WO2011034155A1 - Skin material for vehicle interior member - Google Patents

Skin material for vehicle interior member Download PDF

Info

Publication number
WO2011034155A1
WO2011034155A1 PCT/JP2010/066105 JP2010066105W WO2011034155A1 WO 2011034155 A1 WO2011034155 A1 WO 2011034155A1 JP 2010066105 W JP2010066105 W JP 2010066105W WO 2011034155 A1 WO2011034155 A1 WO 2011034155A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
vehicle interior
skin material
resin
weight
Prior art date
Application number
PCT/JP2010/066105
Other languages
French (fr)
Japanese (ja)
Inventor
祐之 松田
正雄 原
嗣久 宮本
孝宏 栃岡
力弥 安孫子
宏和 林
清綱 豊原
Original Assignee
マツダ株式会社
帝人ファイバー株式会社
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社, 帝人ファイバー株式会社, 帝人株式会社 filed Critical マツダ株式会社
Publication of WO2011034155A1 publication Critical patent/WO2011034155A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/58Seat coverings
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/625Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/49Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads textured; curled; crimped
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/042Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/02Internal Trim mouldings ; Internal Ledges; Wall liners for passenger compartments; Roof liners
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/261Body finishing, e.g. headliners
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/263Cars
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • D10B2331/041Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET] derived from hydroxy-carboxylic acids, e.g. lactones
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/12Physical properties biodegradable
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/14Dyeability

