WO2011035677A1 - 转子式泵 - Google Patents

转子式泵 Download PDF

Info

Publication number
WO2011035677A1
WO2011035677A1 PCT/CN2010/076415 CN2010076415W WO2011035677A1 WO 2011035677 A1 WO2011035677 A1 WO 2011035677A1 CN 2010076415 W CN2010076415 W CN 2010076415W WO 2011035677 A1 WO2011035677 A1 WO 2011035677A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
cam
chamber
sealing
pump according
Prior art date
Application number
PCT/CN2010/076415
Other languages
English (en)
French (fr)
Inventor
刘邦健
Original Assignee
Lio Pangchian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lio Pangchian filed Critical Lio Pangchian
Priority to MYPI2012001303A priority Critical patent/MY179758A/en
Priority to JP2012530115A priority patent/JP5480387B2/ja
Priority to CA2774107A priority patent/CA2774107C/en
Priority to EP10818371A priority patent/EP2481929A1/en
Priority to US13/381,527 priority patent/US8684713B2/en
Priority to AU2010297740A priority patent/AU2010297740B2/en
Priority to KR1020127007004A priority patent/KR101290849B1/ko
Publication of WO2011035677A1 publication Critical patent/WO2011035677A1/zh
Priority to ZA2012/01887A priority patent/ZA201201887B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type

