WO2011034604A2 - Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof - Google Patents
Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof Download PDFInfo
- Publication number
- WO2011034604A2 WO2011034604A2 PCT/US2010/002545 US2010002545W WO2011034604A2 WO 2011034604 A2 WO2011034604 A2 WO 2011034604A2 US 2010002545 W US2010002545 W US 2010002545W WO 2011034604 A2 WO2011034604 A2 WO 2011034604A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formulation
- stable
- liquid
- hyaluronidase
- disease
- Prior art date
Links
- 108060003951 Immunoglobulin Proteins 0.000 title claims abstract description 431
- 102000018358 immunoglobulin Human genes 0.000 title claims abstract description 431
- 239000000203 mixture Substances 0.000 title claims abstract description 303
- 238000009472 formulation Methods 0.000 title claims abstract description 244
- 108010003272 Hyaluronate lyase Proteins 0.000 title claims abstract description 203
- 229960002773 hyaluronidase Drugs 0.000 title claims abstract description 198
- 238000000034 method Methods 0.000 title claims abstract description 138
- 102000001974 Hyaluronidases Human genes 0.000 title claims abstract description 70
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 93
- 239000007788 liquid Substances 0.000 claims abstract description 89
- 201000010099 disease Diseases 0.000 claims abstract description 80
- 238000007920 subcutaneous administration Methods 0.000 claims abstract description 61
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 122
- 235000001014 amino acid Nutrition 0.000 claims description 113
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 110
- 229940024606 amino acid Drugs 0.000 claims description 108
- 229920001184 polypeptide Polymers 0.000 claims description 107
- 150000001413 amino acids Chemical class 0.000 claims description 103
- 102100021102 Hyaluronidase PH-20 Human genes 0.000 claims description 49
- 238000011282 treatment Methods 0.000 claims description 49
- 229920001223 polyethylene glycol Polymers 0.000 claims description 48
- 238000001802 infusion Methods 0.000 claims description 44
- 238000001990 intravenous administration Methods 0.000 claims description 44
- 239000002202 Polyethylene glycol Substances 0.000 claims description 39
- 101150055528 SPAM1 gene Proteins 0.000 claims description 39
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 35
- 101100178973 Homo sapiens SPAM1 gene Proteins 0.000 claims description 34
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 32
- 230000000295 complement effect Effects 0.000 claims description 28
- 241000282414 Homo sapiens Species 0.000 claims description 27
- 238000000746 purification Methods 0.000 claims description 27
- 230000007812 deficiency Effects 0.000 claims description 22
- 208000028529 primary immunodeficiency disease Diseases 0.000 claims description 22
- 241000283690 Bos taurus Species 0.000 claims description 20
- 239000011780 sodium chloride Substances 0.000 claims description 20
- 239000003381 stabilizer Substances 0.000 claims description 19
- 208000015181 infectious disease Diseases 0.000 claims description 18
- 239000007924 injection Substances 0.000 claims description 18
- 238000002347 injection Methods 0.000 claims description 18
- 230000003612 virological effect Effects 0.000 claims description 18
- 239000004471 Glycine Substances 0.000 claims description 17
- 229960002449 glycine Drugs 0.000 claims description 17
- 238000000108 ultra-filtration Methods 0.000 claims description 16
- 238000005194 fractionation Methods 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 14
- 239000003599 detergent Substances 0.000 claims description 12
- 239000003814 drug Substances 0.000 claims description 12
- 208000023275 Autoimmune disease Diseases 0.000 claims description 11
- 208000035475 disorder Diseases 0.000 claims description 11
- 230000002255 enzymatic effect Effects 0.000 claims description 11
- 208000027866 inflammatory disease Diseases 0.000 claims description 11
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 10
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims description 10
- 150000003841 chloride salts Chemical class 0.000 claims description 10
- 230000002757 inflammatory effect Effects 0.000 claims description 10
- 230000001154 acute effect Effects 0.000 claims description 9
- 230000001580 bacterial effect Effects 0.000 claims description 9
- 238000011026 diafiltration Methods 0.000 claims description 9
- 230000003442 weekly effect Effects 0.000 claims description 9
- 201000010717 Bruton-type agammaglobulinemia Diseases 0.000 claims description 8
- 201000003874 Common Variable Immunodeficiency Diseases 0.000 claims description 8
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 claims description 8
- 208000016349 X-linked agammaglobulinemia Diseases 0.000 claims description 8
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 claims description 8
- 238000003776 cleavage reaction Methods 0.000 claims description 8
- 229960002429 proline Drugs 0.000 claims description 8
- 230000007017 scission Effects 0.000 claims description 8
- 208000029462 Immunodeficiency disease Diseases 0.000 claims description 7
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 claims description 7
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 7
- 208000008190 Agammaglobulinemia Diseases 0.000 claims description 6
- 241000701022 Cytomegalovirus Species 0.000 claims description 6
- 208000002250 Hematologic Neoplasms Diseases 0.000 claims description 6
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 claims description 6
- 206010020983 Hypogammaglobulinaemia Diseases 0.000 claims description 6
- 208000034578 Multiple myelomas Diseases 0.000 claims description 6
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 6
- 206010034277 Pemphigoid Diseases 0.000 claims description 6
- 201000011152 Pemphigus Diseases 0.000 claims description 6
- 206010044223 Toxic epidermal necrolysis Diseases 0.000 claims description 6
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 claims description 6
- 210000003719 b-lymphocyte Anatomy 0.000 claims description 6
- 238000011534 incubation Methods 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 208000035895 Guillain-Barré syndrome Diseases 0.000 claims description 5
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 claims description 5
- 206010061598 Immunodeficiency Diseases 0.000 claims description 5
- 208000011200 Kawasaki disease Diseases 0.000 claims description 5
- 201000010743 Lambert-Eaton myasthenic syndrome Diseases 0.000 claims description 5
- 206010049567 Miller Fisher syndrome Diseases 0.000 claims description 5
- 206010028424 Myasthenic syndrome Diseases 0.000 claims description 5
- 206010028980 Neoplasm Diseases 0.000 claims description 5
- 206010072148 Stiff-Person syndrome Diseases 0.000 claims description 5
- 230000007813 immunodeficiency Effects 0.000 claims description 5
- 238000004255 ion exchange chromatography Methods 0.000 claims description 5
- 208000001725 mucocutaneous lymph node syndrome Diseases 0.000 claims description 5
- 206010028417 myasthenia gravis Diseases 0.000 claims description 5
- 238000001728 nano-filtration Methods 0.000 claims description 5
- 241000701161 unidentified adenovirus Species 0.000 claims description 5
- 208000030507 AIDS Diseases 0.000 claims description 4
- 208000024827 Alzheimer disease Diseases 0.000 claims description 4
- 239000004475 Arginine Substances 0.000 claims description 4
- 241000700721 Hepatitis B virus Species 0.000 claims description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 claims description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 4
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 4
- 239000004472 Lysine Substances 0.000 claims description 4
- 241000191967 Staphylococcus aureus Species 0.000 claims description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 4
- 208000036142 Viral infection Diseases 0.000 claims description 4
- 208000006110 Wiskott-Aldrich syndrome Diseases 0.000 claims description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 4
- 229960003121 arginine Drugs 0.000 claims description 4
- 208000003669 immune deficiency disease Diseases 0.000 claims description 4
- 229960000310 isoleucine Drugs 0.000 claims description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 4
- 210000003734 kidney Anatomy 0.000 claims description 4
- 229960003646 lysine Drugs 0.000 claims description 4
- 229930182817 methionine Natural products 0.000 claims description 4
- 229960004452 methionine Drugs 0.000 claims description 4
- 206010065579 multifocal motor neuropathy Diseases 0.000 claims description 4
- 201000006417 multiple sclerosis Diseases 0.000 claims description 4
- 201000000050 myeloid neoplasm Diseases 0.000 claims description 4
- 208000005987 polymyositis Diseases 0.000 claims description 4
- 238000002054 transplantation Methods 0.000 claims description 4
- 229960004295 valine Drugs 0.000 claims description 4
- 239000004474 valine Substances 0.000 claims description 4
- 206010003594 Ataxia telangiectasia Diseases 0.000 claims description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 3
- 208000009299 Benign Mucous Membrane Pemphigoid Diseases 0.000 claims description 3
- 208000030939 Chronic inflammatory demyelinating polyneuropathy Diseases 0.000 claims description 3
- 206010010099 Combined immunodeficiency Diseases 0.000 claims description 3
- 208000004332 Evans syndrome Diseases 0.000 claims description 3
- 206010017533 Fungal infection Diseases 0.000 claims description 3
- 241000606768 Haemophilus influenzae Species 0.000 claims description 3
- 208000036066 Hemophagocytic Lymphohistiocytosis Diseases 0.000 claims description 3
- 208000032672 Histiocytosis haematophagic Diseases 0.000 claims description 3
- 208000007924 IgA Deficiency Diseases 0.000 claims description 3
- 208000028622 Immune thrombocytopenia Diseases 0.000 claims description 3
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 claims description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 3
- 208000012192 Mucous membrane pemphigoid Diseases 0.000 claims description 3
- 208000031888 Mycoses Diseases 0.000 claims description 3
- 208000009567 Neonatal Alloimmune Thrombocytopenia Diseases 0.000 claims description 3
- 208000005225 Opsoclonus-Myoclonus Syndrome Diseases 0.000 claims description 3
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 claims description 3
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 claims description 3
- 208000027086 Pemphigus foliaceus Diseases 0.000 claims description 3
- 102000057297 Pepsin A Human genes 0.000 claims description 3
- 108090000284 Pepsin A Proteins 0.000 claims description 3
- 206010039915 Selective IgA immunodeficiency Diseases 0.000 claims description 3
- 206010057863 Selective IgG subclass deficiency Diseases 0.000 claims description 3
- 206010040047 Sepsis Diseases 0.000 claims description 3
- 206010040070 Septic Shock Diseases 0.000 claims description 3
- 206010042033 Stevens-Johnson syndrome Diseases 0.000 claims description 3
- 241000193998 Streptococcus pneumoniae Species 0.000 claims description 3
- 231100000087 Toxic epidermal necrolysis Toxicity 0.000 claims description 3
- 206010044248 Toxic shock syndrome Diseases 0.000 claims description 3
- 231100000650 Toxic shock syndrome Toxicity 0.000 claims description 3
- 208000003441 Transfusion reaction Diseases 0.000 claims description 3
- 206010047124 Vasculitis necrotising Diseases 0.000 claims description 3
- 208000016807 X-linked intellectual disability-macrocephaly-macroorchidism syndrome Diseases 0.000 claims description 3
- 208000002552 acute disseminated encephalomyelitis Diseases 0.000 claims description 3
- 229960003767 alanine Drugs 0.000 claims description 3
- 235000004279 alanine Nutrition 0.000 claims description 3
- 230000000735 allogeneic effect Effects 0.000 claims description 3
- 208000000594 bullous pemphigoid Diseases 0.000 claims description 3
- 201000005795 chronic inflammatory demyelinating polyneuritis Diseases 0.000 claims description 3
- 201000010002 cicatricial pemphigoid Diseases 0.000 claims description 3
- 201000001981 dermatomyositis Diseases 0.000 claims description 3
- 208000017118 fetal and neonatal alloimmune thrombocytopenia Diseases 0.000 claims description 3
- 239000013022 formulation composition Substances 0.000 claims description 3
- 230000003394 haemopoietic effect Effects 0.000 claims description 3
- 229960002885 histidine Drugs 0.000 claims description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims description 3
- 230000000642 iatrogenic effect Effects 0.000 claims description 3
- 201000007156 immunoglobulin alpha deficiency Diseases 0.000 claims description 3
- 201000008319 inclusion body myositis Diseases 0.000 claims description 3
- 201000001119 neuropathy Diseases 0.000 claims description 3
- 230000007823 neuropathy Effects 0.000 claims description 3
- 229960003104 ornithine Drugs 0.000 claims description 3
- 201000001976 pemphigus vulgaris Diseases 0.000 claims description 3
- 229940111202 pepsin Drugs 0.000 claims description 3
- 208000033808 peripheral neuropathy Diseases 0.000 claims description 3
- 208000029138 selective IgA deficiency disease Diseases 0.000 claims description 3
- 238000011476 stem cell transplantation Methods 0.000 claims description 3
- 229940031000 streptococcus pneumoniae Drugs 0.000 claims description 3
- 201000000596 systemic lupus erythematosus Diseases 0.000 claims description 3
- 201000003067 thrombocytopenia due to platelet alloimmunization Diseases 0.000 claims description 3
- XGWFJBFNAQHLEF-UHFFFAOYSA-N 9-anthroic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=CC=C3)C3=CC2=C1 XGWFJBFNAQHLEF-UHFFFAOYSA-N 0.000 claims description 2
- 241000228212 Aspergillus Species 0.000 claims description 2
- 208000023706 Bruton agammaglobulinaemia Diseases 0.000 claims description 2
- 241000222122 Candida albicans Species 0.000 claims description 2
- 206010066476 Haematological malignancy Diseases 0.000 claims description 2
- 241000709721 Hepatovirus A Species 0.000 claims description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 claims description 2
- 241000701074 Human alphaherpesvirus 2 Species 0.000 claims description 2
- 241000701085 Human alphaherpesvirus 3 Species 0.000 claims description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 claims description 2
- 201000005505 Measles Diseases 0.000 claims description 2
- 208000002606 Paramyxoviridae Infections Diseases 0.000 claims description 2
- 206010048705 Paraneoplastic cerebellar degeneration Diseases 0.000 claims description 2
- 208000000474 Poliomyelitis Diseases 0.000 claims description 2
- 241000589517 Pseudomonas aeruginosa Species 0.000 claims description 2
- 208000034188 Stiff person spectrum disease Diseases 0.000 claims description 2
- 241000193990 Streptococcus sp. 'group B' Species 0.000 claims description 2
- 238000010322 bone marrow transplantation Methods 0.000 claims description 2
- 229940095731 candida albicans Drugs 0.000 claims description 2
- 208000029192 congenital agammaglobulinemia Diseases 0.000 claims description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 2
- 229940045808 haemophilus influenzae type b Drugs 0.000 claims description 2
- 208000037797 influenza A Diseases 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims 1
- 238000003860 storage Methods 0.000 abstract description 34
- 108090000623 proteins and genes Proteins 0.000 description 202
- 102000009066 Hyaluronoglucosaminidase Human genes 0.000 description 190
- 102000004169 proteins and genes Human genes 0.000 description 161
- 235000018102 proteins Nutrition 0.000 description 151
- 238000002360 preparation method Methods 0.000 description 123
- 230000000694 effects Effects 0.000 description 100
- 210000004027 cell Anatomy 0.000 description 87
- 108050009363 Hyaluronidases Proteins 0.000 description 59
- 230000014509 gene expression Effects 0.000 description 57
- 150000007523 nucleic acids Chemical class 0.000 description 55
- 102000039446 nucleic acids Human genes 0.000 description 51
- 108020004707 nucleic acids Proteins 0.000 description 51
- 108090000790 Enzymes Proteins 0.000 description 38
- 102000004190 Enzymes Human genes 0.000 description 37
- 239000000047 product Substances 0.000 description 37
- 239000013598 vector Substances 0.000 description 37
- 239000000243 solution Substances 0.000 description 35
- 229940027941 immunoglobulin g Drugs 0.000 description 32
- 108020004414 DNA Proteins 0.000 description 31
- 239000013604 expression vector Substances 0.000 description 27
- 210000002381 plasma Anatomy 0.000 description 27
- 230000037396 body weight Effects 0.000 description 26
- 229940088598 enzyme Drugs 0.000 description 26
- 229920002674 hyaluronan Polymers 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 24
- 241001465754 Metazoa Species 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 23
- 241000700605 Viruses Species 0.000 description 22
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 21
- 229960003160 hyaluronic acid Drugs 0.000 description 21
- 125000003729 nucleotide group Chemical group 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 238000003556 assay Methods 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 230000001225 therapeutic effect Effects 0.000 description 20
- 230000002776 aggregation Effects 0.000 description 19
- 238000004220 aggregation Methods 0.000 description 19
- 235000019441 ethanol Nutrition 0.000 description 19
- 239000012528 membrane Substances 0.000 description 19
- 239000002773 nucleotide Substances 0.000 description 19
- 125000003275 alpha amino acid group Chemical group 0.000 description 18
- 230000004071 biological effect Effects 0.000 description 17
- -1 carboxylate anions Chemical class 0.000 description 17
- 210000004379 membrane Anatomy 0.000 description 17
- 239000000872 buffer Substances 0.000 description 16
- 239000002243 precursor Substances 0.000 description 16
- 238000002560 therapeutic procedure Methods 0.000 description 16
- 241000196324 Embryophyta Species 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 15
- 241000894007 species Species 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 108091028043 Nucleic acid sequence Proteins 0.000 description 14
- 108010076504 Protein Sorting Signals Proteins 0.000 description 14
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 14
- 239000012634 fragment Substances 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 14
- 239000002552 dosage form Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 238000001727 in vivo Methods 0.000 description 13
- 239000000546 pharmaceutical excipient Substances 0.000 description 13
- 230000013595 glycosylation Effects 0.000 description 12
- 238000006206 glycosylation reaction Methods 0.000 description 12
- 239000012669 liquid formulation Substances 0.000 description 12
- 230000006320 pegylation Effects 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 241000588724 Escherichia coli Species 0.000 description 11
- 125000000539 amino acid group Chemical group 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 230000003247 decreasing effect Effects 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 11
- 238000010171 animal model Methods 0.000 description 10
- 238000013467 fragmentation Methods 0.000 description 10
- 238000006062 fragmentation reaction Methods 0.000 description 10
- 229940072221 immunoglobulins Drugs 0.000 description 10
- 210000004962 mammalian cell Anatomy 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 230000028327 secretion Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 9
- 108020004511 Recombinant DNA Proteins 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 239000000284 extract Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 230000002779 inactivation Effects 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 210000002966 serum Anatomy 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 208000024891 symptom Diseases 0.000 description 9
- 241000238631 Hexapoda Species 0.000 description 8
- 230000004988 N-glycosylation Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 108700028369 Alleles Proteins 0.000 description 7
- 241000282412 Homo Species 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 239000001963 growth medium Substances 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 239000000725 suspension Substances 0.000 description 7
- 230000002103 transcriptional effect Effects 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000009261 transgenic effect Effects 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 238000011993 High Performance Size Exclusion Chromatography Methods 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 230000002391 anti-complement effect Effects 0.000 description 6
- 108010008730 anticomplement Proteins 0.000 description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- 230000027455 binding Effects 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000003937 drug carrier Substances 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- 238000007918 intramuscular administration Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000009256 replacement therapy Methods 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 241000701447 unidentified baculovirus Species 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- 206010067484 Adverse reaction Diseases 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 229920002307 Dextran Polymers 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 101000962530 Homo sapiens Hyaluronidase-1 Proteins 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 102000035195 Peptidases Human genes 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 230000002411 adverse Effects 0.000 description 5
- 230000006838 adverse reaction Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 239000000539 dimer Substances 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 229940009600 gammagard Drugs 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 229940099552 hyaluronan Drugs 0.000 description 5
- KIUKXJAPPMFGSW-MNSSHETKSA-N hyaluronan Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)C1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H](C(O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-MNSSHETKSA-N 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 238000000099 in vitro assay Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 210000004185 liver Anatomy 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 229920001542 oligosaccharide Polymers 0.000 description 5
- 150000002482 oligosaccharides Chemical class 0.000 description 5
- 210000001236 prokaryotic cell Anatomy 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 210000003491 skin Anatomy 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 241000700199 Cavia porcellus Species 0.000 description 4
- 108091026890 Coding region Proteins 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 4
- 102100031780 Endonuclease Human genes 0.000 description 4
- 101000962526 Homo sapiens Hyaluronidase-2 Proteins 0.000 description 4
- 102100039283 Hyaluronidase-1 Human genes 0.000 description 4
- 102100039285 Hyaluronidase-2 Human genes 0.000 description 4
- 150000008575 L-amino acids Chemical group 0.000 description 4
- 241000282567 Macaca fascicularis Species 0.000 description 4
- 241001494479 Pecora Species 0.000 description 4
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 230000009102 absorption Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000012707 chemical precursor Substances 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 239000013599 cloning vector Substances 0.000 description 4
- 238000011260 co-administration Methods 0.000 description 4
- 230000009089 cytolysis Effects 0.000 description 4
- 230000036425 denaturation Effects 0.000 description 4
- 238000004925 denaturation Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- 108010074605 gamma-Globulins Proteins 0.000 description 4
- 230000005847 immunogenicity Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 210000001322 periplasm Anatomy 0.000 description 4
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 4
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 229920000053 polysorbate 80 Polymers 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 230000004481 post-translational protein modification Effects 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 230000017854 proteolysis Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000000638 solvent extraction Methods 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 210000001550 testis Anatomy 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 4
- 210000005253 yeast cell Anatomy 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 229920001287 Chondroitin sulfate Polymers 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 241000238424 Crustacea Species 0.000 description 3
- 108090000204 Dipeptidase 1 Proteins 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 3
- 206010019233 Headaches Diseases 0.000 description 3
- 241000545744 Hirudinea Species 0.000 description 3
- 101001041128 Homo sapiens Hyaluronidase-3 Proteins 0.000 description 3
- 101001041120 Homo sapiens Hyaluronidase-4 Proteins 0.000 description 3
- 101000585728 Homo sapiens Protein O-GlcNAcase Proteins 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 102100021081 Hyaluronidase-4 Human genes 0.000 description 3
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 3
- 102000005741 Metalloproteases Human genes 0.000 description 3
- 108010006035 Metalloproteases Proteins 0.000 description 3
- 108090000157 Metallothionein Proteins 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 241000714474 Rous sarcoma virus Species 0.000 description 3
- 108010071390 Serum Albumin Proteins 0.000 description 3
- 102000007562 Serum Albumin Human genes 0.000 description 3
- 229920002385 Sodium hyaluronate Polymers 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 108700005078 Synthetic Genes Proteins 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- 108010032227 Vivaglobin Proteins 0.000 description 3
- 238000001042 affinity chromatography Methods 0.000 description 3
- 238000001261 affinity purification Methods 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 229960000686 benzalkonium chloride Drugs 0.000 description 3
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 3
- 229960001950 benzethonium chloride Drugs 0.000 description 3
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 229940107200 chondroitin sulfates Drugs 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 102000004419 dihydrofolate reductase Human genes 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000005714 functional activity Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 235000001727 glucose Nutrition 0.000 description 3
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 3
- 230000001456 gonadotroph Effects 0.000 description 3
- 231100000869 headache Toxicity 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 102000046319 human OGA Human genes 0.000 description 3
- 108010048296 hyaluronidase PH-20 Proteins 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000006193 liquid solution Substances 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 244000045947 parasite Species 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 239000000825 pharmaceutical preparation Substances 0.000 description 3
- 230000003285 pharmacodynamic effect Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 150000003077 polyols Chemical class 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 238000011321 prophylaxis Methods 0.000 description 3
- 235000019419 proteases Nutrition 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 238000001542 size-exclusion chromatography Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 229940010747 sodium hyaluronate Drugs 0.000 description 3
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000375 suspending agent Substances 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 3
- 229940054330 vivaglobin Drugs 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 2
- YFSUTJLHUFNCNZ-UHFFFAOYSA-M 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-M 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 241000256844 Apis mellifera Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000035143 Bacterial infection Diseases 0.000 description 2
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 108010032597 Cohn fraction II Proteins 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 241000721047 Danaus plexippus Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010087819 Fc receptors Proteins 0.000 description 2
- 102000009109 Fc receptors Human genes 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- 102000002268 Hexosaminidases Human genes 0.000 description 2
- 108010000540 Hexosaminidases Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000004889 Interleukin-6 Human genes 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 108010025815 Kanamycin Kinase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 241000713333 Mouse mammary tumor virus Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 101710107068 Myelin basic protein Proteins 0.000 description 2
- 201000002481 Myositis Diseases 0.000 description 2
- 241001477931 Mythimna unipuncta Species 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 108010067372 Pancreatic elastase Proteins 0.000 description 2
- 235000019483 Peanut oil Nutrition 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 101710182846 Polyhedrin Proteins 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 241000282405 Pongo abelii Species 0.000 description 2
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 2
- 241000485664 Protortonia cacti Species 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 208000007400 Relapsing-Remitting Multiple Sclerosis Diseases 0.000 description 2
- 239000008156 Ringer's lactate solution Substances 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 2
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 239000002535 acidifier Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000003113 alkalizing effect Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 2
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 235000021120 animal protein Nutrition 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000008135 aqueous vehicle Substances 0.000 description 2
- 208000022362 bacterial infectious disease Diseases 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 102000006635 beta-lactamase Human genes 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 2
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 235000008504 concentrate Nutrition 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 210000001771 cumulus cell Anatomy 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 239000008355 dextrose injection Substances 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 2
- 239000000890 drug combination Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000002270 exclusion chromatography Methods 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229940100601 interleukin-6 Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000007951 isotonicity adjuster Substances 0.000 description 2
- 229940010484 iveegam Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 229960005015 local anesthetics Drugs 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 108010065781 myosin light chain 2 Proteins 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 238000004848 nephelometry Methods 0.000 description 2
- 239000002687 nonaqueous vehicle Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 238000001050 pharmacotherapy Methods 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 108010055837 phosphocarrier protein HPr Proteins 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000004845 protein aggregation Effects 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 239000003488 releasing hormone Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 150000004044 tetrasaccharides Chemical class 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000004809 thin layer chromatography Methods 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DYMYLBQTHCJHOQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) butanoate Chemical compound CCCC(=O)ON1C(=O)CCC1=O DYMYLBQTHCJHOQ-UHFFFAOYSA-N 0.000 description 1
- AASBXERNXVFUEJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) propanoate Chemical compound CCC(=O)ON1C(=O)CCC1=O AASBXERNXVFUEJ-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate Chemical compound [O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-M 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- AKNSNIYBBDKAPW-UHFFFAOYSA-N 3-(2,5-dioxopyrrolidin-1-yl)oxycarbonyl-4-hydroxypentanoic acid Chemical compound OC(=O)CC(C(O)C)C(=O)ON1C(=O)CCC1=O AKNSNIYBBDKAPW-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- ALEVUYMOJKJJSA-UHFFFAOYSA-N 4-hydroxy-2-propylbenzoic acid Chemical class CCCC1=CC(O)=CC=C1C(O)=O ALEVUYMOJKJJSA-UHFFFAOYSA-N 0.000 description 1
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 102100036664 Adenosine deaminase Human genes 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102100036826 Aldehyde oxidase Human genes 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 235000019489 Almond oil Nutrition 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-M Aminoacetate Chemical compound NCC([O-])=O DHMQDGOQFOQNFH-UHFFFAOYSA-M 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 101100136076 Aspergillus oryzae (strain ATCC 42149 / RIB 40) pel1 gene Proteins 0.000 description 1
- 241001367049 Autographa Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 1
- 208000008035 Back Pain Diseases 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 241000680806 Blastobotrys adeninivorans Species 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- 101001007681 Candida albicans (strain WO-1) Kexin Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 108050001186 Chaperonin Cpn60 Proteins 0.000 description 1
- 102000052603 Chaperonins Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 206010008479 Chest Pain Diseases 0.000 description 1
- 206010008469 Chest discomfort Diseases 0.000 description 1
- 206010008531 Chills Diseases 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical group OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- LMKYZBGVKHTLTN-NKWVEPMBSA-N D-nopaline Chemical compound NC(=N)NCCC[C@@H](C(O)=O)N[C@@H](C(O)=O)CCC(O)=O LMKYZBGVKHTLTN-NKWVEPMBSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 241000256867 Dolichovespula arenaria Species 0.000 description 1
- 241000256868 Dolichovespula maculata Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 108010031111 EBV-encoded nuclear antigen 1 Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 description 1
- 241000701988 Escherichia virus T5 Species 0.000 description 1
- 241000207447 Estrella Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- 108010001515 Galectin 4 Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 102100039555 Galectin-7 Human genes 0.000 description 1
- 101100229073 Gallus gallus GAL5 gene Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 1
- 102100022624 Glucoamylase Human genes 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010006464 Hemolysin Proteins Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 101000928314 Homo sapiens Aldehyde oxidase Proteins 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- 101000608772 Homo sapiens Galectin-7 Proteins 0.000 description 1
- 101100125294 Homo sapiens HYAL2 gene Proteins 0.000 description 1
- 101710185730 Hyaluronidase A Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 229920001612 Hydroxyethyl starch Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 206010022095 Injection Site reaction Diseases 0.000 description 1
- 206010069803 Injury associated with device Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 229920001202 Inulin Polymers 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- 108010054278 Lac Repressors Proteins 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 241000209510 Liliopsida Species 0.000 description 1
- 206010024769 Local reaction Diseases 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 208000002720 Malnutrition Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108091022912 Mannose-6-Phosphate Isomerase Proteins 0.000 description 1
- 102000048193 Mannose-6-phosphate isomerases Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101000966481 Mus musculus Dihydrofolate reductase Proteins 0.000 description 1
- 208000007101 Muscle Cramp Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 102100026925 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Human genes 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- 102100031688 N-acetylgalactosamine-6-sulfatase Human genes 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 241000187654 Nocardia Species 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010036105 Polyneuropathy Diseases 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- HCBIBCJNVBAKAB-UHFFFAOYSA-N Procaine hydrochloride Chemical compound Cl.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 HCBIBCJNVBAKAB-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 101800004937 Protein C Proteins 0.000 description 1
- 102000017975 Protein C Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000282849 Ruminantia Species 0.000 description 1
- 101100029551 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PGM2 gene Proteins 0.000 description 1
- 101800001700 Saposin-D Proteins 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 206010054979 Secondary immunodeficiency Diseases 0.000 description 1
- 241000710960 Sindbis virus Species 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 102000014384 Type C Phospholipases Human genes 0.000 description 1
- 108010079194 Type C Phospholipases Proteins 0.000 description 1
- 101150078824 UBQ3 gene Proteins 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 201000001696 X-linked hyper IgM syndrome Diseases 0.000 description 1
- 108010027570 Xanthine phosphoribosyltransferase Proteins 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 229940091179 aconitate Drugs 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N aconitic acid Chemical compound OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 235000016127 added sugars Nutrition 0.000 description 1
- 108010013985 adhesion receptor Proteins 0.000 description 1
- 102000019997 adhesion receptor Human genes 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000012382 advanced drug delivery Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000008168 almond oil Substances 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- KJZMZIMBDAXZCX-XNRWUJQLSA-N alpha-D-Manp-(1->3)-[alpha-D-Manp-(1->6)]-alpha-D-Manp Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](O)O1 KJZMZIMBDAXZCX-XNRWUJQLSA-N 0.000 description 1
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 102000006646 aminoglycoside phosphotransferase Human genes 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000012801 analytical assay Methods 0.000 description 1
- 238000013103 analytical ultracentrifugation Methods 0.000 description 1
- 230000002052 anaphylactic effect Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003171 anti-complementary effect Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 229940062318 baygam Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 230000008275 binding mechanism Effects 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- ACBQROXDOHKANW-UHFFFAOYSA-N bis(4-nitrophenyl) carbonate Chemical compound C1=CC([N+](=O)[O-])=CC=C1OC(=O)OC1=CC=C([N+]([O-])=O)C=C1 ACBQROXDOHKANW-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229940076094 bovine hyaluronidase Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000001818 capillary gel electrophoresis Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229920003064 carboxyethyl cellulose Polymers 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 229940055240 carimune Drugs 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000002032 cellular defenses Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 238000004182 chemical digestion Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- 238000002983 circular dichroism Methods 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 1
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000024203 complement activation Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 150000001896 cresols Chemical class 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- WOQQAWHSKSSAGF-WXFJLFHKSA-N decyl beta-D-maltopyranoside Chemical compound O[C@@H]1[C@@H](O)[C@H](OCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 WOQQAWHSKSSAGF-WXFJLFHKSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000003210 demyelinating effect Effects 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000012538 diafiltration buffer Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical compound C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- 229960000520 diphenhydramine Drugs 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229940028757 flebogamma Drugs 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229940119849 gamastan Drugs 0.000 description 1
- 229940084388 gammar Drugs 0.000 description 1
- 229940069042 gamunex Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 210000004368 gonadotroph Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000002489 hematologic effect Effects 0.000 description 1
- 239000003228 hemolysin Substances 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 239000013628 high molecular weight specie Substances 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 102000051813 human HYAL1 Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 208000026095 hyper-IgM syndrome type 1 Diseases 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 239000007946 hypodermic tablet Substances 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 230000014726 immortalization of host cell Effects 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000007850 in situ PCR Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 208000033065 inborn errors of immunity Diseases 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 230000003189 isokinetic effect Effects 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000007854 ligation-mediated PCR Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-L malate(2-) Chemical compound [O-]C(=O)C(O)CC([O-])=O BJEPYKJPYRNKOW-UHFFFAOYSA-L 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000001071 malnutrition Effects 0.000 description 1
- 235000000824 malnutrition Nutrition 0.000 description 1
- 210000000723 mammalian artificial chromosome Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000007392 microtiter assay Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229940045641 monobasic sodium phosphate Drugs 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 210000000066 myeloid cell Anatomy 0.000 description 1
- DVEKCXOJTLDBFE-UHFFFAOYSA-N n-dodecyl-n,n-dimethylglycinate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC([O-])=O DVEKCXOJTLDBFE-UHFFFAOYSA-N 0.000 description 1
- 229920001206 natural gum Polymers 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 208000015380 nutritional deficiency disease Diseases 0.000 description 1
- 229940013982 octagam Drugs 0.000 description 1
- HEGSGKPQLMEBJL-RKQHYHRCSA-N octyl beta-D-glucopyranoside Chemical compound CCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HEGSGKPQLMEBJL-RKQHYHRCSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 101150093139 ompT gene Proteins 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 230000010494 opalescence Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229940037201 oris Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229960005489 paracetamol Drugs 0.000 description 1
- 238000009928 pasteurization Methods 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229960000292 pectin Drugs 0.000 description 1
- 101150040383 pel2 gene Proteins 0.000 description 1
- 101150050446 pelB gene Proteins 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 239000008024 pharmaceutical diluent Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 108010079892 phosphoglycerol kinase Proteins 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229940012957 plasmin Drugs 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001987 poloxamine Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 239000012985 polymerization agent Substances 0.000 description 1
- 230000007824 polyneuropathy Effects 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 229940069328 povidone Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000011809 primate model Methods 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 229960001309 procaine hydrochloride Drugs 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 150000003147 proline derivatives Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical class CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 229960000856 protein c Drugs 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000012743 protein tagging Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009962 secretion pathway Effects 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 125000005630 sialyl group Chemical group 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 229940126586 small molecule drug Drugs 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000008354 sodium chloride injection Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229940057950 sodium laureth sulfate Drugs 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 1
- DCQXTYAFFMSNNH-UHFFFAOYSA-M sodium;2-[bis(2-hydroxyethyl)amino]ethanol;acetate Chemical compound [Na+].CC([O-])=O.OCCN(CCO)CCO DCQXTYAFFMSNNH-UHFFFAOYSA-M 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 201000005060 thrombophlebitis Diseases 0.000 description 1
- 230000009092 tissue dysfunction Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 241000701366 unidentified nuclear polyhedrosis viruses Species 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000002435 venom Substances 0.000 description 1
- 231100000611 venom Toxicity 0.000 description 1
- 210000001048 venom Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000003253 viricidal effect Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000008136 water-miscible vehicle Substances 0.000 description 1
- 238000004271 weak anion exchange chromatography Methods 0.000 description 1
- 238000003989 weak cation exchange chromatography Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229940053819 winrho Drugs 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- 210000004340 zona pellucida Anatomy 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39591—Stabilisation, fragmentation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0021—Intradermal administration, e.g. through microneedle arrays, needleless injectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/06—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2474—Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01035—Hyaluronoglucosaminidase (3.2.1.35), i.e. hyaluronidase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- stable co-formulations of immunoglobulin and hyaluronidase that are stable to storage in liquid form at room temperature for at least 6 months and at standard refrigerator temperatures for 1-2 years.
- Such co- formulations can be used in methods of treating IG-treatable diseases or conditions by subcutaneous administration.
- Immune globulin (IG) products from human plasma were first used in 1952 to treat immune deficiency. Initially, intramuscular or subcutaneous administrations of IG were the methods of choice. For injecting larger amounts of IG necessary for effective treatment of various diseases, however, intravenous administrable products with lower concentrated IG (50 mg/mL) were developed.
- the intravenous (IV) administration of immune globulin (IVIG) is the primary treatment of individuals with immune deficiencies. Although the initial IVIG preparations caused severe side effects, the IVIG preparations available at the present time are well tolerated in the majority of immune deficient patients. Nonetheless, a small proportion of patients continue to have unpleasant, even disabling, reactions such as headache, fatigue, and myalgia.
- Fever and chills remains a problem, especially when patients have intercurrent infections.
- the reactions often persist despite trying other IVIG preparations or pre-medicating with acetaminophen, diphenhydramine, and corticosteroids. Further, due to the requirement for IV administration, there are issues with patient compliance.
- Subcutaneous (SQ) administration of immune globulin is an alternative to intravenous administration. Compared to IV infusions, SQ administration of immune globulin has several advantages. For example, it reduces the incidence of systemic reactions, does not require sometimes-difficult IV access, improves trough levels, and gives patients more independence.
- IG products For therapeutic use of any IG preparation, another important consideration in IG products is their stability during storage. Safe handling and administration of formulations containing proteins represent significant challenges to pharmaceutical formulators. Proteins possess unique chemical and physical properties that present stability problems: a variety of degradation pathways exist for proteins, implicating both chemical and physical instability. Chemical instability includes deamination, aggregation, clipping of the peptide backbone, and oxidation of methionine residues. Physical instability encompasses many phenomena, including, for example, aggregation. Hence, there is a need for stable formulations of immune globulin preparations.
- compositions, methods and kits for subcutaneous administration of stable, liquid co-formulations for treating IG-treatable diseases and conditions are provided.
- stable, liquid co-formulation compositions formulated for subcutaneous administration containing immune globulin (IG) at a concentration that is at least 10% w/v, a soluble hyaluronidase at a concentration that is at least 50 U/mL and is present at a ratio of at least 100 Units/gram (U/g) IG, NaCl at a concentration of at least 50 mM and a pH of between 4 to 5.
- IG immune globulin
- NaCl at a concentration of at least 50 mM
- the co-formulation is stable at 28° C-32° C for at least 6 months.
- an amino acid stabilizer can be present, for example, alanine, histidine, arginine, lysine, ornithine, isoleucine, valine, methionine, glycine or proline.
- the amino acid is present in an amount that is at least 100 mM.
- the amino acid is glycine and is present in an amount that is or is at least 100 mM, 150 mM, 200 mM, 250 mM, 300 mM, 350 mM, 400 mM, 450 mM, 500 mM or more.
- the glycine is in an amount that is 250 mM.
- the stable, liquid co-formulations provided herein contain IG at least 10% to 22%, for example 10 % w/v, 11 % w/v, 12 % w/v, 13 % w/v, 14 % w/v, 15 % w/v, 16 % w/v, 17 % w/v, 18 % w/v, 19 % w/v, 20 % w/v, 21 % w/v, 22 % w/v or more.
- the IG is 10 % w/v or 20 % w/v.
- the IG used in the co- formulations is from human plasma, for example, it can be purified from human plasma such as by alcohol fractionation. In some examples, the IG is further purified by any one or more of a chemical modification, incubation at pH 4.0 with or without pepsin, polyethylene glycol (PEG) precipitation, ion-exchange
- the co-formulations provided herein can employ IG that contains IgG, IgA and IgM. In some examples, the IG contains greater than 95 % IgG.
- the co-formulations can contain NaCl.
- the NaCl is at a concentration of 50 mM to 220mM, for example, 50 mM, 60 mM, 70 mM, 80 mM, 90 mM, 100 mM, l lO mM, 120 mM, 130 mM, 140 mM, 150 mM, 160 mM, 170 mM, 180 mM, 190 mM, 200 mM, 210 mM, 220 mM or more.
- the NaCl is at a concentration of 150 mM.
- the co-formulations provided herein contain a soluble hyaluronidase that can be PH20, or a truncated form thereof.
- the soluble hyaluronidase can be an ovine, bovine or truncated human PH20.
- the truncated human PH20 can be selected from among polypeptides having a sequence of amino acids set forth in any of SEQ ID NOS: 4-9, or allelic variants or other variants thereof.
- the soluble hyaluronidase is rHuPH20.
- the soluble hyaluronidase can be at a concentration that is 50 U/mL to 500 U/mL, for example 50 U/mL, 100 U/mL, 200 U/mL, 300 U/mL, 400 U/mL, 500 U/ mL or more.