Definitions

  • the present invention relates to a vehicle interior member skin material composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, and has an excellent fabric strength even after being exposed to a humid heat environment. It relates to the skin material.
  • Polylactic acid filaments are attracting attention in recent years as fibers that are friendly to the global environment because the raw material lactic acid or lactide is produced from natural products, and these polylactic acid filaments can be used in various applications such as vehicle interior parts. (See, for example, Patent Document 1 and Patent Document 2).
  • polylactic acid filaments are generally inferior in heat and moisture resistance compared to petroleum-derived aromatic polyesters such as polyethylene terephthalate, so that when used as a skin material for vehicle interior members exposed to harsh environments, the fabric of a skin material for vehicle interior members There was a problem that the strength was lowered.
  • the present invention has been made in view of the above-mentioned background, and an object of the present invention is a skin material for a vehicle interior member composed of a fabric containing a polylactic acid filament and subjected to a dyeing process, which is exposed to a wet heat environment. Another object of the present invention is to provide a vehicle interior member skin material having excellent fabric strength even after being applied.
  • the present inventors have found that the fiber strength due to the dyeing process can be suppressed by shortening the dyeing time when dyeing the cloth containing the polylactic acid filament.
  • the present invention has been completed by finding more headlines and further studies.
  • a vehicle interior material composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, which was exposed to an environment of temperature 50 ° C. and humidity 95% RH for 1,000 hours.
  • the said tensile strength shall measure the tensile strength of the skin
  • the polylactic acid filament is composed of (i) poly L-lactic acid having a weight average molecular weight of 50,000 to 300,000 (component A), and (ii) poly D-lactic acid having a weight average molecular weight of 50,000 to 300,000 (component B). And (iii) A filament containing a phosphoric acid ester metal salt represented by the following formula (1) or (2) in an amount of 0.05 to 5 parts by weight per 100 parts by weight of the total of the A component and the B component. .
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • M 1 represents an alkali metal atom or Represents an alkaline earth metal atom
  • p represents 1 or 2.
  • each of R 4 , R 5 and R 6 independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms
  • M 2 represents an alkali metal atom or an alkaline earth metal atom
  • p represents 1 or 2 Represents.
  • the polylactic acid filament is preferably a false twist crimped yarn.
  • the said fabric is a woven fabric whose cover factor (CF) represented by a following formula is 1,800 or more.
  • CF cover factor
  • CF (DWp / 1.1) 1/2 ⁇ MWp + (DWf / 1.1) 1/2 ⁇ MWf
  • DWp is the total warp fineness (dtex)
  • MWp is the warp weave density (main / 2.54 cm)
  • DWf is the total weft fineness (dtex)
  • MWf is the weft weave density (main / 2.54 cm).
  • the fabric is preferably a knitted fabric of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm.
  • the conditions of the dyeing process are a temperature of 110 to 140 ° C. and a time of 19 minutes or less.
  • the resin is preferably a silicon resin, a polyethylene resin, or a polyethylene terephthalate resin.
  • a backing resin is applied to the fabric at an application amount of 30 g / m 2 or more. In that case, it is preferable that the backing resin contains an acrylic resin.
  • the manufacturing method of the skin material for vehicle interior members including each process is provided.
  • the fabric is preferably a woven fabric having a cover factor (CF) represented by the following formula of 1,800 or more.
  • CF cover factor
  • CF (DWp / 1.1) 1/2 * MWp + (DWf / 1.1) 1/2 * MWf
  • DWp is the warp total fineness (dtex)
  • MWp is the warp weave density (main / 2.54 cm)
  • DWf is the total weft fineness (dtex)
  • MWf is the weft weave density (main / 2.54 cm).
  • the fabric is preferably a knitted fabric of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm.
  • FIG. 1 is a diagram schematically showing a state in which a backing resin is applied to a fabric in a vehicle interior material according to the present invention.
  • the skin material for vehicle interior members of the present invention is a skin material for vehicle interior members composed of a fabric containing polylactic acid filaments and subjected to dyeing, and is in an environment of a temperature of 50 ° C. and a humidity of 95% RH.
  • the said tensile strength shall measure the tensile strength of the skin
  • the fabric strength decreases with time when using the vehicle interior member skin material, which is not preferable because of lack of practicality.
  • the tensile strength is preferably as large as possible, but practically, it may be 1,000 N / 50 mm or less.
  • the skin material for a vehicle interior member according to the present invention can be manufactured, for example, by the following method. (Polylactic acid)
  • the polylactic acid filament used in the present invention is a filament made of polylactic acid comprising a poly L-lactic acid component and / or a poly D-lactic acid component.
  • a poly L-lactic acid component and a poly D-lactic acid component having crystallinity it is preferable to use a poly L-lactic acid component and a poly D-lactic acid component having crystallinity, and a filament made of a poly L-lactic acid component having a high optical purity and a polylactic acid composition composed of a poly D-lactic acid component is preferable.
  • a crystalline poly L-lactic acid component or poly D-lactic acid component having a melting point of 160 ° C. or higher can be suitably used.
  • the poly L-lactic acid component is preferably 90 to 100 mol%, more preferably 95 to 100 mol% of L-lactic acid units, and 99 to 100 mol% for realizing a high melting point, in addition to the degree of stereoization.
  • the poly-D-lactic acid component is preferably 90 to 100 mol%, more preferably 95 to 100 mol% of D-lactic acid units, and 99 to 100 mol% for realizing a high melting point, and in addition, the degree of stereoization is increased.
  • the copolymer component unit is a unit derived from dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc.
  • dicarboxylic acid examples include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • Polyhydric alcohols include ethylene glycol, propylene glycol, propanediol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol
  • Aliphatic polyhydric alcohols such as aliphatic polyhydric alcohols, and aromatic polyhydric alcohols obtained by adding ethylene oxide to bisphenol.
  • the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, 4-hydroxybenzoic acid and the like.
  • lactone examples include glycolide, ⁇ -caprolactone glycolide, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ - or ⁇ -butyrolactone, pivalolactone, ⁇ -valerolactone, and the like.
  • the poly L-lactic acid component and the poly D-lactic acid component both have a weight average molecular weight of preferably 100,000 to 500,000, more preferably 150,000 to 350,000. Further, if it is 10% by weight or less based on the polymer weight, other components may be blended.
  • the poly L-lactic acid and poly D-lactic acid can be produced by a known method.
  • L- or D-lactide can be produced by heating and ring-opening polymerization in the presence of a metal polymerization catalyst.
  • a metal polymerization catalyst after crystallizing low molecular weight polylactic acid containing a metal polymerization catalyst, it can be produced by solid phase polymerization by heating under reduced pressure or in an inert gas stream. Further, it can be produced by a direct polymerization method in which lactic acid is subjected to dehydration condensation in the presence / absence of an organic solvent.
  • the polymerization reaction can be carried out in a conventionally known reaction vessel. For example, a vertical reactor or a horizontal reactor equipped with a stirring blade for high viscosity, such as a helical ribbon blade, can be used alone or in parallel.
  • Alcohol may be used as a polymerization initiator. Such alcohol is preferably non-volatile without inhibiting the polymerization of polylactic acid.
  • decanol, dodecanol, tetradecanol, hexadecanol, octadecanol and the like can be suitably used.
  • a relatively low molecular weight lactic acid polyester obtained by the above-described ring-opening polymerization method or lactic acid direct polymerization method is used as a prepolymer.
  • the prepolymer is preferably crystallized in advance in the temperature range of the glass transition temperature (Tg) or higher and lower than the melting point (Tm) from the viewpoint of preventing fusion.
  • the crystallized prepolymer is filled in a fixed vertical or horizontal reaction vessel, or a reaction vessel (rotary kiln, etc.) where the vessel itself rotates like a tumbler or kiln, and the prepolymer glass transition temperature (Tg) or higher. Heated to a temperature range below the melting point (Tm). There is no problem even if the polymerization temperature is raised stepwise as the polymerization proceeds.
  • a method of reducing the pressure inside the reaction vessels or circulating a heated inert gas stream is also preferably used.
  • the metal-containing catalyst used at the time of polylactic acid polymerization is preferably deactivated with a conventionally known deactivator.
  • Examples of such a deactivator include an organic ligand consisting of a group of chelate ligands having an imino group and capable of coordinating to a polymerized metal catalyst, dihydridooxoline (I) acid, dihydridotetraoxodilin (II, II ) Acid, hydridotrioxoline (III) acid, dihydridopentaoxodiphosphoric acid (III, III) acid, hydridopentaoxodiphosphoric acid (II, IV) acid, dodecaoxohexaphosphorus (III) acid, hydridooctaoxotriphosphorus ( III, IV, IV) acid, octaoxotriphosphoric acid (IV, III, IV), hydridohexaoxodiphosphoric acid (III, V), hexaoxodiphosphoric acid (IV), decaoxotetralinic acid (IV),
  • the metaphosphoric acid compound is a cyclic metaphosphoric acid in which about 3 to 200 phosphoric acid units are condensed, an ultra-regional metaphosphoric acid having a three-dimensional network structure, or a salt thereof (alkal metal salt, alkaline earth metal salt, onium salt). Is included. Among them, cyclic sodium metaphosphate, ultra-region sodium metaphosphate, phosphono-substituted lower aliphatic carboxylic acid derivative dihexylphosphonoethyl acetate (hereinafter sometimes abbreviated as DHPA) and the like are preferably used.
  • the lactide content of the polylactic acid composition is selected in the range of 0 to 700 ppm.
  • a range of 0 to 500 ppm, more preferably 0 to 200 ppm, and particularly preferably 0 to 100 ppm is selected. This is because when polylactic acid has a lactide content in such a range, the stability at the time of melting can be improved, and the advantages of efficient and stable spinning and the hydrolysis resistance of the fiber product can be enhanced.
  • a conventionally known lactide reduction treatment or a combination thereof is performed at any stage from the polymerization of poly L-lactic acid and poly D-lactic acid to the end of polylactic acid production. Can be achieved.
  • the polylactic acid composition preferably has a weight average molecular weight of 100,000 to 500,000. More preferably, it is 100,000 to 300,000.
  • the ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid composition is referred to as molecular weight dispersion (Mw / Mn).
  • Mw / Mn The ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid composition.
  • Mw / Mn The ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid composition.
  • Mw / Mn The ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid composition.
  • Mw / Mn The ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid composition.
  • Mw / Mn The ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic
  • the melt viscosity becomes large, which is not preferable in the spinning and stretching processes.
  • the proportion of molecules having a weight average molecular weight value of less than 100,000 may increase. In this case, the durability of the mechanical properties of the fiber is increased. This is not preferable in use.
  • the range of molecular weight dispersion is preferably 1.5 to 3.0, more preferably 1.5 to 2.5, and still more preferably 1.6 to 2.5.
  • a weight average molecular weight and a number average molecular weight are a weight average molecular weight and a number average molecular weight in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
  • the weight ratio of the poly L-lactic acid component to the poly D-lactic acid component in the polylactic acid composition is preferably in the range of 90:10 to 10:90. It is more preferably in the range of 75:25 to 25:75, still more preferably in the range of 60:40 to 40:60, and preferably as close to 50:50 as possible.
  • the polylactic acid composition preferably contains a stereocomplex polylactic acid composed of a poly L-lactic acid component and a poly D-lactic acid component.
  • the content rate of stereocomplex polylactic acid is the ratio of the peak corresponding to the melting of the stereocomplex crystal in the melting peak in the temperature rising process in the differential scanning calorimeter (DSC) measurement, It is represented by the following formula (a), preferably 80 to 100%, more preferably 95 to 100%.
  • the melting point in the present invention is a crystal melting peak temperature measured by DSC, and the latter is used when a low temperature crystal melting peak temperature and a stereocomplex crystal melting peak temperature exist. It is important that the temperature is 195 ° C. or higher (preferably in the range of 195 to 250 ° C., more preferably 200 to 240 ° C.).
  • the stereocomplex crystal melting enthalpy is preferably 20 J / g or more (more preferably 30 J / g or more).
  • the polylactic acid composition can be produced by mixing a poly L-lactic acid component alone or a poly L-lactic acid component and a poly D-lactic acid component in a predetermined weight ratio.
  • the mixing can be performed in the presence of a solvent.
  • the solvent is not particularly limited as long as it dissolves poly L-lactic acid and poly D-lactic acid.
  • chloroform, methylene chloride, dichloroethane, tetrachloroethane, phenol, tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, butyrolactone, trioxane, hexafluoroisopropanol or the like alone or in combination of two or more are preferred.
  • the mixing can be performed in the absence of a solvent.
  • stereoblock polylactic acid in which a poly L-lactic acid segment and a poly D-lactic acid segment are bonded can also be suitably used as the polylactic acid composition.
  • Stereoblock polylactic acid is a block polymer in which a poly L-lactic acid segment and a poly D-lactic acid segment are bonded in the molecule.
  • Such block polymers include, for example, a method of producing by sequential ring-opening polymerization, a method of polymerizing poly (L-lactic acid) and poly (D-lactic acid), and then binding them with a chain exchange reaction or a chain extender.
  • a block copolymer having the above-mentioned basic constitution such as a method of polymerizing L-lactic acid and poly-D-lactic acid and blending and then solid-phase polymerizing to chain-extend, a method of producing from racemic lactide using a stereoselective ring-opening polymerization catalyst, etc. Any polymer can be used regardless of the production method.
  • the polylactic acid composition and stereoblock polylactic acid used in the present invention preferably have a stereogenicity of 90% or more, more preferably 100%.
  • the degree of stereoification can be determined by the above formula (a) by comparing the enthalpies of melting points in DSC measurement.
  • preferred examples include metal phosphates represented by the following formulas (1) and / or (2).
  • R 1 Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 2 , R 3 Each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, amyl group, tert-amyl group, hexyl group, heptyl group, octyl group, iso-octyl group, tert-octyl group, 2-ethylhexyl group, nonyl group, iso-nonyl group, decyl group, iso-decyl group, tert-decyl group, An undecyl group, a dodecyl group, a tert-dodecyl group, etc.
  • M 1 Represents an alkali metal atom such as Na, K or Li or an alkaline earth metal atom such as Mg or Ca.
  • p represents 1 or 2.
  • R 1 Is a hydrogen atom
  • R 2 , R 3 Are both tert-butyl groups.
  • R in formula (2) 4 , R 5 , R 6 Each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms.
  • alkyl group having 1 to 12 carbon atoms examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, amyl group, tert-amyl group, hexyl group, heptyl group, octyl group, iso-octyl group, tert-octyl group, 2-ethylhexyl group, nonyl group, iso-nonyl group, decyl group, iso-decyl group, tert-decyl group, An undecyl group, a dodecyl group, a tert-dodecyl group, etc.
  • M 2 Represents an alkali metal atom such as Na, K or Li or an alkaline earth metal atom such as Mg or Ca.
  • p represents 1 or 2.
  • R 4 , R 6 Is a methyl group
  • R 5 Is a tert-butyl group.
  • ADK STAB trade name “ADK STAB” NA-11 manufactured by ADEKA Co., Ltd.
  • the phosphoric acid ester metal salt can be synthesized by a known method.
  • the compound represented by the formula (1) or (2) is a compound known as a crystal nucleating agent for polylactic acid.
  • M in the formulas (1) and (2) 1 And M 2 Is an alkali metal atom or an alkaline earth metal atom.
  • M in Formula (1) and Formula (2) 1 And M 2 In the case of other metals such as aluminum, the heat resistance of the compound itself is low, and a sublimate is generated during spinning, which may be difficult to spin.
  • the phosphoric acid ester metal salt (component C) preferably has an average primary particle size of 0.01 to 10 ⁇ m, more preferably 0.05 to 7 ⁇ m. It is industrially difficult to make the particle size smaller than 0.01 ⁇ m, and it is not necessary to make it so small. On the other hand, if it is larger than 10 ⁇ m, the frequency of yarn breakage increases during spinning and drawing.
  • metal salts are preferably used in an amount of 0.05 wt% to 5 wt%, more preferably 0.05 wt% to 0.5 wt%, still more preferably 0.05 wt% to 0.2 wt%, relative to the polylactic acid component. Is preferred. When the amount is too small, the effect of improving the degree of stereoization is small, and when too large, the resin itself is deteriorated, which is not preferable.
  • the polylactic acid component used in the present invention may or may not contain a moisture and heat resistance improver. When the polylactic acid component contains a heat and humidity resistance improver, a carboxyl group-capping agent having a specific functional group can be suitably applied as the heat and humidity resistance improver.
  • a carbodiimide compound whose specific functional group is a carbodiimide group can be preferably selected from the viewpoints of effectively sealing the carboxyl group, promoting the formation of the color of the polylactic acid fiber structure, the formation of a stereocomplex phase, and heat and heat resistance.
  • carbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, octyldecylcarbodiimide, di-tert-butylcarbodiimide, tert-butylisopropylcarbodiimide, dibenzylcarbodiimide, N-octadecylimide N'-phenylcarbodiimide, N-benzyl-N'-phenylcarbodiimide, N-benzyl-N'-tolylcarbodiimide, di-o-toluylcarbodiimide, di-p-toluylcarbodiimide, bis (p-nitrophenyl) carbodiimide, bis (P-aminophenyl) carbodiimide, bis (p-hydroxyphenyl)
  • bis (2,6-diisopropylphenyl) carbodiimide and 2,6,2 ′, 6′-tetraisopropyldiphenylcarbodiimide are preferred from the viewpoints of reactivity and stability.
  • industrially available dicyclohexylcarbodiimide and diisopropylcarbodiimide are also suitable.
  • Carbodilite commercially available from Nisshinbo Co., Ltd.
  • Carbodilite commercially available from Nisshinbo Co., Ltd.
  • Carbodilite LA-1 sold as a polylactic acid resin modifier
  • Carbodilite HMV-8CA sold as a polyester resin modifier
  • a carbodiimide compound can also be manufactured by a conventionally well-known method. For example, it can be produced by subjecting an organic isocyanate to a decarboxylation condensation reaction in a solvent-free or inert solvent at a temperature of 70 ° C. or higher using an organic phosphorus compound or an organometallic compound as a catalyst.
  • the polycarbodiimide compound may be a conventionally known method for producing a polycarbodiimide compound, for example, US Pat. No. 2,941,956, Japanese Examined Patent Publication No. 47-33279, J. Pat. Org. Chem. 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81 no. 4, p619-621 and the like.
  • the content of the carbodiimide compound is preferably 0.1 to 5.0 parts by weight, more preferably 0.5 to 2.0 parts by weight, per 100 parts by weight of the polylactic acid composition.
  • a stereocomplex polylactic acid fiber containing a carbodiimide compound in such a range has a molecular weight retention of 95% or more after treatment in boiling water at 100 ° C.
  • the carboxyl group-reactive terminal blocking agent not only seals the terminal carboxyl group of the polylactic acid resin, but also includes a carboxyl group generated by the decomposition reaction of the polylactic acid resin and various additives, lactic acid, formic acid and the like.
  • the carboxyl group of a low molecular compound can be sealed.
  • the said sealing agent is a compound which can seal
  • the carboxyl end group blocking agent it is preferable to use at least one compound selected from an epoxy compound, an oxazoline compound, an oxazine compound, and an isocyanate compound, and among them, an epoxy compound, an oxazoline compound, and an isocyanate compound are preferable.
  • epoxy compound glycidyl ether compounds, glycidyl ester compounds, glycidyl amine compounds, glycidyl imide compounds, glycidyl amide compounds, and alicyclic epoxy compounds can be preferably used.
  • a carboxyl end group capping agent not only can the action of the carbodiimide compound be improved, but fibers that are excellent in spinnability, mechanical properties, heat resistance, and durability can be obtained.
  • the above-mentioned agent and various additives described later may be added and kneaded directly into the reaction vessel at any stage of the polymerization in the ring-opening polymerization method, preferably at a later stage of the polymerization. it can.
  • kneading with an extruder or kneader is preferred.
  • the polymer discharge port of the reactor can be connected to a uniaxial or multiaxial extruder and added.
  • Examples thereof include a method of adding various agents to a polylactic acid composition formed into chips after polymerization or a polylactic acid powder after solid phase polymerization and kneading with an extruder or kneader.
  • various additives can be added directly into an extruder or kneader as a molten liquid, an aqueous solution, an organic solvent solution or a dispersion, or added to polylactic acid from a so-called side feeder.
  • the polylactic acid composition is kneaded with an extruder or kneader as a chip or a fine powder masterbatch.
  • a polylactic acid filament can be obtained by spinning and stretching the polylactic acid composition by a conventional method.
  • the stretching may be one-stage or multistage stretching of two or more stages, and the stretching ratio is preferably 3 times or more (more preferably 4 times or more, particularly preferably 4 to 10 times) from the viewpoint of producing a high-strength fiber.
  • the preheating for stretching may be a plate-type or pin-type contact heater in addition to the temperature rise of the roll.
  • the stretching temperature is preferably in the range of 70 to 140 ° C (more preferably 80 to 130 ° C).
  • the heat treatment after stretching is preferably performed at 170 to 200 ° C. (more preferably 180 to 200 ° C.) under tension.
  • the heat treatment can be performed with a hot roller, a contact heater, a non-contact hot plate, or the like.
  • the polylactic acid filament thus obtained preferably has a melting peak temperature (melting point) of 195 ° C. or higher by differential scanning calorimetry (DSC) measurement.
  • melting point melting point
  • DSC differential scanning calorimetry
  • the yarn strength is 2.5 cN / dtex or more (more preferably 3.0 cN / dtex or more) because the fabric strength of the interior material is improved.
  • the single yarn fineness is 0.01 to 20 dtex (more preferably 0.1 to 7 dtex), the total fineness is 30 to 500 dtex, and the number of filaments is within the range of 20 to 200. preferable. (Weaving and weaving) Next, a fabric is knitted and woven using the polylactic acid filament.
  • the filament may be subjected to twisting, air processing, false twist crimping, or the like.
  • the polylactic acid filament is a false twist crimped yarn because the vehicle interior material exhibits a soft texture.
  • a twisted yarn of about 100 to 600 T / m is applied to the filament because not only the wear resistance of the fabric is improved but also the handleability when the fabric is knitted or woven is improved.
  • the fabric structure of the fabric is not particularly limited, but is a woven or knitted fabric woven or knitted by a loom such as a dobby loom or jacquard loom, or a knitting machine such as a raschel knitting machine, tricot knitting machine, or circular knitting machine. It is preferable.
  • a non-woven fabric or a fiber structure composed of matrix fibers and heat-bondable fibers may be used.
  • examples of the woven structure of the woven fabric include a three-layer structure such as plain weave, twill weave and satin weave, a change structure, a single double structure such as a vertical double weave and a horizontal double weave, and a vertical velvet.
  • the type of knitted fabric may be a circular knitted fabric (weft knitted fabric) or a warp knitted fabric.
  • Preferred examples of the structure of the circular knitted fabric (weft knitted fabric) include a flat knitted fabric, rubber knitted fabric, double-sided knitted fabric, pearl knitted fabric, tucked knitted fabric, float knitted fabric, one-sided knitted fabric, lace knitted fabric, and bristle knitted fabric. Examples include a single denby knitting, a single atlas knitting, a double cord knitting, a half tricot knitting, a back hair knitting, and a jacquard knitting.
  • the number of layers may be a single layer or a multilayer of two or more layers.
  • the fabric is dyed.
  • the dyeing method is not particularly limited, and the dyeing method may be a conventionally known dyeing method such as beam dyeing, cheese dyeing, package dyeing, or liquid dyeing.
  • the dyeing processing conditions are preferably a dyeing temperature of 110 to 140 ° C. and a dyeing time within 19 minutes (preferably 10 to 19 minutes, more preferably 12 to 18 minutes). If the time for such dyeing process exceeds 19 minutes, the fiber strength of the polylactic acid fiber decreases due to the thermal history during the dyeing process, and the fabric strength of the finally obtained vehicle interior material may decrease.
  • the dyeing temperature is a keep temperature at the time of dyeing and the dyeing time is a keep time at the time of dyeing.
  • the dyeing time is a keep time at the time of dyeing.
  • auxiliary agents and various functional agents may be contained in the dyeing bath.
  • scouring under a weak alkali at a temperature of 50 to 100 ° C. or weight reduction processing at an temperature of 80 to 100 ° C. may be performed under alkaline conditions.
  • a resin such as a silicon resin, a polyethylene resin, or a polyethylene terephthalate resin
  • an impregnation method such as a padding method. Since the polylactic acid filament contained in the fabric is coated with the resin by the impregnation treatment, the fiber strength of the polylactic acid filament contained in the vehicle interior material is improved even after the vehicle interior material is exposed to a humid heat environment. This is preferable because it is difficult to lower and an excellent fabric strength is obtained. At the same time, the wear resistance of the fabric is also preferably improved.
  • the amount of the resin adhered is preferably in the range of 0.5 to 5.0% by weight with respect to the fabric weight.
  • Various processes that provide functions such as an ion generating agent may be additionally applied.
  • the yarn strength of the polylactic acid filament contained in the fabric is preferably 2.3 cN / dtex or more. In particular, 90% or more of the yarn strength of the polylactic acid filament before dyeing is preferably maintained.
  • the basis weight is 30 to 1,000 gr / m. 2 It is preferable to be within the range.
  • the cover factor (CF) calculated by the following formula is 1,800 or more (more preferably 2,500 to 4,000), so that the strength of the fabric and the abrasion resistance of the fabric. And preferred in terms of texture.
  • the skin material for a vehicle interior member of the present invention may be composed of the cloth alone, but as schematically shown in FIG.
  • a backing resin is applied on either the front or back side of the cloth at a coating amount of 30 g / m. 2 Or more (preferably 80 to 120 g / m 2 ) Is preferred because the fabric strength is improved.
  • the backing resin materials such as acrylic resins, vinylidene chloride resins, latex resins, vinyl chloride resins and urethane resins can be used.
  • the backing resin is acrylic acid. It is preferable that acrylic resin, such as ester resin, methacrylic ester resin, and acrylamide resin, is included.
  • a conventionally known method may be used as a method for applying the backing resin to the fabric.
  • a flame retardant may be included in the backing resin.
  • the skin material for a vehicle interior member of the present invention thus obtained has a tensile strength of 400 N / 50 mm or more after being exposed for 1,000 hours in an environment of a temperature of 50 ° C. and a humidity of 95% RH. Is essential.
  • a high-density fabric is woven using a stereocomplex polylactic acid filament as a polylactic acid filament, the dyeing time during dyeing is shortened, and the resin is obtained by an impregnation method. Is preferably applied to the fabric and a backing resin is applied to either the front or back of the fabric.
  • the tensile strength after being exposed to an environment of temperature 50 ° C. and humidity 95% RH for 1,000 hours can be 400 N / 50 mm or more.
  • the skin material for a vehicle interior member according to the present invention has excellent fabric strength even after being exposed to a humid heat environment, and is therefore suitably used as a vehicle interior member such as a car seat skin material, a vehicle floor material, and a vehicle ceiling material. Is done.
  • each measurement item in an Example was measured with the following method.
  • Weight average molecular weight (Mw) The weight average molecular weight of the polymer was determined by GPC (column temperature 40 ° C., chloroform) in comparison with a polystyrene standard sample.
  • GPC column temperature 40 ° C., chloroform
  • Glass transition point, melting point, stereogenicity TA-2920 differential scanning calorimeter DSC manufactured by TA Instruments was used. In the measurement, 10 mg of a sample was heated from room temperature to 260 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere.
  • the test filament yarn was wound around a measuring machine having a circumference of 1.125 m to prepare a skein having a dryness of 3333 dtex.
  • the skein was suspended from a hanging nail of the scale plate, an initial load of 6 g was applied to the lower part thereof, and a skein length L0 when a load of 600 g was further applied was measured.
  • the load was removed from the skein, the scale plate was removed from the hanging nail, and this skein was immersed in boiling water for 30 minutes to develop crimps.
  • the skein after the boiling water treatment is taken out from the boiling water, the moisture contained in the skein is absorbed and removed by a filter paper, and air-dried at room temperature for 24 hours.
  • the air-dried skein is hung on a hanging nail of the scale plate, a load of 600 g is applied to the lower part, the skein length L1a is measured after 1 minute, the load is removed from the skein, and the skein after 1 minute.
  • the length L2a was measured.
  • the crimp rate (CP) of the test filament yarn was calculated by the following formula.
  • CP (%) ((L1a ⁇ L2a) / L0) ⁇ 100 (5) Fabric weight A fabric weight (gr / m 2 ) was measured according to JIS L1096.8.5.1 (1999 edition). (6) Abrasion resistance of fabric Abrasion on a plane was determined according to JIS L1096.88.17.3 C method (1999 version). Grade 5 is the highest and Grade 1 is the lowest. (7) Texture of cloth Three testers evaluated by sensory evaluation in three stages: (grade 3) soft, (grade 2) normal, (grade 1) hard.
  • Tensile strength of skin material for vehicle interior member Skin material sample for vehicle interior member based on 8.12.1 standard time, A method (label strip method) described in JIS L1096.8.12 (1999 edition) From the warp direction and weft direction (in the course direction and the wale direction when the sample is a knitted fabric), respectively, and using a textile tensile tester, a grip interval of 200 mm is pulled. The strength at the time of cutting was measured under the condition of a speed of 150 mm / min, and the average value was determined in integers, and was used as the tensile strength of the skin material for vehicle interior members.
  • L-lactic acid had a weight average molecular weight of 150,000, a glass transition point (Tg) of 63 ° C., and a melting point of 180 ° C.
  • Production Example 2 Production of poly D-lactic acid
  • D-lactide manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%
  • octylate was added, and the reaction was carried out at 180 ° C. in a reactor equipped with a stirring blade in a nitrogen atmosphere.
  • Lactic acid had a weight average molecular weight of 150,000, a glass transition point (Tg) of 63 ° C., and a melting point of 180 ° C.
  • Production Example 3 (Production of stereocomplex polylactic acid resin) 50 parts by weight of each of the poly L-lactic acid obtained in Production Example 1 and the poly D-lactic acid of Production Example 2 and a phosphate ester metal salt (2,2-methylenebis (4,6-di-tert-butylphenol phosphate) Sodium salt, average particle diameter of 5 ⁇ m, 0.1 part by weight of “ADEKA STAB” NA-11) manufactured by ADEKA Co., Ltd. (former Asahi Denka Kogyo Co., Ltd.) is kneaded and extruded at a cylinder temperature of 230 ° C. Was cut into chips with a chip cutter to obtain a stereocomplex polylactic acid resin.
  • a phosphate ester metal salt 2,2-methylenebis (4,6-di-tert-butylphenol phosphate) Sodium salt, average particle diameter of 5 ⁇ m, 0.1 part by weight of “ADEKA STAB” NA-11) manufactured by ADEKA Co., Ltd. (form
  • the obtained stereocomplex polylactic acid resin had a weight average molecular weight (Mw) of 135,000, a melting point (Tm) of 217 ° C., and a stereogenicity of 100%.
  • Example 1 (spinning) The stereocomplex polylactic acid resin obtained in Production Example 3 was dried at 110 ° C. for 2 hours and at 150 ° C. for 5 hours to give a moisture content of the resin of 80 ppm, and then a spinneret having 36 holes of 0.27 ⁇ mm was formed. The undrawn yarn was wound up at a speed of 500 m / min after spinning at a spinning temperature of 255 ° C. and a discharge rate of 8.35 g / min.
  • the wound undrawn yarn was drawn 4.9 times with a drawing machine at 80 ° C. by preheating, and the drawn yarn was wound up. Next, the drawn yarn was subjected to ordinary false twist crimping to obtain a polylactic acid false twist crimped yarn (stereo complex polylactic acid filament).
  • the polylactic acid false twist crimped yarn had a fineness of 167 dtex / 36 fil, a crimp rate of 1.4%, a strength of 3.1 cN / dtex, an elongation of 34%, and a melting point of 213 ° C.
  • a backing resin composed of 20% by weight of antimony trioxide, 40% by weight of decabromodiphenyl ether and 40% by weight of acrylic ester resin is applied to one side of the fabric by a conventional method, and the fabric for car seats (Vehicle interior material) was obtained.
  • the coating amount of the backing resin during coating was 100 g / m 2 .
  • the basis weight was 550 g / m 2 and the cover factor was 3534.
  • the tensile strength after exposure for 1,000 hours in an environment of temperature 50 ° C. and humidity 95% RH was 617 N / 50 mm.
  • the L value was 16.
  • Example 2 In Example 1, it carried out similarly to Example 1 except using a jacquard loom using a jacquard loom instead of a dobby woven fabric.
  • the basis weight was 600 g / m 2 and the cover factor was 3816.
  • the tensile strength after exposure for 1,000 hours in an environment of temperature 50 ° C. and humidity 95% RH was 430 N / 50 mm.
  • the L value was 16.
  • Example 1 was the same as Example 1 except that the poly L lactic acid obtained in Production Example 1 was used instead of the stereocomplex polylactic acid resin.
  • the basis weight was 575 g / m 2 and the cover factor was 3711.
  • Example 1 was the same as Example 1 except that the dyeing time for dyeing was changed to 30 minutes.
  • the basis weight was 540 g / m 2 and the cover factor was 3463.
  • the tensile strength after exposure for 1,000 hours in an environment of a temperature of 50 ° C. and a humidity of 95% RH was 325 N / 50 mm and could not be used in actual use.
  • Example 1 was the same as Example 1 except that the dyeing time for dyeing was changed to 20 minutes.
  • the basis weight was 540 g / m 2 and the cover factor was 3463.
  • the tensile strength after exposure for 1,000 hours in an environment of a temperature of 50 ° C. and a humidity of 95% RH was 380 N / 50 mm, which could not withstand actual use.
  • the L value was 15. [Effects of the Invention]
  • a skin material for a vehicle interior member composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, which has excellent fabric strength even after being exposed to a humid heat environment.
  • a skin material for a vehicle interior member having the above is obtained.
  • a vehicle interior member skin material composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, the vehicle having excellent fabric strength even after being exposed to a humid heat environment
  • a skin material for an interior member is provided, and its industrial value is extremely large.

