLD2 protected mice from endotoxin shock.
  • Figure A shows that recombinant human CRISPLD2 protects mice from endotoxin-induced lethality.
  • Panel B shows the correlation between mouse serum CRISPLD2 concentration and lethal dose of E col i-LPS.
  • Figure 7 shows that the long-term treatment with antibiotics caused a decrease in serum CRISPLD2 concentration in mice, and the sensitivity of mice to endotoxic shock increased.
  • Figure 7A shows that long-term use of vancomycin plus neomycin resulted in a decrease in serum CRISPLD2 concentration in mice.
  • Figure 7B shows that long-term use of vancomycin plus neomycin increases the sensitivity of mice to endotoxin shock.
  • Figure 8 shows the effect of agonists on the secretion or expression of CRISPLD2.
  • Figure 9 shows that LPS, lipoprotein, and DNA of gram-negative and positive bacteria can be combined with CRISPLD2.
  • Figure 10 shows the amino acid sequence of CRISPLD2 (SEQ ID NO: 2), wherein the two LCCL domains that bind to LPS are located at positions 286-370 and 387-460. Bits 333-337 are RXXXH motifs. detailed description
  • the inventors have for the first time demonstrated a human protein CRISPLD2 closely related to sepsis and septic shock through intensive and extensive research.
  • CRISPLD2 protein used as a target molecule, the serum concentration of CRISPLD2 can be detected and the sensitivity of the individual to toxin can be predicted.
  • by increasing the concentration of CRISPLD2 protein in serum sepsis and septic shock can be prevented and treated.
  • the present invention has been completed.
  • CRISPLD2 cyste ine-ri ch secretory prote in LCCL domain containing 2.
  • the cDNA sequence of the cysteine-enriched secreted protein 2) containing the LCCD domain can be found in accession number NM-031476 (length 4607 bp) or SEQ ID NO: 1, and its genomic sequence can be found in accession number NC-01016 8.
  • the amino acid sequence can be found in SEQ ID NO: AAH63012 or SEQ ID NO: 2.
  • CRISPLD2 protein CRISPLD2 polypeptide
  • human sepsis and septic shock-associated protein CRISPLD2 are used interchangeably and refer to amino acid sequences of human sepsis and septic shock-associated protein CRISPLD2 (SEQ ID NO: 2) a protein or polypeptide. They include the CRISPLD2 protein with or without the initial methionine.
  • isolated means that the substance is separated from its original environment (if it is a natural substance, the original environment is the natural environment).
  • the polynucleotides and polypeptides in the natural state in living cells are not isolated and purified, but the same polynucleotide or polypeptide is separated and purified, such as from other substances existing in the natural state. .
  • isolated CRISPLD2 protein or polypeptide means that the CRISPLD2 polypeptide is substantially free of other proteins, lipids, carbohydrates or other substances with which it is naturally associated. Those skilled in the art will be able to purify the CRISPLD2 protein using standard protein purification techniques. A substantially pure polypeptide produces a single major band on a non-reducing polyacrylamide gel.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, a synthetic polypeptide, preferably a recombinant polypeptide.
  • the polypeptides of the invention may be naturally purified products, either chemically synthesized or produced by recombinant techniques from prokaryotic or eukaryotic hosts (e. g., bacteria, yeast, higher plant, insect and mammalian cells).
  • the polypeptide of the invention may be glycosylated according to the host used in the recombinant production protocol, or may be non-glycosylated.
  • the invention also encompasses fragments, derivatives and analogs of the CRISPLD2 protein.
  • fragment refers to a polypeptide that substantially retains the same biological function or activity of the native CRISPLD2 protein of the invention.
  • the polypeptide fragment, derivative or analog of the present invention may be (i) a polypeptide having one or more conservative or non-conservative amino acid residues (preferably conservative amino acid residues) substituted, and such substituted amino acid residues It may or may not be encoded by the genetic code, or (ii) a polypeptide having a substituent group in one or more amino acid residues, or (iii) a mature polypeptide and another compound (such as a compound that extends the half-life of the polypeptide, for example a polypeptide formed by fusion of a polyethylene glycol) or (iv) an additional amino acid sequence fused to the polypeptide sequence (eg, a leader or secretion sequence or a sequence or proprotein sequence used to purify the polypeptide, or A fusion protein for the formation of an antigenic IgG fragment).
  • conservative amino acid residues preferably conservative amino acid residues
  • CRISPLD2 polypeptide refers to SEQ ID NO: having CRISPLD2 protein activity: 2 sequence of polypeptides.
  • the term also encompasses variant forms of the sequence of SEQ ID NO: 2 that have the same function as the CRISPLD2 protein. These variants include, but are not limited to, a number (usually 1-50, preferably 1-30, more preferably 1-20, optimally 1-10) amino acid deletions, insertions And/or substitution, and addition of one or several (usually within 20, preferably within 10, more preferably within 5) amino acids at the C-terminus and/or N-terminus.
  • the function of the protein is generally not altered.
  • the addition of one or more amino acids at the C-terminus and/or N-terminus will generally not alter the function of the protein.
  • the term also encompasses active fragments and active derivatives of the CRISPLD2 protein.
  • Variants of the polypeptide include: homologous sequences, conservative variants, allelic variants, natural mutants, induced mutants, proteins encoded by DNA that hybridize to CRISPLD2 DNA under high or low stringency conditions, And a polypeptide or protein obtained using an antiserum against the CRISPLD2 polypeptide.
  • the invention also provides other polypeptides, such as fusion proteins comprising a CRISPLD2 polypeptide or a fragment thereof.
  • the present invention also encompasses soluble fragments of the CRISPLD2 polypeptide.
  • the invention also provides analogs of the CRISPLD2 protein or polypeptide.
  • the difference between these analogs and the native CRISPLD2 polypeptide may be a difference in amino acid sequence, or a difference in the modification form which does not affect the sequence, or both.
  • These polypeptides include natural or induced genetic variants. Induced variants can be obtained by a variety of techniques, such as random mutagenesis by irradiation or exposure to a mutagen, or by site-directed mutagenesis or other techniques known to molecular biology.
  • Analogs also include analogs having residues other than the native L-amino acid (e.g., D-amino acids), as well as analogs having non-naturally occurring or synthetic amino acids (e.g., beta, guanidino-amino acids). It is to be understood that the polypeptide of the present invention is not limited to the representative polypeptides exemplified above.
  • Modifications include: chemically derivatized forms of the polypeptide, such as acetylation or carboxylation, in vivo or in vitro. Modifications also include glycosylation, such as those produced by glycosylation modifications in the synthesis and processing of the polypeptide or in further processing steps. Such modification can be accomplished by exposing the polypeptide to an enzyme that performs glycosylation, such as a mammalian glycosylation enzyme or a deglycosylation enzyme. Modified forms also include sequences having phosphorylated amino acid residues such as phosphotyrosine, phosphoserine, phosphothreonine. Also included are polypeptides that have been modified to enhance their resistance to proteolytic properties or to optimize solubility properties.
  • CRISPLD2 protein conservative variant polypeptide means up to 10, preferably up to 8, more preferably up to 5, optimally up to 3 compared to the amino acid sequence of SEQ ID NO: 2. Amino acids are replaced by amino acids of similar or similar nature to form a polypeptide. These conservative variant polypeptides are preferably produced by amino acid substitution according to Table 1. Table 1
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • the DNA can be a coding strand or a non-coding strand.
  • the coding region sequence encoding the mature polypeptide may be identical to the coding region sequence (positions 228-1718) shown in SEQ ID NO: 1 or may be a degenerate variant.
  • a "degenerate variant" in the present invention refers to a nucleic acid sequence which encodes a protein having the amino acid sequence of SEQ ID NO: 2, but differs from the coding region sequence shown in SEQ ID NO: 1.
  • the polypeptides and polynucleotides of the invention are preferably provided in isolated form, more preferably purified to homogeneity.
  • the full-length nucleotide sequence of CRISPLD2 of the present invention or a fragment thereof can be usually obtained by a PCR amplification method, a recombinant method or a synthetic method.
  • primers can be designed in accordance with the disclosed nucleotide sequences, particularly open reading frame sequences, and can be prepared using commercially available cDNA libraries or conventional methods known to those skilled in the art.
  • the library is used as a template to amplify the relevant sequences. When the sequence is long, it is often necessary to perform two or more PCR amplifications, and then the amplified fragments are spliced together in the correct order.
  • the recombination method can be used to obtain the relevant sequences in large quantities. This is usually done by cloning it into a vector, transferring it to a cell, and then isolating the relevant sequence from the proliferated host cell by conventional methods.
  • synthetic sequences can be used to synthesize related sequences, especially when the fragment length is short.
  • a long sequence of fragments can be obtained by first synthesizing a plurality of small fragments and then connecting them.
  • DNA sequence encoding the protein of the present invention (or a fragment thereof, or a derivative thereof) completely by chemical synthesis.
  • the DNA sequence can then be introduced into various existing DNA molecules (e.g., vectors) and cells known in the art.
  • mutations can also be introduced into the protein sequences of the invention by chemical synthesis.
  • a method of amplifying DNA/RNA using a PCR technique is preferably used to obtain the gene of the present invention.
  • the primers for PCR can be appropriately selected according to the sequence information of the present invention disclosed herein, and can be synthesized by a conventional method.
  • the amplified DNA/RNA fragment can be isolated and purified by a conventional method such as by gel electrophoresis.
  • Transformation of host cells with recombinant DNA can be carried out using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DNA can be harvested after the exponential growth phase and treated by the CaCl 2 method, and the procedures used are well known in the art.
  • Another method is to use MgCl 2 .
  • Conversion can also be carried out by electroporation if desired.
  • the host is a eukaryote, the following DNA transfection methods can be used: calcium phosphate coprecipitation, conventional mechanical methods such as microinjection, electroporation, liposome packaging, and the like.
  • the obtained transformant can be cultured by a conventional method to express the polypeptide encoded by the gene of the present invention.
  • the medium used in the culture may be selected from various conventional media depending on the host cell used.
  • the cultivation is carried out under conditions suitable for the growth of the host cell.
  • the selected promoter is induced by a suitable method (e.g., temperature conversion or chemical induction) and the cells are cultured for a further period of time.
  • the recombinant polypeptide in the above method can be expressed intracellularly, or on the cell membrane, or secreted extracellularly.
  • the recombinant protein can be isolated and purified by various separation methods using its physical, chemical, and other properties. These methods are well known to those skilled in the art. Examples of such methods include, but are not limited to: conventional renaturation treatment, treatment with a protein precipitant (salting method), centrifugation, osmotic sterilizing, ultra-treatment, ultra-centrifugation, molecular sieve chromatography (gel filtration), adsorption layer Analysis, ion exchange chromatography, high performance liquid layer Analysis (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • the invention also encompasses polyclonal and monoclonal antibodies, particularly monoclonal antibodies, which are specific for the polypeptide encoded by CRISPLD2 DNA or a fragment thereof.