- the soluble hyaluronidase can be at a concentration that is 50 U/mL to 500 U/mL, for example 50 U/mL, 100 U/mL, 200 U/mL, 300 U/mL, 400 U/mL, 500 U/ mL or more.
- the soluble hyaluronidase can be at a concentration that is 50 U/mL to 500 U/mL, for example 50 U/mL, 100 U/mL, 200 U/mL, 300 U/mL, 400 U/mL, 500 U/ mL or more.
- the soluble hyaluronidase can be at a concentration that is 50 U/mL to 500 U/mL, for
- the soluble hyaluronidase can be present at a ratio of 100 U/g IG to 5000 U/g IG, for example, 100 U/g IG, 150 U/g IG, 200 U/g IG, 250 U/g IG, 300 U/g IG, 400 U/g IG, 500 U/g IG, 600 U/g IG, 700 U/g IG, 800 U/g IG, 900 U/g IG, 1000 U/g IG, 1200 U/g IG, 1500 U/g IG, 1800 U/g IG, 2000 U/g IG, 3000 U/g IG, 4000 U/g IG, 5000 U/g IG or more.
- the soluble hyaluronidase is at a ratio of 500 U/g IG, 1000 U/g IG, 1500 U/g IG or 3000 U/g IG.
- the pH of the co- formulations can be 4.4 to 4.9 in concentrated form.
- the co-formulations provided herein can be formulated for multiple dosage administration or single dosage administration. Further, in examples where the co- formulation is for single dosage administration, the IG is in an amount sufficient to treat an IG-treatable disease or condition.
- the IG can be administered daily, weekly, biweekly, every 2-3 weeks, every 3-4 weeks or monthly for treatment of an IG-treatable disease or condition.
- the administration of the co-formulation is effected such that the amount of IG administered is substantially the same as the amount in a single dosage administration when administered intravenously for treatment of an IG-treatable disease or condition.
- the amount of IG in the co-formulation can be about 1 gram (g) to 200 g, for example, 1 gram (g), 2 g, 3 g, 4 g, 5 g, 10 g, 20 g, 30 g, 40 g, 50 g, 60 g, 70 g, 80 g, 90 g, 100 g or 200 g.
- the amount of hyaluronidase in the composition can be about 500 Units to 100,000 Units, for example, 500 Units, 1000 Units, 2000 Units, 5000 Units, 10,000 Units, 30,000 Units, 40,000 Units, 50,000 Units, 60,000 Units, 70,000 Units, 80,000 Units, 90,000 Units, 100,000 Units or more.
- the liquid co-formulations provided herein are stable at 28° C-32° C for at least 6 months to a year, for example, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months or more.
- the liquid co-formulations are further stable at 0° C-10° C for at least 6 months to 2 years, for example, 6 months, 1 year, 2 years or more.
- kits containing any of the stable, liquid co- formulations provided herein, and optionally instructions for use.
- containers that contain the stable, liquid co-formulations provided herein.
- the container can be a tube, bottle, vial or syringe.
- the container further comprises a needle for injection.
- the containers provided herein contain the stable, liquid co- formulations for single dosage administration or multiple dosage administration.
- methods of treating IG-treatable diseases or conditions by subcutaneously administering to a subject a stable, liquid co-formulation containing a soluble hyaluronidase and IG.
- the co-formulation is administered such that the amount of IG administered is substantially the same as the amount when administered intravenously for treatment of an IG-treatable disease or condition.
- the methods provided herein are for treating an IG-treatable disease or condition, selected from among primary immune deficiency diseases, secondary immune deficiency diseases, inflammatory diseases, autoimmune diseases and acute infections.
- the co-formulations can be administered using the methods provided herein to treat a primary immune deficiency disease.
- the primary immune deficiency disease can be common variable immunodeficiency (CVID), selective IgA deficiency, IgG subclass deficiency, specific antibody deficiency, complement disorders, congenital agammaglobulinemia, ataxia telangiectasia, hyper IgM, Wiskott-Aldrich syndrome, severe combined immunodeficiency (SCID), primary hypogammaglobulinemia, primary immunodeficiency diseases with antibody deficiency, X-linked agammaglobulinemia (XLA), or
- hypogammaglobulinemia of infancy hypogammaglobulinemia of infancy.
- the IG-treatable disease or condition is an acquired immune deficiency disease secondary to hematological malignancies.
- the hematological malignancy can be selected from among chronic lymphocytic leukemia (CLL), multiple myeloma (MM) and non-Hodgkin's lymphoma (NHL).
- the inflammatory or autoimmune disease can be selected from among Kawasaki's disease, chronic inflammatory demyelinating
- polyneuropathy Guillain-Barre syndrome, idiopathic thrombocytopenic purpura, polymyositis, dermatomyositis, inclusion body myositis, Lambert-Eaton myasthenic syndrome, multifocal motor neuropathy, myasthenia gravis and Moersch-Woltman syndrome.
- the co-formulation is administered to treat an acute bacterial, viral or fungal infection, such as, for example, Haemophilus influenzae type B; Pseudomonas aeruginosa types A and B; Staphylococcus aureus; group B streptococcus; Streptococcus pneumoniae types 1, 3, 4, 6, 7, 8, 9, 12, 14, 18, 19, and 23; adenovirus types 2 and 5; cytomegalovirus; Epstein-Barr virus VCA; hepatitis A virus; hepatitis B virus; herpes simplex virus- 1; herpes simplex virus-2; influenza A; measles; parainfluenza types 1, 2 and 3; polio; varicella zoster virus; Aspergillus; and Candida albicans.
- an acute bacterial, viral or fungal infection such as, for example, Haemophilus influenzae type B; Pseudomonas aeruginosa types A and B; Staphylococcus
- the IG-treatable disease or condition can be selected from among iatrogenic immunodeficiency; acute disseminated encephalomyelitis; ANCA- positive systemic necrotizing vasculitis; autoimmune haemolytic anaemia; bullous pemphigoid; cicatricial pemphigoid; Evans syndrome (including autoimmune haemolytic anaemia with immune thrombocytopenia); foeto-maternal/neonatal alloimmune thrombocytopenia (FMAIT/NAIT); haemophagocytic syndrome; high- risk allogeneic haemopoietic stem cell transplantation; IgM paraproteinaemic neuropathy; kidney transplantation; multiple sclerosis; opsoclonus myoclonus ataxia; pemphigus foliaceus; pemphigus vulgaris; post-transfusion purpura; toxic epidermal necrolysis/Steven Johnson syndrome (TEN/SJS
- immunoglobulin refers to preparations of plasma proteins derived from the pooled plasma of adult donors. IgG antibodies predominate; other antibody subclasses, such as IgA and IgM are present. Therapeutic immune globulin can provide passive immunization by increasing a recipient's serum levels of circulating antibodies.
- IgG antibodies can, for example, bind to and neutralize bacterial toxins; opsonize pathogens; activate complement; and suppress pathogenic cytokines and phagocytes through interaction with cytokines and receptors thereof, such as CD5, interleukin-la (IL-la), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and T-cell receptors.
- Therapeutic immune globulin can inhibit the activity of autoantibodies.
- Immune globulin preparations also include, but are not limited to, immune globulin intravenous (IGIV), immune globulin IV, therapeutic immunoglobulin.
- Immune globulin preparation are well known, and include brand names, such as BayGam , Gamimune ® N, Gammagard ® S/D, Gammar ® -P, Iveegam ® EN, Panglobulin ® , Polygam ® S/D, Sandoglobulin ® , Venoglobulin ® -I, Venoglobulin ® -S, WinRho ® SDF and others. Immune globulin preparations can be derived from human plasma, or are recombinantly produced.
- intravenous IgG or “IVIG” treatment refers generally to a therapeutic method of intravenously administering a composition of IgG
- immunoglubulins to a patient for treating a number of conditions such as immune deficiencies, inflammatory diseases, and autoimmune diseases.
- the IgG immunoglubulins to a patient for treating a number of conditions such as immune deficiencies, inflammatory diseases, and autoimmune diseases.
- immunoglobulins are typically pooled and prepared from plasma. Whole antibodies or fragments can be used.
- IG-treatable diseases or conditions refer to any disease or condition for which immune globulin preparations are used. Such diseases and conditions, include, but are not limited to, any disease in which an increase in circulating antibodies is ameliorative, such as, for example, immunodeficiency; acquired hypogammaglobulinemia secondary to hematological malignancies;
- Kawasaki's disease chronic inflammatory demyelinating polyneuropathy (CEDP); Guillain-Barre Syndrome; Idiopathic thrombocytopenic purpura; inflammatory myopathies; Lambert-Eaton myasthenic syndrome; multifocal motor neuropathy; Myasthenia Gravis; Moersch-Woltmann syndrome; secondary
- hypogammaglobulinemia including iatrogenic immunodeficiency); specific antibody deficiency; Acute disseminated encephalomyelitis; ANCA-positive systemic necrotizing vasculitis; Autoimmune haemolytic anaemia; Bullous pemphigoid; Cicatricial pemphigoid; Evans syndrome (including autoimmune haemolytic anaemia with immune thrombocytopenia); Foeto-maternal/neonatal alloimmune thrombocytopenia (FMAIT/NAIT); Haemophagocytic syndrome;
- High-risk allogeneic haemopoietic stem cell transplantation IgM paraproteinaemic neuropathy; kidney transplantation; multiple sclerosis; Opsoclonus myoclonus ataxia; Pemphigus foliaceus; Pemphigus vulgaris; Post-transfusion purpura; Toxic epidermal necrolysis/Steven Johnson syndrome (TEN/SJS); Toxic shock syndrome; Alzheimer's Disease; Systemic lupus erythematosus; multiple myeloma; sepsis; B cell tumors; trauma; and a bacterial viral or fugal infection.
- room temperature refers to a range generally from about or at to 18 °C to about or at 32 °C. Those of skill in the art appreciate that room temperature varies by location and prevailing conditions. For example, room temperatures can be higher in warmer climates such as Italy or Texas.
- stable or “stability” with reference to a co-formulation provided herein refers to one in which the protein(s) (IG and hyaluronidase) therein essentially retains their physical and chemical stability and integrity upon storage for at least six months at temperatures up to 32 °C.
- stability at room temperature means stability at the upper range of typical room temperatures for warmer locales (i.e. 28-32°C for Italy or Texas).
- the formulations are stable over the range of refrigerated and room temperatures, i.e., 0 - 32 °C, or up to 32 °C for at least six months.
- Each of the IG and hyaluronidase exhibit stability in the co- formulation upon storage for at least six months at room temperature, including temperatures up to at or about 32 °C.
- Assays for assessing the stability of each are well known to one of skill in the art and described herein.
- stability of IG means that the IG does not substantially aggregate, denature or fragment such that at least 90 % of the IG is present as monomers or oligo-/dimers, with a molecular weight of IG of between at or about greater than 70 kDa and less than ⁇ 450 kDa.
- a molecular weight of IG of between at or about greater than 70 kDa and less than ⁇ 450 kDa.
- less than about 10 % for example, less than about 5 %, less than about 4 %, less than about 3%, less than about 2 %, less than about 1 % of the IG protein is present as an aggregate (i.e. has a molecular size greater than or equal to 450 kDa in size) in the formulation.
- no more than 5 % to 7 %, for example, 7 %, 6 %, 5 %, 4 %, 3 %, 2 %, 1 % or 0.5 % or less of the IG in the co-formulation is fragmented (i.e. , i.e. has a molecular size less than 70 kDa).
- stability of the hyaluronidase means that it retains at least 50
- storage means that a formulation is not immediately administered to a subject once prepared, but is kept for a period of time under particular conditions (e.g. particular temperature; liquid or lyophilized form) prior to use.
- a liquid formulation can be kept for days, weeks, months or years, generally at least six months, prior to administration to a subject under varied temperatures such as refrigerated (0° to 10° C) or room temperature (e.g. temperature up to 32° C).
- dosing regime refers to the amount of immune globulin administered and the frequency of administration.
- the dosing regime is a function of the disease or condition to be treated, and thus can vary.
- IVIG intravenous IG
- IG intravenous IG
- Amounts of IVIG that are effective for treating a particular disease or condition are known or can be empirically determined by one of skill in the art. For example, as exemplified below, 300 mg/kg (i.e. 21 grams assuming the average adult weighs 70 kg) to 600 mg/kg (i.e. 42 grams) is the typical monthly dose of IVIG administered to patients having primary immunodeficiency diseases.
- IG when administered in combination with hyaluronidase, is administered subcutaneously at doses that are or are about 300 mg/kg to 600 mg/kg for treatment of primary immunodeficiency diseases.
- frequency of administration refers to the time between successive doses of immune globulin.
- frequency can be one, two, three, four weeks, and is a function of the particular disease or condition treated.
- frequency is a least every two or three weeks, and typically no more than once a month.
- hyaluronidase refers to an enzyme that degrades hyaluronic acid.
- Hyaluronidases include bacterial hyaluronidases (EC 4.2.99.1), hyaluronidases from leeches, other parasites, and crustaceans (EC 3.2.1.36), and mammalian-type hyaluronidases (EC 3.2.1.35).
- Hyaluronidases also include any of non-human origin including, but not limited to, murine, canine, feline, leporine, avian, bovine, ovine, porcine, equine, piscine, ranine, bacterial, and any from leeches, other parasites, and crustaceans.
- Exemplary non-human hyaluronidases include, hyaluronidases from cows (SEQ ID NO:10 and 11), yellow jacket wasp (SEQ ID NOS:12 and 13), honey bee (SEQ ID NO: 14), white-face hornet (SEQ ID NO: 15), paper wasp (SEQ ID NO: 16), mouse (SEQ ID NOS:17-19, 32), pig (SEQ ID NOS:20-21), rat (SEQ ID NOS:22-24, 31), rabbit (SEQ ID NO:25), sheep (SEQ ID NO:26 and 27), orangutan (SEQ ID NO:28), cynomolgus monkey (SEQ ID NO:29), guinea pig (SEQ ID NO:30), Staphylococcus aureus (SEQ ID NO:33), Streptococcus pyogenes (SEQ ID NO:34), and Clostridium perfringens (SEQ ID NO:35).
- Hyaluronidases also include those of human origin.
- Exemplary human hyaluronidases include HYAL1 (SEQ ID NO:36), HYAL2 (SEQ ID NO:37), HYAL3 (SEQ ID NO:38), HYAL4 (SEQ ID NO:39), and PH20 (SEQ ID NO:l).
- Also included amongst hyaluronidases are soluble hyaluronidases, including, ovine and bovine PH20, soluble human PH20 and soluble rHuPH20.
- Reference to hyaluronidases includes precursor hyaluronidase polypeptides and mature hyaluronidase polypeptides (such as those in which a signal sequence has been removed), truncated forms thereof that have activity, and includes allelic variants and species variants, variants encoded by splice variants, and other variants, including polypeptides that have at least 40 %, 45 %, 50 %, 55 %, 65 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 %, 96 %, 97 %, 98 %, 99 % or more sequence identity to the precursor polypeptides set forth in SEQ ID NOS: 1 and 10-39, or the mature form thereof.
- reference to hyaluronidase also includes the human PH20 precursor polypeptide variants set forth in SEQ ID NOS:50-51.
- Hyaluronidases also include those that contain chemical or posttranslational modifications and those that do not contain chemical or posttranslational modifications. Such modifications include, but are not limited to, pegylation, albumination, glycosylation, farnysylation, carboxylation, hydroxylation, phosphorylation, and other polypeptide modifications known in the art.
- a soluble hyaluronidase refers to a polypeptide characterized by its solubility under physiologic conditions. Generally, a soluble hyaluronidase lacks all or a portion of a glycophosphatidyl anchor (GPI), or does not otherwise sufficiently anchor to the cell membrane. Hence, upon expression from a cell, a soluble hyaluronidase is secreted into the medium. Soluble hyaluronidases can be distinguished, for example, by its partioning into the aqueous phase of a Triton X- 114 solution warmed to 37 °C (Bordier et al., (1981) J. Biol.
- Membrane-anchored such as lipid anchored hyaluronidases, will partition into the detergent rich phase, but will partition into the detergent-poor or aqueous phase following treatment with Phospholipase-C.
- Included among soluble hyaluronidases are membrane anchored hyaluronidases in which one or more regions associated with anchoring of the hyaluronidase to the membrane has been removed or modified, where the soluble form retains hyaluronidase activity. Soluble
- hyaluronidases include recombinant soluble hyaluronidases and those contained in or purified from natural sources, such as, for example, testes extracts from sheep or cows. Exemplary of such soluble hyaluronidases are soluble human PH20. Other soluble hyaluronidases include ovine (SEQ ID NO:27) and bovine (SEQ ID NO:l 1) PH20. As used herein, soluble human PH20 or sHuPH20 include mature
- Exemplary sHuPH20 polypeptides include mature polypeptides having an amino acid sequence set forth in any one of SEQ ID NOS:4-9 and 47-48.
- the precursor polypeptides for such exemplary sHuPH20 polypeptides include a signal sequence.
- Exemplary of the precursors are those set forth in SEQ ID NOS:3 and 40- 46, each of which contains a 35 amino acid signal sequence at amino acid positions 1-35.
- Soluble HuPH20 polypeptides also include those degraded during or after the production and purification methods described herein.
- soluble recombinant human PH20 refers to a soluble form of human PH20 that is recombinantly expressed in Chinese Hamster Ovary (CHO) cells. Soluble rHuPH20 is encoded by nucleic acid that includes the signal sequence and is set forth in SEQ ID NO:49. Also included are DNA molecules that are allelic variants thereof and other soluble variants. The nucleic acid encoding soluble rHuPH20 is expressed in CHO cells which secrete the mature polypeptide. As produced in the culture medium there is heterogeneity at the C- terminus so that the product includes a mixture of species that can include any one or more of SEQ ID NOS: 4-9 in various abundance.
- allelic variants and other variants also are included, including those corresponding to the precursor human PH20 polypeptides set forth in SEQ ID NOS:50-51.
- Other variants can have 60 %, 70 %, 80 %, 85 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % or more sequence identity with any of SEQ ID NOS:4-9 and 47-48 as long they retain a hyaluronidase activity and are soluble.
- activity refers to a functional activity or activities of a polypeptide or portion thereof associated with a full-length (complete) protein.
- Functional activities include, but are not limited to, biological activity, catalytic or enzymatic activity, antigenicity (ability to bind or compete with a polypeptide for binding to an anti-polypeptide antibody), immunogenicity, ability to form
- hyaluronidase activity refers to the ability of hyaluronidase to cleave hyaluronic acid.
- hyaluronidase activity refers to the ability of hyaluronidase to cleave hyaluronic acid.
- hyaluronidase activity is known in the art and described herein.
- Exemplary assays include the microturbidity assay described below (see e.g.
- Example 3 that measures cleavage of hyaluronic acid by hyaluronidase indirectly by detecting the insoluble precipitate formed when the uncleaved hyaluronic acid binds with serum albumin.
- ultrafiltration encompasses a variety of membrane filtration methods in which hydrostatic pressure forces a liquid against a semi-permeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. This separation process is often used for purifying and concentrating macromolecular (10 - 10 Da) solutions, especially protein solutions. A number of ultrafiltration membranes are available depending on the size of the molecules they retain. Ultrafiltration is typically characterized by a membrane pore size between 1 and 1000 kDa and operating pressures between 0.01 and 10 bar, and is particularly useful for separating colloids like proteins from small molecules like sugars and salts.
- diafiltration is performed with the same membranes as ultrafiltration and is a tangential flow filtration.
- buffer is introduced into the recycle tank while filtrate is removed from the unit operation.
- diafiltration washes components out of the product pool into the filtrate, thereby exchanging buffers and reducing the concentration of undesirable species.
- mixing describes an act of causing equal distribution of two or more distinct compounds or substances in a solution or suspension by any form of agitation. Complete equal distribution of all ingredients in a solution or suspension is not required as a result of "mixing" as the term is used in this application.
- solvent encompasses any liquid substance capable of dissolving or dispersing one or more other substances.
- a solvent may be inorganic in nature, such as water, or it may be an organic liquid, such as ethanol, acetone, methyl acetate, ethyl acetate, hexane, petrol ether, etc.
- solvent detergent treatment solvent denotes an organic solvent (e.g., tri-N-butyl phosphate), which is part of the solvent detergent mixture used to inactivate lipid- enveloped viruses in solution.
- surfactant or "surface acting agent.”
- Surfactants are typically organic compounds that are amphiphilic, i.e., containing both hydrophobic groups (“tails”) and hydrophilic groups ("heads”), which render surfactants soluble in both organic solvents and water.
- a surfactant can be classified by the presence of formally charged groups in its head.
- a non-ionic surfactant has no charge groups in its head, whereas an ionic surfactant carries a net charge in its head.
- a zwitterionic surfactant contains a head with two oppositely charged groups.
- Typical surfactants include: Anionic (based on sulfate, sulfonate or carboxylate anions): perfluorooctanoate (PFOA or PFO), perfluorooctanesulfonate (PFOS), sodium dodecyl sulfate (SDS), ammonium lauryl sulfate, and other alkyl sulfate salts, sodium laureth sulfate (also known as sodium lauryl ether sulfate, or SLES), alkyl benzene sulfonate; cationic (based on quaternary ammonium cations): cetyl trimethylammonium bromide (CTAB) a.k.a.
- CTAB cetyl trimethylammonium bromide
- CPC cetylpyridinium chloride
- POEA polyethoxylated tallow amine
- BAC benzalkonium chloride
- BZT benzethonium chloride
- cocamidopropyl betaine coco ampho glycinate
- nonionic alkyl poly(ethylene oxide), alkylphenol poly( ethylene oxide), copolymers of poly(ethylene oxide) and poly(propylene oxide) (commercially known as Poloxamers or Poloxamines)
- alkyl polyglucosides including octyl glucoside, decyl maltoside, fatty alcohols (e.g., cetyl alcohol and oleyl alcohol), cocamide MEA, cocamide DEA, polysorbates (Tween 20, Tween 80, etc.), Triton detergents, and dodecyl dimethylamine oxide.
- nucleic acids include DNA, RNA and analogs thereof, including peptide nucleic acids (PNA) and mixtures thereof. Nucleic acids can be single or double-stranded.
- probes or primers which are optionally labeled, such as with a detectable label, such as a fluorescent or radiolabel, single- stranded molecules are contemplated.
- Such molecules are typically of a length such that their target is statistically unique or of low copy number (typically less than 5, generally less than 3) for probing or priming a library.
- a probe or primer contains at least 14, 16 or 30 contiguous nucleotides of sequence complementary to or identical to a gene of interest. Probes and primers can be 10, 20, 30, 50, 100 or more nucleic acids long.
- a peptide refers to a polypeptide that is from 2 to 40 amino acids in length.
- amino acids which occur in the various sequences of amino acids provided herein are identified according to their known, three-letter or one-letter abbreviations (Table 1).
- the nucleotides which occur in the various nucleic acid fragments are designated with the standard single-letter designations used routinely in the art.
- amino acid is an organic compound containing an amino group and a carboxylic acid group.
- a polypeptide contains two or more amino acids.
- amino acids include the twenty naturally- occurring amino acids, non-natural amino acids and amino acid analogs (i.e., amino acids wherein the a-carbon has a side chain).
- amino acid residue refers to an amino acid formed upon chemical digestion (hydrolysis) of a polypeptide at its peptide linkages.
- the amino acid residues described herein are presumed to be in the "L” isomeric form.
- Residues in the "D" isomeric form can be substituted for any L-amino acid residue as long as the desired functional property is retained by the polypeptide.
- NH 2 refers to the free amino group present at the amino terminus of a polypeptide.
- COOH refers to the free carboxy group present at the carboxyl terminus of a polypeptide.
- amino acid residue sequences represented herein by formulae have a left to right orientation in the conventional direction of amino- terminus to carboxyl-terminus.
- amino acid residue is broadly defined to include the amino acids listed in the Table of Correspondence (Table 1) and modified and unusual amino acids, such as those referred to in 37 C.F.R. ⁇ 1.821-1.822, and incorporated herein by reference.
- a dash at the beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino acid residues, to an amino-terminal group such as NH 2 or to a carboxyl-terminal group such as COOH.
- non-natural amino acids refer to the 20 L-amino acids that occur in polypeptides.
- non-natural amino acid refers to an organic compound that has a structure similar to a natural amino acid but has been modified structurally to mimic the structure and reactivity of a natural amino acid.
- Non-naturally occurring amino acids thus include, for example, amino acids or analogs of amino acids other than the 20 naturally-occurring amino acids and include, but are not limited to, the D-isostereomers of amino acids. Exemplary non-natural amino acids are described herein and are known to those of skill in the art.
- an isokinetic mixture is one in which the molar ratios of amino acids has been adjusted based on their reported reaction rates (see, e.g., Ostresh et al., (1994) Biopolymers 34:1681).
- modification is in reference to modification of a sequence of amino acids of a polypeptide or a sequence of nucleotides in a nucleic acid molecule and includes deletions, insertions, and replacements of amino acids and nucleotides, respectively.
- Methods of modifying a polypeptide are routine to those of skill in the art, such as by using recombinant DNA methodologies.
- suitable conservative substitutions of amino acids are known to those of skill in this art and can be made generally without altering the biological activity of the resulting molecule.
- Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g., Watson et al. Molecular Biology of the Gene, 4th Edition, 1987, The Benjamin/Cummings Pub. co., p.224).
- Such substitutions can be made in accordance with those set forth in TABLE 1 A as follows:
- DNA construct is a single or double stranded, linear or circular DNA molecule that contains segments of DNA combined and juxtaposed in a manner not found in nature.
- DNA constructs exist as a result of human manipulation, and include clones and other copies of manipulated molecules.
- a DNA segment is a portion of a larger DNA molecule having specified attributes.
- a DNA segment encoding a specified polypeptide is a portion of a longer DNA molecule, such as a plasmid or plasmid fragment, which, when read from the 5' to 3' direction, encodes the sequence of amino acids of the specified polypeptide.
- polynucleotide means a single- or double-stranded polymer of deoxyribonucleotides or ribonucleotide bases read from the 5' to the 3' end.
- Polynucleotides include RNA and DNA, and can be isolated from natural sources, synthesized in vitro, or prepared from a combination of natural and synthetic molecules.
- the length of a polynucleotide molecule is given herein in terms of nucleotides (abbreviated "nt") or base pairs (abbreviated "bp").
- nt nucleotides
- bp base pairs
- double-stranded molecules When the term is applied to double-stranded molecules it is used to denote overall length and will be understood to be equivalent to the term base pairs. It will be recognized by those skilled in the art that the two strands of a double-stranded polynucleotide can differ slightly in length and that the ends thereof can be staggered; thus all nucleotides within a double-stranded polynucleotide molecule can not be paired. Such unpaired ends will, in general, not exceed 20 nucleotides in length.
- similarity between two proteins or nucleic acids refers to the relatedness between the sequence of amino acids of the proteins or the nucleotide sequences of the nucleic acids. Similarity can be based on the degree of identity and/or homology of sequences of residues and the residues contained therein. Methods for assessing the degree of similarity between proteins or nucleic acids are known to those of skill in the art. For example, in one method of assessing sequence similarity, two amino acid or nucleotide sequences are aligned in a manner that yields a maximal level of identity between the sequences. "Identity” refers to the extent to which the amino acid or nucleotide sequences are invariant.
- Alignment of amino acid sequences, and to some extent nucleotide sequences, also can take into account conservative differences and/or frequent substitutions in amino acids (or nucleotides). Conservative differences are those that preserve the physico- chemical properties of the residues involved. Alignments can be global (alignment of the compared sequences over the entire length of the sequences and including all residues) or local (the alignment of a portion of the sequences that includes only the most similar region or regions).
- identity is well known to skilled artisans (Carillo, H. & Lipton, D., SIAMJ
- homologous means about greater than or equal to 25% sequence homology, typically greater than or equal to 25%, 40%, 50%, 60%, 70%, 80%, 85%, 90% or 95% sequence homology; the precise percentage can be specified if necessary.
- sequence homology typically greater than or equal to 25%, 40%, 50%, 60%, 70%, 80%, 85%, 90% or 95% sequence homology; the precise percentage can be specified if necessary.
- identity often used interchangeably, unless otherwise indicated.
- sequences are aligned so that the highest order match is obtained (see, e.g.: Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome
- Substantially homologous nucleic acid molecules would hybridize typically at moderate stringency or at high stringency all along the length of the nucleic acid of interest. Also contemplated are nucleic acid molecules that contain degenerate codons in place of codons in the hybridizing nucleic acid molecule.
- nucleotide sequences or amino acid sequences that are at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% "identical” or “homologous” can be determined using known computer algorithms such as the "FASTA” program, using for example, the default parameters as in Pearson et al. (1988) Proc. Natl. Acad. Sci. USA 85:2444 (other programs include the GCG program package (Devereux, J., et al., Nucleic Acids Research
- Percent homology or identity of proteins and/or nucleic acid molecules can be determined, for example, by comparing sequence information using a GAP computer program (e.g., Needleman et al. (1970) J. Mol. Biol. 48:443, as revised by Smith and Waterman ((1981) Adv. Appl. Math. 2:482). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e., nucleotides or amino acids), which are similar, divided by the total number of symbols in the shorter of the two sequences.
- Default parameters for the GAP program can include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) and the weighted comparison matrix of Gribskov et al. (1986) Nucl. Acids Res. 14:6745, as described by Schwartz and Dayhoff, eds., ATLAS OF PROTEIN SEQUENCE AND STRUCTURE, National Biomedical Research
- the term “identity” or “homology” represents a comparison between a test and a reference polypeptide or polynucleotide.
- the term at least “90% identical to” refers to percent identities from 90 to 99.99 relative to the reference nucleic acid or amino acid sequence of the polypeptide. Identity at a level of 90% or more is indicative of the fact that, assuming for exemplification purposes a test and reference polypeptide length of 100 amino acids are compared. No more than 10% (i.e., 10 out of 100) of the amino acids in the test polypeptide differs from that of the reference polypeptide. Similar comparisons can be made between test and reference polynucleotides. Such differences can be represented as point mutations randomly distributed over the entire length of a polypeptide or they can be clustered in one or more locations of varying length up to the maximum allowable, e.g. 10/100 amino acid difference
- an aligned sequence refers to the use of homology (similarity and/or identity) to align corresponding positions in a sequence of nucleotides or amino acids. Typically, two or more sequences that are related by 50% or more identity are aligned.
- An aligned set of sequences refers to 2 or more sequences that are aligned at corresponding positions and can include aligning sequences derived from RNAs, such as ESTs and other cDNAs, aligned with genomic DNA sequence.
- primer refers to a nucleic acid molecule that can act as a point of initiation of template-directed DNA synthesis under appropriate conditions (e.g., in the presence of four different nucleoside triphosphates and a polymerization agent , such as DNA polymerase, RNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature. It will be appreciated that a certain nucleic acid molecules can serve as a “probe” and as a “primer.” A primer, however, has a 3' hydroxyl group for extension.
- a primer can be used in a variety of methods, including, for example, polymerase chain reaction (PCR), reverse- transcriptase (RT)-PCR, RNA PCR, LCR, multiplex PCR, panhandle PCR, capture PCR, expression PCR, 3' and 5' RACE, in situ PCR, ligation-mediated PCR and other amplification protocols.
- PCR polymerase chain reaction
- RT reverse- transcriptase
- RNA PCR reverse- transcriptase
- LCR multiplex PCR
- panhandle PCR panhandle PCR
- capture PCR expression PCR
- 3' and 5' RACE in situ PCR
- ligation-mediated PCR and other amplification protocols.
- primer pair refers to a set of primers that includes a 5' (upstream) primer that hybridizes with the 5' end of a sequence to be amplified (e.g. by PCR) and a 3' (downstream) primer that hybridizes with the complement of the 3' end of the sequence to be amplified.
- nucleic acid molecule e.g. an oligonucleotide
- target nucleic acid molecule e.g. an oligonucleotide
- a nucleic acid molecule e.g. an oligonucleotide
- parameters particularly relevant to in vitro hybridization further include annealing and washing temperature, buffer composition and salt concentration.
- Exemplary washing conditions for removing non-specifically bound nucleic acid molecules at high stringency are 0.1 x SSPE, 0.1% SDS, 65°C, and at medium stringency are 0.2 x SSPE, 0.1% SDS, 50°C. Equivalent stringency conditions are known in the art.
- nucleic acid molecule to a target nucleic acid molecule appropriate for a particular application.
- hybridizing typically with less than 25 %, 15 % or 5 % mismatches between opposed nucleotides. If necessary, the percentage of complementarity will be specified. Typically the two molecules are selected such that they will hybridize under conditions of high stringency.
- substantially identical to a product means sufficiently similar so that the property of interest is sufficiently unchanged so that the substantially identical product can be used in place of the product.
- allelic variant or allelic variation references any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and can result in phenotypic
- allelic variant also is used herein to denote a protein encoded by an allelic variant of a gene.
- the reference form of the gene encodes a wildtype form and/or predominant form of a polypeptide from a population or single reference member of a species.
- allelic variants which include variants between and among species typically have at least 80 %, 90 % or greater amino acid identity with a wildtype and/or predominant form from the same species; the degree of identity depends upon the gene and whether comparison is interspecies or intraspecies.
- intraspecies allelic variants have at least about 80%, 85%, 90% or 95% identity or greater with a wildtype and/or predominant form, including 96%, 97%, 98%, 99% or greater identity with a wildtype and/or predominant form of a polypeptide.
- Reference to an allelic variant herein generally refers to variations n proteins among members of the same species.
- allele which is used interchangeably herein with “allelic variant” refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for that gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide or several nucleotides, and can include substitutions, deletions and insertions of nucleotides. An allele of a gene also can be a form of a gene containing a mutation. As used herein, species variants refer to variants in polypeptides among different species, including different mammalian species, such as mouse and human.
- a splice variant refers to a variant produced by differential processing of a primary transcript of genomic DNA that results in more than one type of mRNA.
- promoter means a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding region of genes.
- isolated or purified polypeptide or protein or biologically- active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. Preparations can be determined to be substantially free if they appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), gel electrophoresis and high performance liquid chromatography (HPLC), used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the substance.
- TLC thin layer chromatography
- HPLC high performance liquid chromatography
- substantially free of cellular material includes preparations of proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced.
- the term substantially free of cellular material includes preparations of enzyme proteins having less that about 30% (by dry weight) of non-enzyme proteins (also referred to herein as a contaminating protein), generally less than about 20% of non-enzyme proteins or 10% of non-enzyme proteins or less that about 5% of non-enzyme proteins.
- non-enzyme proteins also referred to herein as a contaminating protein
- the enzyme protein is recombinantly produced, it also is substantially free of culture medium, i.e., culture medium represents less than about or at 20%, 10% or 5% of the volume of the enzyme protein preparation.
- the term substantially free of chemical precursors or other chemicals includes preparations of enzyme proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein.
- the term includes preparations of enzyme proteins having less than about 30% (by dry weight) 20%, 10%, 5% or less of chemical precursors or non-enzyme chemicals or components.
- synthetic with reference to, for example, a synthetic nucleic acid molecule or a synthetic gene or a synthetic peptide refers to a nucleic acid molecule or polypeptide molecule that is produced by recombinant methods and/or by chemical synthesis methods.
- production by recombinant means by using recombinant DNA methods means the use of the well known methods of molecular biology for expressing proteins encoded by cloned DNA.
- vector refers to discrete elements that are used to introduce a heterologous nucleic acid into cells for either expression or replication thereof.
- the vectors typically remain episomal, but can be designed to effect integration of a gene or portion thereof into a chromosome of the genome.
- vectors that are artificial chromosomes such as yeast artificial chromosomes and mammalian artificial chromosomes. Selection and use of such vehicles are well known to those of skill in the art.
- an expression vector includes vectors capable of expressing DNA that is operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such DNA fragments. Such additional segments can include promoter and terminator sequences, and optionally can include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like. Expression vectors are generally derived from plasmid or viral DNA, or can contain elements of both. Thus, an expression vector refers to a recombinant DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the cloned DNA. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and/or prokaryotic cells and those that remain episomal or those which integrate into the host cell genome.
- vector also includes "virus vectors” or “viral vectors.”
- viral vectors are engineered viruses that are operatively linked to exogenous genes to transfer (as vehicles or shuttles) the exogenous genes into cells.
- operably or operatively linked when referring to DNA segments means that the segments are arranged so that they function in concert for their intended purposes, e.g., transcription initiates in the promoter and proceeds through the coding segment to the terminator.
- assessing is intended to include quantitative and qualitative determination in the sense of obtaining an absolute value for the activity of a protein, such as an enzyme or protease, or a domain thereof, present in the sample, and also of obtaining an index, ratio, percentage, visual or other value indicative of the level of the activity.
- Assessment can be direct or indirect and the chemical species actually detected need not of course be the endproduct of a reaction, such as a proteolysis product itself, but can for example be a derivative thereof or some further substance.
- assessment can be detection of a cleavage product of a protein, such as by SDS-PAGE and protein staining with Coomasie blue.
- biological activity refers to the in vivo activities of a compound or physiological responses that result upon in vivo administration of a compound, composition or other mixture.
- Biological activity thus, encompasses therapeutic effects and pharmaceutical activity of such compounds, compositions and mixtures.
- Biological activities can be observed in in vitro systems designed to test or use such activities.
- a biological activity of a protease is its catalytic activity in which a polypeptide is hydrolyzed.
- equivalent when referring to two sequences of nucleic acids, means that the two sequences in question encode the same sequence of amino acids or equivalent proteins.
- equivalent when equivalent is used in referring to two proteins or peptides, it means that the two proteins or peptides have substantially the same amino acid sequence with only amino acid substitutions that do not substantially alter the activity or function of the protein or peptide.
- equivalent refers to a property, the property does not need to be present to the same extent (e.g., two peptides can exhibit different rates of the same type of enzymatic activity), but the activities are usually substantially the same.
- modulate and “modulation” or “alter” refer to a change of an activity of a molecule, such as a protein.
- exemplary activities include, but are not limited to, biological activities, such as signal transduction.
- Modulation can include an increase in the activity (i.e., up-regulation or agonist activity) a decrease in activity (i.e., down-regulation or inhibition) or any other alteration in an activity (such as a change in periodicity, frequency, duration, kinetics or other parameter).
- Modulation can be context dependent and typically modulation is compared to a designated state, for example, the wildtype protein, the protein in a constitutive state, or the protein as expressed in a designated cell type or condition.
- composition refers to any mixture. It can be a solution, suspension, liquid, powder, paste, aqueous, non-aqueous or any combination thereof.
- a combination refers to any association between or among two or more items.
- the combination can be two or more separate items, such as two compositions or two collections, can be a mixture thereof, such as a single mixture of the two or more items, or any variation thereof.
- the elements of a combination are generally functionally associated or related.
- kits are packaged combinations that optionally includes other elements, such as additional reagents and instructions for use of the
- disease or disorder refers to a pathological condition in an organism resulting from cause or condition including, but not limited to, infections, acquired conditions, genetic conditions, and characterized by identifiable symptoms.
- Diseases and disorders of interest herein are those that are treatable by immune globulin.
- treating means that the subject's symptoms are partially or totally alleviated, or remain static following treatment.
- treatment encompasses prophylaxis, therapy and/or cure.
- Prophylaxis refers to prevention of a potential disease and/or a prevention of worsening of symptoms or progression of a disease.
- Treatment also encompasses any pharmaceutical use of an immune globulin preparation and compositions provided herein.
- a pharmaceutically effective agent includes any therapeutic agent or bioactive agents, including, but not limited to, for example, anesthetics, vasoconstrictors, dispersing agents, conventional therapeutic drugs, including small molecule drugs and therapeutic proteins.
- treatment means any manner in which the symptoms of a condition, disorder or disease or other indication, are ameliorated or otherwise beneficially altered.
- therapeutic effect means an effect resulting from treatment of a subject that alters, typically improves or ameliorates the symptoms of a disease or condition or that cures a disease or condition.
- a therapeutically effective amount refers to the amount of a composition, molecule or compound which results in a therapeutic effect following administration to a subject.
- the term "subject" refers to an animal, including a mammal, such as a human being.
- a patient refers to a human subject.
- amelioration of the symptoms of a particular disease or disorder by a treatment refers to any lessening, whether permanent or temporary, lasting or transient, of the symptoms that can be attributed to or associated with administration of the composition or therapeutic.
- prevention or prophylaxis refers to methods in which the risk of developing disease or condition is reduced.
- a “therapeutically effective amount” or a “therapeutically effective dose” refers to the quantity of an agent, compound, material, or composition containing a compound that is at least sufficient to produce a therapeutic effect. Hence, it is the quantity necessary for preventing, curing, ameliorating, arresting or partially arresting a symptom of a disease or disorder.
