WO2011034107A1 - Optical information reader and control method therefor - Google Patents

Optical information reader and control method therefor Download PDF

Info

Publication number
WO2011034107A1
WO2011034107A1 PCT/JP2010/065983 JP2010065983W WO2011034107A1 WO 2011034107 A1 WO2011034107 A1 WO 2011034107A1 JP 2010065983 W JP2010065983 W JP 2010065983W WO 2011034107 A1 WO2011034107 A1 WO 2011034107A1
Authority
WO
WIPO (PCT)
Prior art keywords
code symbol
reading mode
detected
light source
signal
Prior art date
Application number
PCT/JP2010/065983
Other languages
French (fr)
Japanese (ja)
Inventor
村田克行
清水巌
Original Assignee
株式会社オプトエレクトロニクス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オプトエレクトロニクス filed Critical 株式会社オプトエレクトロニクス
Priority to JP2011531954A priority Critical patent/JPWO2011034107A1/en
Publication of WO2011034107A1 publication Critical patent/WO2011034107A1/en
Priority to US13/414,060 priority patent/US20120175421A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10881Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices constructional details of hand-held scanners
    • G06K7/1091Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices constructional details of hand-held scanners means to wake up the scanner from a sleep mode, e.g. using an acceleration sensor indicating that the scanner is being picked up by a user

Definitions

  • the present invention relates to an optical information reader and a control method thereof for reading information on code symbols composed of portions having different light reflectivities, and more particularly to an auto trigger function for automatically starting reading of code symbols from a standby state.
  • product information is sent and received from a host computer, barcode symbols such as barcodes and two-dimensional codes affixed to products are read, and the information is displayed and managed on a liquid crystal display.
  • barcode symbols such as barcodes and two-dimensional codes affixed to products are read, and the information is displayed and managed on a liquid crystal display.
  • Many information terminals are used. These are called handy terminals, and are very convenient for an operator to carry around, collect information from each product shelf, and check information with other operators.
  • the auto trigger function is started, for example, when the function key of the device is set by the operator. In some cases, the auto-trigger function is automatically set when the apparatus is not operated for a certain period of time.
  • the auto trigger function is set, the power supply to the laser light source that irradiates the code symbol with the laser beam is stopped to reduce the power consumption.
  • the photosensor for detecting an object detects an object in a state where power consumption is suppressed in this way, power supply to the laser light source is resumed, laser beam irradiation is started, and barcode reading is started.
  • Patent Document 1 discloses a bar code reader having an auto trigger function. According to Patent Document 1, when elapsed since the timer is reset a predetermined time and turns off the laser light source, by turning on the laser light source when the article detection sensor detects an article is irradiated toward the laser light source to the bar code.
  • Patent Document 2 discloses a stationary bar code reader having a test mode for reading and testing code information such as a bar code. According to Patent Document 2, it includes a photoelectric switch for detecting an object being conveyed by the conveyor, the photoelectric switch, the light from the light emitting unit emits light toward the light receiving unit, to detect an object to be conveyed by the conveyor. When the photoelectric switch detects an object, the barcode reader drives the laser lighting circuit to irradiate the barcode with the laser beam from the light emitting element.
  • Patent Document 1 an article detection sensor is provided in order to realize an auto trigger function.
  • the article is detected by the article detection sensor, the laser light source that is turned off is turned on, and the laser light source is irradiated toward the barcode.
  • Patent Document 2 also includes a photoelectric switch in order to realize an auto trigger function.
  • the internal substrate is dense, and it is often very difficult to add parts such as a sensor or a circuit for the auto trigger function. If sensor parts or circuits are added to realize the auto trigger function as in the conventional example, there is a problem that the number of parts increases and the apparatus becomes large.
  • the present invention solves such a problem related to the conventional example, and aims to realize a highly accurate auto-trigger function without adding parts or circuits for realizing the auto-trigger function.
  • an optical information reading apparatus is an optical information reader for reading information of the composed code symbols in different parts of the light reflectance, the laser beam from the laser light source
  • the code symbol is read from the laser light source and the code symbol is detected by irradiating the laser beam from the laser light source with reduced power consumption.
  • a signal converter that receives the reflected light of the laser beam and converts it into an electrical signal; a signal processor that binarizes the electrical signal to generate a binarized signal; and a code symbol that decodes the binarized signal
  • a controller for detecting whether the code symbol detected in the non-reading mode is correct, and switching from the non-reading mode to the reading mode based on the determination result A.
  • the control method of the optical information reading apparatus is an optical information reading method for reading information to be read that is composed of portions having different light reflectances such as code symbols.
  • a method for controlling the apparatus in which an operation for reading a code symbol by irradiating a laser beam from a laser light source is set to a reading mode, and an operation for detecting a code symbol by irradiating a laser beam from a laser light source with reduced power consumption is not performed.
  • the optical information reading device receives the reflected light of the laser beam irradiated to the code symbol from the laser light source and converts it into an electric signal, and binarizes the electric signal by binarizing it.
  • a second step of generating a binarized signal and a third step of detecting the code symbol by decoding the binarized signal are executed.
  • detection is performed in the non-reading mode. Determining whether the code symbol is correct, but to switch based on the determination result to the reading mode from the non-read mode.
  • control unit switches from the non-reading mode to the reading mode when determining that the code symbol detected in the non-reading mode is correct, and continues the non-reading mode when determining that the code symbol is not correct.
  • Control unit compares the reference number of samples of the detected sample number and code symbol code symbol has been detected in non-reading mode, in the range detection the number of samples is the number of the reference sample, and the detection sample of the detected code symbol When each sample value is compared with the reference sample value of the code symbol and it is determined that each sample value of the detected sample does not exceed the reference sample value, it is determined that the detected code symbol is correct.
  • a code symbol is detected by irradiating a laser beam from a laser light source with reduced power consumption in the non-reading mode, whether or not the detected code symbol is correct, and determined that the code symbol is correct If the code symbol is not correct, the non-reading mode is continued.
  • FIG. 2 is a block diagram illustrating a configuration example of a barcode scanner 100.
  • FIG. It is a block diagram which shows the structural example of the binarization process part 7g. It is a flowchart which shows the process example of an auto trigger function. It is a flowchart which shows the process example of a paper surface detection.
  • the present invention detects the code symbols from the laser light source with reduced power consumption in the non-reading mode by irradiating a laser beam to determine whether the code symbol is correct, based on the determination result read from the non-read mode mode By switching to, it is possible to realize an auto trigger function that automatically starts reading of code symbols using an existing laser light source.
  • a barcode scanner 100 shown in FIG. 1 is an example of an optical information reader, and as an example, is a stationary barcode scanner used when reading a barcode of an article conveyed by a belt conveyor in a transportation operation.
  • the use of the barcode scanner 100 is not limited to this, and may be applied to a portable barcode scanner.
  • Bar code scanner 100 includes a laser light source 1, the optical unit 2, the signal conversion unit 3, CPU 4, interrupt controller 5, a timer 6, the signal processing unit 7, RAM (Random Access Memory) 8, ROM (Read Only Member) 9, A keyboard 10, a display 11, an OSC (oscillator) 15, a PLL (Phase Locked Loop) circuit 16, and an RTC (Real Time Clock) circuit 19 are provided.
  • the laser light source 1 irradiates light toward a barcode which is an example of a code symbol composed of portions having different light reflectances.
  • the laser light source 1 emits a laser beam from the light emitting point toward the condenser lens 2 a of the optical unit 2.
  • the condensing lens 2 a condenses the laser beam emitted from the laser light source 1.
  • a scan mirror 2b is arranged at the subsequent stage of the condenser lens 2a. The scan mirror 2b deflects the laser beam collected by the condenser lens 2a.
  • the laser beam deflected by the scan mirror 2b is applied to the barcode to scan the barcode.
  • the imaging lens 2 c receives the reflected light reflected from the barcode and forms an image of the reflected light on the photoelectric converter 3 a of the signal conversion unit 3.
  • the photoelectric converter 3a receives the reflected light, converts it into an electrical signal corresponding to the intensity, and outputs it to an I / V converter (current / voltage converter) 3b.
  • the I / V converter 3 b outputs a voltage signal obtained by converting the current value of the electric signal into a voltage value to the signal processing unit 7.
  • the signal conversion unit 3 receives the reflected light of the laser beam irradiated on the barcode from the laser light source 1, converts it into an electrical signal, and outputs it to the signal processing unit 7.
  • the signal processing unit 7 binarizes the electric signal to generate a binarized signal.
  • the signal processing unit 7 includes a preamplifier 7a, a differentiator 7b, an AGC (Automatic Gain Control) circuit 7c, an equalizer 7d, an output amplifier 7f, and a binarization processing unit 7g.
  • the preamplifier 7a amplifies the voltage signal input from the I / V converter 3b and outputs it to the differentiator 7b.
  • the differentiator 7b differentiates the amplified voltage signal to generate a differential signal and outputs it to the AGC circuit 7c.
  • the AGC circuit 7c automatically adjusts the amplification factor (gain) of the amplifier circuit so that a constant output can be obtained even when the amplitude of the differential signal varies.
  • the equalizer 7d removes noise from the differential signal input from the AGC circuit 7c and outputs the differential signal subjected to waveform equalization to the output amplifier 7f.
  • the output amplifier 7f amplifies the amplitude of the differential signal by about 5 times and outputs the amplified signal to the binarization processing unit 7g.
  • the binarization processing unit 7g generates a binarized signal based on the differential signal.
  • the binarization processing unit 7g shown in FIG. 2 includes a comparator 7h and a slice signal generator 7i.
  • the slice signal generator 7i outputs a slice signal serving as a reference for determining the black and white inflection point of the barcode to the comparator 7h.
  • the comparator 7h receives the slice signal from the slice signal generator 7i and the differential signal from the output amplifier 7f.
  • the comparator 7h compares the input differential signal with the slice signal to generate a binarized signal.
  • the comparator 7h outputs a high level signal when the level of the differential signal is higher than the level of the slice signal, and outputs a low level signal when the level of the differential signal is lower than the level of the slice signal. Output to generate a binarized signal.
  • the binarization processing unit 7g outputs a binarization signal to the CPU 4 that is an example of a control unit. Note that the level of the slice signal can be controlled in accordance with the amplitude of the differential signal.
  • the CPU4 decodes the binarized signal and reads the barcode. For example, the CPU 4 generates an interrupt at the edge timing of the binarized signal and obtains the barcode length.
  • the CPU 4 includes an interrupt controller 5 and a timer 6.
  • the interrupt controller 5 generates an interrupt to the timer 6 at the timing of the rising edge in the binarized signal.
  • the timer 6 obtains the edge interval (time interval) of the binarized signal when an interrupt occurs, and obtains the width of the barcode from this edge interval.
  • the CPU 4 compares the width of the barcode with a threshold value, discriminates a thick bar / thin bar, etc., converts it into a barcode character, and reads the barcode.
  • the OSC 15 shown in FIG. 1 oscillates and outputs a constant clock signal to the PLL circuit 16. For example, the OSC 15 outputs a 4 MHz clock signal to the PLL circuit 16.
  • the PLL circuit 16 multiplies the clock signal input from the OSC 15. For example, the PLL circuit 16 multiplies the 4 MHz clock signal input from the OSC 15 by 12 to generate a 48 MHz clock signal.
  • the CPU 4 operates with a 48 MHz clock signal generated by the PLL circuit 16.
  • the ROM 9 stores a real-time OS (for example, ⁇ ITron) of the barcode scanner 100 and is referred to by the CPU 4.
  • the execution unit of real-time processing is roughly divided into tasks and handlers.
  • the task is activated, interrupted, resumed, and terminated by the real-time OS.
  • the handler is a program unit that is activated without going through the OS by various events occurring inside and outside the CPU 4.
  • the CPU 4 detects the occurrence of an interrupt, it switches the execution state to the interrupt processing execution state, and executes the interrupt handler registered in the CPU 4. Since the OS cannot control the execution of the interrupt handler, the interrupt handler has a higher priority than the task to which the normal execution state of the CPU 4 is applied.
  • the RAM 8 is used as a work memory for the CPU 4.
  • Various instructions are input to the keyboard 10 from an operator.
  • the display 11 displays the operation state of the barcode scanner 100, an instruction from the operator, and the like.
  • the barcode scanner 100 has an auto trigger function having a reading mode and a non-reading mode.
  • Reading mode is an operation of reading a bar code by irradiating a laser beam from the laser light source 1
  • the non-read mode is the operation of detecting the bar code from the laser light source 1 is irradiated with the laser beam with reduced power consumption .
  • a function key (not shown) of the keyboard 10 is operated to set the auto trigger function to ON.
  • the auto trigger function is set to ON, the reading mode is switched to the non-reading mode. It may be controlled such that the auto trigger function is automatically set to ON when the bar code scanner 100 has been inactive for a fixed time.
  • the laser light source 1 is intermittently driven and the gain of the signal obtained from the laser light source 1 is increased.
  • the laser light source 1 is irradiated at intervals of 0.5 sec. Thereby, the power consumption of the laser light source 1 can be suppressed.
  • the gain of the AGC circuit 7c is set to the maximum level. Thereby, a distant bar code can be read. In this case, since the gain is set to the maximum, it is possible to read a distant bar code. However, since the gain is the maximum, noise increases, and in particular, it is a problem to read a close bar code.
  • the equalizer 7d lowers the cut-off frequency to narrow the passband and remove high-frequency components. Further, only the inflection point of the differential signal is extracted by raising the level of the slice signal of the slice signal generator 7i of the binarization processing unit 7g. By doing so, the barcode can be detected even when the gain of the AGC circuit 7c is maximum.
  • CPU 4 decodes the barcode detected in the non-reading mode and determines whether or not it is correct.
  • CPU4 is, if the bar code detected in the non-reading mode is determined to correct switch to read mode from the non-reading mode, when it is determined that the bar code is not correct to continue the non-reading mode.
  • an auto-trigger function that automatically starts barcode reading using the existing laser light source 1. Accordingly, parts and dedicated circuits for realizing the conventional auto trigger function can be deleted, and the barcode scanner 100 can be downsized.
  • a laser beam is continuously emitted from the light emitting point of the laser light source 1 of the barcode scanner 100.
  • This laser beam is condensed by the condensing lens 2 a of the optical unit 2.
  • the condensed laser beam is deflected by the scan mirror 2b and applied to the barcode to scan the barcode.
  • the light is reflected from the barcode and the reflected light is imaged on the photoelectric converter 3a by the imaging lens 2c.
  • the reflected light imaged on the photoelectric converter 3a is converted into an electric signal corresponding to the intensity by the photoelectric converter 3a.
  • the electric signal is converted from a current value to a voltage value by the I / V converter 3b to be a voltage signal.
  • the voltage signal is amplified by the preamplifier 7a of the signal processing unit 7, and after amplification, is differentiated by the differentiator 7b to become a differentiated signal.
  • the differential signal is amplified by the AGC circuit 7c. In this case, the gain of the AGC circuit 7c is set to a normal level for reading a barcode.
  • the differential signal amplified by the AGC circuit 7c is subjected to waveform equalization processing by removing noise from the equalizer 7d. Thereafter, the differential signal is amplified about five times in amplitude by the output amplifier 7f, and binarized by the binarization processing unit 7g to generate a binarized signal.
  • the CPU 4 generates an interrupt at the timing of the edge of the binarized signal to obtain the barcode width length, compares the obtained barcode width length with a threshold value, discriminates a thick bar / thin bar, etc. Convert to code character and read barcode.
  • the laser beam is intermittently emitted from the light emission point of the laser light source 1 of the barcode scanner 100.
  • This laser beam is condensed by the condensing lens 2 a of the optical unit 2.
  • the condensed laser beam is deflected by the scan mirror 2b and applied to the barcode to scan the barcode.
  • the light is reflected from the barcode and the reflected light is imaged on the photoelectric converter 3a by the imaging lens 2c.
  • the reflected light imaged on the photoelectric converter 3a is converted into an electric signal corresponding to the intensity by the photoelectric converter 3a.
  • the electric signal is converted from a current value to a voltage value by the I / V converter 3b to be a voltage signal.
  • the voltage signal is amplified by the preamplifier 7a of the signal processing unit 7, and after amplification, is differentiated by the differentiator 7b to become a differentiated signal.
  • the differential signal is amplified by the AGC circuit 7c. In this case, the gain of the AGC circuit 7c is set to the maximum level.
  • the differential signal amplified by the AGC circuit 7c is subjected to waveform equalization processing after noise is removed by an equalizer 7d having a cut-off frequency lowered. After that, the differential signal is amplified about five times by the output amplifier 7f, and binarized by the binarization processing unit 7g that increases the level of the slice signal to generate a binarized signal.
  • the CPU 4 generates an interrupt at the timing of the edge of the binarized signal to obtain the barcode width length, compares the obtained barcode width length with a threshold value, discriminates a thick bar / thin bar, etc.
  • a bar code is detected after conversion into a code character, and it is determined whether or not the detected bar code is correct. For example, the CPU 4 compares the number of detected barcode samples detected in the non-reading mode with the reference number of barcodes, and the detected number of samples is within the reference number of samples and the detected barcode is detected. Each sample value of the sample is compared with the reference sample value of the barcode, and when it is determined that each sample value of the detected sample does not exceed the reference sample value, it is determined that the detected barcode is correct.
  • CPU4 is, if the bar code detected in the non-reading mode is determined to correct switch to read mode from the non-reading mode, when it is determined that the bar code is not correct to continue the non-reading mode.
  • a function key (not shown) of the keyboard 10 is operated to turn on the auto trigger function.
  • the non-reading mode is set. For example, gain adjustment or the like is performed in step ST1 shown in FIG.
  • the CPU 4 controls the laser light source 1 to irradiate at intervals of 0.5 sec, and suppresses the power consumption of the laser light source 1.
  • the signal processing unit 7 sets the gain of the AGC circuit 7c to the maximum level so that a distant barcode can be read. Further, the signal processing unit 7 sets the equalizer 7d to lower the cutoff frequency to narrow the passband and remove the high frequency component.
  • the level of the slice signal of the slice signal generator 7i of the binarization processing unit 7g is raised so that only the inflection point of the differential signal is extracted. Subsequently, the process proceeds to step ST2.
  • step ST2 the barcode scanner 100 performs paper surface detection. Details of the paper surface detection process in step ST2 will be described with reference to the flowchart of FIG.
  • step ST21 shown in FIG. 4 it is determined whether the scanning (measurement) of the barcode by the laser beam of the laser light source 1 is within 5 times. In this example, five barcode samples are acquired after the laser light source 1 is activated. When the barcode scanning exceeds 5 times, the process proceeds to step ST3 in FIG. When the barcode scanning is within 5 times, the process proceeds to step ST22.
  • step ST22 the CPU 4 compares the number of detected barcode samples with the reference sample number of the barcode, and determines whether or not the detected sample number is within the range of the reference sample number. For example, the CPU 4 generates an interrupt at the edge timing of the binarized signal input from the signal processing unit 7 to obtain the barcode width length, compares the obtained barcode width length with a threshold value, / The bar code is detected by discriminating a thin bar and converting it to a bar code character. The CPU 4 compares the detected number of detected barcode samples with the reference number of barcode samples (for example, 23 to 256), and determines whether or not the detected sample number is within the reference sample number range. If the number of detected samples is outside the range of the reference sample number, the process returns to step ST21. When the number of detected samples is within the range of the reference sample number, the process proceeds to step ST23.
  • the reference number of barcode samples for example, 23 to 256
  • step ST23 the CPU 4 compares each detected sample value of the barcode with the reference sample value of the barcode, and determines whether each sample value of the detected sample does not exceed the reference sample value. For example, bar CPU4 compares the sample values and reference sample values of the bar codes detected sample (e.g. 0x8000), exceeding the thick of the reference bar when each sample value of the detected sample exceeds the reference sample value Is determined to exist, and the process returns to step ST21. If each sample value of the detected sample does not exceed the reference sample value, the process proceeds to step ST24.
  • bar CPU4 compares the sample values and reference sample values of the bar codes detected sample (e.g. 0x8000), exceeding the thick of the reference bar when each sample value of the detected sample exceeds the reference sample value Is determined to exist, and the process returns to step ST21. If each sample value of the detected sample does not exceed the reference sample value, the process proceeds to step ST24.
  • step 24 the CPU 4 counts up the OK counter and proceeds to step ST25.
  • step ST25 the CPU 4 determines whether or not the OK counter is 3 or more. If it is determined that the OK counter is less than 3, the process returns to step ST21. When it is determined that the OK counter is 3 or more, the process proceeds to step ST26. In step ST26, the CPU 4 determines that a bar code has been detected, and proceeds to step ST3 in FIG.
  • step ST3 shown in FIG. 3 the CPU 4 determines whether or not a barcode is detected. If it is determined that the bar code is not detected, the process returns to step ST1, and gain adjustment is performed again. If it is determined that a bar code has been detected, the process proceeds to step ST4.
  • step ST4 gain adjustment is performed.
  • the CPU 4 controls to irradiate the laser light source 1 continuously.
  • the signal processing unit 7 sets the gain of the AGC circuit 7c to a normal level for reading a barcode. Further, the signal processing unit 7 restores the cut-off frequency to the original by the equalizer 7d, and also restores the level of the slice signal of the slice signal generator 7i of the binarization processing unit 7g to set the reading mode to the auto trigger. The function ends.
  • the non-reading mode whether from a laser light source 1 with reduced power consumption by irradiating a laser beam to detect the bar code, the bar code the detected correct If the bar code is determined to be correct, the non-reading mode is switched to the reading mode. If the bar code is determined to be incorrect, the non-reading mode is continued.
  • the power supplied to the laser light source 1 may be suppressed to emit light darkly.
  • bar code scanner for reading a bar code of one-dimensional in this embodiment is not limited to this and can be applied to the code scanner for reading a code symbol such as a 2-dimensional code.
  • the present invention is extremely suitable when applied to an optical information reader that reads information of code symbols composed of portions having different light reflectivities.
  • SYMBOLS 1 Laser light source, 2 ... Optical part, 3 ... Signal conversion part, 4 ... CPU (control part), 7 ... Signal processing part, 100 ... Barcode scanner (optical) Information reader)

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Character Input (AREA)

Abstract

The aim is to realize a highly accurate auto trigger function without adding components or circuits for realizing the auto trigger function. During a non-read mode, a bar code is detected by emitting a laser beam from a laser light source (1) with suppressed power consumption, and said detected bar code is assessed to be either correct or incorrect. In cases which the bar code is assessed as correct, the non-read mode is switched to a read mode; and in cases which the bar code is assessed as incorrect, the non-read mode is continued. As a result, an auto trigger function that automatically initiates the reading of a bar code by using the laser light source (1) can be realized. Therefore, the size of an optical information reader can be reduced, since existing components and dedicated circuits for realizing the auto trigger function can be removed.

Description

光学的情報読取装置およびその制御方法Optical information reading apparatus and control method thereof
 本発明は、光反射率の異なる部分で構成されるコード記号の情報を読み取る光学的情報読取装置およびその制御方法に関し、特に待機状態から自動的にコード記号の読み取りを開始するオートトリガ機能に関する。 The present invention relates to an optical information reader and a control method thereof for reading information on code symbols composed of portions having different light reflectivities, and more particularly to an auto trigger function for automatically starting reading of code symbols from a standby state.
 従来、商品の在庫管理及び販売管理等において、ホストコンピュータから商品情報を送受信し、商品に貼付されたバーコード・二次元コード等のコード記号を読み取り、液晶ディスプレイにそれらの情報を表示し管理する情報端末が多く用いられている。それらは、ハンディターミナルと呼ばれ、作業者が持ち歩き、各商品棚から情報を収集したり、他の作業者と情報を確認しあったりすることができ非常に便利なものである。 Conventionally, in product inventory management and sales management, etc., product information is sent and received from a host computer, barcode symbols such as barcodes and two-dimensional codes affixed to products are read, and the information is displayed and managed on a liquid crystal display. Many information terminals are used. These are called handy terminals, and are very convenient for an operator to carry around, collect information from each product shelf, and check information with other operators.
 また、上述のような作業の場合、コード記号を装置が検知すると、すぐにスイッチオンとなる紙面検知、すなわちオートトリガ機能を搭載していることが望ましい。また、運搬業務で、物品がベルトコンベアに載せられ、その過程において、コード記号を走査する装置の場合でもオートトリガ機能は非常に便利である。 Also, in the case of the above-described work, it is desirable to have a paper surface detection that turns on immediately when the device detects a code symbol, that is, an auto trigger function. Also, in the transportation work, an article is placed on a belt conveyor, and in the process, the auto trigger function is very convenient even in the case of a device that scans code symbols.
 オートトリガ機能は、例えば装置のファンクションキーが作業者により設定されることで開始される。また、装置が操作されない状態が一定時間継続すると自動的にオートトリガ機能を設定する場合もある。オートトリガ機能が設定されると、コード記号にレーザ光線を照射するレーザ光源への電力供給を停止して消費電力を抑える。このように消費電力を抑えた状態で物体検知用のフォトセンサが物体を検知すると、レーザ光源への電力供給を再開してレーザ光線を照射してバーコードの読み取りを開始する。 The auto trigger function is started, for example, when the function key of the device is set by the operator. In some cases, the auto-trigger function is automatically set when the apparatus is not operated for a certain period of time. When the auto trigger function is set, the power supply to the laser light source that irradiates the code symbol with the laser beam is stopped to reduce the power consumption. When the photosensor for detecting an object detects an object in a state where power consumption is suppressed in this way, power supply to the laser light source is resumed, laser beam irradiation is started, and barcode reading is started.
 このような従来例に関連して、特許文献1には、オートトリガ機能を備えたバーコード読取装置が開示されている。特許文献1によれば、タイマをリセットしてから所定時間経過したときはレーザ光源を消灯し、物品検知センサが物品を検知するとレーザ光源を点灯させてレーザ光源をバーコードに向けて照射する。 In connection with such a conventional example, Patent Document 1 discloses a bar code reader having an auto trigger function. According to Patent Document 1, when elapsed since the timer is reset a predetermined time and turns off the laser light source, by turning on the laser light source when the article detection sensor detects an article is irradiated toward the laser light source to the bar code.
 また、特許文献2には、バーコード等の符号情報を読み取りテストするためのテストモードを備えた定置式バーコード読み取り装置が開示されている。特許文献2によれば、コンベアにより搬送される物体を検出する光電スイッチを備え、この光電スイッチは、投光部から光を受光部へ向けて発光し、コンベアにより搬送される物体を検出する。光電スイッチが物体を検出すると、バーコード読み取り装置は、レーザ点灯回路を駆動して発光素子からレーザ光線をバーコードに向けて照射する。 Further, Patent Document 2 discloses a stationary bar code reader having a test mode for reading and testing code information such as a bar code. According to Patent Document 2, it includes a photoelectric switch for detecting an object being conveyed by the conveyor, the photoelectric switch, the light from the light emitting unit emits light toward the light receiving unit, to detect an object to be conveyed by the conveyor. When the photoelectric switch detects an object, the barcode reader drives the laser lighting circuit to irradiate the barcode with the laser beam from the light emitting element.
特開平9-259214号公報Japanese Patent Laid-Open No. 9-259214 特開平9-6886号公報Japanese Patent Laid-Open No. 9-6886
 ところで、従来例に係る特許文献1によれば、オートトリガ機能を実現するために物品検知センサを備えている。この物品検知センサにより物品を検知して、消灯しているレーザ光源を点灯させてレーザ光源をバーコードに向けて照射する。同様に、特許文献2もオートトリガ機能を実現するために光電スイッチを備えている。 Incidentally, according to Patent Document 1 according to the conventional example, an article detection sensor is provided in order to realize an auto trigger function. The article is detected by the article detection sensor, the laser light source that is turned off is turned on, and the laser light source is irradiated toward the barcode. Similarly, Patent Document 2 also includes a photoelectric switch in order to realize an auto trigger function.
 しかしながら、上述したハンディターミナルなどでは内部基板が高密度化しており、オートトリガ機能のためのセンサなどの部品や回路を追加することが非常に困難な場合が多い。従来例のように、オートトリガ機能を実現するためにセンサ部品や回路を追加すると、部品点数が増加して装置が大型化する問題がある。 However, in the above-described handy terminal and the like, the internal substrate is dense, and it is often very difficult to add parts such as a sensor or a circuit for the auto trigger function. If sensor parts or circuits are added to realize the auto trigger function as in the conventional example, there is a problem that the number of parts increases and the apparatus becomes large.
 そこで、本発明はこのような従来例に係る課題を解決したものであって、オートトリガ機能を実現するための部品や回路を追加することなく、高精度なオートトリガ機能を実現することを目的とする。 Therefore, the present invention solves such a problem related to the conventional example, and aims to realize a highly accurate auto-trigger function without adding parts or circuits for realizing the auto-trigger function. And
 上述した課題を解決するために、本発明に係る光学的情報読取装置は、光反射率の異なる部分で構成されるコード記号の情報を読み取る光学的情報読取装置であって、レーザ光源からレーザ光線を照射してコード記号を読み取る動作を読取モードとし、消費電力を抑えたレーザ光源からレーザ光線を照射してコード記号を検出する動作を非読取モードとしたとき、レーザ光源からコード記号に照射されたレーザ光線の反射光を受光して電気信号に変換する信号変換部と、電気信号を二値化して二値化信号を生成する信号処理部と、二値化信号をデコードしてコード記号を検出する制御部とを備え、制御部は、非読取モード時に検出したコード記号が正しいか否かを判定し、判定結果に基づいて非読取モードから読取モードに切り替えるものである。 To solve the problems described above, an optical information reading apparatus according to the present invention is an optical information reader for reading information of the composed code symbols in different parts of the light reflectance, the laser beam from the laser light source The code symbol is read from the laser light source and the code symbol is detected by irradiating the laser beam from the laser light source with reduced power consumption. A signal converter that receives the reflected light of the laser beam and converts it into an electrical signal; a signal processor that binarizes the electrical signal to generate a binarized signal; and a code symbol that decodes the binarized signal A controller for detecting whether the code symbol detected in the non-reading mode is correct, and switching from the non-reading mode to the reading mode based on the determination result A.
 また、上述した課題を解決するために、本発明に係る光学的情報読取装置の制御方法は、コード記号のような光反射率の異なる部分で構成される読取対象の情報を読み取る光学的情報読取装置を制御する方法であって、レーザ光源からレーザ光線を照射してコード記号を読み取る動作を読取モードとし、消費電力を抑えたレーザ光源からレーザ光線を照射してコード記号を検出する動作を非読取モードとしたとき、光学的情報読取装置は、レーザ光源からコード記号に照射されたレーザ光線の反射光を受光して電気信号に変換する第1のステップと、電気信号を二値化して二値化信号を生成する第2のステップと、二値化信号をデコードしてコード記号を検出する第3のステップとを実行し、第3のステップでは、非読取モード時に検出したコード記号が正しいか否かを判定し、判定結果に基づいて非読取モードから読取モードに切り替えるものである。 In order to solve the above-described problem, the control method of the optical information reading apparatus according to the present invention is an optical information reading method for reading information to be read that is composed of portions having different light reflectances such as code symbols. A method for controlling the apparatus, in which an operation for reading a code symbol by irradiating a laser beam from a laser light source is set to a reading mode, and an operation for detecting a code symbol by irradiating a laser beam from a laser light source with reduced power consumption is not performed. In the reading mode, the optical information reading device receives the reflected light of the laser beam irradiated to the code symbol from the laser light source and converts it into an electric signal, and binarizes the electric signal by binarizing it. A second step of generating a binarized signal and a third step of detecting the code symbol by decoding the binarized signal are executed. In the third step, detection is performed in the non-reading mode. Determining whether the code symbol is correct, but to switch based on the determination result to the reading mode from the non-read mode.
 本発明において、制御部は、非読取モード時に検出したコード記号が正しいと判定した場合には非読取モードから読取モードに切り替え、コード記号が正しくないと判定した場合には非読取モードを継続する。これにより、既存のレーザ光源を利用して、自動的にコード記号の読み取りを開始するオートトリガ機能を実現できる。 In the present invention, the control unit switches from the non-reading mode to the reading mode when determining that the code symbol detected in the non-reading mode is correct, and continues the non-reading mode when determining that the code symbol is not correct. . As a result, it is possible to realize an auto-trigger function that automatically starts reading code symbols using an existing laser light source.
 制御部は、非読取モードで検出したコード記号の検出サンプル数とコード記号の基準サンプル数とを比較し、検出サンプル数が基準サンプル数の範囲内であり、かつ、検出したコード記号の検出サンプルの各サンプル値とコード記号の基準サンプル値とを比較し、検出サンプルの各サンプル値が基準サンプル値を超過しないと判定した場合、検出したコード記号が正しいと判定する。 Control unit compares the reference number of samples of the detected sample number and code symbol code symbol has been detected in non-reading mode, in the range detection the number of samples is the number of the reference sample, and the detection sample of the detected code symbol When each sample value is compared with the reference sample value of the code symbol and it is determined that each sample value of the detected sample does not exceed the reference sample value, it is determined that the detected code symbol is correct.
 本発明によれば、非読取モード時に消費電力を抑えたレーザ光源からレーザ光線を照射してコード記号を検出し、該検出したコード記号が正しいか否かを判定し、コード記号が正しいと判定した場合には非読取モードから読取モードに切り替え、コード記号が正しくないと判定した場合には非読取モードを継続するものである。 According to the present invention, a code symbol is detected by irradiating a laser beam from a laser light source with reduced power consumption in the non-reading mode, whether or not the detected code symbol is correct, and determined that the code symbol is correct If the code symbol is not correct, the non-reading mode is continued.
 これにより、既存のレーザ光源を利用して、自動的にコード記号の読み取りを開始するオートトリガ機能を実現できる。従って、従来のオートトリガ機能を実現するための部品や専用回路を削除することができるので、当該光学的情報読取装置を小型化することができる。 This makes it possible to realize an auto trigger function that automatically starts reading code symbols using an existing laser light source. Therefore, since the parts and dedicated circuits for realizing the conventional auto trigger function can be deleted, the optical information reading apparatus can be reduced in size.
バーコードスキャナ100の構成例を示すブロック図である。2 is a block diagram illustrating a configuration example of a barcode scanner 100. FIG. 二値化処理部7gの構成例を示すブロック図である。It is a block diagram which shows the structural example of the binarization process part 7g. オートトリガ機能の処理例を示すフローチャートである。It is a flowchart which shows the process example of an auto trigger function. 紙面検知の処理例を示すフローチャートである。It is a flowchart which shows the process example of a paper surface detection.
 続いて、図面を参照しながら本発明に係る光学的情報読取装置およびその制御方法を実施するための形態について説明する。本発明は、非読取モード時に消費電力を抑えたレーザ光源からレーザ光線を照射してコード記号を検出してコード記号が正しいか否かを判定し、判定結果に基づいて非読取モードから読取モードに切り替えることで、既存のレーザ光源を利用して、自動的にコード記号の読み取りを開始するオートトリガ機能を実現できるようにしたものである。 Subsequently, an embodiment for carrying out the optical information reading apparatus and the control method thereof according to the present invention will be described with reference to the drawings. The present invention detects the code symbols from the laser light source with reduced power consumption in the non-reading mode by irradiating a laser beam to determine whether the code symbol is correct, based on the determination result read from the non-read mode mode By switching to, it is possible to realize an auto trigger function that automatically starts reading of code symbols using an existing laser light source.
 図1に示すバーコードスキャナ100は光学的情報読取装置の一例であり、一例として運搬業務でベルトコンベアにより搬送される物品のバーコードを読み取る際に使用される定置式のバーコードスキャナである。もちろん、バーコードスキャナ100の用途は、これに限らず携帯式のバーコードスキャナに適用してもよい。 A barcode scanner 100 shown in FIG. 1 is an example of an optical information reader, and as an example, is a stationary barcode scanner used when reading a barcode of an article conveyed by a belt conveyor in a transportation operation. Of course, the use of the barcode scanner 100 is not limited to this, and may be applied to a portable barcode scanner.
 バーコードスキャナ100は、レーザ光源1、光学部2、信号変換部3、CPU4、割込コントローラ5、タイマ6、信号処理部7、RAM(Random Access Memory)8、ROM(Read Only Member)9、キーボード10、ディスプレイ11、OSC(oscillator)15、PLL(Phase Locked Loop)回路16及びRTC(Real Time Clock)回路19を備えている。 Bar code scanner 100 includes a laser light source 1, the optical unit 2, the signal conversion unit 3, CPU 4, interrupt controller 5, a timer 6, the signal processing unit 7, RAM (Random Access Memory) 8, ROM (Read Only Member) 9, A keyboard 10, a display 11, an OSC (oscillator) 15, a PLL (Phase Locked Loop) circuit 16, and an RTC (Real Time Clock) circuit 19 are provided.
 レーザ光源1は、光反射率の異なる部分で構成されるコード記号の一例であるバーコードに向けて光を照射する。例えばレーザ光源1は、その発光点からレーザ光線を光学部2の集光レンズ2aに向けて発光する。集光レンズ2aは、レーザ光源1から発光されたレーザ光線を集光する。集光レンズ2aの後段にはスキャンミラー2bが配置されている。スキャンミラー2bは、集光レンズ2aにより集光されたレーザ光線を偏向する。 The laser light source 1 irradiates light toward a barcode which is an example of a code symbol composed of portions having different light reflectances. For example, the laser light source 1 emits a laser beam from the light emitting point toward the condenser lens 2 a of the optical unit 2. The condensing lens 2 a condenses the laser beam emitted from the laser light source 1. A scan mirror 2b is arranged at the subsequent stage of the condenser lens 2a. The scan mirror 2b deflects the laser beam collected by the condenser lens 2a.
 バーコードスキャナ100がバーコードに向けられた状態で、スキャンミラー2bにより偏向されたレーザ光線はバーコードに照射されて当該バーコードを走査する。結像レンズ2cは、バーコードから反射された反射光を入射して信号変換部3の光電変換器3a上に反射光を結像させる。光電変換器3aは、反射光を受光して強度に応じた電気信号に変換してI/V変換器(電流/電圧変換器)3bに出力する。I/V変換器3bは、電気信号の電流値を電圧値に変換した電圧信号を信号処理部7に出力する。このように、信号変換部3は、レーザ光源1からバーコードに照射されたレーザ光線の反射光を受光して電気信号に変換して信号処理部7に出力する。 In a state where the barcode scanner 100 is directed to the barcode, the laser beam deflected by the scan mirror 2b is applied to the barcode to scan the barcode. The imaging lens 2 c receives the reflected light reflected from the barcode and forms an image of the reflected light on the photoelectric converter 3 a of the signal conversion unit 3. The photoelectric converter 3a receives the reflected light, converts it into an electrical signal corresponding to the intensity, and outputs it to an I / V converter (current / voltage converter) 3b. The I / V converter 3 b outputs a voltage signal obtained by converting the current value of the electric signal into a voltage value to the signal processing unit 7. As described above, the signal conversion unit 3 receives the reflected light of the laser beam irradiated on the barcode from the laser light source 1, converts it into an electrical signal, and outputs it to the signal processing unit 7.
 信号処理部7は電気信号を二値化して二値化信号を生成する。信号処理部7は、プリアンプ7a、微分器7b、AGC(Automatic Gain Control)回路7c、イコライザ7d、出力アンプ7f及び二値化処理部7gを備えている。プリアンプ7aは、I/V変換器3bから入力した電圧信号を増幅して微分器7bに出力する。微分器7bは、増幅された電圧信号を微分して微分信号を生成してAGC回路7cに出力する。AGC回路7cは、自動的に増幅回路の増幅率(ゲイン)を調整して、微分信号の振幅が変動する場合においても一定の出力が得られるようにする。 The signal processing unit 7 binarizes the electric signal to generate a binarized signal. The signal processing unit 7 includes a preamplifier 7a, a differentiator 7b, an AGC (Automatic Gain Control) circuit 7c, an equalizer 7d, an output amplifier 7f, and a binarization processing unit 7g. The preamplifier 7a amplifies the voltage signal input from the I / V converter 3b and outputs it to the differentiator 7b. The differentiator 7b differentiates the amplified voltage signal to generate a differential signal and outputs it to the AGC circuit 7c. The AGC circuit 7c automatically adjusts the amplification factor (gain) of the amplifier circuit so that a constant output can be obtained even when the amplitude of the differential signal varies.
 イコライザ7dは、AGC回路7cから入力した微分信号のノイズを除去すると共に波形等化を行った微分信号を出力アンプ7fに出力する。出力アンプ7fは、微分信号の振幅を約5倍に増幅して二値化処理部7gに出力する。 The equalizer 7d removes noise from the differential signal input from the AGC circuit 7c and outputs the differential signal subjected to waveform equalization to the output amplifier 7f. The output amplifier 7f amplifies the amplitude of the differential signal by about 5 times and outputs the amplified signal to the binarization processing unit 7g.
 二値化処理部7gは、微分信号に基づいて二値化信号を生成する。例えば図2に示す二値化処理部7gは、比較器7hおよびスライス信号発生器7iを備えている。スライス信号発生器7iは、バーコードの白黒の変曲点を判定するための基準となるスライス信号を比較器7hに出力する。比較器7hは、スライス信号発生器7iからスライス信号と出力アンプ7fから微分信号を入力する。比較器7hは、入力した微分信号とスライス信号とを比較して二値化信号を生成する。例えば、比較器7hは、微分信号のレベルがスライス信号のレベルよりも高い場合にはハイレベルの信号を出力し、微分信号のレベルがスライス信号のレベルよりも低い場合にはローレベルの信号を出力して二値化信号を生成する。二値化処理部7gは、二値化信号を制御部の一例であるCPU4に出力する。なお、スライス信号のレベルは、微分信号の振幅に合わせて制御可能である。 The binarization processing unit 7g generates a binarized signal based on the differential signal. For example, the binarization processing unit 7g shown in FIG. 2 includes a comparator 7h and a slice signal generator 7i. The slice signal generator 7i outputs a slice signal serving as a reference for determining the black and white inflection point of the barcode to the comparator 7h. The comparator 7h receives the slice signal from the slice signal generator 7i and the differential signal from the output amplifier 7f. The comparator 7h compares the input differential signal with the slice signal to generate a binarized signal. For example, the comparator 7h outputs a high level signal when the level of the differential signal is higher than the level of the slice signal, and outputs a low level signal when the level of the differential signal is lower than the level of the slice signal. Output to generate a binarized signal. The binarization processing unit 7g outputs a binarization signal to the CPU 4 that is an example of a control unit. Note that the level of the slice signal can be controlled in accordance with the amplitude of the differential signal.
 CPU4は二値化信号をデコードしてバーコードを読み取る。例えばCPU4は、二値化信号のエッジのタイミングで割り込みを発生してバーコードの幅長を求める。この例で、CPU4は割込コントローラ5及びタイマ6を備えている。割込コントローラ5は、二値化信号における立ち上がりエッジのタイミングで割り込みをタイマ6に対して発生する。タイマ6は、割り込み発生時に二値化信号のエッジ間隔(時間間隔)を求め、このエッジ間隔からバーコードの幅長を求める。CPU4は、バーコードの幅長と閾値とを比較して太いバー/細いバーなどを判別してバーコードキャラクタへ変換してバーコードを読み取る。 CPU4 decodes the binarized signal and reads the barcode. For example, the CPU 4 generates an interrupt at the edge timing of the binarized signal and obtains the barcode length. In this example, the CPU 4 includes an interrupt controller 5 and a timer 6. The interrupt controller 5 generates an interrupt to the timer 6 at the timing of the rising edge in the binarized signal. The timer 6 obtains the edge interval (time interval) of the binarized signal when an interrupt occurs, and obtains the width of the barcode from this edge interval. The CPU 4 compares the width of the barcode with a threshold value, discriminates a thick bar / thin bar, etc., converts it into a barcode character, and reads the barcode.
 図1に示すOSC15は発振して一定のクロック信号をPLL回路16に出力する。例えば、OSC15は、4MHzのクロック信号をPLL回路16に出力する。PLL回路16は、OSC15から入力したクロック信号を逓倍する。例えば、PLL回路16は、OSC15から入力した4MHzのクロック信号を12倍に逓倍して48MHzのクロック信号を生成する。CPU4は、このPLL回路16により生成された48MHzのクロック信号で動作する。 The OSC 15 shown in FIG. 1 oscillates and outputs a constant clock signal to the PLL circuit 16. For example, the OSC 15 outputs a 4 MHz clock signal to the PLL circuit 16. The PLL circuit 16 multiplies the clock signal input from the OSC 15. For example, the PLL circuit 16 multiplies the 4 MHz clock signal input from the OSC 15 by 12 to generate a 48 MHz clock signal. The CPU 4 operates with a 48 MHz clock signal generated by the PLL circuit 16.
 ROM9は、バーコードスキャナ100のリアルタイムOS(例えばμITron)などが格納され、CPU4により参照される。リアルタイム処理の実行単位は、タスクとハンドラに大別される。タスクは、リアルタイムOSにより起動、中断、再開、終了が行われる。一方、ハンドラは、CPU4内外で発生する各種イベントによりOSを介さずに起動されるプログラム単位である。CPU4は、割り込み発生を検出すると実行状態を割り込み処理実行状態に切り換え、CPU4に登録されている割り込みハンドラを実行する。OSは割り込みハンドラの実行制御が不可能であるから、CPU4の通常実行状態が適用されるタスクよりも割り込みハンドラの優先順位が高い。 The ROM 9 stores a real-time OS (for example, μITron) of the barcode scanner 100 and is referred to by the CPU 4. The execution unit of real-time processing is roughly divided into tasks and handlers. The task is activated, interrupted, resumed, and terminated by the real-time OS. On the other hand, the handler is a program unit that is activated without going through the OS by various events occurring inside and outside the CPU 4. When the CPU 4 detects the occurrence of an interrupt, it switches the execution state to the interrupt processing execution state, and executes the interrupt handler registered in the CPU 4. Since the OS cannot control the execution of the interrupt handler, the interrupt handler has a higher priority than the task to which the normal execution state of the CPU 4 is applied.
 RAM8はCPU4のワークメモリとして使用される。キーボード10には、操作者から様々な指示が入力される。ディスプレイ11は、バーコードスキャナ100の動作状態や操作者の指示などを写し出す。 The RAM 8 is used as a work memory for the CPU 4. Various instructions are input to the keyboard 10 from an operator. The display 11 displays the operation state of the barcode scanner 100, an instruction from the operator, and the like.
 バーコードスキャナ100は読取モードと非読取モードを備えたオートトリガ機能を有している。読取モードは、レーザ光源1からレーザ光線を照射してバーコードを読み取る動作であり、非読取モードは、消費電力を抑えたレーザ光源1からレーザ光線を照射してバーコードを検出する動作である。例えば、キーボード10のファンクションキー(不図示)を操作してオートトリガ機能をONに設定する。オートトリガ機能がONに設定されると、読取モードから非読取モードへ切り替えられる。バーコードスキャナ100の無動作時間が一定時間経過すると自動的にオートトリガ機能をONに設定するように制御しても良い。 The barcode scanner 100 has an auto trigger function having a reading mode and a non-reading mode. Reading mode is an operation of reading a bar code by irradiating a laser beam from the laser light source 1, the non-read mode is the operation of detecting the bar code from the laser light source 1 is irradiated with the laser beam with reduced power consumption . For example, a function key (not shown) of the keyboard 10 is operated to set the auto trigger function to ON. When the auto trigger function is set to ON, the reading mode is switched to the non-reading mode. It may be controlled such that the auto trigger function is automatically set to ON when the bar code scanner 100 has been inactive for a fixed time.
 オートトリガ機能がONにされて非読取モードが設定された状態では、レーザ光源1を間欠的に駆動すると共にレーザ光源1から得られる信号のゲインを大きくする。この例で、レーザ光源1を0.5sec間隔で照射する。これにより、レーザ光源1の消費電力を抑えることができる。また、AGC回路7cのゲインを最大レベルに設定する。これにより、遠方のバーコードを読み取ることができる。この場合、ゲインを最大に設定するので遠方のバーコードを読み取ることができるが、ゲインが最大であるためノイズが増加して特に近距離のバーコードを読み取ることが問題となる。この問題の解決策として、イコライザ7dによりカットオフ周波数を下げて通過帯域を狭めて高周波成分を除去する。また、二値化処理部7gのスライス信号発生器7iのスライス信号のレベルを上げることで微分信号の変曲点のみを抽出する。このようにすることで、AGC回路7cのゲインが最大でもバーコードを検出できるようになる。 In a state where the auto trigger function is turned on and the non-reading mode is set, the laser light source 1 is intermittently driven and the gain of the signal obtained from the laser light source 1 is increased. In this example, the laser light source 1 is irradiated at intervals of 0.5 sec. Thereby, the power consumption of the laser light source 1 can be suppressed. Further, the gain of the AGC circuit 7c is set to the maximum level. Thereby, a distant bar code can be read. In this case, since the gain is set to the maximum, it is possible to read a distant bar code. However, since the gain is the maximum, noise increases, and in particular, it is a problem to read a close bar code. As a solution to this problem, the equalizer 7d lowers the cut-off frequency to narrow the passband and remove high-frequency components. Further, only the inflection point of the differential signal is extracted by raising the level of the slice signal of the slice signal generator 7i of the binarization processing unit 7g. By doing so, the barcode can be detected even when the gain of the AGC circuit 7c is maximum.
 CPU4は、非読取モード時に検出したバーコードをデコードして正しいか否かを判定する。CPU4は、非読取モード時に検出したバーコードが正しいと判定した場合には非読取モードから読取モードに切り替え、バーコードが正しくないと判定した場合には非読取モードを継続する。これにより、既存のレーザ光源1を利用して、自動的にバーコードの読み取りを開始するオートトリガ機能を実現できる。従って、従来のオートトリガ機能を実現するための部品や専用回路を削除することができるので、バーコードスキャナ100を小型化することができる。 CPU 4 decodes the barcode detected in the non-reading mode and determines whether or not it is correct. CPU4 is, if the bar code detected in the non-reading mode is determined to correct switch to read mode from the non-reading mode, when it is determined that the bar code is not correct to continue the non-reading mode. As a result, it is possible to realize an auto-trigger function that automatically starts barcode reading using the existing laser light source 1. Accordingly, parts and dedicated circuits for realizing the conventional auto trigger function can be deleted, and the barcode scanner 100 can be downsized.
 続いて、バーコードスキャナ100の動作例について説明する。読取モードの状態では、バーコードスキャナ100のレーザ光源1の発光点からレーザ光線が連続して発光されている。このレーザ光線は光学部2の集光レンズ2aにより集光される。集光されたレーザ光線は、スキャンミラー2bにより偏向されてバーコードに照射されて当該バーコードを走査する。 Subsequently, an operation example of the barcode scanner 100 will be described. In the reading mode, a laser beam is continuously emitted from the light emitting point of the laser light source 1 of the barcode scanner 100. This laser beam is condensed by the condensing lens 2 a of the optical unit 2. The condensed laser beam is deflected by the scan mirror 2b and applied to the barcode to scan the barcode.
 バーコードから光が反射され、反射された反射光は結像レンズ2cにより光電変換器3a上に結像される。光電変換器3a上に結像された反射光は、光電変換器3aにより強度に応じた電気信号に変換される。電気信号は、I/V変換器3bにより電流値から電圧値に変換されて電圧信号となる。 The light is reflected from the barcode and the reflected light is imaged on the photoelectric converter 3a by the imaging lens 2c. The reflected light imaged on the photoelectric converter 3a is converted into an electric signal corresponding to the intensity by the photoelectric converter 3a. The electric signal is converted from a current value to a voltage value by the I / V converter 3b to be a voltage signal.
 電圧信号は、信号処理部7のプリアンプ7aにより増幅され、増幅後、微分器7bにより微分されて微分信号となる。微分信号は、AGC回路7cにより増幅される。この場合、AGC回路7cのゲインをバーコードを読み取る通常のレベルに設定する。AGC回路7cにより増幅された微分信号は、イコライザ7dによりノイズが除去されて波形等化処理が実施される。その後、微分信号は、出力アンプ7fにより振幅が約5倍に増幅され、二値化処理部7gにより二値化されて二値化信号が生成される。 The voltage signal is amplified by the preamplifier 7a of the signal processing unit 7, and after amplification, is differentiated by the differentiator 7b to become a differentiated signal. The differential signal is amplified by the AGC circuit 7c. In this case, the gain of the AGC circuit 7c is set to a normal level for reading a barcode. The differential signal amplified by the AGC circuit 7c is subjected to waveform equalization processing by removing noise from the equalizer 7d. Thereafter, the differential signal is amplified about five times in amplitude by the output amplifier 7f, and binarized by the binarization processing unit 7g to generate a binarized signal.
 CPU4は、二値化信号のエッジのタイミングで割り込みを発生してバーコードの幅長を求め、求めたバーコードの幅長と閾値とを比較して太いバー/細いバーなどを判別してバーコードキャラクタへ変換してバーコードを読み取る。 The CPU 4 generates an interrupt at the timing of the edge of the binarized signal to obtain the barcode width length, compares the obtained barcode width length with a threshold value, discriminates a thick bar / thin bar, etc. Convert to code character and read barcode.
 一方、オートトリガ機能がONされて非読取モードの状態では、バーコードスキャナ100のレーザ光源1の発光点からレーザ光線が間欠的に発光される。このレーザ光線は光学部2の集光レンズ2aにより集光される。集光されたレーザ光線は、スキャンミラー2bにより偏向されてバーコードに照射されて当該バーコードを走査する。 On the other hand, when the auto-trigger function is ON and in the non-reading mode, the laser beam is intermittently emitted from the light emission point of the laser light source 1 of the barcode scanner 100. This laser beam is condensed by the condensing lens 2 a of the optical unit 2. The condensed laser beam is deflected by the scan mirror 2b and applied to the barcode to scan the barcode.
 バーコードから光が反射され、反射された反射光は結像レンズ2cにより光電変換器3a上に結像される。光電変換器3a上に結像された反射光は、光電変換器3aにより強度に応じた電気信号に変換される。電気信号は、I/V変換器3bにより電流値から電圧値に変換されて電圧信号となる。 The light is reflected from the barcode and the reflected light is imaged on the photoelectric converter 3a by the imaging lens 2c. The reflected light imaged on the photoelectric converter 3a is converted into an electric signal corresponding to the intensity by the photoelectric converter 3a. The electric signal is converted from a current value to a voltage value by the I / V converter 3b to be a voltage signal.
 電圧信号は、信号処理部7のプリアンプ7aにより増幅され、増幅後、微分器7bにより微分されて微分信号となる。微分信号は、AGC回路7cにより増幅される。この場合、AGC回路7cのゲインを最大レベルに設定する。AGC回路7cにより増幅された微分信号は、カットオフ周波数を下げたイコライザ7dによりノイズが除去されて波形等化処理が実施される。その後、微分信号は、出力アンプ7fにより振幅が約5倍に増幅され、スライス信号のレベルを上げた二値化処理部7gにより二値化されて二値化信号が生成される。 The voltage signal is amplified by the preamplifier 7a of the signal processing unit 7, and after amplification, is differentiated by the differentiator 7b to become a differentiated signal. The differential signal is amplified by the AGC circuit 7c. In this case, the gain of the AGC circuit 7c is set to the maximum level. The differential signal amplified by the AGC circuit 7c is subjected to waveform equalization processing after noise is removed by an equalizer 7d having a cut-off frequency lowered. After that, the differential signal is amplified about five times by the output amplifier 7f, and binarized by the binarization processing unit 7g that increases the level of the slice signal to generate a binarized signal.
 CPU4は、二値化信号のエッジのタイミングで割り込みを発生してバーコードの幅長を求め、求めたバーコードの幅長と閾値とを比較して太いバー/細いバーなどを判別してバーコードキャラクタへ変換してバーコードを検出し、検出したバーコードが正しいか否かを判定する。例えば、CPU4は、非読取モードで検出したバーコードの検出サンプル数とバーコードの基準サンプル数とを比較し、検出サンプル数が基準サンプル数の範囲内であり、かつ、検出したバーコードの検出サンプルの各サンプル値とバーコードの基準サンプル値とを比較し、検出サンプルの各サンプル値が基準サンプル値を超過しないと判定した場合、検出したバーコードが正しいと判定する。CPU4は、非読取モード時に検出したバーコードが正しいと判定した場合には非読取モードから読取モードに切り替え、バーコードが正しくないと判定した場合には非読取モードを継続する。 The CPU 4 generates an interrupt at the timing of the edge of the binarized signal to obtain the barcode width length, compares the obtained barcode width length with a threshold value, discriminates a thick bar / thin bar, etc. A bar code is detected after conversion into a code character, and it is determined whether or not the detected bar code is correct. For example, the CPU 4 compares the number of detected barcode samples detected in the non-reading mode with the reference number of barcodes, and the detected number of samples is within the reference number of samples and the detected barcode is detected. Each sample value of the sample is compared with the reference sample value of the barcode, and when it is determined that each sample value of the detected sample does not exceed the reference sample value, it is determined that the detected barcode is correct. CPU4 is, if the bar code detected in the non-reading mode is determined to correct switch to read mode from the non-reading mode, when it is determined that the bar code is not correct to continue the non-reading mode.
 続いて、図3及び図4を参照してオートトリガ機能の動作について詳細に説明する。この例では、キーボード10のファンクションキー(不図示)が操作されてオートトリガ機能がONにされる。オートトリガ機能がONにされると非読取モードが設定される。例えば、図3に示すステップST1で、ゲイン調整などを実施する。この例で、CPU4は、レーザ光源1を0.5sec間隔で照射するように制御して、レーザ光源1の消費電力を抑える。信号処理部7は、遠方のバーコードを読み取れるように、AGC回路7cのゲインを最大レベルに設定する。また、信号処理部7は、イコライザ7dによりカットオフ周波数を下げて通過帯域を狭めて高周波成分を除去するように設定する。また、二値化処理部7gのスライス信号発生器7iのスライス信号のレベルを上げることで微分信号の変曲点のみを抽出するように設定する。続いてステップST2に移行する。 Subsequently, the operation of the auto trigger function will be described in detail with reference to FIG. 3 and FIG. In this example, a function key (not shown) of the keyboard 10 is operated to turn on the auto trigger function. When the auto trigger function is turned on, the non-reading mode is set. For example, gain adjustment or the like is performed in step ST1 shown in FIG. In this example, the CPU 4 controls the laser light source 1 to irradiate at intervals of 0.5 sec, and suppresses the power consumption of the laser light source 1. The signal processing unit 7 sets the gain of the AGC circuit 7c to the maximum level so that a distant barcode can be read. Further, the signal processing unit 7 sets the equalizer 7d to lower the cutoff frequency to narrow the passband and remove the high frequency component. In addition, the level of the slice signal of the slice signal generator 7i of the binarization processing unit 7g is raised so that only the inflection point of the differential signal is extracted. Subsequently, the process proceeds to step ST2.
 ステップST2で、バーコードスキャナ100は紙面検知を実施する。ステップST2における紙面検知処理の詳細を図4のフローチャートを参照して説明する。図4に示すステップST21で、レーザ光源1のレーザ光線によるバーコードの走査(測定)が5回以内であるか否かを判定する。この例では、レーザ光源1を起動してから5回分のバーコードのサンプルを取得する。バーコードの走査が5回を超過した場合には図3のステップST3に移行する。バーコードの走査が5回以内である場合にはステップST22に移行する。 In step ST2, the barcode scanner 100 performs paper surface detection. Details of the paper surface detection process in step ST2 will be described with reference to the flowchart of FIG. In step ST21 shown in FIG. 4, it is determined whether the scanning (measurement) of the barcode by the laser beam of the laser light source 1 is within 5 times. In this example, five barcode samples are acquired after the laser light source 1 is activated. When the barcode scanning exceeds 5 times, the process proceeds to step ST3 in FIG. When the barcode scanning is within 5 times, the process proceeds to step ST22.
 ステップST22で、CPU4は、バーコードの検出サンプル数とバーコードの基準サンプル数とを比較し、検出サンプル数が基準サンプル数の範囲内であるか否かを判定する。例えば、CPU4は、信号処理部7から入力した二値化信号のエッジのタイミングで割り込みを発生してバーコードの幅長を求め、求めたバーコードの幅長と閾値とを比較して太いバー/細いバーなどを判別してバーコードキャラクタへ変換してバーコードを検出する。CPU4は、検出したバーコードの検出サンプル数とバーコードの基準サンプル数(例えば23~256)とを比較し、検出サンプル数が基準サンプル数の範囲内であるか否かを判定する。検出サンプル数が基準サンプル数の範囲外である場合にはステップST21に戻る。検出サンプル数が基準サンプル数の範囲内である場合にはステップST23に移行する。 In step ST22, the CPU 4 compares the number of detected barcode samples with the reference sample number of the barcode, and determines whether or not the detected sample number is within the range of the reference sample number. For example, the CPU 4 generates an interrupt at the edge timing of the binarized signal input from the signal processing unit 7 to obtain the barcode width length, compares the obtained barcode width length with a threshold value, / The bar code is detected by discriminating a thin bar and converting it to a bar code character. The CPU 4 compares the detected number of detected barcode samples with the reference number of barcode samples (for example, 23 to 256), and determines whether or not the detected sample number is within the reference sample number range. If the number of detected samples is outside the range of the reference sample number, the process returns to step ST21. When the number of detected samples is within the range of the reference sample number, the process proceeds to step ST23.
 ステップST23で、CPU4は、検出したバーコードの検出サンプルの各サンプル値とバーコードの基準サンプル値とを比較し、検出サンプルの各サンプル値が基準サンプル値を超過しないか否かを判定する。例えば、CPU4は、検出サンプルの各サンプル値とバーコードの基準サンプル値(例えば0x8000)とを比較し、検出サンプルの各サンプル値が基準サンプル値を超過する場合には基準の太いバーを超えるバーが存在すると判定してステップST21に戻る。検出サンプルの各サンプル値が基準サンプル値を超過しない場合にはステップST24に移行する。 In step ST23, the CPU 4 compares each detected sample value of the barcode with the reference sample value of the barcode, and determines whether each sample value of the detected sample does not exceed the reference sample value. For example, bar CPU4 compares the sample values and reference sample values of the bar codes detected sample (e.g. 0x8000), exceeding the thick of the reference bar when each sample value of the detected sample exceeds the reference sample value Is determined to exist, and the process returns to step ST21. If each sample value of the detected sample does not exceed the reference sample value, the process proceeds to step ST24.
 ステップ24で、CPU4はOKカウンタをカウントアップしてステップST25に移行する。ステップST25で、CPU4は、OKカウンタが3以上であるか否かを判定する。OKカウンタが3より小さいと判定した場合にはステップST21に戻る。OKカウンタが3以上であると判定した場合にはステップST26に移行する。ステップST26で、CPU4は、バーコードを検出したと判定して図3のステップST3に移行する。 In step 24, the CPU 4 counts up the OK counter and proceeds to step ST25. In step ST25, the CPU 4 determines whether or not the OK counter is 3 or more. If it is determined that the OK counter is less than 3, the process returns to step ST21. When it is determined that the OK counter is 3 or more, the process proceeds to step ST26. In step ST26, the CPU 4 determines that a bar code has been detected, and proceeds to step ST3 in FIG.
 図3に示すステップST3で、CPU4は、バーコードが検出されたか否かを判定する。バーコードが検出されていないと判定した場合にはステップST1に戻り、再びゲイン調整などを実施する。バーコードが検出されたと判定した場合にはステップST4に移行する。 In step ST3 shown in FIG. 3, the CPU 4 determines whether or not a barcode is detected. If it is determined that the bar code is not detected, the process returns to step ST1, and gain adjustment is performed again. If it is determined that a bar code has been detected, the process proceeds to step ST4.
 ステップST4で、ゲイン調整などを実施する。例えば、CPU4は、レーザ光源1を連続で照射するように制御する。信号処理部7は、AGC回路7cのゲインをバーコードを読み取る通常のレベルに設定する。また、信号処理部7は、イコライザ7dによりカットオフ周波数を元に戻すと共に、二値化処理部7gのスライス信号発生器7iのスライス信号のレベルを元に戻して読取モードに設定してオートトリガ機能の終了となる。 In step ST4, gain adjustment is performed. For example, the CPU 4 controls to irradiate the laser light source 1 continuously. The signal processing unit 7 sets the gain of the AGC circuit 7c to a normal level for reading a barcode. Further, the signal processing unit 7 restores the cut-off frequency to the original by the equalizer 7d, and also restores the level of the slice signal of the slice signal generator 7i of the binarization processing unit 7g to set the reading mode to the auto trigger. The function ends.
 このように、本発明に係るバーコードスキャナ100によれば、非読取モード時に、消費電力を抑えたレーザ光源1からレーザ光線を照射してバーコードを検出し、該検出したバーコードが正しいか否かを判定し、バーコードが正しいと判定した場合には非読取モードから読取モードに切り替え、バーコードが正しくないと判定した場合には非読取モードを継続するものである。 Thus, according to the bar code scanner 100 according to the present invention, the non-reading mode, whether from a laser light source 1 with reduced power consumption by irradiating a laser beam to detect the bar code, the bar code the detected correct If the bar code is determined to be correct, the non-reading mode is switched to the reading mode. If the bar code is determined to be incorrect, the non-reading mode is continued.
 これにより、既存のレーザ光源1を利用して、自動的にバーコードの読み取りを開始するオートトリガ機能を実現できる。従って、従来のオートトリガ機能を実現するための部品や専用回路を削除することができるので、バーコードスキャナ100を小型化することができる。 This makes it possible to realize an auto trigger function that automatically starts barcode reading using the existing laser light source 1. Accordingly, parts and dedicated circuits for realizing the conventional auto trigger function can be deleted, and the barcode scanner 100 can be downsized.
 なお、非読取モードにおいてレーザ光源1の消費電力を抑えるためにレーザ光源1を間欠的に駆動する以外に、レーザ光源1に供給する電力を抑えて暗く発光させるようにしてもよい。 In addition, in order to suppress the power consumption of the laser light source 1 in the non-reading mode, in addition to driving the laser light source 1 intermittently, the power supplied to the laser light source 1 may be suppressed to emit light darkly.
 また、本発明は、本実施の形態で1次元のバーコードを読み取るバーコードスキャナについて説明したが、これに限定されず、2次元コード等のコード記号を読み取るコードスキャナに適用可能である。 Further, the present invention has been described bar code scanner for reading a bar code of one-dimensional in this embodiment is not limited to this and can be applied to the code scanner for reading a code symbol such as a 2-dimensional code.
 本発明は、光反射率の異なる部分で構成されるコード記号の情報を読み取る光学的情報読取装置に適用して極めて好適である。 The present invention is extremely suitable when applied to an optical information reader that reads information of code symbols composed of portions having different light reflectivities.
 1・・・レーザ光源、2・・・光学部、3・・・信号変換部、4・・・CPU(制御部)、7・・・信号処理部、100・・・バーコードスキャナ(光学的情報読取装置) DESCRIPTION OF SYMBOLS 1 ... Laser light source, 2 ... Optical part, 3 ... Signal conversion part, 4 ... CPU (control part), 7 ... Signal processing part, 100 ... Barcode scanner (optical) Information reader)

Claims (5)

  1.  光反射率の異なる部分で構成されるコード記号の情報を読み取る光学的情報読取装置であって、
     レーザ光源からレーザ光線を照射してコード記号を読み取る動作を読取モードとし、消費電力を抑えたレーザ光源からレーザ光線を照射してコード記号を検出する動作を非読取モードとしたとき、
     レーザ光源からコード記号に照射されたレーザ光線の反射光を受光して電気信号に変換する信号変換部と、
     前記電気信号を二値化して二値化信号を生成する信号処理部と、
     前記二値化信号をデコードしてコード記号を検出する制御部とを備え、
     前記制御部は、
     非読取モード時に検出したコード記号が正しいか否かを判定し、判定結果に基づいて非読取モードから読取モードに切り替えることを特徴とする光学的情報読取装置。
    An optical information reader that reads information of a code symbol composed of parts having different light reflectivities,
    When the operation to read the code symbol by irradiating the laser beam from the laser light source is set to the reading mode, and the operation to detect the code symbol by irradiating the laser beam from the laser light source with reduced power consumption is set to the non-reading mode.
    A signal converter that receives the reflected light of the laser beam applied to the code symbol from the laser light source and converts it into an electrical signal;
    A signal processing unit that binarizes the electrical signal to generate a binarized signal;
    A control unit for decoding the binarized signal and detecting a code symbol;
    The controller is
    An optical information reading apparatus that determines whether or not a code symbol detected in a non-reading mode is correct and switches from the non-reading mode to a reading mode based on the determination result.
  2.  前記制御部は、
     非読取モード時に検出したコード記号が正しいと判定した場合には非読取モードから読取モードに切り替え、前記コード記号が正しくないと判定した場合には非読取モードを継続することを特徴とする請求項1に記載の光学的情報読取装置。
    The controller is
    The non-reading mode is switched to the reading mode when it is determined that the code symbol detected in the non-reading mode is correct, and the non-reading mode is continued when it is determined that the code symbol is not correct. 2. The optical information reading apparatus according to 1.
  3.  前記制御部は、
     非読取モードで検出したコード記号の検出サンプル数とコード記号の基準サンプル数とを比較し、検出サンプル数が基準サンプル数の範囲内であり、かつ、
     検出したコード記号の検出サンプルの各サンプル値とコード記号の基準サンプル値とを比較し、検出サンプルの各サンプル値が基準サンプル値を超過しないと判定した場合、検出したコード記号が正しいと判定することを特徴とする請求項1に記載の光学的情報読取装置。
    The controller is
    Comparing the number of detected samples of the code symbol detected in the non-reading mode with the number of reference samples of the code symbol, the number of detected samples is within the range of the number of reference samples, and
    Compare each sample value of the detected sample of the detected code symbol with the reference sample value of the code symbol, and if it is determined that each sample value of the detected sample does not exceed the reference sample value, determine that the detected code symbol is correct The optical information reading device according to claim 1.
  4.  前記非読取モードでは、レーザ光源を間欠的に駆動すると共にレーザ光源から得られる信号のゲインを大きくすることを特徴とする請求項1に記載の光学的情報読取装置。 2. The optical information reading apparatus according to claim 1, wherein in the non-reading mode, the laser light source is intermittently driven and a gain of a signal obtained from the laser light source is increased.
  5.  コード記号のような光反射率の異なる部分で構成される読取対象の情報を読み取る光学的情報読取装置を制御する方法であって、
     レーザ光源からレーザ光線を照射してコード記号を読み取る動作を読取モードとし、消費電力を抑えたレーザ光源からレーザ光線を照射してコード記号を検出する動作を非読取モードとしたとき、
     前記光学的情報読取装置は、
     レーザ光源からコード記号に照射されたレーザ光線の反射光を受光して電気信号に変換する第1のステップと、
     前記電気信号を二値化して二値化信号を生成する第2のステップと、
     前記二値化信号をデコードしてコード記号を検出する第3のステップとを実行し、
     前記第3のステップでは、
     非読取モード時に検出したコード記号が正しいか否かを判定し、判定結果に基づいて非読取モードから読取モードに切り替えることを特徴とする光学的情報読取装置の制御方法。
    A method for controlling an optical information reading device that reads information to be read composed of parts having different light reflectivities such as code symbols,
    When the operation to read the code symbol by irradiating the laser beam from the laser light source is set to the reading mode, and the operation to detect the code symbol by irradiating the laser beam from the laser light source with reduced power consumption is set to the non-reading mode.
    The optical information reader is
    A first step of receiving reflected light of a laser beam applied to a code symbol from a laser light source and converting it into an electrical signal;
    A second step of binarizing the electrical signal to generate a binarized signal;
    Performing a third step of decoding the binarized signal to detect code symbols;
    In the third step,
    A control method for an optical information reading apparatus, comprising: determining whether or not a code symbol detected in a non-reading mode is correct, and switching from the non-reading mode to a reading mode based on a determination result.
PCT/JP2010/065983 2009-09-17 2010-09-15 Optical information reader and control method therefor WO2011034107A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011531954A JPWO2011034107A1 (en) 2009-09-17 2010-09-15 Optical information reading apparatus and control method thereof
US13/414,060 US20120175421A1 (en) 2009-09-17 2012-03-07 Optical-Information-Reading Apparatus and Control Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009216184 2009-09-17
JP2009-216184 2009-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/414,060 Continuation US20120175421A1 (en) 2009-09-17 2012-03-07 Optical-Information-Reading Apparatus and Control Method Thereof

Publications (1)

Publication Number Publication Date
WO2011034107A1 true WO2011034107A1 (en) 2011-03-24

Family

ID=43758708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065983 WO2011034107A1 (en) 2009-09-17 2010-09-15 Optical information reader and control method therefor

Country Status (3)

Country Link
US (1) US20120175421A1 (en)
JP (1) JPWO2011034107A1 (en)
WO (1) WO2011034107A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398653B2 (en) * 2010-06-30 2014-01-29 株式会社オプトエレクトロニクス Decoding method and decoding processing apparatus
GB201309869D0 (en) * 2013-06-03 2013-07-17 Ocado Ltd Head-mounted code scanner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115282A (en) * 1986-11-01 1988-05-19 Nippon Denso Co Ltd Bar code reader
JPS63292283A (en) * 1987-05-25 1988-11-29 Tatsuhiko Kanai Method and device for reading handwritten bar code
JPH05143763A (en) * 1991-11-15 1993-06-11 Nippondenso Co Ltd Optical information reading device
JP2003162684A (en) * 2001-11-22 2003-06-06 Canon Inc Image recognition device, image recognition method, recording medium and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803906B2 (en) * 2001-06-07 2011-10-26 株式会社キーエンス Method for generating barcode for setting optical information reader, method for changing setting of optical information reader, program for generating barcode for setting, and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115282A (en) * 1986-11-01 1988-05-19 Nippon Denso Co Ltd Bar code reader
JPS63292283A (en) * 1987-05-25 1988-11-29 Tatsuhiko Kanai Method and device for reading handwritten bar code
JPH05143763A (en) * 1991-11-15 1993-06-11 Nippondenso Co Ltd Optical information reading device
JP2003162684A (en) * 2001-11-22 2003-06-06 Canon Inc Image recognition device, image recognition method, recording medium and program

Also Published As

Publication number Publication date
JPWO2011034107A1 (en) 2013-02-14
US20120175421A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
US8925814B1 (en) Apparatus for and method of monitoring output power of a laser beam during reading of targets
US8950678B2 (en) Barcode reader with edge detection enhancement
US6357659B1 (en) Hands free optical scanner trigger
US5308962A (en) Reduced power scanner for reading indicia
US9016578B2 (en) Apparatus for and method of electro-optically reading a target in the presence of ambient light by suppressing the ambient light
AU2005226045B2 (en) Data collection signal processing for increased performance in electro-optical readers
US20080011856A1 (en) Multi-format bar code reader
JP2009508223A (en) Laser power control device in electro-optic reader
WO1992005515A1 (en) Method and apparatus for automatically reading bar code symbols
US8967478B2 (en) Apparatus for and method of electro-optically reading a target in the presence of ambient light by rejecting the ambient light
WO2011034107A1 (en) Optical information reader and control method therefor
US10760959B2 (en) Apparatus for and method of electro-optically reading a target in the presence of ambient light by detecting and suppressing the ambient light
US20060192012A1 (en) Laser scanner having analog digitizer with increased noise immunity
US9016579B2 (en) Apparatus for and method of electro-optically reading a target in the presence of ambient light
US9158955B2 (en) Code symbol reading apparatus, code symbol reading method and medium
JP2011059828A (en) Optical information reader and method for controlling the same
JP2732914B2 (en) Barcode reader
WO2001082214A1 (en) Multi-format bar code reader
JP5441200B1 (en) Bar code reading apparatus and bar code reading method
JP2008123465A (en) Optical information reading device
JPH11282953A (en) Read effective period setting method and device for bar code reader, and bar code reader
JPH11184961A (en) Picture recognition device
JP2020154909A (en) Two-dimensional image reading device, two-dimensional image reading method, and two-dimensional image reading program
JPH07302299A (en) Bar code reader
US20070102524A1 (en) Scan engine with built-in auto trigger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531954

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817220

Country of ref document: EP

Kind code of ref document: A1