  • the invention includes not only intact monoclonal or polyclonal antibodies, but also immunologically active antibody fragments, such as Fab' or (Fab) 2 fragments; antibody heavy chains; antibody light chains; genetically engineered single chain Fv molecules; Or a chimeric antibody, such as an antibody that has murine antibody binding specificity but still retains an antibody portion from a human.
  • immunologically active antibody fragments such as Fab' or (Fab) 2 fragments
  • antibody heavy chains such as antibody light chains; genetically engineered single chain Fv molecules;
  • a chimeric antibody such as an antibody that has murine antibody binding specificity but still retains an antibody portion from a human.
  • Antibodies of the invention can be prepared by a variety of techniques known to those skilled in the art. For example, a purified CRISPLD2 gene product or a fragment thereof having antigenicity can be administered to an animal to induce production of a polyclonal antibody. Similarly, cells expressing the CRISPLD2 protein or its antigenic fragment can be used to immunize an animal to produce antibodies.
  • the antibody of the invention may also be a monoclonal antibody. Such monoclonal antibodies can be prepared using hybridoma technology.
  • Antibodies against the CRISPLD2 protein can be used in immunohistochemistry to detect CRISPLD2 protein in biopsy specimens (especially serum samples).
  • monoclonal antibodies that bind to the CRISPLD2 protein can also be labeled with a radioisotope that can be injected into the body to track its location and distribution.
  • polyclonal antibodies can be used to immunize animals such as rabbits, mice, rats, etc. with CRISPLD2 protein or polypeptide.
  • CRISPLD2 protein or polypeptide A variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
  • substances which interact with the CRISPLD2 protein such as receptors, inhibitors, agonists or antagonists, can be screened by various conventional screening methods.
  • the protein of the present invention and an agonist thereof (also referred to as an agonist) and the like can prevent or treat sepsis and septic shock when administered (administered) therapeutically.
  • these materials can be formulated in a non-toxic, inert, and pharmaceutically acceptable aqueous carrier medium wherein the pH is usually from about 5 to about 8, preferably from about 6 to about 8, although the pH may be The nature of the formulation and the condition to be treated vary.
  • the formulated pharmaceutical compositions can be administered by conventional routes including, but not limited to, oral, intramuscular, intraperitoneal, intravenous, subcutaneous, intradermal, or topical administration.
  • the polypeptide of the present invention can be directly used for the treatment and prevention of diseases, especially for the prevention of sepsis and septic shock.
  • CRISPLD2 protein of the present invention is used, other therapeutic agents for the same condition can also be used at the same time.
  • the present invention also provides a composition (including a pharmaceutical composition) comprising a safe and effective amount (e.g., from 0.001 to 99.9% by weight) of a CRISPLD2 polypeptide of the present invention or an agonist thereof and a (pharmaceutically acceptable carrier) Or an excipient.
  • a pharmaceutical composition comprising a safe and effective amount (e.g., from 0.001 to 99.9% by weight) of a CRISPLD2 polypeptide of the present invention or an agonist thereof and a (pharmaceutically acceptable carrier) Or an excipient.
  • Such carriers include, but are not limited to, saline, buffer, dextrose, water, glycerol, ethanol, and combinations thereof.
  • the pharmaceutical preparation should be matched to the mode of administration.
  • the pharmaceutical composition of the present invention can be formulated into an injection form, for example, by a conventional method using physiological saline or an aqueous solution containing glucose and other adjuvants. Prepared.
  • compositions such as tablets and capsules can be prepared by conventional methods.
  • Pharmaceutical compositions such as injections, solutions, tablets and capsules are preferably manufactured under sterile conditions.
  • the amount of active ingredient administered is a therapeutically effective amount, for example from about 1 microgram per kilogram body weight to about 5 milligrams per kilogram body weight per day.
  • the polypeptides of the invention may also be used with other therapeutic agents.
  • a safe and effective amount of a CRISPLD2 protein or antagonist or agonist thereof is administered to a mammal, wherein the safe and effective amount is usually at least about 10 micrograms per kilogram of body weight, and in most cases no more than about 5
  • the mg/kg body weight preferably the dose is from about 10 micrograms per kilogram of body weight to about 1 milligram per kilogram of body weight.
  • specific doses should also consider factors such as the route of administration, the health of the patient, etc., which are within the skill of the skilled physician.
  • the invention also relates to a diagnostic test method for the quantitative detection of CRISPLD2 protein levels.
  • assays are well known in the art and include ELISA, FISH assays, and radioimmunoassays.
  • the level of CRISPLD2 protein detected in the assay can be used to explain the importance of the CRISPLD2 protein in various diseases and the susceptibility to diagnosis of sepsis and septic shock.
  • a method for detecting the presence or absence of a CRISPLD2 protein in a sample is to detect a specific antibody against a CRISPLD2 protein, which comprises: contacting a sample with a CRISPLD2 protein-specific antibody; observing whether an antibody complex is formed, and forming an antibody complex means a sample
  • the CRISPLD2 protein is present in it.
  • the main applications of the invention include:
  • CRISPLD2 protein as a target molecule, detecting the serum CRISPLD2 concentration in an individual, predicting the sensitivity of the individual to the toxin, and eliminating the ability of the bacterial antigen molecule to provide a basis for the clinician to take necessary for patients who may have sudden sepsis and cause shock. Preventive and therapeutic measures.
  • Recombinant CRISPLD2 protein is used for intervention in patients with sepsis.
  • TLRs activators to increase serum concentrations of CRISPLD2 to prevent sepsis and septic shock.
  • the drug activates CRISPLD2 expression through signaling pathways AP-1, STAT3, GATA3, and IRF-3 to increase serum CRISPLD2 concentration.
  • the invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the PCR product was inserted into the plasmid pGEM-T (Promeg a ) as a template for expression vector construction.
  • Mammalian cells express recombinant CRISPLD2; full-length CRISPLD2 reading frame (ORF) cDNA is inserted into pcDNA3.1.
  • AA carries the -myc-his tag sequence (Invi trogen) plasmid, which forms pcDNA3.1A-CRISPLD2 o.
  • plasmid pcDNA3.1A-CRISPLD2 was transfected into CH0 cells, and then transfected positive cells were selected using antibiotic G418.
  • the CH0 cells stably expressing human CRISPLD2 maintained G418 in culture, and were further separated by limiting dilution method to select highly expressed CH0 cells.
  • CHO cells expressing recombinant CRISPLD2 protein were cultured in serum-free medium. The supernatant was collected to contain high concentrations of recombinant CRISPLD2 protein.
  • the culture broth or serum was appropriately diluted with sodium carbonate buffer (pH 9.5), and coated in a 96-well plate (Nunc Maxi Sorp, Denmark.) at 4 ° C overnight.
  • the 96-well plate was washed twice with phosphate buffer, incubated with phosphate buffer containing 8% fetal bovine serum for 1 hour, and then incubated with phosphate buffer containing 8% fetal bovine serum and anti-CRISPLD2 polyclonal antibody (10 ug / ml).
  • Protein samples were diluted in loading buffer, separated by 10% SDS-PAGE gel, and protein purity was determined by Coomassie blue staining.
  • Immunological mapping SDS-PAGE The protein on the electrophoresis gel was transferred to a nitrocellulose membrane (GE Healthcare). The nitrocellulose membrane was incubated with the buffer containing the primary antibody for 2 hours at 37 ° C, washed, and fluorescein-labeled. The antibody (ROCKLAND) was incubated for 1 hour at 37 °C. ODYSSEY Infrared Imaging System Scans the nitrocellulose membrane to obtain images.
  • Example 2 LPS can bind to CRISLD2, but S. aureus (5". a re s) LTA does not.
  • the binding of LPS to CRISPLD2 was quantified by Surface plasmon resonance (SPR) using a BIAcore 3000 biosensing detector.
  • Recombinant CRISPLD2 protein and IgG (0.18 mg/ml in acetate buffer, pH 4. 5) were coupled to two channels of a sensor chip (GE Healthcare) using reagents supplied by the instrument company. Different concentrations of ⁇ : cW LPS were dissolved in phosphate buffer and the injection was measured while flowing through the two channels of the sensor chip (20 ⁇ /min).
  • the binding reaction unit (RU) of the LPS obtained from the recombinant CRISPLD2 protein channel was subtracted from the IgG channel signal (RU); the unbound LPS was washed away in phosphate buffered saline (PBS); then the bound LPS was washed away with 50 mM NaOH, to the chip Regenerate.
  • PBS phosphate buffered saline
  • LPS affinity analysis LPS dissociation constant
  • CD Scatchard plot
  • D can pass Calculate the ratio of the two constants (obtained by the dissociation rate constant (f f) ) using the formula: R : 7?to e — fcff (t — ⁇ ), R. It is the amplitude of the initiate response.
  • the association rate constant ( on) is derived from the f value, and the formula is: R 2 7 max [1-e ⁇ ⁇ c + " ⁇ > (t - t0) ], where C is the LPS concentration, which is LPS The maximum binding reaction unit (RU) is combined with CRISPLD2, and R t is the amount of LPS binding to CTRISPLD2 at time t.
  • Quantity range mean ⁇ s. d protein sample
  • mice were injected intraperitoneally with different non-toxic doses of E coli-LPS.
  • the negative control was Pam3CSK4 synthetic bacterial lipoprotein and phospholipidic acid LTA.
  • the tail veins were drawn at different time points, and serum Crispld2 was detected by ELISA.
  • Example 5 Recombinant CRISPLD2 blocks LPS binding to cellular receptors and inhibits inflammatory factor release from target cells. 5 x 107 ml of human peripheral mononuclear cells were suspended in RPMI 1640 medium (0.1% FCS), and recombinant CERISPLD2 protein and Cy2-labeled LPS were added at 4 ° C for 20 minutes. Flow cytometry analysis, monocyte and lymphocyte dot plot separation (Dot-plot, SSC versus FSC), respectively, analyzed the fluorescence intensity of FITC-LPS on these two groups of cells. Recombinant CRISP-3 protein was used as a control.
  • LPS binds to target cell receptors.
  • the recombinant CERISPLD2 protein blocked the release of inflammatory factors induced by LPS in E. coli.
  • Example 6 Recombinant human CRISPLD2 protects mice from endotoxin-induced lethality, correlation between serum CRISPLD2 concentration and lethal dose of E coli-LPS
  • recombinant human CRISPLD2 protected mice from endotoxin shock (45 mice).
  • mice (20 mice) were intraperitoneally injected with a non-toxic dose of E col i-LPS (30 ⁇ g/mouse), and on the tenth day, blood was drawn from the tail vein with 4 normal mice, serum 1: 10000 dilution, CRISPLD2 was tested by ELISA, and all mice were randomized intraperitoneally with different lethal doses of Ecol i-LPS after 6 hours. On the thirty-second day, the surviving mice were again bled in the tail vein, serum 1 : 10000 was diluted, CRISPLD2 was tested by ELISA, and 6 hours later, different lethal doses of Ecol i-LPS were randomly administered intraperitoneally.
  • the serum CRISPLD2 concentration in mice was positively correlated with the lethal dose of E col i-LPS.