- unit dose form refers to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art.
- a single dosage formulation refers to a formulation for direct administration.
- an "article of manufacture” is a product that is made and sold. As used throughout this application, the term is intended to encompass IG and hyaluronidase compositions contained in articles of packaging.
- fluid refers to any composition that can flow. Fluids thus encompass compositions that are in the form of semi-solids, pastes, solutions, aqueous mixtures, gels, lotions, creams and other such compositions.
- Kit refers to a combination of compositions provided herein and another item for a purpose including, but not limited to, activation, administration, diagnosis, and assessment of a biological activity or property. Kits optionally include instructions for use.
- a cellular extract or lysate refers to a preparation or fraction which is made from a lysed or disrupted cell.
- animal includes any animal, such as, but are not limited to primates including humans, gorillas and monkeys; rodents, such as mice and rats; fowl, such as chickens; ruminants, such as goats, cows, deer, sheep; ovine, such as pigs and other animals.
- rodents such as mice and rats
- fowl such as chickens
- ruminants such as goats, cows, deer, sheep
- ovine such as pigs and other animals.
- Non-human animals exclude humans as the contemplated animal.
- the enzymes provided herein are from any source, animal, plant, prokaryotic and fungal. Most enzymes are of animal origin, including mammalian origin.
- a control refers to a sample that is substantially identical to the test sample, except that it is not treated with a test parameter, or, if it is a plasma sample, it can be from a normal volunteer not affected with the condition of interest.
- a control also can be an internal control.
- an optionally substituted group means that the group is unsubstituted or is substituted.
- stable co-formulations containing immune globulin (IG) and hyaluronidase.
- the co-formulations retain IG molecular size distribution and hyaluronidase activity after extended storage in liquid form at room temperature (e.g. 28 to 32 °C) for at least six months.
- the co-formulations also retain IG molecular size distribution and hyaluronidase activity at standard refrigerator temperatures for at least 1-2 years.
- the co-formulations can be used for treating IG- treatable diseases and conditions.
- the stable co-formulations provided herein are formulated for subcutaneous administration.
- Immune globulin is a therapeutic that is primarily given to treat individuals with immune deficiencies.
- Immunoglobulin deficiency disorders are a subset of immunodeficiency diseases characterized by missing or reduced levels of serum immunoglobulins, leading to increased susceptibility to bacterial infections, especially of the sinopulmonary tract.
- Immunodeficiency diseases are either primary (genetic) or secondary (acquired).
- Primary immunodeficiency diseases are rare and include X-linked agammaglobulinemia, immunoglobulin heavy chain deletion, selective immunoglobulin G (IgG) subclass deficiency, common variable immunodeficiency, or X-linked hyperimmunoglobulin M syndrome. Decreased immunoglobulin levels also are found in individuals having combined
- immunodeficiencies due to defects in T and B cells such as, but not limited to, severe combined immunodeficiency or Wiskott Aldrich Syndrome (IUIS Scientific Committee, 1999). More common are secondary immunodeficiencies, induced by factors including, but not limited to, malnutrition, viruses, aging and leukemia.
- Immunoglobulin replacement therapy was first used in 1952 and was administered intramuscularly and subcutaneously. However, to effectively treat disease, larger amounts of IG are necessary, which led to the development of intravenously administrable products with lower IG concentrations (50-100 mg/mL). Since 1981, the majority of immunoglobulin products available in the United States are administered intravenously. Generally, IG preparations are sterile, purified products that contain immunoglobulin G (IgG, IgM, IgA or a combination of those). Typically, IG products contain 95-99 % IgG and only trace amounts of
- immunoglobulins A (IgA), M (IgM), D (IgD) and E (IgE).
- IG preparations for IV administration are generally formulated at 3 to 12 % IG.
- Vivaglobin is licensed for subcutaneous administration in the United States.
- a subcutaneous route of administration of IG has several advantages compared to the IV route such as better tolerability and the possibility of home care treatment.
- the bioavailability of immunoglobulin administered subcutaneously generally is less than that infused intravenously. Following IV administration, immunoglobulin is immediately available in the blood, and slowly equilibrates to the extra- vascular compartment over 3 to 5 days (Schiff et al. (1986) J. Clin. Immunol. 6:256-64). Subcutaneously administered immunoglobulin is slowly absorbed from the subcutaneous space into the blood and at the same time equilibrates with the extra-vascular compartment; there is no high IV spike.
- All of the immunoglobulin preparations presently used for subcutaneous administration are formulated at 16 % IG, compared to IVIG preparations formulated at 5 to 12 % IG.
- the higher concentration of IG in subcutaneous preparations relative to IV preparations allows smaller infusion volumes; such preparations cannot be infused intravenously.
- Such subcutaneous methods of immunoglobulin replacement therapy are considered to be effective, safe and also highly appreciated by patients, as it has a low risk of systemic adverse reactions and leads to higher trough serum IgG concentrations compared to monthly IV infusions (Gardulf et al. (1995) J. Adv. Nurs., 21 :917-27; Gardulf et al. (1993) Clin. Exp. Immunol, 92:200-4; Gardulf et al. (1991) Lancet, 338:162-6).
- SC and IV administration In addition to the decreased bioavailability associated with subcutaneous administration of IG, another distinction between SC and IV administration is that only small volumes can be infused subcutaneously at each site, necessitating the use of multiple sites on a weekly or biweekly (ever other week) basis. In general, however, adults can only be infused with 20-40 mL at a single subcutaneous site, with lower volumes per site for children.
- the accepted practice for IG administration is 300-600 mg/kg intravenously once every 3-4 weeks or 100-200 mg/kg/wk subcutaneously (Berger (2008) Immunol. Allergy Clin. North Am.
- the bioavailability of subcutaneously administered IG is increased in combination with hyaluronidase administration, thereby permitting subcutaneous administration of immune globulin at dosages and frequencies similar to IVIG treatment (see e.g. U.S. Patent Application No. 2010-0074885 and International PCT No. WO 2009-117085, each incorporated by reference herein).
- the subcutaneous (SC) space formed by a collagen network filled with hyaluronic acid, a gel-like substance, is largely responsible for the resistance to fluid flow through the tissues.
- Hyaluronidase is a family of naturally occurring enzymes that break down hyaluronic acid, which is a space-filling "gel"-like substance found in the extracellular matrix and in tissues throughout the body such as the skin and eye.
- Hyaluronidase acts by splitting the glucosaminidic bond in hyaluronic acid between the Ci of an N-acetylglucosamine moiety and C 4 of a glucuronic moiety. This temporarily decreases the viscosity of the cellular cement and promotes diffusion of injected fluids, thus facilitating their absorption. Afterwards, hyaluronic acid is regenerated naturally within 24 hours. Accordingly, the bioavailability,
- the increased fluid dispersion permits administration of up to 1 L per hour via the subcutaneous route, which is an IV-like flow rate.
- hyaluronidase In the presence of hyaluronidase, the bioavailability of subcutaneously administered IG is increased, typically to more than 90 % of the bioavailability of IG following IVIG treatment. Further, co-administration with a soluble hyaluronidase permits infusion of large volumes at a single subcutaneous site. For example, volumes up to 600 mL or greater of IG can be administered at a single site in a single sitting, for example 200 mL, 300 mL, 400 mL, 500 mL, 600 mL or more can be administered at a single site in a single administration.
- an IG preparation formulated at or between 5-12%, for example at 10% protein, which typically are used only for IVIG therapy can be co-administered subcutaneously with a soluble hyaluronidase at dosages equivalent to once monthly IVIG doses, for example, at or about 100 mg/kg, 200 mg/kg, 300 mg/kg, 400 mg/kg, 500 mg/kg, 600 mg/kg or more.
- IG preparations at higher concentrations of protein for example, 12-25 % IG such as 15 %, 16 %, 17 %, 18 %, 19 %, 20 %, 21 %, 22 % or more also can be administered subcutaneously in the presence of hyaluronidase.
- the dosages can be administered as a single dose or can be divided into multiple doses given daily or weekly, such as once a week or every two, three or four weeks or combinations thereof.
- IG when administered subcutaneously in the presence of hyaluronidase, can be administered once monthly at prevailing IVIG doses for the particular indication.
- hyaluronidase acts to open flow channels in the skin, it can speed infusion rates.
- subcutaneously administering IG administered with hyaluronidase increases infusion rates and thereby decreases time of delivery of IG therapy.
- IG administration of IG are addressed.
- subcutaneously administering IG in the presence of a soluble hyaluronidase permits administration of IVIG doses at once monthly IVIG frequencies, while maintaining IVIG bioavailability.
- a stable, ready- for-use preparation of IG and hyaluronidase is contemplated.
- Proteins used for therapy are typically subjected to a range of conditions during processing and storage, including low pH, fluctuations in temperature, various buffer components and ionic strengths, and, often, high protein concentration in the final preparation.
- the co-formulation should retain sufficient activity of the IG and hyaluronidase.
- a co-formulation of IG and hyaluronidase must be provided as a stable solution for storage as an aqueous solution without deteriorating for prolonged periods of time.
- a stable liquid co-formulation of IG and hyaluronidase is such that it is provided as a dosage form that can be used for direct injection, i.e. not diluted before use.
- the stable co-formulations provided herein also contain at least 50 mM of an alkali metal chloride salt, for example, NaCl or KCl.
- the stable co-formulations also contain an amino acid, for example glycine, as a stabilizer and are provided at a pH of about or at 4 to 5.
- the ratio of hyaluronidase to IG in a co-formulated product is greater than the ratio when the same products (IG and hyaluronidase) and the same amount of IG are subcutaneously administered separately, for example, in a leading edge administration.
- the stable co-formulation is a liquid formulation.
- Storage of the co-formulation directly in a liquid form takes advantage of the convenience of having storage stability in the liquid form, ease of administration without reconstitution, and ability to supply the formulation in prefilled, ready-to-use syringes or as multidose preparations.
- the liquid co-formulations provide a ready-to-use preparation of IG and hyaluronidase for subcutaneous administration to a subject without having to reconstitute the preparation accurately and aseptically and waiting for a period of time until the solution clarifies before administering the formulation to the subject. It simplifies the procedure of administering the formulation to a subject for a healthcare professional.
- the manufacturing process of the liquid formulations is simplified and more efficient than the manufacturing process for the lyophilized version because all stages of the manufacturing of the liquid formulations are carried out in an aqueous solution, involving no drying process, such as lyophilization and freeze-drying. Accordingly, it is more cost effective as well.
- the stable co-formulation can be provided as a liquid solution in a container or syringe. Such a co-formulation can be conveniently dispensed to humans or other mammalian species as a pharmaceutical without further re-constitution by the physician or patient.
- the co-formulations can contain high protein concentrations in the range of about 10% to 22% IG, such as 10 % to 20 % IG without causing an adverse effect on the biological activity(ies) of IG due to protein aggregation and/or fragmentation during a prolonged storage.
- Such stability not only ensures the efficacy of the IG co-formulation, but also reduces possible risks of causing adverse effects on a subject.
- the stable co- formulations provided herein retain hyaluronidase enzymatic activity and IG activity while minimizing IG self-association and aggregation.
- the activity is retained at a temperature that is up to 32 °C, for example at or about 0 °C to 32 °C, generally at or about 28 °C to 32 °C.
- the stability of the co-formulation is maintained over prolonged periods of time, for example, daily, weekly, monthly, yearly or more.
- the co-formulations have the advantage that they are stable in liquid form during storage for prolonged periods of time of at least 6 months.
- the stable co-formulations are stable in liquid for at least 1 year or longer, for example, 1 year to 2 years, such as 1 year, 2 years, or more at standard refrigerator temperatures (approximately 4 ⁇ 2° C, or about 2-8 °C, or, more generally, ranging from about 0-10° C).
- the co-formulations are stable in liquid form during storage at room temperature (in the range of 18-32 °C, for example, 28 °C to 32 °C) for at least six months.
- the stable co- formulations generally have a shelf-life of at least or about 6 months to 18 months, for example 6 months, 12 months, 18 months, or more when stored at room temperature.
- IG immune globulins
- immunoglobulin gamma globulin or IgG
- stable co-formulations can be used for use in treating IG-treatable diseases and conditions.
- Immunoglobulins are gamma globulin proteins produced by the humoral immune system and found in the plasma of higher animals. IG acts to strengthen the immune system by modulating the activity of complement, suppressing
- IG autoantibody production, saturating or blocking Fc receptors on macrophages and B lymphocytes, and suppressing the production of inflammatory mediators such as cytokines, chemokines and metalloproteinases.
- IG is composed of five classes, or isotypes, of antibodies (IgG, IgA, IgM, IgD and IgE) and various subclasses, each with varying specificities.
- IgG is the most predominate class of IG found in the blood and is important in secondary immune responses and protecting tissues against infection.
- Table 2 illustrates typical amounts of immunoglobulins found in the serum, although preparations of IG for treatment can employ purification steps to alter ratios of a particular immunoglobulin class or classes.
- protein A, protein G or protein H sepharose chromatography can be used to enrich a mixture of immunoglobulins for IgG, or for specific IgG subtypes (see, e.g., Harlow and Lane (1999) Using Antibodies, Cold Spring Harbor Laboratory Press; Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory Press; U.S. Patent No. 5,180,810).
- immunoglobulin preparations can be prepared from any suitable starting materials.
- immune globulins can be isolated from human or animal blood, for example, from human donor serum, or produced by other means, for example, by recombinant DNA technology or hybridoma technology.
- immunoglobulin preparations can include monoclonal or recombinant immunoglobulins.
- immune globulin can be obtained from tissues, lymphocyte hybridoma cultures, blood plasma or serum, or recombinant cell cultures using any suitable procedure, such as, for example, precipitation (Cohn alcohol fractionation or polyethylene glycol fractionation); chromatographic methods (ion exchange chromatography, affinity chromatography, immunoaffinity chromatography); ultracentrifugation; or electrophoretic preparation (see, e.g., Cohn et al. (1946) J. Am. Chem. Soc. 68:459-75; Oncley et al. (1949) J. Am. Chem. Soc, 71:541-50; Barandern et al.
- precipitation Cohn alcohol fractionation or polyethylene glycol fractionation
- chromatographic methods ion exchange chromatography, affinity chromatography, immunoaffinity chromatography
- ultracentrifugation or electrophoretic preparation
- immunoglobulin is prepared from gamma globulin-containing products produced by alcohol fractionation and/or ion exchange and affinity chromatography methods well known to those of skill in the art.
- Preparative steps can be used to enrich a particular isotype or subtype of immunoglobulin.
- protein A, protein G or protein H sepharose chromatography can be used to enrich a mixture of immunoglobulins for IgG, or for specific IgG subtypes.
- modified Cohn-Oncley methods have been developed for the preparation and purification of IG.
- Various such procedures are known and can be adapted and modified for producing the IG preparations herein. It is within the skill of the art to prepare IG preparations in view of the detailed methods known and available in the art.
- IG is manufactured using a primary cold ethanol fractionation and a secondary fractionation that can include, for example, any one or more of the following steps to obtain a product having a low anti-complementary activity (AC A): separation of IG aggregates by conventional techniques, such as ultra- centrifuging or exclusion chromatography; chemical modification of the IG molecules by alcoholization, alkylation, sulfonation and treatment with reducing agents (see e.g., U.S. Patent 6,875,848); incubation at a moderately acidic pH (pH 4.0) with or without pepsin, plasmin and immobilized trypsin; fractionating human plasma by means of ethyleneglycol polymers (Poison et al. (1964) Biochim.
- AC A anti-complementary activity
- EP 0440483 describes a combination of techniques useful for facilitating the intravenous preparation of the product based on ion exchange chromatography and diafiltration at a weakly acidic pH; enzymatic cleavage; solvent/detergent treatment; and diafiltration and ultrafiltration. Other methods also are described in the art and are known to one of skill in the art (see e.g., U.S. Patents 5,177,194 and 6,875,848).
- the Fraction II is further purified before formulation into an administrable product.
- the Fraction II can be dissolved in cold purified aqueous alcohol solution and impurities removed via precipitation and filtration.
- the immunoglobulin suspension can be dialyzed or diafiltered (e.g. using ultrafiltration membranes having a nominal molecular weight limit of less than or equal to 100,000 daltons) to remove alcohol.
- the solution can be concentrated or diluted to obtain the desired protein concentration and can be further purified by techniques well known to those skilled in the art.
- the IG preparations should be treated to remove viral load.
- viral inactivation renders viruses inactive by, for example, chemically altering the lipid or protein coat, or by completely denaturing the virus.
- Exemplary of viral inactivation methods include, but are not limited to, heating (pasteurization), solvent/detergent (S/D) treatment and exposure to an acidic environment (low pH).
- S/D process is the most widely used viral inactivation method in the blood plasma industry, used to inactivate viruses containing a lipid coat. For example, the S/D process has been demonstrated to have virucidal action against VSV (vesicular stomatitits virus), Sindbis virus, HIV, HBV (hepatitis B virus) and HCV (hepatitis C virus).
- Viral removal is a method that completely removes all viruses from the sample.
- Exemplary of viral partitioning or removal include, but are not limited to, cold ethanol fractionation, phase partitioning or PEG precipitation, affinity chromatography, ion exchange or gel exclusion chromatography and nanofiltration.
- Immunoglobulins can be prepared at varying concentrations.
- IG can be prepared at protein concentrations ranging from at or about 3-25 % IG, typically at or about 10% to 22%, such as 10 % - 20 % w/v.
- IG preprations can be at or about 18% to 22% IG w/v.
- the IG preparations provided herein generally are prepared at IG concentrations of at or about 10 %, 1 1 %, 12 %, 13 %, 14 %, 15 %, 16 %, 17 %, 18 %, 19 %, 20 %, 21 %, 22 % or more.
- the final protein concentration depends largely on the method of generation and purification.
- any immune globulin preparation can be used herein for stable co-formulations with hyaluronidase. It is within the level of one of skill in the art to empirically determine the appropriate concentration of IG for inclusion in the stable co-formulations herein. The choice of IG preparation will depend on a variety of factors such as the administration route, the patient to be treated and the type of condition to be treated.
- any known or existing preparation of IG can be used. These include preparations of IG typically used for IV administration (IVIG). In general, final IG preparations for intravenous administration have a protein concentration of about 3 to 12 % w/v, or typically 10 % w/v.
- IVIG is commercially available as Carimune ® NF, Flebogamma ® 5 %, Gammagard ® Liquid, Gammagard ® S/D, Gamunex ® , Iveegam ® EN, Octagam ® and Polygam ® S/D.
- such preparations use a method of cold alcohol fractionation, but differ in the methods used to isolate and purify the immune globulin and methods to reduce potential virus contamination.
- IG preparations for intramuscular administration and subcutaneous administration are commercially available as GamaSTAN ® S/D and Vivaglobin , respectively.
- such preparations use cold ethanol fractionation from human plasma and have an IgG concentration of about 15 to 18% or 10 to 22 %, respectively.
- U.S. Provisional Application No. 61/181 ,606 describes the generation of a highly purified and concentrated immunoglobulin composition from pooled plasma for subcutaneous administration.
- IG preparation is Immune Globulin Intravenous (Human), 10 % (IVIG, 10 %, marketed as Gammagard ® liquid, Baxter Healthcare
- the preparation contains intact fragment crystallizable (Fc) and fragment antigen binding (Fab) regions.
- the preparations contain 100 mg/mL protein, with at least 98 % being IgG; IgA is present at a concentration of 37 ⁇ ,, and IgM is present only in trace amounts. It has an osmolality that is similar to physiologic osmolality, and contains no added sugars, sodium or preservatives. It is formulated with glycine for stabilization at a pH of 4.6 to 5.1.
- the manufacturing process employs a modified Cohn-Oncley cold alcohol fractionation procedure and further purifications by a continuous process through the use of weak cation exchange chromatography and weak anion exchange chromatography.
- the manufacturing process also includes 3 independent viral inactivation or removal steps: solvent/detergent (S/D) treatment, nanofiltration and incubation at a low pH and elevated temperature. Preparation of a 10 % IVIG preparation is described in Example 1.
- High Concentration IG Preparations e.g. 20 % IG
- the generation of high concentration immunoglobulin preparations are described in U.S. Provisional Application No. 61/181,606.
- Exemplary of preparations containing 18-22 % IG are highly purified, isotonic liquid formulations of immunoglobulin (at least 95 % IgG) formulated in 0.25 mM glycine at pH 4.4 to 4.9, represented in the Examples below.
- the high concentration IgG products described herein are produced by a process having many of the same or similar steps as in the process of producing traditional IVIG preparations (e.g. 10 % IG). The additional steps,
- the general process of producing the high concentration IG composition includes the following steps which are described in further detail in Example 2. First, the cryoprecipitates are separated from previously frozen plasma to yield a liquid "cryo-poor plasma," which is processed in the next step to obtain the supernatant (or Fractionation I). Adjustment of pH and ethanol concentration, typically to 7 and 20 to 25% v/v, respectively, followed by subsequent
- the precipitate from this step is then extracted, mixed with fumed silica, and filtered, all steps performed at low temperatures, typically 2 to 8 °C.
- the filtrate is then mixed with polysorbate-80 and sodium citrate dehydrate while stirring at 2 to 8 °C.
- Precipitate G is then obtained, in a manner similar to the precipitation step of Cohn II, in which the pH and alcohol concentration is adjusted.
- Precipitate G is dissolved and filtered with a depth filter of a nominal pore size of 0.2 ⁇ (e.g., Cuno VR06 filter or equivalent) to obtain a clear filtrate.
- Subsequent solvent/detergent treatment typically using 1.0 % (v/v) Triton X- 100, 0.3 % (v/v) Tween-80, and 0.3 % (v/v) TNBP, at 18 to 25 °C for at least 60 minutes, followed by cation exchange chromatography, anion exchange chromatography and nanofiltration using, e.g., an Asahi Planova 35N filter or equivalent.
- the filtrate is concentrated to a protein concentration of 5 ⁇ 1 % w/v by ultrafiltration.
- the ultrafiltration is carried out in a cassette with an open channel screen and the ultrafiltration membrane has a nominal molecular weight cut off (NMWCO) of 50 kDa or less.
- the concentrate is diafiltered against a 0.25 M glycine solution with a low pH.
- the minimum exchange volume is 6 times the original concentrate volume, and the solution is concentrated to a protein concentration of more than 20 % w/v.
- the pH of the solution is typically between 4.4 to 4.9.
- the protein concentration of the solution is then adjusted to just over 20 % w/v, e.g., 20.4 ⁇ 04 % w/v, with the diafiltration buffer.
- the formulated bulk solution is further sterilized by first filtering through a membrane filter with an absolute pore size of 0.2 micron or less. Then the solution is aseptically dispensed into final containers for proper sealing, with samples taken for testing. The final step is storing the sealed containers at 30 to 32 °C for an extended time period, e.g., 21 to 22 days.
- Incorporating ultrafiltration and formulations steps in the manufacturing process is an improvement over previously used IG purification and concentration methods, resulting in preparations with higher IG concentrations without significant IG activity loss while maintaining a low pH in the final formulation.
- the products have a protein concentration of at least 18 % weight/volume (w/v), of which the vast majority (typically no less than 95 %) is IgG, and a pH in the range of pH 3-6, which facilitates inactivation of pathogens such as viruses that may be present in the plasma. Due to the high IG concentration and therefore reduced volume in administration, the high concentration preparations are suitable for subcutaneous administration.
- the IG products have a viscosity no greater than 18 mPascal-second and may therefore be suitable for intravenous administration as well. Simple dilution can also permit intravenous administration.
- IG formulations must be prepared to retain activity of the IG and avoid excessive aggregation. Upon storage of the IG preparations, aggregation can be minimized and stability improved by, for example, the addition of protein- stabilizing excipients or adjusting the pH of the solution.
- excipients include, but are not limited to, sugars, polyols, amino acids, amines, salts, polymers and surfactants.
- excipients include, but are not limited to, sugars, polyols, amino acids, amines, salts, polymers and surfactants.
- Patent 4,499,073 describes stabilization as a result of ionic strength and pH of the storage solution
- JP Patent 54020124 discloses the addition of an amino acid to an intramuscular preparation to render the preparation stable and safe for storage
- JP 57031623 and JP 57128635 disclose the use of arginine and/or lysine with NaCl in 5 to 15% IG preparations to achieve long- term stability in an intramuscular preparation
- JP 4346934 discloses the use of low conductivity (less than 1 mmho), pH 5.3 to 5.7 and optionally one or more stabilizers, including PEG, human serum albumin and mannitol
- US 4,439,421 teaches the addition of a hydrophilic macromolecule, a polyol and another protein to stabilize against anti-complement generation
- US 5,945,098 discloses the
- Stable liquid formulations can also be prepared using carbohydrates in an aqueous medium with very low ionic strength and a pH of 4.25 (U.S. Patent No. 4,396,608) or a weakly acidic pH of 5-6 (EP 0278422).
- IG preparations particularly liquid preparations, containing one or more amphiphilic stabilizers against dimer formation.
- the amphiphilic stabilizers include nicotinic acid and its derivatives, in particular nicotinamide, and mainly in conjunction with amino acids having uncharged lipophilic side chains, e.g., phenylalanine, methionine, leucine, isoleucine, proline and valine.
- the IG preparations can be prepared by methods known in the art, such as any described herein. Generally, however, the pH of the final preparation is adjusted to a relatively high pH, namely in the range of about pH 4.0 to 7.4. It has been found that the pH of the immune globulin preparation is an important factor relative to the IgG monomer content of the final product. Generally, a 5 percent immune globulin preparation has a pH of 4.2 ⁇ 0.5. Ten percent preparations are most stable at a pH of 5.2 ⁇ 0.2. Optimal pH is obtained by formulation techniques well known to those skilled in the art. For example, optimal pH can be determined from size exclusion chromatography determinations as well as heat stability data and anticomplement titers of the various preparations under differing pH conditions. D. Hyaluronidase
- Hyaluronidases are members of a large family of enzymes that degrade hyaluronic acid, which is an essential component of the extracellular matrix and a major constituent of the interstitial barrier. By catalyzing the hydrolysis of hyaluronic acid, a major constituent of the interstitial barrier, hyaluronidase lowers the viscosity of hyaluronic acid, thereby increasing tissue permeability.
- hyaluronidases have been used, for example, as a spreading or dispersing agent in conjunction with other agents, drugs and proteins to enhance their dispersion and delivery.
- hyaluronidases in the co-formulations provided herein are soluble hyaluronidases.
- hyaluronidases There are three general classes of hyaluronidases; mammalian hyaluronidase, bacterial hyaluronidase and hyaluronidase from leeches, other parasites and crustaceans.
- Mammalian-type hyaluronidases (EC 3.2.1.35) are endo-fi-N-acetyl- hexosaminidases that hydrolyze the ⁇ 4 glycosidic bond of hyaluronan into various oligosaccharide lengths such as tetrasaccharides and hexasaccharides. They have both hydrolytic and transglycosidase activities, and can degrade hyaluronan and chondroitin sulfates (CS), generally C4-S and C6-S.
- CS chondroitin sulfates
- Hyaluronidases of this type include, but are not limited to, hyaluronidases from cows (bovine) (SEQ ID NOS:10 and 11), mouse (SEQ ID NOS:17-19, 32), pig (SEQ ID NOS:20-21), rat (SEQ ID NOS:22-24, 31), rabbit (SEQ ID NO:25), sheep (ovine) (SEQ ID NOS:26 and 27), orangutan (SEQ ID NO:28), cynomolgus monkey (SEQ ID NO:29), guinea pig (SEQ ID NO:30), and human hyaluronidases.
- Mammalian hyaluronidases can be further subdivided into those that are neutral active, predominantly found in testes extracts, and acid active,
- PH20 neutral active hyaluronidases
- PH20 derived from different species such as ovine (SEQ ID NO:27), bovine (SEQ ID NO: 1 1) and human (SEQ ID NO: l).
- Human PH20 also known as SPAM1 or sperm surface protein PH20, is generally attached to the plasma membrane via a
- glycosylphosphatidyl inositol (GPI) anchor It is naturally involved in sperm-egg adhesion and aids penetration by sperm of the layer of cumulus cells by digesting hyaluronic acid.
- HYALl Besides human PH20 (also termed SPAM1), five hyaluronidase-like genes have been identified in the human genome, HYALl , HYAL2, HYAL3, HYAL4 and HYALP1.
- HYALP1 is a pseudogene
- HYAL3 SEQ ID NO:38
- HYAL4 precursor polypeptide set forth in SEQ ID NO:39
- HYAL4 is a chondroitinase and exhibits little activity towards hyaluronan.
- HYAL1 (precursor polypeptide set forth in SEQ ID NO: 36) is the prototypical acid-active enzyme and PH20 (precursor polypeptide set forth in SEQ ID NO:l) is the prototypical neutral-active enzyme.
- Acid-active hyaluronidases such as HYAL1 and HYAL2 (precursor polypeptide set forth in SEQ ID NO:37) generally lack catalytic activity at neutral pH (i.e. pH 7).
- HYAL1 has little catalytic activity in vitro over pH 4.5 (Frost et al. (1997) Anal. Biochemistry, 251 :263-269).
- HYAL2 is an acid-active enzyme with a very low specific activity in vitro.
- the hyaluronidase-like enzymes can also be characterized by those which are generally attached to the plasma membrane via a
- glycosylphosphatidyl inositol anchor such as human HYAL2 and human PH20 (Danilkovitch-Miagkova et al. (2003) Proc Natl Acad Sci USA. 100(8):4580-5), and those which are generally soluble such as human HYAL1 (Frost et al, (1997) Biochem Biophys Res Commun. 236(1): 10-5).
- PH20 like other mammalian hyaluronidases, is an endo-p-N-acetyl- hexosaminidase that hydrolyzes the ⁇ 1 ⁇ 4 glycosidic bond of hyaluronic acid into various oligosaccharide lengths such as tetrasaccharides and hexasaccharides. They have both hydrolytic and transglycosidase activities and can degrade hyaluronic acid and chondroitin sulfates, such as C4-S and C6-S. PH20 is naturally involved in sperm-egg adhesion and aids penetration by sperm of the layer of cumulus cells by digesting hyaluronic acid.
- PH20 is located on the sperm surface, and in the lysosome-derived acrosome, where it is bound to the inner acrosomal membrane.
- Plasma membrane PH20 has hyaluronidase activity only at neutral pH, while inner acrosomal membrane PH20 has activity at both neutral and acid pH.
- PH20 also appears to be a receptor for HA-induced cell signaling, and a receptor for the zona pellucida surrounding the oocyte.
- Exemplary PH20 proteins include, but are not limited to, human (precursor polypeptide set forth in SEQ ID NO: l , mature polypeptide set forth in SEQ ID NO: 2), bovine (SEQ ID NOS: 1 1), rabbit (SEQ ID NO: 25), ovine PH20 (SEQ ID NOS: 27) , Cynomolgus monkey (SEQ ID NO: 29), guinea pig (SEQ ID NO: 30), rat (SEQ ID NO: 31) and mouse (SEQ ID NO: 32) PH20 polypeptides.
- Bovine PH20 is a 553 amino acid precursor polypeptide (SEQ ID NO:l 1). Alignment of bovine PH20 with the human PH20 shows only weak homology, with multiple gaps existing from amino acid 470 through to the respective carboxy termini due to the absence of a GPI anchor in the bovine polypeptide (see e.g., Frost GI (2007) Expert Opin. Drug. Deliv. 4: 427-440). In fact, clear GPI anchors are not predicted in many other PH20 species besides humans. Thus, PH20 polypeptides produced from ovine and bovine naturally exist as soluble forms.
- bovine PH20 exists very loosely attached to the plasma membrane, it is not anchored via a phospholipase sensitive anchor (Lalancette et al. (2001) Biol Reprod. 65(2):628-36). This unique feature of bovine hyaluronidase has permitted the use of the soluble bovine testes hyaluronidase enzyme as an extract for clinical use (Wydase®, Hyalase®).
- the human PH20 mRNA transcript is normally translated to generate a 509 amino acid precursor polypeptide (SEQ ID NO: l) containing a 35 amino acid signal sequence at the N-terminus (amino acid residue positions 1-35) and a 19 amino acid glycosylphosphatidylinositol (GPI) anchor attachment signal sequence at the C- terminus (amino acid residue positions 491-509).
- SEQ ID NO: l 509 amino acid precursor polypeptide
- the mature PH20 is, therefore, a 474 amino acid polypeptide set forth in SEQ ID NO:2.
- the C-terminal GPI-attachment signal peptide is cleaved to facilitate covalent attachment of a GPI anchor to the newly- formed C-terminal amino acid at the amino acid position corresponding to position 490 of the precursor polypeptide set forth in SEQ ID NO:l .
- a 474 amino acid GPI-anchored mature polypeptide with an amino acid sequence set forth in SEQ ID NO:2 is produced.
- human PH20 contains a common region of 340 amino acids with 57 conserved amino acids (see e.g. Arming et al. (1997) Eur. J. Biochem., 247:810-814).
- the conserved amino acids include four cysteine residues that form disulfide bridges at amino acid residues 25, 189, 203 and 316 in the sequence of amino acids set forth in SEQ ID NO:2 (corresponding to residues 60, 224, 238 and 351 in the sequence of amino acids set forth in SEQ ID NO: 1).
- Disulfide bonds form between the cysteine residues C60 and C351 and between C224 and C238 to form the core hyaluronidase domain.
- additional cysteines are required in the carboxy terminus for neutral enzyme catalytic activity such that amino acids 36 to 464 of SEQ ID NO: 1 contains the minimally active human PH20 hyaluronidase domain.
- a further four disulfide bonds are formed between the cysteine residues C376 and C387; between C381 and C435; between C437 and C443; and between C458 and C464 of the polypeptide exemplified in SEQ ID NO: 1 (corresponding to residues C341 and C352; between C346 and C400; between C402 and C408; and between C423 and C429 of the mature polypeptide set forth in SEQ ID NO:2, respectively).
- Amino acid residues at amino acid positions 1 11, 113, 176, 249 and 252 corresponding to residues in SEQ ID NO:2 appear to be involved in the activity of PH20, since mutation at these position renders the enzyme devoid of enzymatic activity or leave only residual activity compared to wild-type PH20 not containing the mutations (see e.g. Arming et al. (1997) Eur. J. Biochem., 247:810-814).
- N-linked glycosylation sites there are seven potential N-linked glycosylation sites at N82, N166, N235, N254, N368, N393, N490 of human PH20 exemplified in SEQ ID NO: 1. Disulfide bonds form between the cysteine residues C60 and C351 and between C224 and C238 to form the core hyaluronidase domain. Since amino acids 36 to 464 of SEQ ID NO:l contain the minimally active human PH20 hyaluronidase domain, N-linked glycosylation site N-490 is not required for proper hyaluronidase activity.
- the hyaluronidase in the stable co-formulations provided herein are soluble hyaluronidases. Soluble hyaluronidases, when expressed in cells, are secreted into the media. Solubility can be demonstrated by partitioning of the protein into the aqueous phase of Triton X-l 14 solution. Accordingly, it is understood that a soluble hyaluronidase does not include any hyaluronidase that contains a GPI anchor, rendering the polypeptide attached to the cell membrane. For example, full-length human PH20 (set forth in its mature form as SEQ ID NO:2) contains a GPI anchor and is not soluble.
- bovine and ovine PH20 polypeptides do not contain a GPI anchor that is sufficient for attachment to the GPI anchor, and thus are considered to be soluble proteins.
- the soluble hyaluronidase that are included in the co-formulations provided herein generally are substantially purified proteins.
- soluble hyaluronidases retain hyaluronidase activity.
- soluble human PH20 retains neutral activity.
- Soluble hyaluronidases include hyaluronidases that do not naturally include a GPI anchor or an anchor sufficient for attachment to the membrane, including, but not limited to, Hyall, bovine PH20 and ovine PH20, allelic variants thereof and other variants. Also included among soluble hyaluronidase are any hyaluronidase that has been modified to be soluble. For example, human PH20, which is normally membrane anchored via a GPI anchor, can be made soluble by truncation of and removal of all or a portion of the GPI anchor at the C-terminus. Soluble
- hyaluronidases also include neutral active and acid active hyaluronidases, however, neutral active hyaluronidases are contemplated for use herein for purposes of subcutaneous administration.
- a soluble hyaluronidase is PH20 from any species, such as any set forth in any of SEQ ID NOS: 1, 2, 11, 25, 27, 30, 31 and 32, or truncated forms thereof lacking all or a portion of the C-terminal GPI anchor, so long as the hyaluronidase is soluble and retains hyaluronidase activity.
- Also included among soluble hyaluronidases are allelic variants or other variants of soluble forms of any of SEQ ID NOS: 1, 2, 1 1 , 25, 27, 30, 31 and 32, such as truncated forms thereof.
- Allelic variants and other variants are known to one of skill in the art, and include polypeptides having 60 %, 70 %, 80 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 % or more sequence identify to any of SEQ ID NOS: 1 , 2, 11 , 25, 27, 30 and 31 , or truncated forms thereof.
- co-formulations herein contain a soluble human PH20.
- PH20 from other animals can be utilized, such preparations are potentially immunogenic, since they are animal proteins.
- non-human preparations may not be suitable for chronic use. If non-human preparations are desired, it is contemplated herein that such polypeptides can be prepared to have reduced immunogenicity. Such modifications are within the level of one of skill in the art.
- Exemplary of a soluble hyaluronidase is soluble human PH20.
- Soluble forms of recombinant human PH20 have been produced and can be included in the co-formulations described herein. The production of such soluble forms of PH20 is described in U.S. Patent Application Nos. 2005-0260186 and 2006-0104968.
- Soluble forms include, but are not limited to, any having C-terminal truncations to generate polypeptides containing amino acid 1 to amino acid 464 or of the sequence of amino acids set forth in SEQ ID NOS 1.
- soluble forms include, but are not limited to, any having C-terminal truncations to generate polypeptides containing amino acid 1 to amino acid 467 to 483, for example, 467, 477, 478, 479, 480, 481, 482 and 483.
- the 35 amino acid N- terminal signal sequence is cleaved during processing, and the mature form of the protein is secreted.
- the mature soluble polypeptides contain at least amino acids 36 to 464 of SEQ ID NO:l.
- mature soluble polypeptides contain amino acids 36 to 467 to 36 to 483 of SEQ ID NO:l, for example 36 to 467, 477, 478, 479, 480, 481, 482 and 483 of SEQ ID NO:l .
- Deletion mutants ending at amino acid position 477 to 483 exhibit higher secreted hyaluronidase activity than the full length GPI-anchored form.
- exemplary of soluble hyaluronidases are those that are 442, 443, 444, 445, 446 or 447 amino acids in length, such as set forth in any of SEQ ID NOS:4-9, or allelic or species variants or other variants thereof.
- rHuPH20 Recombinant soluble forms of human PH20 designated as rHuPH20 have been generated and can be produced and purified using the methods described herein. The generation of such soluble forms of rHuPH20 are described in U.S. Patent Application Serial Nos. 1 1/065,716 and 1 1/238,171 (published as U.S.
- rHuPH20 is produced in cells that facilitate correct N-glycosylation to retain activity, such as CHO cells (e.g. DG44 CHO cells).
- Glycosylation including N- and O-linked glycosylation, of some
- hyaluronidases can be very important for their catalytic activity and stability. While altering the type of glycan modifying a glycoprotein can have dramatic affects on a protein's antigenicity, structural folding, solubility, and stability, most enzymes are not thought to require glycosylation for optimal enzyme activity.
- hyaluronidases are unique in this regard, in that removal of N-linked glycosylation can result in near complete inactivation of the hyaluronidase activity.
- the presence of N-linked glycans is critical for generating an active enzyme.
- N-linked oligosaccharides fall into several major types (oligomannose, complex, hybrid, sulfated), all of which have (Man) 3 -GlcNAc-GlcN Ac-cores attached via the amide nitrogen of Asn residues that fall within- Asn-Xaa-Thr/Ser- sequences (where Xaa is not Pro). Glycosylation at an-Asn-Xaa-Cys-site has been reported for coagulation protein C.
- the hyaluronidase can contain both N-glycosidic and O-glycosidic linkages.
- PH20 has O-linked oligosaccharides as well as N-linked oligosaccharides.
- N-linked glycosylation sites there are seven potential N-linked glycosylation sites at N82, N166, N235, N254, N368, N393, N490 of human PH20 exemplified in SEQ ID NO: 1. As noted above , N-linked glycosylation at N490 is not required for hyaluronidase activity.
- Hyaluronidases provided in the co-formulations can be modified to improve their pharmacokinetic properties, such as increasing their half-life in vivo and/or activities.
- the modification of hyaluronidases for use in co-formulations provided herein can include attaching, directly or indirectly via a linker, such as covalently or by other stable linkage, a polymer, such as dextran, a polyethylene glycol (pegylation (PEG)) or sialyl moiety, or other such polymers, such as natural or sugar polymers.
- Pegylation of therapeutics is known to increase resistance to proteolysis, increase plasma half-life, and decrease antigenicity and immunogenicity.
- polyethylene glycol moiety to the hyaluronidase thus can impart beneficial properties to the resulting enzyme-polymer composition.
- beneficial properties include improved biocompatibility, extension of protein (and enzymatic activity) half-life in the blood, cells and/or in other tissues within a subject, effective shielding of the protein from proteases and hydrolysis, improved biodistribution, enhanced pharmacokinetics and/or pharmacodynamics, and increased water solubility.
- Exemplary polymers that can be conjugated to the hyaluronidase include natural and synthetic homopolymers, such as polyols (i.e. poly-OH), polyamines (i.e. poly-NH2) and polycarboxyl acids (i.e. poly-COOH), and further
- heteropolymers i.e. polymers containing one or more different coupling groups e.g. a hydroxyl group and amine groups.
- suitable polymeric molecules include polymeric molecules selected from among polyalkylene oxides (PAO), such as polyalkylene glycols (PAG), including polypropylene glycols (PEG),
- PAO polyalkylene oxides
- PAG polyalkylene glycols
- PEG polypropylene glycols
- mPEG methoxypolyethylene glycols
- polypropylene glycols PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole (CDI-PEG) branched polyethylene glycols (PEGs), polyvinyl alcohol (PVA), polycarboxylates, polyvinylpyrrolidone, poly-D,L-amino acids, polyethylene-co-maleic acid anhydride, polystyrene-co- maleic acid anhydride, dextrans including carboxymethyl-dextrans, heparin, homologous albumin, celluloses, including methylcellulose,
- carboxyethylcellulose and hydroxypropylcellulose hydrolysates of chitosan, starches such as hydroxyethyl-starches and hydroxypropyl-starches, glycogen, agaroses and derivatives thereof, guar gum, pullulan, inulin, xanthan gum, carrageenan, pectin, alginic acid hydrolysates and bio-polymers.
- the polymers are polyalkylene oxides (PAO), such as
- polyethylene oxides such as PEG, typically mPEG, which, in comparison to polysaccharides such as dextran, pullulan and the like, have few reactive groups capable of cross-linking.
- the polymers are non-toxic polymeric molecules such as (m)polyethylene glycol (mPEG) which can be covalently conjugated to the hyaluronan degrading enzyme (e.g., to attachment groups on the protein surface) using a relatively simple chemistry.
- Suitable polymeric molecules for attachment to the hyaluronan degrading enzyme include, but are not limited to, polyethylene glycol (PEG) and PEG derivatives such as methoxy-polyethylene glycols (mPEG), PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole (CDI-PEG), branched PEGs, and polyethylene oxide (PEO) (see e.g. Roberts et al., Advanced Drug Delivery Review 2002, 54: 459-476; Harris and Zalipsky, S (eds.) "Polyethylene glycol), Chemistry and Biological Applications” ACS Symposium Series 680, 1997; Mehvar et al, J. Pharm. Pharmaceut.
- PEG polyethylene glycol
- PEG derivatives such as methoxy-polyethylene glycols (mPEG), PEG-glycidyl ethers (Epox-PEG), PEG-oxycarbonylimidazole
- the polymeric molecule can be of a molecular weight typically ranging from about 3 kDa to about 60 kDa.
- the polymeric molecule that is conjugated to a protein, such as rHuPH20 has a molecular weight of 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60 or more than 60 kDa.
- PEGylation conjugation
- Techniques for PEGylation include, but are not limited to, specialized linkers and coupling chemistries (see e.g., Harris, Adv. Drug Deliv. Rev. 54:459-476, 2002), attachment of multiple PEG moieties to a single conjugation site (such as via use of branched PEGs; see e.g., Veronese et al., Bioorg. Med. Chem. Lett.
- reagents for PEGylation include, but are not limited to, N-hydroxysuccinimidyl (NHS) activated PEG, succinimidyl mPEG, mPEG2-N-hydroxysuccinimide, mPEG succinimidyl alpha-methylbutanoate, mPEG succinimidyl propionate, mPEG succinimidyl butanoate, mPEG carboxymethyl 3-hydroxybutanoic acid succinimidyl ester, homobifunctional PEG-succinimidyl propionate, homobifunctional PEG
- NHS N-hydroxysuccinimidyl
- Hyaluronidase and Polypeptides Thereof Polypeptides of a soluble hyaluronidase set forth herein, can be obtained by methods well known in the art for protein purification and recombinant protein expression. Any method known to those of skill in the art for identification of nucleic acids that encode desired genes can be used. Any method available in the art can be used to obtain a full length (i.e., encompassing the entire coding region) cDNA or genomic DNA clone encoding a hyaluronidase, such as from a cell or tissue source. Modified or variant soluble hyaluronidases, can be engineered from a wildtype polypeptide, such as by site-directed mutagenesis. Typically,
- hyaluronidases including soluble hyaluronidases such as rHuPH20, used in the co- formulations provided herein can be recombinantly produced or can be purified or partially-purified from natural sources, such as, for example, from testes extracts.
- Polypeptides can be cloned or isolated using any available methods known in the art for cloning and isolating nucleic acid molecules. Such methods include PCR amplification of nucleic acids and screening of libraries, including nucleic acid hybridization screening, antibody-based screening and activity-based screening.
- nucleic acid molecules encoding a desired polypeptide can be used to isolate nucleic acid molecules encoding a desired polypeptide, including for example, polymerase chain reaction (PCR) methods.
- a nucleic acid containing material can be used as a starting material from which a desired polypeptide-encoding nucleic acid molecule can be isolated.
- DNA and mRNA preparations, cell extracts, tissue extracts, fluid samples (e.g. blood, serum, saliva), samples from healthy and/or diseased subjects can be used in amplification methods.
- Nucleic acid libraries also can be used as a source of starting material.
- Primers can be designed to amplify a desired polypeptide.
- primers can be designed based on expressed sequences from which a desired polypeptide is generated.
- Primers can be designed based on back-translation of a polypeptide amino acid sequence.
- Nucleic acid molecules generated by amplification can be sequenced and confirmed to encode a desired polypeptide.
- nucleotide sequences can be joined to a polypeptide-encoding nucleic acid molecule, including linker sequences containing restriction
- nucleotide sequences specifying functional DNA elements can be operatively linked to a polypeptide-encoding nucleic acid molecule.
- sequences include, but are not limited to, promoter sequences designed to facilitate intracellular protein expression, and secretion sequences, for example heterologous signal sequences, designed to facilitate protein secretion.
- sequences are known to those of skill in the art.
- Additional nucleotide residues sequences such as sequences of bases specifying protein binding regions also can be linked to enzyme-encoding nucleic acid molecules.
- Such regions include, but are not limited to, sequences of residues that facilitate or encode proteins that facilitate uptake of an enzyme into specific target cells, or otherwise alter pharmacokinetics of a product of a synthetic gene.
- enzymes can be linked to PEG moieties.
- tags or other moieties can be added, for example, to aid in detection or affinity purification of the polypeptide.
- additional nucleotide residues sequences such as sequences of bases specifying an epitope tag or other detectable marker also can be linked to enzyme-encoding nucleic acid molecules.
- Exemplary of such sequences include nucleic acid sequences encoding a His tag (e.g., 6xHis, HHHHHH; SEQ ID NO:54) or Flag Tag (DYKDDDDK; SEQ ID NO:55).
- the identified and isolated nucleic acids can then be inserted into an appropriate cloning vector.
- vector-host systems known in the art can be used. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Such vectors include, but are not limited to, bacteriophages such as lambda derivatives, or plasmids such as pCMV4, pBR322 or pUC plasmid derivatives or the Bluescript vector (Stratagene, La Jolla, CA). Other expression vectors include the HZ24 expression vector exemplified herein.
- the insertion into a cloning vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini. Insertion can be effected using TOPO cloning vectors (INVITROGEN, Carlsbad, CA). If the complementary restriction sites used to fragment the DNA are not present in the cloning vector, the ends of the DNA molecules can be enzymatically modified. Alternatively, any site desired can be produced by ligating nucleotide sequences (linkers) onto the DNA termini; these ligated linkers can contain specific chemically synthesized oligonucleotides encoding restriction endonuclease recognition sequences.
- linkers nucleotide sequences
- the cleaved vector and protein gene can be modified by homopolymeric tailing.
- Recombinant molecules can be introduced into host cells via, for example, transformation, transfection, infection, electroporation and sonoporation, so that many copies of the gene sequence are generated.
- transformation of host cells with recombinant DNA molecules that incorporate the isolated protein gene, cDNA, or synthesized DNA sequence enables generation of multiple copies of the gene.
- the gene can be obtained in large quantities by growing transformants, isolating the recombinant DNA molecules from the transformants and, when necessary, retrieving the inserted gene from the isolated recombinant DNA.
- hyaluronidases including soluble forms of PH20, are produced using protein expression systems that facilitate correct N-glycosylation to ensure the polypeptide retains activity, since
- Such cells include, for example Chinese Hamster Ovary (CHO) cells (e.g. DG44 CHO cells).
- CHO Chinese Hamster Ovary
- the nucleic acid containing all or a portion of the nucleotide sequence encoding the protein can be inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence.
- an appropriate expression vector i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence.
- the necessary transcriptional and translational signals also can be supplied by the native promoter for enzyme genes, and/or their flanking regions.
- vectors that contain a nucleic acid encoding the enzyme.
- Cells containing the vectors also are provided.
- the cells include eukaryotic and prokaryotic cells, and the vectors are any suitable for use therein.
- Prokaryotic and eukaryotic cells including endothelial cells, containing the vectors are provided.
- Such cells include bacterial cells, yeast cells, fungal cells, Archea, plant cells, insect cells and animal cells.
- the cells are used to produce a protein thereof by growing the above-described cells under conditions whereby the encoded protein is expressed by the cell, and recovering the expressed protein.
- the enzyme can be secreted into the medium.
- vectors that contain a sequence of nucleotides that encodes the soluble hyaluronidase polypeptide coupled to the native or heterologous signal sequence, as well as multiple copies thereof.
- the vectors can be selected for expression of the enzyme protein in the cell or such that the enzyme protein is expressed as a secreted protein.
- a variety of host- vector systems can be used to express the protein coding sequence. These include but are not limited to mammalian cell systems infected with virus (e.g. vaccinia virus, adenovirus and other viruses); insect cell systems infected with virus (e.g. baculovirus); microorganisms such as yeast containing yeast vectors; or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA.
- virus e.g. vaccinia virus, adenovirus and other viruses
- insect cell systems infected with virus e.g. baculovirus
- microorganisms such as yeast containing yeast vectors
- bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA e.g. bacteriophage, DNA, plasmid DNA, or cosmid DNA.
- the expression elements of vectors vary in their strengths and specificities. Depending on the host-vector system used, any one of a number of suitable
- Any methods known to those of skill in the art for the insertion of DNA fragments into a vector can be used to construct expression vectors containing a chimeric gene containing appropriate transcriptional/translational control signals and protein coding sequences. These methods can include in vitro recombinant DNA and synthetic techniques and in vivo recombinants (genetic recombination).
- nucleic acid sequences encoding protein, or domains, derivatives, fragments or homologs thereof can be regulated by a second nucleic acid sequence so that the genes or fragments thereof are expressed in a host transformed with the recombinant DNA molecule(s).
- expression of the proteins can be controlled by any promoter/enhancer known in the art.
- the promoter is not native to the genes for a desired protein. Promoters which can be used include but are not limited to the SV40 early promoter (Bernoist and Chambon, Nature 2 0:304-310 (1981)), the promoter contained in the 3 ' long terminal repeat of Rous sarcoma virus (Yamamoto et al.
- herpes thymidine kinase promoter (Wagner et al., Proc. Natl. Acad. Sci. USA 75: 1441 -1445 (1981)), the regulatory sequences of the metallothionein gene (Brinster et al, Nature 296:39-42 (1982)); prokaryotic expression vectors such as the ⁇ -lactamase promoter (Jay et al., (1981) Proc. Natl. Acad. Sci. USA 75:5543) or the tac promoter (DeBoer et al, Proc. Natl. Acad. Sci.
- elastase I gene control region which is active in pancreatic acinar cells (Swift et al, Cell 35:639-646 (1984); Ornitz et al, Cold Spring Harbor Symp. Quant.
- beta globin gene control region which is active in myeloid cells (Magram et al, Nature 375:338-340 (1985); Kollias et al, Cell 46:89-94 (1986)), myelin basic protein gene control region which is active in oligodendrocyte cells of the brain (Readhead et al, Cell 45:703-712 (1987)), myosin light chain-2 gene control region which is active in skeletal muscle (Shani, Nature 374:283-286 (1985)), and gonadotrophic releasing hormone gene control region which is active in gonadotrophs of the hypothalamus (Mason et ah, Science 234:1372-1378 (1986)).
- a vector in a specific embodiment, contains a promoter operably linked to nucleic acids encoding a desired protein, or a domain, fragment, derivative or homolog, thereof, one or more origins of replication, and optionally, one or more selectable markers (e.g., an antibiotic resistance gene).
- exemplary plasmid vectors for transformation of E.coli cells include, for example, the pQE expression vectors (available from Qiagen, Valencia, CA; see also literature published by Qiagen describing the system).
- pQE vectors have a phage T5 promoter (recognized by E.
- coli R A polymerase and a double lac operator repression module to provide tightly regulated, high-level expression of recombinant proteins in E. coli, a synthetic ribosomal binding site (RBS II) for efficient translation, a 6XHis tag coding sequence, to and Tl transcriptional terminators, ColEl origin of replication, and a beta-lactamase gene for conferring ampicillin resistance.
- the pQE vectors enable placement of a 6xHis tag at either the N- or C-terminus of the recombinant protein.
- Such plasmids include pQE 32, pQE 30, and pQE 31 which provide multiple cloning sites for all three reading frames and provide for the expression of N-terminally 6xHis-tagged proteins.
- Other exemplary plasmid vectors for transformation of E. coli cells include, for example, the pET expression vectors (see, U.S. patent 4,952,496; available from NOVAGEN, Madison, WI; see, also literature published by Novagen describing the system).
- Such plasmids include pET 11a, which contains the T71ac promoter, T7 terminator, the inducible E.
- coli lac operator and the lac repressor gene
- pET 12a-c which contains the T7 promoter, T7 terminator, and the E. coli ompT secretion signal
- pET 15b and pET19b (NOVAGEN, Madison, WI), which contain a His-TagTM leader sequence for use in purification with a His column and a thrombin cleavage site that permits cleavage following purification over the column, the T7-lac promoter region and the T7 terminator.
- HZ24 expression vector Exemplary of a vector for mammalian cell expression is the HZ24 expression vector.
- the HZ24 expression vector was derived from the pCI vector backbone (Promega). It contains DNA encoding the Beta-lactamase resistance gene (AmpR), an Fl origin of replication, a Cytomegalovirus immediate-early enhancer/promoter region (CMV), and an SV40 late polyadenylation signal (SV40).
- the expression vector also has an internal ribosome entry site (IRES) from the ECMV virus (Clontech) and the mouse dihydrofolate reductase (DHFR) gene.
- IVS internal ribosome entry site
- Soluble hyaluronidase polypeptides can be produced by any method known to those of skill in the art including in vivo and in vitro methods. Desired proteins can be expressed in any organism suitable to produce the required amounts and forms of the proteins, such as for example, needed for administration and treatment.
- Expression hosts include prokaryotic and eukaryotic organisms such as E.coli, yeast, plants, insect cells, mammalian cells, including human cell lines and transgenic animals. Expression hosts can differ in their protein production levels as well as the types of post-translational modifications that are present on the expressed proteins. The choice of expression host can be made based on these and other factors, such as regulatory and safety considerations, production costs and the need and methods for purification.
- expression vectors are available and known to those of skill in the art and can be used for expression of proteins.
- the choice of expression vector will be influenced by the choice of host expression system.
- expression vectors can include transcriptional promoters and optionally enhancers, translational signals, and transcriptional and translational termination signals.
- Expression vectors that are used for stable transformation typically have a selectable marker which allows selection and maintenance of the transformed cells.
- an origin of replication can be used to amplify the copy number of the vector.
- Soluble hyaluronidase polypeptides also can be utilized or expressed as protein fusions.
- an enzyme fusion can be generated to add additional functionality to an enzyme.
- enzyme fusion proteins include, but are not limited to, fusions of a signal sequence, a tag such as for localization, e.g. a his 6 tag or a myc tag, or a tag for purification, for example, a GST fusion, and a sequence for directing protein secretion and/or membrane association.
- Prokaryotes especially E.coli, provide a system for producing large amounts of proteins. Transformation of E.coli is simple and rapid technique well known to those of skill in the art.
- Expression vectors for E.coli can contain inducible promoters, such promoters are useful for inducing high levels of protein expression and for expressing proteins that exhibit some toxicity to the host cells. Examples of inducible promoters include the lac promoter, the trp promoter, the hybrid tac promoter, the T7 and SP6 RNA promoters and the temperature regulated PL promoter.
- Proteins such as any provided herein, can be expressed in the cytoplasmic environment of E.coli.
- the cytoplasm is a reducing environment and for some molecules, this can result in the formation of insoluble inclusion bodies.
- Reducing agents such as dithiothreitol and ⁇ -mercaptoethanol and denaturants, such as guanidine-HCl and urea can be used to resolubilize the proteins.
- An alternative approach is the expression of proteins in the periplasmic space of bacteria which provides an oxidizing environment and chaperonin-like and disulfide isomerases and can lead to the production of soluble protein.
- a leader sequence is fused to the protein to be expressed which directs the protein to the periplasm. The leader is then removed by signal peptidases inside the periplasm. Examples of
- periplasmic-targeting leader sequences include the pelB leader from the pectate lyase gene and the leader derived from the alkaline phosphatase gene.
- periplasmic expression allows leakage of the expressed protein into the culture medium. The secretion of proteins allows quick and simple purification from the culture supernatant. Proteins that are not secreted can be obtained from the periplasm by osmotic lysis. Similar to cytoplasmic expression, in some cases proteins can become insoluble and denaturants and reducing agents can be used to facilitate solubilization and refolding. Temperature of induction and growth also can influence expression levels and solubility, typically temperatures between 25°C and 37°C are used. Typically, bacteria produce aglycosylated proteins. Thus, if proteins require glycosylation for function, glycosylation can be added in vitro after purification from host cells.
- Yeasts such as Saccharomyces cerevisae, Schizosaccharomyces pombe,
- Yarrowia lipolytica, Kluyveromyces lactis and Pichia pas are well known yeast expression hosts that can be used for production of proteins, such as any described herein.
- Yeast can be transformed with episomal replicating vectors or by stable chromosomal integration by homologous recombination.
- inducible promoters are used to regulate gene expression. Examples of such promoters include GAL1, GAL7 and GAL5 and metallothionein promoters, such as CUP1, AOX1 or other Pichia or other yeast promoter.
- Expression vectors often include a selectable marker such as LEU2, TRP1, HIS3 and URA3 for selection and maintenance of the transformed DNA. Proteins expressed in yeast are often soluble.
- proteins expressed in yeast can be directed for secretion using secretion signal peptide fusions such as the yeast mating type alpha-factor secretion signal from Saccharomyces cerevisae and fusions with yeast cell surface proteins such as the Aga2p mating adhesion receptor or the Arxula adeninivorans glucoamylase.
- secretion signal peptide fusions such as the yeast mating type alpha-factor secretion signal from Saccharomyces cerevisae and fusions with yeast cell surface proteins such as the Aga2p mating adhesion receptor or the Arxula adeninivorans glucoamylase.
- a protease cleavage site such as for the Kex-2 protease, can be engineered to remove the fused sequences from the expressed polypeptides as they exit the secretion pathway.
- Yeast also is capable of
- Insect cells are useful for expressing polypeptides such as hyaluronidase polypeptides.
- Insect cells express high levels of protein and are capable of most of the post-translational modifications used by higher eukaryotes.
- Baculovirus have a restrictive host range which improves the safety and reduces regulatory concerns of eukaryotic expression.
- Typical expression vectors use a promoter for high level expression such as the polyhedrin promoter of baculovirus.
- baculovirus systems include the baculoviruses such as Autographa califomica nuclear polyhedrosis virus
- AcNPV Bombyx mori nuclear polyhedrosis virus
- BmNPV Bombyx mori nuclear polyhedrosis virus
- Sf9 derived from Spodoptera frugiperda
- Pseudaletia unipuncta A7S
- Danaus plexippus DpNl
- Sf9 derived from Spodoptera frugiperda
- A7S Pseudaletia unipuncta
- DpNl Danaus plexippus
- the nucleotide sequence of the molecule to be expressed is fused immediately downstream of the polyhedrin initiation codon of the virus.
- Mammalian secretion signals are accurately processed in insect cells and can be used to secrete the expressed protein into the culture medium.
- the cell lines Pseudaletia unipuncta (A7S) and Danaus plexippus (DpNl) produce proteins with glycosylation patterns similar to mammalian cell systems.
- An alternative expression system in insect cells is the use of stably transformed cells.
- Cell lines such as the Schneider 2 (S2) and Kc cells ⁇ Drosophila melanogaster) and C7 cells (Aedes albopictus) can be used for expression.
- the Drosophila metallothionein promoter can be used to induce high levels of expression in the presence of heavy metal induction with cadmium or copper.
- Expression vectors are typically maintained by the use of selectable markers such as neomycin and hygromycin.
- Mammalian expression systems can be used to express proteins including soluble hyaluronidase polypeptides.
- Expression constructs can be transferred to mammalian cells by viral infection such as adenovirus or by direct DNA transfer such as liposomes, calcium phosphate, DEAE-dextran and by physical means such as electroporation and microinjection.
- Expression vectors for mammalian cells typically include an mRNA cap site, a TATA box, a translational initiation sequence (Kozak consensus sequence) and polyadenylation elements. IRES elements also can be added to permit bicistronic expression with another gene, such as a selectable marker.
- Such vectors often include transcriptional promoter-enhancers for high- level expression, for example the SV40 promoter-enhancer, the human
- CMV cytomegalovirus
- RSV Rous sarcoma virus
- Exemplary promoter/enhancer regions include, but are not limited to, those from genes such as elastase I, insulin, immunoglobulin, mouse mammary tumor virus, albumin, alpha fetoprotein, alpha 1 antitrypsin, beta globin, myelin basic protein, myosin light chain 2, and gonadotropic releasing hormone gene control. Selectable markers can be used to select for and maintain cells with the expression construct.
- selectable marker genes include, but are not limited to, hygromycin B phosphotransferase, adenosine deaminase, xanthine-guanine phosphoribosyl transferase, aminoglycoside phosphotransferase, dihydrofolate reductase (DHFR) and thymidine kinase.
- expression can be performed in the presence of methotrexate to select for only those cells expressing the DHFR gene.
- Fusion with cell surface signaling molecules such as TCR- ⁇ and Fc E RI-y can direct expression of the proteins in an active state on the cell surface.
- cell lines are available for mammalian expression including mouse, rat human, monkey, chicken and hamster cells.
- Exemplary cell lines include but are not limited to CHO, Balb/3T3, HeLa, MT2, mouse NSO (nonsecreting) and other myeloma cell lines, hybridoma and heterohybridoma cell lines, lymphocytes, fibroblasts, Sp2/0, COS, NIH3T3, HEK293, 293S, 2B8, and HKB cells.
- Cell lines also are available adapted to serum-free media which facilitates purification of secreted proteins from the cell culture media. Examples include CHO-S cells
- DG44 CHO cells are adapted to grow in suspension culture in a chemically defined, animal product-free medium.
- Transgenic plant cells and plants can be used to express proteins such as any described herein.
- Expression constructs are typically transferred to plants using direct DNA transfer such as microprojectile bombardment and PEG-mediated transfer into protoplasts, and with agrobacterium-mediated transformation.
- Expression vectors can include promoter and enhancer sequences, transcriptional termination elements and translational control elements. Expression vectors and transformation techniques are usually divided between dicot hosts, such as
- Plant promoters used for expression include the cauliflower mosaic virus promoter, the nopaline syntase promoter, the ribose bisphosphate carboxylase promoter and the ubiquitin and UBQ3 promoters.
- Selectable markers such as hygromycin, phosphomannose isomerase and neomycin phosphotransferase are often used to facilitate selection and maintenance of transformed cells.
- Transformed plant cells can be maintained in culture as cells, aggregates (callus tissue) or regenerated into whole plants.
- Transgenic plant cells also can include algae engineered to produce hyaluronidase polypeptides. Because plants have different glycosylation patterns than mammalian cells, this can influence the choice of protein produced in these hosts.
- polypeptides including soluble hyaluronidase polypeptides or other proteins
- proteins are generally purified from the culture media after removing the cells.
- cells can be lysed and the proteins purified from the extract.
- transgenic organisms such as transgenic plants and animals are used for expression, tissues or organs can be used as starting material to make a lysed cell extract.
- transgenic animal production can include the production of polypeptides in milk or eggs, which can be collected, and if necessary, the proteins can be extracted and further purified using standard methods in the art.
- Proteins such as soluble hyaluronidase polypeptides, can be purified using standard protein purification techniques known in the art including but not limited to, SDS-PAGE, size fraction and size exclusion chromatography, ammonium sulfate precipitation and ionic exchange chromatography, such as anion exchange. Affinity purification techniques also can be utilized to improve the efficiency and purity of the preparations. For example, antibodies, receptors and other molecules that bind hyaluronidase enzymes can be used in affinity purification. Expression constructs also can be engineered to add an affinity tag to a protein such as a myc epitope, GST fusion or His 6 and affinity purified with myc antibody, glutathione resin and Ni- resin, respectively. Purity can be assessed by any method known in the art including gel electrophoresis and staining and spectrophotometric techniques.
- co-formulations of IG and hyaluronidase that are stable as a liquid formulation for prolonged periods of time of at least 6 months at temperatures up to 32° C, for example, ranging from at or about 0° C to 32° C.
- the increased stability is characterized by improved storage time, decreased
- co- formulations can be provided as "ready-to-use" liquid formulation without further reconstitution and/or without any requirement for further dilution.
- the resulting stable co-formulations can be conveniently dispensed to physicians or patients in dosage forms for direct injection or administration.
- the co- formulations can be infused or injected at home or anywhere.
- Soluble hyaluronidases that are co-formulated with immune globulin permit enhanced delivery of immune globulin to desired sites within the body by increasing the bioavailability of the immune globulin.
- the co-formulations achieve elevated and/or more rapidly achieved concentrations of the immune globulin following subcutaneous administration compared to conventional methods of subcutaneous administration, to provide, for example, a more potent and/or more rapid response for a given dose.
- co-formulations of IG containing soluble hyaluronidases also permit lower doses of IG to be administered achieving a given response with a lower dose of administered IG.
- the ability of a soluble hyaluronidase to enhance bulk fluid flow at and near a site of injection or infusion also can improve other aspects of associated pharmacologic delivery.
- the increase in bulk fluid flow can help to allow the volume of fluid injected to be more readily dispersed from the site of injection (reducing potentially painful or other adverse consequences of injection). This is particularly important for subcutaneous infusions to permit higher doses to be administered.
- co-formulation of IG with hyaluronidase provides for a safer or more convenient route of administration compared to conventional intravenous routes of administration.
- co-formulations provided herein are stable for prolonged periods of time, including at varied temperatures.
- the co-formulations are provided herein are stable and retain activity of the IG and hyaluronidase
- the co-formulations are stable at "refrigerator" temperatures, for example at 2° C to 8° C, such as at or about 4° C, for at least 6 months to 4 years, such as 1 year to 2 years, for example 6 months, at least 1 year, at least 2 years, at least 3 years or at least 4 years or more.
- the co-formulations are stable and retain activity at room temperature, for example at 18° C to 32° C, generally 20° C to 32° C, such as 28° C to 32° C, for at least 6 months to 1 year, for example 6 months, at least 7 months, at least 8 months, at least 9 months, or at least 1 year or more.
- the stable co-formulations exhibit low to undetectable levels of aggregation and/or fragmentation of IG after storage for defined periods of time.
- Methods to assess aggregation and fragmentation are known to one of skill in the art, and are exemplified in Section G below.
- no more than 0.5% to 5% of IG for example, no more than 5 %, no more than 4 %, no more than 3 %, no more than 2 %, no more than 1 % and generally no more than 0.5 % of IG in the co- formulation forms an aggregate, as measured by HPSEC or other methods, after storage for the defined periods of time as set forth above.
- the IG and hyaluronidase in the stable co-formulations provided herein retain one or more activities of the initial activity of the IG and hyaluronidase prior to storage.
- One of skill in the art is familiar with activities of IG and hyaluronidase and can assess such activities.
- Section G provides exemplary activities and assays to assess activity.
- the stable liquid co-formulations provided herein retain after storage at least 50 %, 60 %, 70 %, 80 %, 90 %, 100 %, or more of the initial activity of the protein prior to storage, generally at least 70% to 95% of the initial activity.
- the stable liquid co-formulations retain after storage more than 70 %, more than 80 %, more than 85 %, more than 90 %, more than 95 %, more than 98 %, more than 99 %, or more than 99.5 % of the initial activity of the respective protein prior to storage.
- the co-formulations provided herein are formulated as liquids.
- the co- formulations contain immune globulin, hyaluronidase, at least 0.05 M of an alkali metal chloride salt, for example, at least 0.05 M sodium chloride (NaCl or salt) or 0.05 M potassium chloride (KC1).
- the co-formulations also are adjusted in pH to limit aggregation and retain activity of the IG and hyaluronidase.
- the co-formulations do not contain other ingredients except water or suitable solvents.
- the co-formulations further contain diluents, carriers or other excipients.
- compositions typically are formulated into pharmaceutical compositions using techniques and procedures well known in the art (see e.g., Ansel Introduction to Pharmaceutical Dosage Forms, Fourth Edition, 1985, 126).
- Pharmaceutically acceptable compositions are prepared in view of approvals for a regulatory agency or other agency prepared in accordance with generally recognized pharmacopeia for use in animals and in humans. The formulation should suit the mode of
- the co-formulations can be provided as a pharmaceutical preparation in liquid form as solutions, syrups or suspensions.
- the pharmaceutical preparations can be provided as a concentrated preparation to be diluted to a therapeutically effective concentration before use.
- the preparations are provided in a dosage form that does not require dilution for use.
- Such liquid preparations can be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents ⁇ e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid).
- pharmaceutical preparations can be presented in lyophilized form for reconstitution with water or other suitable vehicle before use.
- the pH of the stable co-formulations provided herein is such that the IG in the co-formulation does not aggregate and/or the IG and hyaluronidase retain activity as described in Section G.
- Optimal pH can be obtained by formulation techniques known to those skilled in the art. For example, optimal pH can be determined by assessing aggregation and activity under differing pH conditions using various methods known to one of skill in the art, for example, as described in Section G. Such assays or assessment include, but are not limited to, size exclusion chromatography, HSPEC determinations, heat stability data, anti complement titers of the various preparations and/or hyaluronidase activity assays.
- the pH can range from 4.0 to 8.0 as measured in the concentrated solution of the co-formulation. Generally, within this range, a lower pH is desired, however, to ensure maximum monomer content. Accordingly, the co- formulations provided herein typically have a pH that is at least or about 4.0 to 7.4, generally at least or about 4.0 to 6.0, and typically 4.4 to 4.9. As noted, the indicated pH is measured in the concentrated solution of the formulation. pH can be adjusted using acidifying agents to lower the pH or alkalizing agents to increase the pH. Exemplary acidifying agents include, but are not limited to, acetic acid, citric acid, sulfuric acid, hydrochloric acid, monobasic sodium phosphate solution, and phosphoric acid. Exemplary alkalizing agents include, but are not limited to, dibasic sodium phosphate solution, sodium carbonate, or sodium hydroxide.
- any buffer can be used in the preparation of the liquid formulation provided herein so long as it does not adversely affect the stability of the co-formulation, and supports the requisite pH range required.
- particularly suitable buffers include succinate, acetate, phosphate buffers, citrate, aconitate, malate and carbonate.
- succinate, acetate, phosphate buffers, citrate, aconitate, malate and carbonate examples of particularly suitable buffers.
- succinate succinate, acetate, phosphate buffers, citrate, aconitate, malate and carbonate.
- a buffer capacity in the range indicated.
- a buffer has an adequate buffer capacity within about 1 pH unit of its pK (Lachman et al. 1986). Buffer suitability can be estimated based on published pK tabulations or can be determined empirically by methods well known in the art.
- the pH of the solution can be adjusted to the desired endpoint within the range as described above, for example, using any acceptable acid or base,
- the IG in the co-formulations is provided at a concentration that is or is about 5% to 22% w/v, for example, that is or is about 50 mg/mL, 60 mg/mL, 70 mg/mL, 80 mg/mL, 90 mg/mL, 100 mg/mL, 120 mg/mL, 150 mg/mL, 180 mg/mL, 200 mg/mL, 220 mg/mL, 250 mg/mL or more.
- the IG in the co- formulation is provided in an amount that is at least 10 % (100 mg/mL) to 20 % (200 mg/mL), for example, 10 %, 1 1 %, 12 %, 13 %, 14 %, 15 %, 16 %, 17 %, 18 %, 19 %, 20 % or more.
- the immune globulin preparations provided herein can be formulated as pharmaceutical compositions for single or multiple dosage use.
- the IG in the co-formulation is formulated in an amount such that it is ready to use and that no further dilution is necessary.
- the co-formulation is provided as a single or multiple dosage formulation, one of skill in the art can empirically determine the exact amount of IG in the co-formulation.
- the immune globulin is provided in a therapeutically effective amount for the particular dosage regime. Therapeutically effective concentration can be determined empirically by testing the compounds in known in vitro and in vivo systems, such as the assays provided herein.
- concentration of a selected immune globulin in the composition depends on absorption, inactivation and excretion rates of the complex, the physicochemical characteristics of the complex, the dosage schedule, and amount administered as well as other factors known to those of skill in the art.
- concentrations and dosage values may also vary with the age of the individual treated.
- a selected immune globulin preparation to be administered for the treatment of a disease or condition for example an IG-treatable disease or condition
- concentration ranges set forth herein are exemplary only and are not intended to limit the scope thereof.
- the amount of a selected immune globulin preparation to be administered for the treatment of a disease or condition can be determined by standard clinical techniques.
- in vitro assays and animal models can be employed to help identify optimal dosage ranges.
- the precise dosage which can be determined empirically, can depend on the particular immune globulin preparation, the regime and dosing schedule with the soluble hyaluronidase, the route of administration, the type of disease to be treated and the seriousness of the disease.
- IG preparations can be formulated in pharmaceutical compositions to achieve dosage regimes (doses and frequencies) for which current intravenous (IVIG) preparations are prepared and administered for particular IG- treatable diseases or conditions.
- IVIG current intravenous
- One of skill in the art is familiar with dosage regimes for IVIG administration of particular diseases or conditions.
- Section H below provides exemplary dosage regimes (doses and frequencies) of IG for particular diseases and conditions.
- Other dosage regimes are well known to those of skill in the art. If necessary, a particular dosage and duration and treatment protocol can be empirically determined or extrapolated.
- exemplary doses of intravenously administered immune globulin can be used as a starting point to determine appropriate dosages.
- Dosage levels can be determined based on a variety of factors, such as body weight of the individual, general health, age, the activity of the specific compound employed, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, and the patient's disposition to the disease and the judgment of the treating physician.
- dosages of immune globulin are from or about 100 mg per kg body weight (i.e. 100 mg/kg BW) to 2 g/kg BW. It is understood that the amount to administer will be a function of the indication treated, and possibly side effects that will be tolerated. Dosages can be empirically determined using recognized models for each disorder.
- IG is provided in an amount that permits subcutaneous administration of a dose equivalent to a once monthly IV dose for the particular indication being treated.
- immune globulin preparations can be formulated for single dose administration in an amount sufficient to provide a once monthly dose, but can be provided in lesser amounts for multiple dosage
- IG preparations can be administered daily, weekly, biweekly or once a month. Dosage regimes can be continued for months or years.
- the particular once monthly IV dose is a function of the disease to be treated, and thus can vary.
- Exemplary single dosages ranges, in particular for subcutaneous
- administration of IG are from at or about 1 gram (g) to 200 g, for example, 1 gram (g), 5 g, 10 g, 20 g, 30 g, 40 g, 50 g, 60 g, 70 g, 80 g, 90 g, 100 g or 200 g .
- the particular dosage and formulation thereof depends upon the indication and individual. For example, dosages can be administered at 50 mg/kg body weight (BW) to 600 mg/kg, BW, for example 50 mg/kg body weight (BW), 100 mg/kg BW, 200 mg/kg BW, 300 mg/kg BW, 400 mg/kg BW, 500 mg/kg BW, 600 mg/kg BW, or more. If necessary dosage can be empirically determined.
- volumes of IG-containing co-formulations administered subcutaneously can be at or about 10 mL to 700 mL, for example, 100 niL to 500 mL, such as 200 mL to 400 mL.
- volumes of IG-containing co-fomulations can be at or about 10 mL to 700 mL, for example, 100 niL to 500 mL, such as 200 mL to 400 mL.
- administered subcutaneously can be at or about 10 mL, 20 mL, 30 mL, 40 mL, 50 ml, 100 ml, 200 ml, 300 ml, 400 ml, 500 ml, 600 ml, 700 ml or more for single dosage administration.
- a 10% liquid IG co-formulation (100 mg/ml) for indications described herein can be administered in a volume of 200 ml to 700 ml to achieve a single dosage of 20 g to 70 g of IG.
- a 20% liquid IG co-formulation (200 mg/mL) for indications described herein can be administered in a volume of 100 mL to 350 mL to achieve a similar single dosage of 20 g to 70 g of IG.
- IG can be provided in lesser amounts in the co- formulation for multiple dosage administrations.
- the selected hyaluronidase in particular a soluble hyaluronidase, for example, rHuPH20, is included in the co-formulation at a concentration that is at or about 50 U/mL to 300 U/mL, for example 50 U/ml, 75 U/mL, 100 U/ml, 150 U/ml, 200 U/ml, 300 U/mL, 400 U/ml or 500 U/ml, typically at least 100 U/mL to 300 U/mL, generally at a concentration that is 75 U/mL to 350 U/mL.
- the hyaluronidase can be provided in a more concentrated form, for example at or about 1000 U/mL to 5000 U/mL, such as 1000 U/ml, 1500 Units/ml, 2000 U/ml, 4000 U/ml or 5000 U/ml.
- the hyaluronidase in the co-formulation can be formulated as a
- compositions for single or multiple dosage administration typically are formulated in an amount that is ready to use such that no further dilution is necessary.
- the formulation is provided as a single or multiple dosage form, one of skill in the art can empirically determine the exact amount of hyaluronidase to include in the co-formulation.
- the selected hyaluronidase in particular a soluble hyaluronidase, for example, rHuPH20, is included in the co-formulation in an amount sufficient to exert a therapeutically useful effect of the IG in the absence of undesirable side effects on the patient treated.
- the therapeutically effective concentration can be determined empirically by testing the polypeptides in known in vitro and in vivo systems such as by using the assays provided herein or known in the art (see e.g., Taliani et al. (1996) Anal. Biochem., 240: 60-67; Filocamo et al. (1997) J Virology, 71 : 1417-1427; Sudo et al. (1996) Antiviral Res.
- a therapeutically effective dose of hyaluronidase for single dosage administration is at or about 500 Units to 500,000 Units, for example, 1000 Units to 100,000 Units of hyaluronidase.
- hyaluronidase can be administered, in particular for subcutaneous administration, at or about 500 Units, 1000 Units, 2000 Units, 5000 Units, 10,000 Units, 30,000 Units, 40,000 Units, 50,000 Units, 60,000 Units, 70,000 Units, 80,000 Units, 90,000 Units, 100,000 Units or more.
- hyaluronidase can be provided in lesser amounts in the co- formulation for multiple dosage administrations.
- dosages can be provided as a ratio IG administered.
- hyaluronidase can be administered at 10 U/gram (g) to 2000 U/g or more of IG, for example, at or about 10 U/g, 20 U/g, 30U/g, 40 U/g, 50 U/g, 60 U/g, 70 U/g, 80 U/g, 90 U/g, 100 U/g, 150 U/g, 200 U/g, 250 U/g, 300 U/g, 400 U/g, 500 U/g, 1000 U/g, 1500 U/g, 2000 U/g, 3000 U/g IG or more.