Definitions

  • the present invention relates to a rotor pump, and more particularly to a rotary rotor pump. Background technique
  • High pressure gases such as air can be used in a wide range of applications such as engine boosting, pneumatic tools, high pressure cleaning appliances and instrumentation power.
  • the compression of the gas is performed by a motor driving a piston in a cylinder to reciprocate, wherein a normal pressure gas is first supplied into a closed space formed by the cylinder and the piston, and the piston is continuously moved to reduce the sealing.
  • the atmospheric gas is compressed into a high pressure gas, and the compressed high pressure gas is then stored in a gas storage tank for standby.
  • the existing compression device is usually a piston type, and when the piston reciprocates, a top dead center and a bottom dead point are generated, that is, a reciprocating position of the piston moving direction, so the existing piston type compression device is relatively smooth, and will be generated. Larger noise. Furthermore, in the existing compression device, lubricating fluid must be provided in the cylinder to reduce the friction so that the piston can reciprocate smoothly in the cylinder. When the lubricating fluid is insufficient or the lubricating fluid is insufficient, the piston and the cylinder are generated. Extreme friction, the lighter affects the compression efficiency, and the heavy one may damage the cylinder structure or the temperature is too high, causing the piston and the cylinder to sinter.
  • An object of the present invention is to provide a rotor type pump to solve various problems in the prior art described above.
  • the present invention provides a rotor pump comprising a body, a rotor, at least one cam and a sealing unit.
  • the body has a chamber, an air inlet portion and an air outlet portion.
  • the rotor shaft is disposed in the chamber, the rotor having a circumferential surface having at least one convex surface that closely contacts the inner surface of the chamber.
  • Each cam There is a cam surface, and the at least one cam rotates in cooperation with the rotor.
  • the sealing unit has a sealing portion and at least one concentric portion, the sealing portion contacting the circumferential surface of the ring, the at least one concentric portion contacting the cam surface, and the sealing portion moves with the at least one homogenous portion.
  • the at least one collet portion moves according to the corresponding cam surface, such that the sealing portion of the same crucible moves continuously in close contact with the circumferential surface of the ring, and the gas enters the chamber from the inlet portion
  • the sealing portion, the convex surface and the inner surface of the chamber form a substantially closed space
  • the rotating rotor continuously compresses the gas in the chamber, in the chamber When the gas is compressed to a set pressure, it is led out by the gas outlet.
  • the smooth convex surface of the rotor is in close contact with the inner surface of the chamber, and the gas in the chamber is compressed by rotation.
  • the rotor of the present invention does not need to reciprocate as the existing piston. There will be no dead spots, so it is smooth and not easy to produce noise.
  • the rotor type pump of the present invention can form a lubricating and heat-resistant coating on the surface of the rotor without a lubricating fluid, and the rotor type pump of the present invention has an extremely large amount of compression and compression efficiency.
  • Figure 1A is a cross-sectional view showing the first embodiment of the rotor type pump of the present invention
  • Figure 1B is a cross-sectional view taken along line 1B-1B of Figure 1A;
  • Figure 1C shows a cross-sectional view taken along line 1C-1C of Figure 1A;
  • FIGS. 2 to 4 are views showing the compression stroke of the rotor type pump of the first embodiment of the present invention
  • Figure 5 is a view showing the cooperation of a sealing unit having a linear guiding device with a rotor and a cam in the rotor type pump of the first embodiment of the present invention
  • Figure 6 is a schematic view showing a second embodiment of the rotor type pump of the present invention.
  • Figure 7 is a schematic view showing a return valve of a rotor type pump and a piston structure of a second embodiment of the present invention
  • 8 to 10 are views showing the compression stroke of the rotor type pump of the second embodiment of the present invention
  • Figure 11 is a schematic view showing a rotor type pump of a third embodiment of the present invention.
  • the rotor pump of the present invention comprises a body, a rotor, at least one cam and a sealing unit.
  • the body has a chamber, an air inlet portion and an air outlet portion.
  • the sealing unit has a sealing portion and at least one identical portion.
  • the rotor pump 1 includes a body 11, a rotor 12, two cams 13, a rotating shaft 14, and a sealing unit 15.
  • the body 11 has a chamber 111, two receiving spaces 112, an air inlet portion 113 and an air outlet portion 114.
  • the receiving spaces 112 are disposed on two sides of the chamber 111. It can be understood that the body 11 can include only a receiving space 112 disposed on one side of the chamber 111.
  • the chamber 111 is a hollow cylindrical space. It should be noted that the chamber 111 and the rotor 12 may have any cooperating shape, that is, the shape of the chamber 111 is not limited to a hollow shape. Cylindrical.
  • the gas enters the chamber 111 from the inlet portion 113.
  • the outlet portion 114 has a check valve 115 and a line 116.
  • the check valve 115 communicates with the inside of the chamber 111 to allow gas to pass through the chamber 111. It is derived and cannot be reversely entered into the chamber 111, and the line 116 is connected to the check valve 115 for guiding the gas discharged from the chamber 111.
  • the air outlet portion 114 includes an outer passage 117 and an inner passage 118.
  • the check valve 115 is connected to the outer passage 117.
  • the outer passage 117 is opened from a side wall of the body 11 to a set depth, and the inner passage 118 communicates with the outer passage 117 and opens in the direction of the chamber 111 to open the chamber 111 (formed) A substantially L-shaped channel).
  • the cross-sectional dimension of the inner passage 118 is larger than the cross-sectional dimension of the outer passage 117, and the inner passage 118 is opened to communicate with the peripheral portion of the chamber 111.
  • the rotor 12 is axially disposed in the chamber 111.
  • a section of the rotor 12 is cam-shaped, which operates at the center of the design.
  • the rotor 12 has a circumferential surface 121 having at least one convex surface 122 that closely contacts the inner surface of the chamber 111.
  • the cams 13 are connected to the rotor 12 via the rotating shaft 14.
  • the rotor 12 and the cam 13 are of a coaxial cam type, and the rotor 12 has the same line shape as the cam 13.
  • Each of the cams 13 has a cam surface 131 which cooperates with the rotor 12 to rotate (in the present embodiment, the same rotation). At least one of the rotor 12 and the cam 13 may have a coating.
  • the coating layer 123 is made of Teflon.
  • the coating layer 123 can improve the lubrication degree and the adhesion of the convex surface 122 to the inner surface of the chamber 111, and can reduce the friction between the rotor 12 and the inner surface of the chamber 111, thereby improving the compression efficiency and not damaging the cavity. The structure of the chamber 111 and the sintering of the rotor 12 from the chamber 111 are avoided.
  • the rotary shaft 14 connects the rotor 12 and the cams 13.
  • the rotating shaft 14 is connected to a rotating power source (not shown) through which the rotating power source 14 drives the rotor 12 and the cams 13.
  • the rotating shaft 14 is located on the axial center of the rotor 12 and the cams 13, that is, the rotor 12 and the cams 13 are coaxially disposed.
  • the rotor pump 1 may further include at least one weight element 16 for balancing the rotation to increase the rotational speed.
  • the at least one weight element 16 is disposed on the rotating shaft 14.
  • the rotation can be balanced, and the rotational speed can be increased, thereby
  • the at least one weight element 16 can also stabilize the rotation of the rotor 12 and the cams 13.
  • the rotor pump 1 may further include a plurality of weight elements disposed on the rotating shaft 14 and located on two sides of the rotor 12 (two respectively located on the body 11) side) .
  • the sealing unit 15 has a sealing portion 151 and a second portion.
  • the sealing portion 151 contacts the circumferential surface 121, and the equivalent portion 152 contacts the cam faces 131, respectively, and the sealing portion 151 moves in unison with the equivalent jaw portion 152.
  • the sealing portion 151 is passed through the body 11 and contacts the circumferential surface 121 of the rotor 12, and the sealing portion 151 is located between the air inlet portion 113 and the air outlet portion 114.
  • the equivalent turns portion 152 are respectively passed through the body 11 and respectively contact the cam faces 131.
  • the base portion 153 connects the sealing portion 151 and the equivalent jaw portion 152, and the sealing portion 151 is located between the equivalent jaw portions 152.
  • the return mechanism 154 is a spring mechanism.
  • the reply mechanism 154 The base portion 153 is coupled, and the return mechanism 154 provides a pressure to keep the sealing portion 151 in close contact with the circumferential surface 121. It will be appreciated that the return mechanism 154 also provides a pressure to maintain the equivalent jaw portion 152 in intimate contact with the cam faces 131.
  • the rotor 12 and the cams 13 are rotated, and the equivalent jaw portion 152 is moved in accordance with the corresponding cam surface 131 such that the sealing portion 151 of the same movement continues to closely contact the circumferential surface 121.
  • the gas enters the chamber 111 from the inlet portion 113.
  • the sealing portion 151, the convex surface 122 and the inner surface of the chamber 111 form a substantially closed space.
  • the rotating rotor 12 continues to compress the gas in the chamber 111, and the gas in the chamber 111 is discharged from the venting portion 114 when compressed to a set pressure.
  • the return mechanism 154 provides the sealing portion 151 - the leftward pressure, which continuously contacts the cam faces 131 and continues to move to the left, the sealing portion 151
  • the equivalent portion 152 is displaced at the same time, so that the sealing portion 151 is simultaneously moved to the left.
  • the convex surface 122 of the rotor 12 moves to the left in the same direction, and the displacement amount thereof and the displacement amount of the sealing portion 151 to the left are shifted.
  • the return mechanism 154 provides the pressure of the sealing portion 151 to the left, so that the sealing portion 151 can continue to closely contact the circumferential surface 121.
  • the rotor 12 and the cams 13 have the same rotational speed, and the shape of the cam surface 131 of the cams 13 matches the shape of the circumferential surface 121 of the rotor 12 (the rotor 12 and The cams 13 have the same line shape, and the cams 13 rotate with the rotor 12.
  • the cross-sectional dimension of the inner passage 118 is larger than the cross-sectional dimension of the outer passage 117.
  • the rotation of the rotor 12 can be controlled until the convex surface 122 completely covers the joint.
  • the check valve 115 is opened when the opening of the inner passage 118 (also reaches the set pressure), and the compressed gas is led out of the chamber 111.
  • the space of the chamber 111 can be fully utilized, thereby increasing the compression efficiency of the gas.
  • the sealing unit 15 may further include at least one linear guiding device 155, each linear guiding device 155 including a linear bearing 156 and a guiding shaft 157, the linear bearing 156
  • the pivot shaft 14 is pivoted and has a guiding portion 158.
  • the guiding shaft 157 is disposed on one side of the sealing portion 151 and connected to the base portion 153, and moves along with the sealing portion 151 and the concentric portion 152 according to the guiding portion 158.
  • the rotor pump 1 of the present invention can also be applied in a negative pressure environment (for example, to form a negative pressure environment or a vacuum state), that is, the rotor pump 1 of the present invention can be used as a "compression” or a reverse To "vacuum pressure”.
  • the air inlet portion 113 is connected to a space or device (not shown) for forming a negative pressure environment or a vacuum state.
  • the air intake space is A negative pressure state (relative to a space or device in which a negative pressure environment or a vacuum state is to be formed) is formed, and a space in a space or a device in which a negative pressure environment or a vacuum state is to be formed is sucked into the air intake space.
  • the rotor 12 rotates to cover the intake portion 113 again (as shown in FIG. 1B), it is also prepared for the next gas suction. Procedure to achieve the effect of a negative pressure environment or a vacuum state.
  • the rotor pump 2 includes a body 21, a rotor 22, a cam 23, two rotating shafts 24, a sealing unit 25, and a return mechanism 26.
  • the body 21 has a chamber 211, an air outlet portion 212, a setting port 213 and an air inlet portion 213 formed between the air outlet portion 212 and the air inlet portion 214.
  • the rotor type pump 2 of the second embodiment of the present invention includes at least one compression unit.
  • the rotor pump 2 has a compression unit 20, and the compression unit 20 includes a chamber 211, an air outlet portion 212, a setting port 213, an air inlet portion 214, a rotor 22, and a cam 23.
  • each of the chambers 211, an air outlet portion 212, a set port 213, and an air inlet portion 214 constitute a structure of a cylinder.
  • the body 21 is a hollow cylinder. It can be understood that the body 21 can also be a structure having a hollow cylindrical chamber as shown in FIGS. 1A to 1C.
  • the air outlet portion 212 has a check valve 215 and a pipeline 216.
  • the check valve 215 communicates with the chamber 211 so that gas can be led out of the chamber 211 and cannot enter the chamber 211 in a reverse direction.
  • the line 216 is connected to the check valve 215 for guiding the gas discharged from the chamber 211.
  • the rotor 22 is axially disposed in the chamber 211 via a shaft 24 along the axis of the body 21 (also the axis of the chamber 211).
  • the rotor 22 has a circumferential surface 221 having a convex surface 222 that abuts against the inner wall of the chamber 211.
  • the rotor 22 and the cam 23 are of a different-axis conjugate wheel type (the rotor 22 and the conjugated cam 23 wheel type mutually compensated).
  • the cam 23 is disposed on the other rotating shaft 24 and the axial line is substantially parallel to the axial line of the body 21, and the cam 23 has a cam surface 231. Wherein, at least one of the rotor 22 and the cam 23 may have a coating.
  • the rotor 22 has a coating 223 and the cam 23 also has a coating 232.
  • the cladding layers 223 and 232 are of Teflon material.
  • the sealing unit 25 is disposed through the setting port 213 and between the rotor 22 and the cam 23.
  • the sealing unit 25 is substantially perpendicular to the axial line of the cam 23 and the chamber 211 The direction of the axis line, wherein the sealing unit 25 and the setting port 213 have good Good close contact effect.
  • the sealing unit 25 has a first portion 251 (ie, the at least one identical portion 152 in the first embodiment) and a second portion 252 (ie, the sealing portion 151 in the first embodiment).
  • the first portion 251 contacts the cam surface 231.
  • the first portion 251 and the second portion 252 are substantially T-shaped, and one end of the second portion 252 contacts the circumferential surface 221 of the ring.
  • the returning mechanism 26 is coupled to the sealing unit 25 for providing a restoring force of the sealing unit 25 toward the cam 23.
  • the returning mechanism 26 is a resilient member.
  • the resilient member is a spring and is disposed between the cam 23 and the body 21 at the second portion 252 of the sealing unit 25.
  • the rotor 22 and the cam 23 each have a rotational speed during operation, and the circumferential surface 221 of the rotor 22 and the cam surface 231 of the cam 23 are shaped according to the sealing unit.
  • the size of the rotor 25, the rotational speed of the rotor 22 and the cam 23, and the distance between the rotor 22 and the cam 23 are designed to rotate with the rotor 22.
  • the first portion 251 of the sealing unit 25 is based on the cam surface 231.
  • the shape drives the sealing unit 25 to move toward the rotor 22 such that the second portion 252 of the sealing unit 25 continues to abut the circumferential surface 221.
  • the compressed gas is led out of the chamber 211 (having different set pressures depending on different check valves); while the rotor 22 continues to rotate during the compression stroke, the convex surface 222 becomes incompletely obscuring the intake portion 214
  • An air intake space 28 is formed in the chamber 211 (Figs. 9, 10), and the uncompressed gas enters the air intake space 28 from the air inlet portion 214, and the rotor 22 rotates to cover the air intake again.
  • 214 proceed to the next Compression stroke.
  • the rotor pump 2 of the present embodiment can also be applied in the formation of a negative pressure environment (for example, to shape In a negative pressure environment or a vacuum state, that is, the rotor pump 2 of the present embodiment can be used as a "compression” or a reverse "vacuum pressure".
  • the air inlet portion 214 is connected to a space or device (not shown) for forming a negative pressure environment or a vacuum state. While the rotor 22 continues to rotate for the compression stroke, and the convex surface 222 does not completely cover the air inlet portion 214, the air intake space 28 in the chamber 211 continues to increase (as shown in FIGS. 9, 10).
  • a negative pressure state (relative to a space or device for forming a negative pressure environment or a vacuum state) is formed in the intake space 28, and a space in the space or device to be formed into a negative pressure environment or a vacuum state is sucked into the intake space 28 .
  • the rotor 22 rotates to cover the intake portion 214 again (Fig. 8)
  • the next gas suction program is also prepared to achieve the effect of a negative pressure environment or a vacuum state.
  • the return mechanism 26 may include a pressure valve 261 and a piston structure 262, wherein the pressure valve 261 is connected to the pipeline 216, and the piston structure 262 is connected thereto.
  • the pressure-pressure valve 261 and the sealing unit 25 regulate the gas pressure passing through the pressure-regulating valve 261, and drive the piston structure 262 to interlock the sealing unit 25.
  • the pressure required to supply the piston structure 262 can be maintained by the compressed gas generated by the compression. Wherein, after the compressed gas generated by each compression stroke is discharged to the pipeline 216, part of the gas passes through the pressure regulating valve 261 to the piston structure 262, and has the function of automatic air supply.
  • the sealing unit 25 When the sealing unit 25 moves toward the rotor 22, the sealing unit 25 generates displacement by the thrust generated by the cam 23, and further changes the relationship of the gas pressure in the piston structure 262 to calculate the sealing unit 25.
  • An optimum moving position when the sealing unit 25 moves toward the cam 23, the gas pressure in the rotor 22 and the piston structure 262 provides the sealing unit 25-thrust, and the return mechanism 26 also provides the sealing unit 25.
  • the restoring force of the displacement to maintain the driven relationship of the sealing unit 25 and the cam surface 231.
  • the displacement restoring force provided by the return mechanism 26 can reduce the friction between the sealing unit 25 and the rotor 22 to reduce wear and improve work efficiency.
  • FIG. 11 there is shown a schematic view of a third embodiment of a rotor pump of the present invention.
  • the rotor type pump 3 of the third embodiment has a plurality of (two) compression units 20.
  • the compression unit 20 has a phase difference between the rotors 22, and the recovery mechanism 26 has a pressure valve 261 and a piston junction.
  • the unit 262, the piston structure 262 of the return mechanism 26 can be coupled to the same pressure relief valve 261 (which can also be coupled to a different pressure relief valve), and the pressure regulating valve 261 regulates the distribution into the piston structure 262. gas pressure.
  • the rotors 22 of the compression units 20 have a phase difference of 180 degrees.
  • the upper rotor 22 contacts the inner wall of the chamber 211 on the left side
  • the other rotor below the figure. 22 contacts the inner wall of the chamber 211 on the right side.
  • the rotor pump 3 of the third embodiment has two compression units 20, and the compression units 20 have a phase difference between the rotors 22, so the compression units 20 completes the gas compression stroke interval for a period of time, thereby providing a more continuous, smoother, and more adequate compressed gas, or more efficiently enabling a space or device to achieve a negative pressure environment or vacuum.
  • the rotor pump 3 of the third embodiment may have more compression units depending on the different needs of the different devices that connect the rotor pump 3.
  • the smooth convex surface of the rotor is in close contact with the inner surface of the chamber of a body, and the gas in the chamber is compressed by rotation.
  • the rotor of the present invention does not need to reciprocate as the existing piston. Exercise, there will be no dead spots, so it is smooth and not easy to produce noise.
  • the rotor type pump of the present invention can form a lubricating and heat-resistant coating on the surface of the rotor without a lubricating fluid, and the rotor type pump of the present invention has an extremely large amount of compression and compression efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Description