Abstract

Disclosed is a skin material for a vehicle interior member, which is configured of a fabric that has been dyed and contains polylactic acid filaments. The skin material for a vehicle interior member has excellent fabric strength even after being exposed in a wet heat environment. Specifically disclosed is a skin material for a vehicle interior member, which is configured of a fabric that has been dyed and contains polylactic acid filaments, and which has a tensile strength of not less than 400 N/50 mm as measured in accordance with JIS L1096.8.12 (1999) after being exposed to an environment at a temperature of 50°C and at a humidity of 95% RH for 1,000 hours.

Description

車両内装部材用表皮材Skin material for vehicle interior parts
 本発明は、ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装部材用表皮材であって、湿熱環境下にさらされた後においても優れた布帛強度を有する車両内装部材用表皮材に関する。 The present invention relates to a vehicle interior member skin material composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, and has an excellent fabric strength even after being exposed to a humid heat environment. It relates to the skin material.
 ポリ乳酸フィラメントは、その原料である乳酸またはラクチドが天然物から製造されるため、地球環境に配慮した繊維として近年注目されており、かかるポリ乳酸フィラメントを用いて車両内装部材などの各種用途に展開することが検討されている(例えば、特許文献1、特許文献2参照)。
 しかしながら、ポリ乳酸フィラメントは通常、ポリエチレンテレフタレートなどの石油由来の芳香族ポリエステルに比べて耐湿熱性に劣るため、厳しい環境にさらされる車両内装部材用表皮材として用いると、車両内装部材用表皮材の布帛強度が低下してしまうという問題があった。特に、車両内装部材用表皮材は通常、染色加工が施されているため、染色加工の際の湿熱によりポリ乳酸フィラメントの繊維強度が低下し、車両内装部材用表皮材の布帛強度がより一層低下するという問題があった。
特開2008−57095号公報 特開2009−30217号公報
Polylactic acid filaments are attracting attention in recent years as fibers that are friendly to the global environment because the raw material lactic acid or lactide is produced from natural products, and these polylactic acid filaments can be used in various applications such as vehicle interior parts. (See, for example, Patent Document 1 and Patent Document 2).
However, polylactic acid filaments are generally inferior in heat and moisture resistance compared to petroleum-derived aromatic polyesters such as polyethylene terephthalate, so that when used as a skin material for vehicle interior members exposed to harsh environments, the fabric of a skin material for vehicle interior members There was a problem that the strength was lowered. In particular, since the skin material for vehicle interior members is usually dyed, the fiber strength of the polylactic acid filaments is reduced by wet heat during the dyeing process, and the fabric strength of the skin material for vehicle interior members is further reduced. There was a problem to do.
JP 2008-57095 A JP 2009-30217 A
 本発明は上記の背景に鑑みなされたものであり、その目的は、ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装部材用表皮材であって、湿熱環境下にさらされた後においても優れた布帛強度を有する車両内装部材用表皮材を提供することにある。
 本発明者らは上記の課題を達成するため鋭意検討した結果、ポリ乳酸フィラメントを含む布帛を染色加工する際の染色時間を短くすることにより、染色加工による繊維強度の低下をおさえることができることを見出し、さらに検討を重ねることにより本発明を完成するに至った。
 かくして、本発明によれば「ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装材であって、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が400N/50mm以上であることを特徴とする車両内装部材用表皮材。」が提供される。
 ただし、前記引張り強度は、JIS L1096.8.12(1999年度版)により車両内装部材用表皮材の引張り強度を測定するものとする。
 その際、前記ポリ乳酸フィラメントが、(i)重量平均分子量5万~30万のポリL−乳酸(A成分)、(ii)重量平均分子量5万~30万のポリD—乳酸(B成分)および(iii)A成分とB成分との合計100重量部当たり0.05~5重量部の下記式(1)または(2)で表される燐酸エステル金属塩を含有するフィラメントであることが好ましい。
Figure JPOXMLDOC01-appb-I000003
 式中、Rは水素原子または炭素数1~4のアルキル基を表し、R、Rは各々独立に水素原子または炭素数1~12のアルキル基を表し、Mはアルカリ金属原子またはアルカリ土類金属原子を表し、pは1または2を表す。
Figure JPOXMLDOC01-appb-I000004
 式中、R、RおよびRは、各々独立に水素原子または炭素数1~12のアルキル基を表し、Mはアルカリ金属原子またはアルカリ土類金属原子を表し、pは1または2を表す。
 また、前記ポリ乳酸フィラメントが仮撚捲縮加工糸であることが好ましい。また、前記布帛が、下記式で表されるカバーファクター(CF)が1,800以上の織物であることが好ましい。
CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
ただし、DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。また、前記布帛は、30~100コース/2.54cm、20~60ウエール/2.54cmの編物であることが好ましい。
 また、前記染色加工の条件が、温度110~140℃かつ時間19分以下であることが好ましい。また、前記布帛に、含浸法により樹脂が布帛重量に対して0.3重量%以上固着されていることが好ましい。その際、前記樹脂がシリコン樹脂またはポリエチレン樹脂またはポリエチレンテレフタレート樹脂であることが好ましい。また、前記布帛にバッキング樹脂が塗布量30g/m以上で塗布されていることが好ましい。その際、前記バッキング樹脂がアクリル樹脂を含むことが好ましい。
 本発明によれば、(i)重量平均分子量5万~30万のポリL−乳酸(A成分)、重量平均分子量5万~30万のポリD—乳酸(B成分)およびA成分とB成分との合計100重量部当たり0.05~5重量部の燐酸エステル金属塩を含有するポリ乳酸フィラメントを含む布帛を、温度110~140℃、19分以内の条件で染色し、
(ii)染色した布帛に樹脂を含浸させ、
(iii)樹脂を含浸させた布帛にバッキング樹脂を塗布する、
各工程を含む前記車両内装部材用表皮材の製造方法が提供される。
 前記製造方法において、布帛は、下記式で表されるカバーファクター(CF)が1,800以上の織物であることが好ましい。
CF=
(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
(ただし、DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。)
 また前記布帛は、30~100コース/2.54cm、20~60ウエール/2.54cmの編物であることが好ましい。
The present invention has been made in view of the above-mentioned background, and an object of the present invention is a skin material for a vehicle interior member composed of a fabric containing a polylactic acid filament and subjected to a dyeing process, which is exposed to a wet heat environment. Another object of the present invention is to provide a vehicle interior member skin material having excellent fabric strength even after being applied.
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the fiber strength due to the dyeing process can be suppressed by shortening the dyeing time when dyeing the cloth containing the polylactic acid filament. The present invention has been completed by finding more headlines and further studies.
Thus, according to the present invention, “a vehicle interior material composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, which was exposed to an environment of temperature 50 ° C. and humidity 95% RH for 1,000 hours. A skin material for a vehicle interior member characterized in that the subsequent tensile strength is 400 N / 50 mm or more.
However, the said tensile strength shall measure the tensile strength of the skin | leather material for vehicle interior members according to JISL1096.8.12 (1999 version).
At that time, the polylactic acid filament is composed of (i) poly L-lactic acid having a weight average molecular weight of 50,000 to 300,000 (component A), and (ii) poly D-lactic acid having a weight average molecular weight of 50,000 to 300,000 (component B). And (iii) A filament containing a phosphoric acid ester metal salt represented by the following formula (1) or (2) in an amount of 0.05 to 5 parts by weight per 100 parts by weight of the total of the A component and the B component. .
Figure JPOXMLDOC01-appb-I000003
In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and M 1 represents an alkali metal atom or Represents an alkaline earth metal atom, and p represents 1 or 2.
Figure JPOXMLDOC01-appb-I000004
In the formula, each of R 4 , R 5 and R 6 independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, M 2 represents an alkali metal atom or an alkaline earth metal atom, and p represents 1 or 2 Represents.
The polylactic acid filament is preferably a false twist crimped yarn. Moreover, it is preferable that the said fabric is a woven fabric whose cover factor (CF) represented by a following formula is 1,800 or more.
CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
However, DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm). The fabric is preferably a knitted fabric of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm.
Further, it is preferable that the conditions of the dyeing process are a temperature of 110 to 140 ° C. and a time of 19 minutes or less. Moreover, it is preferable that 0.3% by weight or more of the resin is fixed to the cloth by an impregnation method with respect to the weight of the cloth. At that time, the resin is preferably a silicon resin, a polyethylene resin, or a polyethylene terephthalate resin. Moreover, it is preferable that a backing resin is applied to the fabric at an application amount of 30 g / m 2 or more. In that case, it is preferable that the backing resin contains an acrylic resin.
According to the present invention, (i) poly L-lactic acid (A component) having a weight average molecular weight of 50,000 to 300,000, poly D-lactic acid (B component) having a weight average molecular weight of 50,000 to 300,000, and A component and B component A fabric containing a polylactic acid filament containing 0.05 to 5 parts by weight of a phosphoric acid ester metal salt per 100 parts by weight in total with a temperature of 110 to 140 ° C. under conditions of 19 minutes,
(Ii) impregnating the dyed fabric with resin,
(Iii) applying a backing resin to the fabric impregnated with the resin;
The manufacturing method of the skin material for vehicle interior members including each process is provided.
In the manufacturing method, the fabric is preferably a woven fabric having a cover factor (CF) represented by the following formula of 1,800 or more.
CF =
(DWp / 1.1) 1/2 * MWp + (DWf / 1.1) 1/2 * MWf
(However, DWp is the warp total fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm).
The fabric is preferably a knitted fabric of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm.
 図1は、本発明に係る車両内装材において、布帛にバッキング樹脂が塗布されている様子を模式的に示す図である。 FIG. 1 is a diagram schematically showing a state in which a backing resin is applied to a fabric in a vehicle interior material according to the present invention.
1:布帛
2:バッキング樹脂
1: Fabric 2: Backing resin
 以下、本発明を詳細に説明する。
 本発明の車両内装部材用表皮材は、ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装部材用表皮材であって、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が400N/50mm以上である車両内装部材用表皮材である。ただし、前記引張り強度は、JIS L1096.8.12(1999年度版)により車両内装部材用表皮材の引張り強度を測定するものとする。該引張り強度が400N/50mm未満の場合は、車両内装部材用表皮材を使用する際に経時的に布帛強度が低下してしまい、実用性に乏しく好ましくない。なお、前記引張り強度は大きければ大きいほどよいが実用的には、1,000N/50mm以下でよい。
 本発明の車両内装部材用表皮材は例えば、以下の方法により製造することができる。
(ポリ乳酸)
 まず、本発明で用いるポリ乳酸フィラメントは、ポリL−乳酸成分および/またはポリD−乳酸成分よりなるポリ乳酸からなるフィラメントである。特に、結晶性のあるポリL−乳酸成分、ポリD−乳酸成分を用いることが好ましく、光学純度の高いポリL−乳酸成分、ポリD−乳酸成分よりのポリ乳酸組成物からなるフィラメントが好ましい。
 とりわけ好ましくは、融点が160℃以上の結晶性のポリL−乳酸成分、ポリD−乳酸成分を好適に用いることができる。
 前記ポリL−乳酸成分は、好ましくは90~100モル%、より好ましくは95~100モル%のL−乳酸単位、さらに高融点を実現するためには99~100モル%、加えてステレオ化度を優先するならば95~99モル%のL−乳酸単位から構成されることがさらに好ましい。他の単位としては、D−乳酸単位、乳酸以外の共重合成分単位が挙げられる。D−乳酸単位、乳酸以外の共重合成分単位は、好ましくは0~10モル%、より好ましくは0~5モル%、さらに好ましくは0~2モル%、特に好ましくは0~1モル%である。
 ポリD−乳酸成分は、好ましくは90~100モル%、より好ましくは95~100モル%のD−乳酸単位、さらに高融点を実現するためには99~100モル%、加えてステレオ化度を優先するならば95~99モル%のD−乳酸単位から構成されることがさらに好ましい。他の単位としては、L−乳酸単位、乳酸以外の共重合成分単位が挙げられる。L−乳酸単位、乳酸以外の共重合成分単位は、好ましくは0~10モル%、より好ましくは0~5モル%、さらに好ましくは0~2モル%、特に好ましくは0~1モル%である。
 共重合成分単位は、2個以上のエステル結合形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等由来の単位およびこれら種々の構成成分からなる各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等由来の単位が例示される。
 ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールとしてはエチレングリコール、プロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の脂肪族多価アルコール等あるいはビスフェノールにエチレンオキシドが付加させたものなどの芳香族多価アルコール等が挙げられる。ヒドロキシカルボン酸として、グリコール酸、ヒドロキシ酪酸、4−ヒドロキシ安息香酸等が挙げられる。ラクトンとしては、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
 ポリL−乳酸成分およびポリD−乳酸成分は、共に重量平均分子量が、好ましくは10万~50万、より好ましくは15万~35万である。また、ポリマー重量に対して10重量%以下であれば、他の成分がブレンドされていてもさしつかえない。
 前記ポリL−乳酸およびポリD−乳酸は、公知の方法で製造することができる。
 例えば、L−またはD−ラクチドを金属重合触媒の存在下、加熱し開環重合させ製造することができる。また、金属重合触媒を含有する低分子量のポリ乳酸を結晶化させた後、減圧下または不活性ガス気流下で加熱し固相重合させ製造することができる。さらに、有機溶媒の存在/非存在下で、乳酸を脱水縮合させる直接重合法で製造することができる。
 重合反応は、従来公知の反応容器で実施可能であり、例えばヘリカルリボン翼等、高粘度用攪拌翼を備えた縦型反応器あるいは横型反応器を単独、または並列して使用することができる。また、回分式あるいは連続式あるいは半回分式のいずれでも良いし、これらを組み合わせてもよい。
 重合開始剤としてアルコールを用いてもよい。かかるアルコールとしては、ポリ乳酸の重合を阻害せず不揮発性であることが好ましく、例えばデカノール、ドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノールなどを好適に用いることができる。
 固相重合法では、前述した開環重合法や乳酸の直接重合法によって得られた、比較的低分子量の乳酸ポリエステルをプレポリマーとして使用する。プレポリマーは、そのガラス転移温度(Tg)以上融点(Tm)未満の温度範囲にて予め結晶化させることが、融着防止の面から好ましい形態と言える。結晶化させたプレポリマーは固定された縦型或いは横型反応容器、またはタンブラーやキルンの様に容器自身が回転する反応容器(ロータリーキルン等)中に充填され、プレポリマーのガラス転移温度(Tg)以上融点(Tm)未満の温度範囲に加熱される。重合温度は、重合の進行に伴い段階的に昇温させても何ら問題はない。また、固相重合中に生成する水を効率的に除去する目的で前記反応容器類の内部を減圧することや、加熱された不活性ガス気流を流通する方法も好適に併用される。
 ポリ乳酸重合時使用された金属含有触媒は、従来公知の失活剤で不活性化しておくのが好ましい。かかる失活剤としては例えばイミノ基を有し且つ重合金属触媒に配位し得るキレート配位子の群からなる有機リガンドおよびジヒドリドオキソリン(I)酸、ジヒドリドテトラオキソ二リン(II,II)酸、ヒドリドトリオキソリン(III)酸、ジヒドリドペンタオキソ二リン(III,III)酸、ヒドリドペンタオキソ二リン(II,IV)酸、ドデカオキソ六リン(III)酸、ヒドリドオクタオキソ三リン(III,IV,IV)酸、オクタオキソ三リン(IV,III,IV)酸、ヒドリドヘキサオキソ二リン(III,V)酸、ヘキサオキソ二リン(IV)酸、デカオキソ四リン(IV)酸、ヘンデカオキソ四リン(IV)酸、エネアオキソ三リン(V,IV,IV)酸等の酸価数5以下の低酸化数リン酸、式 xHO・yPで表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタ燐酸系化合物と呼ぶことがある。)、およびこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステル、完全エスエテル、ホスホノ置換低級脂肪族カルボン酸誘導体などが例示される。
 触媒失活能から、式 xHO・yPで表され、x/y=3のオルトリン酸、2>x/y>1であり、縮合度より二リン酸、三リン酸、四リン酸、五リン酸等と称せられるポリリン酸およびこれらの混合物、x/y=1で表されるメタリン酸、なかでもトリメタリン酸、テトラメタリン酸、1>x/y>0で表され、五酸化リン構造の一部をのこした網目構造を有するウルトラリン酸(これらを総称してメタ燐酸系化合物と呼ぶことがある。)、およびこれらの酸の酸性塩、一価、多価のアルコール類、あるいはポリアルキレングリコール類の部分エステルリンオキソ酸あるいはこれらの酸性エステル類、ホスホノ置換低級脂肪族カルボン酸誘導体および上記のメタ燐酸系化合物が好適に使用される。
 前記メタ燐酸系化合物は、3~200程度の燐酸単位が縮合した環状のメタ燐酸あるいは立体網目状構造を有するウルトラ領域メタ燐酸あるいはそれらの塩(アルカル金属塩、アルカリ土類金属塩、オニウム塩)を包含する。
 なかでも環状メタ燐酸ナトリウムやウルトラ領域メタ燐酸ナトリウム、ホスホノ置換低級脂肪族カルボン酸誘導体のジヘキシルホスホノエチルアセテート(以下DHPAと略称することがある)などが好適に使用される。
 前記ポリ乳酸組成物のラクチド含有量は0~700ppmの範囲が選択される。さらに好ましくは0~500ppm、より好ましくは0~200ppm、特段に好ましくは0~100ppmの範囲が選択される。
 ポリ乳酸がかかる範囲のラクチド含有量を有することにより、溶融時の安定性を向上せしめ、効率よく安定に紡糸できる利点および繊維製品の耐加水分解性を高めることが出来るからである。
 ラクチド含有量をかかる範囲に低減させるには、ポリL−乳酸およびポリD−乳酸の重合時点からポリ乳酸製造の終了までの任意の段階において、従来公知のラクチド軽減処理あるいはこれらを組み合わせて実施することによって達成することが可能である。
 前記ポリ乳酸組成物の重量平均分子量は、10万~50万であることが好ましい。より好ましくは10万~30万である。さらにより好ましくは10.5万~25万である。
 ポリ乳酸組成物の重量平均分子量(Mw)と数平均分子量(Mn)との比を分子量分散(Mw/Mn)という。分子量分散が大きいことは、平均分子量に比較し、大きな分子や小さな分子の割合が多いことを意味する。
 すなわち、分子量分散の大きなポリ乳酸組成物、例えば重量平均分子量が25万程度で、分子量分散の3超の組成物では、重量平均分子量値25万より大きい分子の割合が大きくなる場合があり、この場合、溶融粘度が大きくなり、紡糸、延伸工程上好ましくない。また10万程度の比較的小さい重量平均分子量で分子量分散の大きなポリ乳酸組成物では、重量平均分子量値10万より小さい分子の割合が大きくなる場合があり、この場合、繊維の機械的物性の耐久性が小さくなり、使用上好ましくない。かかる観点より分子量分散の範囲は、好ましくは1.5~3.0、より好ましくは1.5~2.5、さらに好ましくは1.6~2.5の範囲である。
 重量平均分子量、数平均分子量は溶離液にクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリスチレン換算の重量平均分子量、数平均分子量値である。
 ポリ乳酸組成物におけるポリL−乳酸成分とポリD−乳酸成分との重量比は、90:10~10:90の範囲であることが好ましい。75:25~25:75の範囲であることがより好ましく、さらに好ましくは60:40~40:60の範囲であり、できるだけ50:50に近いことが好ましい。
 前記ポリ乳酸組成物は、ポリL−乳酸成分およびポリD−乳酸成分からなるステレオコンプレックスポリ乳酸を含有することが好ましい。ここで、ステレオコンプレックスポリ乳酸の含有率、すなわちステレオ化度は、示差走査熱量計(DSC)測定において、昇温過程における融解ピークのうち、ステレオコンプレックス結晶の融解に対応するピークの割合であり、下記式(a)で表され好ましくは80~100%、より好ましくは95~100%である。
 本発明でいう融点とはDSC測定による結晶融解ピーク温度であり、低温結晶融解ピーク温度とステレオコンプレックス結晶融解ピーク温度が存在する場合は後者を用いる。該温度が195℃以上(好ましくは195~250℃の範囲、より好ましくは200~240℃)であることが肝要である。ステレオコンプレックス結晶融解エンタルピーは、20J/g以上(より好ましくは30J/g以上)であることが好ましい。
 ステレオ化度=
[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)]×100 (a)
(ただし、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピー)
 前記ポリ乳酸組成物は、ポリL−乳酸成分単独、あるいはポリL−乳酸成分とポリD−乳酸成分とを所定の重量比で共存させ混合することにより製造することができる。
 混合は、溶媒の存在下で行うことができる。溶媒は、ポリL−乳酸とポリD−乳酸が溶解するものであれば、特に限定されるものではないが、例えば、クロロホルム、塩化メチレン、ジクロロエタン、テトラクロロエタン、フェノール、テトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミド、ブチロラクトン、トリオキサン、ヘキサフルオロイソプロパノール等の単独あるいは2種以上混合したものが好ましい。
 また混合は、溶媒の非存在下で行うことができる。即ち、ポリL−乳酸とポリD−乳酸とを所定量混合した後に溶融混練する方法、いずれか一方を溶融させた後に残る一方を加えて混練する方法を採用することができる。
 あるいは、ポリL−乳酸セグメントとポリD−乳酸セグメントが結合している、ステレオブロックポリ乳酸もポリ乳酸組成物として好適に用いることが出来る。
 ステレオブロックポリ乳酸はポリL−乳酸セグメントとポリD−乳酸セグメントが分子内で結合してなる、ブロック重合体である。
 このようなブロック重合体は、たとえば、逐次開環重合によって製造する方法や、ポリL−乳酸とポリD−乳酸を重合しておいてあとで鎖交換反応や鎖延長剤で結合する方法、ポリL−乳酸とポリD−乳酸を重合しておいてブレンド後固相重合して鎖延長する方法、立体選択開環重合触媒を用いてラセミラクチドから製造する方法など上記の基本的構成を持つブロック共重合体であれば製造法によらず用いることができる。
 しかしながら、逐次開環重合によって得られる高融点のステレオブロック重合体、固相重合法によって得られる重合体を用いることが製造の容易さからより好ましい。
 本発明で用いるポリ乳酸組成物およびステレオブロックポリ乳酸は、そのステレオ化度が、90%以上であることが好ましく、より好ましくは100%である。ステレオ化度は、DSC測定において融点のエンタルピーを比較することによって上記数式(a)によって決定することができる。
 本発明で用いるポリ乳酸成分には、ステレオコンプレックス相の形成を安定的且つ高度に進めるために特定の添加物を添加することが好ましい。たとえば、下記式(1)および/または(2)に示す燐酸金属塩が好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-I000005
 式(1)において、Rは、水素原子または炭素数1~4のアルキル基を表す。Rで表される炭素数1~4のアルキル基として、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、iso−ブチル基などが例示される。
 R、Rは、各々独立に水素原子または炭素数1~12のアルキル基を表す。炭素数1~12のアルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、iso−ブチル基、tert−ブチル基、アミル基、tert−アミル基、ヘキシル基、ヘプチル基、オクチル基、iso−オクチル基、tert−オクチル基、2−エチルヘキシル基、ノニル基、iso−ノニル基、デシル基、iso−デシル基、tert−デシル基、ウンデシル基、ドデシル基、tert−ドデシル基などが挙げられる。
 Mは、Na、K、Liなどのアルカリ金属原子またはMg、Ca等のアルカリ土類金属原子を表す。pは1または2を表す。
 式(1)で表される燐酸エステル金属塩のうち好ましいものとしては、例えばRが水素原子、R、Rがともにtert−ブチル基のものが挙げられる。
Figure JPOXMLDOC01-appb-I000006
 式(2)においてR、R、Rは、各々独立に、水素原子、炭素数1~12のアルキル基を表す。炭素数1~12のアルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、iso−ブチル基、tert−ブチル基、アミル基、tert−アミル基、ヘキシル基、ヘプチル基、オクチル基、iso−オクチル基、tert−オクチル基、2−エチルヘキシル基、ノニル基、iso−ノニル基、デシル基、iso−デシル基、tert−デシル基、ウンデシル基、ドデシル基、tert−ドデシル基などが挙げられる。
 Mは、Na、K、Liなどのアルカリ金属原子またはMg、Ca等のアルカリ土類金属原子を表す。pは1または2を表す。
 式(2)で表される燐酸エステル金属塩のうち好ましいものとしては、例えば、R、Rがメチル基、Rがtert−ブチル基のものが挙げられる。燐酸エステル金属塩として、(株)ADEKA製の商品名「アデカスタブ」NA−11が挙げられる。燐酸エステル金属塩は公知の方法により合成することができる。
 特開2003−192884号公報に記載のように、式(1)または(2)で表される化合物はポリ乳酸の結晶核剤として知られた化合物である。しかし、本発明において、式(1)、式(2)中のMおよびMは、アルカリ金属原子またはアルカリ土類金属原子であることを特徴とする。式(1)、式(2)中のMおよびMが、アルミニウムなどの他の金属である場合、化合物自体の耐熱性が低く、紡糸時に昇華物が発生し、紡糸することが困難な場合がある。
 燐酸エステル金属塩(C成分)は、平均一次粒径が好ましくは0.01~10μm、より好ましくは0.05~7μmである。粒径を0.01μmより小さくすることは工業的に困難であり、それほど小さくする必要もない。また10μmより大きいと、紡糸、延伸時、断糸の頻度が高まる。
 これらの金属塩は、ポリ乳酸成分に対して、好ましくは0.05wt%から5wt%、より好ましくは0.05wt%から0.5wt%、さらに好ましくは0.05wt%から0.2wt%用いることが好ましい。少なすぎる場合には、ステレオ化度を向上する効果が小さく、多すぎると樹脂自体を劣化させるので好ましくない。
 本発明に用いるポリ乳酸成分には、耐湿熱性改善剤が含有されてなくてもよいし、含有されていてもよい。ポリ乳酸成分に耐湿熱性改善剤が含有される場合、耐湿熱性改善剤として、特定官能基を有するカルボキシル基封止剤が好適に適用できる。中でも、特定官能基がカルボジイミド基であるカルボジイミド化合物がカルボキシル基を効果的に封止できるとともに、ポリ乳酸繊維構造物の色相、ステレオコンプレックス相の形成促進、耐湿熱性等の観点より好ましく選択される。
 すなわち、カルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、オクチルデシルカルボジイミド、ジ−tert−ブチルカルボジイミド、tert−ブチルイソプロピルカルボジイミド、ジベンジルカルボジイミド、ジフェニルカルボジイミド、N−オクタデシル−N’−フェニルカルボジイミド、N−ベンジル−N’−フェニルカルボジイミド、N−ベンジル−N’−トリルカルボジイミド、ジ−o−トルイルカルボジイミド、ジ−p−トルイルカルボジイミド、ビス(p−ニトロフェニル)カルボジイミド、ビス(p−アミノフェニル)カルボジイミド、ビス(p−ヒドロキシフェニル)カルボジイミド、ビス(p−クロロフェニル)カルボジイミド、ビス(o−クロロフェニル)カルボジイミド、ビス(o−エチルフェニル)カルボジイミド、ビス(p−エチルフェニル)カルボジイミドビス(o−イソプロピルフェニル)カルボジイミド、ビス(p−イソプロピルフェニル)カルボジイミド、ビス(o−イソブチルフェニル)カルボジイミド、ビス(p−イソブチルフェニル)カルボジイミド、ビス(2,5−ジクロロフェニル)カルボジイミド、p−フェニレンビス(o−トルイルカルボジイミド)、p−フェニレンビス(シクロヘキシルカルボジイミド、p−フェニレンンビス(p−クロロフェニルカルボジイミド)、2,6,2’,6’−テトライソプロピルジフェニルカルボジイミド、ヘキサメチレンビス(シクロヘキシルカルボジイミド)、エチレンビス(フェニルカルボジイミド)、エチレンビス(シクロヘキシルカルボジイミド)、ビス(2,6−ジメチルフェニル)カルボジイミド、ビス(2,6−ジエチルフェニル)カルボジイミド、ビス(2−エチル−6−イソプロピルフェニル)カルボジイミド、ビス(2−ブチル−6−イソプロピルフェニル)カルボジイミド、ビス(2,6−ジイソプロピルフェニル)カルボジイミド、ビス(2,6−ジ−tert−ブチルフェニル)カルボジイミド、ビス(2,4,6−トリメチルフェニル)カルボジイミド、ビス(2,4,6−トリイソプロピルフェニル)カルボジイミド、ビス(2,4,6−トリブチルフェニル)カルボジイミド、ジ−β−ナフチルカルボシイミド、N−トリル−N’−シクロヘキシルカルボシイミド、N−トリル−N’−フェニルカルボシイミド等のモノまたはジカルボジイミド化合物が例示される。
 なかでも反応性、安定性の観点からビス(2,6−ジイソプロピルフェニル)カルボジイミド、2,6,2’,6’−テトライソプロピルジフェニルカルボジイミドが好ましい。またこれらのうち工業的に入手可能なジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミドの使用も好適である。
 また、ポリ(1,6−シクロヘキサンカルボジイミド)、ポリ(4,4’−メチレンビスシクロヘキシルカルボジイミド)、ポリ(1,3−シクロヘキシレンカルボジイミド)、ポリ(1,4−シクロヘキシレンカルボジイミド)、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(3,3’−ジメチル−4,4’−ジフェニルメタンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(p−フェニレンカルボジイミド)、ポリ(m−フェニレンカルボジイミド)、ポリ(p−トリルカルボジイミド)、ポリ(ジイソプロピルカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)等のポリカルボジイミド等が挙げられる。
 市販のポリカルボジイミド化合物としては例えば日清紡績(株)より市販されている「カルボジライト」を用いることができ、具体的にはポリ乳酸樹脂改質剤として販売されている「カルボジライト」LA−1、あるいはポリエステル樹脂改質剤として販売されている「カルボジライト」HMV−8CA等を例示することができる。