- the ratio of hyaluronidase to IG in a co-formulated product is greater than the ratio when the same products (IG and hyaluronidase) and the same amount of IG are
- the ratio is at least 100 U/g, and generally 250 U/g or more, for example 100 U/g to 3000 U/g IG, such as 250 U/g to 1000 U/g, and in particular 250U/g to 750 U/g, such as 500 U/g IG.
- a co-formulation containing 100 U/mL hyaluronidase, when co-formulated with a 20% IG (200 mg/mL) is provided at a ratio that is or is about 500 U/g of IG.
- volumes administered subcutaneously can be at or about 10 mL to 700 mL, such as 50 mL to 500 mL, for example 100 mL to 400 mL for a single dosage administration.
- volumes administered subcutaneously can be at or about 10 mL, 20 mL, 30 mL, 40 mL, 50 ml, 100 ml, 200 ml, 300 ml, 400 ml, 500 ml, 600 ml, 700 ml or more for single dosage administration.
- the co-formulation provided herein contain an alkali metal chloride salt that is at least 0.05 M.
- the alkali metal chloride salt includes, but is not limited to, sodium chloride (NaCl) or potassium chloride (KCl).
- NaCl sodium chloride
- KCl potassium chloride
- the alkali metal chloride salt for example NaCl or KCl, is provided to retain the stability and activity of the hyaluronidase.
- the exact amount of salt can be empirically determined by one of skill in the art. For example, the amount of salt in the formulations can be determined by assessing aggregation and activity under differing salt conditions using various methods known to one of skill in the art, for example, as described in Section G.
- sodium chloride is provided in an amount that is or is about 0.05 M to 0.3 M, for example, at or about 0.05M, 0.06 M, 0.07 M, 0.08 M, 0.09 M, 0.1 M, 0.15 M, 0.2 M, 0.25 M or more.
- the amount of salt is between 0.05 M to 0.25 M, for example 0.15 M.
- the co-formulation provided herein contains an amino acid stabilizer, which contributes to the stability of the preparation.
- the stabilizer can be a non-polar and basic amino acids.
- Exemplary non-polar and basic amino acids include, but are not limited to, alanine, histidine, arginine, lysine, ornithine, isoleucine, valine, methionine, glycine and proline.
- the amino acid stabilizer is glycine or proline, typically glycine.
- the stabilizer can be a single amino acid or it can be a combination of 2 or more such amino acids.
- the amino acid stabilizers can be natural amino acids, amino acid analogues, modified amino acids or amino acid equivalents.
- the amino acid is an L-amino acid.
- proline when used as the stabilizer, it is generally L-proline. It is also possible to use amino acid equivalents, for example, proline analogues.
- an amount of one or more amino acids effective to maintain the immune globulin in monomeric form is added to the solution.
- the concentration of amino acid stabilizer, for example glycine, included in the liquid co-formulation ranges from 0.1 M to 1 M amino acid, typically 0.1 M to 0.75 M, generally 0.2M to 0.5M, for example, at least at or about 0.1 M, 0.15 M, 0.2 M, 0.25 M, 0.3 M, 0.35 M, 0.4 M, 0.45 M, 0.5 M, 0.6 M, 0.7 M, 0.75 M or more.
- the amino acid, for example glycine can be used in a form of a pharmaceutically acceptable salt, such as hydrochloride, hydrobromide, sulfate, acetate, etc.
- the purity of the amino acid, for example glycine should be at least 98 %, at least 99 %, or at least 99.5 % or more.
- the co-formulations can include carriers such as a diluent, adjuvant, excipient, or vehicle with which a hyaluronidase or IG is administered.
- suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences” by E. W. Martin.
- Such compositions will contain a therapeutically effective amount of the compound, generally in purified form or partially purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, and sesame oil. Water is a typical carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions also can be employed as liquid carriers, particularly for injectable solutions.
- pharmaceutically acceptable carriers used in parenteral preparations include aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents and other
- aqueous vehicles include Sodium Chloride Injection, Ringers Injection, Isotonic Dextrose Injection, Sterile Water Injection, Dextrose and Lactated Ringers Injection.
- Nonaqueous parenteral vehicles include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil.
- Antimicrobial agents in bacteriostatic or fungistatic concentrations can be added to parenteral preparations packaged in multiple-dose containers, which include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride and benzethonium chloride.
- Isotonic agents include sodium chloride and dextrose.
- Buffers include phosphate and citrate.
- Antioxidants include sodium bisulfate.
- Local anesthetics include procaine hydrochloride.
- Suspending and dispersing agents include sodium carboxymethylcelluose, hydroxypropyl methylcellulose and polyvinylpyrrolidone.
- Emulsifying agents include Polysorbate 80 (TWEENs 80).
- a sequestering or chelating agent of metal ions include EDTA.
- Pharmaceutical carriers also include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.
- Compositions can contain along with an active ingredient: a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethylcellulose; a lubricant, such as magnesium stearate, calcium stearate and talc; and a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polyvinylpyrrolidone, celluloses and derivatives thereof, povidone, crospovidones and other such binders known to those of skill in the art.
- a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethylcellulose
- a lubricant such as magnesium stearate, calcium stearate and talc
- a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polyvinylpyrrolidone, celluloses and derivatives thereof, povidone, crospovid
- an excipient protein can be added to the co-formulation that can be any of a number of pharmaceutically acceptable proteins or peptides.
- the excipient protein is selected for its ability to be administered to a mammalian subject without provoking an immune response.
- human serum albumin is well-suited for use in pharmaceutical formulations.
- Other known pharmaceutical protein excipients include, but are not limited to, starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, and ethanol. .
- the excipient is included in the formulation at a sufficient concentration to prevent adsorption of the protein to the holding vessel or vial.
- concentration of the excipient will vary according to the nature of the excipient and the concentration of the protein in the co-formulation.
- a composition if desired, also can contain minor amounts of wetting or emulsifying agents, or pH buffering agents, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents.
- the co-formulations provided herein can be formulated as single or multiple dosage forms.
- the co-formulation provided herein is stable over prolonged periods of time, the co-formulation can be provided in multiple dosage form for administration over an interval of days, weeks, months or years.
- the liquid co-formulation can be prepared as unit dosage forms.
- the concentration of the pharmaceutically active compound is adjusted so that an injection provides an effective amount to produce the desired pharmacological effect.
- each unit dose contains a predetermined quantity of therapeutically active compound sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent. The exact dose depends on the age, weight and condition of the patient or animal as is known in the art.
- Unit dose forms can be administered in fractions or multiples thereof.
- a multiple dose form is a plurality of identical unit dosage forms packaged in a single container to be administered in segregated unit dose form.
- multiple dose form is a multiple of unit doses that are not segregated in packaging.
- the unit-dose parenteral preparations are packaged in an ampoule, a vial or a syringe with a needle.
- compositions are a function of the disease to be treated and the particular article of manufacture chosen for package. All preparations for parenteral administration must be sterile, as is known and practiced in the art. When provided as a multidose preparation, the formulation can contain a bacteriostatic agent.
- Co-formulated compositions provided herein typically are formulated for parenteral administration, for example, by subcutaneous route. Due to the increased bioavailability of IG in co-formulations with hyaluronidase, immune globulins can be administered subcutaneously at dosages and frequencies for which current intravenous (IVIG) preparations are prepared and administered. The advantages over current subcutaneous formulations of IG is that co-formulated
- hyaluronidase/IG can result in more favorable dosing regimens, for example, less frequent dosing. By less frequent or lower dosing, side effects associated with toxicity can be reduced. Generally, the pharmacokinetic and/or pharmacodynamics of subcutaneous IG therapy is improved. In addition, subcutaneous administrations of IG also has advantages over current intravenous infusions.
- subcutaneous infusion permits infusion by the patient or family as opposed to a skilled nurse; infusion can be achieved at higher rates such that IG is infused in 1-3 hours compared to 5-10 hours for conventional IVIG therapies; there is no requirement for functional veins; there is no infusion related side effects such as thrombosis, headache, thrombophlebitis, and nausea and less probability of adverse events; and infusion can be performed at home or anywhere.
- Subcutaneous administration also is desired to ensure that hyaluronidases are administered so that they reach the interstitium of skin or tissues, thereby degrading the interstitial space for subsequent delivery of immunoglobulin.
- direct administration under the skin such as by subcutaneous administration methods, is contemplated.
- Administration can be local, topical or systemic depending upon the locus of treatment.
- Local administration to an area in need of treatment can be achieved by, for example, but not limited to, local infusion, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant.
- local administration is achieved by injection, such as from a syringe or other article of manufacture containing a injection device such as a needle.
- local administration can be achieved by infusion, which can be facilitated by the use of a pump or other similar device.
- compositions can be formulated in dosage forms appropriate for each route of administration.
- the most suitable route in any given case depends on a variety of factors, such as the nature of the disease, the progress of the disease, the severity of the disease the particular composition which is used.
- Other routes of administration such as the nature of the disease, the progress of the disease, the severity of the disease the particular composition which is used.
- administration such as any route known to those of skill in the art, include but are not limited to intramuscular, intravenous, intradermal, intralesional, intraperitoneal injection, epidural, nasal, oral, vaginal, rectal, topical, local, , otic, inhalational, buccal (e.g., sublingual), and transdermal administration or any route.
- routes include but are not limited to intramuscular, intravenous, intradermal, intralesional, intraperitoneal injection, epidural, nasal, oral, vaginal, rectal, topical, local, , otic, inhalational, buccal (e.g., sublingual), and transdermal administration or any route.
- Formulations suited for such routes are known to one of skill in the art.
- compositions also can be administered with other biologically active agents, either sequentially, intermittently or in the same composition.
- Administration also can include controlled release systems including controlled release formulations and device controlled release, such as by means of a pump.
- Subcutaneous administration generally characterized by injection or infusion, is contemplated herein.
- Injectables can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.
- the co- formulations provided herein are prepared as liquids.
- Injectables are designed for local and systemic administration. For purposes herein, local administration is desired for direct administration to the affected interstitium.
- Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as lyophilized powders, ready to be combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions.
- the solutions may be either aqueous or nonaqueous.
- suitable carriers include physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.
- Administration methods can be employed to decrease the exposure of selected compounds to degradative processes, such as proteolytic degradation and immunological intervention via antigenic and immunogenic responses. Examples of such methods include local administration at the site of treatment.
- Pegylation of therapeutics has been reported to increase resistance to proteolysis, increase plasma half-life, and decrease antigenicity and immunogenicity. Examples of pegylation methodologies are known in the art (see for example, Lu and Felix, Int. J. Peptide Protein Res., 43: 127-138, 1994; Lu and Felix, Peptide Res., 6: 142-6, 1993; Felix et al, Int. J. Peptide Res., 46 : 253-64, 1995; Benhar et al, J. Biol.
- Pegylation also can be used in the delivery of nucleic acid molecules in vivo.
- pegylation of adenovirus can increase stability and gene transfer (see, e.g., Cheng et al. (2003) Pharm. Res. 20(9): 1444- 51).
- Subjects can be dosed at rates of infusion at or about 0.5 ml/kg/BW/h to 5 ml/kg/BW/h, for example at or about 0.5 ml/kg/BW/h, 1 ml/kg/BW/h, 2
- the infusion rate can be empirically determined, and typically is a function of the tolerability of the subject. If an adverse reaction occurs during the infusion, the rate of infusion can be slowed to the rate immediately below that at which the adverse event occurred. If the adverse event resolves in response to the reduction in rate, the infusion rate can be slowly increased at the discretion of the physician. Subcutaneous infusion of IG co-formulations can be facilitated by gravity, pump infusion or injection of a desired dose, for example, a full 20-30 gram dose.
- IG/hyaluronidase co-formulations can be infused at rates at or about 5 ml/h, 10 ml/h, 30 ml/h, 60 ml/h, 120 ml/h, 240 ml/h or 300 ml/h. Infusion rates can be increased during the course of treatment so long as the infusion is tolerated by the patient. Generally, time of administration of infusion is at or about 0.5 h, 1 h, 1.5h, 2 h, 2.5 h, 3 h, 4 h or more. Due to the high rate of infusion achieved by subcutaneous administration of IG co-formulated with hyaluronidase, the time of infusion is significantly less than for conventional IVIG therapies.
- a second infusion site can be started at the physician and subject's discretion.
- the second site typically is started at least 10 cm from the initial site.
- IG/hyaluronidase co-formulation can be pooled into a standard IV bag.
- a non- vented infusion set can be used that has a Y-port near its terminus.
- a 24-gauge subcutaneous infusion needle can be inserted at a site of the subject's preferences, but the abdomen and secondarily the thighs are recommended because of the volume of solution to be infused.
- the hyaluronidase and IG can be provided in the same Y port apparatus.
- Other articles of manufacture also can be used herein for purposes of infusion by gravity or a pump, and include, but are not limited to tubes, bottles, syringes or other containers.
- a second infusion site can be started so that the subject receives the full dosage.
- the stable co-formulations provided herein are amenable to dosage regimes involving a periodic frequency of administration.
- the dosage frequency can be daily over an interval of time given over consecutive or alternate days, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more days.
- the dosage regime is weekly, for example, once every week, every two weeks, every three weeks, every four weeks, every five weeks, every six weeks or more.
- an IG/hyaluronidase preparation can be administered at once, or can be divided into a number of smaller doses to be administered at intervals of time.
- Selected IG/hyaluronidase preparations can be administered in one or more doses over the course of a treatment time for example over several hours, days, weeks, or months. In some cases, continuous administration is useful. It is understood that the precise dosage and course of administration depends on the indication and patient's tolerability.
- compositions can be administered hourly, daily, weekly, monthly, yearly or once. Generally, dosage regimens are chosen to limit toxicity.
- the attending physician would know how to and when to terminate, interrupt or adjust therapy to lower dosage due to toxicity, or bone marrow, liver or kidney or other tissue dysfunctions. Conversely, the attending physician would also know how to and when to adjust treatment to higher levels if the clinical response is not adequate (precluding toxic side effects).
- the stability and activity of IG and hyaluronidase in the formulations can be assessed using various in vitro and in vivo assays that are known to one of skill in the art.
- Various analytical techniques for measuring protein stability are available in the art and are reviewed in Peptide and Protein Drug Delivery, 247-301, Vincent Lee Ed., Marcel Dekker, Inc., New York, N.Y., Pubs. (1991) and Jones, A. Adv. Drug Delivery Rev. 10: 29-90 (1993).
- Stability can be measured at a selected temperature for a selected time period.
- Assays to assess molecular size (e.g. caused by aggregation, denaturation and/or fragmentation) of the IG is an important consideration for assessing stability of the co-formulation.
- the stability of the liquid formulations also can be assessed by any assays which measure the biological activity of IG and hyaluronidase in the formulation. Such assays are well known in the art.
- such assays can be used, for example, to determine appropriate dosages of immune globulin and hyaluronidase, and the frequency of dosing, for treatment.
- assays known to one of skill in the art also can be performed to assess the pharmacokinetic properties of subcutaneously-administered immune globulin, including bioavailability, and tolerability.
- the main stability indicating parameter is molecular size, and a change in size may be the result of degradation by denaturation, aggregation or fragmentation.
- Aggregation of IG is a common problem during storage of IG products. The aggregates are problematic because they can combine with complement in the patient's blood and produce an anti complement reaction. The ability of IG to bind complement is greatly increased as a result of denaturation, in particular by aggregation to high molecular weight species. The complement binding mechanism of these aggregates appears to be identical to that of antigen-antibody complexes. Marcus, D. M., (1960) J. Immunol. 84:273-284. In the case of IgG, it is known that the complement binding site requires two molecules close together. It is therefore possible that critical packing of the molecules is required, rather than any necessary conformational change.
- Methods for monitoring stability of IG are available in the art, including those methods described herein and in the examples disclosed herein.
- methods such as charge-transfer absorption, thermal analysis, fluorescence spectroscopy, circular dichroism, NMR, reduced capillary gel electrophoresis (rCGE), and high performance size exclusion chromatography (HPSEC), are available. See, for example, Wang et al., 1988, J. of Parenteral Science & Technology 42(supp):S4- S26.
- the rCGE, and HPSEC are the most common and simplest methods to assess the molecular size due to formation of protein aggregates, protein degradation and protein fragmentation. Further, the anticomplement activity (ACA) can be directly determined.
- ACA anticomplement activity
- the stability of the liquid formulations can be evaluated by HPSEC or rCGE, where the percentage area of the peaks represents the non- degraded protein.
- protein is injected onto a TosoH Biosep TSK G3000 SW 600 x 7.5 mm column. The protein is eluted. Eluted protein is detected using UV absorbance at 280 nm. A reference standard is run in the assay as a control, and the results are reported as the area percent of the product monomer peak compared to all other peaks excluding the included volume peak. Peaks eluting earlier than the monomer peak are recorded as percent aggregate.
- ACA titer also can be determined as described in the European
- ACA titer is a specification indicator for intravenous (IV) administration and is not relevant for subcutaneous administration of the co-formulations. Thus, for purposes herein, ACA titer is not generally a determinative indicator for co-formulations that are formulated for subcutaneous administration.
- the ACA assay measures the amount of complement that is bound by the mixture of standardized amounts of complement and protein (see e.g., Palmer, D. F. and Whaley, S. D., Complement Fixation Test, in Manual of Clinical Laboratory Immunology (Ed. N. R. Rose, et al., American Society for Microbiology, Washington, D. C, 1986) pp. 57-66.; Mayer, M. M., Quantitative C Fixation Analysis, Complement and Complement Fixation, in Experimental
- red blood cells that have been sensitized by preincubation with red blood cell antibodies are added to the complement/protein mixture. In the presence of free complement (not already bound by the protein) these sensitized cells will lyse, releasing hemoglobin which can be quantitated as a measure of the degree of lysis. In parallel, sensitized red blood cells are also added to a buffer control-complement mixture, whose degree of lysis is defined as 100 %.
- ACA activity one CH 50 unit is the amount of protein capable of activating 50 % of the complement in an optimally titered complement and red blood cell/hemolysin system.
- an acceptable ACA titer is less than 50 % CH50 units consumed per mg protein.
- molecular size distribution for example due to aggregate formation, during storage of a liquid co-formulation can be readily determined by measuring the change in soluble protein in solution over time.
- Amount of soluble polypeptide in solution can be quantified by a number of analytical assays.
- Such assays include, for example, reverse phase (RP)-HPLC and UV absorption spectroscopy. Determination of both soluble and insoluble aggregates during storage in liquid formulations can be achieved, for example, using analytical ultracentrifugation to distinguish between that portion of the soluble polypeptide that is present as soluble aggregates and that portion that is present in the nonaggregate, biologically active molecular form.
- the stability of co-formulations can be assessed by heating the finished product to a temperature of 57° C and holding it at that temperature for four hours while examining the product for visual precipitates.
- a temperature of 57° C See e.g., Code of Federal Regulations 21, Food and Drugs, 640. 101a (revised April 1978)).
- approximately 2 milliliters of the test product is heated at 57° C for four hours and then the percent change in degree of opalescence as measured by recording the transmittance at 580 nm with a laboratory
- SDS-PAGE also can be used to assess aggregation and/or fragmentation.
- the density or the radioactivity of each band stained or labeled with radioisotope can be measured and the % density or % radioactivity of the band representing non- degraded protein can be obtained.
- the co-formulations exhibit low to undetectable levels of aggregation as measured by any of the above assays, for example HPSEC or rCGE.
- the aggregation is, no more than 5 %, no more than 4 %, no more than 3 %, no more than 2 %, no more than 1 %, and generally no more than 0.5 % aggregate by weight protein, and low to undetectable levels of fragmentation, that is, 80 % or higher, 85 % or higher, 9 0% or higher, 95 % or higher, 98 % or higher, or 99 % or higher, or 99.5 % or higher of the total peak area in the peak(s) representing intact antibodies or fragments thereof.
- an acceptable aggregation includes > 90 % monomers and oligo-/dimers; ⁇ 5 % aggregates, and ⁇ 5 % fragments.
- immune globulin to act as a therapeutic agent can be assessed in vitro or in vivo.
- in vitro assays can be performed to assess the ability of immune globulin to neutralize viral or bacterial infectivity (Hiemstra et al., (1994) J Lab Clin Med 123 :241 -6).
- Other in vitro assays can be utilized to assess other biological activities of immune globulin.
- the ability of immune globulin preparations to interact with and modulate complement activation products, bind idiotypic antibody, bind Fc receptors on macrophages, and suppress various inflammatory mediators including cytokines, chemokines, and metalloproteinases can be assessed using any method known in the art, including, but not limited to, ELISA, Western blot, Northern blot, and flow cytometry to assess marker expression.
- ELISA Western blot
- Northern blot cytometry
- the effect of immune globulin on the expression of chemokine receptors on peripheral blood mononuclear cells can be assessed using flow cytomtery (Trebst et al, (2006) Eur J Neurology 13(12):1359-63).
- the effect of immune globulin on metalloproteinase expression in macrophages can be assessed using Northern blot analysis (Shapiro et al, (2002) Cancer 95:2032-2037).
- Immune globulin can be administered to animal models infected with one or more microorganisms and the effect on progression of infection can be assessed, such as by measuring the number of microorganisms or measuring weight as a marker of morbidity.
- the therapeutic effect of immune globulin also can be assessed using animal models of the diseases and conditions for which therapy using immune globulin is considered.
- Such animal models are known in the art, and include, but are not limited to, small animal models for X-linked agammaglobulinemia (XLA), SCID, Wiskott-Aldrich syndrome, Kawasaki disease, Guillain-Barre syndrome, ITP, polymyositis, Lambert-Eaton myasthenic syndrome, Myasthenia gravis and Moersch-Woltmann syndrome (Czitrom et al. (1985) J Immunol 134:2276-2280, Ellmeier et al, (2000) J Exp Med. 192: 161 1-1624, Ohno (2006) Drug Discovery Today: Disease Models 3:83-89, Oyaizu et al. (1988) J Exp Med 2017-2022, Hansen et al, (2002) Blood 100:2087- 2093, Strongwater et al, (1984) Arthritis Rheum. 27:433-42, Kim et al (1998)
- XLA X-linked aga
- Hyaluronidase activity can be assessed using methods well known in the art.
- activity is measured using a microturbidity assay. This is based on the formation of an insoluble precipitate when hyaluronic acid binds with serum albumin.
- the activity is measured by incubating hyaluronidase with sodium hyaluronate (hyaluronic acid) for a set period of time (e.g. 10 minutes) and then precipitating the undigested sodium hyaluronate with the addition of acidified serum albumin.
- the turbidity of the resulting sample is measured at 640 nm after an additional development period. The decrease in turbidity resulting from
- hyaluronidase activity on the sodium hyaluronate substrate is a measure of hyaluronidase enzymatic activity.
- hyaluronidase activity is measured using a microtiter assay in which residual biotinylated hyaluronic acid is measured following incubation with hyaluronidase (see e.g. Frost and Stern (1997) Anal. Biochem. 251 :263-269, U.S. Patent Publication No. 20050260186).
- the free carboxyl groups on the glucuronic acid residues of hyaluronic acid are biotinylated, and the biotinylated hyaluronic acid substrate is covalently couple to a microtiter plate.
- the residual biotinylated hyaluronic acid substrate is detected using an avidin-peroxidase reaction, and compared to that obtained following reaction with hyaluronidase standards of known activity.
- Other assays to measure hyaluronidase activity also are known in the art and can be used in the methods herein (see e.g. Delpech et al, (1995) Anal. Biochem. 229:35-41 ; Takahashi et al, (2003) Anal. Biochem. 322:257-263).
- hyaluronidase to act as a spreading or diffusing agent
- trypan blue dye can be injected subcutaneously with or without hyaluronidase into the lateral skin on each side of nude mice. The dye area is then measured, such as with a microcaliper, to determine the ability of hyaluronidase to act as a spreading agent (U.S. Patent No. 20060104968).
- Pharmacokinetic and tolerability studies can be performed using animal models or can be performed during clinical studies with patients.
- Animal models include, but are not limited to, mice, rats, rabbits, dogs, guinea pigs and non-human primate models, such as cynomolgus monkeys or rhesus macaques.
- pharmacokinetic and tolerability studies are performed using healthy animals.
- the studies are performed using animal models of a disease for which therapy with immune globulin is considered, such as animal models of any of the diseases and conditions described below.
- the pharmacokinetics of subcutaneously administered immune globulin can be assessed by measuring such parameters as the maximum (peak) plasma immune globulin concentration (C max ), the peak time (i.e. when maximum plasma immune globulin concentration occurs; T max ), the minimum plasma immune globulin concentration (i.e. the minimum plasma concentration between doses of immune globulin; C m j n ), the elimination half-life (Ti /2 ) and area under the curve (i.e. the area under the curve generated by plotting time versus plasma immune globulin concentration; AUC), following administration.
- C max maximum plasma immune globulin concentration
- T max peak time
- minimum plasma immune globulin concentration i.e. the minimum plasma concentration between doses of immune globulin
- AUC area under the curve
- the absolute bioavailability of subcutaneously administered immune globulin is determined by comparing the area under the curve of immune globulin following subcutaneous delivery (AUC SC ) with the AUC of immune globulin following intravenous delivery (AUQ V ). Absolute bioavailability (F), can be calculated using the formula: F - ([AUC] SC x dose sc ) / ([AUC]iv x dosejy).
- the concentration of immune globulin in the plasma following subcutaneous administration can be measured using any method known in the art suitable for assessing concentrations of immune globulin in samples of blood.
- Exemplary methods include, but are not limited to, ELISA and nephelometry.
- a range of doses and different dosing frequency of dosing can be
- hyaluronidase administered in the pharmacokinetic studies to assess the effect of increasing or decreasing concentrations of immune globulin and/or hyaluronidase in the dose.
- Pharmacokinetic properties of subcutaneously administered immune globulin such as bioavailability, also can be assessed with or without co-administration of hyaluronidase.
- dogs such as beagles
- Intravenous doses of immune globulin also are given to another group of beagles. Blood samples can then be taken at various time points and the amount of immune globulin in the plasma determine, such as by nephelometry.
- the AUC can then be measured and the bioavailability of subcutaneously administered immune globulin administered with or without hyaluronidase can be determined.
- Such studies can be performed to assess the effect of co-administration with hyaluronidase on pharmacokinetic properties, such as bioavailability, of subcutaneously administered immune globulin.
- Studies to assess safety and tolerability also are known in the art and can be used herein. Following subcutaneous administration of immune globulin, with or without co-administration of hyaluronidase, the development of any adverse reactions can be monitored.
- Adverse reactions can include, but are not limited to, injection site reactions, such as edema or swelling, headache, fever, fatigue, chills, flushing, dizziness, urticaria, wheezing or chest tightness, nausea, vomiting, rigors, back pain, chest pain, muscle cramps, seizures or convulsions, changes in blood pressure and anaphylactic or severe hypersensitivity responses.
- injection site reactions such as edema or swelling, headache, fever, fatigue, chills, flushing, dizziness, urticaria, wheezing or chest tightness, nausea, vomiting, rigors, back pain, chest pain, muscle cramps, seizures or convulsions, changes in blood pressure and anaphylactic or severe hypersensitivity responses.
- a range of doses and different dosing frequencies are be administered in the safety and tolerability studies to assess the effect of increasing or decreasing concentrations of immune globulin and/or hyaluronidase in the dose.
- the IG/hyaluronidase co-formulations described herein can be used for treatment of any condition for which immune globulin is employed.
- Immune globulin (IG) can be administered subcutaneously in co-formulations with hyaluronidase, to treat any condition that is amendable to treatment with immune globulin.
- This section provides exemplary therapeutic uses of IG/hyaluronidase co- formulations. It is understood that the IG/hyaluronidase co-formulations provided herein can be used in methods, processes or uses to treat any of the diseases and conditions described below and other diseases and conditions known to one of skill in the art that are treatable by IG. In particular, subcutaneous administration of the co-formulations is contemplated.
- Dosages of IG administered is the same or similar to the dosage administered intravenously and known to one of skill in the art.
- the dosage regime and frequency can vary from intravenous regimes as described elsewhere herein.
- the therapeutic uses described below are exemplary and do not limit the applications of the methods described herein.
- co-formulations provided herein can be used to treat immune deficiencies such as primary immune deficiencies, such as X-linked
- agammaglobulinemia agammaglobulinemia, hypogammaglobulinemia, and acquired compromised immunity conditions (secondary immune deficiencies), such as those featuring low antibody levels; inflammatory and autoimmune diseases; and acute infections.
- Therapeutic uses include, but are not limited to, immunoglobulin replacement therapy and immunomodulation therapy for various immunological, hematological, neurological, inflammatory, dermatological and/or infectious diseases and conditions.
- immune globulin is administered to augment the immune response in healthy patients, such as following possible exposure to infectious disease (e.g. accidental needle stick injury).
- IG co-formulations provided herein also can be used for treating multiple sclerosis (especially relapsing-remitting multiple sclerosis or RRMS), Alzheimer's disease, and Parkinson's disease. It is within the skill of a treating physician to identify such diseases or conditions.
- Immune globulin/hyaluronidase co-formulations can be administered in combination with other agents used in the treatment of these diseases and conditions.
- agents that can be administered include, but are not limited to, antibiotics, chemotherapeutics, steroidal anti-inflammatories, nonsteroidal anti-inflammatories, and other immunomodulatory agents such as cytokines, chemokines and growth factors.
- a particular dosage and duration and treatment protocol can be empirically determined or extrapolated.
- exemplary doses of intravenously administered immune globulin can be used as a starting point to determine appropriate dosages.
- Dosage levels can be determined based on a variety of factors, such as body weight of the individual, general health, age, the activity of the specific compound employed, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, and the patient's disposition to the disease and the judgment of the treating physician.
- Exemplary dosages of immune globulin and hyaluronidase are provided elsewhere herein. It is understood that the amount to administer will be a function of the indication treated, and possibly side effects that will be tolerated. Dosages can be empirically determined using recognized models for each disorder.
- a maintenance dose of immune globulin can be administered subcutaneously in combination with hyaluronidase, if necessary, and the dosage, the dosage form, or frequency of administration, or a combination thereof can be modified.
- a subject can require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
- Immune globulin can be used to treat primary immune deficiency with antibody deficiency.
- immune globulin can be administered as immunoglobulin replacement therapy to patients presenting with such diseases.
- primary immune deficiencies are inherited disorders.
- exemplary of primary immune deficiencies include, but are not limited to, common variable immune deficiency (CVID), selective IgA deficiency, IgG subclass deficiency, X- linked agammaglobulinemia (XLA), severe combined immune deficiency (SCID), complement disorders, ataxia telangiectasia, hyper IgM, and Wiskott-Aldridge syndrome.
- Immune globulin/hyaluronidase co-formulations can be administered subcutaneously to patients with primary immune deficiency diseases with antibody deficiency at doses similar to the doses used for intravenous administration of immune globulin.
- Exemplary doses include, for example, between 100 mg/kg BW and 800 mg/kg BW immune globulin, at four-week intervals. The dose can be increased or decreased, as can the frequency of the doses, depending on the clinical response.
- AIDS Acquired immunodeficiency syndrome
- HAV human immunodeficiency virus
- hypogammaglobulinemia is caused by a lack of B- lymphocytes, is characterized by low levels of antibodies in the blood, and can occur in patients with chronic lymphocytic leukemia (CLL), multiple myeloma (MM), non-Hodgkin's lymphoma (NHL) and other relevant malignancies as a result of both leukemia-related immune dysfunction and therapy-related immunosuppression.
- CLL chronic lymphocytic leukemia
- MM multiple myeloma
- NHL non-Hodgkin's lymphoma
- immune globulin/hyaluronidase co-formulations can be administered subcutaneously in such patients to prevent recurrent infections.
- Exemplary dosages include those used for intravenous administration of immune globulin to patients with acquired hypogammaglobulinemia secondary to
- co-formulations containing about 400 mg/kg BW immune globulin can be administered subcutaneously every 3 to 4 weeks.
- an additional dose of 400 mg/kg BW can be administered in the first month of therapy in cases where the patient's serum IgG is less than 4 g/L.
- the amount of immune globulin administered, and the frequency of the doses, can be increased or decreased as appropriate.
- Kawasaki disease is an acute, febrile, multi-system disease of children and young infants, often involving the coronary arteries. It also is known as lymph node syndrome, mucocutaneous node disease, infantile polyarteritis and Kawasaki syndrome. Kawasaki disease is a poorly understood, self-limited vasculitis that affects many organs, including the skin, mucous membranes, lymph nodes, blood vessel walls, and the heart. Coronary artery aneurysms can occur from the second week of illness during the convalescent stage.
- vasculitis results from an immune reaction characterized by T-cell and macrophage activation to an unknown antigen, secretion of cytokines, polyclonal B-cell hyperactivity, and the formation of autoantibodies to endothelial cells and smooth muscle cells.
- T-cell and macrophage activation characterized by T-cell and macrophage activation to an unknown antigen, secretion of cytokines, polyclonal B-cell hyperactivity, and the formation of autoantibodies to endothelial cells and smooth muscle cells.
- cytokines secretion of cytokines
- polyclonal B-cell hyperactivity secretion of cytokines
- autoantibodies to endothelial cells and smooth muscle cells.
- one or more uncharacterized common infectious agents may trigger the disease.
- Immune globulin administered early in Kawasaki disease can prevent coronary artery pathology. Subcutaneous administration of immune
- globulin/hyaluronidase co-formulations to patients with ongoing inflammation associated with Kawasaki disease can ameliorate symptoms.
- Exemplary dosages include those used for intravenous administration of immune globulin to patients with Kawasaki disease.
- a patient with Kawasaki disease can be administered about 1 -2 g/kg patient body weight of immune globulin. This can be administered, for example, in four doses of 400 mg/kg BW for four consecutive days.
- 1 g/kg BW immune globulin is administered as a single dose over a 10 hour period. The amount of immune globulin administered can be increased or decreased as appropriate.
- CIDP Chronic inflammatory demyelinating polyneuropathy
- CIDP chronic relapsing polyneuropathy
- the disorder which is sometimes called chronic relapsing polyneuropathy, is caused by damage to the myelin sheath of the peripheral nerves.
- CIDP is more common in young adults, and in men more so than women. It often presents with symptoms that include tingling or numbness (beginning in the toes and fingers), weakness of the arms and legs, loss of deep tendon reflexes (areflexia), fatigue, and abnormal sensations.
- CIDP is closely related to Guillain-Barre syndrome and is considered the chronic counterpart of that acute disease.
- globulin/hyaluronidase co-formulations can be administered subcutaneously to patients presenting with CIDP using the methods described herein.
- Exemplary dosages include those used for intravenous administration of immune globulin to patients with CIDP.
- a patient with CIDP is administered about 2 g/kg BW of immune globulin subcutaneously, in combination with hyaluronidase. This can be administered, for example, in five doses of 400 mg/kg BW for five consecutive days.
- the amount of immune globulin administered can be increased or decreased as appropriate.
- Guillain-Barre syndrome is a neurologic autoimmune disorder involving inflammatory demyelination of peripheral nerves.
- the first symptoms include varying degrees of weakness or tingling sensations in the legs, which can spread to the arms and upper body. These symptoms can increase in intensity until the muscles cannot be used at all and the patient is almost totally paralyzed, resulting in a life-threatening condition. Although recovery is generally good or complete in the majority of patients, persistent disability has been reported in about 20% of all patients and death in 4 to 15 % of patients.
- Guillain-Barre syndrome can occur a few days or weeks after symptoms of a respiratory or gastrointestinal viral infection. In some instances, surgery or vaccinations can trigger the syndrome.
- the disorder can develop over the course of hours or days, or it may take up to 3 to 4 weeks.
- a nerve conduction velocity (NCV) test can give a doctor clues to aid the diagnosis.
- a spinal tap can be used in diagnosis, as the cerebrospinal fluid in Guillain-Barre syndrome patients typically contains more protein than normal subjects.
- IG subcutaneously to patients at an appropriate dose of IG, such as, for example, a dose similar to the dose used to administer immune globulin intravenously to patients with Guillain- Barre syndrome.
- a patient with Guillain- Barre syndrome can be administered about 2 g/kg BW of immune globulin, in
- hyaluronidase subcutaneously.
- This can be administered, for example, in five doses of 400 mg/kg BW for five consecutive days.
- the amount of immune globulin administered can be increased or decreased depending on, for example, the severity of the disease and the clinical response to therapy, which can be readily evaluated by one of skill in the art.
- Idiopathic thrombocytopenic purpura also known as primary immune thrombocytopenic purpura and autoimmune thrombocytopenic purpura
- ITP Idiopathic thrombocytopenic purpura
- platelet count thrombocytopenia
- thrombocytopenia a reduction in platelet count (thrombocytopenia) resulting from shortened platelet survival due to anti-platelet antibodies.
- platelet counts are very low (e.g., ⁇ 30 x 10 9 /L)
- bleeding into the skin (pura) and mucous membranes can occur.
- Bone marrow platelet production megakaryopoiesis
- ITP can present as chronic and acute forms. Approximately 80 % of adults with ITP have the chronic form of the disease. The highest incidence of chronic ITP is in women aged 15-50 years, although some reports suggest increasing incidence with age. ITP is relatively common in patients with HIV. While ITP can be found at any stage of the infection, its prevalence increases as HIV disease advances.
- Immune globulin/hyaluronidase co-formulations can be administered subcutaneously to patients at an IG dose similar to the dose used to administer immune globulin intravenously to treat patients with ITP.
- a patient with ITP can be administered about 1 to 2 g/kg BW of immune globulin, in combination with hyaluronidase, subcutaneously. This can be administered over several days, or can be administered in one dose.
- five doses of 400 mg/kg BW immune globulin on consecutive days is administered.
- 1 g/kg BW is administered for 1-2 consecutive days, depending on platelet count and clinical response.
- the amount of immune globulin administered, and the frequency of the doses can be increased or decreased depending on, for example, platelet count and the clinical response to therapy, which can be readily evaluated by one of skill in the art.
- mflarnmatory myopathies are a group of muscle diseases involving the inflammation and degeneration of skeletal muscle tissues. These acquired disorders all present with significant muscle weakness and the presence of an inflammatory response within the muscle.
- DM Dermatomyositis
- rash occurs as a patchy, dusky, reddish or lilac rash on the eyelids, cheeks, and bridge of the nose, and on the back or upper chest, elbows, knees and knuckles.
- calcified nodules or hardened bumps develop under the skin.
- the rash often precedes muscle weakness, which typically develops over a period of weeks, but may develop over months or even days.
- Dermatomyositis can occur at any age from childhood to adulthood, and is more common in females than males.
- Approximately one-third of DM patients report difficulty swallowing. More than 50 % of children with DM complain of muscle pain and tenderness, while this generally occurs in less than 25 % of adults with DM.
- PM Polymyositis
- IBM Inclusion body myositis
- IBM is very similar to polymyositis.
- Onset of muscle weakness in IBM is usually very gradual, taking place over months or years. It differs from PM in that both proximal and distal muscles are affected, while generally only the proximal muscles are affected in PM.
- Typical findings include weakness of the wrist flexors and finger flexors. Atrophy of the forearms and the quadriceps muscle is characteristic of the disease, with varying degrees of weakness in other muscles.
- Approximately half of the patients afflicted with IBM have difficulty swallowing. Symptoms of IBM usually begin after age 50, although no age group is excluded. IBM occurs more frequently in men than women. About one in ten cases of IBM may be hereditary.
- Immune globulin can improve muscle strength, reduce inflammation and reduce disease progression and severity (Dalakas et al. (1993) N. Engl. J. Med. 329(27): 1993-2000; Dalakas et al. (2001) Neurology 56(3):323-7; Dalakas (2004) Pharmacol. Ther. 102(3): 177-93; Walter et al. (2000) J. Neurol. 247(1 ):22-8).
- Immune globulin/hyaluronidase co-formulations can be administered subcutaneously to patients with DM, PM or IBM at a dose of IG similar to the dose used to administer immune globulin intravenously.
- 2 g/kg BW of immune globulin can be administered, typically over several days, such as, for example, five doses of 400 mg/kg BW on consecutive days,
- Lambert-Eaton myasthenic syndrome is a rare autoimmune disorder of neuromuscular transmission first recognized clinically in association with lung cancer, and subsequently in cases in which no neoplasm was detected. Patients with LEMS have a presynaptic neuromuscular junction defect. The disease is
- Subcutaneous administration of immune globulin/hyaluronidase co- formulations to patients with LEMS can ameliorate symptoms.
- Exemplary dosages of IG in the co-formulations include those used for intravenous administration of immune globulin to patients with LEMS.
- a patient with LEMS can be administered 2 g/kg BW of immune globulin over several doses.
- five doses of 400 mg/kg BW immune globulin can be administered on five consecutive days.
- the amount of immune globulin administered can be increased or decreased as appropriate.
- Multifocal motor neuropathy with conduction block is an acquired immune-mediated demyelinating neuropathy with slowly progressive weakness, fasciculations and cramping, without significant sensory involvement.
- the duration of disease prior to diagnosis ranges from several months to more than 15 years.
- the precise cause of MMN is unknown.
- Histopathologic and electrodiagnostic studies demonstrate the presence of both demyelinating and axonal injury. Motor nerves are primarily affected, although mild demyelination has been demonstrated in sensory nerves as well.
- Efficacy of immunomodulatory and immunosuppressive treatment further supports the immune nature of MMN. Titers of anti-GMl antibodies are elevated in over half of the patients with MMN. Although the role of the anti-GMl antibodies in the disease in unknown, their presence can be used as a diagnostic marker for MMN.
- Subcutaneous administration of immune globulin/hyaluronidase co- formulations to patients with MMN can ameliorate symptoms.
- Exemplary dosages of IG in the co-formulations include those used for intravenous administration of immune globulin to patients with MMN.
- a patient with MMN can be administered 2 g/kg BW of immune globulin over several doses.
- five doses of 400 mg/kg BW immune globulin can be administered on five consecutive days.
- 1 g/kg BW can be administered on 2 consecutive days.
- Some patients can be given maintenance therapy, which can include, for example, doses of 400 mg/kg BW to 2 g/kg BW, given every 2-6 weeks.
- the amount of immune globulin administered can be increased or decreased as appropriate, taking into account the patient's response.
- MG Myasthenia gravis
- AChR acetylcholine receptors
- MoSK muscle-specific tyrosine kinase
- the clinical features of MG include fluctuating weakness and fatigability of voluntary muscles, particularly levator palpebrae, extraocular, bulbar, limb and respiratory muscles. Patients usually present with unilateral or bilateral drooping of the eyelid (ptosis), double vision (diplopia), difficulty in swallowing (dysphagia) and proximal muscle weakness.
- Myasthenia gravis occurs in all ethnic groups and both genders. It most commonly affects young adult women under 40 and older men over 60, but it can occur at any age. In some instances, thymectomy is performed to reduce symptoms.
- Immune globulin can be used, for example, as maintenance therapy for patients with moderate to severe MG, typically when other treatments have been ineffective or caused severe side effects, and also can be administered prior to thymectomy or during an acute exacerbation of the disease (myasthenic crisis). Immune globulin/hyaluronidase co-formulations can be administered
- exemplary dosages of IG in the co-formulations include those used for intravenous
- a patient with MG can be administered doses of 400 mg/kg BW to 2 g/kg BW every 4-6 weeks for maintenance therapy.
- 1-2 g/kg BW Prior to thymectomy or during myasthenic crisis, 1-2 g/kg BW can be administered over several doses, such as, for example, five doses of 400 mg/kg BW on five consecutive days. In another example, 1 g/kg BW can be administered on 2 consecutive days.
- Moersch-Woltmann syndrome also known as stiff person syndrome (SPS) or stiff man syndrome, is a rare neurological disorder with features of an SPS
- autoimmune disease Patients present with symptoms related to muscular rigidity and superimposed episodic spasms. Muscle rigidity spreads to involve axial muscles, primarily abdominal and thoracolumbar, as well as proximal limb muscles. Typically, co-contraction of truncal agonist and antagonistic muscles leads to a board-like appearance with hyperlordosis. Less frequently, respiratory muscle involvement leads to breathing difficulty and facial muscle involvement to a mask- like face.
- Immune globulin/hyaluronidase co-formulations can be administered subcutaneously to patients with Moersch-Woltmann syndrome using the methods described herein.
- Exemplary dosages of IG in the co-formulations include those used for intravenous administration of immune globulin to patients with Moersch-Woltmann syndrome.
- immune globulin can be administered at doses of 400 mg/kg BW on five consecutive days.
- Some patients can be given maintenance therapy, which can include, for example, 1- 2 g/kg BW immune globulin every 4-6 weeks.
- the amount of immune globulin administered can be increased or decreased as appropriate.
- Immune globulin also has been shown to have antimicrobial activity against a number of bacterial, viral and fungal infections, including, but not limited to, Haemophilus influenzae type B; Pseudomonas aeruginosa types A and B;
- Staphylococcus aureus group B streptococcus; Streptococcus pneumoniae types 1, 3, 4, 6, 7, 8, 9, 12, 14, 18, 19, and 23; adenovirus types 2 and 5; cytomegalovirus; Epstein-Barr virus VCA; hepatitis A virus; hepatitis B virus; herpes simplex virus- 1 ; herpes simplex virus-2; influenza A; measles; parainfluenza types 1, 2 and 3; polio; varicella zoster virus; Aspergillus; and Candida albicans.
- globulin/hyaluronidase co-formulations can be administered subcutaneously to patients with bacterial, viral and fungal infections to augment the patient's immune system and treat the disease.
- antibiotics or other antimicrobials also are administered.
- Exemplary of other diseases and conditions treatable by IG therapy and not described above include, but are not limited to, iatrogenic immunodeficiency;
- Alzheimer's disease includes treatment with intravenous immunoglobulin (see e.g., Dodel et al. (2004) J. Neurol. Neurosurg. Psychiatry 75:1472-4; Solomon et al. (2007) Curr. Opin. Mol. Ther. 9:79-85; Relkin et al. (2008) Neurobiol Aging).
- IG contains antibodies that bind to beta amyloid (AB), which is a central component of the plaque in the brains of Alzheimer's patients.
- IG can help to promote the clearance of AB from the brain and block AB's toxic effects on brain cells.
- immune globulin/hyaluronidase co-formulations can be administered subcutaneously to patients with Alzheimer's disease using the methods described herein.
- Subjects to be treated include patients having mild, moderate or advanced Alzheimer's disease. It is within the level of skill of a treating physician to identify patients for treatment.
- Immune globulin/hyaluronidase co-formulations can be administered every week, every two weeks, or once a month. Treatment can continue over the course of months or years.
- the co-formulations can be administered at IG doses at or between 200 mg/kg BW to 2 g/kg BW every week or every two weeks, and generally at least 200 mg/kg to 2 g/kg BW at least once a month.
- Treatment with immune globulin can effect an increase in a patient's anti-amyloid beta antibody levels compared to levels before treatment.
- compositions of immune globulin and hyaluronidase co- formulations can be packaged as articles of manufacture containing packaging material, a pharmaceutical composition which is effective for treating a IG-treatable disease or condition, and a label that indicates that the composition is to be used for treating an IG-treatable diseases and conditions.
- Exemplary of articles of manufacture are containers including single chamber and dual chamber containers.
- the containers include, but are not limited to, tubes, bottles and syringes.
- the containers can further include a needle for subcutaneous administration.
- the articles of manufacture provided herein contain packaging materials.
- Packaging materials for use in packaging pharmaceutical products are well known to those of skill in the art. See, for example, U.S. Patent Nos. 5,323,907, 5,033,252 and 5,052,558, each of which is incorporated herein in its entirety.
- Examples of pharmaceutical packaging materials include, but are not limited to, blister packs, bottles, tubes, inhalers, pumps, bags, vials, containers, syringes, bottles, and any packaging material suitable for a selected formulation and intended mode of administration and treatment.
- a wide array of formulations of the compounds and compositions provided herein are contemplated as are a variety of treatments for any IG-treatable disease or condition.
- Kits can include a pharmaceutical composition described herein and an item for administration.
- compositions can be supplied with a device for administration, such as a syringe, an inhaler, a dosage cup, a dropper, or an applicator.
- the kit can, optionally, include instructions for application including dosages, dosing regimens and instructions for modes of administration.
- Kits also can include a pharmaceutical composition described herein and an item for diagnosis. For example, such kits can include an item for measuring the concentration, amount or activity of IG.
- Gammagard Liquid (10 % IG) was manufactured from large pools of human plasma, screened throughout for infectious agents. Immune globulins were purified from plasma pools using a modified Cohn-Oncley cold ethanol fractionation process (Cohn et al. (1946) J. Am. Chem. Soc. 68:459-467), as well as cation and anion exchange chromatography (Teschner et al. (2007) Vox Sang. 92:42-55). The purified protein was further subjected to three independent viral
- the S/D procedure included treatment with an organic mixture of tri-n-butyl phosphate, octoxynol-9 and polysorbate-80 at 18 to 25°C for a minimum of 60 minutes (Polsler et al, (2008) Vox Sang. 94:184-192).
- the final preparations used in the studies were 10 % liquid preparations of highly purified and concentrated immunoglobulin G (IG) antibodies formulated in 0.25 mM glycine at pH 4.6 to 5.1 (as measured in the concentrated solution).
- IG immunoglobulin G
- Glycine serves as a stabilizing and buffering agent, and there were no added sugars, sodium or preservatives. All lots of 10 % IG (e.g. lots LE12H020, LE12H062, LE12H173, LE12F047 ) were substantially similar. The osmolality was 240 to 300 mOsmol/kg, which is similar to physiological osmolality. The distribution of the IG subclasses of the product manufactured according to the process described above was similar to that of normal plasma: at least 98 % of the protein preparation being IgG, the average IgA concentration was 37 ⁇ g/mL (none of these lots had an IgA concentration of > 140 ⁇ g/mL) and IgM was present only in trace amounts. The Fc and Fab functions were maintained. Pre-kalikrein activator activity was not detectable.
- CM-Sepharose fast flow CM-Sepharose fast flow
- ANX- Sepharose fast flow anion exchange chromatography
- three dedicated virus inactivation/removal steps which complement each other in their mode of action, were integrated in the manufacturing process, namely: solvent/detergent treatment (mixture of 1 % Triton X-100, 0.3 % tri-n-butyl phosphate and 0.3 % polysorbate-80), nanofiltration (Asahi Planova 35 nm), and low pH (4.7) storage for 3 weeks at elevated temperature,
- cryo-poor plasma after cold-insoluble proteins were removed by centrifugation from fresh thawed plasma
- the cryo-poor plasma was used for isolation of various crude coagulation factors and inhibitors prior to subsequent cold alcohol fractionation. Seven pathways were chosen for batch adsorption of crude coagulation factors and inhibitors from the cryo-poor plasma prior to SUBQ NG 20 % purification and are referred to as pathways 1 to 7 in Table 3.
- Fumed silica ⁇ e.g., Aerosil 380 or equivalent was added to the suspension to a concentration of about 40 g/kg of suspension (or equivalent to 1.8 g/L of cryo-poor plasma) and was mixed at 2 to 8 °C for 50 to 70 minutes. Liquids and solids were separated by filtration at 2 to 8 °C using a filter aid (Hyflo Super-Cel, World Minerals Inc., 0.5 kg/kg of suspension), followed by post-washing of the filter press with extraction buffer.
- a filter aid Hyflo Super-Cel, World Minerals Inc.
- the filtrate was mixed with polysorbate-80 to a concentration of about 0.2 % w/v with stirring for at least 30 minutes at 2 to 8 °C.
- Sodium citrate dehydrate was then mixed into the solution at 8 g/ L for another 30 minutes of stirring at 2 to 8 °C.
- the pH was then adjusted to 7.0 ⁇ 0.1 with either 1M sodium hydroxide or 1 M acetic acid.
- Cold alcohol was then added to the solution to a concentration of about 25 % v/v, and a precipitation step similar to Cohn II was performed (Cohn et al. (1946) J. Am. Chem. Soc. 68:459-467).
- the precipitate was dissolved and filtered with a depth filter of a nominal pore size of 0.2 ⁇ (e.g., Cuno VR06 filter or equivalent) to obtain a clear filtrate which was used for the solvent/detergent (S/D) treatment.
- a depth filter of a nominal pore size of 0.2 ⁇ e.g., Cuno VR06 filter or equivalent
- the first of the steps in viral inactivation is S/D treatment of the re- suspended Precipitate G.
- the S/D treatment mixture contained 1.0 % (v/v) Triton X-l 00, 0.3 % (v/v) Tween-80, and 0.3 % (v/v) tri-n-butyl phosphate, and the mixture was held at 18 to 25 °C for at least 60 minutes.
- the S/D-containing protein solution was then passed through a cation exchange column (Carboxymethyl (CM)-Sepharose fast flow) to remove the solvent and detergent. After washing out of S/D reagents, the absorbed proteins were then eluted with high pH elution buffer (pH 8.5 ⁇ 0.1).
- CM Carboxymethyl
- the eluate was then adjusted to pH 6 and diluted to the appropriate conductivity before the solution was passed through the equilibrated anion exchange column (ANX-Sepharose fast flow). The column flow-through during loading and washing was collected for further processing.
- the column effluent from the last step was nanofiltered (Asahi Planova 35nm filter) to generate a nanofiltrate.
- the glycine concentration of the nanofiltrate was adjusted to 0.25 M and the nanofiltrate was further concentrated to a protein concentration of 5 ⁇ 1 % w/v by ultrafiltration and pH was adjusted to 5.2 ⁇ 0.2.
- the ultrafiltration was carried out in a cassette with an open channel screen and ultrafiltration membrane (Millipore
- Pellicon Biomax with a nominal molecular weight cut off (NMWCO) of 50 kDa or less that was especially designed for high viscosity products.
- the concentrate was diafiltered against a 0.25 M glycine solution with a pH of 4.2 ⁇ 0.2.
- the minimum exchange volume was lOx the original concentrate volume.
- the solution was maintained at 4 to 20 °C.
- the solution was concentrated to a protein concentration of minimum 22 % w/v and adjusted to 2 to 8 °C.
- the post-wash of the first bigger ultrafiltration system was done with at least 2x the dead volume in re-circulation mode to assure that all protein was washed out. Then the post-wash of the first ultrafiltration system was concentrated to a protein concentration of at least 22 % w/v with a second ultra-/ diafiltration system equipped with the same type of membrane which was dimensioned a tenth or less of the first one. The post-wash concentrate was added to the bulk solution. The second ultrafiltration system was then post-washed and the solution temperature was adjusted to 2 to 8°C.
- the protein concentration of the solution was adjusted to 20.4 ⁇ 0.4 % w/v with post-wash of the second smaller ultrafiltration system and/or with diafiltration buffer.
- the pH was adjusted to 4.4 to 4.9, if necessary,
- the formulated bulk solution was further sterilized by first filtering through a membrane filter with an absolute pore size of 0.2 micron or less, then was aseptically dispensed into final containers for proper sealing, with samples taken for testing.
- the final virus inactivation/removal step was performed by storing the sealed containers at 30 to 32 °C for 21 to 22 days.
- the resulting 20 % IG formulations were highly purified, isotonic liquid formulations of immunoglobulin (at least 95 % gamma globulin) formulated in 0.25 mM glycine at pH 4.4 to 4.9.
- the final preparations used in the studies were lots SC00107NG, SC00207NG, and SC00307NG.
- the preliminary final container release criteria were defined on the basis of the requirements from the U.S. and European authorities (FDA and EMEA) for subcutaneous human immunoglobulins, the final container specifications of the current product for subcutaneous administration (SUBCUVIA, licensed for subcutaneous administration in Europe) and the Gammagard Liquid specifications. Characterization of the relevant antibody spectrum of the three final containers was completed and compared to the results from the pre-clinical 10 % IG Triple Virally Reduced (TVR) lots. Table 5 compares the results of the antibody titers and the enrichment factors of the three pre-clinical SUBQ NG 20 % final containers and pre-clinical Gammagard Liquid lots. The results are in the same order of magnitude for both lots. Table 5. Comparison of SUBQ NG 20 % and 10 % IG TVR release data
- Table 6 shows the quality control data of the three SUBQ NG 20 % final containers. The removal of product and process related impurities is satisfactory, and all product-related preliminary specifications are met for all three lots.
- the 3 pre-clinical lots described above (SC00107NG, SC00207NG, SC00307NG) and one feasibility lot (IgGSC 62/1) were stored at 2 to 8 °C and 28 to 30 °C (feasibility lot only) for up to 18 months.
- High performance size exclusion chromatography was used to determine the molecular size distribution (MSD) and stability of the samples.
- MSD molecular size distribution
- the main stability indicating parameter is molecular size, and a change in size can be the result of degradation by denaturation, aggregation or fragmentation.
- the MSD of the pre-clinical final containers after storage at 2 to 8 °C up to 12 months are shown in Table 7.
- Table 8 gives the MSD of the feasibility lot, IgGSC 62/1, at 2 to 8 °C and 28 to 30 °C, after storage up to 18 months. The data confirmed that the product complies to the pre-defined specifications for the parameters investigated for up to 18 months storage at 2 to 8°C and 28 to 30 °C.
- Acceptance criteria was defined as: monomers and oligo-/dimers, > 90 %; aggregates, ⁇ 5 %, fragments, ⁇ 5 %.
- ACA titer was tested as described in the European Pharmacopoeia. Acceptable ACA titer was defined as less than 50 % CH50 units consumed per mg protein.
- Tables 9 and 10 show aggregate and fragment content as well as ACA titer after 3 months storage at 28 to 30 °C and 2 to 8 °C, respectively, for the standard formulations (pH 4.7, 0.25 M glycine; or pH 7.0, 22.5 g/L glycine, 3 g/L NaCl) at different protein concentrations.
- the data clearly show that the low pH formulation had lower aggregates and lower ACA titer after 3 months storage at 28 to 30 °C. All ACA titers of the pH 7.0 formulations were above the acceptance criterion defined for this test.
- the influence of different concentration procedures on MSD and ACA titer was investigated.
- the first procedure used a 0.5 m 2 polyethersulfone Millipore membrane with a molecular cut-off of 30K (standard screen), as described above, and the second procedure used a 0.5 m polyethersulfone Millipore membrane with an open screen, suitable for solutions with higher viscosity.
- the post- wash fractions were concentrated by a second ultra-/diafiltration device with a lower membrane surface (0.1 m 2 , open screen) in order to reduce yield losses.
- Tables 1 1 and 12 show MSD and ACA titer after 3 months storage at 28 to 30 °C or 2 to 8 °C, respectively, for the low pH (4.7) formulations at various protein concentrations. The data showed similar results after 3 months storage for both concentration modes. The values obtained at 2 to 8 °C confirmed the results obtained at 28 to 30 °C. The concentration method does not influence the stability of the product, though adequate post-wash can only be obtained with open-screen membranes. Table 11. Fragment, aggregate and AC A values after 3 months storage at 28 to 30°C at pH 4.7 with different protein concentration methods
- the HZ24 plasmid (set forth in SEQ ID NO: 52) was used to transfect Chinese Hamster Ovary (CHO cells) (see e.g. application Nos. 10,795,095, 1 1/065,716 and 11/238,171).
- the HZ24 plasmid vector for expression of soluble rHuPH20 contains a pCI vector backbone (Promega), DNA encoding amino acids 1-482 of human PH20 hyaluronidase (SEQ ID NO:49, an internal ribosomal entry site (IRES) from the ECMV virus (Clontech), and the mouse dihydrofolate reductase (DHFR) gene.
- the pCI vector backbone also includes DNA encoding the Beta-lactamase resistance gene (AmpR), an fl origin of replication, a Cytomegalovirus immediate-early enhancer/promoter region (CMV), a chimeric intron, and an SV40 late
- the DNA encoding the soluble rHuPH20 construct contains an Nhel site and a Kozak consensus sequence prior to the DNA encoding the methionine at amino acid position 1 of the native 35 amino acid signal sequence of human PH20, and a stop codon following the DNA encoding the tyrosine corresponding to amino acid position 482 of the human PH20 hyaluronidase (set forth in SEQ ID NO: l), followed by a BamHI restriction site.
- the construct pCI- PH20-IRES-DHFR-SV40pa results in a single mRNA species driven by the CMV promoter that encodes amino acids 1-482 of human PH20 (set forth in SEQ ID NO:3) and amino acids 1-186 of mouse dihydro folate reductase (set forth in SEQ ID NO:53), separated by the internal ribosomal entry site (IRES).
- the cells were removed from the cuvettes after electroporation and transferred into 5 mL of Modified CD-CHO media for DHFR(-) cells, supplemented with 4 mM glutamine and 18 mL/L Pluronic F68/L (Gibco), and allowed to grow in a well of a 6-well tissue culture plate without selection for 2 days at 37° C in 5% C0 2 in a humidified incubator.
- Cells from Transfection 2 were collected from the tissue culture well, counted and diluted to 1 x lO 4 to 2 * 10 4 viable cells per mL. A 0.1 mL aliquot of the cell suspension was transferred to each well of five, 96-well round bottom tissue culture plates. One hundred microliters of CD-CHO media (GIBCO) containing 4 mM GlutaMAXTM-l supplement (GIBCOTM, Invitrogen Corporation) and without hypoxanthine and thymidine supplements were added to the wells containing cells (final volume 0.2 mL).
- CD-CHO media containing 4 mM GlutaMAXTM-l supplement (GIBCOTM, Invitrogen Corporation) and without hypoxanthine and thymidine supplements were added to the wells containing cells (final volume 0.2 mL).
- Clones 3D3, 3E5, 2G8, 2D9, 1E1 1 , and 4D10 were plated into 96-well round bottom tissue culture plates using a two-dimensional infinite dilution strategy in which cells were diluted 1 :2 down the plate, and 1 :3 across the plate, starting at 5000 cells in the top left hand well.
- Diluted clones were grown in a background of 500 non-transfected DG44 CHO cells per well, to provide necessary growth factors for the initial days in culture.
- Ten plates were made per subclone, with 5 plates containing 50 nM methotrexate and 5 plates without methotrexate.
- Clone 3D3 produced 24 visual subclones (13 from the no methotrexate treatment, and 1 1 from the 50 nM methotrexate treatment).
- hyaluronidase activity was measured in the supernatants from 8 of the 24 subclones (>50 Units/mL), and these 8 subclones were expanded into T-25 tissue culture flasks.
- Clones isolated from the methotrexate treatment protocol were expanded in the presence of 50 nM methotrexate.
- Clone 3D35M was further expanded in 500 nM methotrexate giving rise to clones producing in excess of 1,000 Units/mL in shake flasks (clone 3D35M; or Genl 3D35M).
- a master cell bank (MCB) of the 3D35M cells was then prepared.
- a vial of 3D35M was thawed and expanded from shake flasks through 1 L spinner flasks in CD-CHO media (Invitrogen, Carlsbad Calif.) supplemented with 100 nM methotrexate and GlutaMAXTM-l (Invitrogen).
- Cells were transferred from spinner flasks to a 5 L bioreactor (Braun) at an inoculation density of 4 ⁇ 10 5 viable cells/mL. Parameters were: temperature setpoint: 37 °C; pH: 7.2 (starting setpoint); dissolved oxygen setpoint: 25 %; and air overlay: 0-100 cc/min.
- Feed #1 Medium CD CHO with 50 g/L glucose
- Feed #2 Medium CD CHO with 50 g/L glucose and 10 mM sodium butyrate
- This process resulted in a final productivity of 1600 Units/mL with a maximal cell density of 6 ⁇ 10 6 cells/mL.
- the addition of sodium butyrate was to dramatically enhance the production of soluble rHuPH20 in the final stages of production.
- the eluate was diluted with 2M ammonium sulfate to a final concentration of 500 mM ammonium sulfate and passed through a Phenyl Sepharose (low sub) column, followed by binding under the same conditions to a phenyl boronate resin.
- the soluble rHuPH20 was eluted from the Phenyl Sepharose resin in Hepes pH 6.9 after washing at pH 9.0 in 50 mM bicine without ammonium sulfate.
- the eluate was loaded onto a ceramic hydroxyapatite resin at pH 6.9 in 5 mM potassium phosphate and 1 mM CaCl 2 and eluted with 80 mM potassium phosphate, pH 7.4 with 0.1 mM CaCl 2 .
- the resultant purified soluble rHuPH20 possessed a specific activity in excess of 65,000 USP Units/mg protein by way of the microturbidity assay
- Example 4 using the USP reference standard.
- Purified soluble rHuPH20 eluted as a single peak from 24 to 26 minutes from a Pharmacia 5RPC styrene divinylbenzene column with a gradient between 0.1 % TFA/H 2 0 and 0.1 % TF A/90%
- a scaled-up process was used to separately purify soluble rHuPH20 from four different vials of 3D35M cell to produce 4 separate batches of soluble rHuPH20; HUA0406C, HUA0410C, HUA0415C and HUA0420C.
- Each vial was separately expanded and cultured through a 125 L bioreactor, then purified using column chromatography. Samples were taken throughout the process to assess such parameters as enzyme yield.
- the description of the process provided below sets forth representative specifications for such things as bioreactor starting and feed media volumes, transfer cell densities, and wash and elution volumes. The exact numbers vary slightly with each batch, and are detailed in Tables 15 to 22.
- the flask was incubated at 37°C, 7% C0 2 .
- the culture was expanded into a 250 mL spinner flask in 200 mL culture volume, and the flask was incubated at 37°C, 7% C0 2 .
- the culture was expanded into a 1 L spinner flask in 800 mL culture volume and incubated at 37°C, 7% C0 2 .
- the culture was expanded into a 6 L spinner flask in 5 L culture volume and incubated at 37°C, 7% C0 2 .
- the culture was expanded into a 36 L spinner flask in 20 L culture volume and incubated at 37°C, 7% C0 2 .
- a 125 L reactor was sterilized with steam at 121°C, 20 psi and 65 L of CD
- CHO media was added. Before use, the reactor was checked for contamination. When the cell density in the 36 L spinner flasks reached 1.8 -2.5 x 10 6 cells/mL, 20 L of cell culture was transferred from the 36 L spinner flasks to the 125 L bioreactor (Braun), resulting in a final volume of 85 L and a seeding density of approximately 4 x lO 5 cells/mL. Parameters were: temperature setpoint: 37°C; pH: 7.2; dissolved oxygen: 25% ⁇ 10%; impeller speed: 50 rpm; vessel pressure: 3 psi; air sparge: 1 L/ min.; air overlay: 1 L/min. The reactor was sampled daily for cell counts, pH verification, media analysis, protein production and retention.
- the reactor was harvested at 14 days, or when the viability of the cells dropped below 50%.
- the process resulted in production of soluble rHuPH20 with an enzymatic activity of 1600 Units/mL with a maximal cell density of 8 million cells/mL.
- the culture was sampled for mycoplasma, bioburden, endotoxin, and virus in vitro and in vivo, transmission electron microscopy (TEM) for viral particles, and enzyme activity.
- TEM transmission electron microscopy
- the 100 L bioreactor cell culture harvest was filtered through a series of disposable capsule filters having a polyethersulfone medium (Sartorius): first through a 8.0 ⁇ depth capsule, a 0.65 ⁇ depth capsule, a 0.22 ⁇ capsule, and finally through a 0.22 ⁇ Sartopore 2000 cm 2 filter and into a 100 L sterile storage bag.
- the culture was concentrated 10x using two TFF with Spiral Polyethersulfone 30 kDa MWCO filters (Millipore), followed by a 6x buffer exchange with 10 raM HEPES, 25 raM Na 2 S0 4 , pH 7.0, into a 0.22 ⁇ final filter into a 20 L sterile storage bag.
- Table 15 provides monitoring data related to the cell culture, harvest, concentration and buffer exchange steps.
- LAL endotoxin
- Phenyl Sepharose (Pharmacia) hydrophobic interaction chromatography was next performed.
- the protein was loaded onto the PS column at a flow rate of 100 cm/hr. 5 mM potassium phosphate, 0.5 M ammonium sulfate and 0.1 mM CaCl 2 , pH 7.0, was added at 100 cm/hr. The flow- through was passed through a 0.22 ⁇ final filter into a sterile bag.
- the protein was passed through the column at a flow rate of 100 cm/hr, and the column was washed with 5 mM potassium phosphate, 0.5 M ammonium sulfate, pH 7.0.
- the column was then washed with 20 mM bicine, 100 mM NaCl, pH 9.0, and the protein eluted with 50 mM Hepes, 100 mM NaCl, pH 6.9, through a sterile filter and into a 20 L sterile bag.
- the eluate was tested for bioburden, protein concentration and enzyme activity.
- HAP hydroxyapatite
- Bio-Rad Bio-Rad
- 5 mM potassium phosphate 100 mM NaCl, 0.1 mM CaCl 2 , pH 7.0.
- Wash samples were collected and tested for pH, conductivity and endotoxin (LAL assay).
- the aminophenyl boronate-purified protein was supplemented with potassium phosphate and CaCl 2 to yield final concentrations of 5 mM potassium phosphate and 0.1 mM CaCl 2 , then was loaded onto the HAP column at a flow rate of 100 cm/hr.
- the column was washed with 5 mM potassium phosphate, pH 7.0, 100 mM NaCl, 0.1 mM CaCl 2 , then 10 mM potassium phosphate, pH 7.0, 100 mM NaCl, 0.1 mM CaCl 2 pH.
- the protein was eluted with 70 mM potassium phosphate, pH 7.0, and filtered through a 0.22 ⁇ filter into a 5 L sterile storage bag. The eluate was tested for bioburden, protein concentration and enzyme activity.
- the HAP -purified protein was then pumped through a 20 nM viral removal filter via a pressure tank.
- the protein was added to the DV20 pressure tank and filter (Pall Corporation), passing through an Ultipor DV20 Filter with 20 nm pores (Pall Corporation) into a sterile 20 L storage bag.
- the filtrate was tested for protein concentration, enzyme activity, oligosaccharide, monosaccharide and sialic acid profiling, and process-related impurities.
- the protein in the filtrate was then concentrated to 1 mg/mL using a 10 kDa molecular weight cut off (MWCO) Sartocon Slice tangential flow filtration (TFF) system (Sartorius).
- MWCO molecular weight cut off
- FTFF Sartocon Slice tangential flow filtration
- the filter was first prepared by washing with a Hepes/saline solution (10 mM Hepes, 130 mM NaCl, pH 7.0) and the permeate was sampled for pH and conductivity. Following concentration, the concentrated protein was sampled and tested for protein concentration and enzyme activity. A 6x buffer exchange was performed on the concentrated protein into the final buffer: 10 mM Hepes, 130 mM NaCl, pH 7.0. The concentrated protein was passed though a 0.22 ⁇ filter into a 20 L sterile storage bag. The protein was sampled and tested for protein concentration, enzyme activity, free sulfhydryl groups, oligosaccharide profiling and osmolality.
- Tables 16 through 22 provide monitoring data related to each of the purification steps described above, for each 3D35M cell lot.
- the purified and concentrated soluble rHuPH20 protein was aseptically filled into sterile vials with 5 mL and 1 mL fill volumes.
- the protein was passed though a 0.22 ⁇ filter to an operator controlled pump that was used to fill the vials using a gravimetric readout.
- the vials were closed with stoppers and secured with crimped caps.
- the closed vials were visually inspected for foreign particles and then labeled. Following labeling, the vials were flash-frozen by submersion in liquid nitrogen for no longer than 1 minute and stored at ⁇ - 15 °C (-20 ⁇ 5 °C).
- Gen2 Cells Containing Soluble Human PH20 The Genl 3D35M cell line described above was adapted to higher methotrexate levels to produce generation 2 (Gen2) clones.
- 3D35M cells were seeded from established methotrexate-containing cultures into CD CHO medium containing 4mM GlutaMAXTM- 1 and 1.0 ⁇ methotrexate. The cells were adapted to a higher methotrexate level by growing and passaging them 9 times over a period of 46 days in a 37 °C, 7 % C0 2 humidified incubator. The amplified population of cells was cloned out by limiting dilution in 96-well tissue culture plates containing medium with 2.0 ⁇ methotrexate.
- 3E10B cells were grown in CD CHO medium containing 4 mM GlutaMAXTM-l and 2.0 ⁇ methotrexate for 20 passages.
- a master cell bank (MCB) of the 3E10B cell line was created and frozen and used for subsequent studies.
- Amplification of the cell line continued by culturing 3E10B cells in CD CHO medium containing 4 mM GlutaMAXTM-l and 4.0 ⁇ methotrexate. After the twelfth passage, cells were frozen in vials as a research cell bank (RCB). One vial of the RCB was thawed and cultured in medium containing 8.0 ⁇
- methotrexate After 5 days, the methotrexate concentration in the medium was increased to 16.0 ⁇ , then 20.0 ⁇ 18 days later.
- Cells from the eighth passage in medium containing 20.0 ⁇ methotrexate were cloned out by limiting dilution in 96-well tissue culture plates containing CD CHO medium containing 4 mM
- the resultant 2B2 cells are dihydrofolate reductase deficient (dhfr-) DG44 CHO cells that express soluble recombinant human PH20 (rHuPH20).
- the soluble rHuPH20 is present in 2B2 cells at a copy number of approximately 206 copies/cell.
- Southern blot analysis of Spe I-, Xba I- and BamH I/Hind Ill-digested genomic 2B2 cell DNA using a rHuPH20-specific probe revealed the following restriction digest profile: one major hybridizing band of -7.7 kb and four minor hybridizing bands (-13.9, -6.6, -5.7 and -4.6 kb) with DNA digested with Spe I; one major hybridizing band of -5.0 kb and two minor hybridizing bands (-13.9 and -6.5 kb) with DNA digested with Xba I; and one single hybridizing band of ⁇ 1.4 kb observed using 2B2 DNA digested with BamH I/Hind III.
- a vial of HZ24-2B2 was thawed and expanded from shake flasks through 36 L spinner flasks in CD-CHO media (Invitrogen, Carlsbad, CA) supplemented with 20 ⁇ methotrexate and GlutaMAXTM- 1 (Invitrogen). Briefly, the vial of cells was thawed in a 37 °C water bath, media was added and the cells were centrifuged. The cells were re-suspended in a 125 mL shake flask with 20 mL of fresh media and placed in a 37 °C, 7 % C0 2 incubator. The cells were expanded up to 40 mL in the 125 mL shake flask.
- the culture When the cell density reached greater than 1.5 x 10 6 cells/mL, the culture was expanded into a 125 mL spinner flask in a 100 mL culture volume. The flask was incubated at 37 °C, 7 % C0 2 . When the cell density reached greater than 1.5 x 10 6 cells/mL, the culture was expanded into a 250 mL spinner flask in 200 mL culture volume, and the flask was incubated at 37 °C, 7 % C0 2 . When the cell density reached greater than 1.5 x 10 6 cells/mL, the culture was expanded into a 1 L spinner flask in 800 mL culture volume and incubated at 37 °C, 7 % C0 2 .
- the culture When the cell density reached greater than 1.5 x 10 6 cells/mL the culture was expanded into a 6 L spinner flask in 5000 mL culture volume and incubated at 37 °C, 7 % C0 2 . When the cell density reached greater than 1.5 x 106 cells/mL the culture was expanded into a 36 L spinner flask in 32 L culture volume and incubated at 37 °C, 7 % C0 2 .
- a 400 L reactor was sterilized and 230 mL of CD CHO media was added.
- the reactor was checked for contamination. Approximately 30 L cells were transferred from the 36L spinner flasks to the 400 L bioreactor (Braun) at an inoculation density of 4.0 ⁇ 10 5 viable cells per mL and a total volume of 260L. Parameters were: temperature setpoint: 37°C; impeller speed 40-55 rpm; vessel pressure: 3 psi; air sparge: 0.5- 1.5 L/Min.; air overlay: 3 hi min. The reactor was sampled daily for cell counts, pH verification, media analysis, protein production and retention. Also, during the run nutrient feeds were added. At 120 hrs (day 5), 10.4 L of Feed #1 Medium (4* CD CHO + 33 g/L glucose + 160 mL/L
- GlutaMAXTM- 1 + 167 mL/L yeastolate + 0.92 g/L sodium butyrate was added, and culture temperature was changed to 36.5°C.
- 10.8 L of Feed #3 (l x CD CHO + 50 g/L glucose + 50 mL/L GlutaMAXTM-l + 250 mL/L yeastolate + 1.80 g/L sodium butyrate) was added, and culture temperature was changed to 36 °C.
- Feed #4 (l x CD CHO + 33 g/L glucose + 33 mL/L GlutaMAXTM- 1 + 250 mL/L yeastolate + 0.92 g/L sodium butyrate) was added, and culture temperature was changed to 35.5 °C. The addition of the feed media was observed to dramatically enhance the production of soluble rHuPH20 in the final stages of production.
- the reactor was harvested at 14 or 15 days or when the viability of the cells dropped below 40%. The process resulted in a final productivity of 17,000 Units/mL with a maximal cell density of 12 million cells/mL.
- the culture was sampled for mycoplasma, bioburden, endotoxin and viral in vitro and in vivo, transmission electron microscopy (TEM) and enzyme activity.
- TEM transmission electron microscopy
- the culture was pumped by a peristaltic pump through four Millistak filtration system modules (Millipore) in parallel, each containing a layer of diatomaceous earth graded to 4-8 ⁇ and a layer of diatomaceous earth graded to 1.4- 1.1 ⁇ , followed by a cellulose membrane, then through a second single Millistak filtration system (Millipore) containing a layer of diatomaceous earth graded to 0.4-0.11 ⁇ and a layer of diatomaceous earth graded to ⁇ 0.1 ⁇ , followed by a cellulose membrane, and then through a 0.22 ⁇ final filter into a sterile single use flexible bag with a 350 L capacity.
- Millistak filtration system modules Millistak filtration system modules
- the harvested cell culture fluid was supplemented with 10 mM EDTA and 10 mM Tris to a pH of 7.5.
- the culture was concentrated 10x with a tangential flow filtration (TFF) apparatus using four Sartoslice TFF 30 kDa molecular weight cut-off (MWCO) polyether sulfone (PES) filter (Sartorious), followed by a 10x buffer exchange with 10 mM Tris, 20mM Na 2 S0 4 , pH 7.5, into a 0.22 ⁇ final filter into a 50 L sterile storage bag.
- TFF tangential flow filtration
- MWCO molecular weight cut-off
- PES polyether sulfone
- the concentrated, diafiltered harvest was inactivated for virus. Prior to viral inactivation, a solution of 10% Triton X-100, 3% tri-n-butyl phosphate (TNBP) was prepared. The concentrated, diafiltered harvest was exposed to 1 % Triton X-100, 0.3% TNBP for 1 hour in a 36 L glass reaction vessel immediately prior to purification on the Q column.
- TNBP tri-n-butyl phosphate
- LAL endotoxin
- the protein was eluted with 10 mM Hepes, 400 mM NaCl, pH 7.0, into a 0.22 ⁇ final filter into sterile bag.
- the eluate sample was tested for bioburden, protein concentration and hyaluronidase activity. A280 absorbance readings were taken at the beginning and end of the exchange.
- Phenyl Sepharose (Pharmacia) hydrophobic interaction chromatography was next performed.
- the protein eluate from the Q Sepharose column was supplemented with 2M ammonium sulfate, 1 M potassium phosphate and 1 M CaCl 2 stock solutions to yield final concentrations of 5 mM, 0.5 M and 0.1 mM, respectively.
- the protein was loaded onto the PS column at a flow rate of 100 cm/hr and the column flow- through collected.
- the column was washed with 5 mM potassium phosphate, 0.5 M ammonium sulfate and 0.1 mM CaCl , pH 7.0, at 100 cm/hr and the wash was added to the collected flow-through. Combined with the column wash, the flow-through was passed through a 0.22 ⁇ final filter into a sterile bag. The flow-through was sampled for bioburden, protein concentration and enzyme activity.
- An aminophenyl boronate column (ProMetic) was prepared. The wash was collected and sampled for pH, conductivity and endotoxin (LAL assay). The column was equilibrated with 5 column volumes of 5 mM potassium phosphate, 0.5 M ammonium sulfate. The PS flow-through containing purified protein was loaded onto the aminophenyl boronate column at a flow rate of 100 cm/hr. The column was washed with 5 mM potassium phosphate, 0.5 M ammonium sulfate, pH 7.0. The column was washed with 20 mM bicine, 0.5 M ammonium sulfate, pH 9.0.
- the column was washed with 20 mM bicine, 100 mM NaCl, pH 9.0.
- the protein was eluted with 50 mM Hepes, 100 mM NaCl, pH 6.9, and passed through a sterile filter into a sterile bag.
- the eluted sample was tested for bioburden, protein concentration and enzyme activity.
- the hydroxyapatite (HAP) column (Bio-Rad) was prepared. The wash was collected and tested for pH, conductivity and endotoxin (LAL assay). The column was equilibrated with 5 mM potassium phosphate, 100 mM NaCl, 0.1 mM CaCl 2 , pH 7.0. The aminophenyl boronate-purified protein was supplemented to final concentrations of 5 mM potassium phosphate and 0.1 mM CaCl 2 and loaded onto the HAP column at a flow rate of 100 cm/hr. The column was washed with 5 mM potassium phosphate, pH 7.0, 100 mM NaCl, 0.1 mM CaCl 2 .
- the column was next washed with 10 mM potassium phosphate, pH 7.0, 100 mM NaCl, 0.1 mM CaCl 2 .
- the protein was eluted with 70 mM potassium phosphate, pH 7.0, and passed through a 0.22 ⁇ sterile filter into a sterile bag. The eluted sample was tested for bioburden, protein concentration and enzyme activity.
- the HAP -purified protein was then passed through a viral removal filter.
- the sterilized Viosart filter (Sartorius) was first prepared by washing with 2 L of 70 mM potassium phosphate, pH 7.0. Before use, the filtered buffer was sampled for pH and conductivity.
- the HAP -purified protein was pumped via a peristaltic pump through the 20 nM viral removal filter.
- the filtered protein in 70 mM potassium phosphate, pH 7.0 was passed through a 0.22 ⁇ final filter into a sterile bag.
- the viral filtered sample was tested for protein concentration, enzyme activity, oligosaccharide, monosaccharide and sialic acid profiling. The sample also was tested for process-related impurities.
- the protein in the filtrate was then concentrated to 10 mg/mL using a 10 kD molecular weight cut off (MWCO) Sartocon Slice tangential flow filtration (TFF) system (Sartorius).
- the filter was first prepared by washing with 10 mM histidine, 130 mM NaCl, pH 6.0, and the permeate was sampled for pH and conductivity. Following concentration, the concentrated protein was sampled and tested for protein concentration and enzyme activity. A 6x buffer exchange was performed on the concentrated protein into the final buffer: 10 mM histidine, 130 mM NaCl, pH 6.0. Following buffer exchange, the concentrated protein was passed though a 0.22 ⁇ filter into a 20 L sterile storage bag. The protein was sampled and tested for protein concentration, enzyme activity, free sulfhydryl groups, oligosaccharide profiling and osmolality.
- the sterile filtered bulk protein was then aseptically dispensed at 20 mL into 30 mL sterile Teflon vials (Nalgene). The vials were then flash frozen and stored at -20 ⁇ 5°C.
- Gen2 soluble rHuPH20 in a 300L bioreactor cell culture contained some changes in the protocols compared to the production and purification of Genl soluble rHuPH20 in a 100 L bioreactor cell culture.
- Table 23 sets forth exemplary differences, in addition to simple scale-up changes, between the methods.
- Feed #2 (CD CHO + 50 g/L Feed #2: 2x CD CHO + 33 glucose + 8 mM g/L glucose + 16 mM GlutaMAXTM-l + 1.1 g/L GlutaMAXTM-l+ 33.4 g/L sodium butyrate yeastolate + 0.92 g/L sodium butyrate
- Feed #3 CD CHO + 50 g/L Feed #3: 1 * CD CHO + 50 glucose + 8 mM g/L glucose + 10 mM GlutaMAXTM-l + 1.1 g/L GlutaMAXTM-l + 50 g/L sodium butyrate yeastolate + 1.80 g/L sodium butyrate
- 2 nd stage -single module containing a layer of diatomaceous earth graded to 0.4-0.1 1 ⁇ and a layer of diatomaceous earth graded to ⁇ 0.1 ⁇ , followed by a cellulose membrane.
- Harvested cell culture is supplemented with 10 mM EDTA, 10 mM Tris to a pH of 7.5
- Hyaluronidase activity of soluble recombinant human PH20 (rHuPH20) in samples such as cell cultures, purification fractions and purified solutions was determined using a turbidometric assay, which is based on the formation of an insoluble precipitate when hyaluronic acid binds with serum albumin.
- the activity is measured by incubating soluble rHuPH20 with sodium hyaluronate (hyaluronic acid) for a set period of time (10 minutes) and then precipitating the undigested sodium hyaluronate with the addition of acidified serum albumin.
- the turbidity of the resulting sample is measured at 640 nm after a 30 minute development period.
- the decrease in turbidity resulting from enzyme activity on the sodium hyaluronate substrate is a measure of the soluble rHuPH20 hyaluronidase activity.
- the method is performed using a calibration curve generated with dilutions of a soluble rHuPH20 assay working reference standard, and sample activity measurements are made relative to this calibration curve.
- EDS Enzyme Diluent Solution
- the Enzyme Diluent Solution was prepared by dissolving 33.0 ⁇ 0.05 mg of hydrolyzed gelatin in 25.0 mL of the 50 mM PIPES Reaction Buffer (140 mM NaCl, 50 mM PIPES, pH 5.5) and 25.0 mL of Sterile Water for Irrigation (SWFI), and diluting 0.2 mL of 25% human serum albumin solution into the mixture and vortexing for 30 seconds. This was performed within 2 hours of use and stored on ice until needed. The samples were diluted with EDS to an estimated 1 -2 U/mL.
- the maximum dilution per step did not exceed 1 : 100 and the initial sample size for the first dilution was not less than 20 ⁇ iL.
- the minimum sample volumes needed to perform the assay were: In-process Samples, FPLC Fractions: 80 ⁇ ; tissue culture supernatants:l mL; concentrated material: 80 ⁇ L; purified or final ttep material: 80 ⁇ iL.
- the dilutions were made in triplicate in a Low Protein Binding 96-well plate, and 30 of each dilution was transferred to Optilux black/clear bottom plates (BD Biosciences).
- Dilutions of known soluble rHuPH20 with a concentration of 2.5 U/mL were prepared in Enzyme Diluent Solution to generate a standard curve and added to the Optilux plate in triplicate.
- the dilutions included 0 U/mL, 0.25 U/mL, 0.5 U/mL, 1.0 U/mL, 1.5 U/mL, 2.0 U/mL, and 2.5 U/mL.
- "Reagent blank" wells that contained 60 ⁇ L of Enzyme Diluent Solution were included in the plate as a negative control.
- the plate was then covered and warmed on a heat block for 5 minutes at 37°C. The cover was removed and the plate was shaken for 10 seconds.
- the plate was returned to the heat block and the MULTIDROP 384 Liquid Handling Device was primed with the warm 0.25 mg/mL sodium hyaluronate solution (prepared by dissolving 100 mg of sodium hyaluronate (LifeCore).
- Biomedical in 20.0 mL of SWFI. This was mixed by gently rotating and/or rocking at 2-8°C for 2-4 hours, or until completely dissolved.
- the substrate solution was prepared by mixing 9 mL SWFI, 10 mL PIPES and 1 mL of 5 mg/mL hyaluronate).
- the reaction plate was transferred to the MULTIDROP 384 and the reaction was initiated by pressing the start key to dispense 30 ⁇ iL sodium hyaluronate substrate solution into each well. The plate was then removed from the MULTIDROP 384 and shaken for 10 seconds before being transferred to a heat block with the plate cover replaced. The plate was incubated at 37°C for 10 minutes.
- the MULTIDROP 384 was prepared to stop the reaction by priming the machine with serum working solution (25 mL of serum stock solution [1 volume of horse serum (Sigma) was diluted with 9 volumes of 500 mM acetate buffer solution, pH 4.3, and the pH was adjusted to 3.1 with hydrochloric acid] in 75 mL of 500 mM acetate buffer solution, pH 4.3) and changing the volume setting to 240 ⁇ .
- serum working solution 25 mL of serum stock solution [1 volume of horse serum (Sigma) was diluted with 9 volumes of 500 mM acetate buffer solution, pH 4.3, and the pH was adjusted to 3.1 with hydrochloric acid] in 75 mL of 500 mM acetate buffer solution, pH 4.3
- the plate was removed from the heat block and placed onto the MULTIDROP 384 and 240 ih of serum working solution was dispensed into the wells. The plate was removed and shaken on a plate reader for 10 seconds. After a further 15 minutes, the tur
- the rHuPH20 was in a solution at pH 6.5 containing 10 mg/mL in histidine/HCl and 130 raM sodium chloride (NaCl). As shown in Table 24, a total of 6 different formulations containing the following components were prepared: 25 mM Tris, pH 7.3, 100 ⁇ g/mL rHuPH20, 0.01% Tween 80 and NaCl (0, 50, 100, 150, 200 or 250 mM). The solutions were aliquotted into 2 mL type I glass vials with rubber stoppers and sealed with aluminum caps. One set of vials was stored at 40 °C for four days, and the other set was kept in the refrigerator at 2 to 8 °C.
- Table 25 shows the results of the study, including hyaluronidase activity (U/mL), % main peak area (percentage of the rHuPH20 that was contained in the main peak area) and % aggregate peak area (percentage of rHuPH20 that was contained in the peak area attributed to aggregates) for each formulation.
- the results indicate that the stability of rHuPH20, when incubated at 40 °C, was dependent on NaCl concentration: an increase in NaCl concentration led to increased enzymatic activity of rHuPH20.
- the samples stored at 2 to 8 °C retained similar levels of rHuPH20 enzymatic activity throughout the course of the study, regardless of the formulation. In the absence of NaCl at elevated temperatures (40°C), the entire enzymatic activity of rHuPH20 was lost.
- rHuPH20 was formulated as follows: 1 mL contained 1048071 units of recombinant human hyaluronidase from lot HUB0702CA (generated using Gen2 production described in Example 3) in 10 mM histidine and 130 mM sodium chloride (NaCl) at pH 6.0. rHuPH20 was diluted to 100000 U/mL using 10 mM histidine + 130 mM NaCl, pH 6.0, prior to mixing with immunoglobulin. For this purpose, 200 ⁇ _, of rHuPH20 stock solution was diluted with 1896 ⁇ ]_, of
- histidine/NaCl buffer pH 6.0.
- the pre-diluted rHuPH20 was added to different IG formulations formulated in 0.25 M glycine at pH 4.4 to 4.9 to give final concentrations of 100 U/mL or 300 U/mL in the solution.
- IG formulations formulated in 0.25 M glycine at pH 4.4 to 4.9 to give final concentrations of 100 U/mL or 300 U/mL in the solution.
- Table 27 shows hyaluronidase activity (U/mL) at 7 time points (0, 1 , 3, 6, 12, 24 and 36 weeks) for each co-formulation stored at 2 to 8 °C.
- Table 28 shows hyaluronidase activity (U/mL) at 6 time points (0, 1 , 3, 6, 12 and 2 weeks) for the co-formulations stored at 28 to 32 °C.
- a significant, steady loss of hyaluronidase activity was observed in the presence of 10% and 20% IG co-formulations stored at 28 to 32 °C after 24 weeks, indicating rHuPH20 instability.
- the 10 % IG co- formulations were stable after 9 months of storage at 2 to 8 °C, while the rHuPH20 activity slightly decreased in the 20 % IG co-formulations.
- the molecular size distribution of the IG in formulations containing 20 % IG was unchanged at both temperatures after 6 months of storage (Tables 29 and 30).
- Tables 31 and 32 show hyaluronidase activity (U/mL) at 7 time points (0, 1, 3, 6, 12, 18 and 24 weeks) for each co-formulation.
- the results show that the stability of rHuPH20 co-formulated with 10 % IG in the presence of 50, 100 or 150 mM NaCl remained unchanged for up to 24 weeks of storage at 2 to 8 °C, while the rHuPH20 stability improved for those samples stored at 28 to 32 °C.
- hyaluronidase activity rapidly decreased in the co-formulations having a NaCl concentration of 0 mM when stored at 28 to 32 °C.
- Tables 33 and 34 show that NaCl slightly enhanced IG dimerization ( ⁇ 350 kDa) at both storage temperatures and IG aggregation (>450 kDa) at 28 to 32 °C, and all values remain within the MSD specification limits (>90 % monomer/dimers, ⁇ 5 % aggregates, ⁇ 5% fragments) after 6 months.
- ACA titer is a specification indicator for intravenous (IV) administration and relevant for subcutaneous administration of the co-formulations.
- % IG with rHuPH20 stored at 28 to 32°C was investigated. Co-formulations of 300 U/mL rHuPH20 (lot HUB0702CA; generated using Gen2 production described in Example 1) in 10 % IG (lot LE12F047) and 300 U/mL rHuPH20 (lot HUB0702CA; generated using Gen2 production described in Example 1) in 20 % IG (lot HUB0702CA; generated using Gen2 production described in Example 1) in 20 % IG (lot
- SC00108NG were prepared as described in Example 6B above, using NaCl concentrations of 0, 5, 10, 20, 30, 40 and 50 mM.
- the resulting co- formulations of rHuPH20 and IG were formulated in 0.25 M glycine at pH 4.6 to 5.1 (as measured in the diluted solution) in the presence of varying amounts of NaCl.
- IG aggregation was determined by molecular size distribution by high performance size exclusion chromatography (HP-SEC) using a TSK G 3000 SW 600 x 7.5 mm column and a DMSO containing buffer system.
- Tables 35 and 36 show hyaluronidase activity (U/mL) at various time points
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Biomedical Technology (AREA)
- Dermatology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Neurology (AREA)
- Inorganic Chemistry (AREA)
- Biotechnology (AREA)
- Neurosurgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oncology (AREA)
- Physical Education & Sports Medicine (AREA)
- Rheumatology (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Transplantation (AREA)
Abstract
Description
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010296017A AU2010296017C1 (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
ES10760140.3T ES2578478T3 (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
DK10760140.3T DK2477603T3 (en) | 2009-09-17 | 2010-09-16 | STABLE CO-DEVELOPMENT OF hyaluronidase and Immunoglobulin, AND METHODS OF USE THEREOF |
KR1020127009795A KR101441768B1 (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
CN201080051813.3A CN102655853B (en) | 2009-09-17 | 2010-09-16 | The stable compound formulation of hyaluronidase and immunoglobulin and using method thereof |
EP10760140.3A EP2477603B1 (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
JP2012529751A JP5734985B2 (en) | 2009-09-17 | 2010-09-16 | Stable co-formulations of hyaluronidase and immunoglobulin and methods for their use |
CA2774053A CA2774053C (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
EA201200490A EA026112B1 (en) | 2009-09-17 | 2010-09-16 | Stable composition comprising hyaluronidase and immunoglobulin, and methods of use thereof |
IN3219DEN2012 IN2012DN03219A (en) | 2009-09-17 | 2010-09-16 | |
BR112012005890-8A BR112012005890B1 (en) | 2009-09-17 | 2010-09-16 | STABLE COFORMULATION OF HYALURONIDASE AND IMMUNOGLOBULIN AND METHODS OF USE THE SAME |
MX2012003282A MX2012003282A (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof. |
HK13100640.9A HK1173652A1 (en) | 2009-09-17 | 2013-01-15 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
HRP20160530TT HRP20160530T1 (en) | 2009-09-17 | 2016-05-18 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27704509P | 2009-09-17 | 2009-09-17 | |
US61/277,045 | 2009-09-17 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011034604A2 true WO2011034604A2 (en) | 2011-03-24 |
WO2011034604A3 WO2011034604A3 (en) | 2011-12-01 |
WO2011034604A9 WO2011034604A9 (en) | 2012-01-19 |
Family
ID=43034406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/002545 WO2011034604A2 (en) | 2009-09-17 | 2010-09-16 | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
Country Status (20)
Country | Link |
---|---|
US (1) | US9084743B2 (en) |
EP (1) | EP2477603B1 (en) |
JP (1) | JP5734985B2 (en) |
KR (1) | KR101441768B1 (en) |
CN (1) | CN102655853B (en) |
AU (1) | AU2010296017C1 (en) |
BR (1) | BR112012005890B1 (en) |
CA (1) | CA2774053C (en) |
CO (1) | CO6460736A2 (en) |
DK (1) | DK2477603T3 (en) |
EA (1) | EA026112B1 (en) |
ES (1) | ES2578478T3 (en) |
HK (1) | HK1173652A1 (en) |
HR (1) | HRP20160530T1 (en) |
HU (1) | HUE028832T2 (en) |
IN (1) | IN2012DN03219A (en) |
MX (1) | MX2012003282A (en) |
PL (1) | PL2477603T3 (en) |
PT (1) | PT2477603E (en) |
WO (1) | WO2011034604A2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014017513A1 (en) * | 2012-07-24 | 2014-01-30 | 日産化学工業株式会社 | Culture medium composition, and method for culturing cell or tissue using said composition |
WO2014182631A1 (en) | 2013-05-06 | 2014-11-13 | Baxter International Inc. | Treatment of alzheimer's disease subpopulations with pooled immunoglobulin g |
US9084743B2 (en) | 2009-09-17 | 2015-07-21 | Baxter International Inc. | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
US9664671B2 (en) | 2012-07-24 | 2017-05-30 | Nissan Chemical Industries, Ltd. | Culture medium composition and method of culturing cell or tissue using thereof |
RU2647835C2 (en) * | 2012-11-05 | 2018-03-19 | БиЭмАй КОРЕА КО., ЛТД | Stabilizer for hyaluronidase and liquid composition, which contains hyaluronidase |
US10017805B2 (en) | 2012-08-23 | 2018-07-10 | Nissan Chemical Industries, Ltd. | Enhancing ingredients for protein production from various cells |
EP2531218B1 (en) | 2010-02-04 | 2018-12-12 | CSL Behring AG | Immunoglobulin preparation |
US10301376B2 (en) | 2008-03-17 | 2019-05-28 | Baxalta GmbH | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase |
US20190233533A1 (en) * | 2016-06-28 | 2019-08-01 | Umc Utrecht Holding B.V. | Treatment Of IgE-Mediated Diseases With Antibodies That Specifically Bind CD38 |
US12144861B2 (en) | 2014-12-03 | 2024-11-19 | Csl Behring Ag | Pharmaceutical product with increased stability comprising immunoglobulins |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1603541B2 (en) | 2003-03-05 | 2013-01-23 | Halozyme, Inc. | SOLUBLE HYALURONIDASE GLYCOPROTEIN (sHASEGP), PROCESS FOR PREPARING THE SAME, USES AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEREOF |
US7871607B2 (en) | 2003-03-05 | 2011-01-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
ES2887219T3 (en) | 2008-03-06 | 2021-12-22 | Halozyme Inc | Large-scale production of soluble hyaluronidase |
NZ588638A (en) | 2008-04-14 | 2012-09-28 | Halozyme Inc | Screening method for identifying a subject for treatment with a modified hyaluronidase polypeptides |
WO2010034442A1 (en) * | 2008-09-23 | 2010-04-01 | F. Hoffmann-La Roche Ag | Purification of erythropoietin |
US10420923B1 (en) | 2010-08-10 | 2019-09-24 | Amiram Katz | Method and device for intrathecal administering of immunoglobulin |
US9993529B2 (en) | 2011-06-17 | 2018-06-12 | Halozyme, Inc. | Stable formulations of a hyaluronan-degrading enzyme |
JP2014518216A (en) | 2011-06-17 | 2014-07-28 | ハロザイム インコーポレイテッド | Stable formulation of hyaluronan degrading enzyme |
EA030440B1 (en) | 2011-10-24 | 2018-08-31 | Галозим, Инк. | Companion diagnostic for anti-hyaluronan agent therapy and methods of use thereof |
WO2013063292A1 (en) | 2011-10-25 | 2013-05-02 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
SI3130347T1 (en) | 2011-12-30 | 2020-02-28 | Halozyme, Inc. | Ph20 polypeptide variants, formulations and uses thereof |
WO2014049063A1 (en) * | 2012-09-26 | 2014-04-03 | Bone Therapeutics S.A. | Formulations involving solvent/detergent-treated plasma (s/d plasma) and uses thereof |
US9707153B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9700486B2 (en) * | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9839579B2 (en) | 2013-04-24 | 2017-12-12 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9700485B2 (en) | 2013-04-24 | 2017-07-11 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9713572B2 (en) | 2013-04-24 | 2017-07-25 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9849066B2 (en) | 2013-04-24 | 2017-12-26 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9707154B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9717648B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9717649B2 (en) | 2013-04-24 | 2017-08-01 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9707155B2 (en) | 2013-04-24 | 2017-07-18 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
US9603775B2 (en) | 2013-04-24 | 2017-03-28 | Corning Incorporated | Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients |
CA2923843C (en) | 2013-09-11 | 2022-07-12 | Arsia Therapeutics, Inc. | Liquid protein formulations containing water soluble organic dyes |
US9732154B2 (en) | 2014-02-28 | 2017-08-15 | Janssen Biotech, Inc. | Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia |
US9603927B2 (en) | 2014-02-28 | 2017-03-28 | Janssen Biotech, Inc. | Combination therapies with anti-CD38 antibodies |
US11357857B2 (en) | 2014-06-20 | 2022-06-14 | Comera Life Sciences, Inc. | Excipient compounds for protein processing |
US20160074515A1 (en) | 2014-06-20 | 2016-03-17 | Reform Biologics, Llc | Viscosity-reducing excipient compounds for protein formulations |
US10478498B2 (en) | 2014-06-20 | 2019-11-19 | Reform Biologics, Llc | Excipient compounds for biopolymer formulations |
EP3182997A4 (en) | 2014-08-22 | 2018-01-10 | Nectagen Inc. | Affinity proteins and uses thereof |
EP3191187B1 (en) | 2014-09-09 | 2021-07-28 | Janssen Biotech, Inc. | Combination therapies with anti-cd38 antibodies |
CN106999510B (en) | 2014-10-01 | 2021-04-30 | 伊格尔生物制品有限公司 | Polysaccharide and nucleic acid formulations containing viscosity reducing agents |
WO2016089960A1 (en) | 2014-12-04 | 2016-06-09 | Janssen Biotech, Inc. | Anti-cd38 antibodies for treatment of acute myeloid leukemia |
WO2016187546A1 (en) | 2015-05-20 | 2016-11-24 | Janssen Biotech, Inc. | Anti-cd38 antibodies for treatment of light chain amyloidosis and other cd38-positive hematological malignancies |
EP3310386B1 (en) | 2015-06-22 | 2021-07-21 | Janssen Biotech, Inc. | Combination therapies for heme malignancies with anti-cd38 antibodies and survivin inhibitors |
US20170044265A1 (en) | 2015-06-24 | 2017-02-16 | Janssen Biotech, Inc. | Immune Modulation and Treatment of Solid Tumors with Antibodies that Specifically Bind CD38 |
PL3827845T3 (en) | 2015-11-03 | 2022-07-11 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-cd38 antibodies and their uses |
US10781261B2 (en) | 2015-11-03 | 2020-09-22 | Janssen Biotech, Inc. | Subcutaneous formulations of anti-CD38 antibodies and their uses |
EP3448993A4 (en) * | 2016-04-29 | 2020-04-22 | Inovio Pharmaceuticals, Inc. | The in vivo use of chondroitinase and/or hyaluronidase to enhance delivery of an agent |
US20200055922A1 (en) * | 2017-04-21 | 2020-02-20 | Csl Behring Ag | Immunoglobulin products for use in the treatment of chronic inflammatory demyelinating polyneuropathy |
KR20200079293A (en) | 2017-10-31 | 2020-07-02 | 얀센 바이오테크 인코포레이티드 | How to treat high-risk multiple myeloma |
CN111936513A (en) * | 2018-01-31 | 2020-11-13 | 威斯塔解剖学和生物学研究所 | Nucleic acid antibody constructs for anti-respiratory syncytial virus |
CN111971387A (en) * | 2018-07-25 | 2020-11-20 | 阿特根公司 | Novel hyaluronidase mutant and pharmaceutical composition comprising the same |
JP2022516513A (en) * | 2018-12-31 | 2022-02-28 | ラニ セラピューティクス, エルエルシー | Therapeutic preparation for delivery to the lumen of the intestinal tract using a swallowable drug delivery device |
CN110728044B (en) * | 2019-09-30 | 2022-08-02 | 哈尔滨工程大学 | Integrated calculation method for gas pressure state in piston ring groove |
KR102265730B1 (en) * | 2020-11-06 | 2021-06-17 | 주식회사 본에스티스 | cosmetic composition for skin wrinkle improvement and whitening facial skin |
JP2024530152A (en) * | 2021-08-02 | 2024-08-16 | アルジェニクス ビーブイ | Subcutaneous unit dosage form |
JP2024535021A (en) * | 2021-09-14 | 2024-09-26 | 武田薬品工業株式会社 | Facilitated delivery of concentrated antibody formulations using hyaluronidase |
AU2022376750A1 (en) * | 2021-10-29 | 2024-05-16 | Alteogen Inc. | Pharmaceutical composition comprising human hyaluronidase ph20 and drug |
WO2023170680A1 (en) | 2022-03-08 | 2023-09-14 | Equashield Medical Ltd | Fluid transfer station in a robotic pharmaceutical preparation system |
CN115957332B (en) * | 2022-11-01 | 2023-10-10 | 北京华睿鼎信科技有限公司 | Hyaluronidase-stable breinox Long Nami crystal and preparation method and application thereof |
KR102554775B1 (en) * | 2023-02-07 | 2023-07-12 | 한국코러스 주식회사 | Hyaluronidase formulation and which contains stabilizer for hyaluronidase |
Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3869436A (en) | 1971-06-01 | 1975-03-04 | Statens Bakteriologiska Lab | Method for fractionating plasma proteins using peg and ion-exchangers |
US3966906A (en) | 1961-10-11 | 1976-06-29 | Behringwerke Aktiengesellschaft | Disaggregated gamma globulin and process for preparing it |
US4002531A (en) | 1976-01-22 | 1977-01-11 | Pierce Chemical Company | Modifying enzymes with polyethylene glycol and product produced thereby |
US4093606A (en) | 1975-02-18 | 1978-06-06 | Coval M L | Method of producing intravenously injectable gamma globulin and a gamma globulin suitable for carrying out the method |
US4124576A (en) | 1976-12-03 | 1978-11-07 | Coval M L | Method of producing intravenously injectable gamma globulin |
US4126605A (en) | 1975-12-29 | 1978-11-21 | Plasmesco Ag | Process of improving the compatibility of gamma globulins |
JPS5420124A (en) | 1977-07-14 | 1979-02-15 | Green Cross Corp:The | Preparation of gamma-globulin intravenous injection |
US4165370A (en) | 1976-05-21 | 1979-08-21 | Coval M L | Injectable gamma globulin |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4186192A (en) | 1978-12-18 | 1980-01-29 | Cutter Laboratories, Inc. | Stabilized immune serum globulin |
JPS5731623A (en) | 1980-07-30 | 1982-02-20 | Morishita Seiyaku Kk | Production of gamma-globulin for intravenous injection |
JPS57128635A (en) | 1981-01-30 | 1982-08-10 | Morishita Seiyaku Kk | Pharmaceutical preparation of gamma-globulin for venoclysis |
US4362661A (en) | 1979-08-09 | 1982-12-07 | Teijin Limited | Immunoglobulin composition having a high monomer content, and process for production thereof |
US4396608A (en) | 1981-08-24 | 1983-08-02 | Cutter Laboratories | Intravenously injectable immune serum globulin |
US4439421A (en) | 1982-08-30 | 1984-03-27 | Baxter Travenol Laboratories, Inc. | Stabilized gamma globulin concentrate |
US4499073A (en) | 1981-08-24 | 1985-02-12 | Cutter Laboratories, Inc. | Intravenously injectable immune serum globulin |
US4597966A (en) | 1985-01-09 | 1986-07-01 | Ortho Diagnostic Systems, Inc. | Histidine stabilized immunoglobulin and method of preparation |
EP0246579A2 (en) | 1986-05-19 | 1987-11-25 | Green Cross Corporation | Method of producing immunoglobulin preparations for intravenous injection |
EP0278422A2 (en) | 1987-02-06 | 1988-08-17 | Green Cross Corporation | y-Globulin injectable solutions |
US4952496A (en) | 1984-03-30 | 1990-08-28 | Associated Universities, Inc. | Cloning and expression of the gene for bacteriophage T7 RNA polymerase |
US5033252A (en) | 1987-12-23 | 1991-07-23 | Entravision, Inc. | Method of packaging and sterilizing a pharmaceutical product |
EP0440483A2 (en) | 1990-02-01 | 1991-08-07 | Baxter International Inc. | Process for purifying immune serum globulins |
US5052558A (en) | 1987-12-23 | 1991-10-01 | Entravision, Inc. | Packaged pharmaceutical product |
US5122373A (en) | 1983-03-16 | 1992-06-16 | Immuno Aktiengesellschaft | Immunoglobulin-g-containing fraction |
US5122614A (en) | 1989-04-19 | 1992-06-16 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
JPH04346934A (en) | 1991-05-24 | 1992-12-02 | Green Cross Corp:The | Liquid preparation of gamma-globulin |
US5180810A (en) | 1988-11-21 | 1993-01-19 | Sumitomo Chemical Co., Limited | Protein h capable of binding to igg |
US5183550A (en) | 1989-06-30 | 1993-02-02 | Dragerwerk Aktiengesellschaft | Measuring cell for electrochemically detecting a gas |
US5323907A (en) | 1992-06-23 | 1994-06-28 | Multi-Comp, Inc. | Child resistant package assembly for dispensing pharmaceutical medications |
US5324844A (en) | 1989-04-19 | 1994-06-28 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
WO1994028024A1 (en) | 1993-06-01 | 1994-12-08 | Enzon, Inc. | Carbohydrate-modified polymer conjugates with erythropoietic activity |
WO1994029334A1 (en) | 1993-06-14 | 1994-12-22 | Association Pour L'essor De La Transfusion Sanguine Dans La Region Du Nord | Immunoglobulin g concentrate for therapeutical use and method for producing same |
US5409990A (en) | 1991-01-25 | 1995-04-25 | Immuno Aktiengesellschaft | Complex containing coagulation factor IX |
US5446090A (en) | 1993-11-12 | 1995-08-29 | Shearwater Polymers, Inc. | Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US5643575A (en) | 1993-10-27 | 1997-07-01 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5672662A (en) | 1995-07-07 | 1997-09-30 | Shearwater Polymers, Inc. | Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications |
EP0822199A2 (en) | 1994-10-12 | 1998-02-04 | Amgen Inc. | N-terminally monopegylated polypeptides and process for their preparation. |
US5766581A (en) | 1994-03-31 | 1998-06-16 | Amgen Inc. | Method for treating mammals with monopegylated proteins that stimulates megakaryocyte growth and differentiation |
US5795569A (en) | 1994-03-31 | 1998-08-18 | Amgen Inc. | Mono-pegylated proteins that stimulate megakaryocyte growth and differentiation |
US5871736A (en) | 1994-09-08 | 1999-02-16 | Red Cross Foundation Central Laboratory Blood Transfusion Service Src | Liquid immunoglobulin formulations |
US5919455A (en) | 1993-10-27 | 1999-07-06 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5932462A (en) | 1995-01-10 | 1999-08-03 | Shearwater Polymers, Inc. | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US5945098A (en) | 1990-02-01 | 1999-08-31 | Baxter International Inc. | Stable intravenously-administrable immune globulin preparation |
US5985263A (en) | 1997-12-19 | 1999-11-16 | Enzon, Inc. | Substantially pure histidine-linked protein polymer conjugates |
US5990237A (en) | 1997-05-21 | 1999-11-23 | Shearwater Polymers, Inc. | Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines |
WO2000002017A2 (en) | 1998-07-03 | 2000-01-13 | Neles Field Controls Oy | Method and arrangement for measuring fluid |
EP1064951A2 (en) | 1999-07-02 | 2001-01-03 | F. Hoffmann-La Roche Ag | Erythropoietin derivatives |
US6214966B1 (en) | 1996-09-26 | 2001-04-10 | Shearwater Corporation | Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution |
US6258351B1 (en) | 1996-11-06 | 2001-07-10 | Shearwater Corporation | Delivery of poly(ethylene glycol)-modified molecules from degradable hydrogels |
WO2001076640A2 (en) | 2000-04-07 | 2001-10-18 | Amgen Inc. | Chemically modified novel erythropoietin stimulating protein compositions and methods |
US20010044526A1 (en) | 2000-02-22 | 2001-11-22 | Shearwater Corporation | N-maleimidyl polymer derivatives |
WO2001087925A2 (en) | 2000-05-16 | 2001-11-22 | Bolder Biotechnology, Inc. | Methods for refolding proteins containing free cysteine residues |
US20010046481A1 (en) | 1999-12-23 | 2001-11-29 | Shearwater Corporation | Hydrolytically degradable carbamate derivatives of poly(ethylene glycol) |
US6340742B1 (en) | 1999-07-02 | 2002-01-22 | Roche Diagnostics Gmbh | Erythropoietin conjugates |
US20020052430A1 (en) | 1998-03-12 | 2002-05-02 | Shearwater Corporation | Poly (ethylene glycol) derivatives with proximal reactive groups |
US6395880B1 (en) | 1997-09-19 | 2002-05-28 | Baxter Aktiengesellschaft | Method for purification of antithrombin III using an anion exchanger |
US20020072573A1 (en) | 1997-11-06 | 2002-06-13 | Shearwater Corporation | Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation |
WO2002049673A2 (en) | 2000-12-20 | 2002-06-27 | F. Hoffmann-La Roche Ag | Conjugates of erythropoietin (pep) with polyethylene glycol (peg) |
US6420339B1 (en) | 1998-10-14 | 2002-07-16 | Amgen Inc. | Site-directed dual pegylation of proteins for improved bioactivity and biocompatibility |
US6461802B1 (en) | 1999-08-02 | 2002-10-08 | Agfa-Gevaert | Adhesive layer for polyester film |
US20020156047A1 (en) | 2001-01-19 | 2002-10-24 | Shearwater Corporation | Multi-arm block copolymers as drug delivery vehicles |
US6495659B2 (en) | 1999-12-22 | 2002-12-17 | Shearwater Corporation | Sterically hindered poly(ethylene glycol) alkanoic acids and derivatives thereof |
US6571605B2 (en) | 2001-01-19 | 2003-06-03 | Larry Keith Johnson | Constant-head soil permeameter for determining the hydraulic conductivity of earthen materials |
US20030143596A1 (en) | 2001-11-07 | 2003-07-31 | Shearwater Corporation | Branched polymers and their conjugates |
US20030158333A1 (en) | 2001-10-09 | 2003-08-21 | Shearwater Corporation | Thioester-terminated water soluble polymers and method of modifying the N-terminus of a polypeptide therewith |
US20040235734A1 (en) | 2003-02-26 | 2004-11-25 | Bossard Mary J. | Polymer-factor VIII moiety conjugates |
US6828401B2 (en) | 2003-05-07 | 2004-12-07 | Sunbio Inc. | Preparation method of peg-maleimide derivatives |
US20050000360A1 (en) | 2002-04-15 | 2005-01-06 | John Mak | Configurations and method for improved gas removal |
US6858736B2 (en) | 2002-11-08 | 2005-02-22 | Sunbio, Inc. | Hexa-arm polyethylene glycol and its derivatives and the methods of preparation thereof |
US6875848B2 (en) | 2001-01-17 | 2005-04-05 | Probitas Pharma, S.A. | Process for the production of virus-inactivated human gammaglobulin G |
US20050114037A1 (en) | 2003-03-31 | 2005-05-26 | Xencor, Inc. | Methods for rational pegylation of proteins |
WO2005049078A2 (en) | 2003-11-18 | 2005-06-02 | Zlb Behring Ag | Immunoglobulin preparations having increased stability |
US20050260186A1 (en) | 2003-03-05 | 2005-11-24 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
US20060104968A1 (en) | 2003-03-05 | 2006-05-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases |
US7309810B2 (en) | 2002-10-29 | 2007-12-18 | Japan Science And Technology Agency | Nonhuman model animal suffering from Guillain-Barré syndrome and/or fisher syndrome |
WO2009117085A1 (en) | 2008-03-17 | 2009-09-24 | Baxter Healthcare, S.A. | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5420124B2 (en) | 1974-01-16 | 1979-07-20 | ||
JPS5731623B2 (en) | 1975-02-19 | 1982-07-06 | ||
US4374763A (en) | 1979-09-17 | 1983-02-22 | Morishita Pharmaceutical Co., Ltd. | Method for producing gamma-globulin for use in intravenous administration and method for producing a pharmaceutical preparation thereof |
JPH0669961B2 (en) | 1984-09-25 | 1994-09-07 | 株式会社ミドリ十字 | Immunoglobulin heat treatment method |
US6552170B1 (en) | 1990-04-06 | 2003-04-22 | Amgen Inc. | PEGylation reagents and compounds formed therewith |
US5721348A (en) | 1990-12-14 | 1998-02-24 | University Of Connecticut | DNA encoding PH-20 proteins |
CH684164A5 (en) | 1992-01-10 | 1994-07-29 | Rotkreuzstiftung Zentrallab | Immunoglobulin solution which can be administered intravenously |
DE4344824C1 (en) | 1993-12-28 | 1995-08-31 | Immuno Ag | Highly concentrated immunoglobulin preparation and process for its preparation |
US5747027A (en) | 1995-04-07 | 1998-05-05 | The Regents Of The University Of California | BH55 hyaluronidase |
US6828431B1 (en) | 1999-04-09 | 2004-12-07 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of breast cancer |
US5958750A (en) | 1996-07-03 | 1999-09-28 | Inctye Pharmaceuticals, Inc. | Human hyaluronidase |
US5665069A (en) | 1996-07-19 | 1997-09-09 | Cumer; Patricia Lynn | Pressure-directed peribulbar anesthesia delivery device |
US6123938A (en) | 1996-10-17 | 2000-09-26 | The Regents Of The University Of California | Human urinary hyaluronidase |
US6193963B1 (en) | 1996-10-17 | 2001-02-27 | The Regents Of The University Of California | Method of treating tumor-bearing patients with human plasma hyaluronidase |
JP4270590B2 (en) | 1997-03-19 | 2009-06-03 | 田辺三菱製薬株式会社 | Immunoglobulin preparation |
GB9705810D0 (en) | 1997-03-20 | 1997-05-07 | Common Services Agency | Intravenous immune globulin |
US20030212021A1 (en) | 2001-01-25 | 2003-11-13 | Frost Gregory I. | Myeloid colony stimulating factor and uses thereof |
WO2003045980A2 (en) | 2001-11-28 | 2003-06-05 | Neose Technologies, Inc. | Glycopeptide remodeling using amidases |
CA2508948A1 (en) | 2002-12-16 | 2004-07-15 | Halozyme, Inc. | Human chondroitinase glycoprotein (chasegp), process for preparing the same, and pharmaceutical compositions comprising thereof |
BRPI0316779B1 (en) | 2002-12-16 | 2020-04-28 | Genentech Inc | humanized antibody that binds human cd20, composition, manufactured article, apoptosis induction method, cd20 positive cancer treatment method, autoimmune disease treatment methods, isolated nucleic acids, expression vectors, host cells, method for producing a humanized 2h7 antibody, isolated polypeptide, liquid formulation, method of treating rheumatoid arthritis (ra) and humanized cd20 binding antibodies |
JP2004238392A (en) | 2003-01-14 | 2004-08-26 | Nipro Corp | Stabilized proteinic preparation |
SI2236154T1 (en) * | 2003-02-10 | 2018-08-31 | Biogen Ma Inc. | Immunoglobulin formulation and method of preparation thereof |
US20090123367A1 (en) | 2003-03-05 | 2009-05-14 | Delfmems | Soluble Glycosaminoglycanases and Methods of Preparing and Using Soluble Glycosaminoglycanases |
EP1603541B2 (en) | 2003-03-05 | 2013-01-23 | Halozyme, Inc. | SOLUBLE HYALURONIDASE GLYCOPROTEIN (sHASEGP), PROCESS FOR PREPARING THE SAME, USES AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEREOF |
JP4346934B2 (en) | 2003-03-25 | 2009-10-21 | 日本碍子株式会社 | Manufacturing method of ceramic structure |
CA2510040C (en) | 2003-05-23 | 2012-01-03 | Nektar Therapeutics Al, Corporation | Polymeric reagents and polymer-biomolecule conjugates comprising carbamate linkages |
US7572613B2 (en) | 2004-06-25 | 2009-08-11 | Klein Jeffrey A | Drug delivery system for accelerated subcutaneous absorption |
HUE052220T2 (en) | 2006-09-08 | 2021-04-28 | Abbvie Bahamas Ltd | Interleukin -13 binding proteins |
RU2471867C2 (en) | 2007-06-19 | 2013-01-10 | Тамара П. Уваркина | Hyaluronidase and method for using it |
ES2887219T3 (en) | 2008-03-06 | 2021-12-22 | Halozyme Inc | Large-scale production of soluble hyaluronidase |
WO2009128918A1 (en) | 2008-04-14 | 2009-10-22 | Halozyme, Inc. | Combination therapy using a soluble hyaluronidase and a bisphosphonate |
NZ588638A (en) | 2008-04-14 | 2012-09-28 | Halozyme Inc | Screening method for identifying a subject for treatment with a modified hyaluronidase polypeptides |
TWI394580B (en) | 2008-04-28 | 2013-05-01 | Halozyme Inc | Super fast-acting insulin compositions |
CA2746181C (en) | 2008-12-09 | 2016-03-15 | Halozyme, Inc. | Extended soluble ph20 polypeptides and uses thereof |
SG176256A1 (en) | 2009-05-27 | 2012-01-30 | Baxter Int | A method to produce a highly concentrated immunoglobulin preparation for subcutaneous use |
ES2578478T3 (en) | 2009-09-17 | 2016-07-27 | Baxalta Incorporated | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
AU2010202125B1 (en) | 2010-05-26 | 2010-09-02 | Takeda Pharmaceutical Company Limited | A method to produce an immunoglobulin preparation with improved yield |
US8796430B2 (en) | 2010-05-26 | 2014-08-05 | Baxter International Inc. | Method to produce an immunoglobulin preparation with improved yield |
EP2595624B1 (en) | 2010-07-20 | 2018-01-31 | Halozyme, Inc. | Methods of treatment or prevention of the adverse side-effects associated with administration of an anti-hyaluronan agent |
AR083035A1 (en) | 2010-09-17 | 2013-01-30 | Baxter Int | STABILIZATION OF IMMUNOGLOBULINS THROUGH A WATERY FORMULATION WITH HISTIDINE AT WEAK ACID pH NEUTRAL, WATER COMPOSITION OF IMMUNOGLOBULIN |
WO2012109387A1 (en) | 2011-02-08 | 2012-08-16 | Halozyme, Inc. | Composition and lipid formulation of a hyaluronan-degrading enzyme and the use thereof for treatment of benign prostatic hyperplasia |
US9993529B2 (en) | 2011-06-17 | 2018-06-12 | Halozyme, Inc. | Stable formulations of a hyaluronan-degrading enzyme |
SI3130347T1 (en) | 2011-12-30 | 2020-02-28 | Halozyme, Inc. | Ph20 polypeptide variants, formulations and uses thereof |
EA031986B1 (en) | 2012-04-04 | 2019-03-29 | Галозим, Инк. | Method and combination for treating solid tumor cancer and kit comprising the combination |
-
2010
- 2010-09-16 ES ES10760140.3T patent/ES2578478T3/en active Active
- 2010-09-16 WO PCT/US2010/002545 patent/WO2011034604A2/en active Application Filing
- 2010-09-16 CN CN201080051813.3A patent/CN102655853B/en active Active
- 2010-09-16 EA EA201200490A patent/EA026112B1/en unknown
- 2010-09-16 AU AU2010296017A patent/AU2010296017C1/en active Active
- 2010-09-16 CA CA2774053A patent/CA2774053C/en active Active
- 2010-09-16 MX MX2012003282A patent/MX2012003282A/en active IP Right Grant
- 2010-09-16 PL PL10760140.3T patent/PL2477603T3/en unknown
- 2010-09-16 HU HUE10760140A patent/HUE028832T2/en unknown
- 2010-09-16 US US12/807,991 patent/US9084743B2/en active Active
- 2010-09-16 IN IN3219DEN2012 patent/IN2012DN03219A/en unknown
- 2010-09-16 PT PT107601403T patent/PT2477603E/en unknown
- 2010-09-16 BR BR112012005890-8A patent/BR112012005890B1/en not_active IP Right Cessation
- 2010-09-16 EP EP10760140.3A patent/EP2477603B1/en active Active
- 2010-09-16 DK DK10760140.3T patent/DK2477603T3/en active
- 2010-09-16 JP JP2012529751A patent/JP5734985B2/en active Active
- 2010-09-16 KR KR1020127009795A patent/KR101441768B1/en active IP Right Grant
-
2012
- 2012-04-12 CO CO12060153A patent/CO6460736A2/en unknown
-
2013
- 2013-01-15 HK HK13100640.9A patent/HK1173652A1/en not_active IP Right Cessation
-
2016
- 2016-05-18 HR HRP20160530TT patent/HRP20160530T1/en unknown
Patent Citations (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3966906A (en) | 1961-10-11 | 1976-06-29 | Behringwerke Aktiengesellschaft | Disaggregated gamma globulin and process for preparing it |
US3869436A (en) | 1971-06-01 | 1975-03-04 | Statens Bakteriologiska Lab | Method for fractionating plasma proteins using peg and ion-exchangers |
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
US4093606A (en) | 1975-02-18 | 1978-06-06 | Coval M L | Method of producing intravenously injectable gamma globulin and a gamma globulin suitable for carrying out the method |
US4126605A (en) | 1975-12-29 | 1978-11-21 | Plasmesco Ag | Process of improving the compatibility of gamma globulins |
US4002531A (en) | 1976-01-22 | 1977-01-11 | Pierce Chemical Company | Modifying enzymes with polyethylene glycol and product produced thereby |
US4165370A (en) | 1976-05-21 | 1979-08-21 | Coval M L | Injectable gamma globulin |
US4124576A (en) | 1976-12-03 | 1978-11-07 | Coval M L | Method of producing intravenously injectable gamma globulin |
JPS5420124A (en) | 1977-07-14 | 1979-02-15 | Green Cross Corp:The | Preparation of gamma-globulin intravenous injection |
US4186192A (en) | 1978-12-18 | 1980-01-29 | Cutter Laboratories, Inc. | Stabilized immune serum globulin |
US4362661A (en) | 1979-08-09 | 1982-12-07 | Teijin Limited | Immunoglobulin composition having a high monomer content, and process for production thereof |
JPS5731623A (en) | 1980-07-30 | 1982-02-20 | Morishita Seiyaku Kk | Production of gamma-globulin for intravenous injection |
JPS57128635A (en) | 1981-01-30 | 1982-08-10 | Morishita Seiyaku Kk | Pharmaceutical preparation of gamma-globulin for venoclysis |
US4396608A (en) | 1981-08-24 | 1983-08-02 | Cutter Laboratories | Intravenously injectable immune serum globulin |
US4499073A (en) | 1981-08-24 | 1985-02-12 | Cutter Laboratories, Inc. | Intravenously injectable immune serum globulin |
US4439421A (en) | 1982-08-30 | 1984-03-27 | Baxter Travenol Laboratories, Inc. | Stabilized gamma globulin concentrate |
US5122373A (en) | 1983-03-16 | 1992-06-16 | Immuno Aktiengesellschaft | Immunoglobulin-g-containing fraction |
US4952496A (en) | 1984-03-30 | 1990-08-28 | Associated Universities, Inc. | Cloning and expression of the gene for bacteriophage T7 RNA polymerase |
US4597966A (en) | 1985-01-09 | 1986-07-01 | Ortho Diagnostic Systems, Inc. | Histidine stabilized immunoglobulin and method of preparation |
EP0246579A2 (en) | 1986-05-19 | 1987-11-25 | Green Cross Corporation | Method of producing immunoglobulin preparations for intravenous injection |
EP0278422A2 (en) | 1987-02-06 | 1988-08-17 | Green Cross Corporation | y-Globulin injectable solutions |
US5052558A (en) | 1987-12-23 | 1991-10-01 | Entravision, Inc. | Packaged pharmaceutical product |
US5033252A (en) | 1987-12-23 | 1991-07-23 | Entravision, Inc. | Method of packaging and sterilizing a pharmaceutical product |
US5180810A (en) | 1988-11-21 | 1993-01-19 | Sumitomo Chemical Co., Limited | Protein h capable of binding to igg |
US5324844A (en) | 1989-04-19 | 1994-06-28 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5122614A (en) | 1989-04-19 | 1992-06-16 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5612460A (en) | 1989-04-19 | 1997-03-18 | Enzon, Inc. | Active carbonates of polyalkylene oxides for modification of polypeptides |
US5808096A (en) | 1989-04-19 | 1998-09-15 | Enzon, Inc. | Process for preparing active carbonates of polyalkylene oxides for modification of polypeptides |
US5183550A (en) | 1989-06-30 | 1993-02-02 | Dragerwerk Aktiengesellschaft | Measuring cell for electrochemically detecting a gas |
US5177194A (en) | 1990-02-01 | 1993-01-05 | Baxter International, Inc. | Process for purifying immune serum globulins |
US5945098A (en) | 1990-02-01 | 1999-08-31 | Baxter International Inc. | Stable intravenously-administrable immune globulin preparation |
EP0440483A2 (en) | 1990-02-01 | 1991-08-07 | Baxter International Inc. | Process for purifying immune serum globulins |
US5409990A (en) | 1991-01-25 | 1995-04-25 | Immuno Aktiengesellschaft | Complex containing coagulation factor IX |
JPH04346934A (en) | 1991-05-24 | 1992-12-02 | Green Cross Corp:The | Liquid preparation of gamma-globulin |
US5323907A (en) | 1992-06-23 | 1994-06-28 | Multi-Comp, Inc. | Child resistant package assembly for dispensing pharmaceutical medications |
WO1994028024A1 (en) | 1993-06-01 | 1994-12-08 | Enzon, Inc. | Carbohydrate-modified polymer conjugates with erythropoietic activity |
WO1994029334A1 (en) | 1993-06-14 | 1994-12-22 | Association Pour L'essor De La Transfusion Sanguine Dans La Region Du Nord | Immunoglobulin g concentrate for therapeutical use and method for producing same |
US6113906A (en) | 1993-10-27 | 2000-09-05 | Enzon, Inc. | Water-soluble non-antigenic polymer linkable to biologically active material |
US5643575A (en) | 1993-10-27 | 1997-07-01 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5919455A (en) | 1993-10-27 | 1999-07-06 | Enzon, Inc. | Non-antigenic branched polymer conjugates |
US5446090A (en) | 1993-11-12 | 1995-08-29 | Shearwater Polymers, Inc. | Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US5900461A (en) | 1993-11-12 | 1999-05-04 | Shearwater Polymers, Inc. | Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US20050209416A1 (en) | 1993-11-12 | 2005-09-22 | Nektar Therapeutics Al, Corporation | Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
US5795569A (en) | 1994-03-31 | 1998-08-18 | Amgen Inc. | Mono-pegylated proteins that stimulate megakaryocyte growth and differentiation |
US5766581A (en) | 1994-03-31 | 1998-06-16 | Amgen Inc. | Method for treating mammals with monopegylated proteins that stimulates megakaryocyte growth and differentiation |
US5871736A (en) | 1994-09-08 | 1999-02-16 | Red Cross Foundation Central Laboratory Blood Transfusion Service Src | Liquid immunoglobulin formulations |
EP0822199A2 (en) | 1994-10-12 | 1998-02-04 | Amgen Inc. | N-terminally monopegylated polypeptides and process for their preparation. |
US5932462A (en) | 1995-01-10 | 1999-08-03 | Shearwater Polymers, Inc. | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US20030114647A1 (en) | 1995-01-10 | 2003-06-19 | Shearwater Corporation | Multi-armed, monofunctional, and hydrolytically stable derivatives of poly (ethylene glycol) and related polymers for modification of surfaces and molecules |
US5672662A (en) | 1995-07-07 | 1997-09-30 | Shearwater Polymers, Inc. | Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications |
US20050171328A1 (en) | 1996-09-26 | 2005-08-04 | Nektar Therapeutics Al, Corporation | Soluble, degradable poly(ethylene glycol) derivatives for conrollable release of bound molecules into solution |
US6214966B1 (en) | 1996-09-26 | 2001-04-10 | Shearwater Corporation | Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution |
US20010021763A1 (en) | 1996-09-26 | 2001-09-13 | Shearwater Corporation | Soluble, degradable poly (ethylene glycol) derivatives for controllable release of bound molecules into solution |
US20030220447A1 (en) | 1996-09-26 | 2003-11-27 | Shearwater Corporation | Soluble, degradable poly (ethylene glycol) derivatives for controllable release of bound molecules into solution |
US6258351B1 (en) | 1996-11-06 | 2001-07-10 | Shearwater Corporation | Delivery of poly(ethylene glycol)-modified molecules from degradable hydrogels |
US5990237A (en) | 1997-05-21 | 1999-11-23 | Shearwater Polymers, Inc. | Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines |
US6395880B1 (en) | 1997-09-19 | 2002-05-28 | Baxter Aktiengesellschaft | Method for purification of antithrombin III using an anion exchanger |
US6448369B1 (en) | 1997-11-06 | 2002-09-10 | Shearwater Corporation | Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation |
US20020072573A1 (en) | 1997-11-06 | 2002-06-13 | Shearwater Corporation | Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation |
US5985263A (en) | 1997-12-19 | 1999-11-16 | Enzon, Inc. | Substantially pure histidine-linked protein polymer conjugates |
US20020052430A1 (en) | 1998-03-12 | 2002-05-02 | Shearwater Corporation | Poly (ethylene glycol) derivatives with proximal reactive groups |
US6437025B1 (en) | 1998-03-12 | 2002-08-20 | Shearwater Corporation | Poly(ethylene glycol) derivatives with proximal reactive groups |
WO2000002017A2 (en) | 1998-07-03 | 2000-01-13 | Neles Field Controls Oy | Method and arrangement for measuring fluid |
US6420339B1 (en) | 1998-10-14 | 2002-07-16 | Amgen Inc. | Site-directed dual pegylation of proteins for improved bioactivity and biocompatibility |
US6340742B1 (en) | 1999-07-02 | 2002-01-22 | Roche Diagnostics Gmbh | Erythropoietin conjugates |
EP1064951A2 (en) | 1999-07-02 | 2001-01-03 | F. Hoffmann-La Roche Ag | Erythropoietin derivatives |
US6461802B1 (en) | 1999-08-02 | 2002-10-08 | Agfa-Gevaert | Adhesive layer for polyester film |
US6495659B2 (en) | 1999-12-22 | 2002-12-17 | Shearwater Corporation | Sterically hindered poly(ethylene glycol) alkanoic acids and derivatives thereof |
US6737505B2 (en) | 1999-12-22 | 2004-05-18 | Nektar Therapeutics Al, Corporation | Sterically hindered poly(ethylene glycol) alkanoic acids and derivatives thereof |
US20010046481A1 (en) | 1999-12-23 | 2001-11-29 | Shearwater Corporation | Hydrolytically degradable carbamate derivatives of poly(ethylene glycol) |
US6413507B1 (en) | 1999-12-23 | 2002-07-02 | Shearwater Corporation | Hydrolytically degradable carbamate derivatives of poly (ethylene glycol) |
US20040013637A1 (en) | 1999-12-23 | 2004-01-22 | Nektar Therapeutics Al, Corportion | Hydrolytically degradable carbamate derivatives of poly(ethylene glycol) |
US20010044526A1 (en) | 2000-02-22 | 2001-11-22 | Shearwater Corporation | N-maleimidyl polymer derivatives |
WO2001076640A2 (en) | 2000-04-07 | 2001-10-18 | Amgen Inc. | Chemically modified novel erythropoietin stimulating protein compositions and methods |
WO2001087925A2 (en) | 2000-05-16 | 2001-11-22 | Bolder Biotechnology, Inc. | Methods for refolding proteins containing free cysteine residues |
WO2002049673A2 (en) | 2000-12-20 | 2002-06-27 | F. Hoffmann-La Roche Ag | Conjugates of erythropoietin (pep) with polyethylene glycol (peg) |
US6875848B2 (en) | 2001-01-17 | 2005-04-05 | Probitas Pharma, S.A. | Process for the production of virus-inactivated human gammaglobulin G |
US20020156047A1 (en) | 2001-01-19 | 2002-10-24 | Shearwater Corporation | Multi-arm block copolymers as drug delivery vehicles |
US6571605B2 (en) | 2001-01-19 | 2003-06-03 | Larry Keith Johnson | Constant-head soil permeameter for determining the hydraulic conductivity of earthen materials |
US20030158333A1 (en) | 2001-10-09 | 2003-08-21 | Shearwater Corporation | Thioester-terminated water soluble polymers and method of modifying the N-terminus of a polypeptide therewith |
US20030143596A1 (en) | 2001-11-07 | 2003-07-31 | Shearwater Corporation | Branched polymers and their conjugates |
US20050000360A1 (en) | 2002-04-15 | 2005-01-06 | John Mak | Configurations and method for improved gas removal |
US7309810B2 (en) | 2002-10-29 | 2007-12-18 | Japan Science And Technology Agency | Nonhuman model animal suffering from Guillain-Barré syndrome and/or fisher syndrome |
US6858736B2 (en) | 2002-11-08 | 2005-02-22 | Sunbio, Inc. | Hexa-arm polyethylene glycol and its derivatives and the methods of preparation thereof |
US20040235734A1 (en) | 2003-02-26 | 2004-11-25 | Bossard Mary J. | Polymer-factor VIII moiety conjugates |
US20050260186A1 (en) | 2003-03-05 | 2005-11-24 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
US20060104968A1 (en) | 2003-03-05 | 2006-05-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases |
US20050114037A1 (en) | 2003-03-31 | 2005-05-26 | Xencor, Inc. | Methods for rational pegylation of proteins |
US6828401B2 (en) | 2003-05-07 | 2004-12-07 | Sunbio Inc. | Preparation method of peg-maleimide derivatives |
WO2005049078A2 (en) | 2003-11-18 | 2005-06-02 | Zlb Behring Ag | Immunoglobulin preparations having increased stability |
WO2009117085A1 (en) | 2008-03-17 | 2009-09-24 | Baxter Healthcare, S.A. | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase |
US20100074885A1 (en) | 2008-03-17 | 2010-03-25 | Richard Schiff | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase |
Non-Patent Citations (162)
Title |
---|
"European Pharmacopeia,2nd ed.", 1997 |
"Useful Proteins from Recombinant Bacteria", SCIENTIFIC AMERICAN, vol. 242, 1980, pages 79 - 94 |
ADAMS ET AL., NATURE, vol. 318, 1985, pages 533 - 538 |
ALEXANDER ET AL., MOL. CELL BIOL., vol. 7, 1987, pages 1436 - 1444 |
ANSEL: "Ansel Introduction to Pharmaceutical Dosage Forms, Fourth Edition,", 1985, pages: 126 |
ARMING ET AL., EUR. J. BIOCHEM., vol. 247, 1997, pages 810 - 814 |
ATSCHUL, S.F. ET AL., J MOLEC BIOL, vol. 215, 1990, pages 403 |
BARANDERN ET AL., VOX SANG., vol. 7, 1962, pages 157 - 74 |
BENHAR ET AL., J. BIOL. CHEM., vol. 269, 1994, pages 13398 - 404 |
BERGER, IMMUNOL. ALLERGY CLIN. NORTH AM., vol. 28, no. 2, 2008, pages 413 - 438 |
BERNOIST; CHAMBON, NATURE, vol. 290, 1981, pages 304 - 310 |
BIANCHI ET AL., ANAL. BIOCHEM., vol. 237, 1996, pages 239 - 244 |
BIOCHEM., vol. 11, 1972, pages 1726 |
BORDIER ET AL., J. BIOL. CHEM., vol. 256, 1981, pages 1604 - 7 |
BRINSTER ET AL., NATURE, vol. 296, 1982, pages 39 - 42 |
BRUMEANU ET AL., J IMMUNOL., vol. 154, 1995, pages 3088 - 95 |
BRUMEANU ET AL., JLMMUNOL., vol. 154, 1995, pages 3088 - 95 |
BUFFARD ET AL., VIROLOGY, vol. 209, 1995, pages 52 - 59 |
CALICETI ET AL., ADV. DRUG DELIV. REV., vol. 55, no. 10, 2003, pages 1261 - 77 |
CARILLO ET AL., SIAMJAPPLIED MATH, vol. 48, 1988, pages 1073 |
CARILLO, H.; LIPTON, D., SIAMJ APPLIED MATH, vol. 48, 1988, pages 1073 |
CARILLO. ET AL., SIAM J APPLIED MATH, vol. 48, 1988, pages 1073 |
CHAPEL ET AL., LANCET, vol. 343, 1994, pages 1059 - 1063 |
CHAPMAN ET AL., NATURE BIOTECH., vol. 17, 1999, pages 780 - 783 |
CHENG ET AL., PHARRRI. RES., vol. 20, no. 9, 2003, pages 1444 - 51 |
CHO ET AL., J VIROL. METH., vol. 65, 1997, pages 201 - 207 |
CHRISTADOSS, CLIN. IMMUNOL., vol. 94, 2000, pages 75 - 87 |
COHN ET AL., J AM. CHEM. SOC., vol. 68, 1946, pages 459 - 467 |
COHN ET AL., J AM. CHEM. SOC., vol. 68, 1946, pages 459 - 75 |
COHN ET AL., J. AM. CHEM. SOC., vol. 68, 1946, pages 459 - 467 |
COHN ET AL., J. AM. CHEM. SOC., vol. 68, 1946, pages 459 - 75 |
CZITROM ET AL., J IMMUNOL, vol. 134, 1985, pages 2276 - 2280 |
DALAKAS ET AL., N. ENGL. J. MED., vol. 329, no. 27, 1993, pages 1993 - 2000 |
DALAKAS ET AL., NEUROLOGY, vol. 56, no. 3, 2001, pages 323 - 7 |
DALAKAS, N. ENGL. J. MED., vol. 345, no. 26, 2001, pages 1870 - 6 |
DALAKAS, PHARMACOL. THER., vol. 102, no. 3, 2004, pages 177 - 93 |
DANILKOVITCH-MIAGKOVA, PROC NATL ACAD SCI USA., vol. 100, no. 8, 2003, pages 4580 - 5 |
DEBOER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 21 - 25 |
DELPECH ET AL., ANAL. BIOCHEM., vol. 229, 1995, pages 35 - 41 |
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, no. I, 1984, pages 387 |
DODEL ET AL., J. NEUROL. NEUROSURG. PSYCHIATRY, vol. 75, 2004, pages 1472 - 4 |
D'SOUZA ET AL., J GEN. VIROL., vol. 76, 1995, pages 1729 - 1736 |
E. A. KABAT AND M. M. MEYER, THOMAS, SPRINGFIELD, III.,: "Experimental Immunochemistry", 1961, article MAYER, M. M.,: "Quantitative C' Fixation Analysis, Complement and Complement Fixation", pages: 214-216 - 227-228 |
ELLMEIER ET AL., J EXP MED., vol. 192, 2000, pages 1611 - 1624 |
FELIX ET AL., INT. J. PEPTIDE RES., vol. 46, 1995, pages 253 - 64 |
FERNANDES; LUNDBLAD, VOX SANG, vol. 39, 1980, pages 101 - 112 |
FILOCAMO ET AL., J VIROLOGY, vol. 71, 1997, pages 1417 - 1427 |
FROST ET AL., ANAL. BIOCHEMISTRY, vol. 251, 1997, pages 263 - 269 |
FROST ET AL., BIOCHEM BIOPHYS RES COMMUN., vol. 236, no. 1, 1997, pages 10 - 5 |
FROST GI, EXPERT OPIN. DRUG. DELIV., vol. 4, 2007, pages 427 - 440 |
FROST; STERN, ANAL. BIOCHEM., vol. 251, 1997, pages 263 - 269 |
GARDER ET AL., NUCLEIC ACIDS RES., vol. 9, 1981, pages 2871 |
GARDULF ET AL., CLIN. EXP. IMMUNOL., vol. 92, 1993, pages 200 - 4 |
GARDULF ET AL., CURR. OPIN. ALLERGY CLIN. IMMUNOL., vol. 6, 2006, pages 434 - 42 |
GARDULF ET AL., J. ADV. NURS., vol. 21, 1995, pages 917 - 27 |
GARDULF ET AL., J. CLIN. IMMUNOL., vol. 26, 2006, pages 177 - 85 |
GARDULF ET AL., LANCET, vol. 338, 1991, pages 162 - 6 |
GODEAU ET AL., BLOOD, vol. 82, no. S, 1993, pages 1415 - 21 |
GODEAU, BR. I HAEMATOL., vol. 107, no. 4, 1999, pages 716 - 9 |
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745 |
GRIBSKOV, M. AND DEVEREUX, J.: "Sequence Analysis Primer", 1991, M STOCKTON PRESS |
GRIFFIN, A.M., AND GRIFFIN, H.G.,: "Computer Analysis of Sequence Data", 1994, HUMANA PRESS |
GRIFFITHS ET AL., BLOOD, vol. 73, 1989, pages 366 - 368 |
GROSSCHEDL ET AL., CELL, vol. 38, 1984, pages 647 - 658 |
HAHM ET AL., VIROLOGY, vol. 226, 1996, pages 318 - 326 |
HAMAMOTO ET AL., VOX SANG., vol. 56, 1989, pages 230 - 236 |
HAMATAKE ET AL., INTERVIROLOGY, vol. 39, 1996, pages 249 - 258 |
HAMMER ET AL., SCIENCE, vol. 235, 1987, pages 53 - 58 |
HANAHAN ET AL., NATURE, vol. 315, 1985, pages 115 - 122 |
HANSEN ET AL., BLOOD, vol. 100, 2002, pages 2087 - 2093 |
HARLOW; LANE: "Antibodies, A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY PRESS |
HARLOW; LANE: "Using Antibodies", 1999, COLD SPRING HARBOR LABORATORY PRESS |
HARRIS AND ZALIPSKY, S: "ACS Symposium Series 680", 1997, article "Poly(ethylene glycol), Chemistry and Biological Applications" |
HARRIS, ADV. DRUG DELIV. REV., vol. 54, 2002, pages 459 - 476 |
HARRIS, NATURE REVIEWS, vol. 2, 2003, pages 215 |
HEINJE, G.: "Sequence Analysis in Molecular Biology", 1987, ACADEMIC PRESS |
HERRARA-ESTRELLA ET AL., NATURE, vol. 303, 1984, pages 209 - 213 |
HERRERA-ESTRELLA ET AL., NATURE, vol. 310, 1984, pages 115 - 120 |
HIEMSTRA ET AL., JLAB CLIN MED, vol. 123, 1994, pages 241 - 6 |
HOROWITZ ET AL., BLOOD COAGUL. FIBRIN., vol. S, no. 3, 1994, pages 21 - 528 |
ITO ET AL., J. GEN. VIROL., vol. 77, 1996, pages 1043 - 1054 |
J. BIOL. CHEM., vol. 243, 1968, pages 3557 - 3559 |
J.M. CURLING: "Prothrombin complex: Brummelhuis in Methods of Plasma Protein Fractionation", 1980, ACADEMIC PRESS |
JAY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 78, 1981, pages 5543 |
JONES, A., ADV. DRUG DELIVERY REV., vol. 10, 1993, pages 29 - 90 |
KELSEY ET AL., GENES AND DEVEL., vol. 1, 1987, pages 161 - 171 |
KEMPF ET AL., TRANSFUSION, vol. 31, 1991, pages 423 - 427 |
KIM ET AL., ANNALS NYACAD SCI, vol. 841, 1998, pages 670 - 676 |
KOBLET ET AL., VOX SANG., vol. 13, 1967, pages 93 - 102 |
KOLARICH ET AL., TRANSFUSION, vol. 46, 2006, pages 1959 - 1977 |
KOLARICH, TRANSFUSION, vol. 46, 2006, pages 1959 - 1977 |
KOLLIAS ET AL., CELL, vol. 46, 1986, pages 89 - 94 |
KREIL ET AL., TRANSFUSION, vol. 43, 2003, pages 1023 - 1038 |
KRUMLAUF ET AL., MOL. CELL. BIOL., vol. 5, 1985, pages 1639 - 1648 |
KUMAR ET AL., BIOCHEM. MOL. BIOL. INT., vol. 4, 1998, pages 59 - 517 |
LALANCETTE ET AL., BIOL REPROD., vol. 65, no. 2, 2001, pages 628 - 36 |
LEDER ET AL., CELL, vol. 45, 1986, pages 485 - 495 |
LESK, A.M.,: "Computational Molecular Biology", 1988, OXFORD UNIVERSITY PRESS |
LOUIE ET AL., BIOLOGICALS, vol. 22, 1994, pages 13 - 19 |
LU ET AL., PROC. NATL. ACAD. SCI (USA), vol. 93, 1996, pages 1412 - 1417 |
LU; FELIX, INT. J PEPTIDE PROTEIN RES., vol. 43, 1994, pages 127 - 138 |
LU; FELIX, INT. J. PEPTIDE PROTEIN RES., vol. 43, 1994, pages 127 - 138 |
LU; FELIX, PEPTIDE RES., vol. 6, 1993, pages 142 - 6 |
MACDONALD, HEPATOLOGY, vol. 7, 1987, pages 425 - 515 |
MAGRAM ET AL., NATURE, vol. 315, 1985, pages 338 - 340 |
MARCUS, D. M., J. IMMUNOL., vol. 84, 1960, pages 273 - 284 |
MARTIN J. BISHOP,: "Guide to Huge Computers", 1994, ACADEMIC PRESS |
MASON ET AL., SCIENCE, vol. 234, 1986, pages 1372 - 1378 |
MEHVAR ET AL., J. PHARM. PHARMACEUT. SCI., vol. 3, no. 1, 2000, pages 125 - 136 |
MIZUTANI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 212, 1995, pages 906 - 911 |
MIZUTANI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 227, 1996, pages 822 - 826 |
MIZUTANI ET AL., J. VIROL., vol. 70, 1996, pages 7219 - 7223 |
MOLINEUX, PHARMACOTHERAPY, vol. 23, 2003, pages 3S - 8S |
MONFARDINI ET AL., BIOCONJUGATE CHEM., vol. 6, 1995, pages 62 - 69 |
NEEDLEMAN ET AL., J MOL. BIOL., vol. 48, 1970, pages 443 |
OCHS ET AL., J. CLIN. IMMUNOL., vol. 26, 2006, pages 265 - 73 |
OHNO, DRUG DISCOVERY TODAY: DISEASE MODELS, vol. 3, 2006, pages 83 - 89 |
OMITZ ET AL., COLD SPRING HARBOR SYMP. QUANT. BIOL., vol. 50, 1986, pages 399 - 409 |
ONCLEY ET AL., J. AM. CHEM. SOC., vol. 71, 1949, pages 541 - 50 |
OSTRESH ET AL., BIOPOLYMERS, vol. 34, 1994, pages 1681 |
OYAIZU ET AL., JEXP MED, 1988, pages 2017 - 2022 |
PALMER, D. F.; WHALEY, S. D. ET AL.: "Manual of clinical Laboratory Immunology", 1986, AMERICAN SOCIETY FOR MICROBIOLOGY, article "Complement Fixation Test", pages: 57 - 66 |
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 |
PHAM ET AL., BIOTECHNOL. BIOENG., vol. 84, 2003, pages 332 - 42 |
PINCKERT ET AL., GENES AND DEVEL., vol. 1, 1987, pages 268 - 276 |
POLSLER ET AL., VOX SANG., vol. 94, 2008, pages 184 - 192 |
POLSON E, BIOCHIM. BIOPHYS. ACTA, vol. 82, 1964, pages 463 - 475 |
READHEAD ET AL., CELL, vol. 48, 1987, pages 703 - 712 |
RELKIN ET AL., NEUROBIOL AGING, 2008 |
ROBERTS ET AL., ADVANCED DRUG DELIVERY REVIEW, vol. 54, 2002, pages 459 - 476 |
SATO, ADV. DRUG DELIV. REV., vol. 54, 2002, pages 487 - 504 |
SCHAIK ET AL., LANCET NEUROL., vol. 1, 2002, pages 497 - 498 |
SCHIFF ET AL., J CLIN. IMMUNOL., vol. 6, 1986, pages 256 - 64 |
SCHWARTZ AND DAYHOFF,: "ATLAS OF PROTEIN SEQUENCE AND STR UCTURE", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358 |
SHANI, NATURE, vol. 314, 1985, pages 283 - 286 |
SHAPIRO ET AL., CANCER, vol. 95, 2002, pages 2032 - 2037 |
SHIMIZU ET AL., J. VIROL., vol. 68, 1994, pages 8406 - 8408 |
SMITH, D.W.,: "Biocomputing: Informatics and Genome Projects", 1993, ACADEMIC PRESS |
SMITH; WATERMAN, ADV. APPL. MATH., vol. 2, 1981, pages 482 |
SOLOMON ET AL., CURR. OPIN. MOL. THER., vol. 9, 2007, pages 79 - 85 |
SOMMER ET AL., LANCET, vol. 365, 2005, pages 1406 - 1411 |
STEINKUHLER ET AL., BIOCHEM., vol. 37, 1998, pages 8899 - 8905 |
STRONGWATER ET AL., ARTHRITIS RHEUM., vol. 27, 1984, pages 433 - 42 |
SUDO ET AL., ANTIVIRAL RES., vol. 32, 1996, pages 9 - 18 |
SUPERSAXO ET AL., PHARM. RES., vol. 7, 1990, pages 167 - 9 |
SWIFT ET AL., CELL, vol. 38, 1984, pages 639 - 646 |
TAKAHASHI ET AL., ANAL. BIOCHEM., vol. 322, 2003, pages 257 - 263 |
TAKESHITA ET AL., ANAL. BIOCHEM., vol. 247, 1997, pages 242 - 246 |
TALIANI ET AL., ANAL. BIOCHEM., vol. 240, 1996, pages 60 - 67 |
TESCHNER ET AL., VOX SANG., vol. 92, 2007, pages 42 - 55 |
TESCHNER, VOX SANG., vol. 92, 2007, pages 42 - 55 |
TREBST ET AL., EUR JNEUROLOGY, vol. 13, no. 12, 2006, pages 1359 - 63 |
TSUBERY, JBIOL. CHEM, vol. 279, no. 37, 2004, pages 38118 - 24 |
VERONESE ET AL., BIOORG. MED. CHEM. LETT., vol. 12, 2002, pages 177 - 180 |
VERONESE ET AL., J. BIOACTIVE COMPATIBLE POLYMERS, vol. 12, 1997, pages 197 - 207 |
VINCENT LEE: "Peptide and Protein Drug Delivery", 1991, MARCEL DEKKER, INC., pages: 247 - 301 |
WAGNER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 78, 1981, pages 1441 - 1445 |
WALTER, J. NEUROL., vol. 247, no. 1, 2000, pages 22 - 8 |
WANG ET AL., J. OF PARENTERAL SCIENCE & TECHNOLOGY, vol. 42, 1988, pages S4 - S26 |
WATSON ET AL.: "Molecular Biology of the Gene, 4th Edition", 1987, THE BENJAMIN/CUMMINGS PUB. CO., pages: 224 |
YAMAMOTO ET AL., CELL, vol. 22, 1980, pages 787 - 797 |
YUASA ET AL., J. GEN. VIROL., vol. 72, 1991, pages 2021 - 2024 |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE49967E1 (en) | 2008-03-17 | 2024-05-14 | Takeda Pharmaceutical Company Limited | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase |
US10301376B2 (en) | 2008-03-17 | 2019-05-28 | Baxalta GmbH | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase |
US9084743B2 (en) | 2009-09-17 | 2015-07-21 | Baxter International Inc. | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof |
EP2531218B1 (en) | 2010-02-04 | 2018-12-12 | CSL Behring AG | Immunoglobulin preparation |
US9664671B2 (en) | 2012-07-24 | 2017-05-30 | Nissan Chemical Industries, Ltd. | Culture medium composition and method of culturing cell or tissue using thereof |
US10590380B2 (en) | 2012-07-24 | 2020-03-17 | Nissan Chemical Industries, Ltd. | Culture medium composition and method of culturing cell or tissue using thereof |
WO2014017513A1 (en) * | 2012-07-24 | 2014-01-30 | 日産化学工業株式会社 | Culture medium composition, and method for culturing cell or tissue using said composition |
JP7319638B2 (en) | 2012-07-24 | 2023-08-02 | 日産化学株式会社 | Medium composition and method for culturing cells or tissues using the composition |
JP2018042571A (en) * | 2012-07-24 | 2018-03-22 | 日産化学工業株式会社 | Culture medium composition and culturing method of cells or tissue using said composition |
JP2022132422A (en) * | 2012-07-24 | 2022-09-08 | 日産化学株式会社 | Culture medium composition and culturing method of cells or tissue using said composition |
CN108796028A (en) * | 2012-07-24 | 2018-11-13 | 日产化学工业株式会社 | Culture media composition and the method for using the composition culture cell or tissue |
JP2014223087A (en) * | 2012-07-24 | 2014-12-04 | 日産化学工業株式会社 | Medium composition and method for culturing cells or tissues using the composition concerned |
JP5629893B2 (en) * | 2012-07-24 | 2014-11-26 | 日産化学工業株式会社 | Medium composition and cell or tissue culture method using the composition |
AU2013294057B2 (en) * | 2012-07-24 | 2019-07-04 | Kyoto University | Culture medium composition, and method for culturing cell or tissue using said composition |
US11371013B2 (en) | 2012-07-24 | 2022-06-28 | Nissan Chemical Industries, Ltd. | Culture medium composition and method of culturing cell or tissue using thereof |
JP2019150064A (en) * | 2012-07-24 | 2019-09-12 | 日産化学株式会社 | Culture medium composition and culturing method of cells or tissue using said composition |
JP2021104062A (en) * | 2012-07-24 | 2021-07-26 | 日産化学株式会社 | Culture medium composition and culturing method of cells or tissue using said composition |
JPWO2014017513A1 (en) * | 2012-07-24 | 2016-07-11 | 日産化学工業株式会社 | Medium composition and cell or tissue culture method using the composition |
US10017805B2 (en) | 2012-08-23 | 2018-07-10 | Nissan Chemical Industries, Ltd. | Enhancing ingredients for protein production from various cells |
RU2647835C2 (en) * | 2012-11-05 | 2018-03-19 | БиЭмАй КОРЕА КО., ЛТД | Stabilizer for hyaluronidase and liquid composition, which contains hyaluronidase |
EP3552624A1 (en) | 2013-05-06 | 2019-10-16 | Baxalta Incorporated | Treatment of alzheimer's disease subpopulations with pooled immunoglobulin g |
WO2014182631A1 (en) | 2013-05-06 | 2014-11-13 | Baxter International Inc. | Treatment of alzheimer's disease subpopulations with pooled immunoglobulin g |
US12144861B2 (en) | 2014-12-03 | 2024-11-19 | Csl Behring Ag | Pharmaceutical product with increased stability comprising immunoglobulins |
US20190233533A1 (en) * | 2016-06-28 | 2019-08-01 | Umc Utrecht Holding B.V. | Treatment Of IgE-Mediated Diseases With Antibodies That Specifically Bind CD38 |
Also Published As
Publication number | Publication date |
---|---|
ES2578478T3 (en) | 2016-07-27 |
EA026112B1 (en) | 2017-03-31 |
BR112012005890A2 (en) | 2019-09-24 |
WO2011034604A3 (en) | 2011-12-01 |
HRP20160530T1 (en) | 2016-07-29 |
PL2477603T3 (en) | 2016-10-31 |
JP2013505237A (en) | 2013-02-14 |
HUE028832T2 (en) | 2017-01-30 |
WO2011034604A9 (en) | 2012-01-19 |
EP2477603A2 (en) | 2012-07-25 |
CA2774053C (en) | 2015-04-28 |
US9084743B2 (en) | 2015-07-21 |
MX2012003282A (en) | 2012-04-30 |
BR112012005890B1 (en) | 2023-01-17 |
AU2010296017B2 (en) | 2013-06-06 |
AU2010296017C1 (en) | 2013-09-19 |
KR101441768B1 (en) | 2014-09-17 |
IN2012DN03219A (en) | 2015-10-23 |
EA201200490A1 (en) | 2012-12-28 |
CN102655853B (en) | 2015-07-29 |
PT2477603E (en) | 2016-06-16 |
AU2010296017A1 (en) | 2012-05-03 |
DK2477603T3 (en) | 2016-06-13 |
US20110066111A1 (en) | 2011-03-17 |
CA2774053A1 (en) | 2011-03-24 |
EP2477603B1 (en) | 2016-03-30 |
CO6460736A2 (en) | 2012-06-15 |
JP5734985B2 (en) | 2015-06-17 |
KR20120105426A (en) | 2012-09-25 |
HK1173652A1 (en) | 2013-05-24 |
CN102655853A (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49967E1 (en) | Combinations and methods for subcutaneous administration of immune globulin and hyaluronidase | |
CA2774053C (en) | Stable co-formulation of hyaluronidase and immunoglobulin, and methods of use thereof | |
US20240026328A1 (en) | Ph20 polypeptide variants, formulations and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080051813.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10760140 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2774053 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012529751 Country of ref document: JP Ref document number: MX/A/2012/003282 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010296017 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12060153 Country of ref document: CO Ref document number: 2010760140 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3219/DELNP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127009795 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201200490 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2010296017 Country of ref document: AU Date of ref document: 20100916 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012005890 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012005890 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120315 |