  • the protein of the present invention is a target molecule for predicting gram-negative bacterial sepsis and individual sensitivity to endotoxin.
  • Example 7 Long-term treatment with broad-spectrum antibiotics caused a decrease in serum CRISPLD2 concentration in mice, and increased sensitivity of mice to endotoxic shock
  • mice The normal control group of normal drinking water, the 4-day group and the 15-day group containing broad-spectrum antibiotics in drinking water, and the three groups of mice were intraperitoneally injected with 200 ⁇ g Ecol i-LPS. Normal mice will have a 70-80% mortality rate by intraperitoneal injection of 400 ⁇ g of Ecol i-LPS. The mice receiving broad-spectrum antibiotics for 15 consecutive days have a significant mortality rate caused by intraperitoneal injection of 200 ⁇ g of Ecol i-LPS compared with normal controls. There was no significant change in the mortality caused by intraperitoneal injection of 200 ⁇ g of Ecol i-LPS compared with normal controls in mice that received broad-spectrum antibiotics for 4 consecutive days. Statistical methods and statistics have been plotted on the map.
  • PGN high-purity bacterial polysaccharide, FLA; high-purity bacterial flagellin, OND ctr; synthetic bacterial DNA enriched with GPC sequence, 0ND; synthetic bacterial DNA is rich in CPG sequences.
  • E. coli LPS, PGN, FLA, OND ctr, OND were used to stimulate human peripheral blood mononuclear cells for 3 hours or 12 hours at 37 ° C. The concentrations used for these reagents are shown in Figure 8.
  • the concentration of CRISPLD2 in the culture broth was identified by ELISA.
  • TLRs activators including bacterial LPS, flagellin, and CPG-DNA can stimulate immune cells to significantly increase CRISPLD2 secretion.
  • LTA phospholipidic acid activation of TLR2 by Gram-positive bacteria
  • Histone deacetylase inhibitors and all-trans retinoic acid can inhibit the release of inflammatory factors caused by infection with an inflammatory response, and can induce a large release of CRISPLD2 by immune cells (Example 8D-E).
  • Example 9 LPS, lipoprotein, and DNA of gram-negative and positive bacteria can be combined with CRISPLD2
  • the surface plasmon resonance (SPR) was measured in the same manner as in Example 2.
  • Pam3CSK4 synthetic bacterial lipoprotein.
  • LTA Gram-positive bacteria phospholipidic acid.
  • OND ctr synthetic bacterial DNA is rich in GPC sequences. 0ND; Synthetic bacterial DNA is rich in CPG sequences.
  • Poly I C; Synthetic viral double-stranded RNA. The concentration of all these reagents is (0, 0.3, 1. 0, 3. 0, 10 ⁇ M),
  • a test kit containing rabbit anti-CRISPLD2 IgG, an ELISA detection reagent, and instructions is prepared.
  • Example 11 Pharmaceutical composition containing recombinant CRISPLD2 protein
  • the pharmaceutical composition is prepared in a conventional manner according to the following formulation:
  • Escherichia coli LPS and flagellin may be additionally added.
  • CRISPLD2 was also replaced with E. coli LPS or flagellin (FLA). Discussion
  • Secreted protein CRISPLD2 is a target molecule that predicts gram-negative bacterial sepsis and individual sensitivity to endotoxin.
  • cysteine-rich secretory protein CRISPLD2 Cysteine - rich secretory protein LCCL domain containing 2
  • Example 3 A higher serum concentration of LPS binding protein
  • Fig. 10 the first day (in acute phase) of intraperitoneal injection of non-toxic dose of LPS in mice
  • the serum Cri spld2 concentration decreased rapidly, and began to rebound after the next day.
  • the fifth day (recovery period) reached before LPS injection 1- More than 2 times, then, a higher serum concentration was maintained for more than 1 week (Example 4).
  • CRISPLD2 protein can protect mice, increase the survival rate of endotoxin shock, and prevent endotoxin shock.
  • the present inventors have found that intraperitoneal injection of a non-toxic dose of E col i-LPS in mice can increase serum CRISPLD2 concentration by more than 1-2 times and maintain a high serum concentration for more than one week, during which time the mice are again intraperitoneally injected with a lethal dose E col i -LPS, their mortality is greatly reduced.
  • Statistical analysis of experimental data revealed a positive correlation between serum CRISPLD2 concentration and lethal dose of E col i-LPS (Examples 6B, 7).
  • TLRs activators is a simple and effective preventive treatment for increasing the concentration of CRISPLD2 in the body.
  • Gram-positive and negative bacterial antigen molecules stimulate the proliferation of cells to secrete CRISPLD2; conversely, the protein can also bind to these bacterial antigens, and has the function of "Scavenge protein".
  • Activators such as bacterial LPS, DNA, flagellin (FLA), and bacterial polysaccharide (PGN) can increase the secretion of CRISPLD2 protein by cells.
  • Serum CRISPLD2 concentration is not only an indicator, but directly reflects the individual's Sensitivity to endotoxin sensitivity (LPS) also indirectly reflects the endogenous bacterial environment.
  • Bacterial molecules including LPS, flagellin (FLA), DNA, and bacterial polysaccharide (PGN) are all TLRs activators that activate TLR4, TLR5, TLR9 and other receptors, respectively.
  • TLRs activators including bacterial LPS, flagellin, and CPG-DNA
  • LTA gram-positive bacteria's phospholipidic acid
  • TLRs activators play an important role in mucosal epithelial homeostasis and enhance the innate immune response of the small intestine.
  • Intraperitoneal injection of non-toxic doses of LPS in mice increased serum CRISPLD2 concentration and reduced endotoxin sensitivity in mice, increasing the survival rate of endotoxin shock in mice (Example 6).
  • systemic application of TLRs activators is not a suitable and acceptable method, it is clinically feasible and beneficial to enhance the innate immune function of the host by digestive TLRs activators entering the mucosal surface.
  • the CRISPLD2 protein binds to bacterial lipoprotein (Pam3CSK4) and bacterial DNA to remove gram-positive and negative bacterial molecules that induce inflammatory responses.
  • Bacterial DNA, bacterial lipoprotein (Pam3CSK4) and the like can interact with CRISPLD2 (Example 9), and it can be seen that CRISPLD2 can act not only on molecules of Gram-negative bacteria but also on molecules of Gram-positive bacteria.
  • the RXXXH structure is found in the first LCCL domain of this protein, which can bind to DNA; the LCCL domain is a lipophilic protein structure that binds to the bacterial lipoprotein Pam3CSK4 (Example 9); The LCCL domain also has the potential to bind to serum lipoproteins, possibly through this mechanism not only involved in the clearance of exogenous bacterial antigen molecules, but also in the clearance of DNA fragments from apoptotic cells caused by the inflammatory response.
  • the CRISPLD2 protein has the function of "Scavenge prote in”. Under normal conditions, a relatively reasonable concentration of CRISPLD2 is maintained in the body fluid to maintain the endogenous bacterial flora balance.
  • CRISPLD2 When external bacteria invade, immune cells and epithelial cells are found to release excessive bacterial molecules through the TLRs receptor, confirming bacterial invasion, thereby enhancing CRISPLD2 secretion (Example 8), antagonizing bacterial antigen molecules and controlling moderate innate immune responses; once the immune system Killing invading bacteria, bacterial disintegration leads to the release of a large number of bacterial molecules, CRISPLD2 is immediately involved in accelerating the elimination of bacterial molecules and apoptotic cells caused by inflammation, and strengthening the control of the immune system's response to these bacterial antigen molecules (including intrinsic and acquired immunity), Avoid excessive immune response leading to severe syndrome leading to shock.
  • CRISPLD2 is a key molecule in controlling the feedback mechanism of excessive immune response caused by bacterial infection.
  • oral TLRs activators to increase serum CRISPLD2 concentration, reduce individual sensitivity to endotoxin, maintain bacterial balance, accelerate the elimination of residual endotoxin and other immunogenic bacterial molecules in the body, is a simple and effective way to prevent sepsis and septic shock Method.
  • Recombinant CRISPLD2 protein can also be added to plasma during transfusion of critically ill patients to accelerate the removal of residual bacterial endotoxin and other immunogenic bacterial molecules in the body for treatment.
  • histone deacetylase inhibitors and all-trans retinoic acid can inhibit the release of inflammatory factors caused by infection, and Inducing immune cells to release CRISPLD2 in large amounts (Example 8, Figure 8D-E)
  • the mechanism by which these drugs inhibit immune counteractance is to directly interfere with signaling, independent of CRISPLD2 release of antagonistic bacterial antigens, and, on the other hand, drug therapy.
  • a large amount of CRISPLD2 release is beneficial for the removal of anti-bacterial antigen molecules.
  • CRISPLD2 promoter region contains a retinoic acid receptor RXR/RXR binding region and a binding region for other promoters, including the binding regions of AP-1, STAT3, GATA3, IRF-3, and histone deacetylase.
  • Drug intervention to activate nuclear receptors and factors such as RXR/RXR, AP-1, STAT3, GATA3, and IRF-3 is another promising prophylactic treatment for increased secretion of CRISPLD2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Communicable Diseases (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

败血症以及败血症休克的预测、 预防和治疗方法及试剂盒
技术领域
本发明属于生物技术和医学领域, 具体地说, 本发明提供了一种败血症以及 败血症休克相关蛋白 -CRISPLD2蛋白, 及其在败血症以及败血症休克的预测、 预 防和治疗中的用途。 通过提高血清中 CRISPLD2蛋白的浓度, 可以预防和治疗败血 症以及败血症休克。 背景技术
细菌感染引起的败血症至今仍然是危害人类健康的急性综合症, 败血症目前 是美国排位第 10的主要死亡原因, 在中国败血症的发病率和死亡率也不容乐观。 格兰氏阴性以及阳性细菌引起的败血症主要原因是由于细菌或细菌毒素侵入血流 引起。 健康者在病原菌入侵后, 一般仅表现为短暂的菌血症, 细菌可被人体的免 疫防御系统迅速消灭, 并不引起明显症状; 但各种免疫防御功能缺陷者(包括局 部和全身屏障功能的丧失), 都易诱发败血症。 放射治疗、 广谱抗菌素、 细胞毒 类药物的应用, 以及各种大手术至严重的开放性创伤等都是败血症的重要诱因。
细菌感染引起的败血症以及败血症并发休克的诊断、 预防治疗工作仍然面临 许多挑战, 监测血流中的微量细菌和细菌毒素都是可行的诊断方法但存在严重缺 点, 而且缺乏统一的标准。
近 20多年, 发现一些可以应用于诊断的分子靶点的人血清分子, 例如 B 型尿 肽(B- type natriuretic peptide)、 降血钙素(Procalcitonin)、 细菌聚月旨多糖 结合蛋白(LBP)、 细菌渗透性增强蛋白(BPI)、 可溶性 CD14 (sCD14)、 Endocan 等, 但它们都不能准确、 有效预测败血症及败血症休克。 在格兰氏阴性细菌引起 败血症的病理过程中, 该类细菌外壳的多聚脂多糖 (LPS)起重要作用。 但是根据 对上述分子的分子免疫学功能以及生物学功能研究, 很难作为预测格兰氏阴性细 菌败血症以及个体对内毒素休克的有效靶点。
因此, 本领域迫切需要开发的新的、 有效地对败血症以及败血症休克进行预 测、 预防和治疗的方法。 发明内容 本发明的目的是提供一种人败血症以及败血症休克相关蛋白 -CRISPLD2蛋白 及其应用。 在本发明的第一方面, 提供了一种 CRISPLD2蛋白或其促效剂的用途, 它们被 用于制备预防或治疗败血症以及败血症休克的药物。
在另一优选例中, 所述的促效剂包括: 剌激 CRISPLD2分泌的 TLRs激活剂, 以及诱导 CRISPLD2表达的表达诱导剂。
在另一优选例中, 所述的 TLRs激活剂包括: 细菌的多聚脂多糖 (LPS)、 鞭毛 蛋白(FLA)、 细菌多聚糖(PGN)、 和细菌 DNA (CPG-DNA);
而所述的表达诱导剂包括: 组蛋白去乙酰化酶抑制剂 (如制滴菌素
A (Trichostatin A) ) 和维甲酸 (尤其是全反式维甲酸) 。
在另一优选例中, 所述的药物含有 CRISPLD2蛋白和 /或其促效剂, 以及药学 上可接受的载体。
在另一优选例中, 所述药物的剂型为口服剂型或注射剂。
在本发明的第二方面, 提供了一种预防或治疗败血症以及败血症休克的方 法, 包括步骤: 给需要的哺乳动物对象施用 CRISPLD2蛋白或其促效剂, 从而提高 其血清中 CRISPLD2蛋白的浓度。
在本发明的第三方面, 提供了一种可用于制备预防或治疗败血症以及败血症 休克的药物组合物, 它含有药学上可接受的载体以及用于增加血清中 CRISPLD2浓 度的一种或多种选自下组的物质:
(a) 重组的 CRISPLD2蛋白;
(b) 所述的 TLRs激活剂包括: 细菌的 LPS、 鞭毛蛋白(FLA)、 细菌多聚糖 (PGN)、 禾口细菌 DNA (CPG-DNA)禾口
(c) 组蛋白去乙酰化酶抑制剂(如制滴菌素 A)和全反式维甲酸。
在本发明的第四方面, 提供了一种 CRISPLD2蛋白或基因的用途, 它们被用于 制备预测或检测败血症以及败血症休克的易感性的试剂盒或试剂。
在另一优选例中, 所述的试剂盒包括: 容器以及位于容器中的用于检测 CRISPLD2血清浓度的试剂。
在另一优选例中, 所述的试剂包括: 抗 CRISPLD2的抗体(尤其是单克隆抗 体)。
在本发明的第五方面, 提供了一种用于预测败血病及败败血病及败血病休克 的易感性的试剂盒, 它包括: 容器以及位于容器中的用于检测 CRISPLD2血清浓度 的试剂。
在另一优选例中, 所述的试剂包括: 抗 CRISPLD2的抗体。
在本发明的第六方面, 提供了一种对败血病及败败血病及败血病休克的易感 性进行预测的方法, 它包括步骤:
检测待检个体的 CRISPLD2血清浓度, 并与正常人群的 CRISPLD2血清浓度相 比较, 其中, 高于正常人群就表明对该个体而言败血病及败败血病及败血病休克 的易感性低于正常人群; 低于正常人群就表明对该个体而言败血病及败败血病及 败血病休克的易感性高于正常人群。
在本发明的第七方面, 提供了与上述的 CRISPLD2多肽特异性结合的抗体。 在本发明的第八方面, 提供了模拟、 促进、 拮抗 CRISPLD2多肽活性的化合 物, 以及促进 CRISPLD2多肽表达的化合物。 还提供了筛选这些化合物的方法。
在本发明的第九方面, 提供了定性和定量检测样品中是否存在 CRISPLD2蛋白 的方法, 它包括: 将样品与 CRISPLD2蛋白的特异性抗体接触, 观察是否形成抗体 复合物及其数量, 其中形成了抗体复合物就表示样品中存在 CRISPLD2蛋白。
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。
应理解, 在本发明范围内中, 本发明的上述各技术特征和在下文(如实施例) 中具体描述的各技术特征可以互相组合, 从而构成新的或优选的技术方案。 限于 篇幅, 在此不再一一累述。 附图说明
图 1 显示了 ELISA标准曲线。
图 2显示了重组 CRISPLD2的鉴定结果。 其中, 图 2A, 10% SDS-PAGE 胶分离 纯化重组 CRISPLD2分子, 考马斯蓝鉴定; 图 2B 抗 CRISPLD2抗体免疫印迹;图 2C 抗 c-myc-标记抗体免疫印迹。 各泳道如下: 1, 3和 5 :培养基中的 CRISPLD2 ; M: 分子量标准; 2和 4 :对照培养基。
图 3 显示了应用 BIAcore 技术测定的分子相互作用。 其中, (A) E. col i LPS与 CRISPLD2结合的传感图。 (B)金黄色葡萄球菌(5: aureus) LTA与 CRISPLD2 结合的传感图。 E. coli LPS 或 S. aureus LTA (0. 3, 1. 0, 3. 0, 10和 30 μ M) 流过固定在芯片表面的 CRISPLD2, k。ff和 k。n 是传感图计算取得的结合参数, LPS 的离解常数 (KD) = (k。ff /k。n) . (C) 分子结合动力学曲线: RU 反映 E. col i LPS与 CRISPLD2 的结合能力, E. col i LPS (1. 0, 3. 0, 10, 30 and 100 μ M) 流过固定 在芯片表面的 CRISPLD2, . (D) Scatchard plot 分析 E. coli LPS与 CRISPLD2结 合的离解常数 (KD) (平均值 士 s. d)。
图 4显示了不同剂量 LPS腹腔注射后血清 Cri spld2浓度的时间曲线。
图 5显示了重组 CRISPLD2阻断 LPS与把细胞受体结合, 抑制靶细胞炎症因子 释放。 其中, 图 A-B: 重组 CERISPLD2蛋白阻断大肠杆菌 LPS及沙门氏菌 LPS与靶 细胞受体结合。 图 C-D. 重组 CERISPLD2蛋白阻断大肠杆菌 LPS诱导的炎症因子释 放。
图 6显示了重组人 CRISPLD2 保护小鼠免于内毒素休克致死, 血清 CRISPLD2 浓度与 E col i-LPS致死剂量相关性分析。 其中, 图 A显示了重组人类 CRISPLD2 保护小鼠免于内毒素休克致死。 图 B显示了小鼠血清 CRISPLD2浓度与 E col i-LPS 致死剂量存在相关性。
图 7显示了抗菌素长时间治疗引起小鼠血清 CRISPLD2浓度下降, 小鼠对内毒 素休克的敏感性增加。 其中, 图 7A显示, 长时间服用万古霉素加新霉素导致小鼠 血清 CRISPLD2 浓度下降。 图 7B 显示, 长时间服用万古霉素加新霉素增加了小鼠 对内毒素休克的敏感性。
图 8显示了促效剂对 CRISPLD2分泌或表达的促进作用。
图 9显示了格兰氏阴性和阳性细菌的 LPS、 脂蛋白、 DNA均可与 CRISPLD2结 合。
图 10显示了 CRISPLD2的氨基酸序列(SEQ ID NO : 2), 其中结合 LPS的二个 LCCL结构域位于第 286-370位和第 387-460位。 第 333-337位为 RXXXH基序。 具体实施方式
本发明人经过深入而广泛的研究, 首次证明了一种与败血症以及败血症休克 密切相关的人蛋白 CRISPLD2。 一方面, 以 CRISPLD2蛋白作为靶分子, 可检测个体 血清 CRISPLD2浓度, 预测诊断个体内对毒素的敏感性。 另一方面, 通过提高血清 中 CRISPLD2蛋白的浓度, 可以预防和治疗败血症以及败血症休克。 在此基础上完 成了本发明。
CRISPLD2 (cyste ine-ri ch secretory prote in LCCL domain containing 2,含 LCCD结构域的半胱氨酸富集的分泌蛋白 2)的 cDNA序列可参见登录号 NM— 031476 (长度 4607 bp)或 SEQ ID NO : 1, 其基因组序列可参见登录号 NC— 000016. 8,氨基酸序列可参见序列号 AAH63012或 SEQ ID NO : 2。
在本发明中, 术语 " CRISPLD2蛋白" 、 " CRISPLD2多肽" 或 "人败血症以 及败血症休克相关蛋白 CRISPLD2 "可互换使用, 都指具有人败血症以及败血症休 克相关蛋白 CRISPLD2氨基酸序列(SEQ ID N0 : 2)的蛋白或多肽。 它们包括含有或 不含起始甲硫氨酸的 CRISPLD2蛋白。
如本文所用, "分离的" 是指物质从其原始环境中分离出来(如果是天然的 物质, 原始环境即是天然环境)。 如活体细胞内的天然状态下的多聚核苷酸和多 肽是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存在的其他 物质中分开, 则为分离纯化的。
如本文所用, "分离的 CRISPLD2蛋白或多肽" 是指 CRISPLD2多肽基本上不 含天然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技术人员能用标 准的蛋白质纯化技术纯化 CRISPLD2蛋白。 基本上纯的多肽在非还原聚丙烯酰胺凝 胶上能产生单一的主带。
本发明的多肽可以是重组多肽、 天然多肽、 合成多肽, 优选重组多肽。 本 发明的多肽可以是天然纯化的产物, 或是化学合成的产物, 或使用重组技术从 原核或真核宿主(例如, 细菌、 酵母、 高等植物、 昆虫和哺乳动物细胞)中产 生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化的, 或可以是 非糖基化的。