 カルボジイミド化合物は、従来公知の方法により製造することもできる。例えば触媒として有機リン化合物または有機金属化合物を使用して、有機イソシアネートを70℃以上の温度で無溶媒あるいは不活性溶媒中で脱炭酸縮合反応に附することにより製造することができる。またポリカルボジイミド化合物は、従来公知のポリカルボジイミド化合物の製造法、例えば米国特許2941956号明細書、特公昭47−33279号公報、J.Org.Chem.28, 2069−2075(1963)、Chemical Review 1981,Vol.81 No.4、p619−621等により製造することができる。
 カルボジイミド化合物の含有量は、ポリ乳酸組成物100重量部当たり、好ましくは0.1~5.0重量部、さらに好ましくは0.5~2.0重量部である。かかる範囲のカルボジイミド化合物を含有するステレオコンプレックスポリ乳酸繊維は、100℃の沸水中30分間の処理後の分子量保持率が95%以上となり、さらに好ましい繊維を得ることができる。
 また従来公知のカルボキシル末端基封止剤の適用も好ましく選択される。
 本発明においてかかるカルボキシル基反応性の末端封止剤はポリ乳酸樹脂の末端カルボキシル基を封止するのみでなく、ポリ乳酸樹脂や各種添加剤の分解反応で生成するカルボキシル基や乳酸、ギ酸等の低分子化合物のカルボキシル基を封止することができる。また上記封止剤はカルボキシル基のみならず熱分解により酸性低分子化合物が生成する水酸基末端、あるいは樹脂組成物中に侵入する水分を封止できる化合物であることが好ましい。
 カルボキシル末端基封止剤としては、エポキシ化合物、オキサゾリン化合物、オキサジン化合物、イソシアネート化合物から選択される少なくとも1種の化合物を使用することが好ましく、なかでもエポキシ化合物、オキサゾリン化合物、イソシアネート化合物が好ましい。
 エポキシ化合物として、グリシジルエーテル化合物、グリシジルエステル化合物、グリシジルアミン化合物、グリシジルイミド化合物、グリシジルアミド化合物、脂環式エポキシ化合物を好ましく使用することができる。
 カルボキシル末端基封止剤を含有することで、カルボジイミド化合物の作用を向上させることができるのみならず、紡糸性、力学特性、耐熱性、耐久性に優れた繊維を得ることができる。
 本発明ポリ乳酸組成物中、上記の剤および後述する各種添加剤の配合方法は、開環重合法においては重合の任意の段階で、好ましくは重合後期に直接反応容器内に添加混練することもできる。ポリ乳酸組成物中の均一分散、色相悪化防止能を考慮すると、エクストルーダーやニーダーでの混練が好ましい。すなわち反応器のポリマー吐出口を一軸、あるいは多軸のエクストルーダーに連結し、添加することもできる。また重合後チップ化されたポリ乳酸組成物あるいは固相重合後のポリ乳酸粉粒体に各種剤を添加、エクストルーダーやニーダーで混練する方法などが例示される。
 このとき各種添加剤は、溶融液体、水溶液あるいは有機溶媒溶液あるいは分散液として直接エクストルーダーやニーダー中に計量添加するか、あるいはいわゆるサイドフィーダーよりポリ乳酸中に添加することもできる。
 またチップあるいは微粉状のマスターバッチとしてエクストルーダーやニーダーでポリ乳酸組成物と混練することも好ましい実施態様である。
(紡糸、延伸)
 次いで、前記ポリ乳酸組成物を常法により紡糸、延伸することにより、ポリ乳酸フィラメントを得ることができる。その際、延伸は1段でも2段以上の多段延伸でもよく、高強度の繊維を製造する観点から延伸倍率は3倍以上(より好ましくは4倍以上、特に好ましくは4~10倍)が好ましい。延伸の予熱はロールの昇温のほか、平板状あるいはピン状の接触式ヒータでもよい。延伸温度は70~140℃(より好ましくは80~130℃)の範囲が好ましい。また、延伸後の熱処理は、テンション下で170~200℃(より好ましくは180~200℃)で行うことが好ましい。熱処理は、ホットローラー、接触式加熱ヒータ、非接触式熱版などで行うことができる。
 かくして得られたポリ乳酸フィラメントにおいて、示差走査熱量計(DSC)測定で、融解ピーク温度(融点)が195℃以上であることが好ましい。該融点が195℃よりも低いと、染色の際の熱履歴によりフィラメントの糸強度が低下したり、収縮して硬くなるため好ましくない。なお、該融点は高いほど好ましいが、240℃以下であれば十分である。
 また、かかるポリ乳酸フィラメントにおいて、糸強度が2.5cN/dtex以上(より好ましくは3.0cN/dtex以上)であると、内装材の布帛強度が向上するため好ましい。上限は高いほど好ましいが実際上は10cN/dtex程度となる。また、布帛の風合いの点で、単糸繊度が0.01~20dtex(より好ましくは0.1~7dtex)、総繊度が30~500dtex、フィラメント数が20~200本の範囲内であることが好ましい。
(製編織)
 次いで、前記ポリ乳酸フィラメントを用いて布帛を製編織する。その際、該フィラメントに撚糸(Twisting)や空気加工、仮撚捲縮加工などを施してもよい。特に、ポリ乳酸フィラメントが仮撚捲縮加工糸であると、車両内装材がソフトな風合いを呈することになるため好ましい。また、該フィラメントに100~600T/m程度の撚糸が施されていると布帛の耐摩耗性が向上するだけでなく、布帛を製編織する際の取扱い性が向上し好ましい。また、前記ポリ乳酸フィラメントのみを用いて布帛を製編織することが好ましいが、布帛重量に対して70重量%以下であれば、ポリエチレンテレフタレート繊維など他の繊維が含まれていてもさしつかえない。
 また、前記の布帛において、布帛構造は特に限定されないが、ドビー織機、ジャガード織機などの織機、またはラッシェル編機、トリコット編機、丸編機などの編機により製編織された織物または編物であることが好ましい。もちろん、不織布や、マトリックス繊維と熱接着性繊維とからなる繊維構造体でもよい。例えば、織物の織組織としては、平織、綾織、朱子織等の三原組織、変化組織、たて二重織、よこ二重織等の片二重組織、たてビロードなどが例示される。編物の種類は、丸編物(よこ編物)であってもよいし、たて編物であってもよい。丸編物(よこ編物)の組織としては、平編、ゴム編、両面編、パール編、タック編、浮き編、片畔編、レース編、添え毛編等が好ましく例示され、たて編組織としては、シングルデンビー編、シングルアトラス編、ダブルコード編、ハーフトリコット編、裏毛編、ジャガード編等が例示される。層数も単層でもよいし、2層以上の多層でもよい。さらには、カットパイルおよび/またはループパイルからなる立毛部と地組織部とで構成される立毛布帛であってもよい。
(染色)
 次いで、前記の布帛を染色する。染色の方法は特に制限されず、染色加工の方法としては、ビーム染色、チーズ染色、パッケージ染色、液流染色など従来公知の染色加工方法でよい。また、染色加工条件としては、染色温度110~140℃、染色時間19分以内(好ましくは10~19分、より好ましくは12~18分)の範囲が好ましい。かかる染色加工の時間が19分を超えると、染色加工の際の熱履歴によりポリ乳酸繊維の繊維強度が低下するため、最終的に得られる車両内装材の布帛強度が低下するおそれがある。なお、染色温度は染色加工の際のキープ温度であり、染色時間は染色加工の際のキープ時間である。なお、染色加工の際、染色浴中に分散染料だけでなく助剤や各種機能剤が含まれていてもよい。
 また、染色工程の前に、温度50~100℃で弱アルカリ下の精練や温度80~100℃で、アルカリ条件下で減量加工を行ってもよい。また、染色の前および/または後に温度140~180℃で乾熱処理することは好ましいことである。
(樹脂の含浸)
 また、染色工程の後に、シリコン樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂などの樹脂をパデング法などの含浸法により布帛に付与することが好ましい。
 含浸処理することにより、布帛に含まれるポリ乳酸フィラメントが、前記樹脂により被覆されるため、車両内装材が湿熱環境下にさらされた後においても車両内装材に含まれるポリ乳酸フィラメントの繊維強度が低下し難くなり、優れた布帛強度が得られ好ましい。また同時に、布帛の耐摩耗性も向上し好ましい。
 その際、樹脂の付着量は布帛重量に対して0.5~5.0重量%の範囲が好ましい。さらには、染色工程の前および/または後に、吸水加工、撥水加工、起毛加工、難燃剤、紫外線遮蔽あるいは制電剤、抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤等の機能を付与する各種加工を付加適用してもよい。
 かくして得られた布帛において、布帛に含まれるポリ乳酸フィラメントの糸強度が2.3cN/dtex以上であることが好ましい。特に、染色前のポリ乳酸フィラメントの糸強度に対して90%以上保持されることが好ましい。
 また、かかる布帛において、目付けとしては、30~1,000gr/mの範囲内であることが好ましい。また、布帛が織物である場合は、下記式により算出されるカバーファクター(CF)が1,800以上(より好ましくは2,500~4,000)あることが、布帛強度、布帛の耐摩耗性および風合いの点で好ましい。
CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
 ただし、DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。
 また、前記布帛が編物である場合には、30~100コース/2.54cm、20~60ウエール/2.54cmの密度であると、布帛強度、布帛の耐摩耗性および風合いの点で好ましい。
(バッキング(Backing))
 本発明の車両内装部材用表皮材は前記の布帛単独で構成されていてもよいが、図1に模式的に示すように、布帛の表裏どちらか一方にバッキング樹脂が塗布量30g/m以上(好ましくは80~120g/m)で塗布されていると、布帛強度が向上し好ましい。本発明にかかるバッキング樹脂としては、アクリル系樹脂、塩化ビニリデン系樹脂、ラテックス系樹脂、塩化ビニル系樹脂、ウレタン系樹脂等の材料を用いることができるが、なかでも、前記バッキング樹脂が、アクリル酸エステル樹脂、メタクリル酸エステル樹脂、アクリルアミド樹脂などのアクリル樹脂を含むことが好ましい。なお、布帛にバッキング樹脂を塗布する方法としては従来公知の方法でよい。バッキング樹脂中には難燃剤を含有させてもよい。
 かくして得られた本発明の車両内装部材用表皮材において、前述のように、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が400N/50mm以上であることが肝要である。なお、該引張り強度を得るには、例えば前記のように、ポリ乳酸フィラメントとしてステレオコンプレックスポリ乳酸フィラメントを用いて高密度織物を製織し、染色加工の際の染色時間を短くし、含浸法により樹脂を布帛に付与し、布帛の表裏どちらか一方にバッキング樹脂を塗布するとよい。これらの相乗作用により、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度を400N/50mm以上とすることができる。
 本発明の車両内装部材用表皮材は、湿熱環境下にさらされた後においても優れた布帛強度を有するので、カーシート表皮材、車両床材、車両天井材などの車両内装部材として好適に使用される。
Hereinafter, the present invention will be described in detail.
The skin material for vehicle interior members of the present invention is a skin material for vehicle interior members composed of a fabric containing polylactic acid filaments and subjected to dyeing, and is in an environment of a temperature of 50 ° C. and a humidity of 95% RH. A skin material for a vehicle interior member having a tensile strength of 400 N / 50 mm or more after being exposed for 1,000 hours. However, the said tensile strength shall measure the tensile strength of the skin | leather material for vehicle interior members according to JISL1096.8.12 (1999 version). When the tensile strength is less than 400 N / 50 mm, the fabric strength decreases with time when using the vehicle interior member skin material, which is not preferable because of lack of practicality. The tensile strength is preferably as large as possible, but practically, it may be 1,000 N / 50 mm or less.
The skin material for a vehicle interior member according to the present invention can be manufactured, for example, by the following method.
(Polylactic acid)
First, the polylactic acid filament used in the present invention is a filament made of polylactic acid comprising a poly L-lactic acid component and / or a poly D-lactic acid component. In particular, it is preferable to use a poly L-lactic acid component and a poly D-lactic acid component having crystallinity, and a filament made of a poly L-lactic acid component having a high optical purity and a polylactic acid composition composed of a poly D-lactic acid component is preferable.
Particularly preferably, a crystalline poly L-lactic acid component or poly D-lactic acid component having a melting point of 160 ° C. or higher can be suitably used.
The poly L-lactic acid component is preferably 90 to 100 mol%, more preferably 95 to 100 mol% of L-lactic acid units, and 99 to 100 mol% for realizing a high melting point, in addition to the degree of stereoization. Is preferred, it is more preferably composed of 95 to 99 mol% of L-lactic acid units. Examples of other units include D-lactic acid units and copolymer component units other than lactic acid. The D-lactic acid unit and the copolymer component unit other than lactic acid are preferably 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 2 mol%, and particularly preferably 0 to 1 mol%. .
The poly-D-lactic acid component is preferably 90 to 100 mol%, more preferably 95 to 100 mol% of D-lactic acid units, and 99 to 100 mol% for realizing a high melting point, and in addition, the degree of stereoization is increased. If preferred, it is more preferably composed of 95 to 99 mol% of D-lactic acid units. Examples of other units include L-lactic acid units and copolymer component units other than lactic acid. The L-lactic acid unit and the copolymer component unit other than lactic acid are preferably 0 to 10 mol%, more preferably 0 to 5 mol%, still more preferably 0 to 2 mol%, and particularly preferably 0 to 1 mol%. .
The copolymer component unit is a unit derived from dicarboxylic acid, polyhydric alcohol, hydroxycarboxylic acid, lactone, etc. having a functional group capable of forming two or more ester bonds, and various polyesters, various polyethers composed of these various components, Examples are derived from various polycarbonates and the like.
Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid. Polyhydric alcohols include ethylene glycol, propylene glycol, propanediol, butanediol, pentanediol, hexanediol, octanediol, glycerin, sorbitan, neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol Aliphatic polyhydric alcohols such as aliphatic polyhydric alcohols, and aromatic polyhydric alcohols obtained by adding ethylene oxide to bisphenol. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, 4-hydroxybenzoic acid and the like. Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone, and the like.
The poly L-lactic acid component and the poly D-lactic acid component both have a weight average molecular weight of preferably 100,000 to 500,000, more preferably 150,000 to 350,000. Further, if it is 10% by weight or less based on the polymer weight, other components may be blended.
The poly L-lactic acid and poly D-lactic acid can be produced by a known method.
For example, L- or D-lactide can be produced by heating and ring-opening polymerization in the presence of a metal polymerization catalyst. Moreover, after crystallizing low molecular weight polylactic acid containing a metal polymerization catalyst, it can be produced by solid phase polymerization by heating under reduced pressure or in an inert gas stream. Further, it can be produced by a direct polymerization method in which lactic acid is subjected to dehydration condensation in the presence / absence of an organic solvent.
The polymerization reaction can be carried out in a conventionally known reaction vessel. For example, a vertical reactor or a horizontal reactor equipped with a stirring blade for high viscosity, such as a helical ribbon blade, can be used alone or in parallel. Moreover, any of a batch type, a continuous type, a semibatch type may be sufficient, and these may be combined.
Alcohol may be used as a polymerization initiator. Such alcohol is preferably non-volatile without inhibiting the polymerization of polylactic acid. For example, decanol, dodecanol, tetradecanol, hexadecanol, octadecanol and the like can be suitably used.
In the solid phase polymerization method, a relatively low molecular weight lactic acid polyester obtained by the above-described ring-opening polymerization method or lactic acid direct polymerization method is used as a prepolymer. It can be said that the prepolymer is preferably crystallized in advance in the temperature range of the glass transition temperature (Tg) or higher and lower than the melting point (Tm) from the viewpoint of preventing fusion. The crystallized prepolymer is filled in a fixed vertical or horizontal reaction vessel, or a reaction vessel (rotary kiln, etc.) where the vessel itself rotates like a tumbler or kiln, and the prepolymer glass transition temperature (Tg) or higher. Heated to a temperature range below the melting point (Tm). There is no problem even if the polymerization temperature is raised stepwise as the polymerization proceeds. In addition, for the purpose of efficiently removing water generated during solid phase polymerization, a method of reducing the pressure inside the reaction vessels or circulating a heated inert gas stream is also preferably used.
The metal-containing catalyst used at the time of polylactic acid polymerization is preferably deactivated with a conventionally known deactivator. Examples of such a deactivator include an organic ligand consisting of a group of chelate ligands having an imino group and capable of coordinating to a polymerized metal catalyst, dihydridooxoline (I) acid, dihydridotetraoxodilin (II, II ) Acid, hydridotrioxoline (III) acid, dihydridopentaoxodiphosphoric acid (III, III) acid, hydridopentaoxodiphosphoric acid (II, IV) acid, dodecaoxohexaphosphorus (III) acid, hydridooctaoxotriphosphorus ( III, IV, IV) acid, octaoxotriphosphoric acid (IV, III, IV), hydridohexaoxodiphosphoric acid (III, V), hexaoxodiphosphoric acid (IV), decaoxotetralinic acid (IV), hendecaoxotetra Low oxidation number phosphoric acid having an acid number of 5 or less, such as phosphoric (IV) acid, eneoxotriphosphorus (V, IV, IV) acid, formula xH 2 O ・ yP 2 O 5 X / y = 3 orthophosphoric acid, 2> x / y> 1, and polyphosphoric acid called diphosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid, etc., based on the degree of condensation, and these Mixture, metaphosphoric acid represented by x / y = 1, especially trimetaphosphoric acid, tetrametaphosphoric acid, 1> x / y> 0, ultra having a network structure with a part of the phosphorus pentoxide structure Phosphoric acid (sometimes collectively referred to as metaphosphoric acid compounds), and acid salts of these acids, mono- and polyhydric alcohols, or partial esters of polyalkylene glycols, complete ethers, phosphono Examples thereof include substituted lower aliphatic carboxylic acid derivatives.
From the catalyst deactivation ability, the formula xH 2 O ・ yP 2 O 5 X / y = 3 orthophosphoric acid, 2> x / y> 1, and polyphosphoric acid called diphosphoric acid, triphosphoric acid, tetraphosphoric acid, pentaphosphoric acid, etc., based on the degree of condensation, and these Mixture, metaphosphoric acid represented by x / y = 1, especially trimetaphosphoric acid, tetrametaphosphoric acid, 1> x / y> 0, ultra having a network structure with a part of the phosphorus pentoxide structure Phosphoric acid (sometimes collectively referred to as metaphosphoric acid compounds), acidic salts of these acids, monovalent and polyhydric alcohols, or partial ester phosphorus oxoacids of polyalkylene glycols or these The acidic esters, phosphono-substituted lower aliphatic carboxylic acid derivatives and the above-mentioned metaphosphoric acid compounds are preferably used.
The metaphosphoric acid compound is a cyclic metaphosphoric acid in which about 3 to 200 phosphoric acid units are condensed, an ultra-regional metaphosphoric acid having a three-dimensional network structure, or a salt thereof (alkal metal salt, alkaline earth metal salt, onium salt). Is included.
Among them, cyclic sodium metaphosphate, ultra-region sodium metaphosphate, phosphono-substituted lower aliphatic carboxylic acid derivative dihexylphosphonoethyl acetate (hereinafter sometimes abbreviated as DHPA) and the like are preferably used.
The lactide content of the polylactic acid composition is selected in the range of 0 to 700 ppm. More preferably, a range of 0 to 500 ppm, more preferably 0 to 200 ppm, and particularly preferably 0 to 100 ppm is selected.
This is because when polylactic acid has a lactide content in such a range, the stability at the time of melting can be improved, and the advantages of efficient and stable spinning and the hydrolysis resistance of the fiber product can be enhanced.
In order to reduce the lactide content to such a range, a conventionally known lactide reduction treatment or a combination thereof is performed at any stage from the polymerization of poly L-lactic acid and poly D-lactic acid to the end of polylactic acid production. Can be achieved.
The polylactic acid composition preferably has a weight average molecular weight of 100,000 to 500,000. More preferably, it is 100,000 to 300,000. Even more preferably, it is 105,000 to 250,000.
The ratio between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polylactic acid composition is referred to as molecular weight dispersion (Mw / Mn). A large molecular weight dispersion means that there are many ratios of large molecules and small molecules compared to the average molecular weight.
That is, in a polylactic acid composition having a large molecular weight dispersion, for example, a composition having a weight average molecular weight of about 250,000 and a molecular weight dispersion of more than 3, the ratio of molecules having a weight average molecular weight value of more than 250,000 may increase. In such a case, the melt viscosity becomes large, which is not preferable in the spinning and stretching processes. In addition, in a polylactic acid composition having a relatively small weight average molecular weight of about 100,000 and a large molecular weight dispersion, the proportion of molecules having a weight average molecular weight value of less than 100,000 may increase. In this case, the durability of the mechanical properties of the fiber is increased. This is not preferable in use. From this viewpoint, the range of molecular weight dispersion is preferably 1.5 to 3.0, more preferably 1.5 to 2.5, and still more preferably 1.6 to 2.5.
A weight average molecular weight and a number average molecular weight are a weight average molecular weight and a number average molecular weight in terms of standard polystyrene as measured by gel permeation chromatography (GPC) using chloroform as an eluent.
The weight ratio of the poly L-lactic acid component to the poly D-lactic acid component in the polylactic acid composition is preferably in the range of 90:10 to 10:90. It is more preferably in the range of 75:25 to 25:75, still more preferably in the range of 60:40 to 40:60, and preferably as close to 50:50 as possible.
The polylactic acid composition preferably contains a stereocomplex polylactic acid composed of a poly L-lactic acid component and a poly D-lactic acid component. Here, the content rate of stereocomplex polylactic acid, that is, the degree of stereoification, is the ratio of the peak corresponding to the melting of the stereocomplex crystal in the melting peak in the temperature rising process in the differential scanning calorimeter (DSC) measurement, It is represented by the following formula (a), preferably 80 to 100%, more preferably 95 to 100%.
The melting point in the present invention is a crystal melting peak temperature measured by DSC, and the latter is used when a low temperature crystal melting peak temperature and a stereocomplex crystal melting peak temperature exist. It is important that the temperature is 195 ° C. or higher (preferably in the range of 195 to 250 ° C., more preferably 200 to 240 ° C.). The stereocomplex crystal melting enthalpy is preferably 20 J / g or more (more preferably 30 J / g or more).
Stereo level =
[(ΔHms / ΔHms0) / (ΔHmh / ΔHmh0 + ΔHms / ΔHms0)] × 100 (a)
(However, ΔHms0 = 203.4 J / g, ΔHmh0 = 142 J / g, ΔHms = melting enthalpy of stereocomplex melting point, ΔHmh = melting enthalpy of homocrystal)
The polylactic acid composition can be produced by mixing a poly L-lactic acid component alone or a poly L-lactic acid component and a poly D-lactic acid component in a predetermined weight ratio.
Mixing can be performed in the presence of a solvent. The solvent is not particularly limited as long as it dissolves poly L-lactic acid and poly D-lactic acid. For example, chloroform, methylene chloride, dichloroethane, tetrachloroethane, phenol, tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, butyrolactone, trioxane, hexafluoroisopropanol or the like alone or in combination of two or more are preferred.
The mixing can be performed in the absence of a solvent. That is, a method of melt kneading after mixing a predetermined amount of poly L-lactic acid and poly D-lactic acid, or a method of adding and kneading one of them after melting one of them can be employed.
Alternatively, stereoblock polylactic acid in which a poly L-lactic acid segment and a poly D-lactic acid segment are bonded can also be suitably used as the polylactic acid composition.
Stereoblock polylactic acid is a block polymer in which a poly L-lactic acid segment and a poly D-lactic acid segment are bonded in the molecule.
Such block polymers include, for example, a method of producing by sequential ring-opening polymerization, a method of polymerizing poly (L-lactic acid) and poly (D-lactic acid), and then binding them with a chain exchange reaction or a chain extender. A block copolymer having the above-mentioned basic constitution such as a method of polymerizing L-lactic acid and poly-D-lactic acid and blending and then solid-phase polymerizing to chain-extend, a method of producing from racemic lactide using a stereoselective ring-opening polymerization catalyst, etc. Any polymer can be used regardless of the production method.
However, it is more preferable from the viewpoint of ease of production to use a high-melting stereoblock polymer obtained by sequential ring-opening polymerization and a polymer obtained by a solid phase polymerization method.
The polylactic acid composition and stereoblock polylactic acid used in the present invention preferably have a stereogenicity of 90% or more, more preferably 100%. The degree of stereoification can be determined by the above formula (a) by comparing the enthalpies of melting points in DSC measurement.
It is preferable to add a specific additive to the polylactic acid component used in the present invention in order to stably and highly promote the formation of a stereocomplex phase. For example, preferred examples include metal phosphates represented by the following formulas (1) and / or (2).
Figure JPOXMLDOC01-appb-I000005
In formula (1), R 1 Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 1 Examples of the alkyl group having 1 to 4 carbon atoms represented by the formula: methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group and the like.
R 2 , R 3 Each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, amyl group, tert-amyl group, hexyl group, heptyl group, octyl group, iso-octyl group, tert-octyl group, 2-ethylhexyl group, nonyl group, iso-nonyl group, decyl group, iso-decyl group, tert-decyl group, An undecyl group, a dodecyl group, a tert-dodecyl group, etc. are mentioned.
M 1 Represents an alkali metal atom such as Na, K or Li or an alkaline earth metal atom such as Mg or Ca. p represents 1 or 2.
Among the phosphoric acid ester metal salts represented by the formula (1), for example, R 1 Is a hydrogen atom, R 2 , R 3 Are both tert-butyl groups.
Figure JPOXMLDOC01-appb-I000006
R in formula (2) 4 , R 5 , R 6 Each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Examples of the alkyl group having 1 to 12 carbon atoms include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, amyl group, tert-amyl group, hexyl group, heptyl group, octyl group, iso-octyl group, tert-octyl group, 2-ethylhexyl group, nonyl group, iso-nonyl group, decyl group, iso-decyl group, tert-decyl group, An undecyl group, a dodecyl group, a tert-dodecyl group, etc. are mentioned.
M 2 Represents an alkali metal atom such as Na, K or Li or an alkaline earth metal atom such as Mg or Ca. p represents 1 or 2.
Among the phosphoric acid ester metal salts represented by the formula (2), for example, R 4 , R 6 Is a methyl group, R 5 Is a tert-butyl group. As a phosphoric acid ester metal salt, trade name “ADK STAB” NA-11 manufactured by ADEKA Co., Ltd. may be mentioned. The phosphoric acid ester metal salt can be synthesized by a known method.
As described in JP-A-2003-192884, the compound represented by the formula (1) or (2) is a compound known as a crystal nucleating agent for polylactic acid. However, in the present invention, M in the formulas (1) and (2) 1 And M 2 Is an alkali metal atom or an alkaline earth metal atom. M in Formula (1) and Formula (2) 1 And M 2 However, in the case of other metals such as aluminum, the heat resistance of the compound itself is low, and a sublimate is generated during spinning, which may be difficult to spin.
The phosphoric acid ester metal salt (component C) preferably has an average primary particle size of 0.01 to 10 μm, more preferably 0.05 to 7 μm. It is industrially difficult to make the particle size smaller than 0.01 μm, and it is not necessary to make it so small. On the other hand, if it is larger than 10 μm, the frequency of yarn breakage increases during spinning and drawing.
These metal salts are preferably used in an amount of 0.05 wt% to 5 wt%, more preferably 0.05 wt% to 0.5 wt%, still more preferably 0.05 wt% to 0.2 wt%, relative to the polylactic acid component. Is preferred. When the amount is too small, the effect of improving the degree of stereoization is small, and when too large, the resin itself is deteriorated, which is not preferable.
The polylactic acid component used in the present invention may or may not contain a moisture and heat resistance improver. When the polylactic acid component contains a heat and humidity resistance improver, a carboxyl group-capping agent having a specific functional group can be suitably applied as the heat and humidity resistance improver. Among these, a carbodiimide compound whose specific functional group is a carbodiimide group can be preferably selected from the viewpoints of effectively sealing the carboxyl group, promoting the formation of the color of the polylactic acid fiber structure, the formation of a stereocomplex phase, and heat and heat resistance.
That is, carbodiimide compounds include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, octyldecylcarbodiimide, di-tert-butylcarbodiimide, tert-butylisopropylcarbodiimide, dibenzylcarbodiimide, N-octadecylimide N'-phenylcarbodiimide, N-benzyl-N'-phenylcarbodiimide, N-benzyl-N'-tolylcarbodiimide, di-o-toluylcarbodiimide, di-p-toluylcarbodiimide, bis (p-nitrophenyl) carbodiimide, bis (P-aminophenyl) carbodiimide, bis (p-hydroxyphenyl) carbodiimide, (P-chlorophenyl) carbodiimide, bis (o-chlorophenyl) carbodiimide, bis (o-ethylphenyl) carbodiimide, bis (p-ethylphenyl) carbodiimidebis (o-isopropylphenyl) carbodiimide, bis (p-isopropylphenyl) carbodiimide , Bis (o-isobutylphenyl) carbodiimide, bis (p-isobutylphenyl) carbodiimide, bis (2,5-dichlorophenyl) carbodiimide, p-phenylenebis (o-toluylcarbodiimide), p-phenylenebis (cyclohexylcarbodiimide, p- Phenylenebis (p-chlorophenylcarbodiimide), 2,6,2 ′, 6′-tetraisopropyldiphenylcarbodiimide, hexamethylenebis (cyclohexylcarbodiimide) ), Ethylenebis (phenylcarbodiimide), ethylenebis (cyclohexylcarbodiimide), bis (2,6-dimethylphenyl) carbodiimide, bis (2,6-diethylphenyl) carbodiimide, bis (2-ethyl-6-isopropylphenyl) Carbodiimide, bis (2-butyl-6-isopropylphenyl) carbodiimide, bis (2,6-diisopropylphenyl) carbodiimide, bis (2,6-di-tert-butylphenyl) carbodiimide, bis (2,4,6-trimethyl) Phenyl) carbodiimide, bis (2,4,6-triisopropylphenyl) carbodiimide, bis (2,4,6-tributylphenyl) carbodiimide, di-β-naphthylcarbosiimide, N-tolyl-N′-cyclohexylcarbosi Imide Mono- or di-carbodiimide compounds such as N- tolyl -N'- phenyl carbocyclylalkyl imide and the like.
Of these, bis (2,6-diisopropylphenyl) carbodiimide and 2,6,2 ′, 6′-tetraisopropyldiphenylcarbodiimide are preferred from the viewpoints of reactivity and stability. Of these, industrially available dicyclohexylcarbodiimide and diisopropylcarbodiimide are also suitable.
Also, poly (1,6-cyclohexanecarbodiimide), poly (4,4′-methylenebiscyclohexylcarbodiimide), poly (1,3-cyclohexylenecarbodiimide), poly (1,4-cyclohexylenecarbodiimide), poly (4 , 4′-diphenylmethanecarbodiimide), poly (3,3′-dimethyl-4,4′-diphenylmethanecarbodiimide), poly (naphthylenecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly And polycarbodiimides such as (p-tolylcarbodiimide), poly (diisopropylcarbodiimide), poly (methyldiisopropylphenylenecarbodiimide), and poly (triethylphenylenecarbodiimide).
As the commercially available polycarbodiimide compound, for example, “Carbodilite” commercially available from Nisshinbo Co., Ltd. can be used. Specifically, “Carbodilite” LA-1 sold as a polylactic acid resin modifier, or “Carbodilite” HMV-8CA sold as a polyester resin modifier can be exemplified.
A carbodiimide compound can also be manufactured by a conventionally well-known method. For example, it can be produced by subjecting an organic isocyanate to a decarboxylation condensation reaction in a solvent-free or inert solvent at a temperature of 70 ° C. or higher using an organic phosphorus compound or an organometallic compound as a catalyst. The polycarbodiimide compound may be a conventionally known method for producing a polycarbodiimide compound, for example, US Pat. No. 2,941,956, Japanese Examined Patent Publication No. 47-33279, J. Pat. Org. Chem. 28, 2069-2075 (1963), Chemical Review 1981, Vol. 81 no. 4, p619-621 and the like.
The content of the carbodiimide compound is preferably 0.1 to 5.0 parts by weight, more preferably 0.5 to 2.0 parts by weight, per 100 parts by weight of the polylactic acid composition. A stereocomplex polylactic acid fiber containing a carbodiimide compound in such a range has a molecular weight retention of 95% or more after treatment in boiling water at 100 ° C. for 30 minutes, and a more preferable fiber can be obtained.
Moreover, application of a conventionally known carboxyl end group capping agent is also preferably selected.
In the present invention, the carboxyl group-reactive terminal blocking agent not only seals the terminal carboxyl group of the polylactic acid resin, but also includes a carboxyl group generated by the decomposition reaction of the polylactic acid resin and various additives, lactic acid, formic acid and the like. The carboxyl group of a low molecular compound can be sealed. Moreover, it is preferable that the said sealing agent is a compound which can seal | block the hydroxyl group terminal which an acidic low molecular weight compound produces | generates not only by a carboxyl group but by thermal decomposition, or the water | moisture content which penetrate | invades into a resin composition.
As the carboxyl end group blocking agent, it is preferable to use at least one compound selected from an epoxy compound, an oxazoline compound, an oxazine compound, and an isocyanate compound, and among them, an epoxy compound, an oxazoline compound, and an isocyanate compound are preferable.
As the epoxy compound, glycidyl ether compounds, glycidyl ester compounds, glycidyl amine compounds, glycidyl imide compounds, glycidyl amide compounds, and alicyclic epoxy compounds can be preferably used.
By containing a carboxyl end group capping agent, not only can the action of the carbodiimide compound be improved, but fibers that are excellent in spinnability, mechanical properties, heat resistance, and durability can be obtained.
In the polylactic acid composition of the present invention, the above-mentioned agent and various additives described later may be added and kneaded directly into the reaction vessel at any stage of the polymerization in the ring-opening polymerization method, preferably at a later stage of the polymerization. it can. In consideration of uniform dispersion in the polylactic acid composition and ability to prevent hue deterioration, kneading with an extruder or kneader is preferred. In other words, the polymer discharge port of the reactor can be connected to a uniaxial or multiaxial extruder and added. Examples thereof include a method of adding various agents to a polylactic acid composition formed into chips after polymerization or a polylactic acid powder after solid phase polymerization and kneading with an extruder or kneader.
At this time, various additives can be added directly into an extruder or kneader as a molten liquid, an aqueous solution, an organic solvent solution or a dispersion, or added to polylactic acid from a so-called side feeder.
It is also a preferred embodiment that the polylactic acid composition is kneaded with an extruder or kneader as a chip or a fine powder masterbatch.
(Spinning, drawing)
Next, a polylactic acid filament can be obtained by spinning and stretching the polylactic acid composition by a conventional method. In this case, the stretching may be one-stage or multistage stretching of two or more stages, and the stretching ratio is preferably 3 times or more (more preferably 4 times or more, particularly preferably 4 to 10 times) from the viewpoint of producing a high-strength fiber. . The preheating for stretching may be a plate-type or pin-type contact heater in addition to the temperature rise of the roll. The stretching temperature is preferably in the range of 70 to 140 ° C (more preferably 80 to 130 ° C). Further, the heat treatment after stretching is preferably performed at 170 to 200 ° C. (more preferably 180 to 200 ° C.) under tension. The heat treatment can be performed with a hot roller, a contact heater, a non-contact hot plate, or the like.
The polylactic acid filament thus obtained preferably has a melting peak temperature (melting point) of 195 ° C. or higher by differential scanning calorimetry (DSC) measurement. When the melting point is lower than 195 ° C., it is not preferable because the yarn strength of the filament is lowered due to the thermal history during dyeing or shrinks and becomes hard. The higher the melting point, the better, but 240 ° C. or lower is sufficient.
Moreover, in such a polylactic acid filament, it is preferable that the yarn strength is 2.5 cN / dtex or more (more preferably 3.0 cN / dtex or more) because the fabric strength of the interior material is improved. The higher the upper limit, the better, but in practice it is about 10 cN / dtex. Further, in terms of the texture of the fabric, the single yarn fineness is 0.01 to 20 dtex (more preferably 0.1 to 7 dtex), the total fineness is 30 to 500 dtex, and the number of filaments is within the range of 20 to 200. preferable.
(Weaving and weaving)
Next, a fabric is knitted and woven using the polylactic acid filament. At that time, the filament may be subjected to twisting, air processing, false twist crimping, or the like. In particular, it is preferable that the polylactic acid filament is a false twist crimped yarn because the vehicle interior material exhibits a soft texture. Further, it is preferable that a twisted yarn of about 100 to 600 T / m is applied to the filament because not only the wear resistance of the fabric is improved but also the handleability when the fabric is knitted or woven is improved. In addition, it is preferable to fabricate and weave the fabric using only the polylactic acid filament, but other fibers such as polyethylene terephthalate fiber may be included as long as it is 70% by weight or less based on the weight of the fabric.
The fabric structure of the fabric is not particularly limited, but is a woven or knitted fabric woven or knitted by a loom such as a dobby loom or jacquard loom, or a knitting machine such as a raschel knitting machine, tricot knitting machine, or circular knitting machine. It is preferable. Of course, a non-woven fabric or a fiber structure composed of matrix fibers and heat-bondable fibers may be used. For example, examples of the woven structure of the woven fabric include a three-layer structure such as plain weave, twill weave and satin weave, a change structure, a single double structure such as a vertical double weave and a horizontal double weave, and a vertical velvet. The type of knitted fabric may be a circular knitted fabric (weft knitted fabric) or a warp knitted fabric. Preferred examples of the structure of the circular knitted fabric (weft knitted fabric) include a flat knitted fabric, rubber knitted fabric, double-sided knitted fabric, pearl knitted fabric, tucked knitted fabric, float knitted fabric, one-sided knitted fabric, lace knitted fabric, and bristle knitted fabric. Examples include a single denby knitting, a single atlas knitting, a double cord knitting, a half tricot knitting, a back hair knitting, and a jacquard knitting. The number of layers may be a single layer or a multilayer of two or more layers. Furthermore, it may be a raised fabric composed of a raised portion made of a cut pile and / or a loop pile and a ground tissue portion.
(staining)
Next, the fabric is dyed. The dyeing method is not particularly limited, and the dyeing method may be a conventionally known dyeing method such as beam dyeing, cheese dyeing, package dyeing, or liquid dyeing. The dyeing processing conditions are preferably a dyeing temperature of 110 to 140 ° C. and a dyeing time within 19 minutes (preferably 10 to 19 minutes, more preferably 12 to 18 minutes). If the time for such dyeing process exceeds 19 minutes, the fiber strength of the polylactic acid fiber decreases due to the thermal history during the dyeing process, and the fabric strength of the finally obtained vehicle interior material may decrease. The dyeing temperature is a keep temperature at the time of dyeing and the dyeing time is a keep time at the time of dyeing. In the dyeing process, not only the disperse dye but also auxiliary agents and various functional agents may be contained in the dyeing bath.
Further, prior to the dyeing step, scouring under a weak alkali at a temperature of 50 to 100 ° C. or weight reduction processing at an temperature of 80 to 100 ° C. may be performed under alkaline conditions. Further, it is preferable to perform a dry heat treatment at a temperature of 140 to 180 ° C. before and / or after dyeing.
(Resin impregnation)
In addition, after the dyeing step, it is preferable to apply a resin such as a silicon resin, a polyethylene resin, or a polyethylene terephthalate resin to the fabric by an impregnation method such as a padding method.
Since the polylactic acid filament contained in the fabric is coated with the resin by the impregnation treatment, the fiber strength of the polylactic acid filament contained in the vehicle interior material is improved even after the vehicle interior material is exposed to a humid heat environment. This is preferable because it is difficult to lower and an excellent fabric strength is obtained. At the same time, the wear resistance of the fabric is also preferably improved.
At that time, the amount of the resin adhered is preferably in the range of 0.5 to 5.0% by weight with respect to the fabric weight. Furthermore, before and / or after the dyeing process, water-absorbing, water-repellent, brushed, flame retardant, UV shielding or antistatic agent, antibacterial agent, deodorant, insect repellent, phosphorescent agent, retroreflective agent, minus Various processes that provide functions such as an ion generating agent may be additionally applied.
In the fabric thus obtained, the yarn strength of the polylactic acid filament contained in the fabric is preferably 2.3 cN / dtex or more. In particular, 90% or more of the yarn strength of the polylactic acid filament before dyeing is preferably maintained.
Further, in such a fabric, the basis weight is 30 to 1,000 gr / m. 2 It is preferable to be within the range. Further, when the fabric is a woven fabric, the cover factor (CF) calculated by the following formula is 1,800 or more (more preferably 2,500 to 4,000), so that the strength of the fabric and the abrasion resistance of the fabric. And preferred in terms of texture.
CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
However, DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm).
Further, when the fabric is a knitted fabric, the density of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm is preferable in terms of fabric strength, fabric wear resistance and texture.
(Backing)
The skin material for a vehicle interior member of the present invention may be composed of the cloth alone, but as schematically shown in FIG. 1, a backing resin is applied on either the front or back side of the cloth at a coating amount of 30 g / m. 2 Or more (preferably 80 to 120 g / m 2 ) Is preferred because the fabric strength is improved. As the backing resin according to the present invention, materials such as acrylic resins, vinylidene chloride resins, latex resins, vinyl chloride resins and urethane resins can be used. Among them, the backing resin is acrylic acid. It is preferable that acrylic resin, such as ester resin, methacrylic ester resin, and acrylamide resin, is included. In addition, as a method for applying the backing resin to the fabric, a conventionally known method may be used. A flame retardant may be included in the backing resin.
As described above, the skin material for a vehicle interior member of the present invention thus obtained has a tensile strength of 400 N / 50 mm or more after being exposed for 1,000 hours in an environment of a temperature of 50 ° C. and a humidity of 95% RH. Is essential. In order to obtain the tensile strength, for example, as described above, a high-density fabric is woven using a stereocomplex polylactic acid filament as a polylactic acid filament, the dyeing time during dyeing is shortened, and the resin is obtained by an impregnation method. Is preferably applied to the fabric and a backing resin is applied to either the front or back of the fabric. By these synergistic actions, the tensile strength after being exposed to an environment of temperature 50 ° C. and humidity 95% RH for 1,000 hours can be 400 N / 50 mm or more.
The skin material for a vehicle interior member according to the present invention has excellent fabric strength even after being exposed to a humid heat environment, and is therefore suitably used as a vehicle interior member such as a car seat skin material, a vehicle floor material, and a vehicle ceiling material. Is done.
 次に本発明の実施例および比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。
(1)重量平均分子量(Mw)
 ポリマーの重量平均分子量はGPC(カラム温度40℃、クロロホルム)により、ポリスチレン標準サンプルとの比較で求めた。
(2)ガラス転移点、融点、ステレオ化度
 TAインストルメンツ社製 TA−2920示差走査熱量測定計DSCを用いた。測定は、試料10mgを窒素雰囲気下、昇温速度10℃/分で室温から260℃まで昇温した。第一スキャンで、ホモ結晶融解温度、ガラス転移点、ステレオコンプレックス結晶融解温度を求めた。ステレオ化度は、下記式により算出した。
S(%)=[(ΔHms/ΔHms0)/(ΔHmh/ΔHmh0+ΔHms/ΔHms0)]×100
(ただし、ΔHms0=203.4J/g、ΔHmh0=142J/g、ΔHms=ステレオコンプレックス融点の融解エンタルピー、ΔHmh=ホモ結晶の融解エンタルピー)
(3)フィラメントの強伸度
 JIS−L−1013(1999年度版)に基づいて定速伸長引張試験機であるオリエンテック(株)社製テンシロンを用いて、つかみ間隔20cm、引張速度20cm/分にて測定した。
(4)捲縮率
 供試フィラメント糸条を、周長が1.125mの検尺機のまわりに巻きつけて、乾繊度が3333dtexのかせを調製した。
 前記かせを、スケール板の吊り釘に懸垂して、その下部分に6gの初荷重を付加し、さらに600gの荷重を付加したときのかせの長さL0を測定した。その後、直ちに、前記かせから荷重を除き、スケール板の吊り釘から外し、このかせを沸騰水中に30分間浸漬して、捲縮を発現させた。沸騰水処理後のかせを沸騰水から取り出し、かせに含まれる水分をろ紙により吸収除去し、室温において24時間風乾する。この風乾されたかせを、スケール板の吊り釘に懸垂し、その下部分に、600gの荷重をかけ、1分後にかせの長さL1aを測定し、その後かせから荷重を外し、1分後にかせの長さL2aを測定した。供試フィラメント糸条の捲縮率(CP)を、下記式により算出した。
CP(%)=((L1a−L2a)/L0)×100
(5)目付け
 JIS L1096.8.5.1(1999年度版)により目付け(gr/m)を測定した。
(6)布帛の耐摩耗性
 JIS L1096.8.17.3 C法(1999年度版)により平面摩耗を級判定した。5級が最高であり、1級が最低である。
(7)布帛の風合い
 試験者3人が官能評価により、(3級)ソフトである、(2級)普通である、(1級)硬い、の3段階に評価した。
(8)車両内装部材用表皮材の引張り強度
 JIS L1096.8.12(1999年度版)に記載の8.12.1標準時、A法(ラベルストリップ法)に基づき、車両内装部材用表皮材試料から試験片(幅50mm、長さ300mm)を経糸方向および緯糸方向(試料が編物の場合にはコース方向とウエール方向)からそれぞれ三枚ずつとり、織物引っ張り試験機を用い、つかみ間隔200mm、引っ張り速度150mm/minの条件で切断時の強さを測定し、その平均値を整数位で求め、車両内装部材用表皮材の引張り強度とした。
(9)染色評価
 L値は日本電色工業(株)社製Spectro Photometer(SD500)を用いて測定した。L値は明度を示し、その数値が大きいほど明度が高いことを示し、100に近いほど、淡色で白色に近く、0に近いほど、濃色である事を示す。
 製造例1(ポリL−乳酸の製造)
 Lラクチド((株)武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応し、オクチル酸スズに対し1.2倍当量の燐酸を添加しその後、13.3kPaで残存するラクチドを除去し、チップ化し、ポリL−乳酸を得た。
 得られたL−乳酸の重量平均分子量は15万、ガラス転移点(Tg)63℃、融点は180℃であった。
 製造例2(ポリD−乳酸の製造)
 Dラクチド((株)武蔵野化学研究所製、光学純度100%)100重量部に対し、オクチル酸スズを0.005重量部加え、窒素雰囲気下、攪拌翼のついた反応機にて、180℃で2時間反応し、オクチル酸スズに対し1.2倍当量の燐酸を添加しその後、13.3kPaで残存するラクチドを除去し、チップ化し、ポリD−乳酸を得た 得られたポリD−乳酸の重量平均分子量は15万、ガラス転移点(Tg)63℃、融点は180℃であった。
 製造例3(ステレオコンプレックスポリ乳酸樹脂の製造)
 製造例1で得られたポリL−乳酸ならびに製造例2のポリD−乳酸を各50重量部と、リン酸エステル金属塩(燐酸2,2−メチレンビス(4,6−ジ−tert−ブチルフェノール)ナトリウム塩、平均粒径5μm、(株)ADEKA(旧:旭電化工業(株))製「アデカスタブ」NA−11)0.1重量部とをシリンダー温度230℃で混練押出して、水槽中にストランドを取り、チップカッターにてチップ化してステレオコンプレックスポリ乳酸樹脂を得た。得られたステレオコンプレックスポリ乳酸樹脂の重量平均分子量(Mw)は13.5万、融点(Tm)は217℃、ステレオ化度は100%であった。
 実施例1
(紡糸)
 前記、製造例3で得られたステレオコンプレックスポリ乳酸樹脂を110℃で2時間、150℃で5時間乾燥し樹脂の水分率を80ppmとしたあと0.27φmmの吐出孔36ホールを有する紡糸口金を用いて、紡糸温度255℃で8.35g/分の吐出量で紡糸した後に500m/分の速度で未延伸糸を巻き取った。
(延伸、仮撚捲縮)
 巻き取られた未延伸糸を延伸機にて予熱80℃で4.9倍に延伸し延伸糸を巻き取った。次いで、該延伸糸に通常の仮撚捲縮加工を施してポリ乳酸仮撚捲縮加工糸(ステレオコンプレックスポリ乳酸フィラメント)を得た。該ポリ乳酸仮撚捲縮加工糸において、繊度167dtex/36fil、捲縮率1.4%、強度3.1cN/dtex、伸度34%、融点213℃であった。
(製織)
 次いで、該ポリ乳酸仮撚捲縮加工糸を2本合糸し、160T/mの撚りを施した後、経糸および緯糸に配して、通常のドビー織機を用いてドビー織物を製織(カバーファクター3534)した。
(染色)
 その後、該織物を、液流染色機を用いて、温度130℃で15分間の染色を行った。その際、分散染料を用いた。
(含侵)
 さらに、パデング機により該布帛にシリコン樹脂を布帛重量に対して1.5重量%付与し、温度130℃で10分間乾燥した後に温度160℃、2分間の乾熱セットを施した。
(バッキング)
 次いで、難燃性の向上を目的に、三酸化アンチモン20wt%、デカブロモジフェニルエーテル40wt%、アクリルエステル樹脂40wt%からなるバッキング樹脂を前記布帛の一方の面に常法により塗布し、カーシート用生地(車両内装材)を得た。その際、塗布時のバッキング樹脂の塗布量は100g/mとした。
 得られたカーシート用生地において目付は550g/m、カバーファクターは3534であった。また、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が617N/50mmであった。また、L値は16であった。
 実施例2
 実施例1において、ドビー織物のかわりにジャガード織機を用いてジャガード織物を用いること以外は実施例1と同様にした。
 得られたカーシート用生地において目付は600g/m、カバーファクターは3816であった。また、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が430N/50mmであった。また、L値は16であった。
 比較例1
 実施例1において、ステレオコンプレックスポリ乳酸樹脂のかわりに製造例1で得られたポリL乳酸を用いること以外は実施例1と同様とした。
 得られたカーシート用生地において目付は575g/m、カバーファクターは3711であったが、130℃染色の際の熱履歴で収縮し、硬化する現象を確認した。また、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が140N/50mmと風合い・強度とも実使用に耐えられないものとなった。L値は17であった。
 比較例2
 実施例1において染色加工の染色時間を30分に変更すること以外は実施例1と同様とした。
 得られたカーシート用生地において目付は540g/m、カバーファクターは3463であった。また、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が325N/50mmと実使用に耐えられないものとなった。L値は15であった。
 比較例3
 実施例1において染色加工の染色時間を20分に変更すること以外は実施例1と同様とした。
 得られたカーシート用生地において目付は540g/m、カバーファクターは3463であった。また、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が380N/50mmと実使用に耐えられないものとなった。L値は15であった。
発明の効果
 本発明によれば、ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装部材用表皮材であって、湿熱環境下にさらされた後においても優れた布帛強度を有する車両内装部材用表皮材が得られる。
Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these. In addition, each measurement item in an Example was measured with the following method.
(1) Weight average molecular weight (Mw)
The weight average molecular weight of the polymer was determined by GPC (column temperature 40 ° C., chloroform) in comparison with a polystyrene standard sample.
(2) Glass transition point, melting point, stereogenicity TA-2920 differential scanning calorimeter DSC manufactured by TA Instruments was used. In the measurement, 10 mg of a sample was heated from room temperature to 260 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere. In the first scan, the homocrystal melting temperature, glass transition point, and stereocomplex crystal melting temperature were determined. The degree of stereogenicity was calculated by the following formula.
S (%) = [(ΔHms / ΔHms0) / (ΔHmh / ΔHmh0 + ΔHms / ΔHms0)] × 100
(However, ΔHms0 = 203.4 J / g, ΔHmh0 = 142 J / g, ΔHms = melting enthalpy of stereocomplex melting point, ΔHmh = melting enthalpy of homocrystal)
(3) Tensile strength of filament Using a Tensilon manufactured by Orientec Co., Ltd., which is a constant speed extension tensile tester based on JIS-L-1013 (1999 version), the grip interval is 20 cm, and the tensile speed is 20 cm / min. Measured with
(4) Crimp rate The test filament yarn was wound around a measuring machine having a circumference of 1.125 m to prepare a skein having a dryness of 3333 dtex.
The skein was suspended from a hanging nail of the scale plate, an initial load of 6 g was applied to the lower part thereof, and a skein length L0 when a load of 600 g was further applied was measured. Immediately thereafter, the load was removed from the skein, the scale plate was removed from the hanging nail, and this skein was immersed in boiling water for 30 minutes to develop crimps. The skein after the boiling water treatment is taken out from the boiling water, the moisture contained in the skein is absorbed and removed by a filter paper, and air-dried at room temperature for 24 hours. The air-dried skein is hung on a hanging nail of the scale plate, a load of 600 g is applied to the lower part, the skein length L1a is measured after 1 minute, the load is removed from the skein, and the skein after 1 minute. The length L2a was measured. The crimp rate (CP) of the test filament yarn was calculated by the following formula.
CP (%) = ((L1a−L2a) / L0) × 100
(5) Fabric weight A fabric weight (gr / m 2 ) was measured according to JIS L1096.8.5.1 (1999 edition).
(6) Abrasion resistance of fabric Abrasion on a plane was determined according to JIS L1096.88.17.3 C method (1999 version). Grade 5 is the highest and Grade 1 is the lowest.
(7) Texture of cloth Three testers evaluated by sensory evaluation in three stages: (grade 3) soft, (grade 2) normal, (grade 1) hard.
(8) Tensile strength of skin material for vehicle interior member Skin material sample for vehicle interior member based on 8.12.1 standard time, A method (label strip method) described in JIS L1096.8.12 (1999 edition) From the warp direction and weft direction (in the course direction and the wale direction when the sample is a knitted fabric), respectively, and using a textile tensile tester, a grip interval of 200 mm is pulled. The strength at the time of cutting was measured under the condition of a speed of 150 mm / min, and the average value was determined in integers, and was used as the tensile strength of the skin material for vehicle interior members.
(9) Dyeing evaluation The L value was measured using a Spectro Photometer (SD500) manufactured by Nippon Denshoku Industries Co., Ltd. The L value indicates the lightness. The larger the value, the higher the lightness. The closer to 100, the lighter the color is, the closer to white, the closer to 0, the darker the color.
Production Example 1 (Production of poly L-lactic acid)
To 100 parts by weight of L-lactide (manufactured by Musashino Chemical Laboratory Co., Ltd., optical purity 100%), 0.005 part by weight of tin octylate was added, and the reactor was stirred at 180 ° C. in a nitrogen atmosphere with a stirring blade. Then, 1.2 times equivalent of phosphoric acid with respect to tin octylate was added, and then the remaining lactide was removed at 13.3 kPa to obtain chips to obtain poly L-lactic acid.
The obtained L-lactic acid had a weight average molecular weight of 150,000, a glass transition point (Tg) of 63 ° C., and a melting point of 180 ° C.
Production Example 2 (Production of poly D-lactic acid)
To 100 parts by weight of D-lactide (manufactured by Musashino Chemical Laboratory, Inc., optical purity 100%), 0.005 part by weight of octylate was added, and the reaction was carried out at 180 ° C. in a reactor equipped with a stirring blade in a nitrogen atmosphere. For 2 hours, adding 1.2 times equivalent of phosphoric acid to tin octylate, and then removing the remaining lactide at 13.3 kPa to obtain chips. Poly D-lactic acid was obtained. Lactic acid had a weight average molecular weight of 150,000, a glass transition point (Tg) of 63 ° C., and a melting point of 180 ° C.
Production Example 3 (Production of stereocomplex polylactic acid resin)
50 parts by weight of each of the poly L-lactic acid obtained in Production Example 1 and the poly D-lactic acid of Production Example 2 and a phosphate ester metal salt (2,2-methylenebis (4,6-di-tert-butylphenol phosphate) Sodium salt, average particle diameter of 5 μm, 0.1 part by weight of “ADEKA STAB” NA-11) manufactured by ADEKA Co., Ltd. (former Asahi Denka Kogyo Co., Ltd.) is kneaded and extruded at a cylinder temperature of 230 ° C. Was cut into chips with a chip cutter to obtain a stereocomplex polylactic acid resin. The obtained stereocomplex polylactic acid resin had a weight average molecular weight (Mw) of 135,000, a melting point (Tm) of 217 ° C., and a stereogenicity of 100%.
Example 1
(spinning)
The stereocomplex polylactic acid resin obtained in Production Example 3 was dried at 110 ° C. for 2 hours and at 150 ° C. for 5 hours to give a moisture content of the resin of 80 ppm, and then a spinneret having 36 holes of 0.27 φmm was formed. The undrawn yarn was wound up at a speed of 500 m / min after spinning at a spinning temperature of 255 ° C. and a discharge rate of 8.35 g / min.
(Stretching, false twist crimp)
The wound undrawn yarn was drawn 4.9 times with a drawing machine at 80 ° C. by preheating, and the drawn yarn was wound up. Next, the drawn yarn was subjected to ordinary false twist crimping to obtain a polylactic acid false twist crimped yarn (stereo complex polylactic acid filament). The polylactic acid false twist crimped yarn had a fineness of 167 dtex / 36 fil, a crimp rate of 1.4%, a strength of 3.1 cN / dtex, an elongation of 34%, and a melting point of 213 ° C.
(Weaving)
Next, two polylactic acid false twisted crimped yarns are combined and subjected to twisting of 160 T / m, and then placed on warps and wefts to weave a dobby fabric using a normal dobby loom (cover factor) 3534).
(staining)
Thereafter, the fabric was dyed at a temperature of 130 ° C. for 15 minutes using a liquid dyeing machine. At that time, a disperse dye was used.
(Inclusion)
Furthermore, 1.5% by weight of silicon resin was applied to the fabric by a padding machine, dried at a temperature of 130 ° C. for 10 minutes, and then subjected to a dry heat setting at a temperature of 160 ° C. for 2 minutes.
(backing)
Next, for the purpose of improving flame retardancy, a backing resin composed of 20% by weight of antimony trioxide, 40% by weight of decabromodiphenyl ether and 40% by weight of acrylic ester resin is applied to one side of the fabric by a conventional method, and the fabric for car seats (Vehicle interior material) was obtained. At that time, the coating amount of the backing resin during coating was 100 g / m 2 .
In the obtained car seat fabric, the basis weight was 550 g / m 2 and the cover factor was 3534. The tensile strength after exposure for 1,000 hours in an environment of temperature 50 ° C. and humidity 95% RH was 617 N / 50 mm. The L value was 16.
Example 2
In Example 1, it carried out similarly to Example 1 except using a jacquard loom using a jacquard loom instead of a dobby woven fabric.
In the obtained car seat fabric, the basis weight was 600 g / m 2 and the cover factor was 3816. The tensile strength after exposure for 1,000 hours in an environment of temperature 50 ° C. and humidity 95% RH was 430 N / 50 mm. The L value was 16.
Comparative Example 1
Example 1 was the same as Example 1 except that the poly L lactic acid obtained in Production Example 1 was used instead of the stereocomplex polylactic acid resin.
In the obtained car seat fabric, the basis weight was 575 g / m 2 and the cover factor was 3711. The phenomenon of shrinkage and curing due to the heat history during dyeing at 130 ° C. was confirmed. In addition, the tensile strength after exposure for 1,000 hours in an environment of temperature 50 ° C. and humidity 95% RH was 140 N / 50 mm, and both the texture and strength could not withstand actual use. The L value was 17.
Comparative Example 2
Example 1 was the same as Example 1 except that the dyeing time for dyeing was changed to 30 minutes.
In the obtained car seat fabric, the basis weight was 540 g / m 2 and the cover factor was 3463. Further, the tensile strength after exposure for 1,000 hours in an environment of a temperature of 50 ° C. and a humidity of 95% RH was 325 N / 50 mm and could not be used in actual use. The L value was 15.
Comparative Example 3
Example 1 was the same as Example 1 except that the dyeing time for dyeing was changed to 20 minutes.
In the obtained car seat fabric, the basis weight was 540 g / m 2 and the cover factor was 3463. In addition, the tensile strength after exposure for 1,000 hours in an environment of a temperature of 50 ° C. and a humidity of 95% RH was 380 N / 50 mm, which could not withstand actual use. The L value was 15.
[Effects of the Invention] According to the present invention, a skin material for a vehicle interior member composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, which has excellent fabric strength even after being exposed to a humid heat environment. A skin material for a vehicle interior member having the above is obtained.
 本発明によれば、ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装部材用表皮材であって、湿熱環境下にさらされた後においても優れた布帛強度を有する車両内装部材用表皮材が提供され、その工業的価値は極めて大である。 According to the present invention, a vehicle interior member skin material composed of a fabric containing polylactic acid filaments and subjected to a dyeing process, the vehicle having excellent fabric strength even after being exposed to a humid heat environment A skin material for an interior member is provided, and its industrial value is extremely large.

Claims (13)

  1.  ポリ乳酸フィラメントを含みかつ染色加工が施された布帛で構成される車両内装部材用表皮材であって、温度50℃、湿度95%RHの環境下に1,000時間暴露した後の引張り強度が400N/50mm以上であることを特徴とする車両内装部材用表皮材。
    ただし、前記引張り強度は、JIS L1096.8.12(1999年度版)により車両内装部材用表皮材の引張り強度を測定するものとする。
    A skin material for a vehicle interior member composed of a fabric containing a polylactic acid filament and subjected to a dyeing process, and has a tensile strength after being exposed to an environment at a temperature of 50 ° C. and a humidity of 95% RH for 1,000 hours. A skin material for a vehicle interior member, characterized by being 400 N / 50 mm or more.
    However, the said tensile strength shall measure the tensile strength of the skin | leather material for vehicle interior members according to JISL1096.8.12 (1999 version).
  2.  前記ポリ乳酸フィラメントが、(i)重量平均分子量5万~30万のポリL−乳酸(A成分)、(ii)重量平均分子量5万~30万のポリD—乳酸(B成分)および(iii)A成分とB成分との合計100重量部当たり0.05~5重量部の下記式(1)または(2)で表される燐酸エステル金属塩を含有するフィラメントである、請求項1に記載の車両内装部材用表皮材。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは水素原子または炭素数1~4のアルキル基を表し、R、Rは各々独立に水素原子または炭素数1~12のアルキル基を表し、Mはアルカリ金属原子またはアルカリ土類金属原子を表し、pは1または2を表す。)
    Figure JPOXMLDOC01-appb-I000002
    (式中、R、RおよびRは、各々独立に水素原子または炭素数1~12のアルキル基を表し、Mはアルカリ金属原子またはアルカリ土類金属原子を表し、pは1または2を表す。)
    The polylactic acid filament comprises (i) poly L-lactic acid (component A) having a weight average molecular weight of 50,000 to 300,000, (ii) poly D-lactic acid (component B) having a weight average molecular weight of 50,000 to 300,000, and (iii) 2) A filament containing a phosphoric acid ester metal salt represented by the following formula (1) or (2) in an amount of 0.05 to 5 parts by weight per 100 parts by weight of the total of A component and B component. Skin material for vehicle interior parts.
    Figure JPOXMLDOC01-appb-I000001
    (Wherein R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 and R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and M 1 represents an alkali metal atom. Or an alkaline earth metal atom, and p represents 1 or 2.)
    Figure JPOXMLDOC01-appb-I000002
    (Wherein R 4 , R 5 and R 6 each independently represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, M 2 represents an alkali metal atom or an alkaline earth metal atom, and p represents 1 or 2)
  3.  前記ポリ乳酸フィラメントが仮撚捲縮加工糸である、請求項1または請求項2に記載の車両内装部材用表皮材。 The skin material for a vehicle interior member according to claim 1 or 2, wherein the polylactic acid filament is a false twist crimped yarn.
  4.  前記布帛は、下記式で表されるカバーファクター(CF)が1,800以上の織物である、請求項1~3のいずれか一項に記載の車両内装部材用表皮材。
    CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
    ただし、DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。
    The skin material for a vehicle interior member according to any one of claims 1 to 3, wherein the fabric is a woven fabric having a cover factor (CF) represented by the following formula of 1,800 or more.
    CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
    However, DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm).
  5.  前記布帛は、30~100コース/2.54cm、20~60ウエール/2.54cmの編物である、請求項1~4のいずれか一項に記載の車両内装部材用表皮材。 The skin material for a vehicle interior member according to any one of claims 1 to 4, wherein the fabric is a knitted fabric of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm.
  6.  前記染色加工の条件が、温度110~140℃かつ時間19分間以下である、請求項1~5のいずれか一項に記載の車両内装部材用表皮材。 The skin material for a vehicle interior member according to any one of claims 1 to 5, wherein the conditions for the dyeing process are a temperature of 110 to 140 ° C and a time of 19 minutes or less.
  7.  前記布帛に、含浸法により樹脂が布帛重量に対して0.3重量%以上固着されてなる、請求項1~6のいずれか一項に記載の車両内装部材用表皮材。 The skin material for a vehicle interior member according to any one of claims 1 to 6, wherein a resin is fixed to the fabric by an impregnation method by 0.3% by weight or more based on the weight of the fabric.
  8.  前記樹脂がシリコン樹脂またはポリエチレン樹脂またはポリエチレンテレフタレート樹脂である、請求項7に記載の車両内装部材用表皮材。 The vehicle interior member skin material according to claim 7, wherein the resin is a silicon resin, a polyethylene resin, or a polyethylene terephthalate resin.
  9.  前記布帛にバッキング樹脂が塗布量30g/m以上で塗布されている、請求項1~8のいずれか一項に記載の車両内装部材用表皮材。 The skin material for a vehicle interior member according to any one of claims 1 to 8, wherein a backing resin is applied to the fabric at an application amount of 30 g / m 2 or more.
  10.  前記バッキング樹脂がアクリル樹脂を含む、請求項9に記載の車両内装部材用表皮材。 The vehicle interior member skin material according to claim 9, wherein the backing resin includes an acrylic resin.
  11.  (i)重量平均分子量5万~30万のポリL−乳酸(A成分)、重量平均分子量5万~30万のポリD—乳酸(B成分)およびA成分とB成分との合計100重量部当たり0.05~5重量部の燐酸エステル金属塩を含有するポリ乳酸フィラメントを含む布帛を、温度110~140℃、19分以内の条件で染色し、
    (ii)染色した布帛に樹脂を含浸させ、
    (iii)樹脂を含浸させた布帛にバッキング樹脂を塗布する、
    各工程を含む請求項1に記載の車両内装部材用表皮材の製造方法。
    (I) Poly L-lactic acid (A component) having a weight average molecular weight of 50,000 to 300,000, poly D-lactic acid (B component) having a weight average molecular weight of 50,000 to 300,000, and a total of 100 parts by weight of A component and B component A fabric containing polylactic acid filaments containing 0.05 to 5 parts by weight of a phosphate ester metal salt is dyed under conditions of a temperature of 110 to 140 ° C. within 19 minutes,
    (Ii) impregnating the dyed fabric with resin,
    (Iii) applying a backing resin to the fabric impregnated with the resin;
    The manufacturing method of the skin material for vehicle interior members of Claim 1 including each process.
  12.  布帛は、下記式で表されるカバーファクター(CF)が1,800以上の織物である請求項11記載の製造方法。
     CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
    (ただし、DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。)
    The manufacturing method according to claim 11, wherein the fabric is a woven fabric having a cover factor (CF) represented by the following formula of 1,800 or more.
    CF = (DWp / 1.1) 1/2 * MWp + (DWf / 1.1) 1/2 * MWf
    (However, DWp is the warp total fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm).
  13.  前記布帛は、30~100コース/2.54cm、20~60ウエール/2.54cmの編物である請求項11記載の製造方法。 12. The manufacturing method according to claim 11, wherein the fabric is a knitted fabric of 30 to 100 courses / 2.54 cm and 20 to 60 wales / 2.54 cm.
PCT/JP2010/066105 2009-09-16 2010-09-10 Skin material for vehicle interior member WO2011034155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-214049 2009-09-16
JP2009214049A JP2011063898A (en) 2009-09-16 2009-09-16 Skin material for vehicle interior member

Publications (1)

Publication Number Publication Date
WO2011034155A1 true WO2011034155A1 (en) 2011-03-24

Family

ID=43758755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066105 WO2011034155A1 (en) 2009-09-16 2010-09-10 Skin material for vehicle interior member

Country Status (2)

Country Link
JP (1) JP2011063898A (en)
WO (1) WO2011034155A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381256A (en) * 2011-09-10 2012-03-21 无锡吉兴汽车声学部件科技有限公司 Wet-method roof producing process by glass fibers spread with adhesive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311781A (en) * 1995-03-14 1996-11-26 Mitsui Toatsu Chem Inc Dyeing
JP2004218188A (en) * 2004-04-09 2004-08-05 Nagase & Co Ltd Method for producing colored polylactic acid article
JP2005273106A (en) * 2004-03-26 2005-10-06 Toray Ind Inc Yarn package
JP2006008871A (en) * 2004-06-25 2006-01-12 Dystar Japan Ltd Disperse dye for polylactic acid fiber
JP2008063676A (en) * 2006-09-05 2008-03-21 Unitica Fibers Ltd Polyester fiber structural product and method for producing the same
JP2009030217A (en) * 2007-07-04 2009-02-12 Teijin Fibers Ltd Production method of colored fabric, fabric, and vehicle interior material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311781A (en) * 1995-03-14 1996-11-26 Mitsui Toatsu Chem Inc Dyeing
JP2005273106A (en) * 2004-03-26 2005-10-06 Toray Ind Inc Yarn package
JP2004218188A (en) * 2004-04-09 2004-08-05 Nagase & Co Ltd Method for producing colored polylactic acid article
JP2006008871A (en) * 2004-06-25 2006-01-12 Dystar Japan Ltd Disperse dye for polylactic acid fiber
JP2008063676A (en) * 2006-09-05 2008-03-21 Unitica Fibers Ltd Polyester fiber structural product and method for producing the same
JP2009030217A (en) * 2007-07-04 2009-02-12 Teijin Fibers Ltd Production method of colored fabric, fabric, and vehicle interior material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381256A (en) * 2011-09-10 2012-03-21 无锡吉兴汽车声学部件科技有限公司 Wet-method roof producing process by glass fibers spread with adhesive

Also Published As

Publication number Publication date
JP2011063898A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5023065B2 (en) Polylactic acid fiber and method for producing the same
US20100130699A1 (en) Polylactic acid composition and fiber thereof
JP2009030217A (en) Production method of colored fabric, fabric, and vehicle interior material
JP2009191411A (en) Polylactic acid twisted yarn, fabric, and textile product
WO2011034155A1 (en) Skin material for vehicle interior member
JP5080392B2 (en) Method for producing polylactic acid fiber, method for producing fabric and method for producing fiber product
JP5290872B2 (en) Standing fabric
JP5038920B2 (en) Method for producing water-absorbing polylactic acid fiber structure, water-absorbing polylactic acid fiber structure, and fiber product
JP2010281006A (en) Polylactic acid type composite fiber
JP5139841B2 (en) Polylactic acid primary fiber, method for producing the same, and chip used in the method
JP2009006135A (en) Favorite beverage extract filter and favorite beverage extract bag formed using it
JP5139838B2 (en) Method for producing stereocomplex polylactic acid fiber
WO2009081996A1 (en) Method for producing dyed fabric structure
JP2011074527A (en) Woven name label
JP5099507B2 (en) Method for producing polylactic acid knitted fabric and method for producing clothing
JP2009256837A (en) Polylactic acid woven fabric, method for producing the same, and clothing material
JP2010024576A (en) Polylactic acid fabric and clothing
JP5646889B2 (en) Polylactic acid copolymer, composition and molded article comprising the same
JP5571463B2 (en) Polylactic acid atypical cross section yarn
JP5571477B2 (en) Fiber products
JP5155095B2 (en) Polylactic acid fiber
JP2009179923A (en) Polylactic acid modified cross-section fiber and fabric and fiber product
JP2020132580A (en) Fabric type hair cosmetic
JP2009215685A (en) Method for producing thermal-insulation polylactic acid fiber structural form, thermal-insulation polylactic acid fiber structural form, and textile product
JP2009270228A (en) Heat storage interlining cloth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817268

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817268

Country of ref document: EP

Kind code of ref document: A1