转子式泵 技术领域
本发明涉及一种转子式泵, 特别是涉及一种旋转式转子式泵。 背景技术
高压气体(如空气)可被广泛地应用至许多领域, 例如: 引擎增 压、 气动工具、 高压清洁用具及器械运作动力等等。 在现有技术中, 气体的压缩是利用一马达带动一汽缸中的活塞进行往复运动, 其中, 一常压气体先被供入汽缸与活塞所形成的密闭空间中,当活塞持续运 动而减少密闭空间体积时, 该常压气体则被压缩成为高压气体, 被压 缩后的高压气体再通入一储气筒内储存, 以为备用。
现有压缩装置通常为活塞式,在活塞进行往复运动时会产生一上 死点及一下死点, 亦即活塞运动方向折返处, 故现有活塞式压缩装置 运作时较不平顺, 且会产生较大的噪音。 再有, 在现有压缩装置中, 必须设置润滑液于汽缸中,以降低摩擦使活塞得以较顺畅地于汽缸内 作往复运动, 当缺乏润滑液或润滑液不足时, 活塞与汽缸间会产生极 大的摩擦, 轻者影响压缩效率, 重者可能损伤汽缸结构或温度过高造 成活塞与汽缸烧结。
因此, 实有必要提供一种创新且进歩性的转子式泵, 以解决上述 问题。 发明内容
本发明的目的在于提供一种转子式泵, 以解决上述现有技术中的 各种问题。
为了实现上述目的, 本发明提供了一种转子式泵, 该转子式泵包 括一本体、 一转子、 至少一凸轮及一密封单元。 该本体具有一腔室、 一进气部及一出气部。该转子轴设于该腔室中,该转子具有一环周面, 该环周面至少具有一凸面, 该凸面紧密接触该腔室的内面。每一凸轮 具有一凸轮面, 该至少一凸轮与该转子配合转动。该密封单元具有一 密封部分及至少一同歩部分, 该密封部分接触该环周面, 该至少一同 歩部分接触该凸轮面, 该密封部分与该至少一同歩部分同歩移动。其 中, 该转子及该至少一凸轮进行转动, 该至少一同歩部分依据相应的 凸轮面移动, 使得同歩移动的该密封部分持续紧密接触该环周面, 气 体由该进气部进入该腔室, 该凸面转动至密封该进气部之后, 该密封 部分、该凸面与该腔室的内面形成一实质密闭的空间, 且转动的该转 子持续压缩该腔室中的气体,该腔室中的气体压缩至一设定压力时由 该出气部导出。
在本发明的转子式泵中,利用该转子平滑的凸面紧密接触该腔室 的内面, 再经由旋转方式对该腔室内的气体进行压缩, 本发明的转子 不需如现有活塞进行往复式运动, 不会有死点产生, 故运作平顺且不 容易产生噪音。再有, 本发明的转子式泵可形成一具有润滑及耐热的 覆层于转子的表面而不需润滑液,且本发明的转子式泵具有极大的压 缩量及压缩效率。 附图说明
以下附图仅旨在于对本发明做示意性说明和解释,并不限定本发 明的范围。
图 1A显示本发明转子式泵的第一实施例的轴向剖面图; 图 1B显示沿图 1A中 1B-1B的剖面图;
图 1C显示沿图 1A中 1C-1C的剖面图;
图 2至图 4显示本发明第一实施例的转子式泵进行压缩行程的示 意图;
图 5显示本发明第一实施例的转子式泵中,具有线性导引装置的 密封单元与转子及凸轮的配合示意图;
图 6显示本发明转子式泵的第二实施例的示意图;
图 7显示本发明第二实施例的转子式泵具一节压阀及一活塞结构 的回复机构的示意图; 图 8至 10显示本发明第二实施例的转子式泵进行压缩行程的示意 及
图 11显示本发明第三实施例的转子式泵的示意图。
主要元件标号说明:
1 本发明的第一实施例的转子式泵
2 本发明的第二实施例的转子式泵
3 本发明的第三实施例的转子式泵
11 本体
12 转子
13 凸轮
14 转轴
15 密封单元
16 配重元件
21 本体
22 转子
23 凸轮
24 转轴
25 密封单元
26 回复机构
27 密闭空间
28 进气空间
111 腔室
112 容设空间
113 进气部
114 出气部
115 逆止阀
116 管路
121 环周面
122 凸面 123 覆层
131 凸轮面
151 密封部分
152 同歩部分
153 基部
154 回复机构
155 线性导引装置
156 线性轴承
157 导引轴
158 导引部
211 腔室
212 出气部
213 设置口
214 进气部
215 逆止阀
216 管路
221 环周面
222 凸面
223 覆层
231 凸轮面
232 覆层
251 密封单元的第一部分
252 密封单元的第二部分
261 节压阀
262 活塞结构 具体实施方式
为了对本发明的技术特征、 目的和效果有更加清楚的理解, 现对 照附图说明本发明的具体实施方式。 本发明的转子式泵包括一本体、一转子、至少一凸轮及一密封单 元。 其中, 该本体具有一腔室、 一进气部及一出气部。 该密封单元具 有一密封部分及至少一同歩部分。图 1A显示本发明转子式泵的第一实 施例的轴向剖面图; 图 1B显示沿图 1A中 1B-1B的剖面图; 图 1C显示沿 图 1A中 1C-1C的剖面图。 配合参考图 1A至 1C, 在本实施例中, 该转子 式泵 1包括一本体 11、 一转子 12、 二凸轮 13、 一转轴 14及一密封单元 15。 该本体 11具有一腔室 111、 二容设空间 112、 一进气部 113及一出 气部 114, 该等容设空间 112设置于该腔室 111的二侧。 可理解的是, 该本体 11可仅包括一容设空间 112, 该容设空间 112设置于该腔室 111 的一侧。
在本实施例中, 该腔室 111为一空心圆柱状空间, 要注意的是, 该腔室 111与该转子 12可具有任何互相配合的形状, 亦即该腔室 111 的形状不限定为空心圆柱状。 气体由该进气部 113进入该腔室 111中, 该出气部 114具有一逆止阀 115及一管路 116,该逆止阀 115连通该腔室 111内部,使气体可由该腔室 111中导出而不能逆向进入该腔室 111中, 该管路 116连接该逆止阀 115, 用以引导由该腔室 111中排出的气体。
在本实施例中, 该出气部 114包括一连外通道 117及一连内通道 118。 该逆止阀 115连接该连外通道 117。 该连外通道 117由该本体 11 的一侧壁开孔至一设定深度,该连内通道 118连通该连外通道 117且朝 该腔室 111方向开孔至导通该腔室 111 (形成一实质上为 L形的通道)。 较佳地, 该连内通道 118的截面尺寸大于该连外通道 117的截面尺寸, 且该连内通道 118开孔至连通该腔室 111的周缘部分。
该转子 12轴设于该腔室 111中。 在本实施例中, 该转子 12的一剖 面为凸轮状, 其以所设计的中心运转。 该转子 12具有一环周面 121, 该环周面 121至少具有一凸面 122,该凸面 122紧密接触该腔室 111的内 面。在本实施例中, 该等凸轮 13是通过该转轴 14连接该转子 12, 该转 子 12及该凸轮 13为同轴凸轮型, 该转子 12与该凸轮 13的线型相同。每 一凸轮 13具有一凸轮面 131, 该等凸轮 13与该转子 12配合转动 (在本 实施例中为同歩转动) 。 该转子 12及该凸轮 13至少其中之一可另具有一覆层。在本实施例 中,仅该转子 12的环周面 121具有一覆层 123,该凸轮 13不具有一覆层, 在其他应用中, 该转子 12及该凸轮 13可皆具有一覆层 (图中未示) 。 较佳地, 该覆层 123为铁氟龙材质。 该覆层 123可提升该凸面 122接触 该腔室 111的内面的润滑度及密合度,且可降低该转子 12与该腔室 111 的内面产生的摩擦, 故可提升压缩效率、 不损伤该腔室 111的结构及 避免该转子 12与该腔室 111烧结。
该转轴 14连接该转子 12及该等凸轮 13。其中, 该转轴 14连接至一 转动动力源(图中未示) , 该转动动力源通过该转轴 14驱动该转子 12 及该等凸轮 13。在本实施例中, 该转轴 14位于该转子 12及该等凸轮 13 的轴心线上, 亦即, 该转子 12及该等凸轮 13为同轴设置。
该转子式泵 1可另包括至少一配重元件 16, 用以平衡转动, 以提 高转速。 较佳地, 该至少一配重元件 16设置于该转轴 14。 通过该至少 一配重元件 16的适当配置(例如设置的重量及位置等) (在本实施例 中设置于图 1中右边凸轮 13的右侧) , 如此可平衡转动, 转速因而可 提高, 因此该至少一配重元件 16除可提高该转子 12的转速外, 亦可使 得该转子 12及该等凸轮 13的转动更加稳定。可理解的是, 在其他应用 中, 该转子式泵 1可另包括多个配重元件, 该等配重元件设置于该转 轴 14且位于该转子 12的二侧 (分别位于该本体 11的二侧) 。
在本实施例中, 该密封单元 15具有一密封部分 151、 二同歩部分
152、一基部 153及一回复机构 154。该密封部分 151接触该环周面 121, 该等同歩部分 152分别接触该等凸轮面 131, 该密封部分 151与该等同 歩部分 152同歩移动。
在本实施例中, 该密封部分 151穿设过该本体 11且接触该转子 12 的该环周面 121, 且该密封部分 151位于该进气部 113与该出气部 114 之间。 该等同歩部分 152分别穿设过该本体 11且分别接触该等凸轮面 131。该基部 153连接该密封部分 151及该等同歩部分 152, 且该密封部 分 151位于该等同歩部分 152之间。
在本实施例中, 该回复机构 154为一弹簧机构。 该回复机构 154 连接该基部 153, 该回复机构 154提供一压力使该密封部分 151持续紧 密接触该环周面 121。可理解的是, 该回复机构 154也提供一压力使该 等同歩部分 152持续紧密接触该等凸轮面 131。
该转子 12及该等凸轮 13进行转动, 该等同歩部分 152依据相应的 凸轮面 131移动,使得同歩移动的该密封部分 151持续紧密接触该环周 面 121。气体由该进气部 113进入该腔室 111, 该转子 12的凸面 122转动 至密封该进气部 113之后, 该密封部分 151、 该凸面 122与该腔室 111 的内面形成一实质密闭的空间, 且转动的该转子 12持续压缩该腔室 111中的气体, 该腔室 111中的气体压缩至一设定压力时由该出气部 114导出。
配合参考图 1B及 1C、 图 2至图 4, 举例说明, 当该等凸轮面 131旋 转向右, 该等凸轮面 131顶推该等同歩部分 152向右移动, 该密封部分 151与该等同歩部分 152同歩位移,因此该密封部分 151同时向右移动, 此时, 该转子 12的凸面 122同歩地向右移动, 其位移量与该密封部分 151向右移动的位移量相同, 并且该回复机构 154提供该密封部分 151 一向下的压力, 故该密封部分 151可持续紧密接触该环周面 121。
反之, 当该等凸轮面 131旋转向左, 该回复机构 154提供该密封部 分 151—向左的压力, 该等同歩部分 152分别持续接触该等凸轮面 131 且持续向左移动, 该密封部分 151与该等同歩部分 152同歩位移, 因此 该密封部分 151同时向左移动, 此时, 该转子 12的凸面 122同歩地向左 移动, 其位移量与该密封部分 151向左移动的位移量相同, 并且该回 复机构 154提供该密封部分 151—向左的压力, 故该密封部分 151可持 续紧密接触该环周面 121。
在本实施例中, 在运作过程中, 该转子 12及该等凸轮 13具有相同 转速, 该等凸轮 13的凸轮面 131的形状配合该转子 12的该环周面 121 的形状(该转子 12与该凸轮 13的线型相同) , 且该等凸轮 13配合该转 子 12转动。
当该凸面 122未密封该进气部 113时 (如图 4所示) , 气体由该进 气部 113进入该腔室 111中; 当该凸面 122密封该进气部 113时(如图 1B 所示)开始进行压缩行程, 在压缩行程中该密封部分 151、 该凸面 122 与该腔室 111的内面形成一实质密闭的空间, 该转子 12持续旋转使得 该密闭空间越来越小 (如图 2至图 3所示) , 待该腔室 111中的气体压 缩至一设定压力时, 由该出气部 114的该逆止阀 115, 控制达到该设定 压力的压缩气体由该腔室 111中导出 (视不同逆止阀而具有不同的设 定压力) ·' 在进行压缩行程中该转子 12持续旋转的同时, 该凸面 122 变成未完全遮盖该进气部 113而于该腔室 111中产生一进气空间(如图 2至 4所示) , 未经压缩的气体由该进气部 113进入该进气空间, 当该 转子 12旋转而再次遮盖该进气部 113时 (如图 1B所示) , 进气行程终 止, 开始压缩, 再开始进行下一次的压缩行程。
要说明的是, 较佳地, 该连内通道 118的截面尺寸大于该连外通 道 117的截面尺寸, 在进行压缩行程中, 可控制在该转子 12持续旋转 至该凸面 122几乎完全遮盖该连内通道 118的开口时(亦达到该设定压 力)才开启该逆止阀 115, 使压缩气体由该腔室 111中导出。 如此, 该 腔室 111的空间可完全被利用, 故可增加气体的压缩效能。
配合参考图 1A及 5, 在其他应用中, 该密封单元 15可另包括至少 一线性导引装置 155, 每一线性导引装置 155包括一线性轴承 156及一 导引轴 157, 该线性轴承 156枢设于该转轴 14且具有一导引部 158。 该 导引轴 157设置于该密封部分 151的一侧并连接该基部 153, 且依据该 导引部 158与该密封部分 151及同歩部分 152同歩移动。
本发明的转子式泵 1也可应用在形成负压环境中(例如:用以形成 负压环境或真空状态),亦即,本发明的转子式泵 1可作为 "压缩 "外, 亦可反向作 "真空排压" 。 其中该进气部 113连接欲形成负压环境或 真空状态的一空间或装置(图未示出)。当该转子 12持续旋转且该凸面 122未完全遮盖该进气部 113, 于该腔室 111中的该进气空间持续增加 (如图 2至图 4所示), 此时该进气空间中会形成负压状态 (相对于欲形 成负压环境或真空状态的空间或装置), 欲形成负压环境或真空状态 的空间或装置中的气体即被吸入该进气空间。当该转子 12旋转而再次 遮盖该进气部 113时(如图 1B所示), 同时也准备进行下一次气体抽吸 程序, 以达成负压环境或真空状态的功效。
参考图 6, 其显示本发明转子式泵的第二实施例的示意图。 在本 实施例中, 该转子式泵 2包括一本体 21、 一转子 22、 一凸轮 23、 二转 轴 24、 一密封单元 25及一回复机构 26。
该本体 21具有一腔室 211、 一出气部 212、 一设置口 213及一进气 部 214, 该设置口 213形成于该出气部 212与该进气部 214之间。在本发 明第二实施例的转子式泵 2中, 其包括至少一压缩单元。 在本实施例 中, 该转子式泵 2具有一压缩单元 20, 该压缩单元 20包括一腔室 211、 一出气部 212、 一设置口 213、 一进气部 214、 一转子 22、 一凸轮 23、 二转轴 24、 一密封单元 25及一回复机构 26。在本实施例中, 每一腔室 211、 一出气部 212、 一设置口 213、 一进气部 214构成一汽缸的结构。
在本实施例中, 该本体 21为一空心圆柱, 可理解的是, 该本体 21 也可为如图 1A至 1C所示的具有空心圆柱状腔室的结构。 在本实施例 中, 该出气部 212具有一逆止阀 215及一管路 216, 该逆止阀 215连通该 腔室 211,使气体可由该腔室 211中导出而不能逆向进入该腔室 211中, 该管路 216连接该逆止阀 215, 用以引导由该腔室 211中排出的气体。
该转子 22通过一转轴 24沿该本体 21的轴心线 (亦为该腔室 211的 轴心线)轴设于该腔室 211中。 该转子 22具有一环周面 221, 该环周面 221具有一凸面 222,该凸面 222紧贴该腔室 211的内壁。在本实施例中, 该转子 22及该凸轮 23为异轴共轭轮型 (该转子 22与共轭的该凸轮 23 轮线型相互补偿)。该凸轮 23设置于另一转轴 24且轴心线实质上平行 该本体 21的轴心线, 且该凸轮 23具有一凸轮面 231。 其中, 该转子 22 及该凸轮 23至少其中之一可另具有一覆层。
在本实施例中, 该转子 22具有一覆层 223且该凸轮 23也具有一覆 层 232, 在其他应用中, 亦可仅该转子 22具有一覆层, 或仅该凸轮 23 具有一覆层。 较佳地, 该覆层 223及 232为铁氟龙材质。
该密封单元 25穿设过该设置口 213且于该转子 22与该凸轮 23之 间, 在本实施例中, 该密封单元 25实质上垂直于该凸轮 23的轴心线及 该腔室 211的轴心线方向,其中该密封单元 25与该设置口 213间具有良 好的紧密接触效果。在本实施例中,该密封单元 25具有一第一部分 251 (即第一实施例中的该至少一同歩部分 152 )及一第二部分 252 (即第 一实施例中的该密封部分 151 ) , 该第一部分 251接触该凸轮面 231, 该第一部分 251及该第二部分 252实质上呈 T形,该第二部分 252的一端 接触该环周面 221。
该回复机构 26连接该密封单元 25,用以提供该密封单元 25朝向该 凸轮 23活动的一回复力。 较佳地, 该回复机构 26为一弹性元件, 在本 实施例中,该弹性元件为弹簧且于该凸轮 23与该本体 21之间套设于该 密封单元 25的该第二部分 252。
在本实施例中, 在运作过程中, 该转子 22及该凸轮 23各自具有一 转速, 且该转子 22的该环周面 221及该凸轮 23的该凸轮面 231的形状, 是根据该密封单元 25的尺寸、该转子 22及该凸轮 23的转速及该转子 22 与该凸轮 23间的距离设计, 该凸轮 23配合该转子 22转动, 该密封单元 25的该第一部分 251根据该凸轮面 231的形状,驱使该密封单元 25向该 转子 22移动, 使该密封单元 25的该第二部分 252持续紧贴该环周面 221。
其中, 当该凸面 222未密封该进气部 214时(如图 6、 9、 10), 气体 由该进气部 214进入该腔室 211中; 当该凸面 222密封该进气部 214时 (如图 8)开始进行压缩行程, 在压缩行程中该密封单元 25的该第二部 分 252、 该凸面 222与该腔室 211的内壁形成一实质密闭的空间 27, 该 转子 22持续旋转使得该密闭空间 27越来越小(如图 8至图 10), 待该腔 室 211中的气体压缩至一设定压力时, 由该出气部 212的该逆止阀 215, 控制达到该设定压力的压缩气体由该腔室 211中导出(视不同逆止阀 而具有不同的设定压力); 在进行压缩行程中该转子 22持续旋转的同 时, 该凸面 222变成未完全遮盖该进气部 214而于该腔室 211中产生一 进气空间 28 (如图 9、 10), 未经压缩的气体由该进气部 214进入该进气 空间 28, 当该转子 22旋转而再次遮盖该进气部 214时(如图 8), 进行下 一压缩行程。
本实施例的转子式泵 2也可应用在形成负压环境中(例如:用以形 成负压环境或真空状态),亦即,本实施例的转子式泵 2可作为"压缩" 夕卜, 亦可反向作 "真空排压" 。 其中该进气部 214连接欲形成负压环 境或真空状态的一空间或装置(图未示出)。当该转子 22持续旋转进行 压缩行程的同时,且该凸面 222未完全遮盖该进气部 214,于该腔室 211 中的该进气空间 28持续增加(如图 9、 10), 此时该进气空间 28中会形 成负压状态 (相对于欲形成负压环境或真空状态的空间或装置),欲形 成负压环境或真空状态的空间或装置中的气体即被吸入该进气空间 28。 当该转子 22旋转而再次遮盖该进气部 214时(如图 8), 同时也准备 进行下一次气体抽吸程序, 以达成负压环境或真空状态的功效。
另外, 配合参考图 6及图 7, 在其他应用中, 该回复机构 26可包括 一节压阀 261及一活塞结构 262, 其中该节压阀 261连接该管路 216, 该 活塞结构 262连接该节压阀 261及该密封单元 25, 利用该节压阀 261调 控通过的气体压力, 驱动该活塞结构 262以连动该密封单元 25。并且, 通过该节压阀 261的控制, 可利用压缩产生的压缩气体保持供给该活 塞结构 262所需的压力。 其中, 每次压缩行程所产生的压缩气体排至 该管路 216后, 部分气体则通过该节压阀 261而至该活塞结构 262, 具 有自动补气的功能。
当该密封单元 25朝该转子 22移动时,该密封单元 25借由该凸轮 23 产生的推力产生位移, 并且更进一歩配合该活塞结构 262内的气体压 力的关系, 以计算出该密封单元 25最佳的移动位置; 当该密封单元 25 朝该凸轮 23移动时, 该转子 22及该活塞结构 262内的气体压力提供该 密封单元 25—推力, 另外, 该回复机构 26还提供该密封单元 25位移的 回复力, 以保持该密封单元 25与该凸轮面 231的从动关系。 其中, 该 回复机构 26所提供的位移回复力可减少该密封单元 25与该转子 22间 的摩擦力, 以减少磨损及提升工作效能。
参考图 11, 其显示本发明转子式泵的第三实施例的示意图。与上 述第二实施例的转子式泵 2不同之处在于,该第三实施例的转子式泵 3 具有多个(二个)压缩单元 20。在本实施例中, 该等压缩单元 20的转子 22间具有一相位差, 且该回复机构 26为具有一节压阀 261及一活塞结 构 262的单元, 该等回复机构 26的活塞结构 262可连接至同一节压阀 261 (也可连接至不同的节压阀) , 且由该节压阀 261调控分配进入该 等活塞结构 262的气体压力。
在本实施例中, 该等压缩单元 20的转子 22间具有一 180度的相位 差, 例如, 在图 11中, 图上方转子 22接触左侧的该腔室 211内壁, 则 图下方另一转子 22接触右侧的该腔室 211内壁。 关于该第三实施例的 其他构件的详细说明, 请参考上述第二实施例中相同构件的叙述, 在 此不再加以赘述。
相较于第二实施例的转子式泵 2,该第三实施例的转子式泵 3因具 有二压缩单元 20, 且该等压缩单元 20的转子 22间具有一相位差, 故该 等压缩单元 20完成气体压缩行程间隔一时间, 因此可提供更连续、更 顺畅及更充足的压缩气体,或更有效率地使一空间或装置达成负压环 境或真空状态。 当然, 依据连接该转子式泵 3的不同装置的不同需求, 该第三实施例的转子式泵 3可具有更多个压缩单元。
在本发明的转子式泵中,利用该转子平滑的凸面紧密接触一本体 的腔室的内面, 再经由旋转方式对该腔室内的气体进行压缩, 本发明 的转子不需如现有活塞进行往复式运动, 不会有死点产生, 故运作平 顺且不容易产生噪音。再有, 本发明的转子式泵可形成一具有润滑及 耐热的覆层于转子的表面而不需润滑液,且本发明的转子式泵具有极 大的压缩量及压缩效率。
以上所述仅为本发明示意性的具体实施方式,对熟悉本行技艺的 人士而言为一广泛的揭示, 并非用以限定本发明的范围。任何本领域 的技术人员,在不脱离本发明的构思和原则的前提下所作出的各种变 化与修改, 均应属于本发明保护的范围。

Claims

权利要求书
1、 一种转子式泵, 其特征在于, 所述转子式泵包括:
一本体, 具有一腔室、 一进气部及一出气部;
一转子, 轴设于该腔室中, 该转子具有一环周面, 该环周面至少 具有一凸面, 该凸面紧密接触该腔室的内面;
至少一凸轮, 每一凸轮具有一凸轮面, 该至少一凸轮与该转子配 合转动; 及
一密封单元, 具有一密封部分及至少一同歩部分, 该密封部分接 触该环周面, 该至少一同歩部分接触该凸轮面, 该密封部分与该至少 一同歩部分同歩移动;
其中, 该转子及该至少一凸轮进行转动, 该至少一同歩部分依据 相应的凸轮面移动,使得同歩移动的该密封部分持续紧密接触该环周 面, 气体由该进气部进入该腔室, 该凸面转动至密封该进气部之后, 该密封部分、该凸面与该腔室的内面形成一实质密闭的空间, 且转动 的该转子持续压缩该腔室中的气体,该腔室中的气体压缩至一设定压 力时由该出气部导出。
2、 根据权利要求 1所述的转子式泵, 其特征在于, 该本体另包 括至少一容设空间, 该至少一容设空间设置于该腔室的一侧, 该密封 部分穿设过该本体且接触该环周面,该至少一同歩部分分别穿设过该 本体且分别接触该凸轮面。
3、 根据权利要求 1所述的转子式泵, 其特征在于, 该本体包括 二容设空间, 该至少一凸轮包括二凸轮, 该至少一同歩部分包括二同 歩部分, 所述容设空间设置于该腔室的二侧, 该密封部分穿设过该本 体且接触该环周面,所述同歩部分分别穿设过该本体且分别接触所述 凸轮面。
4、 根据权利要求 1所述的转子式泵, 其特征在于, 另包括一转 轴, 该转轴连接该转子及该至少一凸轮。
5、 根据权利要求 4所述的转子式泵, 其特征在于, 该密封单元 另包括至少一线性导引装置,每一线性导引装置包括一线性轴承及一 导引轴, 该线性轴承枢设于该转轴且具有一导引部, 该导引轴设置于 该密封部分的一侧且依据该导引部与该密封部分同歩移动。
6、 根据权利要求 4所述的转子式泵, 其特征在于, 另包括至少 一配重元件, 用以平衡转动, 以提高转速。
7、 根据权利要求 1所述的转子式泵, 其特征在于, 该出气部具 有一逆止阀及一管路, 该逆止阀连通该腔室, 该管路连接该逆止阀。
8、 根据权利要求 1所述的转子式泵, 其特征在于, 该密封单元 另包括一基部及一回复机构,该基部连接该密封部分及该至少一同歩 部分, 该回复机构连接该基部, 该回复机构提供一压力使该密封部分 持续紧密接触该环周面。
9、 根据权利要求 1所述的转子式泵, 其特征在于, 该本体另包 括一设置口, 该设置口形成于该出气部与该进气部之间, 该凸轮的轴 心线平行该腔室的轴心线,该密封单元穿设过该设置口且于该转子与 该凸轮之间,该密封单元垂直于该凸轮的轴心线及该腔室的轴心线方 向, 该密封部分及该至少一同歩部分位于该密封单元的二端, 该凸轮 驱使该至少一同歩部分, 使该密封部分持续紧贴该环周面。
10、根据权利要求 9所述的转子式泵, 其特征在于, 该出气部具 有一逆止阀及一管路, 该逆止阀连通该腔室, 该管路连接该逆止阀。
11、根据权利要求 9所述的转子式泵, 其特征在于, 该至少一同 歩部分接触该凸轮面, 该至少一同歩部分及该密封部分呈 T形。
12、根据权利要求 9所述的转子式泵, 其特征在于, 该压缩单元 另包括一回复机构, 该回复机构连接该密封单元, 用以提供该密封单 元朝向该凸轮活动的一回复力。
13、 根据权利要求 12所述的转子式泵, 其特征在于, 该回复机 构另包括一节压阀及一活塞结构, 该节压阀连接该出气部, 该活塞结 构连接该节压阀且连动该密封单元。
14、根据权利要求 9所述的转子式泵, 其特征在于, 包括至少一 压缩单元, 每一压缩单元包括一腔室、 一出气部、 一设置口、 一进气 部、 一转子、 一凸轮及一密封单元。
15、 根据权利要求 14所述的转子式泵, 其特征在于, 包括多个 压缩单元, 所述压缩单元的转子间具有一相位差。
PCT/CN2010/076415 2009-09-23 2010-08-27 转子式泵 WO2011035677A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MYPI2012001303A MY179758A (en) 2009-09-23 2010-08-27 Rotor type pump
JP2012530115A JP5480387B2 (ja) 2009-09-23 2010-08-27 ロータ型ポンプ
CA2774107A CA2774107C (en) 2009-09-23 2010-08-27 Rotor type pump
EP10818371A EP2481929A1 (en) 2009-09-23 2010-08-27 Rotary pump
US13/381,527 US8684713B2 (en) 2009-09-23 2010-08-27 Rotor type pump
AU2010297740A AU2010297740B2 (en) 2009-09-23 2010-08-27 Rotary pump
KR1020127007004A KR101290849B1 (ko) 2009-09-23 2010-08-27 로터리 펌프
ZA2012/01887A ZA201201887B (en) 2009-09-23 2012-03-14 Rotary type pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910174216.9 2009-09-23
CN2009101742169A CN102022320B (zh) 2009-09-23 2009-09-23 连动互轭泵

Publications (1)

Publication Number Publication Date
WO2011035677A1 true WO2011035677A1 (zh) 2011-03-31

Family

ID=43795382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076415 WO2011035677A1 (zh) 2009-09-23 2010-08-27 转子式泵

Country Status (10)

Country Link
US (1) US8684713B2 (zh)
EP (1) EP2481929A1 (zh)
JP (1) JP5480387B2 (zh)
KR (1) KR101290849B1 (zh)
CN (1) CN102022320B (zh)
AU (1) AU2010297740B2 (zh)
CA (1) CA2774107C (zh)
MY (1) MY179758A (zh)
WO (1) WO2011035677A1 (zh)
ZA (1) ZA201201887B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108105092A (zh) * 2017-12-19 2018-06-01 珠海格力节能环保制冷技术研究中心有限公司 压缩机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008531A1 (en) * 1978-08-18 1980-03-05 Ronald Edward Smolinski Rotary machine
CN2156304Y (zh) * 1993-03-15 1994-02-16 殷参 一种柱塞泵驱动装置
CN2558791Y (zh) * 2002-06-24 2003-07-02 汤科儿 轴向贯穿滑片气压机
CN2767709Y (zh) * 2005-01-14 2006-03-29 战旗 双级压缩式凸轮压缩机
CN101105174A (zh) * 2007-07-06 2008-01-16 薛亮亮 低功耗滚动活塞式制冷压缩机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US154298A (en) * 1874-08-18 Improvement in rotary engines
US151472A (en) * 1874-06-02 Improvement in rotary engines
US1698815A (en) * 1924-04-29 1929-01-15 Joseph F Jaworowski Duplex rotary pump
US3649141A (en) * 1970-10-14 1972-03-14 Charles E Belcher Rotary pump with integral rotor construction
US3813193A (en) * 1972-07-31 1974-05-28 Gen Electric Rotary compressor including means for reducing vane slot wear
JPS63189684A (ja) * 1987-02-03 1988-08-05 Matsushita Electric Ind Co Ltd ロ−タリ圧縮機
US6729864B2 (en) * 2000-07-10 2004-05-04 E. A. Technical Services Limited Rotary positive displacement machine
TWI263762B (en) * 2002-08-27 2006-10-11 Sanyo Electric Co Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP2004239080A (ja) * 2003-02-03 2004-08-26 Seiko Epson Corp ロータリコンプレッサ及びコンプレッサ装置
KR101234824B1 (ko) * 2005-01-18 2013-02-20 삼성전자주식회사 다단압축식 회전압축기
JP2009174461A (ja) * 2008-01-25 2009-08-06 Daikin Ind Ltd 圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0008531A1 (en) * 1978-08-18 1980-03-05 Ronald Edward Smolinski Rotary machine
CN2156304Y (zh) * 1993-03-15 1994-02-16 殷参 一种柱塞泵驱动装置
CN2558791Y (zh) * 2002-06-24 2003-07-02 汤科儿 轴向贯穿滑片气压机
CN2767709Y (zh) * 2005-01-14 2006-03-29 战旗 双级压缩式凸轮压缩机
CN101105174A (zh) * 2007-07-06 2008-01-16 薛亮亮 低功耗滚动活塞式制冷压缩机

Also Published As

Publication number Publication date
US8684713B2 (en) 2014-04-01
ZA201201887B (en) 2013-05-29
CA2774107A1 (en) 2011-03-31
KR101290849B1 (ko) 2013-07-29
JP5480387B2 (ja) 2014-04-23
AU2010297740B2 (en) 2014-06-05
JP2013505391A (ja) 2013-02-14
AU2010297740A1 (en) 2012-04-19
MY179758A (en) 2020-11-12
CN102022320B (zh) 2013-01-09
US20120189481A1 (en) 2012-07-26
EP2481929A1 (en) 2012-08-01
CN102022320A (zh) 2011-04-20
KR20120051739A (ko) 2012-05-22
CA2774107C (en) 2014-06-10

Similar Documents

Publication Publication Date Title
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024866A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2017024864A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN104100299A (zh) 转动装置及应用其的流体马达、发动机、压缩机和泵
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN103591022B (zh) 一种滚动活塞类流体机械的滑块式径向柔性补偿机构
KR20050011523A (ko) 용량가변 회전압축기
WO2011035677A1 (zh) 转子式泵
US20160281715A1 (en) Vane Pump Assembly
WO2010045767A1 (zh) 静止叶片式压缩机
JP6262150B2 (ja) 加圧流体出力用のコンプレッサ
CN114278533A (zh) 一种化学真空泵
KR20150132613A (ko) 싱글 스크류 공기압축기
US5141423A (en) Axial flow fluid compressor with oil supply passage through rotor
TW201111633A (en) Linked conjugate pump
KR20150117012A (ko) 진공 펌프장치
WO2023103871A1 (zh) 流体机械和换热设备
CN105626531A (zh) 一种干式旋片真空泵
JP2001521100A (ja) 媒質の搬送又は媒質による駆動のための装置
TWM557778U (zh) 氣動式液體輸送裝置
CN108716465B (zh) 一种具有单向阀功能的密封结构和涡旋压缩机
JP2010523881A (ja) 圧縮方法及び手段
JP3940661B2 (ja) 斜板容積可変室型流体機械
KR100493316B1 (ko) 로터리 압축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818371

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13381527

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2774107

Country of ref document: CA

Ref document number: 621/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010818371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010818371

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007004

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012530115

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010297740

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001284

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2010297740

Country of ref document: AU

Date of ref document: 20100827

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012006362

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012006362

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112012006362

Country of ref document: BR