本发明还包括 CRISPLD2蛋白的片段、 衍生物和类似物。 如本文所用, 术语 "片段" 、 "衍生物"和 "类似物"是指基本上保持本发明的天然 CRISPLD2蛋白 相同的生物学功能或活性的多肽。 本发明的多肽片段、 衍生物或类似物可以是(i) 有一个或多个保守或非保守性氨基酸残基(优选保守性氨基酸残基)被取代的多 肽, 而这样的取代的氨基酸残基可以是也可以不是由遗传密码编码的, 或(i i)在 一个或多个氨基酸残基中具有取代基团的多肽, 或(i i i)成熟多肽与另一个化合 物(比如延长多肽半衰期的化合物, 例如聚乙二醇)融合所形成的多肽, 或(iv)附 加的氨基酸序列融合到此多肽序列而形成的多肽(如前导序列或分泌序列或用来 纯化此多肽的序列或蛋白原序列, 或与抗原 IgG片段的形成的融合蛋白)。 根据本 文的教导, 这些片段、 衍生物和类似物属于本领域熟练技术人员公知的范围。
在本发明中, 术语 " CRISPLD2多肽" 指具有 CRISPLD2蛋白活性的 SEQ ID NO : 2序列的多肽。 该术语还包括具有与 CRISPLD2蛋白相同功能的、 SEQ ID NO : 2序 列的变异形式。 这些变异形式包括(但并不限于): 若干个(通常为 1-50个, 较佳 地 1-30个, 更佳地 1-20个, 最佳地 1-10个)氨基酸的缺失、 插入和 /或取代, 以及 在 C末端和 /或 N末端添加一个或数个(通常为 20个以内, 较佳地为 10个以内, 更佳 地为 5个以内)氨基酸。 例如, 在本领域中, 用性能相近或相似的氨基酸进行取代 时, 通常不会改变蛋白质的功能。 又比如, 在 C末端和 /或 N末端添加一个或数个 氨基酸通常也不会改变蛋白质的功能。 该术语还包括 CRISPLD2蛋白的活性片段和 活性衍生物。
该多肽的变异形式包括: 同源序列、 保守性变异体、 等位变异体、 天然突变 体、 诱导突变体、 在高或低的严紧度条件下能与 CRISPLD2 DNA 杂交的 DNA所编码 的蛋白、 以及利用抗 CRISPLD2多肽的抗血清获得的多肽或蛋白。 本发明还提供了 其他多肽, 如包含 CRISPLD2多肽或其片段的融合蛋白。 除了几乎全长的多肽外, 本发明还包括了 CRISPLD2多肽的可溶性片段。
发明还提供 CRISPLD2蛋白或多肽的类似物。 这些类似物与天然 CRISPLD2多 肽的差别可以是氨基酸序列上的差异, 也可以是不影响序列的修饰形式上的差 异, 或者兼而有之。 这些多肽包括天然或诱导的遗传变异体。 诱导变异体可以通 过各种技术得到, 如通过辐射或暴露于诱变剂而产生随机诱变, 还可通过定点诱 变法或其他已知分子生物学的技术。 类似物还包括具有不同于天然 L-氨基酸的残 基(如 D-氨基酸)的类似物, 以及具有非天然存在的或合成的氨基酸(如 β、 Υ -氨 基酸)的类似物。 应理解, 本发明的多肽并不限于上述例举的代表性的多肽。
修饰(通常不改变一级结构)形式包括: 体内或体外的多肽的化学衍生形式如 乙酰化或羧基化。 修饰还包括糖基化, 如那些在多肽的合成和加工中或进一步加 工步骤中进行糖基化修饰而产生的多肽。 这种修饰可以通过将多肽暴露于进行糖 基化的酶(如哺乳动物的糖基化酶或去糖基化酶)而完成。 修饰形式还包括具有磷 酸化氨基酸残基(如磷酸酪氨酸, 磷酸丝氨酸, 磷酸苏氨酸)的序列。 还包括被修 饰从而提高了其抗蛋白水解性能或优化了溶解性能的多肽。
在本发明中, " CRISPLD2蛋白保守性变异多肽" 指与 SEQ ID NO : 2的氨基 酸序列相比, 有至多 10个, 较佳地至多 8个, 更佳地至多 5个, 最佳地至多 3个氨 基酸被性质相似或相近的氨基酸所替换而形成多肽。 这些保守性变异多肽最好根 据表 1进行氨基酸替换而产生。 表 1
Figure imgf000008_0001
本发明的多核苷酸可以是 DNA形式或 RNA形式。 DNA形式包括 cDNA、 基因组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链的。 DNA可以是编码链或非编码 链。 编码成熟多肽的编码区序列可以与 SEQ ID NO : 1所示的编码区序列(第 228- 1718位)相同或者是简并的变异体。 如本文所用, "简并的变异体"在本发明中 是指编码具有 SEQ ID N0 : 2所示氨基酸序列的蛋白质, 但与 SEQ ID NO : 1所示的编 码区序列有差别的核酸序列。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的 CRISPLD2核苷酸全长序列或其片段通常可以用 PCR扩增法、 重组法 或人工合成的方法获得。 对于 PCR扩增法, 可根据本发明所公开的有关核苷酸序 列, 尤其是开放阅读框序列来设计引物, 并用市售的 cDNA库或按本领域技术人员 已知的常规方法所制备的 cDNA库作为模板, 扩增而得有关序列。 当序列较长时, 常常需要进行两次或多次 PCR扩增, 然后再将各次扩增出的片段按正确次序拼接 在一起。
一旦获得了有关的序列, 就可以用重组法来大批量地获得有关序列。 这通常 是将其克隆入载体, 再转入细胞, 然后通过常规方法从增殖后的宿主细胞中分离 得到有关序列。
此外, 还可用人工合成的方法来合成有关序列, 尤其是片段长度较短时。 通 常, 通过先合成多个小片段, 然后再进行连接可获得序列很长的片段。
目前, 已经可以完全通过化学合成来得到编码本发明蛋白(或其片段, 或其 衍生物)的 DNA序列。 然后可将该 DNA序列引入本领域中已知的各种现有的 DNA分子 (或如载体)和细胞中。 此外, 还可通过化学合成将突变引入本发明蛋白序列中。
应用 PCR技术扩增 DNA/RNA的方法被优选用于获得本发明的基因。 用于 PCR的 引物可根据本文所公开的本发明的序列信息适当地选择, 并可用常规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RNA片段。
用重组 DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。 当宿主 为原核生物如大肠杆菌时, 能吸收 DNA的感受态细胞可在指数生长期后收获, 用 CaCl2法处理, 所用的步骤在本领域众所周知。 另一种方法是使用 MgCl2。 如果需 要, 转化也可用电穿孔的方法进行。 当宿主是真核生物, 可选用如下的 DNA转染 方法: 磷酸钙共沉淀法, 常规机械方法如显微注射、 电穿孔、 脂质体包装等。
获得的转化子可以用常规方法培养, 表达本发明的基因所编码的多肽。 根据 所用的宿主细胞, 培养中所用的培养基可选自各种常规培养基。 在适于宿主细胞 生长的条件下进行培养。 当宿主细胞生长到适当的细胞密度后, 用合适的方法 (如温度转换或化学诱导)诱导选择的启动子, 将细胞再培养一段时间。
在上面的方法中的重组多肽可在细胞内、 或在细胞膜上表达、 或分泌到细胞 外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法分离和纯 化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法的例子包括但并 不限于: 常规的复性处理、 用蛋白沉淀剂处理 (盐析方法)、 离心、 渗透破菌、 超 处理、 超离心、 分子筛层析 (凝胶过滤)、 吸附层析、 离子交换层析、 高效液相层 析 (HPLC)和其它各种液相层析技术及这些方法的结合。
另一方面, 本发明还包括对 CRISPLD2 DNA或是其片段编码的多肽具有特异 性的多克隆抗体和单克隆抗体, 尤其是单克隆抗体。
本发明不仅包括完整的单克隆或多克隆抗体, 而且还包括具有免疫活性的抗 体片段, 如 Fab'或(Fab) 2片段; 抗体重链; 抗体轻链; 遗传工程改造的单链 Fv分 子; 或嵌合抗体, 如具有鼠抗体结合特异性但仍保留来自人的抗体部分的抗体。
本发明的抗体可以通过本领域内技术人员已知的各种技术进行制备。 例如, 纯化的 CRISPLD2基因产物或者其具有抗原性的片段, 可被施用于动物以诱导多克 隆抗体的产生。 与之相似的, 表达 CRISPLD2蛋白或其具有抗原性的片段的细胞可 用来免疫动物来生产抗体。 本发明的抗体也可以是单克隆抗体。 此类单克隆抗体 可以利用杂交瘤技术来制备。
抗 CRISPLD2蛋白的抗体可用于免疫组织化学技术中, 检测活检标本(尤其是 血清样本)中的 CRISPLD2蛋白。 此外, 与 CRISPLD2蛋白结合的单克隆抗体也可用 放射性同位素标记, 注入体内可跟踪其位置和分布。
多克隆抗体的生产可用 CRISPLD2蛋白或多肽免疫动物, 如家兔, 小鼠, 大鼠 等。 多种佐剂可用于增强免疫反应, 包括但不限于弗氏佐剂等。
利用本发明蛋白, 通过各种常规筛选方法, 可筛选出与 CRISPLD2蛋白发生相 互作用的物质, 如受体、 抑制剂、 激动剂或拮抗剂等。
本发明蛋白及其激动剂 (也称为促效剂)等, 当在治疗上进行施用(给药)时, 可预防或治疗败血症以及败血症休克。 通常, 可将这些物质配制于无毒的、 惰性 的和药学上可接受的水性载体介质中, 其中 pH通常约为 5-8, 较佳地 pH约为 6-8, 尽管 pH值可随被配制物质的性质以及待治疗的病症而有所变化。 配制好的药物组 合物可以通过常规途径进行给药, 其中包括(但并不限于): 口服、 肌内、 腹膜 内、 静脉内 、 皮下、 皮内、 或局部给药。
本发明的多肽可直接用于疾病治疗和预防, 尤其是防治败血症以及败血症休 克。 在使用本发明 CRISPLD2蛋白时, 还可同时使用其他用于同一病症的治疗剂。
本发明还提供了一种组合物(包括药物组合物), 它含有安全有效量(如 0. 001-99. 9wt%)的本发明 CRISPLD2多肽或其激动剂以及(药学上)可接受的载体或 赋形剂。 这类载体包括(但并不限于): 盐水、 缓冲液、 葡萄糖、 水、 甘油、 乙 醇、 及其组合。 药物制剂应与给药方式相匹配。 本发明的药物组合物可以被制成 针剂形式, 例如用生理盐水或含有葡萄糖和其他辅剂的水溶液通过常规方法进行 制备。 诸如片剂和胶囊之类的药物组合物, 可通过常规方法进行制备。 药物组合 物如针剂、 溶液、 片剂和胶囊宜在无菌条件下制造。 活性成分的给药量是治疗有 效量, 例如每天约 1微克 /千克体重-约 5毫克 /千克体重。 此外, 本发明的多肽还 可与其他治疗剂一起使用。
使用药物组合物时, 是将安全有效量的 CRISPLD2蛋白或其拮抗剂、 激动剂施 用于哺乳动物, 其中该安全有效量通常至少约 10微克 /千克体重, 而且在大多数 情况下不超过约 5毫克 /千克体重, 较佳地该剂量是约 10微克 /千克体重-约 1毫克 / 千克体重。 当然, 具体剂量还应考虑给药途径、 病人健康状况等因素, 这些都是 熟练医师技能范围之内的。
本发明还涉及定量检测 CRISPLD2蛋白水平的诊断试验方法。 这些试验是本领 域所熟知的, 包括 ELISA、 FISH测定和放射免疫测定。 试验中所检测的 CRISPLD2 蛋白水平, 可以用作解释 CRISPLD2蛋白在各种疾病中的重要性和用于诊断败血症 以及败血症休克的易感性。
一种检测样品中是否存在 CRISPLD2蛋白的方法是利用 CRISPLD2蛋白的特异 性抗体进行检测, 它包括: 将样品与 CRISPLD2蛋白特异性抗体接触; 观察是否 形成抗体复合物, 形成了抗体复合物就表示样品中存在 CRISPLD2蛋白。 本发明的主要应用包括:
1. 将 CRISPLD2蛋白作为靶分子, 检测个体血清 CRISPLD2浓度, 预测诊断个 体内对毒素的敏感性, 清除细菌抗原分子的能力, 为临床医生提供依据, 对可能 突发败血症并引起休克的病人采取必要的预防治疗措施。
2. 将重组 CRISPLD2蛋白用于病人败血症时干预治疗。
3. 应用 TLRs激活剂提高 CRISPLD2的血清浓度, 以预防败血症以及败血症休 克。
4. 药物通过 CRISPLD2启动子区 RXR/RXR以及组蛋白去乙酰化酶与 RXR/RXR结 合激活 CRISPLD2表达, 提高血清 CRISPLD2浓度。
5 . 药物通过信号通路 AP-1、 STAT3、 GATA3、 IRF-3激活激活 CRISPLD2表 达, 提高血清 CRISPLD2浓度。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件如 Sambrook等人, 分子克隆: 实验室手册(New York : Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所建 议的条件。 通用方法
一、 质粒构建和细胞转染
1 . 应用 PCR从人类混合组织 mRNA中获得全长 CR I SPLD2阅读框架(ORF) cDNA; 引物:
Fl 5,- GCTGTCGCCGCTGCTACCGC (SEQ ID NO : 3);
Rl 5,- GACGCCCCTTCTCCCCTGGT (SEQ ID NO : 4)
2. PCR产物插入质粒 pGEM-T (Promega)作为表达载体构建的模版。
3 . 构建重组原核生物表达载体; CRISPLD2序列(部分; 257-497aa) 的 c DNA插入质粒 pGEX-4T-l (GE Healthcare) 产生 GST-CRISPLD2融合蛋白。 这一融 合蛋白用来免疫兔子产生抗血清。 应用 Prote in G Agarose 从抗血清中纯化抗 CRISPLD2 IgGo
4. 哺乳动物细胞表达重组 CRISPLD2 ; 全长 CRISPLD2阅读框架(ORF) cDNA插 入 pcDNA3. 1A带有 -myc-hi s标记序列(Invi trogen)质粒, 形成 pcDNA3. 1A- CRISPLD2 o 然后, 产生蛋白 C端带有 -myc-hi s标记的重组 CRISPLD2蛋白。
5 . 应用 Lipofectamine (Invi trogen), 将质粒 pcDNA3. 1A- CRISPLD2 转染 CH0细胞, 然后应用抗菌素 G418选择转染阳性细胞。 稳定表达人类 CRISPLD2的 CH0 细胞培养时保持 G418 , 应用有限稀释法进一步分离、 选择高表达的 CH0细胞克 隆。 二、 纯化重组 CRISPLD2蛋白
1 . 无血清培养液培养表达重组 CRISPLD2蛋白的 CH0细胞。 收集上清液内含高 浓度重组 CRISPLD2蛋白。
2 . 应用 Nicke卜 ni tri lotriactic ac id (Ni- NTA) (Qiagen)亲禾口层析, 纯 化培养液中的重组 CRISPLD2蛋白; 50 μ 1 缓冲液(50 mM Na2HP04, 300 mM NaCl ; pH 7. 5)洗柱, 用含有 250 mM 咪唑(imidazole) 的缓冲液(pH 7. 8)洗脱 纯化的重组 CRISPLD2蛋白。
3. 收集部分磷酸缓冲液透析, 用 SDS-PAGE电泳分离, 考马斯蓝(coomass ie blue)染色 SDS-PAGE胶, 鉴定纯度, 并用 BCA 测定试剂盒蛋白定量 (Pierce)。 三、 免疫酶联反应测定法(ELISA) 测定 CRISPLD2浓度
用碳酸钠缓冲液 (pH 9. 5)适当稀释培养液或血清, 包被 96孔板(Nunc MaxiSorp, Denmark. ) , 4°C过夜。 磷酸缓冲液洗 96孔板两遍, 用含 8%胎牛血清的 磷酸缓冲液孵育 1小时, 然后用含 8%胎牛血清和抗 CRISPLD2多克隆抗体(10 u g /ml)的磷酸缓冲液孵育 2小时, 磷酸缓冲液洗 4遍, 加入辣根过氧化酶偶联的第二 抗体, 再用磷酸缓冲液洗 4遍, 含有 TMB 底物的醋酸 /柠檬酸盐缓冲液(0. 1 M, pH 6. 0)加入 96孔板显色反应, 检测波长为 450nm-570nm 。 以重组 CRISPLD2 (0. 03- 4. 00微克 /ml)为标准, 可以定量样本中 CRISPLD2/Cri spld2的含量。 应该指出 8% 胎牛血清磷酸缓冲液中的牛 Cri spld2不影响检测本底。 获得的 ELISA标准曲线如 图 1所示。 实施例 1. 蛋白纯度的鉴定
蛋白标本稀释在上样缓冲液中, 由 10% SDS-PAGE 电泳胶分离, 直接考马斯 蓝染色鉴定蛋白纯度。 免疫影迹法: SDS-PAGE 电泳胶上的蛋白质转移到硝酸纤维 膜(GE Healthcare) , 硝酸纤维膜与含有第一抗体的缓冲液一起培养 2 小时 37 ° C, 清洗, 荧光素标记的第二抗体(ROCKLAND) 培养 1小时 37 ° C。 ODYSSEY 红 外线图像系统(Infrared Imaging System) 扫描硝酸纤维膜获得图像。
结果如图 2所示。 实施例 2. LPS可以与 CRISLD2结合, 但金黄色葡萄球菌(5". a re s) LTA不 能。
应用 BIAcore 3000生物传感检测仪, 通过 Surface plasmon resonance (SPR) 方法定量测定 LPS与 CRISPLD2的结合。
用仪器公司提供的试剂分别将重组 CRISPLD2蛋白和 IgG (0. 18 mg/ml 溶解于 醋酸缓冲液, pH 4. 5)偶联到传感芯片(GE Healthcare)的两个通道。 不同浓度^: cW LPS溶于磷酸缓冲液, 并衡量注入, 同时流过传感芯片(20 μ ΐ/min)的两个 通道。 从重组 CRISPLD2蛋白通道获得的 LPS的结合反应单位(RU)减去 IgG通道的信 号(RU) ; 磷酸缓冲液(PBS)洗去未结合的 LPS ; 然后 50 mM NaOH洗去结合的 LPS , 对芯片进行再生。 LPS亲和力分析: LPS 解离常数 ) 可以用 Scatchard plot 分析(C D); 公式为: K, = - 1/slope = (RUmax - RU) / (RU/ConcLPS) . 同样(A) D 可以通过计算 两个常数的比率( 得到。 解离比率常数(dissociation rate constant, ff))可以用公式: R : 7?to e — fcff (tω), R。 是开始反应时幅度(amplitude of the initiate response)。 结合比率常数 (association rate constant, on)) 从 f 值推导, 公式为: R 二 7?max [1-e ― αοη c + "οίί> (t - t0)], 这里 C为 LPS浓度, 是 LPS 与 CRISPLD2结合最大结合反应单位(RU), Rt 是时间 t.时 LPS 与 CTRISPLD2结合的量。
结果如图 3所示。 实施例 3. 血清、 血桨 CRISPLD2的浓度(10例正常成人, 5例新生儿) 对于 10例正常成人的血清和血桨, 5例新生儿的脐带血, 用免疫印迹法分析 其 CRISPLD2浓度。 参照重组 CRISPLD2标准浓度, 血清、 血浆 CRISPLD2浓度由 ODYSSEY 红外线图像扫描分析系统计算定量。 成人血清与新生儿脐带血 CRISPLD2 比较, 并用 T-test进行显著性分析。 P = 0.025。
结果如下:
数量 范围 平均值 ±s. d 蛋白质 样品
(n) (μ g /ml) (μ g /ml)
CRISPLD2* 血清 7 304 - 996 607 290
CRISPLD2* 血桨 3 384 - 790 619 210
CRISPLD2* 脐带血 5 149 - 426 290 110 实施例 4 不同剂量 LPS腹腔注射后血清 Crispld2浓度的时间曲线
小鼠腹腔注射不同非毒性剂量 E coli-LPS, 阴性对照为 Pam3CSK4人工合成 细菌脂蛋白和磷脂壁酸 LTA, 不同时间点小鼠尾静脉抽血, 血清 Crispld2由 ELISA 检测。
结果如图 4所示。 实施例 5.重组 CRISPLD2阻断 LPS与把细胞受体结合, 抑制靶细胞炎症因子 释放。 5x107毫升人类外周单个核细胞悬浮在 RPMI 1640培养液中(0. 1%FCS), 加入 重组 CERISPLD2蛋白和 Cy2标记的 LPS, 4°C, 20分钟。 流式细胞仪分析, 单核细胞 与淋巴细胞又点阵图分离(Dot-plot,SSC versus FSC),分别分析 FITC-LPS在这 两群细胞上的荧光强度。 重组 CRISP-3蛋白作为对照。
结果如图 5A和 5B所示, 重组 CERISPLD2蛋白可阻断大肠杆菌 LPS及沙门氏菌
LPS与靶细胞受体结合。
5x107毫升人类外周单个核细胞悬浮在 RPMI 1640培养液中(0. 1%FCS), 加入 重组 CERISPLD2蛋白和 Cy2标记的 LPS , 37 °C, 18小时。 重组 CRISP-3蛋白作为对 照。 上清液中 TNF、 IL-6用商业 ELISA试剂盒测定。
结果如图 5C和 5D所示, 重组 CERISPLD2蛋白可阻断大肠杆菌 LPS诱导的炎症 因子释放。 实施例 6. 重组人 CRISPLD2 保护小鼠免于内毒素休克致死, 血清 CRISPLD2 浓度与 E coli-LPS致死剂量相关性分析
(A)三组 balb/c^、鼠都腹腔注射 400 微克 Ecol i-LPS, 同时, 正常对照组腹 腔注射 PBS (21个小鼠), 实验组腹腔注射 1毫克重组 CRISPLD2 (17个小鼠), 实验 对照组腹腔注射 1 毫克重组 CRISP3 (7个小鼠)(该蛋白同属 CRISP家族, 但缺失 LPS 结合区域)。 存活率计数并制图。
结果如图 6A所示, 重组人 CRISPLD2保护小鼠免于内毒素休克致死(45个小 鼠)。
(B)小鼠(20个小鼠)腹腔注射非毒性剂量 E col i-LPS (30微克 /小鼠), 第十 天时与 4只正常小鼠一起尾静脉抽血, 血清 1 : 10000 稀释, CRISPLD2进行 ELISA 检测, 6小时后对全部小鼠进行不同致死剂量 Ecol i-LPS随机腹腔注射。 第三十二 天时, 存活的小鼠再次尾静脉抽血, 血清 1 : 10000 稀, CRISPLD2进行 ELISA检 测, 6小时后再次随机腹腔注射不同致死剂量 Ecol i-LPS。 每一小鼠的致死剂量 Ecol i-LPS与当时的血清 CRISPLD2浓度数据相对应, 组成数据矩阵, 并应用 Graphpad Prism 5软件进行统计学分析, P值 =0. 0009。 Excel的 logarithmic trendl ine是数据矩阵的最佳匹配。
结果如图 6B所示, 小鼠血清 CRISPLD2浓度与 E col i-LPS致死剂量正相关。 这提示本发明蛋白是一个预测格兰氏阴性细菌败血症以及个体对内毒素敏感性的 靶分子。 实施例 7.广谱抗菌素长时间治疗引起小鼠血清 CRISPLD2浓度下降, 小鼠对 内毒素休克的敏感性增加
(A)万古霉素 1毫克 /毫升 +新霉素 0. 5毫克 /毫升溶解于饮用水中喂食小鼠(27 个小鼠)杀灭体内共生菌, 不同时间点小鼠尾静脉抽血, 血清 1 : 10000 稀, CRISPLD2进行 ELISA定量检测。
结果如图 7A所示, 长时间服用万古霉素加新霉素导致小鼠血清 CRISPLD2浓 度下降。
(B)正常饮水的正常对照组, 饮水中含广谱抗菌素的 4天组以及 15天组, 三组 小鼠都腹腔注射 200 微克 Ecol i-LPS。 正常小鼠腹腔注射 400微克 Ecol i-LPS才会 有 70-80%死亡率, 连续 15天服用广谱抗菌素的小鼠与正常对照相比, 腹腔注射 200微克 Ecol i-LPS导致的死亡率显著增加, 而连续 4天服用广谱抗菌素的小鼠与 正常对照相比, 腹腔注射 200 微克 Ecol i-LPS导致的死亡率无显著变化。 统计方 法和统计数据已标在图上。
结果如图 7B所示, 表明长时间服用万古霉素加新霉素增加了小鼠对内毒素休 克的敏感性(32个小鼠)。 实施例 8. 格兰氏阴性阳性细菌的 LPS、 鞭毛蛋白、 DNA、 细菌多聚糖均可 刺激免疫细胞显著增加 CRISPLD2分泌; 用维甲酸或 HDAC抑制剂来激活 CRISPLD2 基因启动子区域的 EXE/EXE /HDAC复合物, 可以上调 CRISPLD2的表达。
PGN ; 高纯度细菌多聚糖, FLA; 高纯度细菌鞭毛蛋白, OND ctr ; 人工合成 细菌 DNA富含 GPC序列, 0ND ; 人工合成细菌 DNA富含 CPG序列。 人外周血单个核细 胞(PBMCs) 2 X 106 /ml 悬浮于 RPMI 1640 培养液含 0. 1% 胎牛血清。 E. coli LPS , PGN, FLA 、 OND ctr 、 OND 用于剌激人外周血单个核细胞 3小时或 12小时 37 ° C。 这些试剂所用的浓度如图 8中所示。 CRISPLD2 在培养液中的浓度由 ELISA 鉴定。
结果如图 8所示。 TLRs激活剂包括细菌的 LPS、 鞭毛蛋白、 CPG-DNA均可剌激 免疫细胞显著增加 CRISPLD2分泌。
格兰氏阳性细菌的磷脂壁酸 (LTA)激活 TLR2则不能增加 CRISPLD2分泌。 组蛋白去乙酰化酶抑制剂和全反式维甲酸可以抑制感染炎症反应导致的炎症 因子释放, 而且可以诱导免疫细胞大量释放 CRISPLD2 (实施例 8D-E)。 实施例 9. 格兰氏阴性和阳性细菌的 LPS、 脂蛋白、 DNA均可与 CRISPLD2结 合
Surface plasmon resonance (SPR) 测定方法同实施例 2。 Pam3CSK4 ;人工 合成细菌脂蛋白。 LTA; 格兰氏阳性菌磷脂壁酸。 OND ctr; 人工合成细菌 DNA富 含 GPC序列。 0ND; 人工合成细菌 DNA富含 CPG序列。 Poly I : C; 人工合成病毒双链 RNA。 所有这些试剂浓度为(0, 0. 3, 1. 0, 3. 0, 10 μ M),
结果如图 9所示。 细菌 DNA, 细菌脂蛋白(Pam3CSK4)等可以与 CRISPLD2 相 互作用, 这提示 CRISPLD2 不但可以作用于格兰氏阴性细菌的分子, 同样也作用 于格兰氏阳性细菌的分子。 实施例 10 败血症以及败血症休克易感性的检测试剂盒
制备一检测试剂盒, 其中含有兔抗 CRISPLD2 IgG、 ELISA 的检测试剂, 和 说明书。 实施例 11 含重组 CRISPLD2蛋白质的药物组合物
按以下配方, 用常规方法制备药物组合物:
Figure imgf000017_0001
另外, 在上述药物组合物中, 可额外添加大肠杆菌 LPS、 鞭毛蛋白(FLA)。 另外, 也将 CRISPLD2用大肠杆菌 LPS或鞭毛蛋白(FLA)进行替换。 讨论
1 . 分泌蛋白 CRISPLD2是一个预测格兰氏阴性细菌败血症以及个体对内毒 素敏感性的靶分子。
本发明的研究工作中发现, 非常保守的半胱氨酸富集的分泌蛋白 CRISPLD2 (Cysteine - rich secretory protein LCCL domain containing 2)是 一个血清浓度较高的 LPS结合蛋白(实施例 3), 该蛋白拥有两个与 LPS结合的结构 区域(图 10), 并具有较高的亲和力与 LPS结合 (实施例 2)。 不同于已知蛋白, 小鼠 腹腔注射非毒性剂量 LPS的第一天(急性期), 血清 Cri spld2浓度快速下降, 第二 天以后开始反弹, 第五天 (恢复期)达到 LPS注射前 1-2倍以上, 然后, 维持较高的 血清浓度超过 1周(实施例 4)。 统计学分析发现该蛋白血清浓度与内毒素致死剂量 正相关(实施例 6, 7), 这提示本发明蛋白是一个预测格兰氏阴性细菌败血症以及 个体对内毒素敏感性的靶分子。
2. CRISPLD2蛋白可以保护小鼠, 增加内毒素休克的存活率, 可以预防治 疗内毒素休克。
人类、 小鼠和大鼠的心脏、 肺脏、 小肠、 胎盘以及粒细胞、 单核细胞都高表 达 CRISPLD2。 体外实验中本发明人还发现大部分白细胞(包括粒细胞、 单核细胞) 自然释放该 LPS结合蛋白, TLR4的激活剂可以显著加强其释放。 该蛋白在正常生 理浓度范围内可以阻断 LPS与受体结合, 并抑制 LPS诱导的炎症因子释放, 包括肿 瘤坏死因子(TNF- c 释放(实施例 5) ; 该重组蛋白腹腔注射可以保护小鼠, 大幅 降低内毒素休克的死亡率(实施例 6)。
60年前, 科学家发现小鼠腹腔注射非毒性剂量 E col i-LPS可以诱导个体产 生免疫反应, 降低腹腔注射致死剂量 E col i-LPS导致的死亡率, 这一现象称之为 "耐受" (tolerance) , 其分子机制至今尚未完全揭示。
本发明人发现小鼠腹腔注射非毒性剂量 E col i-LPS可以提高血清 CRISPLD2 浓度 1-2倍以上, 并维持较高的血清浓度超过 1周, 该期间小鼠再次腹腔注射致死 剂量 E col i-LPS , 它们的死亡率大大降低。 实验数据统计学分析发现小鼠血清 CRISPLD2浓度与 E col i-LPS致死剂量呈正相关(实施例 6B, 7)。 应用广谱抗菌素 喂食小鼠两个星期, 小鼠血清 CRISPLD2浓度降低 50 %, 小鼠对内毒素休克易感性 显著增加(实施例 7), 揭示了 LPS结合蛋白 CRISPLD2在固有免疫防御中调控细菌 LPS反应的重要作用。 提示了临床干预提高血清 CRISPLD2浓度, 具有预防内毒素 休克的重要临床意义。
3. 应用 TLRs激活剂是提高体内 CRISPLD2浓度的简单有效预防治疗方法。 格兰氏阳性及阴性细菌抗原分子刺激增减细胞分泌 CRISPLD2 ; 反之, 该蛋白还 可以与这些细菌抗原结合, 具有 "清道夫" 蛋白(Scavenge protein)的功能。
(1) 细菌的 LPS、 DNA、 鞭毛蛋白(FLA)、 细菌多聚糖(PGN)等激活剂可以增 加细胞分泌 CRISPLD2蛋白。 血清 CRISPLD2浓度不但是一个指标, 直接反映个体的 对内毒素敏 (LPS)感性, 也间接反映内生细菌环境。 细菌分子包括 LPS、 鞭毛蛋白 (FLA)、 DNA、 细菌多聚糖(PGN)都是 TLRs激活剂, 分别激活 TLR4、 TLR5、 TLR9等 受体。 本发明人发现 TLRs激活剂包括细菌的 LPS、 鞭毛蛋白、 CPG-DNA均可剌激免 疫细胞显著增加 CRISPLD2分泌, 而格兰氏阳性细菌的磷脂壁酸 (LTA)激活 TLR2则 不能增加 CRISPLD2分泌(实施例 8)。 很久以来, 大量的研究证明 TLRs激活剂进入 血液可引起炎症反应, 过量可导致脓毒性休克, 因而限制了 TLRs激活剂应用于疾 病治疗方面的努力。 这一事实不能忽视, 上消化道始终暴露于大量的 TLRs激活剂 环境。 最近的研究表明消化道粘膜对 TLRs激活剂反应温和, TLRs激活剂对粘膜上 皮动态平衡起重要作用并加强了小肠内抗细菌的固有免疫反应。 小鼠腹腔注射 非毒性剂量的 LPS可以提高血清 CRISPLD2浓度, 并降低小鼠对内毒素的敏感性, 提高小鼠内毒素休克的存活率(实施例 6)。 虽然全身系统性应用 TLRs激活剂不是 一个合适以及可以接受的方法, 但通过消化道 TLRs激活剂进入粘膜表面, 因而增 强宿主的固有免疫功能肯定在临床上是可行的并且是有益的。
(2) CRISPLD2蛋白与细菌脂蛋白(Pam3CSK4)和细菌 DNA结合, 清除诱导炎 症反应的格兰氏阳性及阴性细菌分子。 细菌 DNA, 细菌脂蛋白(Pam3CSK4)等可 以与 CRISPLD2 相互作用(实施例 9), 可见 CRISPLD2不但可以作用于格兰氏阴性 细菌的分子, 同样也作用于格兰氏阳性细菌的分子。 该蛋白的第一个 LCCL结构 域中发现 RXXXH结构, 这一结构可以与 DNA的结合; LCCL结构域又是亲脂性蛋白结 构, 可以与细菌脂蛋白 Pam3CSK4结合(实施例 9) ; 该蛋白两个 LCCL结构域中的还 具有与血清脂蛋白结合的潜力, 可能通过这一机制不但参与清除外源细菌抗原分 子, 而且还参与清除炎症反应导致的凋亡细胞释放 DNA碎片。 以上所述提示了 CRISPLD2蛋白具有 "清道夫" (Scavenge prote in)的功能。 正常情况下, 体液 中维持相对合理的 CRISPLD2浓度, 保持内生细菌菌群平衡。 当外部细菌入侵, 免 疫细胞、 上皮细胞通过 TLRs受体发现过量的细菌分子释放, 确认细菌入侵, 因而 加强 CRISPLD2分泌(实施例 8), 拮抗细菌抗原分子并控制适度的固有免疫反应; 一旦免疫系统杀死入侵细菌, 细菌崩解导致大量细菌分子释放, CRISPLD2立即参 与加速清除细菌分子以及炎症反应导致的凋亡细胞, 加强控制免疫系统对这些细 菌抗原分子的反应(包括固有以及获得性免疫), 避免过度免疫反应引发生严重综 合症导致休克。 血清学研究可以观察到急性期血清 CRISPLD2浓度快速下降, 然后 马上反弹, 反映了该蛋白浓度在体液中动态平衡; 细胞加强释放 CRISPLD2 , 又有 效地参与拮抗清除大量细菌抗原分子工作和死亡细胞碎片。 一旦完成清除工作, CRISPLD2维持较高血清浓度, 个体进入恢复期, 并获得较高的拮抗细菌抗原的能 力, 包括拮抗内毒素的能力(实施例 4)。 可见, CRISPLD2是控制细菌感染引起的 过度免疫反应反馈机制中一个关键的分子。 因此, 应用内服 TLRs激活剂提高血 清 CRISPLD2浓度, 降低个体对内毒素的敏感性, 维持细菌平衡, 加速清除体内残 存内毒素以及其他免疫原性细菌分子, 是一个预防败血症以及败血症休克的简易 有效的办法。 重组 CRISPLD2蛋白也可以在重症病人输血时加入血浆, 加速清除体 内残存细菌内毒素以及其他免疫原性细菌分子, 应用于治疗。
4. 通过激活 CRISPLD2的启动子可以增加细胞分泌 CRISPLD2。
例如已知组蛋白去乙酰化酶与未活化的 RXR/RXR复合物控制 CRISPLD2转录表 达, 组蛋白去乙酰化酶抑制剂和全反式维甲酸可以抑制感染炎症反应导致的炎症 因子释放, 而且可以诱导免疫细胞大量释放 CRISPLD2 (实施例 8,图 8D-E), 但这些 药物抑制免疫反因的机制是直接干预信号传导, 而不依赖于 CRISPLD2释放拮抗细 菌抗原, 另一方面, 药物治疗引起的大量 CRISPLD2释放有益于清除抗细菌抗原分 子。 这是药物作用相辅相成的两个方面一-直接干预抑制炎症反因信号传导; 同 时细胞增加分泌 CRISPLD2清除细菌抗原分子。 本发明人已经发现了 CRISPLD2启动 子区含有维甲酸受体 RXR/RXR结合区以及其他启动子的结合区, 包括 AP-1、 STAT3、 GATA3、 IRF-3以及组蛋白去乙酰化酶的结合区。 药物干预激活 RXR/RXR、 AP-1、 STAT3、 GATA3、 IRF-3等核受体和因子是增加细胞 CRISPLD2分泌是另一个 具有前景的预防治疗措施。 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被 单独引用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本 领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所 附权利要求书所限定的范围。

Claims

权 利 要 求
1. 一种 CRISPLD2蛋白或其促效剂的用途, 其特征在于, 用于制备预防或治 疗败血症以及败血症休克的药物。
2. 如权利要求 1所述的用途, 其特征在于, 所述的促效剂包括: 剌激 CRISPLD2分泌的 TLRs激活剂, 以及诱导 CRISPLD2表达的表达诱导剂。
3. 如权利要求 2所述的用途, 其特征在于, 所述的 TLRs激活剂包括: 细菌的 多聚脂多糖 (LPS)、 鞭毛蛋白(FLA)、 细菌多聚糖 (PGN)、 和细菌 DNA (CPG-DNA); 所述的表达诱导剂包括: 组蛋白去乙酰化酶抑制剂(如制滴菌素 A)和全反式 维甲酸。
4. 如权利要求 1所述的用途, 其特征在于, 所述的药物含有 CRISPLD2蛋白 和 /或其促效剂, 以及药学上可接受的载体。
5. 如权利要求 1所述的用途, 其特征在于, 所述药物的剂型为口服剂型或注 射剂。
6. 一种预防或治疗败血症以及败血症休克的方法, 其特征在于, 包括步 骤: 给需要的哺乳动物对象施用 CRISPLD2蛋白或其促效剂, 从而提高其血清中 CRISPLD2蛋白的浓度。
7.一种用于制备预防或治疗败血症以及败血症休克的药物组合物, 其特征在 于, 它含有药学上可接受的载体以及用于增加血清中 CRISPLD2浓度的一种或多种 选自下组的物质:
(a) 重组的人 CRISPLD2蛋白;
(b) 所述的 TLRs激活剂包括: 细菌的 LPS、 鞭毛蛋白(FLA)、 细菌多聚糖 (PGN)、 禾口细菌 DNA (CPG-DNA)禾口
(c) 组蛋白去乙酰化酶抑制剂(如制滴菌素 A)和全反式维甲酸。
8. —种 CRISPLD2蛋白或基因的用途, 其特征在于, 用于制备预测或检测败 血症以及败血症休克的易感性的试剂盒或试剂。
9. 如权利要求 8所述的用途, 其特征在于, 所述的试剂盒包括: 容器以及位 于容器中的用于检测 CRISPLD2血清浓度的试剂。
10. 一种用于预测败血病及败败血病及败血病休克的易感性的试剂盒, 其特 征在于, 它包括: 容器以及位于容器中的用于检测 CRISPLD2血清浓度的试剂。
PCT/CN2009/074302 2009-09-29 2009-09-29 败血症以及败血症休克的预测、预防和治疗方法及试剂盒 WO2011038537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074302 WO2011038537A1 (zh) 2009-09-29 2009-09-29 败血症以及败血症休克的预测、预防和治疗方法及试剂盒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074302 WO2011038537A1 (zh) 2009-09-29 2009-09-29 败血症以及败血症休克的预测、预防和治疗方法及试剂盒

Publications (1)

Publication Number Publication Date
WO2011038537A1 true WO2011038537A1 (zh) 2011-04-07

Family

ID=43825484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074302 WO2011038537A1 (zh) 2009-09-29 2009-09-29 败血症以及败血症休克的预测、预防和治疗方法及试剂盒

Country Status (1)

Country Link
WO (1) WO2011038537A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192216A (zh) * 1995-06-05 1998-09-02 卫材株式会社 用于治疗和预防内毒素血症的取代的脂多糖
WO2001040280A2 (en) * 1999-11-29 2001-06-07 Inotek Corporation Composition and method for treating a microbial infection
EP1243264A2 (en) * 1993-05-17 2002-09-25 Research Development Foundation Inhibition of nitric oxide production by retinoic acid
WO2004074435A2 (en) * 2003-01-30 2004-09-02 Emory University Methods for identifying and administering agents that bias the immune response via dendritic cells
WO2006069198A1 (en) * 2004-12-22 2006-06-29 Cleveland Clinic Foundation Flagellin related polypeptides and uses thereof
WO2007071961A1 (en) * 2005-12-23 2007-06-28 Astrazeneca Ab Benzamide derivatives

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1243264A2 (en) * 1993-05-17 2002-09-25 Research Development Foundation Inhibition of nitric oxide production by retinoic acid
CN1192216A (zh) * 1995-06-05 1998-09-02 卫材株式会社 用于治疗和预防内毒素血症的取代的脂多糖
WO2001040280A2 (en) * 1999-11-29 2001-06-07 Inotek Corporation Composition and method for treating a microbial infection
WO2004074435A2 (en) * 2003-01-30 2004-09-02 Emory University Methods for identifying and administering agents that bias the immune response via dendritic cells
WO2006069198A1 (en) * 2004-12-22 2006-06-29 Cleveland Clinic Foundation Flagellin related polypeptides and uses thereof
WO2007071961A1 (en) * 2005-12-23 2007-06-28 Astrazeneca Ab Benzamide derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIQUET B.T. ET AL: "CRISPLD2: a novel NSCLP candidate gene", HUM MOL GENET., vol. 16, no. 18, 2007, pages 2241 - 2248 *

Similar Documents

Publication Publication Date Title
US8637013B2 (en) Treatment of drug-related side effect and tissue damage by targeting the CD24-HMGB1-Siglec10 axis
KR20150121715A (ko) Csf1 치료제
JP2002544286A (ja) 免疫反応が十分に発揮し得ない個体の治療におけるマンナン結合性レクチン(mbl)の新規適用
WO2007001332A2 (en) Anti-pathogen immunoadhesins
US7332592B2 (en) Isolated recombinant bovine soluble CD14 polypeptide, rbosCD14
EP3145530B1 (en) Trail receptor agonists for treatment of fibrotic diseases
US11613565B2 (en) Isolated peptides derived from the B7 ligand dimer interface and uses thereof
US9901620B2 (en) Trail receptor agonists for treatment of fibrotic disease
JPH10511954A (ja) 抗炎症cd14ペプチド
WO2021243932A1 (zh) 一种磷脂酰丝氨酸在制备治疗炎症性肠病药物中的应用
WO2013026913A2 (en) Means and methods for treating angiogenesis-related diseases
JP5583575B2 (ja) 感染症と関連炎症過程の治療のためのタンパク質生成物
KR20110124060A (ko) Wta를 유효성분으로 함유하는 백신 조성물
WO2011038537A1 (zh) 败血症以及败血症休克的预测、预防和治疗方法及试剂盒
WO1996011700A1 (en) Reduction of mammalian neoplasms with phospholipase a2 activatiing substances
WO2013040840A1 (zh) 预防、诊断、治疗、预后全身性细菌感染疾病的方法和试剂
Demitri et al. Inhibition of LPS-induced systemic and local TNF production by a synthetic anti-endotoxin peptide (SAEP-2)
CN102028935A (zh) 败血症以及败血症休克的预测、预防和治疗方法及试剂盒
WO2018196743A1 (zh) 人血清淀粉样蛋白a1功能性短肽及其制备方法和应用
CN112979764B (zh) 特异结合人cd47分子的多肽及其用途
Dentener et al. Characterization of two monoclonal antibodies directed against bactericidal/permeability-increasing protein
WO2023030407A1 (zh) 靶向夏科-莱登结晶蛋白的多肽及其应用
EP4046658A1 (en) Application of non-igf1r-binding substance in prevention and/or treatment of inflammatory diseases
WO2006085411A1 (ja) 免疫応答を惹起するための新規アジュバントおよびその利用
Cavaillon et al. Compartmentalized Activation of Immune Cells During Sepsis and Organ Dysfunction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849945

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE