WO2011036886A1 - Fuel cell system and operation method for fuel cell system - Google Patents

Fuel cell system and operation method for fuel cell system Download PDF

Info

Publication number
WO2011036886A1
WO2011036886A1 PCT/JP2010/005765 JP2010005765W WO2011036886A1 WO 2011036886 A1 WO2011036886 A1 WO 2011036886A1 JP 2010005765 W JP2010005765 W JP 2010005765W WO 2011036886 A1 WO2011036886 A1 WO 2011036886A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
gas
fuel cell
control
reformer
Prior art date
Application number
PCT/JP2010/005765
Other languages
French (fr)
Japanese (ja)
Inventor
可児幸宗
脇田英延
藤原誠二
中嶋知之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011036886A1 publication Critical patent/WO2011036886A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1685Control based on demand of downstream process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system including a hydrogen generator that generates a hydrogen-containing gas from a fossil raw material and the like, and an operation method of the fuel cell system.
  • the hydrogen generator includes a reformer that reforms and reacts a raw material and water, a transformer that shifts a carbon monoxide and water vapor to a water gas in order to reduce the concentration of carbon monoxide derived from the raw material in hydrogen gas, and one
  • a structure is provided in which a CO remover that oxidizes carbon oxide mainly with an oxidizing gas such as a minute amount of air to further reduce carbon monoxide is provided.
  • a catalyst suitable for each reaction for example, a Ru catalyst or Ni catalyst is used for the reformer, a Cu-Zn catalyst is used for the shifter, a Ru catalyst is used for the CO remover, and the like. Yes.
  • Each reactor has a suitable temperature.
  • the reformer is often used at about 600 to 700 ° C., the reformer is used at about 350 to 200 ° C., and the CO remover is used at about 200 to 100 ° C.
  • the CO concentration in the supplied hydrogen-containing gas must be suppressed to several tens of volume ppm. Therefore, in the CO remover, the CO concentration is reduced by oxidizing the CO contained in the hydrogen-containing gas.
  • the CO remover can be heated by a heater provided in the CO remover or by continuing to supply air to the CO remover even after the operation is stopped.
  • the dew point in the downstream gas path is lowered to suppress dew condensation (see, for example, Patent Document 2).
  • the reformer having a relatively high control temperature can perform the purge operation during the generation operation of the hydrogen-containing gas.
  • the purge operation is not performed until the temperature is reduced to a proper temperature.
  • condensation may occur while the reformer is lowered to a purgeable temperature.
  • the heater provided in the CO remover is heated so as not to condense, but this reduces energy saving.
  • the present invention solves the above-described problem, and in the period until the purge operation is performed, a fuel cell system that suppresses dew condensation in a CO remover while improving energy saving performance more than the conventional one, and fuel It aims at providing the operating method of a battery system.
  • the fuel cell system of the present invention comprises: A reformer having a reforming catalyst that generates a hydrogen-containing gas using a raw material, a CO remover having an oxidation catalyst for reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction, and the CO removal
  • a fuel cell system comprising: a hydrogen generator comprising a first oxidant gas supplier for supplying an oxidant gas to the vessel; a fuel cell for generating electricity using the hydrogen-containing gas supplied from the hydrogen generator; and a controller Because The controller is When stopping the power generation operation of the fuel cell system, (i) Prior to the stop, the operating amount of the oxidizing gas supplier is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during the power generation operation.
  • the operating method of the fuel cell system of the present invention includes a reformer having a reforming catalyst for generating a hydrogen-containing gas using raw materials, and reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction.
  • a hydrogen generator comprising a CO remover having an oxidation catalyst, a first oxidizing gas supplier for supplying an oxidizing gas to the CO remover, and a hydrogen-containing gas supplied from the hydrogen generator to generate power.
  • An operation method of a fuel cell system comprising a fuel cell to perform, When stopping the power generation operation of the fuel cell system, (i) Prior to the stop, the operating amount of the oxidizing gas supplier is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during the power generation operation. 1 control, and (ii) In the period in which the hydrogen-containing gas is sent from the reformer after the stop, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during power generation operation. Performing at least one of the second control for controlling the operation amount of the oxidizing gas supply device, A purge operation in the hydrogen generator is performed after at least one of the first control and the second control is performed.
  • a fuel cell system and a fuel cell system operation method that suppress dew condensation in a CO remover while improving energy saving performance over the period until a purge operation is performed. Can do.
  • a fuel cell system includes a reformer having a reforming catalyst that generates a hydrogen-containing gas using raw materials, and a method for reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction.
  • a hydrogen generator comprising a CO eliminator having an oxidation catalyst, a first oxidant gas supplier for supplying an oxidant gas to the CO eliminator, and a fuel cell for generating electricity using a hydrogen-containing gas supplied from the hydrogen generator
  • a controller when the controller stops the power generation operation of the fuel cell system, (i) the supply amount of the hydrogen-containing gas to the CO remover prior to the stop And (ii) a period in which the hydrogen-containing gas is sent from the reformer after being stopped.
  • a purge operation in the hydrogen generator is performed after performing at least one of the above control and the second control.
  • the operation method of the fuel cell system includes a reformer having a reforming catalyst that generates a hydrogen-containing gas using raw materials, and an oxidation reaction of carbon monoxide contained in the hydrogen-containing gas.
  • a hydrogen generator having a CO remover having an oxidation catalyst for reducing the gas
  • a first oxidizing gas supplier for supplying an oxidizing gas to the CO remover
  • a hydrogen-containing gas supplied from the hydrogen generator An operation method of a fuel cell system including a fuel cell that generates power, and when stopping the power generation operation of the fuel cell system, (i) the amount of hydrogen-containing gas supplied to the CO remover prior to the stop And (ii) a period in which the hydrogen-containing gas is sent from the reformer after being stopped.
  • a purge operation in the hydrogen generator is performed after performing at least one of the first control and the second control.
  • the operation amount of the oxidant gas supply device may be increased during the entire period in which the hydrogen-containing gas is sent from the reformer, or the hydrogen-containing gas is supplied from the reformer.
  • the oxidant gas supply may be controlled to increase the amount of operation of the oxidant gas supply only during a portion of the delivery period.
  • the purge operation is defined as an operation in which a gas remaining in the hydrogen generator is replaced with a gas having a composition different from that of the residual gas (excluding water vapor). Examples thereof include active gas, air, and raw material gas.
  • “prior to stop” means that the controller precedes at least one of the devices operating during the power generation operation to output a stop command to stop the power generation operation. is there.
  • after stop means that the controller has output a stop command to stop the power generation operation to at least one of the devices operating during the power generation operation.
  • Embodiment 1 In the fuel cell system according to Embodiment 1, when the controller stops the power generation operation of the fuel cell system, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover prior to the stoppage. However, the first control for controlling the operation amount of the oxidizing gas supply unit is performed so as to be larger than that during the power generation operation, and the purge operation in the hydrogen generator is performed after the first control is performed.
  • the supply of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover prior to the stop The first control for controlling the operation amount of the oxidizing gas supplier is executed so that the amount becomes larger than that during the power generation operation, and the purge operation in the hydrogen generator is executed after the first control is executed.
  • FIG. 1 is a configuration diagram of the fuel cell system according to the first embodiment.
  • the fuel cell system according to the present embodiment includes a hydrogen generator 1 and a fuel cell 100.
  • This hydrogen generation apparatus 1 mainly proceeds with a reforming reaction of a raw material containing an organic compound composed of at least carbon and hydrogen, such as city gas mainly composed of methane, natural gas, hydrocarbons such as LPG, and steam. To generate a hydrogen-containing gas.
  • the fuel cell 100 uses the hydrogen-containing gas supplied from the hydrogen generator 1 as an anode gas, and uses an oxidant gas such as air supplied from a cathode gas supplier 110 as a cathode gas, and causes both to react. It is a device that generates electricity.
  • the reforming reaction may be any type of reforming reaction as long as it is a reforming reaction using a raw material and steam.
  • a steam reforming reaction or an autothermal reaction is adopted.
  • the fuel cell may be any type of fuel cell, such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, or a solid oxide fuel cell.
  • the hydrogen generator 1 of the present embodiment is provided with a hydrogen generator 8 that generates a hydrogen-containing gas from a raw material and water vapor.
  • the hydrogen generator 8 is configured to selectively oxidize carbon monoxide in the hydrogen-containing gas generated by the reformer 14 that progresses the reforming reaction using the raw material and steam and the reformer 14.
  • a CO eliminator 15 is provided to reduce the amount.
  • an oxidizing gas supply unit 23 is provided for supplying air used for oxidation in the CO remover 15 to the hydrogen-containing gas discharged from the reformer 14.
  • the reformer 14 is provided with a Ni-based reforming catalyst, and the CO remover 15 is provided with a Ru-based selective oxidation catalyst.
  • a combustor 2 that generates heat for causing the reforming reaction in the reformer 14 to proceed is provided. Further, an igniter 21 that is an ignition source of the combustor 2, a frame rod 22 that detects a combustion state of the combustor 2, and an air supply device 20 that supplies combustion air to the combustor 2 are provided.
  • the combustion gas that serves as a heating source for the combustor 2 a raw material that has passed through the hydrogen generator 8, an anode off-gas discharged from the anode of the fuel cell 100, and the like are used.
  • a water supply device 3 that is a pump for supplying water to the reformer 14 and a raw material supply device 4 for supplying raw materials to the reformer 14 are provided.
  • the raw material supplier 4 is a booster pump, and is configured to control the flow rate by controlling, for example, input current pulses and input power.
  • the water supply device 3 is a pump having a flow rate adjusting function similarly to the raw material supply device 4.
  • the gas infrastructure 6 is used as a raw material supply source.
  • An adsorbing desulfurizer 5 filled with an adsorbing desulfurizing agent is connected to the gas infrastructure line 6, and the adsorbing desulfurizer 5 is connected to the raw material supplier 4.
  • a hydrogen gas supply path 9 for supplying the hydrogen-containing gas generated by the hydrogen generator 8 to the fuel cell 100 is provided.
  • an anode off-gas supply path 10 is provided for supplying the hydrogen-containing gas that has not been consumed by the fuel cell 100 to the combustor 2.
  • a bypass path 12 that bypasses the fuel cell 100 and connects the hydrogen gas supply path 9 and the anode off-gas supply path 10 is provided.
  • the bypass path 12 is provided with an open / close valve 11a, and an open / close valve 11b is provided downstream of the branch point of the hydrogen gas supply path 9 to the bypass path 12 (see P in FIG. 1).
  • the junction of the bypass path 12 to the anode off gas supply path 10 is indicated by Q in FIG.
  • the reformer 14 and the CO remover 15 are provided with a reforming temperature detector 24 and a selective oxidation temperature detector 25 in order to detect respective catalyst temperatures.
  • a thermocouple, a thermistor, or the like is used as each detector.
  • a controller 13 for controlling the amount, the air supply device 20, the on-off valves 11a and 11b, the igniter 21 and the like is provided (see FIG. 1).
  • the controller 13 includes an arithmetic processing unit and a storage unit that stores a control program for executing at least one of the first control and the second control.
  • the arithmetic processing unit is configured by, for example, a microprocessor, a CPU, and the like, and the storage unit is configured by a semiconductor memory or the like. Further, the controller 13 includes either a single controller or a plurality of distributed controllers that cooperate to control the fuel cell system.
  • the raw material is supplied from the raw material supplier 4 to the hydrogen generator 8 according to a command from the controller 13.
  • the on-off valve 11 a is in the open state and the on-off valve 11 b is in the closed state, and the raw material discharged from the hydrogen generator 8 is supplied to the combustor 2 via the bypass path 12.
  • the raw material is used as fuel and ignited in the combustor 2 to start heating.
  • the controller 13 operates the water supply device 3 so that water is supplied to the reformer 14 and the water And the reforming reaction of the raw material is started.
  • the city gas (13A) which has methane as a main component is used as a raw material.
  • the amount of water supplied is such that about 3 mol of water vapor is present per 1 mol of carbon atoms in the average molecular formula of the supplied city gas (steam carbon ratio (S / C) is about 3).
  • Air is supplied to the CO remover 15 from the oxidizing gas supply unit 23 so that the CO / O 2 molar ratio is about 2 to 3.
  • the reformer 14 and the CO remover 15 are warmed, and the steam reforming reaction and the selective oxidation reaction proceed.
  • the on-off valve 11a is closed and the on-off valve 11b is opened so that the flow path of the gas discharged from the hydrogen generator 8 becomes the fuel cell 100.
  • the hydrogen-containing gas is supplied from the hydrogen gas supply path 9 to the fuel cell 100.
  • power generation is performed using the air supplied from the cathode gas supply unit 110 and the hydrogen-containing gas.
  • the steam reforming reaction is an endothermic reaction
  • the selective oxidation reaction is an exothermic reaction.
  • the temperature of the reformer 14 during power generation is about 400 to 650 ° C.
  • the temperature of the CO remover 15 is 120 to 160 ° C.
  • the temperature detected by the reforming temperature detector 24 is about 650 ° C.
  • the temperature detected by the selective oxidation temperature detector 25 is about 160 ° C.
  • the controller 13 When the controller 13 outputs a stop command for stopping the operation of the fuel cell system, the cathode gas supply device 110 is stopped and the operation of the hydrogen generator 1 is also stopped.
  • the hydrogen-containing gas expelled by the raw material gas is supplied to the combustor 2.
  • the temperature of the reformer 14 rises due to heating of the combustor 2, which may cause carbon deposition. Therefore, it is desirable to perform the purge at the lowest possible temperature in anticipation of the temperature rise of the reformer 14 by the combustor 2.
  • there is a method of diluting and exhausting the hydrogen-containing gas scavenged from the hydrogen generator in the purge operation without burning it with air or the like it is desirable to burn it from the viewpoint of effective use of energy.
  • the characteristic operation in the present embodiment is that the controller 13 performs the following operation before stopping the power generation of such a fuel cell system.
  • FIG. 2 is a diagram showing a control flow of the stopping method of the fuel cell system according to the first embodiment.
  • step is abbreviated as S.
  • S step
  • the controller determines that the power generation operation is stopped due to a decrease in power demand, or when the user stops the power generation of the fuel cell system via an operating device (for example, a remote controller). Is required.
  • step 1 the controller 13 determines a time H1 at which a stop command is issued.
  • step 2 it is determined whether or not the remaining operating time (time H1 ⁇ current time t) until the timing of issuing the stop command is less than a preset time H0, and the remaining time until the power generation stops. Falls below the preset time H0, the control shifts to step 3. Specifically, for example, when H1 is 23:20, 20 minutes after the current time, and H0 is 10 minutes, when time t exceeds 23:10, H1-t becomes smaller than H0. Therefore, the control proceeds to step 3.
  • step 3 the controller 13 issues an instruction to control the operation amount of the oxidizing gas supply device 23 so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Specifically, control is performed such that the operating amount of the oxidizing gas supply device 23 is increased from the immediately preceding operating amount so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during power generation operation.
  • the operation amount of the oxidizing gas supplier 23 is controlled so that the supply amount of the oxidizing gas (air) with respect to the supply amount of the hydrogen-containing gas to the CO remover 15 is larger than that during the power generation operation.
  • the amount of oxidation reaction between hydrogen in the hydrogen-containing gas flowing through the CO remover 15 and oxygen in the air increases, and the temperature of the selective oxidation catalyst is controlled during power generation operation due to heat generated by the oxidation reaction. It becomes higher than the temperature.
  • step 4 it is determined whether or not it is time to issue a system stop command. That is, it is determined whether or not the current time t has exceeded H1.
  • the stop command timing is not exceeded (when t ⁇ H1), the state in which the amount of air supplied from the oxidizing gas supplier 23 is increased until the stop command timing H1 is exceeded.
  • step 5 When the current time t exceeds the stop command timing (t> H1), the control shifts to step 5 and the controller 13 issues a stop command.
  • the controller 13 opens the on-off valve 11a and closes the on-off valve 11b. By switching the on-off valves 11 a and 11 b in this way, the gas discharged from the hydrogen generator 8 is not supplied to the fuel cell 100 but is sent to the combustor 2 via the bypass path 12.
  • Step 7 the operation of the cathode gas supply device 110 is also stopped, and the power generation in the fuel cell 100 is stopped. Further, the controller 13 performs control to stop the water supplier 3, the raw material supplier 4, and the oxidizing gas supplier 23, and the steam reforming reaction is stopped.
  • step 8 when the reforming detection temperature TK reaches the raw material supply start temperature T1, the control proceeds to step 9, and the raw material supplier 4 operates to perform the raw material purge.
  • the gas discharged from the hydrogen generator 8 is supplied to the fuel cell 100 side by performing control to close the on-off valve 11a and open the on-off valve 11b. The inside may be purged with the source gas. Further, as described above, in consideration of the temperature rise of the reformer 14 due to the combustion of the raw material gas in the combustor 2, the raw material supply start temperature T1 is set low.
  • the raw material supplier 4 is stopped in step 10.
  • the operation amount of the oxidizing gas supply 23 is set before the stop command so that the temperature of the oxidation catalyst becomes higher than the control temperature during the power generation operation. Control is performed. Therefore, it is possible to suppress the occurrence of condensation until the reforming detection temperature TK reaches T1 while improving the energy saving performance as compared with the conventional fuel cell system.
  • the CO remover 15 is set so that the temperature in the CO remover 15 does not reach the dew condensation temperature.
  • the time H1 at which the stop command is issued is determined, the difference from the current time t is obtained, and if the difference becomes smaller than H0, the oxidation is performed.
  • the oxidizing gas supplier 23 immediately follows the trigger for executing the control flow without determining the time H1 at which the stop command is issued. Control for increasing the supply amount of air may be performed. That is, any form may be used as long as the control for increasing the operation amount of the oxidizing gas supply unit 23 is executed prior to the stop of power generation in the fuel cell system.
  • Embodiment 2 In the fuel cell system according to Embodiment 2, when the controller stops the power generation operation of the fuel cell system, hydrogen is supplied to the CO remover during the period in which the hydrogen-containing gas is sent from the reformer after the stop.
  • the second generation control for controlling the operation amount of the oxidizing gas supply unit is executed so that the supply amount of the oxidizing gas with respect to the supply amount of the contained gas is larger than that during the power generation operation.
  • the purge operation is executed.
  • the hydrogen-containing gas is sent from the reformer to the CO remover.
  • the second control for controlling the operation amount of the oxidizing gas supply unit is executed so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas is larger than that during the power generation operation, and hydrogen is generated after the second control is executed.
  • a purge operation in the apparatus is executed.
  • the hydrogen-containing gas is sent from the reformer.
  • the reaction gas supply device is stopped, the hydrogen-containing gas generated from the reaction gas remaining in the reformer is supplied to the CO remover. Includes the time period to be sent.
  • the reaction gas supply device is a device that supplies a reaction gas used for the reforming reaction to the reformer. Specifically, the reaction gas supply device supplies a raw material to the reformer and supplies water to the reformer. A water supply device for supplying water.
  • the reactive gas supply device may include an oxidizing gas supply device.
  • the fuel cell system according to Embodiment 2 includes a combustor for heating the reformer, a combustion detector for detecting combustion in the combustor, and a gas sent from the CO remover flows into the combustor.
  • a period during which combustion of the combustor is detected by the combustion detector may be included.
  • combustion is detected by the combustion detector, so that it is possible to execute an increase control of the operation amount of the oxidant gas supply device at an appropriate timing. I can do it.
  • FIG. 3 is a diagram showing a control flow when the fuel cell system according to Embodiment 2 is stopped.
  • the controller 13 when the controller determines that the power generation operation is stopped due to a decrease in power demand, or when the user generates power from the fuel cell system via an operating device (for example, a remote controller).
  • the controller 13 first issues a stop command to each device constituting the fuel cell system (see step 20). With this stop command, stop control of the power generation operation of the fuel cell 100 and the operation of the hydrogen generator 1 is started.
  • step 21 the controller 13 opens the on-off valve 11a and closes the on-off valve 11b.
  • step 22 the operations of the water supply device 3, the cathode gas supply device 110, and the raw material supply device 4 are stopped.
  • step 23 an instruction is issued from the controller 13 to control the operation amount of the oxidizing gas supply device 23 so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. And control is performed so that the operation amount of the oxidizing gas supply device 23 increases from the operation amount immediately before the stop command.
  • the operation amount of the oxidizing gas supply unit 23 is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover 15 is larger than that during the power generation operation.
  • step 24 the state in which the operation amount of the oxidizing gas supply device 23 is increased is maintained.
  • the supply of the raw material and water is stopped in step 22, but the raw material and water vapor remain inside the reformer 14, and the reforming reaction proceeds with the remaining raw material and water vapor.
  • a hydrogen-containing gas containing carbon monoxide is generated.
  • the hydrogen-containing gas in the hydrogen generator 8 is sent from the hydrogen generator 8 as the water remaining in the reformer 14 evaporates.
  • the hydrogen-containing gas delivered from the hydrogen generator 8 is supplied to the combustor 2 via the bypass path 12 and burned. When the hydrogen-containing gas from the hydrogen generator 8 is no longer supplied to the combustor 2, the fire is extinguished.
  • the hydrogen-containing gas is supplied from the reformer 14 to the CO remover 15, and an exothermic reaction is caused by the air supplied by the oxidizing gas supplier 23.
  • the selective oxidation reaction of CO and the oxidation reaction of hydrogen proceed.
  • step 24 when fire extinguishing is detected in step 24, the controller 13 stops the operation of the oxidizing gas supplier 23 in step 25.
  • step 27 the raw material supplier 4 is operated, and the raw material purge is executed.
  • the raw material supplier 4 is stopped in step 28.
  • the temperature of the selective oxidation catalyst is changed to the power generation operation.
  • the operation amount of the oxidizing gas supply device 23 so as to be higher than the control temperature at the time, the amount of oxidation reaction with hydrogen increases, and the temperature of the CO remover 15 can be raised to a temperature higher than that during power generation operation. I can do it. Therefore, it is possible to suppress the occurrence of dew condensation in the CO remover 15 while the reforming detection temperature TK is lowered to the temperature (T1) at which the raw material can be purged.
  • gas flow path is the flow path from the CO remover 15 of the hydrogen gas supply path 9 to the branch point P to the bypass path 12, the bypass path 12, and the anode off-gas supply path 10 in the above embodiment. This corresponds to the flow path from the confluence point Q from the bypass path 12 to the combustor 2.
  • An example of the combustion detector corresponds to the frame rod 22.
  • the hydrogen-containing gas generated by the remaining raw material and water is circulated after the water supply device 3 and the raw material supply device 4 are stopped.
  • control was performed such that the operation amount of the oxidizing gas supply device 23 was increased from immediately before the stop command so that the temperature of the selective oxidation catalyst became higher than the control temperature during the power generation operation.
  • the control is not limited to such control, and may be control as shown in Modification 1 below.
  • after the power generation of the fuel cell system is stopped it is selected during the period in which the hydrogen-containing gas is sent from the reformer. It is only necessary to control the amount of operation of the oxidizing gas supplier so that the temperature of the oxidation catalyst becomes higher than the control temperature during the power generation operation.
  • the period in which the hydrogen-containing gas is sent from the reformer after the stop includes a period in which the supply of the reaction gas from the reaction gas supplier is continued even after the stop. It is characterized by.
  • the time during which the supply of the hydrogen-containing gas from the reformer to the CO remover is continued is longer than in the fuel cell system of Embodiment 2, so that the temperature of the CO remover can be further increased. . Accordingly, it is possible to suppress the occurrence of dew condensation due to the temperature of the CO remover being lowered before the reformer reaches a temperature at which the raw material can be purged, as compared with the fuel cell system of the second embodiment.
  • the operation amount of the oxidizing gas supply unit 23 is increased after the water supply unit 3 and the raw material supply unit 4 are stopped.
  • the oxidizing gas is supplied while continuing the water supply and the raw material supply. Control is performed so as to increase the operation amount of the feeder 23.
  • FIG. 4 is a diagram showing a control flow in this case.
  • the cathode gas supply device 110 is stopped and the supply amount of the water supply device 3 and the raw material supply device 4 starts to decrease.
  • Step 201 is provided.
  • the oxidizing gas supply device 23 is controlled in step 23, and the amount of oxidizing gas (air) supplied increases from immediately before the stop command.
  • step 202 the operations of the water supply unit 3 and the raw material supply unit 4 are stopped.
  • the fire extinguishing of the combustor 2 is detected in step 24 as in the second embodiment.
  • step 25 the oxidizing gas supply unit 23 is stopped.
  • step 26 when the reforming detection temperature TK reaches T1 in step 26, the raw material purge is performed in step 27 as described above. When the material purge is sufficiently performed, the material supply unit 4 is stopped in step 28.
  • the operation amount of the water supply device 3 and the raw material supply device 4 is gradually decreased and stopped in step 202, but the control is performed in step S202. Until the operation amount is not reduced, control may be performed so as to stop the operations of the water supply unit 3 and the raw material supply unit 4 in step 202.
  • the control flow in this case is shown in FIG.
  • step 220 is provided instead of step 201 shown in FIG. In this step 220, only the operation of the cathode gas supplier 110 is stopped.
  • step 23 the operation amount of the oxidizing gas supply device 23 is increased, for example, immediately before the stop command (during power generation operation) so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during power generation operation.
  • the water supply unit 3 and the raw material supply unit 4 are stopped in step 202.
  • the predetermined time from step 23 to step 202 can be set, for example, as H0 in the first embodiment.
  • Modification 2 In the first embodiment, as an example of the first control, the operation amount of the oxidizing gas supplier 23 is controlled before the stop command so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Thus, the temperature of the CO remover 15 is increased.
  • the temperature of the selective oxidation catalyst is higher than the control temperature while the hydrogen-containing gas containing carbon monoxide is flowing after the stop command. Thus, the temperature of the CO remover 15 is raised by controlling the operation amount of the oxidizing gas supply device 23.
  • the operation amount of the oxidizing gas supplier 23 is increased before and after the stop command so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Control may be performed as described above.
  • FIG. 6 is a control flow diagram of Modification 2. Steps 211 to 216 shown in FIG. 6 are the same as steps 1 to 6 in the first embodiment. Then, after Step 216, in Modification 2, unlike Step 1, in Step 217, the operation of the oxidizing gas supplier 23 is not stopped and the state in which the operation amount of the oxidizing gas supplier 23 is increased is maintained. Then, the operations of the water supply unit 3, the raw material supply unit 4 and the cathode gas supply unit 110 are stopped.
  • step 218 when the discharge of the hydrogen-containing gas remaining in the hydrogen generator 8 is completed, and the fire extinguishing of the combustor 2 is detected in step 218, the operation of the oxidizing gas supply device 23 is stopped in step 219. Is done.
  • step 2221 the raw material purge is executed in step 221.
  • the operation of the material supplier 4 is stopped in step 222.
  • step 217 the water supply device 3 and the raw material supply device 4 are stopped in step 217.
  • the operation amounts of the water supply device 3 and the raw material supply device 4 are changed. Control may be performed so as to gradually decrease and stop. This control will be described with reference to FIG. 6.
  • step 217 the control is performed so that the operation amount of the water supply unit 3 and the raw material supply unit 4 is reduced as the cathode gas supply unit 110 is stopped. Thereafter, the water supply device 3 and the raw material supply device 4 are completely stopped, and when the fire extinguishing of the combustor 2 is detected in step 218, the oxidizing gas supply device 23 is stopped.
  • the hydrogen-containing gas is delivered from the reaction gas remaining in the reformer after the reaction gas supply device is stopped as a period for sending the hydrogen-containing gas from the reformer.
  • a period in which the reaction gas supply from the reaction gas supply device is continued when a combustion detector includes a period in which combustion of the combustor is detected, including a period during which the hydrogen-containing gas is delivered to the CO remover
  • the amount of operation of the oxidant gas supply device 23 is increased and until the fire extinguishing of the combustor 2 is detected (that is, the reformer 14 supplies hydrogen.
  • the increased amount of operation is maintained until the contained gas is no longer delivered.
  • the increase control of the operation amount of the oxidizing gas supply unit 23 may be stopped before the hydrogen-containing gas is not sent from the reformer 14. In this way, control for increasing the operation amount of the oxidizing gas supply device 23 may be performed in at least a part of the period in which the hydrogen-containing gas is sent from the reformer 14.
  • Embodiment 2 and Modifications 1 and 2 when the fire extinguishing of the combustor 2 is detected (that is, when the hydrogen-containing gas is no longer sent from the reformer 14), the oxidizing gas supply device 23 is stopped. However, it does not have to be stopped. However, if air is supplied from the oxidizing gas supply unit 23 even after the flow of the hydrogen-containing gas into the CO remover 15 is stopped, the amount of the oxidation reaction is reduced, and the cooling effect by the supply air further increases the temperature by the exothermic reaction. Since the temperature effect may be reduced, it is preferable to stop the oxidant gas supply device 23 when extinguishing the combustor 2 is detected.
  • the basic configuration of the fuel cell system of the third embodiment is the same as that of the fuel cell system of the first embodiment, but unlike the first embodiment, the CO remover 15 is provided with a heater. Therefore, this difference will be mainly described.
  • symbol is attached
  • FIG. 7 is a configuration diagram of the fuel cell system according to the third embodiment.
  • the fuel cell system of Embodiment 3 is provided with a heater 31 for heating the CO remover 15.
  • a controller 30 is also provided that also controls the heater 31 on and off based on the temperature detected by the selective oxidation temperature detector 25.
  • FIG. 8 is a diagram showing a control flow of the fuel cell system stopping method of the third embodiment. As shown in FIG. 8, in the third embodiment, if the reforming detection temperature TK does not reach T1 in step 8, the control proceeds to step 31. In addition, the same code
  • FIG. 8 is a diagram showing a control flow of the fuel cell system stopping method of the third embodiment. As shown in FIG. 8, in the third embodiment, if the reforming detection temperature TK does not reach T1 in step 8, the control proceeds to step 31. In addition, the same code
  • step 31 it is determined whether or not the selective oxidation detection temperature TS detected by the selective oxidation temperature detector 25 is higher than a preset temperature T2.
  • the controller 30 performs control so that the heater 31 is turned on in step 32.
  • the temperature T2 is set higher than the dew condensation occurrence temperature in consideration of the responsiveness of the heater 31.
  • step 33 when the selective oxidation detection temperature TS is higher than the set temperature T2 in step 31, the control proceeds to step 33, and the control is performed so that the heater 31 is turned off. After steps 32 and 33, control returns to step 8, and steps 31, 32, and 33 are repeated until the reforming detection temperature TK reaches T1. Then, when the temperature of the reforming detection temperature TK decreases to T1, the raw material purge is performed in Step 9. When the heater 31 is on, the raw material is purged at step 9 and is turned off.
  • the heater 31 is controlled until the reforming detection temperature TK reaches the temperature T1 at which the raw material can be purged, so that the temperature of the CO remover 15 does not fall below the dew condensation temperature. Therefore, it is possible to further suppress the occurrence of condensation in the CO remover 15 as compared with the fuel cell systems in the first and second embodiments and the respective modifications.
  • Example 1 In the control flow of the stopping method of the fuel cell system of FIG. 8, the stopping process of the fuel cell system was performed by assembling a program in which T1 was set to 150 ° C., T2 was set to 120 ° C., and H0 was set to 10 minutes.
  • FIG. 9 is a graph showing changes over time in the reforming detection temperature TK and the selective oxidation detection temperature TS.
  • the operation amount of the oxidizing gas supplier 23 is set to the operation amount immediately before so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Therefore, the selective oxidation reaction, which is an exothermic reaction, was promoted, and the temperature of the CO remover 15 rose to about 200 ° C.
  • the temperatures of the reformer 14 and the CO remover 15 are lowered.
  • the temperature of the CO remover 15 decreased to 120 ° C., and the ON / OFF control of the heater 31 was started.
  • the heater 31 was ON-OFF controlled for 1 hour 55 minutes before starting the material purge, and the amount of power consumed by the heater was 587.5 Wh.
  • the increase in the supply amount of the oxidizing gas (air) during 10 minutes when the air supply amount of the oxidizing gas supply unit 23 was increased was 4 NL. If the oxygen concentration in the atmosphere is 21%, the amount of consumed hydrogen is 0.84 NL, which corresponds to 21.3 kJ as the amount of combustion heat. Since 1 Wh is 3.2 kJ, the amount of combustion heat is equivalent to 5.9 Wh.
  • FIG. 10 is a graph showing a temporal change graph of the reforming detection temperature TK and the selective oxidation detection temperature TS.
  • the heater 31 was ON-OFF controlled for 2 hours and 5 minutes before starting the raw material purge, and the amount of power consumed by the heater 31 was 612.5 Wh.
  • control of the heater 31 is added to the first control described in the first embodiment, but instead of the first control, as described in the second embodiment and the first modification.
  • the control of the heater 31 may be added to the second control.
  • the control of the heater 31 may be added to the control that performs both the first control and the second control as described in the second modification of the second embodiment.
  • the hydrogen generator 8 in the first to third embodiments is provided with the reformer 14 and the CO remover 15. However, a shift reaction takes place between the reformer 14 and the CO remover 15.
  • a transformer may be provided. In this transformer, the shift reaction takes place at about 150-300 ° C.
  • the transformer may also be provided with a heater like the CO remover 15 of the third embodiment. This heater may be integrated with the heater of the CO remover 15 or may be provided separately.
  • on-off valve corresponds to the on-off valve 11a and the on-off valve 11b of the above embodiment, but instead of providing two on-off valves, three points are provided at the branch point P of the hydrogen gas supply path 9 to the bypass path 12. It is good also as a structure provided with the valve. In short, it is only necessary to switch the supply destination of the gas discharged from the hydrogen generator 8 to either the fuel cell 100 side or the bypass path 12 side.
  • the selective oxidation temperature detector 25 is provided, and the control temperature of the oxidation catalyst is higher than the control temperature during the power generation operation while checking the detected temperature.
  • the operation amount of the oxidizing gas supply device 23 is increased so as to be higher.
  • the present invention is not limited to this embodiment, and the oxidizing gas supply amount with respect to the hydrogen-containing gas supply amount to the CO remover is oxidized so as to be larger than that in the power generation operation without providing the selective oxidation temperature detector 25.
  • the operation amount of the gas supply device 23 may be controlled.
  • the operation amount of the oxidizing gas supply unit 23 is controlled so that the supply amount of the oxidizing gas with respect to the physical quantity proportional to the supply amount of the hydrogen-containing gas to the CO remover 15 increases.
  • the physical quantity include a raw material supply amount to the reformer 14, a water vapor supply amount to the reformer 14, and a power generation amount of the fuel cell system.
  • any configuration is possible as long as the operation amount of the oxidant gas supply unit 23 is controlled so that the supply amount of the oxidant gas relative to the hydrogen-containing gas supply amount to the CO remover 15 is larger than that during power generation operation. It does not matter.
  • the fuel cell system according to Embodiments 1 to 3 and the modification thereof employs a mode in which the oxidizing gas supply device 23 operates continuously during the increase control of the operation amount of the oxidizing gas supply device 23.
  • a mode that operates intermittently may be adopted.
  • the on-off valve 11a is opened and the on-off valve 11b is closed.
  • the step of stopping the water supply device 3 and the raw material supply device 4 is provided, but the order may be reversed, and these steps may be performed simultaneously. These steps correspond to Step 6 and Step 7 when described with reference to FIG. 2 of the first embodiment.
  • combustion is performed in the combustor 2 at the time of stop control, but the combustion may not be performed. However, since it is desirable to dilute the raw material gas from the fuel cell system, it is preferable to operate the air supply unit 20 of the combustor 2.
  • the amount of oxidizing gas supplied by the oxidizing gas supplier 23 is always increased.
  • T3 a predetermined temperature
  • a control flow may be configured to return the oxidizing gas supply amount to the state before the increase. Good.
  • FIG. 11 is a flowchart showing such control.
  • step 34 for determining TS ⁇ T3 is inserted between step 2 and step 3 of the control flow of FIG. 2, and if TS is less than T3, control goes to step 3
  • control is performed so as to increase the operation amount of the oxidizing gas supply unit 23. More specifically, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover 15 is started before the increase control of the operation amount of the oxidizing gas supply device 23 is started (before Yes in Step 2).
  • the operating amount of the oxidizing gas supply device is controlled so as to increase the amount.
  • the operation amount becomes the operation amount before the increase control of the operation amount of the oxidizing gas supply device 23 is started in step 35 (before becoming Yes in step 2).
  • the oxidizing gas supplier 23 is controlled, and the process returns to step 34, and this state is continued until TS becomes less than T3.
  • the state in which the operation amount is increased is maintained in Step 3. Become.
  • This T3 can be set to 200 ° C., for example.
  • the control using the T3 is applied to H0 that is the period during which the operation amount is increased.
  • T3 is used for the period from when the controller 13 outputs a stop command until the combustor 2 is detected for digestion. You may apply the control you had.
  • the control of increasing the operation amount of the oxidizing gas supplier is started prior to the stop of power generation of the fuel cell system (Yes in step 2).
  • the control using T3 may be applied to the period until the combustor 2 is detected for digestion.
  • the supply amount of the oxidizing gas (air) is increased.
  • an upper limit may be set for the supply amount of the oxidizing gas (air). If a selective oxidation upper limit temperature is separately provided at a temperature lower than the thermal runaway start temperature, and the selective oxidation detection temperature exceeds the upper limit temperature, thermal runaway may be caused by reducing the supply amount of oxidizing gas (air). Can be prevented.
  • the catalyst is not limited to the catalyst used in the above embodiment.
  • a Ru-based catalyst may be used as the reforming catalyst.
  • the cooling conditions differ depending on the type of catalyst.
  • the reforming catalyst Ru catalyst is widely used especially for hydrogen generators for household fuel cells because of its ease of use, such as the difficulty of carbon deposition.
  • the cost is high.
  • the Ni catalyst used in the above embodiment can be obtained at a low cost.
  • the temperature at which purging (substitution) in the apparatus using the raw material is possible is Ru. Lower than the catalyst.
  • the upper limit of the purging temperature varies depending on the catalyst type, and is about 400 to 500 ° C. for the Ru catalyst and about 300 to 400 ° C. for the Ni catalyst.
  • the catalyst used in each reactor of the hydrogen generator has different operating temperatures and amounts depending on the configuration of the apparatus, and the temperature at which condensation starts is also different.
  • the cooling conditions of the reformer and the transformer are different depending on the catalyst type, and the temperature drop state is also different depending on the configuration of the apparatus. Therefore, by using an appropriate reference value of T1 to T3 for each apparatus, It is possible to suppress energy spent for preventing condensation at the time of stopping.
  • the fuel cell system and the fuel cell system stopping method according to the present invention can suppress dew condensation in the CO remover while improving energy saving than before in the period until the purge operation is performed. It is useful as a fuel cell system for home use or business use.

Abstract

Disclosed is a fuel cell system that controls condensation in a CO removal device during the period before a purge is performed, while further improving energy conservation over existing systems. The fuel cell system is equipped with a controller (13), and a hydrogen generation device (1) equipped with an oxidation gas supply unit (23) that supplies oxidation gas to the CO removal device (15). When halting power-generating operation, the controller performs at least either a first control that, before halting the power-generating operation, controls a manipulated variable of the oxidation gas supply unit in a manner such that the amount of oxidation gas supplied in relation to the amount of hydrogen-containing gas supplied to the CO removal device (15) is larger than during the power-generating operation (i), or a second control that, after halting the power-generating operation, controls the manipulated variable of the oxidation gas supply unit during a period in which hydrogen-containing gas is delivered by a reformer (14) in a manner such that the amount of oxidation gas supplied in relation to the amount of hydrogen-containing gas supplied to the CO removal device is larger than during the power-generating operation (ii); and after performing at least either the first control or the second control, the controller performs a purge within the hydrogen generation device.

Description

燃料電池システム、及び燃料電池システムの運転方法Fuel cell system and method for operating fuel cell system
 本発明は、化石原料等から水素含有ガスを生成する水素生成装置を備える燃料電池システム、及び燃料電池システムの運転方法に関する。 The present invention relates to a fuel cell system including a hydrogen generator that generates a hydrogen-containing gas from a fossil raw material and the like, and an operation method of the fuel cell system.
 小型装置でも高効率な発電を可能とする燃料電池は、分散型エネルギー供給源の発電システムとして開発が進められている。発電時の燃料となる水素ガスは、一般的なインフラとして整備されていないので、例えば都市ガス、プロパンガス等の既存の化石原料インフラから供給される原料を利用し、それらの原料と水との改質反応により水素含有ガスを生成させる水素生成装置が燃料電池に併設される。 Development of fuel cells that enable high-efficiency power generation even with small devices is being developed as a power generation system for distributed energy sources. Since hydrogen gas that serves as fuel for power generation is not developed as a general infrastructure, for example, raw materials supplied from existing fossil raw material infrastructure such as city gas and propane gas are used. A hydrogen generator for generating a hydrogen-containing gas by the reforming reaction is provided in the fuel cell.
 その水素生成装置は、原料と水とを改質反応させる改質器、水素ガス中の原料由来の一酸化炭素濃度を低減するために一酸化炭素と水蒸気を水性ガスシフト反応させる変成器、および一酸化炭素を主に微量空気等の酸化ガスで酸化させて一酸化炭素をより低減させるCO除去器を設ける構成がとられることが多い。また、それらの反応器には、各反応に適した触媒、例えば、改質器にはRu触媒やNi触媒、変成器にはCu-Zn触媒、CO除去器にはRu触媒等が用いられている。各反応器には適した温度があり、改質器は600~700℃程度、変成器としては350~200℃程度、CO除去器としては200℃~100℃程度で使用されることが多い。特に固体高分子型燃料電池はCOによる電極被毒が起こりやすいため、供給される水素含有ガス中のCO濃度は数十体積ppmに抑える必要がある。そこで、CO除去器では水素含有ガス中に含まれるCOを酸化させることによってCO濃度が低減される。 The hydrogen generator includes a reformer that reforms and reacts a raw material and water, a transformer that shifts a carbon monoxide and water vapor to a water gas in order to reduce the concentration of carbon monoxide derived from the raw material in hydrogen gas, and one In many cases, a structure is provided in which a CO remover that oxidizes carbon oxide mainly with an oxidizing gas such as a minute amount of air to further reduce carbon monoxide is provided. In these reactors, a catalyst suitable for each reaction, for example, a Ru catalyst or Ni catalyst is used for the reformer, a Cu-Zn catalyst is used for the shifter, a Ru catalyst is used for the CO remover, and the like. Yes. Each reactor has a suitable temperature. The reformer is often used at about 600 to 700 ° C., the reformer is used at about 350 to 200 ° C., and the CO remover is used at about 200 to 100 ° C. In particular, since solid polymer fuel cells are susceptible to electrode poisoning by CO, the CO concentration in the supplied hydrogen-containing gas must be suppressed to several tens of volume ppm. Therefore, in the CO remover, the CO concentration is reduced by oxidizing the CO contained in the hydrogen-containing gas.
 ところで、上記のような構成を有する水素生成装置において、改質触媒は高温で原料ガスにさらされると炭素析出が起こり、その結果として流路閉塞や活性低下が起こる。また、変成触媒や酸化触媒は結露による水濡れで、強度低下や活性低下が起こることが広く知られている。 By the way, in the hydrogen generator having the above-described configuration, when the reforming catalyst is exposed to the raw material gas at a high temperature, carbon deposition occurs, and as a result, the flow path is blocked and the activity is reduced. In addition, it is widely known that a shift catalyst and an oxidation catalyst cause a decrease in strength and a decrease in activity when wet due to condensation.
 ここで、改質器の温度が原料の熱分解により炭素析出しない温度で、かつCO除去器で結露が生じない温度である状態において、水素生成装置内を原料でパージする方法が考案されている(例えば、特許文献1参照)。 Here, a method has been devised in which the hydrogen generator is purged with the raw material in a state where the temperature of the reformer is a temperature at which carbon does not precipitate due to thermal decomposition of the raw material and no condensation occurs in the CO remover. (For example, refer to Patent Document 1).
 また、停止処理中において酸化触媒への結露防止のために、CO除去器に設けられたヒーターにより加熱したり、運転停止後もCO除去器への空気の供給を継続することでCO除去器よりも下流のガス経路内の露点を低下させ、結露を抑制することが開示されている(例えば、特許文献2参照)。 In order to prevent dew condensation on the oxidation catalyst during the stop process, the CO remover can be heated by a heater provided in the CO remover or by continuing to supply air to the CO remover even after the operation is stopped. In addition, it is disclosed that the dew point in the downstream gas path is lowered to suppress dew condensation (see, for example, Patent Document 2).
特開2004-307236号公報JP 2004-307236 A WO02/090249号公報WO02 / 090249
 ここで、上記特許文献1の水素生成装置では、パージ動作による改質触媒の劣化を抑制するために、水素含有ガスの生成動作中において相対的に制御温度の高い改質器が、パージ動作可能な温度に低下するまでは、パージ動作は実施されない。 Here, in the hydrogen generator of Patent Document 1, in order to suppress the deterioration of the reforming catalyst due to the purge operation, the reformer having a relatively high control temperature can perform the purge operation during the generation operation of the hydrogen-containing gas. The purge operation is not performed until the temperature is reduced to a proper temperature.
 しかしながら、水素含有ガスの生成動作中において相対的に制御温度の低いCO除去器では、改質器がパージ可能な温度にまで低下する間に、結露が生じてしまう可能性がある。 However, in the CO remover having a relatively low control temperature during the operation of generating the hydrogen-containing gas, condensation may occur while the reformer is lowered to a purgeable temperature.
 そこで、特許文献2に記載のようにCO除去器に設けられたヒーターで結露しないよう加熱されるが、これにより省エネルギー性は低下してしまう。 Therefore, as described in Patent Document 2, the heater provided in the CO remover is heated so as not to condense, but this reduces energy saving.
 本発明は、上記課題を解決するものであり、上記パージ動作が実行されるまでの期間において、より従来よりも省エネ性を向上させながらCO除去器での結露を抑制する燃料電池システム、及び燃料電池システムの運転方法を提供することを目的とする。 The present invention solves the above-described problem, and in the period until the purge operation is performed, a fuel cell system that suppresses dew condensation in a CO remover while improving energy saving performance more than the conventional one, and fuel It aims at providing the operating method of a battery system.
 上記目的を達成するために、本発明の燃料電池システムは、
 原料を用いて水素含有ガスを生成させる改質触媒を有する改質器、前記水素含有ガス中に含まれる一酸化炭素を酸化反応により低減させるための酸化触媒を有するCO除去器、及び前記CO除去器に酸化ガスを供給する第1の酸化ガス供給器を備える水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電を行う燃料電池と、制御器とを備える燃料電池システムであって、
 前記制御器は、
 前記燃料電池システムの発電運転を停止させる際に、
(i)前記停止に先行して、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第1の制御、及び
(ii)前記停止後、前記改質器より前記水素含有ガスが送出される期間において、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第2の制御、の少なくともいずれか一方を実行し、
 前記第1の制御及び第2の制御の少なくともいずれか一方を実行後に、前記水素生成装置内のパージ動作を実行することを特徴とする。
In order to achieve the above object, the fuel cell system of the present invention comprises:
A reformer having a reforming catalyst that generates a hydrogen-containing gas using a raw material, a CO remover having an oxidation catalyst for reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction, and the CO removal A fuel cell system comprising: a hydrogen generator comprising a first oxidant gas supplier for supplying an oxidant gas to the vessel; a fuel cell for generating electricity using the hydrogen-containing gas supplied from the hydrogen generator; and a controller Because
The controller is
When stopping the power generation operation of the fuel cell system,
(i) Prior to the stop, the operating amount of the oxidizing gas supplier is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during the power generation operation. 1 control, and
(ii) In the period in which the hydrogen-containing gas is sent from the reformer after the stop, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during power generation operation. Performing at least one of the second control for controlling the operation amount of the oxidizing gas supplier,
A purge operation in the hydrogen generator is performed after at least one of the first control and the second control is performed.
 又、本発明の燃料電池システムの運転方法は、原料を用いて水素含有ガスを生成させる改質触媒を有する改質器、前記水素含有ガス中に含まれる一酸化炭素を酸化反応により低減させるための酸化触媒を有するCO除去器、及び前記CO除去器に酸化ガスを供給する第1の酸化ガス供給器を備える水素生成装置と、前記水素生成装置から供給される水素含有ガスを用いて発電を行う燃料電池とを備える燃料電池システムの運転方法であって、
前記燃料電池システムの発電運転を停止させる際に、
(i)前記停止に先行して、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第1の制御、及び
(ii)前記停止後、前記改質器より前記水素含有ガスが送出される期間において、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第2の制御、の少なくともいずれか一方を実行し、
 前記第1の制御及び第2の制御の少なくともいずれか一方を実行後に、前記水素生成装置内のパージ動作を実行することを特徴とする。
Further, the operating method of the fuel cell system of the present invention includes a reformer having a reforming catalyst for generating a hydrogen-containing gas using raw materials, and reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction. A hydrogen generator comprising a CO remover having an oxidation catalyst, a first oxidizing gas supplier for supplying an oxidizing gas to the CO remover, and a hydrogen-containing gas supplied from the hydrogen generator to generate power. An operation method of a fuel cell system comprising a fuel cell to perform,
When stopping the power generation operation of the fuel cell system,
(i) Prior to the stop, the operating amount of the oxidizing gas supplier is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during the power generation operation. 1 control, and
(ii) In the period in which the hydrogen-containing gas is sent from the reformer after the stop, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during power generation operation. Performing at least one of the second control for controlling the operation amount of the oxidizing gas supply device,
A purge operation in the hydrogen generator is performed after at least one of the first control and the second control is performed.
 本発明によれば、パージ動作が実行されるまでの期間において、従来よりも省エネ性を向上させながらCO除去器での結露を抑制する燃料電池システム、及び燃料電池システムの運転方法を提供することができる。 According to the present invention, there are provided a fuel cell system and a fuel cell system operation method that suppress dew condensation in a CO remover while improving energy saving performance over the period until a purge operation is performed. Can do.
実施の形態1における燃料電池システムの構成図Configuration diagram of fuel cell system according to Embodiment 1 実施の形態1における燃料電池システムの停止方法のフロー図Flow chart of stopping method of fuel cell system in Embodiment 1 実施の形態2における燃料電池システムの停止方法のフロー図Flow chart of stopping method of fuel cell system in Embodiment 2 実施の形態2の変形例1における燃料電池システムの停止方法のフロー図Flow chart of stopping method of fuel cell system in Modification 1 of Embodiment 2 実施の形態2の変形例1の更なる変形例における燃料電池システムの停止方法のフロー図Flow chart of a fuel cell system stopping method in a further modification of the first modification of the second embodiment 実施の形態2の変形例2における燃料電池システムの停止方法のフロー図Flow chart of a fuel cell system stopping method in the second modification of the second embodiment 実施の形態3における燃料電池システムの構成図Configuration diagram of fuel cell system according to Embodiment 3 実施の形態3における燃料電池システムの停止方法のフロー図Flow chart of stopping method of fuel cell system in Embodiment 3 実施例1における改質器、及びCO除去器の温度の経時変化のグラフを示す図The figure which shows the graph of the time-dependent change of the temperature of the reformer in Example 1, and a CO remover. 比較例1における改質器14、及びCO除去器の温度の経時変化のグラフを示す図The figure which shows the graph of the time-dependent change of the temperature of the reformer 14 and the CO remover in the comparative example 1. 実施の形態1~3及び実施例1の変形例における燃料電池システムの停止方法のフロー図Flow chart of stopping method of fuel cell system in first to third embodiments and modified example of embodiment 1
 本発明の実施の形態に係る燃料電池システムは、原料を用いて水素含有ガスを生成させる改質触媒を有する改質器、水素含有ガス中に含まれる一酸化炭素を酸化反応により低減させるための酸化触媒を有するCO除去器、及びCO除去器に酸化ガスを供給する第1の酸化ガス供給器を備える水素生成装置と、水素生成装置から供給される水素含有ガスを用いて発電を行う燃料電池と、制御器とを備える燃料電池システムであって、制御器は、燃料電池システムの発電運転を停止させる際に、(i)停止に先行して、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第1の制御、及び(ii)停止後、改質器より水素含有ガスが送出される期間において、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第2の制御、の少なくともいずれか一方を実行し、第1の制御及び第2の制御の少なくともいずれか一方を実行後に、水素生成装置内のパージ動作を実行することを特徴とする。 A fuel cell system according to an embodiment of the present invention includes a reformer having a reforming catalyst that generates a hydrogen-containing gas using raw materials, and a method for reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction. A hydrogen generator comprising a CO eliminator having an oxidation catalyst, a first oxidant gas supplier for supplying an oxidant gas to the CO eliminator, and a fuel cell for generating electricity using a hydrogen-containing gas supplied from the hydrogen generator And a controller, when the controller stops the power generation operation of the fuel cell system, (i) the supply amount of the hydrogen-containing gas to the CO remover prior to the stop And (ii) a period in which the hydrogen-containing gas is sent from the reformer after being stopped. CO removal And executing at least one of the second control for controlling the operation amount of the oxidizing gas supply device so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the power generation operation is larger than that during the power generation operation, A purge operation in the hydrogen generator is performed after performing at least one of the above control and the second control.
 また、本発明の実施の形態に係る燃料電池システムの運転方法は、原料を用いて水素含有ガスを生成させる改質触媒を有する改質器、水素含有ガス中に含まれる一酸化炭素を酸化反応により低減させるための酸化触媒を有するCO除去器、及びCO除去器に酸化ガスを供給する第1の酸化ガス供給器を備える水素生成装置と、水素生成装置から供給される水素含有ガスを用いて発電を行う燃料電池とを備える燃料電池システムの運転方法であって、燃料電池システムの発電運転を停止させる際に、(i)停止に先行して、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第1の制御、及び(ii)停止後、改質器より水素含有ガスが送出される期間において、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第2の制御、の少なくともいずれか一方を実行し、第1の制御及び第2の制御の少なくともいずれか一方を実行後に、水素生成装置内のパージ動作を実行することを特徴とする。 The operation method of the fuel cell system according to the embodiment of the present invention includes a reformer having a reforming catalyst that generates a hydrogen-containing gas using raw materials, and an oxidation reaction of carbon monoxide contained in the hydrogen-containing gas. Using a hydrogen generator having a CO remover having an oxidation catalyst for reducing the gas, a first oxidizing gas supplier for supplying an oxidizing gas to the CO remover, and a hydrogen-containing gas supplied from the hydrogen generator An operation method of a fuel cell system including a fuel cell that generates power, and when stopping the power generation operation of the fuel cell system, (i) the amount of hydrogen-containing gas supplied to the CO remover prior to the stop And (ii) a period in which the hydrogen-containing gas is sent from the reformer after being stopped. In C Performing at least one of the second control for controlling the operation amount of the oxidizing gas supply unit so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the remover is larger than that during the power generation operation, A purge operation in the hydrogen generator is performed after performing at least one of the first control and the second control.
 かかる構成により、パージ動作が実行されるまでの期間において、従来よりも省エネ性を向上させながらCO除去器での結露の発生を抑制することが出来る。 With such a configuration, it is possible to suppress the occurrence of dew condensation in the CO remover while improving the energy saving than before in the period until the purge operation is performed.
 ここで、第2の制御において、改質器より水素含有ガスが送出される期間の全部の間、酸化剤ガス供給器の操作量を増加させても良いし、改質器より水素含有ガスが送出される期間の一部の間だけ酸化剤ガス供給器の操作量を増加するように酸化ガス供給器を制御してもよい。 Here, in the second control, the operation amount of the oxidant gas supply device may be increased during the entire period in which the hydrogen-containing gas is sent from the reformer, or the hydrogen-containing gas is supplied from the reformer. The oxidant gas supply may be controlled to increase the amount of operation of the oxidant gas supply only during a portion of the delivery period.
 また、パージ動作とは、水素生成装置内部に残留するガスを、残留ガスとは組成の異なる組成のガス(水蒸気を除く)で置換する動作として定義され、この置換ガスとしては、窒素等の不活性ガス、空気、原料ガス等が例示される。 The purge operation is defined as an operation in which a gas remaining in the hydrogen generator is replaced with a gas having a composition different from that of the residual gas (excluding water vapor). Examples thereof include active gas, air, and raw material gas.
 また、「停止に先行して」とは、制御器が、発電運転時に動作している機器の少なくとも1つに、発電運転を停止させるために停止指令を出力するのに先行する、という意味である。 Further, “prior to stop” means that the controller precedes at least one of the devices operating during the power generation operation to output a stop command to stop the power generation operation. is there.
 また、「停止後」とは、制御器が、発電運転時に動作している機器の少なくとも1つに、発電運転を停止させるために停止指令を出力した後、という意味である。 Also, “after stop” means that the controller has output a stop command to stop the power generation operation to at least one of the devices operating during the power generation operation.
 以下、実施の形態に係る燃料電池システムについて、図面を参照しながら説明する。 Hereinafter, the fuel cell system according to the embodiment will be described with reference to the drawings.
 (実施の形態1)
 実施の形態1に係る燃料電池システムは、制御器が、燃料電池システムの発電運転を停止させる際に、停止に先行して、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第1の制御を実行し、第1の制御実行後に、水素生成装置内のパージ動作を実行する。
(Embodiment 1)
In the fuel cell system according to Embodiment 1, when the controller stops the power generation operation of the fuel cell system, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover prior to the stoppage. However, the first control for controlling the operation amount of the oxidizing gas supply unit is performed so as to be larger than that during the power generation operation, and the purge operation in the hydrogen generator is performed after the first control is performed.
 また、実施の形態1に係る燃料電池システムの運転方法は、燃料電池システムの発電運転を停止させる際に、停止に先行して、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第1の制御を実行し、第1の制御を実行後に、水素生成装置内のパージ動作を実行する。 Further, in the operation method of the fuel cell system according to Embodiment 1, when the power generation operation of the fuel cell system is stopped, the supply of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover prior to the stop The first control for controlling the operation amount of the oxidizing gas supplier is executed so that the amount becomes larger than that during the power generation operation, and the purge operation in the hydrogen generator is executed after the first control is executed.
 はじめに、実施の形態1の燃料電池システムの構成について説明する。 First, the configuration of the fuel cell system according to Embodiment 1 will be described.
 図1は、実施の形態1における燃料電池システムの構成図である。本実施の形態の燃料電池システムは、水素生成装置1と、燃料電池100を有している。この水素生成装置1は、メタンを主成分とする都市ガス、天然ガス、LPG等の炭化水素等の、少なくとも炭素及び水素から構成される有機化合物を含む原料と水蒸気の改質反応を主に進行させ、水素含有ガスを生成させる装置である。また、燃料電池100は、水素生成装置1から供給される水素含有ガスをアノードガスとして用い、別途カソードガス供給器110から供給される空気などの酸化剤ガスをカソードガスとして用い、両者を反応させて発電する装置である。 FIG. 1 is a configuration diagram of the fuel cell system according to the first embodiment. The fuel cell system according to the present embodiment includes a hydrogen generator 1 and a fuel cell 100. This hydrogen generation apparatus 1 mainly proceeds with a reforming reaction of a raw material containing an organic compound composed of at least carbon and hydrogen, such as city gas mainly composed of methane, natural gas, hydrocarbons such as LPG, and steam. To generate a hydrogen-containing gas. Further, the fuel cell 100 uses the hydrogen-containing gas supplied from the hydrogen generator 1 as an anode gas, and uses an oxidant gas such as air supplied from a cathode gas supplier 110 as a cathode gas, and causes both to react. It is a device that generates electricity.
 ここで、改質反応は、原料と水蒸気を用いる改質反応であれば、いずれのタイプの改質反応であってもよく、例えば、水蒸気改質反応やオートサーマル反応等が採用される。 Here, the reforming reaction may be any type of reforming reaction as long as it is a reforming reaction using a raw material and steam. For example, a steam reforming reaction or an autothermal reaction is adopted.
 ここで、燃料電池は、いずれのタイプの燃料電池であってもよく、固体高分子形燃料電池、りん酸形燃料電池、または固体酸化物形燃料電池などが採用される。 Here, the fuel cell may be any type of fuel cell, such as a polymer electrolyte fuel cell, a phosphoric acid fuel cell, or a solid oxide fuel cell.
 次に、図1中、点線で覆われている水素生成装置1の構成について説明する。 Next, the configuration of the hydrogen generator 1 covered with a dotted line in FIG. 1 will be described.
 本実施の形態の水素生成装置1には、原料と水蒸気から水素含有ガスを生成する水素生成器8が設けられている。この水素生成器8には、原料と水蒸気とを用いて改質反応を進行させる改質器14と、その改質器14で生成された水素含有ガス中の一酸化炭素を、選択酸化させることによって低減させるCO除去器15が設けられている。又、改質器14から排出された水素含有ガスに、CO除去器15における酸化に用いる空気を供給する酸化ガス供給器23が設けられている。この改質器14にはNi系の改質触媒が設けられており、CO除去器15には、Ru系の選択酸化触媒が設けられている。 The hydrogen generator 1 of the present embodiment is provided with a hydrogen generator 8 that generates a hydrogen-containing gas from a raw material and water vapor. The hydrogen generator 8 is configured to selectively oxidize carbon monoxide in the hydrogen-containing gas generated by the reformer 14 that progresses the reforming reaction using the raw material and steam and the reformer 14. A CO eliminator 15 is provided to reduce the amount. In addition, an oxidizing gas supply unit 23 is provided for supplying air used for oxidation in the CO remover 15 to the hydrogen-containing gas discharged from the reformer 14. The reformer 14 is provided with a Ni-based reforming catalyst, and the CO remover 15 is provided with a Ru-based selective oxidation catalyst.
 また、改質器14における改質反応を進行させるための熱を発生する燃焼器2が設けられている。又、燃焼器2の着火源となるイグナイター21と、燃焼器2の燃焼状態を検知するフレームロッド22と、燃焼器2に燃焼用空気を供給する空気供給器20が設けられている。この燃焼器2の加熱源となる燃焼ガスとしては、水素生成器8を通過した原料や、燃料電池100のアノードから排出されたアノードオフガス等が用いられる。 Further, a combustor 2 that generates heat for causing the reforming reaction in the reformer 14 to proceed is provided. Further, an igniter 21 that is an ignition source of the combustor 2, a frame rod 22 that detects a combustion state of the combustor 2, and an air supply device 20 that supplies combustion air to the combustor 2 are provided. As the combustion gas that serves as a heating source for the combustor 2, a raw material that has passed through the hydrogen generator 8, an anode off-gas discharged from the anode of the fuel cell 100, and the like are used.
 また、改質器14に水を供給するポンプである水供給器3と、改質器14に原料を供給する原料供給器4が設けられている。なお、原料供給器4は、ブースターポンプとし、例えば入力する電流パルス、入力電力等を制御して流量調節できる構成とする。また、水供給器3は、原料供給器4と同様に流量調節機能を有するポンプとする。 Further, a water supply device 3 that is a pump for supplying water to the reformer 14 and a raw material supply device 4 for supplying raw materials to the reformer 14 are provided. The raw material supplier 4 is a booster pump, and is configured to control the flow rate by controlling, for example, input current pulses and input power. In addition, the water supply device 3 is a pump having a flow rate adjusting function similarly to the raw material supply device 4.
 また、原料の供給源としてガスインフラライン6が用いられている。そのガスインフラライン6に、吸着脱硫剤が充填されている吸着脱硫器5が接続され、吸着脱硫器5は原料供給器4に接続されている。また、水素生成器8で生成する水素含有ガスを燃料電池100に供給するための水素ガス供給経路9が設けられている。更に、燃料電池100で消費されなかった水素含有ガスを燃焼器2に供給するアノードオフガス供給経路10が設けられている。また、燃料電池100をバイパスして、水素ガス供給経路9とアノードオフガス供給経路10とを接続するバイパス経路12が設けられている。また、バイパス経路12には開閉弁11aが設けられており、水素ガス供給経路9のバイパス経路12への分岐箇所(図1中P参照)より下流側には開閉弁11bが設けられている。尚、アノードオフガス供給経路10へのバイパス経路12の合流箇所は、図1中Qで示されている。 Also, the gas infrastructure 6 is used as a raw material supply source. An adsorbing desulfurizer 5 filled with an adsorbing desulfurizing agent is connected to the gas infrastructure line 6, and the adsorbing desulfurizer 5 is connected to the raw material supplier 4. Further, a hydrogen gas supply path 9 for supplying the hydrogen-containing gas generated by the hydrogen generator 8 to the fuel cell 100 is provided. Furthermore, an anode off-gas supply path 10 is provided for supplying the hydrogen-containing gas that has not been consumed by the fuel cell 100 to the combustor 2. Further, a bypass path 12 that bypasses the fuel cell 100 and connects the hydrogen gas supply path 9 and the anode off-gas supply path 10 is provided. The bypass path 12 is provided with an open / close valve 11a, and an open / close valve 11b is provided downstream of the branch point of the hydrogen gas supply path 9 to the bypass path 12 (see P in FIG. 1). The junction of the bypass path 12 to the anode off gas supply path 10 is indicated by Q in FIG.
 また、改質器14及びCO除去器15にはそれぞれの触媒温度を検出するために、改質温度検出器24、選択酸化温度検出器25が設けられている。各検出器としては熱電対やサーミスタ等が用いられている。 Further, the reformer 14 and the CO remover 15 are provided with a reforming temperature detector 24 and a selective oxidation temperature detector 25 in order to detect respective catalyst temperatures. As each detector, a thermocouple, a thermistor, or the like is used.
 また、フレームロッド22、改質温度検出器24、及び選択酸化温度検出器25からの検出値が入力され、原料供給器4から供給する原料の供給量や水供給器3から供給する水の供給量、空気供給器20、開閉弁11a、11b、及びイグナイター21等を制御する制御器13が設けられている(図1参照)。なお、制御器13は、演算処理部と、上記第1の制御及び第2の制御の少なくともいずれか一つを実行するための制御プログラムが格納された記憶部とを備える。演算処理部は、例えば、マイクロプロセッサ、CPU等から構成され、記憶部は、半導体メモリー等から構成される。また、制御器13は、単独の制御器から構成される形態、または分散配置された複数の制御器から構成され、それらが協働して燃料電池システムを制御する形態のいずれも含む。 In addition, detection values from the frame rod 22, the reforming temperature detector 24, and the selective oxidation temperature detector 25 are input, and the supply amount of the raw material supplied from the raw material supply device 4 and the supply of water supplied from the water supply device 3. A controller 13 for controlling the amount, the air supply device 20, the on-off valves 11a and 11b, the igniter 21 and the like is provided (see FIG. 1). The controller 13 includes an arithmetic processing unit and a storage unit that stores a control program for executing at least one of the first control and the second control. The arithmetic processing unit is configured by, for example, a microprocessor, a CPU, and the like, and the storage unit is configured by a semiconductor memory or the like. Further, the controller 13 includes either a single controller or a plurality of distributed controllers that cooperate to control the fuel cell system.
 次に、本実施の形態1における燃料電池システムの動作について説明する。 Next, the operation of the fuel cell system in Embodiment 1 will be described.
 はじめに、本実施の形態1おける燃料電池システムの起動及び発電運転について説明する。 First, the start-up and power generation operation of the fuel cell system in the first embodiment will be described.
 停止状態から水素生成装置1を起動させる場合、制御器13からの指令により、原料が原料供給器4から水素生成器8へと供給される。この際、開閉弁11aが開状態、開閉弁11bが閉状態になっており、水素生成器8から排出された原料はバイパス経路12を経由して燃焼器2へと供給される。その原料を燃料として、燃焼器2において着火されて加熱が開始される。そして、結露が発生しない温度まで、改質器14、及びCO除去器15が昇温された段階で、制御器13は水供給器3を動作し、水が改質器14に供給され、水と原料との改質反応が開始される。 When starting the hydrogen generator 1 from the stopped state, the raw material is supplied from the raw material supplier 4 to the hydrogen generator 8 according to a command from the controller 13. At this time, the on-off valve 11 a is in the open state and the on-off valve 11 b is in the closed state, and the raw material discharged from the hydrogen generator 8 is supplied to the combustor 2 via the bypass path 12. The raw material is used as fuel and ignited in the combustor 2 to start heating. Then, when the reformer 14 and the CO remover 15 are heated to a temperature at which dew condensation does not occur, the controller 13 operates the water supply device 3 so that water is supplied to the reformer 14 and the water And the reforming reaction of the raw material is started.
 本実施の形態1では、メタンを主成分とする都市ガス(13A)が原料として用いられる。水の供給量は、供給都市ガスの平均分子式中の炭素原子数1モルに対して3モル程度の水蒸気を存在させる量が供給される(スチームカーボン比(S/C)で3程度)。CO除去器15へは空気がCO/Oモル比2~3程度になるよう酸化ガス供給器23から供給される。 In this Embodiment 1, the city gas (13A) which has methane as a main component is used as a raw material. The amount of water supplied is such that about 3 mol of water vapor is present per 1 mol of carbon atoms in the average molecular formula of the supplied city gas (steam carbon ratio (S / C) is about 3). Air is supplied to the CO remover 15 from the oxidizing gas supply unit 23 so that the CO / O 2 molar ratio is about 2 to 3.
 改質器14、及びCO除去器15が温まり、水蒸気改質反応、及び選択酸化反応が進行する。そして、水素含有ガス中の一酸化炭素の濃度が低減できた時点で、開閉弁11aを閉じ、開閉弁11bを開放することにより、水素生成器8から排出されるガスの流路が燃料電池100側に切り換えられ、水素含有ガスが、水素ガス供給経路9から燃料電池100へと供給される。 The reformer 14 and the CO remover 15 are warmed, and the steam reforming reaction and the selective oxidation reaction proceed. When the concentration of carbon monoxide in the hydrogen-containing gas can be reduced, the on-off valve 11a is closed and the on-off valve 11b is opened so that the flow path of the gas discharged from the hydrogen generator 8 becomes the fuel cell 100. The hydrogen-containing gas is supplied from the hydrogen gas supply path 9 to the fuel cell 100.
 そして、燃料電池100において、カソードガス供給器110から供給された空気と、水素含有ガスを用いて発電が行われる。尚、水蒸気改質反応は、吸熱反応であり、選択酸化反応は発熱反応である。又、発電時の改質器14の温度は約400~650℃、CO除去器15の温度は120~160℃となっており、改質温度検出部24で検出される温度は約650℃、選択酸化温度検出部25で検出される温度は約160℃である。 In the fuel cell 100, power generation is performed using the air supplied from the cathode gas supply unit 110 and the hydrogen-containing gas. The steam reforming reaction is an endothermic reaction, and the selective oxidation reaction is an exothermic reaction. The temperature of the reformer 14 during power generation is about 400 to 650 ° C., the temperature of the CO remover 15 is 120 to 160 ° C., and the temperature detected by the reforming temperature detector 24 is about 650 ° C. The temperature detected by the selective oxidation temperature detector 25 is about 160 ° C.
 次に、本実施の形態1の燃料電池システムの運転の停止方法の一例について説明する。 Next, an example of a method for stopping the operation of the fuel cell system according to the first embodiment will be described.
 燃料電池システムの運転を停止させる停止指令を制御器13が出力することによって、カソードガス供給器110が停止されるとともに、水素生成装置1の運転も停止される。 When the controller 13 outputs a stop command for stopping the operation of the fuel cell system, the cathode gas supply device 110 is stopped and the operation of the hydrogen generator 1 is also stopped.
 次に、水素生成装置1の運転を停止させる方法の概略について説明すると、原料と水の供給を停止させることによって、燃焼器2の燃焼も停止し、水素生成器8内の改質器14及びCO除去器15の各触媒層の温度が低下する。各触媒層の温度が設定温度まで低下した後、水素生成装置1に原料を供給することによって、水素生成装置1のガス経路内部に滞留する水素含有ガスが原料で置換される。 Next, an outline of a method for stopping the operation of the hydrogen generator 1 will be described. By stopping the supply of raw materials and water, the combustion of the combustor 2 is also stopped, and the reformer 14 in the hydrogen generator 8 and The temperature of each catalyst layer of the CO remover 15 decreases. After the temperature of each catalyst layer is lowered to the set temperature, the raw material is supplied to the hydrogen generator 1, whereby the hydrogen-containing gas staying inside the gas path of the hydrogen generator 1 is replaced with the raw material.
 このとき、原料ガスによって追い出された水素含有ガスは、燃焼器2へと供給される。燃焼器2で水素含有ガスが燃焼されると、燃焼器2の加熱により改質器14の温度が上昇し炭素析出の恐れが生じる。そのため、燃焼器2による改質器14の温度上昇分を見込んで、できるだけ低い温度でパージを実施することが望ましい。なお、上記パージ動作において水素生成装置内から掃気される水素含有ガスを空気等によって燃焼させずに希釈排気する方法もあるが、エネルギーの有効活用という観点からは燃焼させることが望ましい。 At this time, the hydrogen-containing gas expelled by the raw material gas is supplied to the combustor 2. When the hydrogen-containing gas is combusted in the combustor 2, the temperature of the reformer 14 rises due to heating of the combustor 2, which may cause carbon deposition. Therefore, it is desirable to perform the purge at the lowest possible temperature in anticipation of the temperature rise of the reformer 14 by the combustor 2. Although there is a method of diluting and exhausting the hydrogen-containing gas scavenged from the hydrogen generator in the purge operation without burning it with air or the like, it is desirable to burn it from the viewpoint of effective use of energy.
 このような燃料電池システムの発電停止前に、制御器13が、以下の動作を行うことが、本実施の形態における特徴的な動作となる。 The characteristic operation in the present embodiment is that the controller 13 performs the following operation before stopping the power generation of such a fuel cell system.
 図2は、本実施の形態1の燃料電池システムの停止方法の制御フローを示す図である。尚、この図2では、ステップをSと省略して示している。以下の図においても同様である。また、図2における制御が行われるトリガーとしては、電力需要の低下に伴い発電運転を停止すると制御器が判断した場合や、ユーザーが操作器(例えば、リモコン)を介して燃料電池システムの発電停止を要求する場合等が挙げられる。 FIG. 2 is a diagram showing a control flow of the stopping method of the fuel cell system according to the first embodiment. In FIG. 2, step is abbreviated as S. The same applies to the following drawings. In addition, as a trigger for performing the control in FIG. 2, when the controller determines that the power generation operation is stopped due to a decrease in power demand, or when the user stops the power generation of the fuel cell system via an operating device (for example, a remote controller). Is required.
 はじめに、ステップ1において、制御器13は、停止指令を出す時刻H1を決定する。 First, in step 1, the controller 13 determines a time H1 at which a stop command is issued.
 次に、ステップ2において、停止指令を行うタイミングまでの残り運転時間(時刻H1―現在の時刻t)が予め設定される時間H0を下回っているかどうかの判定が行われ、発電停止までの残り時間が予め設定される時間H0を下回ると、制御はステップ3へ移行する。具体的には、例えば、H1を現在時刻から20分後の23時20分とし、H0を10分間とすると、時刻tが、23時10分を超えると、H1―tがH0よりも小さくなるため、制御がステップ3へと進むことになる。 Next, in step 2, it is determined whether or not the remaining operating time (time H1−current time t) until the timing of issuing the stop command is less than a preset time H0, and the remaining time until the power generation stops. Falls below the preset time H0, the control shifts to step 3. Specifically, for example, when H1 is 23:20, 20 minutes after the current time, and H0 is 10 minutes, when time t exceeds 23:10, H1-t becomes smaller than H0. Therefore, the control proceeds to step 3.
 そして、ステップ3では、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるよう酸化ガス供給器23の操作量を制御する指示が制御器13から出される。具体的には、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるよう酸化ガス供給器23の操作量を、直前の操作量よりも増加する制御が行われる。 In step 3, the controller 13 issues an instruction to control the operation amount of the oxidizing gas supply device 23 so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Specifically, control is performed such that the operating amount of the oxidizing gas supply device 23 is increased from the immediately preceding operating amount so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during power generation operation.
 上記制御は、換言すれば、CO除去器15への水素含有ガスの供給量に対する酸化ガス(空気)の供給量が、発電運転時よりも多くなるよう酸化ガス供給器23の操作量が制御される。
また、この制御により、CO除去器15を流れる水素含有ガス中の水素と空気中の酸素との酸化反応量が増加し、酸化反応に伴う発熱により、選択酸化触媒の温度が発電運転時における制御温度よりも高くなる。
In other words, the operation amount of the oxidizing gas supplier 23 is controlled so that the supply amount of the oxidizing gas (air) with respect to the supply amount of the hydrogen-containing gas to the CO remover 15 is larger than that during the power generation operation. The
Further, by this control, the amount of oxidation reaction between hydrogen in the hydrogen-containing gas flowing through the CO remover 15 and oxygen in the air increases, and the temperature of the selective oxidation catalyst is controlled during power generation operation due to heat generated by the oxidation reaction. It becomes higher than the temperature.
 次いでステップ4へ移行し、システムの停止指令を出すタイミングか否かの判定がなされる。すなわち、現在時刻tがH1を超えたか否かが判定される。停止指令タイミングを超えていない場合(t≦H1の場合)は、停止指令タイミングH1を超えるまでの間、酸化ガス供給器23からの空気供給量が増量された状態が保持される。 Next, the routine proceeds to step 4 where it is determined whether or not it is time to issue a system stop command. That is, it is determined whether or not the current time t has exceeded H1. When the stop command timing is not exceeded (when t ≦ H1), the state in which the amount of air supplied from the oxidizing gas supplier 23 is increased until the stop command timing H1 is exceeded.
 そして、現在時刻tが停止指令タイミングを超える(t>H1)と、制御はステップ5へと移行し、制御器13が停止指令を出す。停止指令が出されると、ステップ6において制御器13が開閉弁11aを開状態、開閉弁11bを閉状態とする。このように開閉弁11a、11bを切り替えることにより、水素生成器8から排出されたガスが燃料電池100へと供給されず、バイパス経路12を介して、燃焼器2へと送られる。 When the current time t exceeds the stop command timing (t> H1), the control shifts to step 5 and the controller 13 issues a stop command. When the stop command is issued, in step 6, the controller 13 opens the on-off valve 11a and closes the on-off valve 11b. By switching the on-off valves 11 a and 11 b in this way, the gas discharged from the hydrogen generator 8 is not supplied to the fuel cell 100 but is sent to the combustor 2 via the bypass path 12.
 次に、ステップ7において、カソードガス供給器110の動作も停止され、燃料電池100における発電が停止される。又、制御器13は、水供給器3、原料供給器4及び酸化ガス供給器23を停止するように制御を行い、水蒸気改質反応が停止される。 Next, in Step 7, the operation of the cathode gas supply device 110 is also stopped, and the power generation in the fuel cell 100 is stopped. Further, the controller 13 performs control to stop the water supplier 3, the raw material supplier 4, and the oxidizing gas supplier 23, and the steam reforming reaction is stopped.
 このように、ステップ6、7において、燃料電池100の発電及び水素生成装置1の運転が停止されると、改質器14及びCO除去器15の各触媒層の温度が除々に低下する。 Thus, when the power generation of the fuel cell 100 and the operation of the hydrogen generator 1 are stopped in Steps 6 and 7, the temperatures of the catalyst layers of the reformer 14 and the CO remover 15 gradually decrease.
 続いて、ステップ8において、改質検出温度TKが原料供給開始温度T1に達すると制御はステップ9へと進み、原料供給器4が動作して原料パージが行われる。尚、原料パージを行う前に、開閉弁11aを閉じ、開閉弁11bを開く制御を行うことによって、水素生成器8から排出されたガスが燃料電池100側に供給されるため、燃料電池100の内部も原料ガスによってパージする形態を採用しても構わない。又、上述したように、燃焼器2における原料ガスの燃焼による改質器14の温度上昇を考慮し、原料供給開始温度T1は、低く設定されている。具体的には、改質触媒としてNi系の触媒を用いた場合には、改質触媒の温度が約300℃まで下がると炭素析出がおこらないが、燃焼器2による温度上昇を見込んで、T1は約150℃に設定されている。 Subsequently, in step 8, when the reforming detection temperature TK reaches the raw material supply start temperature T1, the control proceeds to step 9, and the raw material supplier 4 operates to perform the raw material purge. Before performing the raw material purge, the gas discharged from the hydrogen generator 8 is supplied to the fuel cell 100 side by performing control to close the on-off valve 11a and open the on-off valve 11b. The inside may be purged with the source gas. Further, as described above, in consideration of the temperature rise of the reformer 14 due to the combustion of the raw material gas in the combustor 2, the raw material supply start temperature T1 is set low. Specifically, when a Ni-based catalyst is used as the reforming catalyst, carbon deposition does not occur when the temperature of the reforming catalyst falls to about 300 ° C., but T1 is expected in view of the temperature rise by the combustor 2. Is set to about 150 ° C.
 そして、水素生成器8内に滞留しているガスを置換できる十分な量の原料ガスを供給した後、ステップ10において原料供給器4が停止される。 Then, after supplying a sufficient amount of raw material gas capable of replacing the gas staying in the hydrogen generator 8, the raw material supplier 4 is stopped in step 10.
 以上のように、本実施の形態では、第1の制御の一例として、酸化触媒の温度を発電運転時における制御温度よりも高くなるよう、停止指令前において、酸化ガス供給器23の操作量の制御が行われる。そのため、従来の燃料電池システムよりも省エネ性を向上させながら、改質検出温度TKがT1に達するまでの間の結露の発生を抑制することが出来る。 As described above, in the present embodiment, as an example of the first control, the operation amount of the oxidizing gas supply 23 is set before the stop command so that the temperature of the oxidation catalyst becomes higher than the control temperature during the power generation operation. Control is performed. Therefore, it is possible to suppress the occurrence of condensation until the reforming detection temperature TK reaches T1 while improving the energy saving performance as compared with the conventional fuel cell system.
 尚、本実施の形態における酸化ガス(空気)の供給量を増量した状態を保つ時間(H0)及び酸化ガス(空気)の増加量は、改質検出温度TKがT1に達するまでの間に、CO除去器15内の温度が結露温度に達しない程度の温度にCO除去器15がなるように設定されている。 The time (H0) for maintaining the state in which the supply amount of the oxidizing gas (air) in the present embodiment is increased and the increase amount of the oxidizing gas (air) are determined until the reforming detection temperature TK reaches T1. The CO remover 15 is set so that the temperature in the CO remover 15 does not reach the dew condensation temperature.
 又、本実施の形態では、図2に示す制御フローを実行するトリガーの後、停止指令を発する時刻H1を決定し、現在時刻tとの差を求めて、その差がH0よりも小さくなると酸化ガス供給器23による空気の供給量を増量させているが、停止指令を発する時刻H1を決定せずに、制御フローを実行するトリガーの後、すぐに時間H0の間、酸化ガス供給器23による空気の供給量を増加する制御が行われても良い。つまり、燃料電池システムの発電停止に先行して、酸化ガス供給器23の操作量を増加する制御が実行されるなら、如何なる形態であっても構わない。 Further, in the present embodiment, after the trigger for executing the control flow shown in FIG. 2, the time H1 at which the stop command is issued is determined, the difference from the current time t is obtained, and if the difference becomes smaller than H0, the oxidation is performed. Although the amount of air supplied from the gas supplier 23 is increased, the oxidizing gas supplier 23 immediately follows the trigger for executing the control flow without determining the time H1 at which the stop command is issued. Control for increasing the supply amount of air may be performed. That is, any form may be used as long as the control for increasing the operation amount of the oxidizing gas supply unit 23 is executed prior to the stop of power generation in the fuel cell system.
 (実施の形態2)
 実施の形態2に係る燃料電池システムは、制御器が、燃料電池システムの発電運転を停止させる際に、停止後、改質器より水素含有ガスが送出される期間において、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第2の制御を実行し、第2の制御を実行後に、水素生成装置内のパージ動作を実行する。
(Embodiment 2)
In the fuel cell system according to Embodiment 2, when the controller stops the power generation operation of the fuel cell system, hydrogen is supplied to the CO remover during the period in which the hydrogen-containing gas is sent from the reformer after the stop. The second generation control for controlling the operation amount of the oxidizing gas supply unit is executed so that the supply amount of the oxidizing gas with respect to the supply amount of the contained gas is larger than that during the power generation operation. The purge operation is executed.
 また、実施の形態2に係る燃料電池システムの運転方法は、燃料電池システムの発電運転を停止させる際に、停止後、改質器より水素含有ガスが送出される期間において、CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器の操作量を制御する第2の制御を実行し、第2の制御を実行後に、水素生成装置内のパージ動作を実行する。 Further, in the operation method of the fuel cell system according to the second embodiment, when stopping the power generation operation of the fuel cell system, after the stop, the hydrogen-containing gas is sent from the reformer to the CO remover. The second control for controlling the operation amount of the oxidizing gas supply unit is executed so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas is larger than that during the power generation operation, and hydrogen is generated after the second control is executed. A purge operation in the apparatus is executed.
 ここで、停止後、改質器より水素含有ガスが送出される期間は、反応ガス供給器を停止した後に、改質器内に残留した反応ガスから生成された水素含有ガスがCO除去器に送出される期間を含む。 Here, after the shutdown, the hydrogen-containing gas is sent from the reformer. After the reaction gas supply device is stopped, the hydrogen-containing gas generated from the reaction gas remaining in the reformer is supplied to the CO remover. Includes the time period to be sent.
 ここで、反応ガス供給器は、改質器に改質反応に用いられる反応ガスを供給する機器であり、具体的には、改質器に原料を供給する原料供給器、改質器に水を供給する水供給器等が挙げられる。なお、改質反応が、オートサーマル法である場合は、反応ガス供給器には、酸化ガス供給器も含まれ得る。 Here, the reaction gas supply device is a device that supplies a reaction gas used for the reforming reaction to the reformer. Specifically, the reaction gas supply device supplies a raw material to the reformer and supplies water to the reformer. A water supply device for supplying water. When the reforming reaction is an autothermal method, the reactive gas supply device may include an oxidizing gas supply device.
 また実施の形態2に係る燃料電池システムは、改質器を加熱するための燃焼器と、燃焼器における燃焼を検知する燃焼検知器と、CO除去器より送出されたガスが燃焼器に流入するためのガス流路と、ガス流路を連通/遮断させる開閉弁と、を備え、停止後、改質器より水素含有ガスが送出される期間は、停止後に開閉弁が開放している状態で、燃焼検知器で燃焼器の燃焼が検知されている期間を含んでもよい。 The fuel cell system according to Embodiment 2 includes a combustor for heating the reformer, a combustion detector for detecting combustion in the combustor, and a gas sent from the CO remover flows into the combustor. A gas flow path for opening and shutting off and opening / closing the gas flow path, and after the stop, the hydrogen-containing gas is sent from the reformer in a state where the open / close valve is open after the stop. A period during which combustion of the combustor is detected by the combustion detector may be included.
 これにより、改質器より水素含有ガスが送出されている期間においては、燃焼検知器により燃焼が検知されるため、適切なタイミングで酸化剤ガス供給器の操作量の増加制御を実行することが出来る。 As a result, during the period in which the hydrogen-containing gas is being sent out from the reformer, combustion is detected by the combustion detector, so that it is possible to execute an increase control of the operation amount of the oxidant gas supply device at an appropriate timing. I can do it.
 以下、実施の形態2における燃料電池システムについて説明する。 Hereinafter, the fuel cell system according to Embodiment 2 will be described.
 本実施の形態2の燃料電池システムは、基本的な構成は実施の形態1と同様であるが、制御フローが異なっている。そのため、本相違点を中心に説明する。尚、実施の形態1と同様の構成については同一の符号を付している。 The basic configuration of the fuel cell system of the second embodiment is the same as that of the first embodiment, but the control flow is different. Therefore, this difference will be mainly described. In addition, the same code | symbol is attached | subjected about the structure similar to Embodiment 1. FIG.
 本実施の形態2の燃料電池システムの構成については、実施の形態1と同様であるため、説明は省略する。 Since the configuration of the fuel cell system of the second embodiment is the same as that of the first embodiment, description thereof is omitted.
 図3は、本実施の形態2の燃料電池システムの停止時の制御フローを示す図である。 FIG. 3 is a diagram showing a control flow when the fuel cell system according to Embodiment 2 is stopped.
 図3に示すように、本実施の形態2では、電力需要の低下に伴い発電運転を停止すると制御器が判断した場合や、ユーザーが操作器(例えば、リモコン)を介して燃料電池システムの発電停止を要求した場合に、はじめに制御器13が、燃料電池システムを構成する各機器に停止指令を出す(ステップ20参照)。この停止指令によって、燃料電池100の発電運転及び水素生成装置1の運転の停止制御が開始される。 As shown in FIG. 3, in the second embodiment, when the controller determines that the power generation operation is stopped due to a decrease in power demand, or when the user generates power from the fuel cell system via an operating device (for example, a remote controller). When the stop is requested, the controller 13 first issues a stop command to each device constituting the fuel cell system (see step 20). With this stop command, stop control of the power generation operation of the fuel cell 100 and the operation of the hydrogen generator 1 is started.
 次のステップ21にて、制御器13は、開閉弁11aを開き、開閉弁11bを閉じる。そして、ステップ22にて、水供給器3、カソードガス供給器110、原料供給器4の動作が停止される。 In the next step 21, the controller 13 opens the on-off valve 11a and closes the on-off valve 11b. In step 22, the operations of the water supply device 3, the cathode gas supply device 110, and the raw material supply device 4 are stopped.
 次に、ステップ23において、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるよう酸化ガス供給器23の操作量を制御する指示が制御器13から出される。そして、酸化ガス供給器23の操作量が、停止指令直前の操作量よりも増加するように制御が行われる。本制御では、換言すれば、CO除去器15への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器23の操作量が制御される。 Next, in step 23, an instruction is issued from the controller 13 to control the operation amount of the oxidizing gas supply device 23 so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. And control is performed so that the operation amount of the oxidizing gas supply device 23 increases from the operation amount immediately before the stop command. In other words, in this control, the operation amount of the oxidizing gas supply unit 23 is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover 15 is larger than that during the power generation operation.
 そして、ステップ24で燃焼器2の消火が検知されるまで、酸化ガス供給器23の操作量が増加した状態が保持される。ここで、ステップ22で原料と水の供給を停止しているが、改質器14の内部には原料及び水蒸気が残留しており、この残留している原料及び水蒸気によって改質反応が進行し、一酸化炭素も含んだ水素含有ガスが生成される。そして、水素生成器8内の水素含有ガスが、改質器14内に残留する水の蒸発に伴い水素生成器8より送出される。水素生成器8より送出された水素含有ガスは、バイパス経路12を経由して、燃焼器2に供給され、燃焼される。そして、水素生成器8からの水素含有ガスが、燃焼器2へ供給されなくなると、消火することになる。すなわち、燃焼器2で燃焼が継続している間は、改質器14からCO除去器15へ水素含有ガスが供給されており、酸化ガス供給器23によって供給される空気により、発熱反応であるCOの選択酸化反応や水素の酸化反応が進行する。 And until the extinction of the combustor 2 is detected in step 24, the state in which the operation amount of the oxidizing gas supply device 23 is increased is maintained. Here, the supply of the raw material and water is stopped in step 22, but the raw material and water vapor remain inside the reformer 14, and the reforming reaction proceeds with the remaining raw material and water vapor. Then, a hydrogen-containing gas containing carbon monoxide is generated. The hydrogen-containing gas in the hydrogen generator 8 is sent from the hydrogen generator 8 as the water remaining in the reformer 14 evaporates. The hydrogen-containing gas delivered from the hydrogen generator 8 is supplied to the combustor 2 via the bypass path 12 and burned. When the hydrogen-containing gas from the hydrogen generator 8 is no longer supplied to the combustor 2, the fire is extinguished. That is, while combustion is continued in the combustor 2, the hydrogen-containing gas is supplied from the reformer 14 to the CO remover 15, and an exothermic reaction is caused by the air supplied by the oxidizing gas supplier 23. The selective oxidation reaction of CO and the oxidation reaction of hydrogen proceed.
 そこで、ステップ24で消火が検知されると、ステップ25において制御器13は酸化ガス供給器23の動作を停止する。 Therefore, when fire extinguishing is detected in step 24, the controller 13 stops the operation of the oxidizing gas supplier 23 in step 25.
 続いて、ステップ26において、改質検出温度TKが、設定温度T1まで低下すると、ステップ27へと制御が進み、原料供給器4が動作して原料パージが実行される。 Subsequently, when the reforming detection temperature TK is lowered to the set temperature T1 in step 26, the control proceeds to step 27, the raw material supplier 4 is operated, and the raw material purge is executed.
 そして、水素生成器8内に滞留しているガスを置換できる十分な量の原料ガスが供給された後、ステップ28で原料供給器4が停止される。 Then, after a sufficient amount of raw material gas capable of replacing the gas staying in the hydrogen generator 8 is supplied, the raw material supplier 4 is stopped in step 28.
 本実施の形態2では、上記のように、水供給器3及び原料供給器4を停止した後に、一酸化炭素も含んだ水素含有ガスが流通している間、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるよう酸化ガス供給器23の操作量を制御することによって、水素との酸化反応量が増加し、CO除去器15の温度を発電運転時の温度以上にあげることが出来る。そのため、改質検出温度TKが原料パージ可能な温度(T1)まで温度低下する間に、CO除去器15内で結露が発生することを抑制することが出来る。 In the second embodiment, as described above, after the water supply device 3 and the raw material supply device 4 are stopped, while the hydrogen-containing gas containing carbon monoxide is flowing, the temperature of the selective oxidation catalyst is changed to the power generation operation. By controlling the operation amount of the oxidizing gas supply device 23 so as to be higher than the control temperature at the time, the amount of oxidation reaction with hydrogen increases, and the temperature of the CO remover 15 can be raised to a temperature higher than that during power generation operation. I can do it. Therefore, it is possible to suppress the occurrence of dew condensation in the CO remover 15 while the reforming detection temperature TK is lowered to the temperature (T1) at which the raw material can be purged.
 尚、ガス流路の一例は、上記実施の形態では、水素ガス供給経路9のCO除去器15からバイパス経路12への分岐点Pまでの流路と、バイパス経路12と、アノードオフガス供給経路10のバイパス経路12からの合流点Qから燃焼器2までの流路に相当する。また、燃焼検知器の一例は、フレームロッド22に相当する。 An example of the gas flow path is the flow path from the CO remover 15 of the hydrogen gas supply path 9 to the branch point P to the bypass path 12, the bypass path 12, and the anode off-gas supply path 10 in the above embodiment. This corresponds to the flow path from the confluence point Q from the bypass path 12 to the combustor 2. An example of the combustion detector corresponds to the frame rod 22.
 又、本実施の形態2では、第2の制御の一例として、水供給器3及び原料供給器4を停止した後に、残留している原料及び水によって生成される水素含有ガスが流通している間、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるように、酸化ガス供給器23の操作量を停止指令直前よりも増加させて動作させる制御が行われていたが、このような制御に限らなくても良く、以下の変形例1に示すような制御であってもよく、要するに、燃料電池システムの発電停止後に、改質器より水素含有ガスが送出される期間において、選択酸化触媒の温度が、発電運転時の制御温度よりも高くなるよう酸化ガス供給器の操作量の制御が行われればよい。 In the second embodiment, as an example of the second control, the hydrogen-containing gas generated by the remaining raw material and water is circulated after the water supply device 3 and the raw material supply device 4 are stopped. During this time, control was performed such that the operation amount of the oxidizing gas supply device 23 was increased from immediately before the stop command so that the temperature of the selective oxidation catalyst became higher than the control temperature during the power generation operation. The control is not limited to such control, and may be control as shown in Modification 1 below. In short, after the power generation of the fuel cell system is stopped, it is selected during the period in which the hydrogen-containing gas is sent from the reformer. It is only necessary to control the amount of operation of the oxidizing gas supplier so that the temperature of the oxidation catalyst becomes higher than the control temperature during the power generation operation.
 第2の制御の他の例について、以下の変形例1において説明する。 Another example of the second control will be described in Modification 1 below.
 (変形例1)
 また、変形例1に係る燃料電池システムは、停止後、改質器より水素含有ガスが送出される期間は、停止後も反応ガス供給器からの反応ガスの供給を継続する期間を含む、ことを特徴とする。
(Modification 1)
In the fuel cell system according to Modification 1, the period in which the hydrogen-containing gas is sent from the reformer after the stop includes a period in which the supply of the reaction gas from the reaction gas supplier is continued even after the stop. It is characterized by.
 かかる構成により、実施の形態2の燃料電池システムに比べ、改質器からCO除去器への水素含有ガスの供給が継続される時間が長くなるので、CO除去器の温度をより上げることが出来る。従って、改質器が原料パージ可能な温度になるまでの間に、CO除去器の温度が低下して結露が発生することを、実施の形態2の燃料電池システムよりも抑制することが出来る。 With this configuration, the time during which the supply of the hydrogen-containing gas from the reformer to the CO remover is continued is longer than in the fuel cell system of Embodiment 2, so that the temperature of the CO remover can be further increased. . Accordingly, it is possible to suppress the occurrence of dew condensation due to the temperature of the CO remover being lowered before the reformer reaches a temperature at which the raw material can be purged, as compared with the fuel cell system of the second embodiment.
 上記実施の形態2では、水供給器3と原料供給器4を停止後に酸化ガス供給器23の操作量を増加させているが、本変形例では水供給と原料供給を継続しながら、酸化ガス供給器23の操作量を増加させるように制御が行われる。 In the second embodiment, the operation amount of the oxidizing gas supply unit 23 is increased after the water supply unit 3 and the raw material supply unit 4 are stopped. In this modification, the oxidizing gas is supplied while continuing the water supply and the raw material supply. Control is performed so as to increase the operation amount of the feeder 23.
 図4は、この場合の制御フローを示す図である。図4に示すように、変形例1のフローでは、図3で示したステップ22の代わりに、カソードガス供給器110を停止し、水供給器3及び原料供給器4の供給量の減少を開始するステップ201が設けられている。そして、ステップ201の次に、ステップ23において酸化ガス供給器23が制御され、酸化ガス(空気)供給量が停止指令直前よりも増加する。 FIG. 4 is a diagram showing a control flow in this case. As shown in FIG. 4, in the flow of the modified example 1, instead of step 22 shown in FIG. 3, the cathode gas supply device 110 is stopped and the supply amount of the water supply device 3 and the raw material supply device 4 starts to decrease. Step 201 is provided. Then, after step 201, the oxidizing gas supply device 23 is controlled in step 23, and the amount of oxidizing gas (air) supplied increases from immediately before the stop command.
 ステップ23から所定時間経過すると、ステップ202において、水供給器3及び原料供給器4の動作が停止する。そして、上述した実施の形態2と同様に、水素生成器8内に残留した水素含有ガスの排出が終了すると、ステップ24で燃焼器2の消火が検知される。 When a predetermined time has elapsed from step 23, in step 202, the operations of the water supply unit 3 and the raw material supply unit 4 are stopped. When the discharge of the hydrogen-containing gas remaining in the hydrogen generator 8 is completed, the fire extinguishing of the combustor 2 is detected in step 24 as in the second embodiment.
 このように、燃焼器2の消火が検知されると、ステップ25において、酸化ガス供給器23が停止される。 Thus, when the fire extinguishing of the combustor 2 is detected, in step 25, the oxidizing gas supply unit 23 is stopped.
 その後の制御は、上記と同様に、ステップ26において、改質検出温度TKがT1に達すると、ステップ27で原料パージが行われる。そして、十分に原料パージが行われると、ステップ28で原料供給器4が停止される。 In the subsequent control, when the reforming detection temperature TK reaches T1 in step 26, the raw material purge is performed in step 27 as described above. When the material purge is sufficiently performed, the material supply unit 4 is stopped in step 28.
 尚、この変形例1では、第2の制御の一例として、水供給器3と原料供給器4の操作量を除々に減少させて、ステップ202で停止させるよう制御が行われたが、ステップS202までは操作量を減少させずに、ステップ202で水供給器3と原料供給器4の動作を停止させるよう制御が行われても良い。この場合の制御フローが図5に示されている。図5に示す制御フローでは、図4に示すステップ201に代わり、ステップ220が設けられている。このステップ220では、カソードガス供給器110の動作の停止のみが行われる。そして、ステップ23において、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるように、酸化ガス供給器23の操作量を、例えば停止指令直前(発電運転時)よりも増加させ、所定時間経過した後に、ステップ202で水供給器3及び原料供給器4の停止が行われる。ステップ23からステップ202までの所定時間は、例えば、実施の形態1のH0等と設定することが出来る。 In the first modification, as an example of the second control, the operation amount of the water supply device 3 and the raw material supply device 4 is gradually decreased and stopped in step 202, but the control is performed in step S202. Until the operation amount is not reduced, control may be performed so as to stop the operations of the water supply unit 3 and the raw material supply unit 4 in step 202. The control flow in this case is shown in FIG. In the control flow shown in FIG. 5, step 220 is provided instead of step 201 shown in FIG. In this step 220, only the operation of the cathode gas supplier 110 is stopped. In step 23, the operation amount of the oxidizing gas supply device 23 is increased, for example, immediately before the stop command (during power generation operation) so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during power generation operation. After the elapse of time, the water supply unit 3 and the raw material supply unit 4 are stopped in step 202. The predetermined time from step 23 to step 202 can be set, for example, as H0 in the first embodiment.
 (変形例2)
 実施の形態1では、第1の制御の一例として、停止指令の前に、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるように酸化ガス供給器23の操作量を制御することにより、CO除去器15の温度を上げている。一方、実施の形態2では、第2の制御の一例として、停止指令の後、一酸化炭素を含んだ水素含有ガスが流通している間、選択酸化触媒の温度が、その制御温度よりも高くなるように酸化ガス供給器23の操作量を制御することにより、CO除去器15の温度を上げている。これら第1の制御と第2の制御を組み合わせて、停止指令の前後において、選択酸化触媒の温度が、発電運転時における制御温度よりも高くなるように酸化ガス供給器23の操作量を増加させるように制御が行われても良い。
(Modification 2)
In the first embodiment, as an example of the first control, the operation amount of the oxidizing gas supplier 23 is controlled before the stop command so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Thus, the temperature of the CO remover 15 is increased. On the other hand, in the second embodiment, as an example of the second control, the temperature of the selective oxidation catalyst is higher than the control temperature while the hydrogen-containing gas containing carbon monoxide is flowing after the stop command. Thus, the temperature of the CO remover 15 is raised by controlling the operation amount of the oxidizing gas supply device 23. By combining the first control and the second control, the operation amount of the oxidizing gas supplier 23 is increased before and after the stop command so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Control may be performed as described above.
 図6は、変形例2の制御フロー図である。図6に示すステップ211からステップ216は、実施の形態1のステップ1からステップ6と同様である。そして、ステップ216の後、本変形例2では、ステップ217において、実施の形態1と異なり、酸化ガス供給器23の動作が停止されず、酸化ガス供給器23の操作量が増加した状態が保持され、水供給器3、原料供給器4及びカソードガス供給器110の動作が停止される。 FIG. 6 is a control flow diagram of Modification 2. Steps 211 to 216 shown in FIG. 6 are the same as steps 1 to 6 in the first embodiment. Then, after Step 216, in Modification 2, unlike Step 1, in Step 217, the operation of the oxidizing gas supplier 23 is not stopped and the state in which the operation amount of the oxidizing gas supplier 23 is increased is maintained. Then, the operations of the water supply unit 3, the raw material supply unit 4 and the cathode gas supply unit 110 are stopped.
 次に、水素生成器8内に残留している水素含有ガスの排出が終了して、ステップ218において、燃焼器2の消火が検知されると、ステップ219において酸化ガス供給器23の動作が停止される。 Next, when the discharge of the hydrogen-containing gas remaining in the hydrogen generator 8 is completed, and the fire extinguishing of the combustor 2 is detected in step 218, the operation of the oxidizing gas supply device 23 is stopped in step 219. Is done.
 続いて、ステップ220において、改質検出温度TKがT1まで低下すると、ステップ221において、原料パージが実行される。そして、十分に原料パージが行われると、ステップ222で、原料供給器4の動作が停止される。 Subsequently, when the reforming detection temperature TK is reduced to T1 in step 220, the raw material purge is executed in step 221. When the material purge is sufficiently performed, the operation of the material supplier 4 is stopped in step 222.
 尚、本変形例2では、ステップ217において、水供給器3及び原料供給器4を停止させているが、変形例1で述べたように、水供給器3及び原料供給器4の操作量を除々に減少させて停止させるように制御が行われても良い。この制御について図6を用いて説明すると、ステップ217において、カソードガス供給器110の停止とともに、水供給器3及び原料供給器4の操作量が減少されるように制御が行われる。その後、水供給器3及び原料供給器4が完全に停止し、ステップ218において燃焼器2の消火が検知されると酸化ガス供給器23が停止される。 In the second modification, the water supply device 3 and the raw material supply device 4 are stopped in step 217. However, as described in the first modification, the operation amounts of the water supply device 3 and the raw material supply device 4 are changed. Control may be performed so as to gradually decrease and stop. This control will be described with reference to FIG. 6. In step 217, the control is performed so that the operation amount of the water supply unit 3 and the raw material supply unit 4 is reduced as the cathode gas supply unit 110 is stopped. Thereafter, the water supply device 3 and the raw material supply device 4 are completely stopped, and when the fire extinguishing of the combustor 2 is detected in step 218, the oxidizing gas supply device 23 is stopped.
 又、本実施の形態2及び変形例1では、停止後、改質器より水素含有ガスが送出される期間として、反応ガス供給器を停止した後に、改質器内に残留した反応ガスから生成された水素含有ガスがCO除去器に送出される期間を含む場合、燃焼検知器で燃焼器の燃焼が検知されている期間を含む場合、反応ガス供給器からの反応ガスの供給を継続する期間を含む場合について説明したが、これらは例示である。すなわち、停止後、改質器より水素含有ガスが送出される期間であればいずれの期間であってもよい。 In Embodiment 2 and Modification 1, after the stop, the hydrogen-containing gas is delivered from the reaction gas remaining in the reformer after the reaction gas supply device is stopped as a period for sending the hydrogen-containing gas from the reformer. A period in which the reaction gas supply from the reaction gas supply device is continued when a combustion detector includes a period in which combustion of the combustor is detected, including a period during which the hydrogen-containing gas is delivered to the CO remover However, these are merely examples. That is, any period may be used as long as the hydrogen-containing gas is delivered from the reformer after the stop.
 又、本実施の形態2及び変形例1、2では、酸化ガス供給器23の操作量を増加させた後、燃焼器2の消火が検知されるまでの間(つまり、改質器14より水素含有ガスが送出されなくなるまで)、増加された操作量を維持している。しかしながら、改質器14より水素含有ガスが送出されなくなる前に、酸化ガス供給器23の操作量の増加制御を停止してもよい。ようするに、改質器14より水素含有ガスが送出される期間の少なくとも一部の期間において酸化ガス供給器23の操作量を増加させる制御が行われても良い。 In Embodiment 2 and Modifications 1 and 2, the amount of operation of the oxidant gas supply device 23 is increased and until the fire extinguishing of the combustor 2 is detected (that is, the reformer 14 supplies hydrogen. The increased amount of operation is maintained until the contained gas is no longer delivered. However, the increase control of the operation amount of the oxidizing gas supply unit 23 may be stopped before the hydrogen-containing gas is not sent from the reformer 14. In this way, control for increasing the operation amount of the oxidizing gas supply device 23 may be performed in at least a part of the period in which the hydrogen-containing gas is sent from the reformer 14.
 又、本実施の形態2及び変形例1、2では、燃焼器2の消火が検知されると(つまり、改質器14より水素含有ガスが送出されなくなると)酸化ガス供給器23を停止させているが、停止させなくても良い。但し、水素含有ガスのCO除去器15への流入が停止した後も酸化ガス供給器23から空気を供給させると、酸化反応の量が低減し、さらに供給空気による冷却効果によって、発熱反応による昇温効果が低減する場合があるため、燃焼器2の消火が検知された場合、酸化ガス供給器23を停止した方が好ましい。 In Embodiment 2 and Modifications 1 and 2, when the fire extinguishing of the combustor 2 is detected (that is, when the hydrogen-containing gas is no longer sent from the reformer 14), the oxidizing gas supply device 23 is stopped. However, it does not have to be stopped. However, if air is supplied from the oxidizing gas supply unit 23 even after the flow of the hydrogen-containing gas into the CO remover 15 is stopped, the amount of the oxidation reaction is reduced, and the cooling effect by the supply air further increases the temperature by the exothermic reaction. Since the temperature effect may be reduced, it is preferable to stop the oxidant gas supply device 23 when extinguishing the combustor 2 is detected.
 (実施の形態3)
 以下、実施の形態3における燃料電池システムについて説明する。
(Embodiment 3)
Hereinafter, the fuel cell system according to Embodiment 3 will be described.
 本実施の形態3の燃料電池システムは、実施の形態1の燃料電池システムと基本的な構成は同じであるが、実施の形態1と異なり、CO除去器15にヒーターが設けられている。そのため、本相違点を中心に説明する。尚、実施の形態1と同様の構成については同一の符号を付している。 The basic configuration of the fuel cell system of the third embodiment is the same as that of the fuel cell system of the first embodiment, but unlike the first embodiment, the CO remover 15 is provided with a heater. Therefore, this difference will be mainly described. In addition, the same code | symbol is attached | subjected about the structure similar to Embodiment 1. FIG.
 図7は、本実施の形態3の燃料電池システムの構成図である。図7に示すように、本実施の形態3の燃料電池システムには、CO除去器15を加熱するためのヒーター31が設けられている。また、実施の形態1での制御に加えて、選択酸化温度検出器25による検出温度に基づいてヒーター31のオン・オフの制御も行う制御器30が設けられている。 FIG. 7 is a configuration diagram of the fuel cell system according to the third embodiment. As shown in FIG. 7, the fuel cell system of Embodiment 3 is provided with a heater 31 for heating the CO remover 15. In addition to the control in the first embodiment, a controller 30 is also provided that also controls the heater 31 on and off based on the temperature detected by the selective oxidation temperature detector 25.
 図8は、本実施の形態3の燃料電池システムの停止方法の制御フローを示す図である。図8に示すように、本実施の形態3では、ステップ8において、改質検出温度TKがT1に達していない場合、制御はステップ31へと進む。尚、実施の形態1と同様の制御については、同一の符号を付している。 FIG. 8 is a diagram showing a control flow of the fuel cell system stopping method of the third embodiment. As shown in FIG. 8, in the third embodiment, if the reforming detection temperature TK does not reach T1 in step 8, the control proceeds to step 31. In addition, the same code | symbol is attached | subjected about the control similar to Embodiment 1. FIG.
 ステップ31で、選択酸化温度検出器25によって検出される選択酸化検出温度TSが、予め設定されている温度T2より高いか否かが判定される。そして、選択酸化検出温度TSが、設定温度T2以下である場合、制御器30は、ステップ32においてヒーター31がオン状態になるように制御を行う。ここで、温度T2は、ヒーター31の応答性を考慮して、結露発生温度よりも高く設定されている。 In step 31, it is determined whether or not the selective oxidation detection temperature TS detected by the selective oxidation temperature detector 25 is higher than a preset temperature T2. When the selective oxidation detection temperature TS is equal to or lower than the set temperature T2, the controller 30 performs control so that the heater 31 is turned on in step 32. Here, the temperature T2 is set higher than the dew condensation occurrence temperature in consideration of the responsiveness of the heater 31.
 一方、ステップ31で、選択酸化検出温度TSが設定温度T2よりも高い場合には、制御はステップ33へと進み、ヒーター31がオフ状態になるように制御が行われる。尚、ステップ32、33の後、制御はステップ8へと戻り、改質検出温度TKがT1に達するまでの間、ステップ31、32、33が繰り返される。そして、改質検出温度TKがT1まで温度が低下すると、ステップ9において原料パージが行われる。尚、ヒーター31がオン状態になっている場合、ステップ9における原料パージ時には、オフ状態にされる。 On the other hand, when the selective oxidation detection temperature TS is higher than the set temperature T2 in step 31, the control proceeds to step 33, and the control is performed so that the heater 31 is turned off. After steps 32 and 33, control returns to step 8, and steps 31, 32, and 33 are repeated until the reforming detection temperature TK reaches T1. Then, when the temperature of the reforming detection temperature TK decreases to T1, the raw material purge is performed in Step 9. When the heater 31 is on, the raw material is purged at step 9 and is turned off.
 このように、本実施の形態3では、改質検出温度TKが原料パージ可能な温度T1に達するまでに、ヒーター31を制御して、CO除去器15の温度が結露温度以下にならないように出来るため、実施の形態1及び実施の形態2、それぞれの変形例における燃料電池システムに比べ、CO除去器15における結露の発生をより抑制することが可能になる。 As described above, in the third embodiment, the heater 31 is controlled until the reforming detection temperature TK reaches the temperature T1 at which the raw material can be purged, so that the temperature of the CO remover 15 does not fall below the dew condensation temperature. Therefore, it is possible to further suppress the occurrence of condensation in the CO remover 15 as compared with the fuel cell systems in the first and second embodiments and the respective modifications.
 次に、本実施の形態3の燃料電池システムについて、実施例に基づいて詳細に説明する。 Next, the fuel cell system of Embodiment 3 will be described in detail based on examples.
 (実施例1)
 図8の燃料電池システムの停止方法の制御フローにおいて、T1を150℃、T2を120℃、H0を10分に設定したプログラムを組んで燃料電池システムの停止処理を行った。
Example 1
In the control flow of the stopping method of the fuel cell system of FIG. 8, the stopping process of the fuel cell system was performed by assembling a program in which T1 was set to 150 ° C., T2 was set to 120 ° C., and H0 was set to 10 minutes.
 図9は、改質検出温度TK、及び選択酸化検出温度TSの経時変化のグラフを示す図である。図9に示すように、停止指令(発電停止)前の10分間に、選択酸化触媒の温度が発電運転時における制御温度よりも高くなるように酸化ガス供給器23の操作量を直前の操作量よりも増量したため、発熱反応である選択酸化反応が促進され、CO除去器15の温度が200℃程度まで上昇した。そして、停止指令によって改質器14の運転及び燃料電池100の発電が停止されると、改質器14及びCO除去器15の温度が低下する。 FIG. 9 is a graph showing changes over time in the reforming detection temperature TK and the selective oxidation detection temperature TS. As shown in FIG. 9, during the 10 minutes before the stop command (power generation stop), the operation amount of the oxidizing gas supplier 23 is set to the operation amount immediately before so that the temperature of the selective oxidation catalyst becomes higher than the control temperature during the power generation operation. Therefore, the selective oxidation reaction, which is an exothermic reaction, was promoted, and the temperature of the CO remover 15 rose to about 200 ° C. When the operation of the reformer 14 and the power generation of the fuel cell 100 are stopped by the stop command, the temperatures of the reformer 14 and the CO remover 15 are lowered.
 そして、経過時間が4時間に達する前に、CO除去器15の温度が低下して120℃になり、ヒーター31のON―OFF制御が開始された。 And before the elapsed time reached 4 hours, the temperature of the CO remover 15 decreased to 120 ° C., and the ON / OFF control of the heater 31 was started.
 ヒーター31は原料パージ開始までに1時間55分の間、ON-OFF制御され、ヒーターで消費された電力量は587.5Whであった。酸化ガス供給器23の空気供給量が増量された10分間における酸化ガス(空気)の供給量の増量分は4NLであった。大気中の酸素濃度を21%とすると、消費された水素量は0.84NLであり、燃焼熱量としては21.3kJに相当する。1Whは3.2kJであるので、燃焼熱量は5.9Wh相当となる。 The heater 31 was ON-OFF controlled for 1 hour 55 minutes before starting the material purge, and the amount of power consumed by the heater was 587.5 Wh. The increase in the supply amount of the oxidizing gas (air) during 10 minutes when the air supply amount of the oxidizing gas supply unit 23 was increased was 4 NL. If the oxygen concentration in the atmosphere is 21%, the amount of consumed hydrogen is 0.84 NL, which corresponds to 21.3 kJ as the amount of combustion heat. Since 1 Wh is 3.2 kJ, the amount of combustion heat is equivalent to 5.9 Wh.
 (比較例1)
 比較例1では、本実施の形態1で述べた停止方法のフローを用いず、図8のステップ5以降のみを実行し、T1を150℃、T2を120℃としたプログラムを組んで停止処理が行われた。
(Comparative Example 1)
In the first comparative example, the flow of the stopping method described in the first embodiment is not used, only the step 5 and the subsequent steps in FIG. 8 are executed, and the stopping process is performed by setting a program in which T1 is 150 ° C. and T2 is 120 ° C. It was conducted.
 図10は、改質検出温度TK及び選択酸化検出温度TSの経時変化グラフを示す図である。ヒーター31は原料パージ開始までに2時間5分の間、ON-OFF制御され、ヒーター31で消費された電力量は612.5Whであった。 FIG. 10 is a graph showing a temporal change graph of the reforming detection temperature TK and the selective oxidation detection temperature TS. The heater 31 was ON-OFF controlled for 2 hours and 5 minutes before starting the raw material purge, and the amount of power consumed by the heater 31 was 612.5 Wh.
 実施例1で消費されたエネルギーは587.5+5.9=593.4Whであり、比較例1よりも低くなっている。比較例1で用いるヒーター31による加温は、CO除去器15の外部からの加熱であるため、CO除去器15の内部で触媒上での燃焼反応熱を直接利用する実施例1よりロスが大きいことがわかる。また、燃料電池システムは5000回程度の起動停止を行うため、(612.5-593.4)Wh×5000=114.5kWhのエネルギーを削減できることになる。 The energy consumed in Example 1 is 587.5 + 5.9 = 593.4 Wh, which is lower than that in Comparative Example 1. Since the heating by the heater 31 used in Comparative Example 1 is heating from the outside of the CO remover 15, the loss is larger than that in Example 1 in which the combustion reaction heat on the catalyst is directly used inside the CO remover 15. I understand that. In addition, since the fuel cell system is started and stopped about 5000 times, energy of (612.5−593.4) Wh × 5000 = 114.5 kWh can be reduced.
 以上のように、本実施の形態1における燃料電池システムの停止方法の有用性が分かった。 As described above, the usefulness of the method for stopping the fuel cell system according to Embodiment 1 has been found.
 尚、本実施の形態3では、実施の形態1で説明した第1の制御にヒーター31の制御を加えたが、第1の制御の代わりに、実施の形態2、変形例1で説明したような第2の制御にヒーター31の制御を加えても良い。また、実施の形態2の変形例2で説明したような第1の制御と第2の制御の双方を行う制御にヒーター31の制御を加えても良い。 In the third embodiment, the control of the heater 31 is added to the first control described in the first embodiment, but instead of the first control, as described in the second embodiment and the first modification. The control of the heater 31 may be added to the second control. In addition, the control of the heater 31 may be added to the control that performs both the first control and the second control as described in the second modification of the second embodiment.
 又、上記実施の形態1~3における水素生成器8には、改質器14とCO除去器15が設けられていたが、改質器14とCO除去器15の間に、シフト反応が行われる変成器が設けられていてもよい。この変成器において、約150~300℃でシフト反応が行われる。尚、変成器にも、上記実施の形態3のCO除去器15のようにヒーターが設けられていても良い。このヒーターとしては、CO除去器15のヒーターと一体のものでもよく、別々に設けられていても良い。 The hydrogen generator 8 in the first to third embodiments is provided with the reformer 14 and the CO remover 15. However, a shift reaction takes place between the reformer 14 and the CO remover 15. A transformer may be provided. In this transformer, the shift reaction takes place at about 150-300 ° C. The transformer may also be provided with a heater like the CO remover 15 of the third embodiment. This heater may be integrated with the heater of the CO remover 15 or may be provided separately.
 又、開閉弁の一例は、上記実施の形態の開閉弁11a及び開閉弁11bに相当するが、開閉弁を2つ設ける代わりに、水素ガス供給経路9のバイパス経路12への分岐点Pに三方弁を備えた構成としてもよい。要するに、水素生成器8から排出されたガスの供給先を、燃料電池100側若しくはバイパス経路12側のいずれかに切り替えることが可能でありさえすればよい。 An example of the on-off valve corresponds to the on-off valve 11a and the on-off valve 11b of the above embodiment, but instead of providing two on-off valves, three points are provided at the branch point P of the hydrogen gas supply path 9 to the bypass path 12. It is good also as a structure provided with the valve. In short, it is only necessary to switch the supply destination of the gas discharged from the hydrogen generator 8 to either the fuel cell 100 side or the bypass path 12 side.
 尚、上記実施の形態1~3及びその変形例における燃料電池システムでは、選択酸化温度検出器25を設けて、その検出温度をチェックしながら、酸化触媒の制御温度が発電運転時の制御温度よりも高くなるよう酸化ガス供給器23の操作量を増加させる形態を採用している。 In the fuel cell systems according to Embodiments 1 to 3 and the modifications thereof, the selective oxidation temperature detector 25 is provided, and the control temperature of the oxidation catalyst is higher than the control temperature during the power generation operation while checking the detected temperature. The operation amount of the oxidizing gas supply device 23 is increased so as to be higher.
 しかしながら、本形態に限定されるものではなく、選択酸化温度検出器25を設けずに、CO除去器への水素含有ガス供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器23の操作量を制御する形態であっても構わない。 However, the present invention is not limited to this embodiment, and the oxidizing gas supply amount with respect to the hydrogen-containing gas supply amount to the CO remover is oxidized so as to be larger than that in the power generation operation without providing the selective oxidation temperature detector 25. The operation amount of the gas supply device 23 may be controlled.
 例えば、CO除去器15への水素含有ガス供給量に比例相関する物理量に対する酸化ガスの供給量が増加するよう酸化ガス供給器23の操作量が制御される。上記物理量としては、例えば、改質器14への原料供給量、改質器14への水蒸気供給量、燃料電池システムの発電量等が挙げられる。 For example, the operation amount of the oxidizing gas supply unit 23 is controlled so that the supply amount of the oxidizing gas with respect to the physical quantity proportional to the supply amount of the hydrogen-containing gas to the CO remover 15 increases. Examples of the physical quantity include a raw material supply amount to the reformer 14, a water vapor supply amount to the reformer 14, and a power generation amount of the fuel cell system.
 つまり、CO除去器15への水素含有ガス供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう酸化ガス供給器23の操作量を制御するよう構成されていれば、いずれの形態であっても構わない。 That is, any configuration is possible as long as the operation amount of the oxidant gas supply unit 23 is controlled so that the supply amount of the oxidant gas relative to the hydrogen-containing gas supply amount to the CO remover 15 is larger than that during power generation operation. It does not matter.
 又、上記実施の形態1~3及びその変形例における燃料電池システムでは、酸化ガス供給器23の操作量の増加制御中において、連続的に酸化ガス供給器23が動作する形態を採用しているが、間欠的に動作する形態を採用しても構わない。 Further, the fuel cell system according to Embodiments 1 to 3 and the modification thereof employs a mode in which the oxidizing gas supply device 23 operates continuously during the increase control of the operation amount of the oxidizing gas supply device 23. However, a mode that operates intermittently may be adopted.
 また、実施の形態1の図2、実施の形態2の図3、変形例2の図6、及び実施の形態3の図8の制御フローでは、開閉弁11aを開とし、開閉弁11bを閉とするステップの後に、水供給器3及び原料供給器4を停止させるステップが設けられているが、順番が逆であってもよく、これらのステップが同時に行われても良い。これらのステップは、実施の形態1の図2で説明すると、ステップ6とステップ7に相当する。 In the control flow of FIG. 2 of the first embodiment, FIG. 3 of the second embodiment, FIG. 6 of the second modification, and FIG. 8 of the third embodiment, the on-off valve 11a is opened and the on-off valve 11b is closed. After the step, the step of stopping the water supply device 3 and the raw material supply device 4 is provided, but the order may be reversed, and these steps may be performed simultaneously. These steps correspond to Step 6 and Step 7 when described with reference to FIG. 2 of the first embodiment.
 また、上記実施の形態1~3では、停止制御時に、燃焼器2で燃焼が行われているが、燃焼が行われていなくても良い。但し、燃料電池システムから原料ガスを排出するときには、希釈をすることが望ましいため、燃焼器2の空気供給器20は動作させた方が好ましい。 In Embodiments 1 to 3 described above, combustion is performed in the combustor 2 at the time of stop control, but the combustion may not be performed. However, since it is desirable to dilute the raw material gas from the fuel cell system, it is preferable to operate the air supply unit 20 of the combustor 2.
 また、上記実施の形態1~3及び実施例1では、必ず酸化ガス供給器23による酸化ガス供給量が増量されていたが、CO除去器15の温度が所定温度(T3)以上である場合には、改質器14の温度が原料供給開始温度T1になるまでの間に、CO除去器15での結露が発生する可能性が低いとして、酸化ガス供給量を増量しないような制御フローを構成してもよい。更に、酸化ガス供給量を増量後、CO除去器15の温度が所定温度(T3)以上となった場合にも、酸化ガス供給量を増量前の状態に戻すような制御フローを構成してもよい。 In Embodiments 1 to 3 and Example 1, the amount of oxidizing gas supplied by the oxidizing gas supplier 23 is always increased. However, when the temperature of the CO remover 15 is equal to or higher than a predetermined temperature (T3). Constitutes a control flow that does not increase the supply amount of the oxidizing gas, assuming that the possibility of dew condensation in the CO remover 15 is low before the temperature of the reformer 14 reaches the raw material supply start temperature T1. May be. Further, even if the temperature of the CO remover 15 becomes equal to or higher than the predetermined temperature (T3) after increasing the oxidizing gas supply amount, a control flow may be configured to return the oxidizing gas supply amount to the state before the increase. Good.
 このT3を用いた制御を実施の形態1に適用した場合の具体例について図2の制御フローを用いて説明する。図11は、このような制御を示すフロー図である。図11の制御フローに示すように、図2の制御フローのステップ2とステップ3の間にTS<T3を判定するステップ34が挿入され、TSがT3未満の場合には、制御はステップ3へと進み、酸化ガス供給器23の操作量を増加するよう制御される。より具体的には、CO除去器15への水素含有ガスの供給量に対する酸化ガスの供給量が、酸化ガス供給器23の操作量の増加制御が開始される前(ステップ2でYesになる前)より増量するよう酸化ガス供給器の操作量が制御される。一方、ステップ34においてTSがT3以上となった場合には、ステップ35において酸化ガス供給器23の操作量の増加制御が開始される前(ステップ2でYesになる前)の操作量になるように酸化ガス供給器23が制御され、ステップ34に戻り、TSがT3に未満になる迄、この状態が継続される。尚、ステップ3において酸化ガス供給器23の操作量が増加された後、ステップ34でTSがT3未満と判断されている間は、ステップ3において、操作量を増加した状態が維持されることになる。このT3としては、例えば、200℃と設定し得る。 A specific example when the control using T3 is applied to the first embodiment will be described with reference to the control flow of FIG. FIG. 11 is a flowchart showing such control. As shown in the control flow of FIG. 11, step 34 for determining TS <T3 is inserted between step 2 and step 3 of the control flow of FIG. 2, and if TS is less than T3, control goes to step 3 Then, control is performed so as to increase the operation amount of the oxidizing gas supply unit 23. More specifically, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover 15 is started before the increase control of the operation amount of the oxidizing gas supply device 23 is started (before Yes in Step 2). ) The operating amount of the oxidizing gas supply device is controlled so as to increase the amount. On the other hand, when TS becomes equal to or greater than T3 in step 34, the operation amount becomes the operation amount before the increase control of the operation amount of the oxidizing gas supply device 23 is started in step 35 (before becoming Yes in step 2). Then, the oxidizing gas supplier 23 is controlled, and the process returns to step 34, and this state is continued until TS becomes less than T3. In addition, after the operation amount of the oxidizing gas supply device 23 is increased in Step 3, while the TS is determined to be less than T3 in Step 34, the state in which the operation amount is increased is maintained in Step 3. Become. This T3 can be set to 200 ° C., for example.
 このように、実施の形態1の図2、実施の形態3及び実施例1の図8の制御フローでは、操作量が増量されていた期間であるH0について、上記T3を用いた制御を適用し得るが、実施の形態2及びその変形例における図3~図5の制御フローでは、制御器13が、停止指令を出力後、燃焼器2が消化検知されるまでの期間について、上記T3を用いた制御を適用してもよい。また、実施の形態2の変形例2における図6の制御フローでは、燃料電池システムの発電停止に先行して、酸化ガス供給器の操作量の増加制御を開始してから(ステップ2でYesになってから)、燃焼器2が消化検知されるまでの期間について、上記T3を用いた制御を適用してもよい。 As described above, in the control flow of FIG. 2 of the first embodiment, the third embodiment, and FIG. 8 of the first embodiment, the control using the T3 is applied to H0 that is the period during which the operation amount is increased. However, in the control flow of FIGS. 3 to 5 in the second embodiment and its modification, T3 is used for the period from when the controller 13 outputs a stop command until the combustor 2 is detected for digestion. You may apply the control you had. Further, in the control flow of FIG. 6 in the second modification of the second embodiment, the control of increasing the operation amount of the oxidizing gas supplier is started prior to the stop of power generation of the fuel cell system (Yes in step 2). The control using T3 may be applied to the period until the combustor 2 is detected for digestion.
 また、上記実施の形態1~3及び実施例1では、酸化ガス(空気)の供給量を増加させているが、酸化ガス(空気)の供給量に上限を設けてもよい。熱暴走開始温度よりも低い温度に選択酸化上限温度を別途設け、選択酸化検出温度が上限温度以上になった場合は、酸化ガス(空気)の供給量を減少させたりすることにより、熱暴走を防ぐことができる。 In Embodiments 1 to 3 and Example 1, the supply amount of the oxidizing gas (air) is increased. However, an upper limit may be set for the supply amount of the oxidizing gas (air). If a selective oxidation upper limit temperature is separately provided at a temperature lower than the thermal runaway start temperature, and the selective oxidation detection temperature exceeds the upper limit temperature, thermal runaway may be caused by reducing the supply amount of oxidizing gas (air). Can be prevented.
 尚、上記実施の形態で用いられる触媒に限らなくてもよく、例えば、改質触媒にRu系の触媒を用いても良い。但し、触媒種によって冷却条件が異なり、例えば、改質触媒のRu触媒は、炭素析出が発生しにくい等の使い勝手の良さから、特に、家庭用燃料電池の水素生成装置には広く採用されているが、コストが高くなる。一方、上記実施の形態で用いられているNi触媒は低コストで入手可能であるが、Ru触媒に比べ炭素析出しやすいので、原料を用いた装置内のパージ(置換)が可能な温度はRu触媒より低くなる。パージ可能な温度の上限温度は、触媒種によって異なっており、Ru触媒では400~500℃程度、Ni触媒では300~400℃程度である。 Note that the catalyst is not limited to the catalyst used in the above embodiment. For example, a Ru-based catalyst may be used as the reforming catalyst. However, the cooling conditions differ depending on the type of catalyst. For example, the reforming catalyst Ru catalyst is widely used especially for hydrogen generators for household fuel cells because of its ease of use, such as the difficulty of carbon deposition. However, the cost is high. On the other hand, the Ni catalyst used in the above embodiment can be obtained at a low cost. However, since it is easier to deposit carbon compared to the Ru catalyst, the temperature at which purging (substitution) in the apparatus using the raw material is possible is Ru. Lower than the catalyst. The upper limit of the purging temperature varies depending on the catalyst type, and is about 400 to 500 ° C. for the Ru catalyst and about 300 to 400 ° C. for the Ni catalyst.
 又、水素生成装置の各反応器で用いられる触媒は、装置の構成によって使用温度及び使用量が異なり、結露が開始する温度も異なるので、停止時の冷却状況が相違する。このように、触媒種によっても改質器、及び変成器の冷却条件が異なり、装置の構成によっても温度低下の状況が異なるので、装置毎に適切なT1~T3の基準値を用いることによって、停止時の結露防止に費やされるエネルギーを抑制することが可能となる。 In addition, the catalyst used in each reactor of the hydrogen generator has different operating temperatures and amounts depending on the configuration of the apparatus, and the temperature at which condensation starts is also different. As described above, the cooling conditions of the reformer and the transformer are different depending on the catalyst type, and the temperature drop state is also different depending on the configuration of the apparatus. Therefore, by using an appropriate reference value of T1 to T3 for each apparatus, It is possible to suppress energy spent for preventing condensation at the time of stopping.
 本発明の燃料電池システム及び燃料電池システムの停止方法は、パージ動作が実行されるまでの期間において、従来よりも省エネルギー性を向上しながら、CO除去器での結露を抑制することが可能になり、家庭用または業務用の燃料電池システム等として有用である。 The fuel cell system and the fuel cell system stopping method according to the present invention can suppress dew condensation in the CO remover while improving energy saving than before in the period until the purge operation is performed. It is useful as a fuel cell system for home use or business use.
 1 燃料改質装置
 2 燃焼器
 3 水供給器
 4 原料供給器
 5 吸着脱硫器
 6 ガスインフラライン
 8 水素生成器
 9 水素ガス供給経路
 10 アノードオフガス供給経路
 11a、11b 開閉弁
 12 バイパス経路
 13 制御器
 14 改質器
 15 CO除去器
 20 空気供給器
 21 イグナイター
 22 フレームロッド
 23 酸化ガス供給器
 24 改質温度検出器
 25 選択酸化温度検出器
 31 ヒーター
 100 燃料電池
 110 カソードガス供給器
DESCRIPTION OF SYMBOLS 1 Fuel reformer 2 Combustor 3 Water supply device 4 Raw material supply device 5 Adsorption desulfurization device 6 Gas infrastructure line 8 Hydrogen generator 9 Hydrogen gas supply route 10 Anode off- gas supply route 11a, 11b On-off valve 12 Bypass route 13 Controller 14 Reformer 15 CO remover 20 air supplier 21 igniter 22 flame rod 23 oxidizing gas supplier 24 reforming temperature detector 25 selective oxidation temperature detector 31 heater 100 fuel cell 110 cathode gas supplier

Claims (6)

  1.  原料を用いて水素含有ガスを生成させる改質触媒を有する改質器、前記水素含有ガス中に含まれる一酸化炭素を酸化反応により低減させるための酸化触媒を有するCO除去器、及び前記CO除去器に酸化ガスを供給する第1の酸化ガス供給器を備える水素生成装置と、
     前記水素生成装置から供給される水素含有ガスを用いて発電を行う燃料電池と、
     制御器とを備える燃料電池システムであって、
     前記制御器は、
     前記燃料電池システムの発電運転を停止させる際に、
    (i)前記停止に先行して、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第1の制御、及び
    (ii)前記停止後、前記改質器より前記水素含有ガスが送出される期間において、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第2の制御、の少なくともいずれか一方を実行し、
     前記第1の制御及び第2の制御の少なくともいずれか一方を実行後に、前記水素生成装置内のパージ動作を実行することを特徴とする、燃料電池システム。
    A reformer having a reforming catalyst that generates a hydrogen-containing gas using a raw material, a CO remover having an oxidation catalyst for reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction, and the CO removal A hydrogen generator comprising a first oxidizing gas supplier for supplying oxidizing gas to the vessel;
    A fuel cell that generates power using the hydrogen-containing gas supplied from the hydrogen generator;
    A fuel cell system comprising a controller,
    The controller is
    When stopping the power generation operation of the fuel cell system,
    (i) Prior to the stop, the operating amount of the oxidizing gas supplier is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during the power generation operation. 1 control, and
    (ii) In the period in which the hydrogen-containing gas is sent from the reformer after the stop, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during power generation operation. Performing at least one of the second control for controlling the operation amount of the oxidizing gas supply device,
    A purge operation in the hydrogen generator is performed after performing at least one of the first control and the second control.
  2.  前記改質器に前記改質反応に用いられる反応ガスを供給する反応ガス供給器を備え、
     前記停止後、前記改質器より前記水素含有ガスが送出される期間は、前記停止後も前記反応ガス供給器からの前記反応ガスの供給を継続する期間を含む、請求項1記載の燃料電池システム。
    A reaction gas supply device for supplying a reaction gas used for the reforming reaction to the reformer;
    2. The fuel cell according to claim 1, wherein the period in which the hydrogen-containing gas is sent from the reformer after the stop includes a period in which the supply of the reaction gas from the reaction gas supplier is continued even after the stop. system.
  3.  前記改質器に前記改質反応に用いられる反応ガスを供給する反応ガス供給器を備え、
     前記停止後、前記改質器より前記水素含有ガスが送出される期間は、前記反応ガス供給器を停止した後に、前記改質器内に残留した前記反応ガスから生成された前記水素含有ガスが前記CO除去器に送出される期間を含む、請求項1又は2記載の燃料電池システム。
    A reaction gas supply device for supplying a reaction gas used for the reforming reaction to the reformer;
    After the stop, the hydrogen-containing gas generated from the reaction gas remaining in the reformer after the reaction gas supply device is stopped after the reaction gas supply device is stopped is the period during which the hydrogen-containing gas is sent from the reformer. The fuel cell system according to claim 1, wherein the fuel cell system includes a period sent to the CO remover.
  4.  前記反応ガス供給器は、前記原料を供給する原料供給器、水蒸気を供給する水蒸気供給器、及び酸化ガスを供給する第2の酸化ガス供給器の少なくともいずれか一つである、請求項2または3記載の燃料電池システム。 The reaction gas supply device is at least one of a raw material supply device that supplies the raw material, a water vapor supply device that supplies water vapor, and a second oxidizing gas supply device that supplies oxidizing gas. 3. The fuel cell system according to 3.
  5.  前記改質器を加熱するための燃焼器と、
     前記燃焼器における燃焼を検知する燃焼検知器と、
     前記CO除去器より送出されたガスが前記燃焼器に流入するためのガス流路と、
     前記ガス流路を連通/遮断させる開閉弁と、を備え、
     前記停止後、前記改質器より前記水素含有ガスが送出される期間は、前記停止後に前記開閉弁が開放している状態で、前記燃焼検知器で前記燃焼器の燃焼が検知されている期間を含む、請求項1記載の燃料電池システム。
    A combustor for heating the reformer;
    A combustion detector for detecting combustion in the combustor;
    A gas flow path for the gas sent from the CO remover to flow into the combustor;
    An on-off valve for communicating / blocking the gas flow path,
    The period during which the hydrogen-containing gas is delivered from the reformer after the stop is a period during which combustion of the combustor is detected by the combustion detector in a state where the on-off valve is open after the stop. The fuel cell system according to claim 1, comprising:
  6.  原料を用いて水素含有ガスを生成させる改質触媒を有する改質器、前記水素含有ガス中に含まれる一酸化炭素を酸化反応により低減させるための酸化触媒を有するCO除去器、及び前記CO除去器に酸化ガスを供給する第1の酸化ガス供給器を備える水素生成装置と、
     前記水素生成装置から供給される水素含有ガスを用いて発電を行う燃料電池とを備える燃料電池システムの運転方法であって、
     前記燃料電池システムの発電運転を停止させる際に、
    (i)前記停止に先行して、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第1の制御、及び
    (ii)前記停止後、前記改質器より前記水素含有ガスが送出される期間において、前記CO除去器への水素含有ガスの供給量に対する酸化ガスの供給量が、発電運転時よりも多くなるよう前記酸化ガス供給器の操作量を制御する第2の制御、の少なくともいずれか一方を実行し、
     前記第1の制御及び第2の制御の少なくともいずれか一方を実行後に、前記水素生成装置内のパージ動作を実行することを特徴とする、燃料電池システムの運転方法。
    A reformer having a reforming catalyst that generates a hydrogen-containing gas using a raw material, a CO remover having an oxidation catalyst for reducing carbon monoxide contained in the hydrogen-containing gas by an oxidation reaction, and the CO removal A hydrogen generator comprising a first oxidizing gas supplier for supplying oxidizing gas to the vessel;
    A fuel cell system operating method comprising a fuel cell that generates electricity using a hydrogen-containing gas supplied from the hydrogen generator,
    When stopping the power generation operation of the fuel cell system,
    (i) Prior to the stop, the operating amount of the oxidizing gas supplier is controlled so that the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during the power generation operation. 1 control, and
    (ii) In the period in which the hydrogen-containing gas is sent from the reformer after the stop, the supply amount of the oxidizing gas with respect to the supply amount of the hydrogen-containing gas to the CO remover is larger than that during power generation operation. Performing at least one of the second control for controlling the operation amount of the oxidizing gas supply device,
    A method for operating a fuel cell system, comprising: performing a purge operation in the hydrogen generator after performing at least one of the first control and the second control.
PCT/JP2010/005765 2009-09-25 2010-09-24 Fuel cell system and operation method for fuel cell system WO2011036886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-220618 2009-09-25
JP2009220618 2009-09-25

Publications (1)

Publication Number Publication Date
WO2011036886A1 true WO2011036886A1 (en) 2011-03-31

Family

ID=43795653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005765 WO2011036886A1 (en) 2009-09-25 2010-09-24 Fuel cell system and operation method for fuel cell system

Country Status (1)

Country Link
WO (1) WO2011036886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297847B2 (en) 2014-12-01 2019-05-21 Htceramix S.A. SOFC system and method of operating a SOFC system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083348A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method for stopping hydrogen generator
JP2004139820A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Carbon monoxide removal device of fuel cell
JP2004152540A (en) * 2002-10-29 2004-05-27 Aisin Seiki Co Ltd Method of stopping fuel cell system operation, and fuel cell system provided with same
JP2005100733A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Hydrogen producing unit
JP2005302631A (en) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd Fuel cell generating system
JP2006076839A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Hydrogen purification system and fuel cell system using the same
JP2007254251A (en) * 2006-03-27 2007-10-04 Aisin Seiki Co Ltd Operation stopping method of reforming device
JP2008135284A (en) * 2006-11-28 2008-06-12 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system and its starting method
JP2008204655A (en) * 2007-02-16 2008-09-04 Nippon Oil Corp Reformer system, fuel cell system, and its operation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083348A (en) * 2002-08-27 2004-03-18 Matsushita Electric Works Ltd Method for stopping hydrogen generator
JP2004139820A (en) * 2002-10-17 2004-05-13 Nissan Motor Co Ltd Carbon monoxide removal device of fuel cell
JP2004152540A (en) * 2002-10-29 2004-05-27 Aisin Seiki Co Ltd Method of stopping fuel cell system operation, and fuel cell system provided with same
JP2005100733A (en) * 2003-09-24 2005-04-14 Matsushita Electric Ind Co Ltd Hydrogen producing unit
JP2005302631A (en) * 2004-04-15 2005-10-27 Matsushita Electric Ind Co Ltd Fuel cell generating system
JP2006076839A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Hydrogen purification system and fuel cell system using the same
JP2007254251A (en) * 2006-03-27 2007-10-04 Aisin Seiki Co Ltd Operation stopping method of reforming device
JP2008135284A (en) * 2006-11-28 2008-06-12 Toshiba Fuel Cell Power Systems Corp Fuel cell power generating system and its starting method
JP2008204655A (en) * 2007-02-16 2008-09-04 Nippon Oil Corp Reformer system, fuel cell system, and its operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10297847B2 (en) 2014-12-01 2019-05-21 Htceramix S.A. SOFC system and method of operating a SOFC system

Similar Documents

Publication Publication Date Title
JP4105758B2 (en) Fuel cell system
US8702823B2 (en) Hydrogen generation apparatus, fuel cell system and method of shutting down hydrogen generation apparatus
US8951683B2 (en) Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
JP5366357B2 (en) Method for starting fuel cell system and fuel cell system
JP2005174745A (en) Operation method of fuel cell system and fuel cell system
JP5340933B2 (en) HYDROGEN GENERATOR, FUEL CELL POWER GENERATION SYSTEM HAVING THE SAME, AND METHOD FOR STOPPING HYDROGEN GENERATOR
JP5628791B2 (en) Hydrogen generator, fuel cell system including the same, method of operating hydrogen generator, and method of operating fuel cell system
WO2011036886A1 (en) Fuel cell system and operation method for fuel cell system
JP2017027668A (en) Fuel battery system and operation method for the same
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP6435511B2 (en) HYDROGEN GENERATOR, FUEL CELL SYSTEM USING SAME, AND METHOD FOR OPERATING THE SAME
WO2012132409A1 (en) Hydrogen producing device and method for operating same
WO2011114748A1 (en) Fuel cell electricity generation system and shut-down method for fuel cell electricity generation system
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
JP6722893B2 (en) Fuel cell system
JP2006169013A (en) Hydrogen producing apparatus, fuel cell system and method of operating the same
JP5592760B2 (en) Fuel cell power generation system
JP2011204430A (en) Fuel cell system
JP2010275118A (en) Hydrogen production apparatus
JP2008081369A (en) Apparatus for producing hydrogen, its operating method and fuel cell system
WO2011118169A1 (en) Fuel cell system and method for operating fuel cell system
JP2011090863A (en) Fuel cell system
JP2014002921A (en) Fuel cell system
JP2013134920A (en) Fuel cell system
JP2009212040A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818563

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP