WO2012132409A1 - Hydrogen producing device and method for operating same - Google Patents

Hydrogen producing device and method for operating same Download PDF

Info

Publication number
WO2012132409A1
WO2012132409A1 PCT/JP2012/002117 JP2012002117W WO2012132409A1 WO 2012132409 A1 WO2012132409 A1 WO 2012132409A1 JP 2012002117 W JP2012002117 W JP 2012002117W WO 2012132409 A1 WO2012132409 A1 WO 2012132409A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
combustion
reformer
transformer
hydrogen generator
Prior art date
Application number
PCT/JP2012/002117
Other languages
French (fr)
Japanese (ja)
Inventor
木村 洋一
勝 福田
向井 裕二
弘樹 藤岡
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012132409A1 publication Critical patent/WO2012132409A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1685Control based on demand of downstream process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1695Adjusting the feed of the combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generation apparatus that generates a hydrogen-containing gas from a raw material and steam by a steam reforming reaction, and an operation method thereof.
  • a hydrogen generator uses a reforming fuel (raw material) containing an organic compound composed of at least carbon and hydrogen, such as natural gas or LP gas, and water, and a steam reforming reaction in a reforming section having a reforming catalyst inside.
  • a reforming fuel raw material
  • an organic compound composed of at least carbon and hydrogen such as natural gas or LP gas, and water
  • a steam reforming reaction in a reforming section having a reforming catalyst inside.
  • a hydrogen-containing gas hereinafter referred to as a reformed gas
  • the generated reformed gas contains a high concentration of carbon monoxide.
  • the hydrogen generator reduces the carbon monoxide concentration in the reformed gas to a level that does not affect the power generation performance of the fuel cell stack by the shift shift reaction in the shift section having the shift catalyst.
  • the hydrogen generator supplies reformed gas having a sufficiently reduced carbon monoxide concentration to the fuel cell system.
  • the reforming catalyst is adjusted to a temperature suitable for the reforming reaction
  • the shift catalyst is adjusted to a temperature suitable for the shift shift reaction.
  • a hydrogen generator includes a reforming heating unit for heating a reforming unit having a reforming catalyst, and a reforming temperature detection unit for detecting the temperature of the reforming catalyst heated by the reforming heating unit.
  • the heating amount for the reforming unit by the reforming heating unit is appropriately adjusted based on the temperature of the reforming catalyst detected by the reforming temperature detection unit, and the reforming catalyst is adjusted to a temperature suitable for the reforming reaction. .
  • the present invention has been made to solve such conventional problems, and can suppress the consumption of electric power and can control the shift catalyst so as to have a temperature suitable for the reaction. And an operation method thereof.
  • a hydrogen generator includes an air supply device that supplies combustion air, a combustor that generates combustion gas by a combustion reaction between the combustion fuel and the combustion air, A reformer having a reforming catalyst that is heated using the heat of the combustion gas and generates a reformed gas from a raw material and steam by a steam reforming reaction, and a reforming temperature detection that detects the temperature of the reformer And a downstream side of the reformer, and configured to be heated by the combustion gas after heating the reformer, for reducing carbon monoxide in the reformed gas
  • a converter having a shift catalyst, a shift temperature detector for detecting the temperature of the shift converter, and controlling the combustor so that the temperature of the reformer detected by the reforming temperature detector becomes a predetermined temperature.
  • a controller for controlling the transformation temperature. When the temperature of the transformer detected by the detector falls below a predetermined threshold temperature, and controls so as to raise the temperature of the transformer to increase the flow rate of the combustion air.
  • the predetermined threshold temperature is a temperature arbitrarily set below a temperature suitable for the metamorphic shift reaction.
  • the heat of combustion gas generated in the combustor can be further transmitted to the downstream side without increasing the fuel for combustion and without increasing the power consumption to the heater.
  • the temperature of the transformer disposed downstream of the reformer can be increased.
  • the hydrogen generator of the present invention when the temperature of the transformer is controlled to a temperature suitable for the shift shift reaction, consumption of electric power and fuel for combustion is suppressed, and energy efficiency is reduced. It becomes possible to suppress.
  • FIG. 1 is a block diagram showing an overview of a fuel cell system including a hydrogen generator according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing operation control of the hydrogen generator according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing operation control of the hydrogen generator according to Embodiment 2 of the present invention.
  • a hydrogen generation apparatus includes an air supply device that supplies combustion air, a combustor that generates combustion gas by a combustion reaction between combustion fuel and combustion air, and heat of the combustion gas , A reformer having a reforming catalyst that generates a reformed gas from a raw material and steam by a steam reforming reaction, a reforming temperature detector that detects the temperature of the reformer, and a reformer And a converter having a conversion catalyst for reducing carbon monoxide in the reformed gas, which is configured to be heated by the combustion gas after heating the reformer, and the converter And a controller that controls the combustor so that the temperature of the reformer detected by the reforming temperature detector becomes a predetermined temperature. When the temperature of the transformer detected by the detector falls below a predetermined threshold temperature, Increase of flow rate is to illustrate aspects of controlling so as to raise the temperature of the transformer.
  • the controller when the temperature of the transformer detected by the transformation temperature detector is lower than a predetermined threshold temperature, the controller reduces the flow rate of the combustion air with respect to the flow rate of the combustion fuel.
  • the ratio may be increased to control the combustion gas flow rate to be increased.
  • FIG. 1 is a block diagram showing an outline of a fuel cell system provided with a hydrogen generator according to Embodiment 1 of the present invention.
  • the fuel cell system includes a fuel cell 1 and a hydrogen generator 2 that generates a reformed gas containing hydrogen gas necessary for the fuel cell 1.
  • the fuel cell 1 is typically a solid polymer fuel cell, and is configured by laminating a plurality of cells 3 including an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode. ing.
  • the fuel cell 1 generates power using a reformed gas containing hydrogen supplied to the anode and an oxidant gas (for example, air) containing oxygen supplied to the cathode.
  • the fuel cell 1 includes an anode channel 4 for supplying reformed gas to the anode, a cathode channel 5 for supplying oxidant gas to the cathode, and heat generated by the electrochemical reaction of hydrogen and oxygen.
  • a cooling flow path (not shown) for supplying a cooling medium (for example, water) to take away is provided.
  • the hydrogen generator 2 includes a reformer 6, a transformer 7, a selective oxidizer 8, an evaporator 9, a combustor 10, and an air supply device 14 for combustion.
  • the evaporator 9 is supplied with reforming fuel (raw material) containing hydrocarbon and reforming water.
  • the evaporator 9 generates steam from the supplied reformed water, mixes the generated steam and reforming fuel, and supplies them to the reformer 6.
  • the reformer 6 generates reformed gas containing hydrogen by a steam reforming reaction using the reforming fuel and water.
  • the reformer 6 and the evaporator 9 are integrated.
  • a combustor 10 is disposed on the central axis of the reformer 6 and the evaporator 9.
  • the combustor 10 includes a burner 11 that forms a flame, an ignition electrode 12, and a combustion state detector 13.
  • An air supply 14 and an air flow rate detector 15 are connected to the combustor 10.
  • the air supplier 14 supplies combustion air (combustion air) to the combustor 10.
  • combustion air combustion air
  • an air pump or a fan can be used as the air supplier 14.
  • the air flow rate detector 15 measures the flow rate of the combustion air.
  • the combustor 10 may be configured to be incorporated in the hydrogen generator 2 or may be configured as a separate component from the hydrogen generator 2.
  • the concentration of the raw material (combustion gas) and carbon monoxide that have passed until the hydrogen generator 2 rises to a predetermined temperature is reduced to a concentration that can be supplied to the fuel cell.
  • Unreformed reformed gas (combustion gas) or unreacted reformed gas (off gas: combustion gas) discharged from the anode of the fuel cell 1 is supplied.
  • the combustor 10 burns these combustion gases to generate heat supplied to the reformer 6, for example.
  • the hydrogen generator 2 has a plurality of concentric quadruple pipe shapes, and is composed of a combustion cylinder 16, a first cylinder 17, a second cylinder 18, and a third cylinder 19 in order from the inside.
  • the combustion cylinder 16 is configured such that combustion gas is discharged from the burner 11.
  • a combustion gas flow path 20 is formed by the annular space between the combustion cylinder 16 and the first cylinder 17.
  • a reforming fuel supply unit 21 that supplies reforming fuel and a reforming water supply unit 22 that supplies reforming water are connected to the outer peripheral surface of the second cylinder 18 on the upstream side of the evaporator 9. Yes.
  • the reforming fuel supply unit 21 for example, a booster pump or a gas control valve, and as the reforming water supply unit 22, for example, a water pump can be used.
  • a transformer 7 and a selective oxidizer 8 are provided in the annular space between the second cylinder 18 and the third cylinder 19, a transformer 7 and a selective oxidizer 8 are provided.
  • a selective oxidized air supply unit 23 is connected to the outer peripheral surface of the third cylinder 19 to supply air necessary for the carbon monoxide selective oxidation reaction of the reformed gas to the selective oxidizer 8. Further, a reformed gas flow path 24 that leads out the reformed gas from the hydrogen generator 2 and supplies the reformed gas to the fuel cell 1 is connected to the outer peripheral surface of the third cylinder 19.
  • a reforming temperature detector 25, a transformation temperature detector 26, and a selective oxidation temperature detector 27 are arranged on the outer peripheral surface of the third cylinder 19, respectively.
  • the reforming temperature detector 25, the shift temperature detector 26, and the selective oxidation temperature detector 27 detect the temperatures of the reformer 6, the shift converter 7, and the selective oxidizer 8, respectively.
  • a thermocouple or a thermistor can be used as the reforming temperature detector 25, the transformation temperature detector 26, and the selective oxidation temperature detector 27, for example, a thermocouple or a thermistor can be used.
  • the reformed gas channel 24 is provided with a reformed gas on / off valve 28, and the supply of the reformed gas to the anode channel 4 of the fuel cell 1 can be controlled by opening / closing the reformed gas on / off valve 28.
  • the anode flow path 4 and the combustor 10 are connected via an anode off gas flow path 29.
  • An anode off gas opening / closing valve 30 is disposed in the anode off gas flow path 29.
  • reformed gas passage 24 upstream of the reformed gas on-off valve 28 and the anode off-gas passage 29 downstream of the anode off-gas on-off valve 30 are connected by a reformed gas bypass passage 31.
  • the reformed gas bypass passage 31 is provided with a bypass on-off valve 32, which can control the gas flow.
  • the reformed gas derived from the reformer 6 is introduced into the fuel cell 1 to generate hydrogen that has not been used for the electrochemical reaction in the fuel cell 1 after power generation.
  • the anode offgas containing can be introduced into the combustor 10.
  • the reforming fuel and reformed gas that have circulated through the reformer 6 can be introduced into the combustor 10 without being introduced into the fuel cell 1.
  • the burner 11 of the combustor 10 includes a fuel separator having a plurality of fuel ejection holes and an air ejection member having a plurality of air ejection holes.
  • an ignition electrode 12 and a combustion state detector 13 for detecting the ignition or extinguishing of the flame of the burner 11 are arranged.
  • a flame rod that detects an ion current in a flame to determine the presence or absence of a flame or a thermocouple that detects a flame temperature and determines the presence or absence of a flame can be used.
  • the hydrogen generator 2 is discharged from the fuel cell 1 supplied from the reforming fuel and reformed gas or the anode off-gas channel 29 that has passed through the reformer 6 supplied from the reformed gas bypass channel 31.
  • the anode off-gas and the combustion air supplied from the air supplier 14 can be burned by the burner 11.
  • the hydrogen generator 2 can heat the reformer 6 and the evaporator 9 by discharging the high-temperature combustion gas generated by the combustion reaction to the combustion cylinder 16 and circulating the combustion gas passage 20.
  • the controller 33 controls the fuel cell 1 and the hydrogen generator 2, and at least the air supplier 14, the reforming fuel supplier 21, the reforming water supplier 22, the reforming temperature detector 25, and the transformation temperature detection.
  • the controller 26 controls the selective oxidation temperature detector 27, the reformed gas on-off valve 28, the anode off-gas on-off valve 30, the bypass on-off valve 32, the ignition electrode 12, and the combustion state detector 13.
  • the controller 33 may be in any form as long as it is a device that controls each device constituting the fuel cell system (hydrogen generator 2).
  • the controller 33 includes an arithmetic processing unit exemplified by a microprocessor, a CPU, and the like, and a storage unit configured by a memory that stores a program for executing each control operation.
  • the controller 33 is related to a fuel cell system in which the arithmetic processing section reads out a predetermined control program stored in the storage section and executes the predetermined control program, thereby processing these pieces of information and including these controls. Perform various controls.
  • the controller 33 is not limited to a single controller, but may be a controller group in which a plurality of controllers cooperate to execute control of the fuel cell system. Absent.
  • the controller 33 may be configured by a micro control, or may be configured by an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
  • FIG. 2 is a flowchart showing the operation control of the hydrogen generator according to Embodiment 1 of the present invention. The following operation is performed by the controller 33 executing a predetermined program.
  • the reformed gas on-off valve 28 is closed, the anode off-gas on-off valve 30 is closed, and the bypass on-off valve 32 is opened.
  • the supplied reforming fuel flows through the evaporator 9 and the reformer 6, then passes through the reformed gas channel 24, passes through the reformed gas bypass channel 31, the bypass opening / closing valve 32, and the anode offgas channel 29. Then, the gas is led out to the combustor 10, jetted from the fuel jet hole of the fuel separator, mixed with the combustion air jetted from the air jet hole of the air jet member, and ignited by the burner 11 to start combustion.
  • the combustion state detector 13 detects the ignition of the flame of the combustor 10
  • the operation of the ignition electrode 12 is stopped, and thereafter the reforming temperature detector 25, the modification temperature detector 26, and the selective oxidation temperature detector 27 are modified.
  • Combustion is continued while detecting the temperature of the mass device 6, the transformer 7, and the selective oxidizer 8, the high-temperature combustion gas is discharged into the combustion cylinder 16, and the combustion gas passage 20 is circulated to thereby reformer 6. And the evaporator 9 is heated.
  • the reforming temperature detector 25, the modification temperature detector 26, and the selective oxidation temperature detector 27 are supplied with a predetermined amount of reforming water by the combustion gas at a temperature equal to or higher than the temperature at which the water evaporates, dew condensation occurs.
  • the reforming water supply unit 22 starts to supply reforming water to the evaporator 9 via the reforming water supply unit.
  • the reformed gas on-off valve 28 is opened, the anode off-gas on-off valve 30 is opened, the bypass on-off valve 32 is closed, and the reformed gas with reduced carbon monoxide is supplied from the reformed gas flow path 24 to the fuel cell 1.
  • the reformed gas with reduced carbon monoxide is supplied from the reformed gas flow path 24 to the fuel cell 1.
  • the fuel cell 1 power generation is performed using the reformed gas supplied to the anode channel 4 and the air that is the oxidant gas supplied to the cathode channel 5.
  • an anode off-gas containing hydrogen that has not been used for the electrochemical reaction in the fuel cell 1 is led out to the combustor 10 from the anode off-gas flow path 29 of the fuel cell 1 and burned by the burner 11, thereby generating a hydrogen generator. While maintaining the temperature of 2 at an appropriate value, the reformed gas is supplied to the fuel cell 1 for operation, and power generation is continued.
  • the controller 33 supplies the reforming fuel and the reforming water necessary for generating the amount of hydrogen consumed for power generation in the fuel cell system to the reforming fuel supplier 21 and the reforming water supplier 22.
  • the temperatures of the reformer 6, the shift converter 7, the selective oxidizer 8, etc. are constantly detected by the reforming temperature detector 25, the shift temperature detector 26, and the selective oxidation temperature detector 27.
  • a predetermined amount of combustion air is supplied from the air supply unit 14 so that the temperature of each unit such as the unit 6, the transformer 7 and the selective oxidizer 8 becomes a temperature suitable for each catalyst.
  • the amount of combustion air corresponding to the required reforming fuel and reforming water is supplied from the air supplier 14.
  • the controller 33 controls the reforming fuel supply device 21 and the like so that the reformer 6 reaches a predetermined temperature based on the temperature detected by the reforming temperature detector 25, thereby converting the reformer.
  • the temperature of the vessel 7 is maintained at a predetermined temperature.
  • the temperature of the shift catalyst may decrease. is there.
  • the activity of the shift catalyst becomes low, and the concentration of carbon monoxide contained in the reformed gas cannot be sufficiently reduced by the shift shift reaction in the shift converter 7 and does not affect the power generation performance of the fuel cell 1. May not be able to be reduced.
  • the controller 33 when the temperature of the transformer detected by the transformation temperature detector 26 is lower than a predetermined threshold temperature, the controller 33 reduces the combustion air.
  • the air supplier 14 is controlled so that the flow rate increases.
  • the controller 33 measures the flow rate of combustion air (hereinafter referred to as the first flow rate) according to the amount of reforming fuel and the amount of reforming water with the air flow rate detector 15, and the temperature of the transformer 7 is predetermined.
  • T4 threshold temperature
  • the controller 33 controls the air supplier 14 so that the ratio of the flow rate of combustion air to the flow rate of combustion fuel increases. At this time, the controller 33 may control the air supply device 14 so that the air-fuel ratio becomes 1.7 or more and 1.9 or less.
  • the air-fuel ratio is a ratio between air and combustible gas determined based on the reaction of combustion, and is a numerical value at which the ratio at which the combustible gas completely burns with oxygen in the air without excess or deficiency is 1.
  • an air-fuel ratio of 1.7 means that an amount of air that is 1.7 times the amount of air required when the combustible gas completely burns is supplied.
  • the predetermined threshold temperature (T4) can be arbitrarily set according to the type or amount of the shift catalyst disposed in the shift converter 7, and is obtained in advance by experiments or the like.
  • the predetermined threshold temperature may be 220 to 250 ° C., for example.
  • the heat of the combustion gas generated in the combustor can be further transmitted to the downstream side, so that the temperature of the transformer 7 disposed downstream from the reforming section can be further increased. it can.
  • the temperature of the transformer 7 is raised with a simple configuration so that the temperature of the transformer 7 becomes a temperature suitable for the shift shift reaction. Can do. Therefore, the concentration of carbon monoxide contained in the reformed gas can be sufficiently reduced by the shift shift reaction in the transformer 7, and can be sufficiently reduced to a level that does not affect the power generation performance of the fuel cell stack.
  • the temperature of the shift catalyst is suitable for the catalytic activity by increasing the flow rate of the combustion air by the air supply device 14 without heating the heater. Therefore, the energy efficiency can be prevented from decreasing.
  • the combustion fuel when the temperature of the shift catalyst is increased, the combustion fuel is not increased (that is, the combustion amount is not increased), so that the consumption of the combustion fuel is also suppressed. It is possible to suppress the decrease in energy efficiency.
  • the flow rate of the combustion air is measured by the air flow rate detector 15.
  • the present invention is not limited to this, and the flow rate of the combustion air is estimated from the operation amount of the air supply device 14. May be used.
  • Embodiment 2 The hydrogen generator according to Embodiment 2 of the present invention exemplifies a mode in which the controller performs control so as to increase the predetermined threshold temperature when the cumulative operation time of the hydrogen generator has elapsed for a predetermined time.
  • FIG. 3 is a flowchart showing the operation control of the hydrogen generator according to Embodiment 2 of the present invention.
  • the operation of the hydrogen generator 2 according to Embodiment 2 of the present invention is basically the same as that of the hydrogen generator according to Embodiment 1, but the operation of the hydrogen generator is cumulative.
  • control is performed to increase the predetermined threshold temperature when the predetermined time elapses.
  • the controller 33 sets the predetermined threshold temperature to a temperature higher than the threshold temperature before the predetermined time elapses, and sets the set temperature.
  • a predetermined threshold temperature is set.
  • the concentration of carbon monoxide in the reformed gas supplied from the reformer 6 is sufficiently reduced by the shift shift reaction, and the power generation performance of the fuel cell stack is not affected. It is necessary to reduce it enough to the level.
  • the present inventors have found that the catalytic activity of the shift catalyst tends to gradually decrease due to the progress of sintering, in which the catalyst particles become larger. Guess. If the activity of the shift catalyst is reduced, the concentration of carbon monoxide in the reformed gas supplied from the reformer 6 may not be sufficiently reduced.
  • the temperature of the transformer 7 it is preferable to control the temperature of the transformer 7 to be higher in order to further promote the transformation reaction.
  • the operation of the shift catalyst is controlled at a relatively high temperature from the initial state (for example, when the operation of the hydrogen generator 2 starts), the energy efficiency of the hydrogen generator decreases.
  • the controller 33 causes the flow rate of the combustion air when the temperature of the shift generator 7 decreases when the accumulated operation time of the hydrogen generator 2 elapses for a predetermined time.
  • a predetermined threshold temperature (T4) for increasing the temperature of the transformer 7 is controlled to be higher.
  • the controller 33 sets the threshold temperature (T4) to 240 ° C. at the initial stage of the cumulative operation time of the hydrogen generator 2.
  • the temperature (T4) is raised to 250 ° C. (240 ° C. + 10 ° C.), and the cumulative operation time counter is cleared to zero. That is, the controller 33 sets the threshold temperature (T4) from the initial 240 ° C. to a temperature (250 ° C.) higher than the threshold temperature before the predetermined time elapses, sets the cumulative operation time to 0, and sets the hydrogen generator 2 operation is controlled.
  • the controller 33 is configured to increase the predetermined threshold temperature T4 by 10 ° C. every time 10,000 hours elapse in the cumulative operation time counter.
  • the predetermined time can be arbitrarily set based on the durability performance of the shift catalyst that is obtained in advance through experiments or the like. For this reason, in the hydrogen generator 2 according to the second embodiment, 10,000 hours are set as the predetermined time, but for example, the predetermined time may be set to 15000 hours.
  • the configuration that “controls the predetermined threshold temperature to be increased when the cumulative operation time has elapsed for a predetermined time” is a configuration that controls to increase the predetermined threshold temperature after the cumulative operation time has elapsed for the predetermined time.
  • the configuration may be such that when the accumulated operation time has elapsed for a predetermined time, control is performed to increase the predetermined threshold temperature after the next activation.
  • the case where “the cumulative operation time elapses for a predetermined time” may be a case where at least one of the number of times of starting and the number of times of stopping becomes a predetermined number of times or more.
  • the hydrogen generator 2 according to the second embodiment configured as described above has the same effects as the hydrogen generator 2 according to the first embodiment. Further, in the hydrogen generator 2 according to the second embodiment, even if the catalytic activity in the transformer 7 decreases as the cumulative operation time increases, a predetermined temperature is set so as to keep the temperature of the transformer 7 higher. By setting the threshold temperature higher, the concentration of carbon monoxide in the reformed gas can be sufficiently reduced.
  • the combustion air supplied from the air supplier 14 is simply not heated by the heater or increased in combustion fuel (increase in combustion amount).
  • the temperature of the transformer 7 can be set to a predetermined threshold temperature set higher. For this reason, compared with the conventional hydrogen generator, the fall of energy efficiency can be suppressed more.
  • the transformer 7 is configured to be heated by the combustion gas after the reformer 6 is heated.
  • the present invention is not limited to this, and at least the reformer 6 is heated. What is necessary is just to be comprised so that it may be heated with the combustion gas after doing.
  • the transformer 7 may be configured to be heated by the combustion gas before heating the reformer 6 and the combustion gas after heating the reformer 6.
  • you may be comprised so that it may be heated with the combustion gas and heater after heating a reformer.
  • the transformer in addition to the configuration in which when the temperature of the transformer falls below a predetermined threshold temperature, the flow rate of the combustion air is increased to raise the temperature of the transformer 7, the transformer may be heated with a heater. Even in this case, compared with the case where the transformer 7 is heated only by the heater, the heating amount by the heater can be suppressed, and the power consumption can be suppressed.
  • the hydrogen generator 2 is provided with the selective oxidizer 8, but is not limited thereto, and the hydrogen generator 2 is not provided with the selective oxidizer 8. May be.
  • the hydrogen generator 2 is constituted by a multi-cylinder (multi-cylinder) type hydrogen generator, but the invention is not limited to this, and each reactor (flat module) such as a reformer is arranged in parallel. You may comprise with the type of hydrogen generator arranged in close contact with.
  • the hydrogen generator and the operation method thereof according to the present invention can suppress a decrease in energy efficiency, and can be used for, for example, a stationary fuel cell system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

The hydrogen producing device of the present invention is provided with the following: an air supplier (14); a combustor (10); a reformer (6); a reformer temperature detector (25) which detects the temperature of the reformer (6); a transformer (7) which is disposed downstream of the reformer (6) and is configured so as to be heated using the combustion gas that results from heating the reformer (6); a transformer temperature detector (26) which detects the temperature of the transformer (7); and a controller (33) which controls the combustor (10) so that the temperature of the reformer (6) detected by the reformer temperature detector (25) becomes a predetermined temperature. The controller (33) controls the air supplier (14) so as to increase the flow rate of air for combustion when the temperature of the transformer (7) detected by the transformer temperature detector (26) falls below a predetermined threshold temperature.

Description

水素生成装置及びその運転方法Hydrogen generator and operating method thereof
 本発明は、原料及び水蒸気から水蒸気改質反応によって水素含有ガスを生成する水素生成装置及びその運転方法に関するものである。 The present invention relates to a hydrogen generation apparatus that generates a hydrogen-containing gas from a raw material and steam by a steam reforming reaction, and an operation method thereof.
 水素生成装置は、天然ガス又はLPガス等の少なくとも炭素及び水素から構成される有機化合物を含む改質用燃料(原料)と水を、内部に改質触媒を有する改質部において水蒸気改質反応により水素含有ガス(以下、改質ガスと呼ぶ)を生成する。生成された改質ガスは、高濃度の一酸化炭素を含む。そのため、水素生成装置は、変成触媒を有する変成部において変成シフト反応により、燃料電池スタックの発電性能に影響の出ない水準まで改質ガス中の一酸化炭素濃度を低減する。水素生成装置は、一酸化炭素濃度を十分に低減した改質ガスを燃料電池システムに供給する。 A hydrogen generator uses a reforming fuel (raw material) containing an organic compound composed of at least carbon and hydrogen, such as natural gas or LP gas, and water, and a steam reforming reaction in a reforming section having a reforming catalyst inside. To generate a hydrogen-containing gas (hereinafter referred to as a reformed gas). The generated reformed gas contains a high concentration of carbon monoxide. For this reason, the hydrogen generator reduces the carbon monoxide concentration in the reformed gas to a level that does not affect the power generation performance of the fuel cell stack by the shift shift reaction in the shift section having the shift catalyst. The hydrogen generator supplies reformed gas having a sufficiently reduced carbon monoxide concentration to the fuel cell system.
 ところで、従来の水素生成装置では、改質触媒が改質反応に適した温度になるように調整され、変成触媒が変成シフト反応に適した温度になるように調整される。 By the way, in the conventional hydrogen generator, the reforming catalyst is adjusted to a temperature suitable for the reforming reaction, and the shift catalyst is adjusted to a temperature suitable for the shift shift reaction.
 例えば、水素生成装置は、改質触媒を有する改質部を加熱するための改質加熱部と、この改質加熱部によって加熱される改質触媒の温度を検出するための改質温度検出部を備える。改質加熱部による改質部に対する加熱量は、改質温度検出部によって検出される改質触媒の温度に基づいて適宜調整され、改質触媒は、改質反応に適した温度に調整される。 For example, a hydrogen generator includes a reforming heating unit for heating a reforming unit having a reforming catalyst, and a reforming temperature detection unit for detecting the temperature of the reforming catalyst heated by the reforming heating unit. Is provided. The heating amount for the reforming unit by the reforming heating unit is appropriately adjusted based on the temperature of the reforming catalyst detected by the reforming temperature detection unit, and the reforming catalyst is adjusted to a temperature suitable for the reforming reaction. .
 また、例えば、変成部を加熱するためのヒーターを備え、変成触媒の温度が変成シフト反応に適した温度となるように、ヒーターを用いて変成触媒の温度を上昇させる水素生成装置が提案されている(例えば、特許文献1参照)。 Further, for example, there has been proposed a hydrogen generator that includes a heater for heating the shift unit, and raises the temperature of the shift catalyst using the heater so that the shift catalyst has a temperature suitable for the shift shift reaction. (For example, refer to Patent Document 1).
特開2006-169068号公報JP 2006-169068 A
 しかしながら、上記提案された従来の水素生成装置では、変成触媒の温度が変成シフト反応に適した温度より低下し、ヒーターにより変成触媒の温度を上昇させる場合に、燃料電池若しくは系統電源からヒーターに対して所望の電力を供給する必要があるので、エネルギー効率が低下するという課題があった。 However, in the proposed conventional hydrogen generator, when the temperature of the shift catalyst falls below the temperature suitable for the shift shift reaction and the temperature of the shift catalyst is increased by the heater, the fuel cell or the system power supply supplies the heater. Therefore, there is a problem that energy efficiency is reduced because it is necessary to supply desired power.
 本発明は、かかる従来の課題を解決するためになされたものであり、電力を消費することを抑制して、変成触媒が反応に適した温度になるように制御することが可能な水素生成装置及びその運転方法を提供することを目的としている。 The present invention has been made to solve such conventional problems, and can suppress the consumption of electric power and can control the shift catalyst so as to have a temperature suitable for the reaction. And an operation method thereof.
 上記課題を解決するために、本発明に係る水素生成装置は、燃焼用空気を供給する空気供給器と、燃焼用燃料と前記燃焼用空気との燃焼反応により燃焼ガスを生成する燃焼器と、前記燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって改質ガスを生成する改質触媒を有する改質器と、前記改質器の温度を検知する改質温度検知器と、前記改質器の下流側に配置され、前記改質器を加熱した後の前記燃焼ガスで加熱されるよう構成されており、前記改質ガス中の一酸化炭素を低減するための変成触媒を有する変成器と、前記変成器の温度を検知する変成温度検知器と、前記改質温度検知器で検出した前記改質器の温度が、所定の温度になるよう前記燃焼器を制御する制御器と、を備え、前記制御器は、前記変成温度検知器で検知した前記変成器の温度が所定の閾温度より下がると、前記燃焼用空気の流量を増やして前記変成器の温度を上昇させるよう制御する。 In order to solve the above problems, a hydrogen generator according to the present invention includes an air supply device that supplies combustion air, a combustor that generates combustion gas by a combustion reaction between the combustion fuel and the combustion air, A reformer having a reforming catalyst that is heated using the heat of the combustion gas and generates a reformed gas from a raw material and steam by a steam reforming reaction, and a reforming temperature detection that detects the temperature of the reformer And a downstream side of the reformer, and configured to be heated by the combustion gas after heating the reformer, for reducing carbon monoxide in the reformed gas A converter having a shift catalyst, a shift temperature detector for detecting the temperature of the shift converter, and controlling the combustor so that the temperature of the reformer detected by the reforming temperature detector becomes a predetermined temperature. A controller for controlling the transformation temperature. When the temperature of the transformer detected by the detector falls below a predetermined threshold temperature, and controls so as to raise the temperature of the transformer to increase the flow rate of the combustion air.
 ここで、所定の閾温度とは、変成シフト反応に適した温度以下で任意に設定される、温度である。 Here, the predetermined threshold temperature is a temperature arbitrarily set below a temperature suitable for the metamorphic shift reaction.
 これにより、燃焼用空気の流量を増やすことで、燃焼用燃料を増加することなく、又ヒータへの電力消費を増加することなく、燃焼器で生成する燃焼ガスの熱をさらに下流側まで伝えることができ、改質器より下流側に配置された変成器の温度を上昇させることができる。 By increasing the flow rate of combustion air, the heat of combustion gas generated in the combustor can be further transmitted to the downstream side without increasing the fuel for combustion and without increasing the power consumption to the heater. Thus, the temperature of the transformer disposed downstream of the reformer can be increased.
 本発明の水素生成装置及びその運転方法によれば、変成器の温度を変成シフト反応に適した温度に制御する際に、電力及び燃焼用燃料を消費することが抑制され、エネルギー効率の低下を抑制することが可能となる。 According to the hydrogen generator of the present invention and the operation method thereof, when the temperature of the transformer is controlled to a temperature suitable for the shift shift reaction, consumption of electric power and fuel for combustion is suppressed, and energy efficiency is reduced. It becomes possible to suppress.
図1は、本発明の実施の形態1に係る水素生成装置を備える燃料電池システムの概要を示すブロック図である。FIG. 1 is a block diagram showing an overview of a fuel cell system including a hydrogen generator according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る水素生成装置の運転制御を示すフローチャートである。FIG. 2 is a flowchart showing operation control of the hydrogen generator according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態2に係る水素生成装置の運転制御を示すフローチャートである。FIG. 3 is a flowchart showing operation control of the hydrogen generator according to Embodiment 2 of the present invention.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、全ての図面において、本発明を説明するために必要となる構成要素を抜粋して図示しており、その他の構成要素については図示を省略している。また、本発明は以下の実施の形態に限定されない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In all the drawings, components necessary for explaining the present invention are extracted and illustrated, and other components are not illustrated. Further, the present invention is not limited to the following embodiment.
 (実施の形態1)
 本発明の実施の形態1に係る水素生成装置は、燃焼用空気を供給する空気供給器と、燃焼用燃料と燃焼用空気との燃焼反応により燃焼ガスを生成する燃焼器と、燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって改質ガスを生成する改質触媒を有する改質器と、改質器の温度を検知する改質温度検知器と、改質器の下流側に配置され、改質器を加熱した後の燃焼ガスで加熱されるよう構成されており、改質ガス中の一酸化炭素を低減するための変成触媒を有する変成器と、変成器の温度を検知する変成温度検知器と、改質温度検知器で検出した改質器の温度が、所定の温度になるよう燃焼器を制御する制御器と、を備え、制御器は、変成温度検知器で検知した変成器の温度が所定の閾温度より下がると、燃焼用空気の流量を増やして変成器の温度を上昇させるよう制御する態様を例示するものである。
(Embodiment 1)
A hydrogen generation apparatus according to Embodiment 1 of the present invention includes an air supply device that supplies combustion air, a combustor that generates combustion gas by a combustion reaction between combustion fuel and combustion air, and heat of the combustion gas , A reformer having a reforming catalyst that generates a reformed gas from a raw material and steam by a steam reforming reaction, a reforming temperature detector that detects the temperature of the reformer, and a reformer And a converter having a conversion catalyst for reducing carbon monoxide in the reformed gas, which is configured to be heated by the combustion gas after heating the reformer, and the converter And a controller that controls the combustor so that the temperature of the reformer detected by the reforming temperature detector becomes a predetermined temperature. When the temperature of the transformer detected by the detector falls below a predetermined threshold temperature, Increase of flow rate is to illustrate aspects of controlling so as to raise the temperature of the transformer.
 また、本実施の形態1に係る水素生成装置は、制御器が、変成温度検知器で検知した変成器の温度が所定の閾温度より下がると、燃焼用燃料の流量に対する燃焼用空気の流量の比を増やして、燃焼ガス流量を増加させるよう制御してもよい。 Further, in the hydrogen generator according to the first embodiment, when the temperature of the transformer detected by the transformation temperature detector is lower than a predetermined threshold temperature, the controller reduces the flow rate of the combustion air with respect to the flow rate of the combustion fuel. The ratio may be increased to control the combustion gas flow rate to be increased.
 以下、本発明による水素生成装置の一実施形態について説明する。 Hereinafter, an embodiment of the hydrogen generator according to the present invention will be described.
 図1は、本発明の実施の形態1に係る水素生成装置を備える燃料電池システムの概要を示すブロック図である。 FIG. 1 is a block diagram showing an outline of a fuel cell system provided with a hydrogen generator according to Embodiment 1 of the present invention.
 図1において、燃料電池システムは、燃料電池1と、この燃料電池1に必要な水素ガスを含む改質ガスを生成する水素生成装置2を備えている。 1, the fuel cell system includes a fuel cell 1 and a hydrogen generator 2 that generates a reformed gas containing hydrogen gas necessary for the fuel cell 1.
 燃料電池1は、典型的には固体高分子形燃料電池であり、アノードと、カソードと、アノード及びカソードの間に配置された高分子電解質膜と、を含むセル3を複数積層して構成されている。燃料電池1は、アノードに供給される水素を含む改質ガス及びカソードに供給される酸素を含む酸化剤ガス(例えば、空気)を用いて発電するものである。燃料電池1は、アノードに改質ガスを供給するためのアノード流路4、カソードに酸化剤ガスを供給するためのカソード流路5、及び、水素及び酸素の電気化学的反応により発生した熱を奪うための冷却媒体(例えば、水)を供給する冷却流路(図示せず)を備えている。 The fuel cell 1 is typically a solid polymer fuel cell, and is configured by laminating a plurality of cells 3 including an anode, a cathode, and a polymer electrolyte membrane disposed between the anode and the cathode. ing. The fuel cell 1 generates power using a reformed gas containing hydrogen supplied to the anode and an oxidant gas (for example, air) containing oxygen supplied to the cathode. The fuel cell 1 includes an anode channel 4 for supplying reformed gas to the anode, a cathode channel 5 for supplying oxidant gas to the cathode, and heat generated by the electrochemical reaction of hydrogen and oxygen. A cooling flow path (not shown) for supplying a cooling medium (for example, water) to take away is provided.
 水素生成装置2は、改質器6、変成器7、選択酸化器8、蒸発器9、燃焼器10、及び燃焼用の空気供給器14を備えている。 The hydrogen generator 2 includes a reformer 6, a transformer 7, a selective oxidizer 8, an evaporator 9, a combustor 10, and an air supply device 14 for combustion.
 蒸発器9は、炭化水素を含む改質用燃料(原料)及び改質水が供給される。蒸発器9は、供給された改質水から水蒸気を生成すると共に、生成した水蒸気及び改質用燃料を混合して改質器6に供給する。改質器6は、改質用燃料及び水を用いて水蒸気改質反応により水素を含む改質ガスを生成する。ここでは、改質器6及び蒸発器9を一体化した構成を備えている。 The evaporator 9 is supplied with reforming fuel (raw material) containing hydrocarbon and reforming water. The evaporator 9 generates steam from the supplied reformed water, mixes the generated steam and reforming fuel, and supplies them to the reformer 6. The reformer 6 generates reformed gas containing hydrogen by a steam reforming reaction using the reforming fuel and water. Here, the reformer 6 and the evaporator 9 are integrated.
 また、改質器6及び蒸発器9の中心軸上には、燃焼器10が配置される。燃焼器10は、火炎を形成するバーナ11、点火電極12及び燃焼状態検知器13を備える。 Also, a combustor 10 is disposed on the central axis of the reformer 6 and the evaporator 9. The combustor 10 includes a burner 11 that forms a flame, an ignition electrode 12, and a combustion state detector 13.
 燃焼器10には、空気供給器14及び空気流量検知器15が接続されている。空気供給器14は、燃焼器10に燃焼用の空気(燃焼空気)を供給する。空気供給器14としては、例えば、空気ポンプやファンを用いることができる。 An air supply 14 and an air flow rate detector 15 are connected to the combustor 10. The air supplier 14 supplies combustion air (combustion air) to the combustor 10. For example, an air pump or a fan can be used as the air supplier 14.
 空気流量検知器15は、燃焼空気の流量を測定する。なお、燃焼器10は、水素生成装置2に組み込まれて構成されていてもよいし、水素生成装置2と別の構成要素として構成されていてもよい。 The air flow rate detector 15 measures the flow rate of the combustion air. The combustor 10 may be configured to be incorporated in the hydrogen generator 2 or may be configured as a separate component from the hydrogen generator 2.
 燃焼器10には、燃焼用の燃料として、水素生成装置2が所定の温度に上昇するまでに通過した原料(燃焼ガス)、一酸化炭素の濃度が燃料電池に供給可能な濃度にまで低減されていない改質ガス(燃焼ガス)、又は、燃料電池1のアノードから排出された未反応の改質ガス(オフガス:燃焼ガス)が供給される。燃焼器10は、これらの燃焼ガスを燃焼させて、例えば、改質器6に供給する熱を生成する。 In the combustor 10, the concentration of the raw material (combustion gas) and carbon monoxide that have passed until the hydrogen generator 2 rises to a predetermined temperature is reduced to a concentration that can be supplied to the fuel cell. Unreformed reformed gas (combustion gas) or unreacted reformed gas (off gas: combustion gas) discharged from the anode of the fuel cell 1 is supplied. The combustor 10 burns these combustion gases to generate heat supplied to the reformer 6, for example.
 また、水素生成装置2は、複数の同心円状の4重管形状を有し、内側から順に、燃焼筒16、第1筒17、第2筒18、第3筒19から構成されている。 The hydrogen generator 2 has a plurality of concentric quadruple pipe shapes, and is composed of a combustion cylinder 16, a first cylinder 17, a second cylinder 18, and a third cylinder 19 in order from the inside.
 燃焼筒16内には、燃焼ガスがバーナ11から放出されるように構成されている。燃焼筒16と第1筒17との環状空間により燃焼ガス流路20が形成される。 The combustion cylinder 16 is configured such that combustion gas is discharged from the burner 11. A combustion gas flow path 20 is formed by the annular space between the combustion cylinder 16 and the first cylinder 17.
 蒸発器9の上流側の第2筒18の外周面には、改質用燃料を供給する改質用燃料供給器21、及び、改質水を供給する改質水供給器22が接続されている。 A reforming fuel supply unit 21 that supplies reforming fuel and a reforming water supply unit 22 that supplies reforming water are connected to the outer peripheral surface of the second cylinder 18 on the upstream side of the evaporator 9. Yes.
 改質用燃料供給器21としては、例えば、ブースターポンプやガス制御弁、改質水供給器22としては、例えば、水ポンプを用いることができる。 As the reforming fuel supply unit 21, for example, a booster pump or a gas control valve, and as the reforming water supply unit 22, for example, a water pump can be used.
 第2筒18と第3筒19との環状空間には、変成器7と選択酸化器8が設けられている。 In the annular space between the second cylinder 18 and the third cylinder 19, a transformer 7 and a selective oxidizer 8 are provided.
 そして、第3筒19の外周面には、改質ガスの一酸化炭素選択酸化反応に必要な空気を選択酸化器8に供給する選択酸化空気供給器23が接続されている。また、第3筒19の外周面には、水素生成装置2から改質ガスを導出し、燃料電池1に供給する改質ガス流路24が接続されている。 A selective oxidized air supply unit 23 is connected to the outer peripheral surface of the third cylinder 19 to supply air necessary for the carbon monoxide selective oxidation reaction of the reformed gas to the selective oxidizer 8. Further, a reformed gas flow path 24 that leads out the reformed gas from the hydrogen generator 2 and supplies the reformed gas to the fuel cell 1 is connected to the outer peripheral surface of the third cylinder 19.
 また、第3筒19の外周面には、改質温度検知器25、変成温度検知器26、選択酸化温度検知器27が、それぞれ、配置されている。改質温度検知器25、変成温度検知器26、選択酸化温度検知器27は、それぞれ、改質器6、変成器7、選択酸化器8の温度を検出する。改質温度検知器25、変成温度検知器26、選択酸化温度検知器27としては、例えば、熱電対やサーミスタを用いることができる。 Further, a reforming temperature detector 25, a transformation temperature detector 26, and a selective oxidation temperature detector 27 are arranged on the outer peripheral surface of the third cylinder 19, respectively. The reforming temperature detector 25, the shift temperature detector 26, and the selective oxidation temperature detector 27 detect the temperatures of the reformer 6, the shift converter 7, and the selective oxidizer 8, respectively. As the reforming temperature detector 25, the transformation temperature detector 26, and the selective oxidation temperature detector 27, for example, a thermocouple or a thermistor can be used.
 改質ガス流路24には、改質ガス開閉弁28が設けられ、改質ガス開閉弁28の開閉で燃料電池1のアノード流路4への改質ガスの供給を制御することができる。 The reformed gas channel 24 is provided with a reformed gas on / off valve 28, and the supply of the reformed gas to the anode channel 4 of the fuel cell 1 can be controlled by opening / closing the reformed gas on / off valve 28.
 また、アノード流路4及び燃焼器10は、アノードオフガス流路29を介して接続される。アノードオフガス流路29には、アノードオフガス開閉弁30が配設されている。 The anode flow path 4 and the combustor 10 are connected via an anode off gas flow path 29. An anode off gas opening / closing valve 30 is disposed in the anode off gas flow path 29.
 また、改質ガス開閉弁28の上流側の改質ガス流路24と、アノードオフガス開閉弁30よりも下流のアノードオフガス流路29とが、改質ガスバイパス流路31で接続されている。 Also, the reformed gas passage 24 upstream of the reformed gas on-off valve 28 and the anode off-gas passage 29 downstream of the anode off-gas on-off valve 30 are connected by a reformed gas bypass passage 31.
 改質ガスバイパス流路31にはバイパス開閉弁32が設けられており、ガスの流通を制御できる。 The reformed gas bypass passage 31 is provided with a bypass on-off valve 32, which can control the gas flow.
 これらの開閉弁を開閉制御することにより、改質器6から導出された改質ガスを燃料電池1へ導入して、発電した後に燃料電池1での電気化学的反応に利用されなかった水素を含むアノードオフガスを燃焼器10に導入することができる。また、これらの開閉弁を開閉制御することにより、改質器6を流通した改質用燃料及び改質ガスを燃料電池1に導入することなく燃焼器10に導入することができる。 By controlling the opening and closing of these on-off valves, the reformed gas derived from the reformer 6 is introduced into the fuel cell 1 to generate hydrogen that has not been used for the electrochemical reaction in the fuel cell 1 after power generation. The anode offgas containing can be introduced into the combustor 10. Further, by controlling the opening and closing of these on-off valves, the reforming fuel and reformed gas that have circulated through the reformer 6 can be introduced into the combustor 10 without being introduced into the fuel cell 1.
 燃焼器10のバーナ11は、複数の燃料噴出孔を有する燃料セパレータと、複数の空気噴出孔を有する空気噴出部材を備える。 The burner 11 of the combustor 10 includes a fuel separator having a plurality of fuel ejection holes and an air ejection member having a plurality of air ejection holes.
 バーナ11の外側には、点火電極12とバーナ11の火炎の着火又は消火を検出するための燃焼状態検知器13とが配置されている。 Outside the burner 11, an ignition electrode 12 and a combustion state detector 13 for detecting the ignition or extinguishing of the flame of the burner 11 are arranged.
 燃焼状態検知器13としては、例えば、火炎内のイオン電流を検知して火炎の有無を判定するフレームロッドまたは火炎温度を検知して火炎の有無を判定する熱電対を用いることができる。 As the combustion state detector 13, for example, a flame rod that detects an ion current in a flame to determine the presence or absence of a flame or a thermocouple that detects a flame temperature and determines the presence or absence of a flame can be used.
 水素生成装置2は、改質ガスバイパス流路31から供給される改質器6を流通した改質用燃料及び改質ガス、又は、アノードオフガス流路29から供給される燃料電池1から排出されるアノードオフガスと、空気供給器14から供給される燃焼用空気と、をバーナ11で燃焼させることができる。 The hydrogen generator 2 is discharged from the fuel cell 1 supplied from the reforming fuel and reformed gas or the anode off-gas channel 29 that has passed through the reformer 6 supplied from the reformed gas bypass channel 31. The anode off-gas and the combustion air supplied from the air supplier 14 can be burned by the burner 11.
 水素生成装置2は、燃焼反応により生成した高温の燃焼ガスを燃焼筒16に排出して燃焼ガス流路20を流通させて、改質器6及び蒸発器9を加熱することができる。 The hydrogen generator 2 can heat the reformer 6 and the evaporator 9 by discharging the high-temperature combustion gas generated by the combustion reaction to the combustion cylinder 16 and circulating the combustion gas passage 20.
 制御器33は、燃料電池1及び水素生成装置2を制御するもので、少なくとも空気供給器14、改質用燃料供給器21、改質水供給器22、改質温度検知器25、変成温度検知器26、選択酸化温度検知器27、改質ガス開閉弁28、アノードオフガス開閉弁30、バイパス開閉弁32、点火電極12及び燃焼状態検知器13を制御する制御器である。 The controller 33 controls the fuel cell 1 and the hydrogen generator 2, and at least the air supplier 14, the reforming fuel supplier 21, the reforming water supplier 22, the reforming temperature detector 25, and the transformation temperature detection. The controller 26 controls the selective oxidation temperature detector 27, the reformed gas on-off valve 28, the anode off-gas on-off valve 30, the bypass on-off valve 32, the ignition electrode 12, and the combustion state detector 13.
 制御器33は、燃料電池システム(水素生成装置2)を構成する各機器を制御する機器であれば、どのような形態であってもよい。制御器33は、マイクロプロセッサ、CPU等に例示される演算処理部と、各制御動作を実行するためのプログラムを格納した、メモリ等から構成される記憶部を備えている。そして、制御器33は、演算処理部が、記憶部に格納された所定の制御プログラムを読み出し、これを実行することにより、これらの情報を処理し、かつ、これらの制御を含む燃料電池システムに関する各種の制御を行う。 The controller 33 may be in any form as long as it is a device that controls each device constituting the fuel cell system (hydrogen generator 2). The controller 33 includes an arithmetic processing unit exemplified by a microprocessor, a CPU, and the like, and a storage unit configured by a memory that stores a program for executing each control operation. The controller 33 is related to a fuel cell system in which the arithmetic processing section reads out a predetermined control program stored in the storage section and executes the predetermined control program, thereby processing these pieces of information and including these controls. Perform various controls.
 なお、制御器33は、単独の制御器で構成される形態だけでなく、複数の制御器が協働して燃料電池システムの制御を実行する制御器群で構成される形態であっても構わない。また、制御器33は、マイクロコントロールで構成されていてもよく、MPU、PLC(Programmable Logic Controller)、論理回路等によって構成されていてもよい。 The controller 33 is not limited to a single controller, but may be a controller group in which a plurality of controllers cooperate to execute control of the fuel cell system. Absent. The controller 33 may be configured by a micro control, or may be configured by an MPU, a PLC (Programmable Logic Controller), a logic circuit, or the like.
 次に、本実施の形態1に係る水素生成装置の動作について、図2を参照しながら説明する。 Next, the operation of the hydrogen generator according to Embodiment 1 will be described with reference to FIG.
 図2は、本発明の実施の形態1に係る水素生成装置の運転制御を示すフローチャートである。なお、以下の動作は、制御器33が所定のプログラムを実行することにより、行われる。 FIG. 2 is a flowchart showing the operation control of the hydrogen generator according to Embodiment 1 of the present invention. The following operation is performed by the controller 33 executing a predetermined program.
 図2に示すように、まず、改質ガス開閉弁28を閉止し、アノードオフガス開閉弁30を閉止し、バイパス開閉弁32を開放する。 As shown in FIG. 2, first, the reformed gas on-off valve 28 is closed, the anode off-gas on-off valve 30 is closed, and the bypass on-off valve 32 is opened.
 改質ガス開閉弁28、アノードオフガス開閉弁30及びバイパス開閉弁32の状態が整ったら、空気供給器14から燃焼用空気を供給し、引き続き改質用燃料供給器21から改質用燃料を供給すると共に点火電極12を作動させる。 When the reformed gas on-off valve 28, the anode off-gas on-off valve 30 and the bypass on-off valve 32 are ready, combustion air is supplied from the air supply device 14, and then the reforming fuel is supplied from the reforming fuel supply device 21. At the same time, the ignition electrode 12 is operated.
 供給された改質用燃料は、蒸発器9、改質器6を流通した後、改質ガス流路24を通り改質ガスバイパス流路31とバイパス開閉弁32とアノードオフガス流路29を経由して燃焼器10に導出してきて、燃料セパレータの燃料噴出孔から噴出して、空気噴出部材の空気噴出孔から噴出した燃焼用空気と混合してバーナ11で点火して燃焼を開始する。 The supplied reforming fuel flows through the evaporator 9 and the reformer 6, then passes through the reformed gas channel 24, passes through the reformed gas bypass channel 31, the bypass opening / closing valve 32, and the anode offgas channel 29. Then, the gas is led out to the combustor 10, jetted from the fuel jet hole of the fuel separator, mixed with the combustion air jetted from the air jet hole of the air jet member, and ignited by the burner 11 to start combustion.
 燃焼器10の火炎の着火を燃焼状態検知器13で検出すると、点火電極12の動作を停止して、以降、改質温度検知器25、変成温度検知器26、選択酸化温度検知器27で改質器6、変成器7、選択酸化器8の温度を検知しながら燃焼を継続して高温の燃焼ガスを燃焼筒16内に排出して燃焼ガス流路20を流通させることで改質器6及び蒸発器9を加熱する。 When the combustion state detector 13 detects the ignition of the flame of the combustor 10, the operation of the ignition electrode 12 is stopped, and thereafter the reforming temperature detector 25, the modification temperature detector 26, and the selective oxidation temperature detector 27 are modified. Combustion is continued while detecting the temperature of the mass device 6, the transformer 7, and the selective oxidizer 8, the high-temperature combustion gas is discharged into the combustion cylinder 16, and the combustion gas passage 20 is circulated to thereby reformer 6. And the evaporator 9 is heated.
 その後、燃焼ガスにより、改質温度検知器25、変成温度検知器26、選択酸化温度検知器27のそれぞれの温度が、水が蒸発する温度以上で所定量の改質水を供給したときに結露が発生しない温度以上の所定の温度に加熱されると、改質水供給器22から改質水供給部を介して蒸発器9に改質水の供給を開始する。 Thereafter, when the reforming temperature detector 25, the modification temperature detector 26, and the selective oxidation temperature detector 27 are supplied with a predetermined amount of reforming water by the combustion gas at a temperature equal to or higher than the temperature at which the water evaporates, dew condensation occurs. When heated to a predetermined temperature equal to or higher than the temperature at which no reforming occurs, the reforming water supply unit 22 starts to supply reforming water to the evaporator 9 via the reforming water supply unit.
 改質水の供給が開始されると、改質器6での水蒸気改質反応により改質ガスが生成される。生成された改質ガスは、変成器7を通過し、更に選択酸化空気供給器23から供給される選択酸化用空気と混合させてから選択酸化器8を通過する。この間に、変成シフト反応と選択酸化反応により、改質反応で発生した一酸化炭素を二酸化炭素に変化させる。 When supply of reforming water is started, reformed gas is generated by a steam reforming reaction in the reformer 6. The generated reformed gas passes through the converter 7 and is further mixed with the selective oxidation air supplied from the selective oxidation air supply unit 23 and then passes through the selective oxidizer 8. During this time, carbon monoxide generated in the reforming reaction is changed to carbon dioxide by a shift shift reaction and a selective oxidation reaction.
 これにより、改質ガス中の一酸化炭素を燃料電池スタックの発電性能に影響の出ない約10ppm以下まで低減される。 This reduces the carbon monoxide in the reformed gas to about 10 ppm or less, which does not affect the power generation performance of the fuel cell stack.
 そして、改質ガス開閉弁28を開放し、アノードオフガス開閉弁30を開放し、バイパス開閉弁32を閉止して、改質ガス流路24から一酸化炭素を低減した改質ガスを燃料電池1のアノード流路4に供給する。燃料電池1では、アノード流路4に供給される改質ガス及びカソード流路5に供給される酸化剤ガスである空気を用いて発電が行われる。 Then, the reformed gas on-off valve 28 is opened, the anode off-gas on-off valve 30 is opened, the bypass on-off valve 32 is closed, and the reformed gas with reduced carbon monoxide is supplied from the reformed gas flow path 24 to the fuel cell 1. To the anode channel 4. In the fuel cell 1, power generation is performed using the reformed gas supplied to the anode channel 4 and the air that is the oxidant gas supplied to the cathode channel 5.
 さらに、燃料電池1のアノードオフガス流路29から燃料電池1での電気化学的反応に利用されなかった水素を含むアノードオフガスを燃焼器10に導出して、バーナ11で燃焼させて、水素生成装置2の温度を適正値に維持しながら、改質ガスを燃料電池1に供給して運転を行い、発電を継続する。 Further, an anode off-gas containing hydrogen that has not been used for the electrochemical reaction in the fuel cell 1 is led out to the combustor 10 from the anode off-gas flow path 29 of the fuel cell 1 and burned by the burner 11, thereby generating a hydrogen generator. While maintaining the temperature of 2 at an appropriate value, the reformed gas is supplied to the fuel cell 1 for operation, and power generation is continued.
 以降、制御器33は、燃料電池システムでの発電に消費される水素量を生成するために必要な改質用燃料と改質水とを改質用燃料供給器21と改質水供給器22から供給するように運転を継続する。その際に、改質器6、変成器7や選択酸化器8等の各器の温度を改質温度検知器25、変成温度検知器26、選択酸化温度検知器27で常時検知され、改質器6、変成器7や選択酸化器8等の各器の温度が、夫々の触媒が反応に適した温度になるように、所定の燃焼空気量が空気供給器14から供給される。具体的には、所定の水素量を生成するために、必要な改質用燃料と改質水に応じた、燃焼空気量が空気供給器14から供給される。 Thereafter, the controller 33 supplies the reforming fuel and the reforming water necessary for generating the amount of hydrogen consumed for power generation in the fuel cell system to the reforming fuel supplier 21 and the reforming water supplier 22. Continue operation to supply from At that time, the temperatures of the reformer 6, the shift converter 7, the selective oxidizer 8, etc. are constantly detected by the reforming temperature detector 25, the shift temperature detector 26, and the selective oxidation temperature detector 27. A predetermined amount of combustion air is supplied from the air supply unit 14 so that the temperature of each unit such as the unit 6, the transformer 7 and the selective oxidizer 8 becomes a temperature suitable for each catalyst. Specifically, in order to generate a predetermined amount of hydrogen, the amount of combustion air corresponding to the required reforming fuel and reforming water is supplied from the air supplier 14.
 ところで、通常、水素生成装置2は、改質器6の温度を所定の温度(例えば、550~700℃)にすると、変成器7の温度が所定の温度(例えば、200~320℃)になるように、設計されている。このため、制御器33は、改質温度検知器25が検知した温度に基づいて、改質器6が所定の温度になるように、改質用燃料供給器21等を制御することで、変成器7の温度が所定の温度に保たれる。 By the way, normally, in the hydrogen generator 2, when the temperature of the reformer 6 is set to a predetermined temperature (for example, 550 to 700 ° C.), the temperature of the transformer 7 becomes a predetermined temperature (for example, 200 to 320 ° C.). Designed as such. For this reason, the controller 33 controls the reforming fuel supply device 21 and the like so that the reformer 6 reaches a predetermined temperature based on the temperature detected by the reforming temperature detector 25, thereby converting the reformer. The temperature of the vessel 7 is maintained at a predetermined temperature.
 しかしながら、燃料電池システム及び水素生成装置2が、寒冷地や標高が高い場所に設置され、外気温度と水温が低温になった状態で長時間運転すると、変成触媒の温度が低下してしまう場合がある。 However, if the fuel cell system and the hydrogen generator 2 are installed in a cold place or a place with a high altitude and are operated for a long time in a state where the outside air temperature and the water temperature are low, the temperature of the shift catalyst may decrease. is there.
 その場合、変成触媒の活性が低くなり、改質ガス中に含まれる一酸化炭素の濃度を変成器7において変成シフト反応により十分に低減できず、燃料電池1の発電性能に影響の出ない水準まで低減できなくなる場合がある。 In that case, the activity of the shift catalyst becomes low, and the concentration of carbon monoxide contained in the reformed gas cannot be sufficiently reduced by the shift shift reaction in the shift converter 7 and does not affect the power generation performance of the fuel cell 1. May not be able to be reduced.
 これを防止するために、本実施の形態1に係る水素生成装置2では、制御器33が、変成温度検知器26で検知した変成器の温度が所定の閾温度より下がると、燃焼用空気の流量が増加するように、空気供給器14を制御する。具体的には、制御器33は、改質用燃料量と改質水量に応じた燃焼空気の流量(以下、第1流量)を空気流量検知器15で測定し、変成器7の温度が所定の閾温度(T4)より下がった場合に、燃焼用空気の流量を第1流量より大きくなるように、空気供給器14を制御する。 In order to prevent this, in the hydrogen generator 2 according to the first embodiment, when the temperature of the transformer detected by the transformation temperature detector 26 is lower than a predetermined threshold temperature, the controller 33 reduces the combustion air. The air supplier 14 is controlled so that the flow rate increases. Specifically, the controller 33 measures the flow rate of combustion air (hereinafter referred to as the first flow rate) according to the amount of reforming fuel and the amount of reforming water with the air flow rate detector 15, and the temperature of the transformer 7 is predetermined. When the temperature falls below the threshold temperature (T4), the air supply device 14 is controlled so that the flow rate of the combustion air becomes larger than the first flow rate.
 より詳細には、制御器33は、燃焼用燃料の流量に対する燃焼用空気の流量の比が増加するように、空気供給器14を制御する。このとき、制御器33は、空燃比が1.7以上、かつ、1.9以下となるように、空気供給器14を制御してもよい。 More specifically, the controller 33 controls the air supplier 14 so that the ratio of the flow rate of combustion air to the flow rate of combustion fuel increases. At this time, the controller 33 may control the air supply device 14 so that the air-fuel ratio becomes 1.7 or more and 1.9 or less.
 なお、空燃比とは、燃焼の反応に基づいて定められる空気と可燃性ガスとの割合で、可燃性ガスが空気中の酸素と過不足無く完全燃焼する割合が1となる数値である。例えば、空燃比が1.7とは、可燃性ガスが完全燃焼する場合に必要となる空気量の1.7倍の空気量が供給されていることを意味する。 Note that the air-fuel ratio is a ratio between air and combustible gas determined based on the reaction of combustion, and is a numerical value at which the ratio at which the combustible gas completely burns with oxygen in the air without excess or deficiency is 1. For example, an air-fuel ratio of 1.7 means that an amount of air that is 1.7 times the amount of air required when the combustible gas completely burns is supplied.
 また、所定の閾温度(T4)は、変成器7に配置されている変成触媒の種類、又はその量等によって、任意に設定することができ、予め実験等により求められる。所定の閾温度としては、例えば、220~250℃としてもよい。 Further, the predetermined threshold temperature (T4) can be arbitrarily set according to the type or amount of the shift catalyst disposed in the shift converter 7, and is obtained in advance by experiments or the like. The predetermined threshold temperature may be 220 to 250 ° C., for example.
 燃焼用空気の流量を増やすことにより、燃焼器で生成する燃焼ガスの熱をさらに下流側まで伝えることができるため、改質部より下流に配置された変成器7の温度をより上昇させることができる。このため、本実施の形態1に係る水素生成装置2では、簡便な構成で、変成器7の温度を上昇させて、変成器7の温度が変成シフト反応に適した温度になるよう制御することができる。そのため、改質ガス中に含まれる一酸化炭素濃度を、変成器7において変成シフト反応により十分に低減し、燃料電池スタックの発電性能に影響の出ない水準まで十分に低減することができる。 By increasing the flow rate of the combustion air, the heat of the combustion gas generated in the combustor can be further transmitted to the downstream side, so that the temperature of the transformer 7 disposed downstream from the reforming section can be further increased. it can. For this reason, in the hydrogen generator 2 according to the first embodiment, the temperature of the transformer 7 is raised with a simple configuration so that the temperature of the transformer 7 becomes a temperature suitable for the shift shift reaction. Can do. Therefore, the concentration of carbon monoxide contained in the reformed gas can be sufficiently reduced by the shift shift reaction in the transformer 7, and can be sufficiently reduced to a level that does not affect the power generation performance of the fuel cell stack.
 また、本実施の形態1に係る水素生成装置2では、ヒータの加熱を行わずに、空気供給器14により燃焼用空気の流量を増して供給することにより、変成触媒の温度を触媒活性に適した温度に制御するため、エネルギー効率の低下を抑制することができる。 Further, in the hydrogen generator 2 according to the first embodiment, the temperature of the shift catalyst is suitable for the catalytic activity by increasing the flow rate of the combustion air by the air supply device 14 without heating the heater. Therefore, the energy efficiency can be prevented from decreasing.
 さらに、本実施の形態1に係る水素生成装置2では、変成触媒の温度上昇を行う際に、燃焼用燃料の増加(すなわち、燃焼量の増加)も行わないので、燃焼用燃料の消費も抑制することができ、よりエネルギー効率の低下を抑制することができる。 Furthermore, in the hydrogen generator 2 according to the first embodiment, when the temperature of the shift catalyst is increased, the combustion fuel is not increased (that is, the combustion amount is not increased), so that the consumption of the combustion fuel is also suppressed. It is possible to suppress the decrease in energy efficiency.
 なお、本実施の形態1では、燃焼空気の流量は、空気流量検知器15で測定する構成としたが、これに限定されず、燃焼空気の流量として、空気供給器14の操作量から推定される流量を用いてもよい。 In the first embodiment, the flow rate of the combustion air is measured by the air flow rate detector 15. However, the present invention is not limited to this, and the flow rate of the combustion air is estimated from the operation amount of the air supply device 14. May be used.
 (実施の形態2)
 本発明の実施の形態2に係る水素生成装置は、制御器が、水素生成装置の累積運転時間が所定時間経過すると、所定の閾温度を上昇させるよう制御する態様を例示するものである。
(Embodiment 2)
The hydrogen generator according to Embodiment 2 of the present invention exemplifies a mode in which the controller performs control so as to increase the predetermined threshold temperature when the cumulative operation time of the hydrogen generator has elapsed for a predetermined time.
 本発明の実施の形態2に係る水素生成装置2は、実施の形態1に係る水素生成装置2と同様に構成されているので、その構成の説明は省略する。 Since the hydrogen generator 2 according to Embodiment 2 of the present invention is configured in the same manner as the hydrogen generator 2 according to Embodiment 1, description of the configuration is omitted.
 図3は、本発明の実施の形態2に係る水素生成装置の運転制御を示すフローチャートである。 FIG. 3 is a flowchart showing the operation control of the hydrogen generator according to Embodiment 2 of the present invention.
 図3に示すように、本発明の実施の形態2に係る水素生成装置2の動作は、本実施の形態1に係る水素生成装置と基本的動作は同じであるが、水素生成装置の累積運転時間が所定時間経過すると、所定の閾温度を上昇させるよう制御する点が異なる。具体的には、制御器33は、水素生成装置2の累積運転時間が所定時間経過すると、所定の閾温度を所定時間経過する前の閾温度よりも高い温度に設定し、当該設定した温度を所定の閾温度とする。 As shown in FIG. 3, the operation of the hydrogen generator 2 according to Embodiment 2 of the present invention is basically the same as that of the hydrogen generator according to Embodiment 1, but the operation of the hydrogen generator is cumulative. The difference is that control is performed to increase the predetermined threshold temperature when the predetermined time elapses. Specifically, when the cumulative operation time of the hydrogen generator 2 elapses for a predetermined time, the controller 33 sets the predetermined threshold temperature to a temperature higher than the threshold temperature before the predetermined time elapses, and sets the set temperature. A predetermined threshold temperature is set.
 上述したように、変成器7では、改質器6から供給される改質ガス中の一酸化炭素の濃度を、変成シフト反応により十分に低減し、燃料電池スタックの発電性能に影響の出ない水準まで十分に低減する必要がある。しかしながら、水素生成装置2の累積運転時間が所定時間経過すると、触媒の粒子が大きくなるシンタリングという現象が進行することによって、変成触媒の触媒活性が徐々に低下する傾向があると本発明者らは推測している。変成触媒の活性が低下すると、改質器6から供給される改質ガス中の一酸化炭素の濃度を十分に低減できなくなる場合がある。 As described above, in the transformer 7, the concentration of carbon monoxide in the reformed gas supplied from the reformer 6 is sufficiently reduced by the shift shift reaction, and the power generation performance of the fuel cell stack is not affected. It is necessary to reduce it enough to the level. However, when the accumulated operation time of the hydrogen generator 2 elapses for a predetermined time, the present inventors have found that the catalytic activity of the shift catalyst tends to gradually decrease due to the progress of sintering, in which the catalyst particles become larger. Guess. If the activity of the shift catalyst is reduced, the concentration of carbon monoxide in the reformed gas supplied from the reformer 6 may not be sufficiently reduced.
 この場合には、変成反応をより促進させるために、変成器7の温度がより高くなるよう制御することが好ましい。一方、初期の状態(例えば、水素生成装置2の運転開始時)から変成触媒の温度を比較的高い温度に制御して運転を継続すると、水素生成装置のエネルギー効率が低くなる。 In this case, it is preferable to control the temperature of the transformer 7 to be higher in order to further promote the transformation reaction. On the other hand, if the operation of the shift catalyst is controlled at a relatively high temperature from the initial state (for example, when the operation of the hydrogen generator 2 starts), the energy efficiency of the hydrogen generator decreases.
 このため、本実施の形態2に係る水素生成装置2では、制御器33が、水素生成装置2の累積運転時間が所定時間経過すると、変成7器の温度が低下したときに燃焼用空気の流量を増やして変成器7の温度を上昇させるための所定の閾温度(T4)をより高くするように制御する。 For this reason, in the hydrogen generator 2 according to the second embodiment, the controller 33 causes the flow rate of the combustion air when the temperature of the shift generator 7 decreases when the accumulated operation time of the hydrogen generator 2 elapses for a predetermined time. And a predetermined threshold temperature (T4) for increasing the temperature of the transformer 7 is controlled to be higher.
 たとえば、図3に示すように、制御器33は、水素生成装置2の累積運転時間の初期では、閾温度(T4)を240℃としているものを、累積運転時間が10000時間を経過すると、閾温度(T4)を250℃(240℃+10℃)に上昇させて、累積運転時間カウンターを0にクリアする。すなわち、制御器33は、閾温度(T4)を初期の240℃から、所定時間経過する前の閾温度よりも高い温度(250℃)に設定し、累積運転時間を0にして、水素生成装置2の運転を制御する。 For example, as shown in FIG. 3, the controller 33 sets the threshold temperature (T4) to 240 ° C. at the initial stage of the cumulative operation time of the hydrogen generator 2. The temperature (T4) is raised to 250 ° C. (240 ° C. + 10 ° C.), and the cumulative operation time counter is cleared to zero. That is, the controller 33 sets the threshold temperature (T4) from the initial 240 ° C. to a temperature (250 ° C.) higher than the threshold temperature before the predetermined time elapses, sets the cumulative operation time to 0, and sets the hydrogen generator 2 operation is controlled.
 以降、制御器33は、累積運転時間カウンターで10000時間を経過するごとに10℃ずつ、所定の閾温度T4を上昇させるようにしている。 Thereafter, the controller 33 is configured to increase the predetermined threshold temperature T4 by 10 ° C. every time 10,000 hours elapse in the cumulative operation time counter.
 これによって、運転時間が経過するにつれて、変成触媒(特に、下流側である低温側)の触媒活性が次第に低下した場合であっても、変成器7の温度をより高く制御することが簡便にできる。 As a result, even when the catalytic activity of the shift catalyst (particularly, the low temperature side, which is the downstream side) gradually decreases as the operation time elapses, it is possible to easily control the temperature of the shift converter 7 higher. .
 なお、所定時間は、予め実験などで求められる変成触媒の耐久性能に基づいて任意に設定することができる。このため、本実施の形態2に係る水素生成装置2では、所定時間として、10000時間を設定しているが、例えば、所定時間を15000時間に設定してもよい。 In addition, the predetermined time can be arbitrarily set based on the durability performance of the shift catalyst that is obtained in advance through experiments or the like. For this reason, in the hydrogen generator 2 according to the second embodiment, 10,000 hours are set as the predetermined time, but for example, the predetermined time may be set to 15000 hours.
 また、「累積運転時間が所定時間経過すると、所定の閾温度を上昇させるよう制御する」構成は、累積運転時間が所定時間経過した後に、所定の閾温度を上昇させるよう制御する構成であればよい。例えば、累積運転時間が所定時間経過した場合に、次回起動後に、所定の閾温度を上昇させるよう制御する構成であってもよい。 In addition, the configuration that “controls the predetermined threshold temperature to be increased when the cumulative operation time has elapsed for a predetermined time” is a configuration that controls to increase the predetermined threshold temperature after the cumulative operation time has elapsed for the predetermined time. Good. For example, the configuration may be such that when the accumulated operation time has elapsed for a predetermined time, control is performed to increase the predetermined threshold temperature after the next activation.
 さらに、「累積運転時間が所定時間経過する」場合とは、起動回数及び停止回数のうちの少なくとも一方が所定の回数以上となった場合であってもよい。 Furthermore, the case where “the cumulative operation time elapses for a predetermined time” may be a case where at least one of the number of times of starting and the number of times of stopping becomes a predetermined number of times or more.
 このように構成された、本実施の形態2に係る水素生成装置2であっても、実施の形態1に係る水素生成装置2と同様の作用効果を奏する。また、本実施の形態2に係る水素生成装置2では、累積運転時間の増加に伴って、変成器7における触媒活性が低下しても、変成器7の温度をより高く保つように、所定の閾温度をより高く設定することで、改質ガス中の一酸化炭素の濃度を十分に低減することができる。 Even the hydrogen generator 2 according to the second embodiment configured as described above has the same effects as the hydrogen generator 2 according to the first embodiment. Further, in the hydrogen generator 2 according to the second embodiment, even if the catalytic activity in the transformer 7 decreases as the cumulative operation time increases, a predetermined temperature is set so as to keep the temperature of the transformer 7 higher. By setting the threshold temperature higher, the concentration of carbon monoxide in the reformed gas can be sufficiently reduced.
 さらに、本実施の形態2に係る水素生成装置2では、ヒータでの加熱、又は燃焼用燃料の増加(燃焼量の増加)を行わずに、単に、空気供給器14から供給される燃焼用空気を増加させることで、変成器7の温度をより高く設定した所定の閾温度にすることができる。このため、従来の水素生成装置に比して、よりエネルギー効率の低下を抑制することができる。 Further, in the hydrogen generator 2 according to the second embodiment, the combustion air supplied from the air supplier 14 is simply not heated by the heater or increased in combustion fuel (increase in combustion amount). By increasing, the temperature of the transformer 7 can be set to a predetermined threshold temperature set higher. For this reason, compared with the conventional hydrogen generator, the fall of energy efficiency can be suppressed more.
 なお、上記実施の形態では、変成器7は、改質器6を加熱した後の燃焼ガスで加熱されるよう構成されているとしたが、これに限定されず、少なくとも改質器6を加熱した後の燃焼ガスで加熱されるよう構成されていればよい。例えば、変成器7は、改質器6を加熱する前の燃焼ガス、及び、改質器6を加熱した後の燃焼ガスで加熱されるよう構成されていてもよい。また、例えば、改質器を加熱した後の燃焼ガス及びヒータで加熱されるよう構成されていてもよい。この構成では、変成器の温度が所定の閾温度より下がると燃焼用空気の流量を増やして変成器7の温度を上昇させる構成に加えて、ヒータで変成器を加熱してもよい。この場合であっても、変成器7をヒータのみで加熱する場合比べて、ヒータによる加熱量を抑制することができ、電力消費を抑制することができる。 In the above embodiment, the transformer 7 is configured to be heated by the combustion gas after the reformer 6 is heated. However, the present invention is not limited to this, and at least the reformer 6 is heated. What is necessary is just to be comprised so that it may be heated with the combustion gas after doing. For example, the transformer 7 may be configured to be heated by the combustion gas before heating the reformer 6 and the combustion gas after heating the reformer 6. For example, you may be comprised so that it may be heated with the combustion gas and heater after heating a reformer. In this configuration, in addition to the configuration in which when the temperature of the transformer falls below a predetermined threshold temperature, the flow rate of the combustion air is increased to raise the temperature of the transformer 7, the transformer may be heated with a heater. Even in this case, compared with the case where the transformer 7 is heated only by the heater, the heating amount by the heater can be suppressed, and the power consumption can be suppressed.
 また、上記の実施の形態では、水素生成装置2は、選択酸化器8を備える形態を採用したが、これに限定されず、水素生成装置2は、選択酸化器8を備えない形態を採用してもよい。さらに、上記実施の形態では、水素生成装置2を多重筒(多重円筒)タイプの水素生成装置で構成したが、これに限定されず、改質器等の各反応器(平板型モジュール)を並列に密着して並べたタイプの水素生成装置で構成してもよい。 In the above embodiment, the hydrogen generator 2 is provided with the selective oxidizer 8, but is not limited thereto, and the hydrogen generator 2 is not provided with the selective oxidizer 8. May be. Furthermore, in the above embodiment, the hydrogen generator 2 is constituted by a multi-cylinder (multi-cylinder) type hydrogen generator, but the invention is not limited to this, and each reactor (flat module) such as a reformer is arranged in parallel. You may comprise with the type of hydrogen generator arranged in close contact with.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the scope of the invention. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
 本発明に係る水素生成装置及びその運転方法は、エネルギー効率の低下を抑制することができ、例えば、定置用燃料電池システムに用いることができる。 The hydrogen generator and the operation method thereof according to the present invention can suppress a decrease in energy efficiency, and can be used for, for example, a stationary fuel cell system.
 1 燃料電池
 2 水素生成装置
 3 セル
 4 アノード流路
 5 カソード流路
 6 改質器
 7 変成器
 8 選択酸化器
 9 蒸発器
 10 燃焼器
 11 バーナ
 12 点火電極
 13 燃焼状態検知器
 14 空気供給器
 15 空気流量検知器
 16 燃焼筒
 17 第1筒
 18 第2筒
 19 第3筒
 20 燃焼ガス流路
 21 改質用燃料供給器
 22 改質水供給器
 23 選択酸化空気供給器
 24 改質ガス流路
 25 改質温度検知器
 26 変成温度検知器
 27 選択酸化温度検知器
 28 改質ガス開閉弁
 29 アノードオフガス流路
 30 アノードオフガス開閉弁
 31 改質ガスバイパス流路
 32 バイパス開閉弁
 33 制御器 
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hydrogen generator 3 Cell 4 Anode flow path 5 Cathode flow path 6 Reformer 7 Transformer 8 Selective oxidizer 9 Evaporator 10 Combustor 11 Burner 12 Ignition electrode 13 Combustion state detector 14 Air supply 15 Air Flow detector 16 Combustion cylinder 17 First cylinder 18 Second cylinder 19 Third cylinder 20 Combustion gas flow path 21 Reforming fuel supply 22 Reformed water supply 23 Selective oxidation air supply 24 Reformed gas flow path 25 Temperature sensor 26 Metamorphic temperature detector 27 Selective oxidation temperature detector 28 Reforming gas on-off valve 29 Anode off-gas passage 30 Anode off-gas on-off valve 31 Reforming gas bypass passage 32 Bypass on-off valve 33 Controller

Claims (6)

  1.  燃焼用空気を供給する空気供給器と、
     燃焼用燃料と前記燃焼用空気との燃焼反応により燃焼ガスを生成する燃焼器と、
     前記燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって改質ガスを生成する改質触媒を有する改質器と、
     前記改質器の温度を検知する改質温度検知器と、
     前記改質器の下流側に配置され、前記改質器を加熱した後の前記燃焼ガスで加熱されるよう構成されており、前記改質ガス中の一酸化炭素を低減するための変成触媒を有する変成器と、
     前記変成器の温度を検知する変成温度検知器と、
     前記改質温度検知器で検出した前記改質器の温度が、所定の温度になるよう前記燃焼器を制御する制御器と、を備え、
     前記制御器は、前記変成温度検知器で検知した前記変成器の温度が所定の閾温度より下がると、前記燃焼用空気の流量を増やして前記変成器の温度を上昇させるよう制御する、水素生成装置。
    An air supply for supplying combustion air;
    A combustor that generates combustion gas by a combustion reaction between the combustion fuel and the combustion air;
    A reformer having a reforming catalyst that is heated using heat of the combustion gas and generates a reformed gas from a raw material and steam by a steam reforming reaction;
    A reforming temperature detector for detecting the temperature of the reformer;
    A modification catalyst for reducing carbon monoxide in the reformed gas is disposed downstream of the reformer and configured to be heated by the combustion gas after heating the reformer. Having a transformer,
    A transformation temperature detector for sensing the temperature of the transformer;
    A controller for controlling the combustor so that the temperature of the reformer detected by the reforming temperature detector becomes a predetermined temperature;
    The controller controls to increase the flow rate of the combustion air to increase the temperature of the transformer when the temperature of the transformer detected by the transformer temperature detector falls below a predetermined threshold temperature. apparatus.
  2.  前記制御器は、前記変成温度検知器で検知した前記変成器の温度が所定の閾温度より下がると、前記燃焼用燃料の流量に対する前記燃焼用空気の流量の比を増やして、前記燃焼ガス流量を増加させるよう制御する、請求項1に水素生成装置。 When the temperature of the transformer detected by the transformation temperature detector falls below a predetermined threshold temperature, the controller increases the ratio of the flow rate of the combustion air to the flow rate of the combustion fuel to increase the combustion gas flow rate. The hydrogen generator according to claim 1, wherein the hydrogen generator is controlled to increase.
  3.  前記制御器は、前記水素生成装置の累積運転時間が所定時間経過すると、前記所定の閾温度を上昇させるよう制御する、請求項1又は2に記載の水素生成装置。 The hydrogen generator according to claim 1 or 2, wherein the controller controls to increase the predetermined threshold temperature when a cumulative operation time of the hydrogen generator has elapsed for a predetermined time.
  4.  燃焼用空気を供給する空気供給器と、
     燃焼用燃料と前記燃焼用空気との燃焼反応により燃焼ガスを生成する燃焼器と、
     前記燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって改質ガスを生成する改質触媒を有する改質器と、
     前記改質器の下流側に配置され、前記改質器を加熱した後の前記燃焼ガスで加熱されるよう構成されており、前記改質ガス中の一酸化炭素を低減するための変成触媒を有する変成器と、を備える、水素生成装置の運転方法であって、
     前記改質器の温度が、所定の温度になるよう前記燃焼器を調整する工程と、
     前記変成器の温度が所定の閾温度より下がると、燃焼用空気の流量を増やして変成器の温度を上昇させる工程と、を備える、水素生成装置の運転方法。
    An air supply for supplying combustion air;
    A combustor that generates combustion gas by a combustion reaction between the combustion fuel and the combustion air;
    A reformer having a reforming catalyst that is heated using heat of the combustion gas and generates a reformed gas from a raw material and steam by a steam reforming reaction;
    A modification catalyst for reducing carbon monoxide in the reformed gas is disposed downstream of the reformer and configured to be heated by the combustion gas after heating the reformer. A method of operating a hydrogen generator, comprising:
    Adjusting the combustor so that the temperature of the reformer becomes a predetermined temperature;
    And a step of increasing the temperature of the transformer by increasing the flow rate of combustion air when the temperature of the transformer falls below a predetermined threshold temperature.
  5.  前記変成器の温度を上昇させる工程は、前記変成温度検知器で検知した前記変成器の温度が所定の閾温度より下がると、前記燃焼用燃料の流量に対する前記燃焼用空気の流量の比を増やして、前記燃焼ガス流量を増加させる工程である、請求項4に水素生成装置の運転方法。 The step of raising the temperature of the transformer increases the ratio of the flow rate of the combustion air to the flow rate of the combustion fuel when the temperature of the transformer detected by the transformation temperature detector falls below a predetermined threshold temperature. The operation method of the hydrogen generator according to claim 4, which is a step of increasing the flow rate of the combustion gas.
  6.  前記水素生成装置の累積運転時間が所定時間経過すると、前記所定の閾温度を上昇させる工程を備える、請求項4又は5記載の水素生成装置の運転方法。 The operation method of the hydrogen generator according to claim 4 or 5, further comprising a step of increasing the predetermined threshold temperature when a cumulative operation time of the hydrogen generator has elapsed for a predetermined time.
PCT/JP2012/002117 2011-03-30 2012-03-27 Hydrogen producing device and method for operating same WO2012132409A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011075056 2011-03-30
JP2011-075056 2011-03-30
JP2011-274163 2011-12-15
JP2011274163A JP2014111509A (en) 2011-03-30 2011-12-15 Hydrogen generator and method for operating the same

Publications (1)

Publication Number Publication Date
WO2012132409A1 true WO2012132409A1 (en) 2012-10-04

Family

ID=46930184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002117 WO2012132409A1 (en) 2011-03-30 2012-03-27 Hydrogen producing device and method for operating same

Country Status (2)

Country Link
JP (1) JP2014111509A (en)
WO (1) WO2012132409A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168919B (en) * 2016-12-07 2023-10-20 中国科学院大连化学物理研究所 Multichannel reformer test system
US11769887B2 (en) * 2018-11-22 2023-09-26 Nissan Motor Co., Ltd. Combustion system and combustion control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217636A (en) * 2002-01-23 2003-07-31 Matsushita Electric Ind Co Ltd Modification catalyst degradation determining unit, and hydrogen generator
JP2006169068A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system using the same
JP2008201638A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus, its operating method, and fuel battery system equipped with it
JP2010257915A (en) * 2009-04-28 2010-11-11 Eneos Celltech Co Ltd Reforming device for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217636A (en) * 2002-01-23 2003-07-31 Matsushita Electric Ind Co Ltd Modification catalyst degradation determining unit, and hydrogen generator
JP2006169068A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system using the same
JP2008201638A (en) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd Hydrogen producing apparatus, its operating method, and fuel battery system equipped with it
JP2010257915A (en) * 2009-04-28 2010-11-11 Eneos Celltech Co Ltd Reforming device for fuel cell

Also Published As

Publication number Publication date
JP2014111509A (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US9431668B2 (en) Power generation system and operation method thereof
JP6138378B2 (en) Fuel cell system
JPWO2007091632A1 (en) Fuel cell system
JPWO2005068355A1 (en) Hydrogen generator, operation method of hydrogen generator, fuel cell system, and operation method of fuel cell system
US8097371B2 (en) Hydrogen generator, fuel cell system comprising the same, and operation method thereof
US20190190050A1 (en) Solid oxide fuel cell system
US9385384B2 (en) Power generation system and method of operating the same
JP2009217951A (en) Fuel cell system
JP2005174745A (en) Operation method of fuel cell system and fuel cell system
JP2005209547A (en) Fuel cell power generator and operating method for fuel cell power generator
JP2006219328A (en) Hydrogen generation apparatus and fuel cell system using the same
WO2012132409A1 (en) Hydrogen producing device and method for operating same
JP7162170B2 (en) Solid oxide fuel cell system
JP5002220B2 (en) Fuel cell system
JP5548987B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP2004296235A (en) Reforming device for fuel cell
JP2017027668A (en) Fuel battery system and operation method for the same
JP5353214B2 (en) Hydrogen generator and fuel cell power generation system including the same
JP7478987B2 (en) Method for operating fuel processor, computer program, recording medium, and fuel processor
JP5262638B2 (en) Fuel cell power generation system
JP2010108770A (en) Fuel cell power generation system, and control method of fuel cell power generation system
JP5537218B2 (en) Fuel cell system and method for starting fuel cell system
JP2023081178A (en) Fuel cell system and control method for fuel cell system
JP2014182928A (en) Fuel cell system
JP2014214048A (en) Hydrogen generator and fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP