WO2011034047A1 - Asbestos material-treating agent and asbestos material-treating method using same - Google Patents

Asbestos material-treating agent and asbestos material-treating method using same Download PDF

Info

Publication number
WO2011034047A1
WO2011034047A1 PCT/JP2010/065810 JP2010065810W WO2011034047A1 WO 2011034047 A1 WO2011034047 A1 WO 2011034047A1 JP 2010065810 W JP2010065810 W JP 2010065810W WO 2011034047 A1 WO2011034047 A1 WO 2011034047A1
Authority
WO
WIPO (PCT)
Prior art keywords
asbestos
asbestos material
silicate
treatment agent
formic acid
Prior art date
Application number
PCT/JP2010/065810
Other languages
French (fr)
Japanese (ja)
Inventor
元樹 遠山
Original Assignee
株式会社 Agua Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Agua Japan filed Critical 株式会社 Agua Japan
Priority to KR1020137023084A priority Critical patent/KR101340407B1/en
Publication of WO2011034047A1 publication Critical patent/WO2011034047A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/41Inorganic fibres, e.g. asbestos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Definitions

  • This invention relates to the processing agent which processes the asbestos material used for a building etc., and the processing method of asbestos material using the same.
  • Asbestos Asbestos (asbestos) has been widely used in buildings and the like since it has good properties such as fire resistance and heat insulation.
  • asbestos has been found to be a cause of health problems due to suction of dust, so that asbestos material is removed and discarded on a large scale (see, for example, Patent Document 1).
  • the place where it is difficult to remove the asbestos material is sealed with chemicals to prevent the asbestos from scattering.
  • asbestos material is constructed by spraying etc., and removal of asbestos material is performed by peeling off from a building or the like.
  • the removed asbestos material is packed and landfilled at an industrial waste disposal site.
  • Asbestos material is disposed of in a specially managed industrial waste disposal site, not a general industrial waste disposal site, because of its harmfulness.
  • Asbestos material processing methods include melting disposal and cement solidification disposal in addition to landfill disposal, but these are rarely used due to cost and other problems.
  • asbestos containment the surface of asbestos is solidified and sealed with a predetermined medicine, or the medicine is permeated into the inside to contain and prevent scattering.
  • Asbestos materials are treated not only at the removal site, but also when the removed asbestos material is transported to an industrial waste disposal site, handled at the disposal site, and even after landfill disposal. There is a need for a more secure and safer processing method. In addition, for the containment of asbestos, there is a need for a treatment agent that reliably suppresses the asbestos scattering and retains the incombustibility and heat insulating properties that are characteristic of asbestos itself.
  • the present invention has been made in view of such a situation, and in the treatment of asbestos materials, especially when transporting the removed asbestos material to a disposal site, during handling at the disposal site, and further after landfill disposal It is an object of the present invention to provide a treatment agent capable of enhancing safety, a treatment agent for safely containing asbestos, and a treatment method using the treatment agent.
  • the asbestos material treatment agent of the present invention contains (a) alkali metal silicate, (b) quaternary ammonium silicate, and (c) water.
  • the blending amount of the (a) alkali metal silicate with respect to the whole treatment agent is 5 to 45% by mass, and the (b) quaternary ammonium silicate has The blending amount with respect to the whole treatment agent is desirably 3 to 25% by mass.
  • the (a) alkali metal silicate is preferably represented by M 2 SiO 3 (M: alkali metal).
  • the method for treating asbestos material according to the present invention includes: (i) a step of removing the asbestos material from the construction object; (ii) spraying the asbestos treatment agent according to any one of claims 1 to 4 on the removed asbestos material; (iii) packing the asbestos material sprayed with the asbestos treating agent into a disposal bag; Is included.
  • the asbestos material treatment method of the present invention after the step (ii), before the step (iii), the step of subjecting the asbestos material sprayed with the asbestos treatment agent to compression treatment; Can be included.
  • the treatment agent for asbestos material of the present invention includes (a) alkali metal silicate, (b) quaternary ammonium silicate, and (c) water, and (a) the asbestos material by the alkali metal silicate. It can be detoxified. Asbestos material is considered to change into a harmless and stable chemical structure compound by reaction with alkali metal silicate, and the compound obtained by this reaction is unlikely to be harmful again due to environmental changes such as pH. Therefore, safety can be ensured even if the waste bag packed with waste asbestos is damaged and the waste asbestos leaks. Moreover, (b) quaternary ammonium silicate in the asbestos material treatment agent of this invention has the effect
  • the detoxification reaction can be promoted by deeply penetrating the components contained in the asbestos treating agent of the present invention into the asbestos material and acting on the entire asbestos material.
  • water is used as a solvent, so that it is also superior in terms of safety of the solvent itself as compared with an organic solvent or the like.
  • alkali metal silicate and (b) quaternary ammonium silicate have no problem in terms of safety because they are low in toxicity. Accordingly, it is possible to prevent harmful asbestos from being leaked to the outside and improve safety not only at the removal work site but also at the time of transportation to the disposal site, handling at the disposal site, and after landfill disposal.
  • the asbestos material treatment agent of the present invention is used for the asbestos material removed from the construction object, so that the asbestos material is surely detoxified before packing into the disposal bag. Moreover, since it is possible to prevent the asbestos material from scattering to the outside environment after disposal, safety can be ensured.
  • asbestos material can be reduced in volume by compressing the asbestos material after the asbestos material treatment agent is sprayed and before packing the asbestos material into the disposal bag. Significant reductions can be made safely. Furthermore, the amount of use in the asbestos disposal site can be reduced, which is further advantageous in terms of the operational cost for disposal. In a specially managed industrial waste disposal site that requires strict leakage prevention management, the shortage of disposal space is a problem. Therefore, the technical significance of the present invention that can reduce the volume is great.
  • the asbestos material treatment agent of the present invention (hereinafter, sometimes simply referred to as a treatment agent) is a treatment agent for treating waste asbestos material, and includes (a) an alkali metal silicate and (b) a quaternary ammonium. It contains silicate and (c) water.
  • the (a) alkali metal silicate used in the asbestos material treatment agent of the present invention includes M 2 SiO 3 , MHSi 2 O 5 (M: alkali metal), etc., and particularly M 2 SiO 3 (M: alkali metal). ) Is preferred.
  • an alkali metal 1 or 2 or more is preferable among K, Na, and Li.
  • the blending amount of the alkali metal silicate in the asbestos treatment agent is preferably 5 to 45% by mass with respect to the entire treatment agent. When the blending amount is less than 5% by mass, the effect of detoxifying the asbestos material is insufficient, and when it exceeds 45% by mass, the ratio of the other components is lowered, and the effect of the component is reduced, but the above range is set. By this, the effect of another component can fully be exhibited, maintaining the high detoxification effect.
  • the (b) quaternary ammonium silicate used in the treating agent of the present invention is (R 3 N) 2 O ⁇ nSiO 2 (R is an alkyl group having 1 or more carbon atoms, and n is an integer of 1 or more.
  • a liquid silicate such as dimethylethanolammonium silicate, monomethyltripropanolammonium silicate, dimethyldipropanolammonium silicate, monomethyltripropanolammonium silicate, and the like.
  • the quaternary ammonium silicate one or more of these compounds can be used.
  • the SiO 2 content in the quaternary ammonium silicate is preferably 15 to 40% by mass, more preferably 20 to 30% by mass.
  • the blending amount of (b) quaternary ammonium silicate in the treating agent is preferably 3 to 25% by mass with respect to the whole treating agent.
  • the blending amount is less than 3% by mass, the effect of promoting the penetration of the alkali metal silicate is weakened, and when it exceeds 25% by mass, the ratio of the other components is reduced and the effect of the other components is reduced.
  • the alkali metal silicate can be sufficiently permeated into the asbestos material to promote detoxification, and the effects of other components can be sufficiently exhibited.
  • (C) Water functions as a solvent for (a) alkali metal silicates and (b) quaternary ammonium silicates, allowing them to penetrate deep into the asbestos material.
  • a surfactant can be added to the treatment agent.
  • the surfactant nonionic, anionic, cationic, silicon or the like can be used.
  • the surfactant has a function of enhancing the dispersibility of the alkali metal silicate and the quaternary ammonium silicate and increasing the penetration of the treatment agent into the asbestos material.
  • the blending amount of the surfactant is preferably 0.1 to 1% by mass with respect to the entire treating agent. By setting the amount within this range, the treating agent can be spread over a wide range of asbestos materials.
  • preferable blends include (a) alkali metal silicate 5 to 45% by mass, (b) quaternary ammonium silicate 3 to 25% by mass, and (d) surfactant 0.1 to 1% by mass. %, With the balance being (c) water.
  • the asbestos material construction object is, for example, a building such as a concrete building or a wooden building.
  • a boiler room for example, a machine room, an air conditioning machine room, a parking lot, etc.
  • it is a casing (steel frame etc.) ceiling material, wall material and the like.
  • Asbestos material is formed as a coating layer on the surface of a building material (such as a steel frame) of a building by spraying or the like.
  • building materials (slate board etc.) containing asbestos material may be used for a building.
  • cementitious materials typically include calcium oxide (CaO) and silicon dioxide (SiO 2 ). A part of CaO becomes Ca (OH) 2 by reaction with water. In addition to these, cementitious materials often contain aluminum oxide (Al 2 O 3 ) and ferric oxide (Fe 2 O 3 ).
  • the asbestos material constructed on the construction object is removed by scraping it with an appropriate tool.
  • the removed asbestos material may be referred to as waste asbestos material.
  • scattering of the asbestos material can be suppressed by spraying a scattering inhibitor made of metal silicate or the like on the asbestos material.
  • the asbestos dust scattered in the air is purified by a negative pressure dust remover and discarded to the outside.
  • the operator preferably wears protective clothing to prevent asbestos exposure.
  • Processing agent spraying operation The above-mentioned processing agent is sprayed on waste asbestos material.
  • spraying may be employed, or a method of applying using an applicator such as a brush may be employed.
  • the application amount of the treatment agent is preferably 30 to 70 parts by mass with respect to 100 parts by mass of the asbestos material.
  • a high detoxifying effect can be obtained by setting the spraying amount within this range.
  • the spreading amount of the treatment agent can be set outside the above range depending on the type and components of the asbestos material.
  • the (a) alkali metal silicate contained in the treatment agent reacts with the asbestos material to render it harmless.
  • A) The reaction between the alkali metal silicate and the asbestos material is not clear in detail, but the following estimation is possible.
  • an asbestos material having a structure represented by the formula (1) reacts with (a) an alkali metal silicate (potassium silicate: K 2 SiO 3 ) under a strong base condition (for example, pH 10 or more), whereby the formula It is conceivable that the reaction has the structure shown in (2) and the decomposition products shown in formulas (3) to (5).
  • the reaction may be carried out in the presence of a strong base compound such as KOH, Ca (OH) 2 , NaOH or the like. In this example, KOH is used.
  • magnesium that is chelate-bonded to a pair of silanol groups (Si—OH) in the asbestos material is separated from one silanol group and is bonded to potassium silicate, and the magnesium is separated.
  • Potassium is ionically bonded to the silanol group.
  • the structure in which potassium silicate is bonded to the silanol group is considered to be chemically stable, and the reverse reaction of formula (6) hardly occurs even when the pH is lowered.
  • the asbestos material is rendered harmless by the elimination reaction of magnesium and the binding reaction with potassium silicate.
  • the asbestos material is not easily detoxified.
  • the use of the treatment agent of the present invention makes it possible for the asbestos material to be in a form in which re-poisoning is unlikely to occur due to a change in pH.
  • Quaternary ammonium silicate has the effect of increasing the permeability (wetability) to asbestos material. For this reason, the other component in a processing agent can osmose
  • quaternary ammonium silicate produces calcium silicate, which is a glassy substance, and asbestos material is fixed, even if the detoxification reaction by alkali metal silicate becomes insufficient, harmful asbestos The material can be prevented from being released due to scattering or the like.
  • Table 1 shows the experimental results showing the solidification action by the quaternary ammonium silicate.
  • Example 1 a 17.4 mass% aqueous solution of quaternary ammonium silicate was applied to a test specimen made of concrete using a brush (average coating amount 0.14 g / cm 2 ). It was measured. For comparison, the results of Example 2 in which no quaternary ammonium silicate aqueous solution is applied are also shown.
  • the compressive strength was measured according to JIS A1108.
  • the Schmidt hammer strength was measured according to JSCE-G504.
  • the micro Vickers hardness was measured using a micro Vickers hardness meter (scratch tester).
  • Example 1 As shown in Table 1, since the mechanical strength in Example 1 was higher than that in Example 2, the solidification action by the quaternary ammonium silicate was confirmed.
  • FIG. 2 shows an example of the compression device.
  • the asbestos material 1 put in the disposal bag 2 is compressed by the pressing body 4 in the compression container 3.
  • the volume of the asbestos material 1 can be, for example, about 1/3 to 1/4 of that before compression.
  • transportation and disposal costs can be greatly reduced.
  • the amount of treatment agent used can be reduced, which is further advantageous in terms of cost. In particular, in a specially managed industrial waste disposal site that requires strict leakage prevention management, the shortage of disposal space is a problem. Therefore, the technical significance of this method capable of volume reduction is great.
  • the treatment agent can be spread over the entire asbestos material 1 and the detoxification reaction with the alkali metal silicate can be surely advanced. Also, immobilization by the production of calcium silicate can be promoted.
  • the compression treatment also has the effect of preventing the asbestos material from scattering.
  • the asbestos material 1 can be additionally charged into the disposal bag 2 and recompressed.
  • the number of bagging asbestos materials (packing asbestos materials) which need to be disposed can be reduced, and transportation and disposal costs can be further reduced.
  • the protective clothing and curing sheets used in the asbestos material removing operation can be put into the disposal bag 2 and compressed.
  • a plurality of disposal bags 2 are used. Specifically, it is packed in a double bag. By using the disposal bag 2, it is possible to prevent the asbestos material from scattering. Three or more disposal bags 2 may be used.
  • this bagging asbestos material (packing asbestos material) is carried out from the work site and transported to a specially managed industrial waste disposal site. Bagged asbestos materials are disposed of in landfills at the industrial waste disposal site.
  • the treatment agent of the present invention contains (a) alkali metal silicate and (b) quaternary ammonium silicate, (a) the asbestos material can be rendered harmless by the alkali metal silicate. . Asbestos material is thought to change to a harmless and stable chemical structure by reaction with alkali metal silicate, and this compound is unlikely to be harmed again due to environmental changes such as pH, so if a disposal bag for packing is used. Even if it is damaged and waste asbestos material leaks, safety can be secured. In addition, (b) quaternary ammonium silicate has the effect of increasing the permeability, so that the treatment agent is deeply penetrated into the asbestos material, and the alkali metal silicate is allowed to act on the whole of the asbestos material.
  • (b) quaternary ammonium silicate produces calcium silicate which is a glassy substance by reaction with calcium hydroxide contained in building materials and the like on which asbestos materials are constructed. By fixing the asbestos material by being consolidated or the like, it is possible to reliably prevent the asbestos material from being released to the outside.
  • water is used as a solvent, the solvent itself is also superior in terms of safety compared to an organic solvent or the like.
  • (a) alkali metal silicate and (b) quaternary ammonium silicate have no problem in terms of safety because they are low in toxicity. Accordingly, it is possible to prevent harmful asbestos from being leaked to the outside and improve safety not only at the removal work site but also at the time of transportation to the disposal site, handling at the disposal site, and after landfill disposal.
  • the asbestos material processing method of the present invention since the above-mentioned treatment agent is used, the asbestos material can be reliably rendered harmless and safety can be ensured. Furthermore, asbestos material can be reduced in volume by compressing the asbestos material, so that transportation and disposal costs can be greatly reduced. Furthermore, the amount of treatment agent used can be reduced, which is further advantageous in terms of cost. In particular, in a specially managed industrial waste disposal site that requires strict leakage prevention management, the shortage of disposal space is a problem. Therefore, the technical significance of this method capable of volume reduction is great.
  • Asbestos was quantified as follows. For asbestos material (standard sample) and internal standard substance (talc: Mg 3 Si 4 O 10 (OH) 2 ) mixed in known amounts, the diffraction line intensity ratio between asbestos material (standard sample) and internal standard substance A calibration curve was prepared by measurement with an X-ray diffractometer. Asbestos material (standard sample) is a 95% chrysotile standard sample provided by the Japan Working Environment Measurement Association. A known amount of the internal standard substance was added to the sample to be measured, and the diffraction line intensity ratio between the sample to be measured and the internal standard substance was determined with an X-ray diffractometer. The asbestos material mass ratio was determined from the diffraction line intensity ratio using the calibration curve, and the asbestos material content was calculated from the value.
  • Test Example 1 (Blank test) Asbestos material (standard sample) was subjected to component analysis by the X-ray diffraction method. For comparison, a similar test was conducted except that the asbestos material was treated with formic acid.
  • the formic acid treatment is a treatment in which 20% by mass aqueous formic acid solution is added to asbestos and dried. The results are shown in Table 2.
  • 3A and 3B are graphs showing the results of X-ray diffraction. The horizontal axis is the X-ray incident angle, and the vertical axis is the X-ray intensity.
  • FIG. 3A shows the results without formic acid treatment
  • FIG. 3B shows the results with formic acid treatment.
  • P1 and P2 are peaks indicating asbestos material (standard sample)
  • P3 and P4 are peaks indicating internal standard substance (talc).
  • Test Example 2 (Calcium hydroxide only treatment) 9.0 g of a 20% by mass calcium hydroxide (Ca (OH) 2 ) aqueous solution was added to and mixed with 0.6 g of asbestos material (standard sample). After drying at 40 ° C. for 1 week, the asbestos material was subjected to component analysis by X-ray diffraction method to calculate the asbestos content. The asbestos content is the ratio (mass%) of the asbestos amount obtained in this test example to the asbestos amount in test example 1 (blank test). For comparison, a similar test was performed on the dried asbestos material, except that formic acid treatment was performed prior to component analysis. The results are shown in Table 2.
  • FIG. 4A is a graph showing the results of X-ray diffraction without formic acid treatment
  • FIG. 4B is a graph showing the results of X-ray diffraction with formic acid treatment.
  • FIG. 5A is a graph showing the results of X-ray diffraction without formic acid treatment
  • FIG. 5B is a graph showing the results of X-ray diffraction with formic acid treatment.
  • Test Example 4 (Treatment agent only treatment) To 0.6 g of asbestos material (standard sample), 3 ml of the treatment agent was added and mixed, and dried at 40 ° C. for 24 hours.
  • the compounding of the processing agent was (a) alkali metal silicate (potassium silicate: K 2 SiO 3 ) 9.3 mass%, (b) quaternary ammonium silicate (dimethylethanolammonium silicate) 10.6 mass %, (D) 0.5% by mass of surfactant, and (c) 79.6% by mass of water.
  • a nonionic surfactant was used as the surfactant.
  • the asbestos material was mixed again with 3 ml of the treatment agent, dried at 40 ° C.
  • FIG. 6A is a graph showing the results of X-ray diffraction without formic acid treatment
  • FIG. 6B is a graph showing the results of X-ray diffraction with formic acid treatment.
  • Test Example 5 (Treatment agent + calcium hydroxide treatment) To 0.6 g of asbestos material (standard sample), 3 ml of the same treatment agent as in Test Example 4 was added and mixed, and dried at 40 ° C. for 24 hours. To this asbestos material, 9.0 g of a 20% by mass calcium hydroxide (Ca (OH) 2 ) aqueous solution was added and mixed, dried at 40 ° C. for 1 week, then added again with 3 ml of the treatment agent, and mixed at 40 ° C. After drying for 24 hours, 3 ml of the treatment agent was added and mixed three times and dried at 40 ° C. for 24 hours.
  • Ca (OH) 2 calcium hydroxide
  • FIG. 7A is a graph showing the results of X-ray diffraction without formic acid treatment
  • FIG. 7B is a graph showing the results of X-ray diffraction with formic acid treatment.
  • Test Example 6 (Treatment agent + cement water treatment) To 0.6 g of asbestos material (standard sample), 3 ml of the same treatment agent as in Test Example 4 was added and mixed, and dried at 40 ° C. for 24 hours. After adding 7.5 g of cement water similar to Test Example 3 to this asbestos material and mixing, drying at 40 ° C. for 1 week, adding 3 ml of treatment agent again, mixing and drying at 40 ° C. for 24 hours. Three times, 3 ml of the treatment agent was added and mixed, and dried at 40 ° C. for 24 hours. About this asbestos material, the component analysis was performed by the X ray diffraction method, and the asbestos content rate was computed.
  • FIG. 8A is a graph showing the results of X-ray diffraction without formic acid treatment
  • FIG. 8B is a graph showing the results of X-ray diffraction with formic acid treatment.
  • FIG. 9A and 9B show the results of component analysis of the surface of the asbestos material (standard sample) used in Test Example 1 using a scanning electron microscope-energy dispersive X-ray analysis method (SEM-EDX method). The vertical axis represents the content (% by mass).
  • FIG. 9A shows the results without formic acid treatment
  • FIG. 9B shows the results with formic acid treatment. From these, it can be seen that almost no change in the composition of the asbestos material due to the formic acid treatment occurs.
  • FIG. 10A and 10B are component analysis results of the asbestos material processed in Test Example 2 by the SEM-EDX method.
  • FIG. 10A shows the results without formic acid treatment
  • FIG. 10B shows the results with formic acid treatment
  • 11A and 11B show the component analysis results of the asbestos material processed in Test Example 3 by the SEM-EDX method.
  • FIG. 11A shows the results without formic acid treatment
  • FIG. 11B shows the results with formic acid treatment. From these, it can be seen that when the asbestos material is treated with calcium hydroxide or cement water, the magnesium content decreases, but it returns to 100% or a value close to it by formic acid treatment (pH reduction).
  • FIG. 12 shows the result of component analysis of the asbestos material treated in Test Example 5 (with formic acid treatment) by the SEM-EDX method
  • FIG. 13 shows the components of the asbestos material treated in Test Example 6 (with formic acid treatment). It is an analysis result. From these results, it was confirmed that the magnesium content did not increase even when formic acid treatment (pH reduction) was performed by using a treatment agent, and recombination of detached magnesium was less likely to occur.
  • Test Examples 7 to 12 An aqueous solution of a quaternary ammonium silicate (2.5% by mass in terms of solid content) was applied to the surface of a test body made of the material shown in Table 3 and dried. The contact angle of water on this surface was measured.
  • the contact angle was greatly reduced by the quaternary ammonium silicate. From this, it can be seen that the quaternary ammonium silicate has an effect of increasing the permeability (wetting property).
  • Test Examples 13 to 15 A treatment agent similar to that used in Test Example 4 was sprayed on 300 g of asbestos material (bulk specific gravity: about 0.1 to 0.2 g / cm 3 ). The amount of treatment agent used was 100 g (Test Example 13), 150 g (Test Example 14), or 200 g (Test Example 15). The asbestos material was compression-processed using the compression apparatus shown in FIG. The compression rate was about 70-80%.
  • any of Test Examples 13 to 15 asbestos material solidified by the compression treatment was obtained.
  • the solidified asbestos material collapses only slightly even when a strong pressure is applied from the outside.
  • the solidified asbestos material is applied with a strong pressure from the outside.
  • the shape did not collapse so that it was easy to handle during transportation.
  • Test Example 16 The asbestos material treated in the same manner as in Test Example 6 was immersed in water having a pH of 7.8 to 8.3, and the elution amount of heavy metals and the like was measured.
  • the measurement method complies with the “Ministerial Ordinance (Ministry of Internal Affairs and Communications Ordinance No. 5) that establishes the criteria for judging industrial waste including metals.
  • the results are shown in Table 4.
  • asbestos material can be rendered harmless in a form that is unlikely to be re-harmful due to environmental changes, so that it can be used not only at the removal work site, but also during transportation to the disposal site, handling at the disposal site, and after landfill disposal. Prevents harmful asbestos from leaking outside and improves safety.

Abstract

Disclosed are a treating agent and a treating method whereby, in treating an asbestos material, safety can be improved, in particular, in carrying out the waste asbestos material to a disposal site, handling the same in the disposal site and after landfilling the same. Specifically disclosed is a treating agent for treating a waste asbestos material, which comprises an alkali metal silicate (a), a quaternary ammonium silicate (b), and water (c).

Description

石綿材処理剤およびこれを用いた石綿材の処理方法Asbestos material treating agent and method of treating asbestos material using the same
 本発明は、建築物等に使用される石綿材を処理する処理剤およびこれを用いた石綿材の処理方法に関する。 This invention relates to the processing agent which processes the asbestos material used for a building etc., and the processing method of asbestos material using the same.
 石綿(アスベスト)は、防火性、断熱性などの特性が良好であることから、従来から建築物等に広く使用されてきた。
 しかしながら、近年、石綿は粉じん吸引により健康障害の原因となるおそれがあることが判明したため、石綿材の除去および廃棄が大規模に行なわれている(例えば特許文献1を参照)。
 そして石綿材の除去が困難な場所については、薬剤で封じ込めて石綿の飛散を防止している。
 除去については、石綿材は、吹きつけなどにより施工されており、石綿材の除去は建築物等から剥がし取ることなどにより行われる。
 除去された石綿材は、梱包して産業廃棄物処分場で埋め立て処分される。石綿材は、その有害性に対する配慮から、一般の産業廃棄物処分場ではなく特別管理型の産業廃棄物処分場で処分される。
 石綿材の処理方法としては、埋め立て処分のほかに、溶融処分およびセメント固化処分があるが、これらはコスト等の問題からほとんど用いられていない。
 石綿の封じ込めについては、所定の薬剤にて吹き付け石綿の表面を固化して封じ込めるか、薬剤を内部に浸透させて封じ込めて、飛散を防止する。
Asbestos (asbestos) has been widely used in buildings and the like since it has good properties such as fire resistance and heat insulation.
However, in recent years, asbestos has been found to be a cause of health problems due to suction of dust, so that asbestos material is removed and discarded on a large scale (see, for example, Patent Document 1).
And the place where it is difficult to remove the asbestos material is sealed with chemicals to prevent the asbestos from scattering.
About the removal, asbestos material is constructed by spraying etc., and removal of asbestos material is performed by peeling off from a building or the like.
The removed asbestos material is packed and landfilled at an industrial waste disposal site. Asbestos material is disposed of in a specially managed industrial waste disposal site, not a general industrial waste disposal site, because of its harmfulness.
Asbestos material processing methods include melting disposal and cement solidification disposal in addition to landfill disposal, but these are rarely used due to cost and other problems.
Regarding asbestos containment, the surface of asbestos is solidified and sealed with a predetermined medicine, or the medicine is permeated into the inside to contain and prevent scattering.
特開平8-28026号公報JP-A-8-28026
 石綿材の処理には、除去作業現場だけでなく、除去した石綿材を産業廃棄物処分場へ運搬する際や、処分場における取り扱いの際、さらには埋め立て処分後においても安全性についての配慮が必要であり、より安全性の高い処理方法が求められている。
 また、石綿の封じ込めについても、確実に石綿の飛散を抑制し、石綿自体の特徴である不燃性、断熱性を保持する処理剤が求められている。
 本発明は、このような状況に鑑みてなされたものであって、石綿材の処理において、特に除去した石綿材を処分場へ運搬する際、処分場における取り扱いの際、さらには埋め立て処分後における安全性を高めることができる処理剤および石綿を安全に封じ込めるための処理剤、そしてそれを用いた処理方法を提供することを目的とする。
Asbestos materials are treated not only at the removal site, but also when the removed asbestos material is transported to an industrial waste disposal site, handled at the disposal site, and even after landfill disposal. There is a need for a more secure and safer processing method.
In addition, for the containment of asbestos, there is a need for a treatment agent that reliably suppresses the asbestos scattering and retains the incombustibility and heat insulating properties that are characteristic of asbestos itself.
The present invention has been made in view of such a situation, and in the treatment of asbestos materials, especially when transporting the removed asbestos material to a disposal site, during handling at the disposal site, and further after landfill disposal It is an object of the present invention to provide a treatment agent capable of enhancing safety, a treatment agent for safely containing asbestos, and a treatment method using the treatment agent.
 本発明の石綿材処理剤は、(a)アルカリ金属ケイ酸塩、(b)第4級アンモニウムケイ酸塩、及び(c)水を含むものである。
 本発明の石綿材処理剤においては、前記(a)アルカリ金属ケイ酸塩の、当該処理剤全体に対する配合量が5~45質量%であり、前記(b)第4級アンモニウムケイ酸塩の、当該処理剤全体に対する配合量が3~25質量%であることが望ましい。
 また、当該(a)アルカリ金属ケイ酸塩は、MSiO(M:アルカリ金属)で表されるものが好ましい。
 更に、前記(b)第4級アンモニウムケイ酸塩は、(RN)O・nSiO(Rは炭素数1以上のアルキル基であり、nは1以上の整数である)で表されるものが好ましい。
 本発明の石綿材の処理方法は、 (i)石綿材を施工対象物から除去する工程;
 (ii)除去された石綿材に対し、請求項1~4の何れか一項に記載の石綿処理剤を散布する工程;
 (iii)当該石綿処理剤を散布された当該石綿材を廃棄用袋に梱包する工程;
を含むものである。
 本発明の石綿材の処理方法においては、前記工程(ii)の後、前記工程(iii)の前に、前記石綿処理剤を散布した前記石綿材を圧縮処理にかける工程;
を含むものとすることができる。
The asbestos material treatment agent of the present invention contains (a) alkali metal silicate, (b) quaternary ammonium silicate, and (c) water.
In the asbestos material treatment agent of the present invention, the blending amount of the (a) alkali metal silicate with respect to the whole treatment agent is 5 to 45% by mass, and the (b) quaternary ammonium silicate has The blending amount with respect to the whole treatment agent is desirably 3 to 25% by mass.
The (a) alkali metal silicate is preferably represented by M 2 SiO 3 (M: alkali metal).
Further, the (b) quaternary ammonium silicate is represented by (R 3 N) 2 O.nSiO 2 (R is an alkyl group having 1 or more carbon atoms, and n is an integer of 1 or more). Those are preferred.
The method for treating asbestos material according to the present invention includes: (i) a step of removing the asbestos material from the construction object;
(ii) spraying the asbestos treatment agent according to any one of claims 1 to 4 on the removed asbestos material;
(iii) packing the asbestos material sprayed with the asbestos treating agent into a disposal bag;
Is included.
In the asbestos material treatment method of the present invention, after the step (ii), before the step (iii), the step of subjecting the asbestos material sprayed with the asbestos treatment agent to compression treatment;
Can be included.
 本発明の石綿材処理剤は、(a)アルカリ金属ケイ酸塩、(b)第4級アンモニウムケイ酸塩、及び(c)水を含み、当該(a)アルカリ金属ケイ酸塩によって石綿材を無害化することができる。
 石綿材はアルカリ金属ケイ酸塩との反応によって、無害で安定な化学構造を有する化合物に変化すると考えられ、この反応によって得られる化合物はpH等の環境変化による再有害化が起こりにくい。従って、仮に廃石綿材を梱包した廃棄用袋が破損して、廃石綿材が漏出したとしても安全性を確保できる。
 また、本発明の石綿材処理剤中の(b)第4級アンモニウムケイ酸塩は、これを含む組成物中の他の成分の石綿への浸透性を高める作用を有する。従って本発明の石綿処理剤に含まれる成分を石綿材の内部に深く浸透させ、石綿材の全体に作用させることで、上記無害化反応を促進することができる。
 (b)第4級アンモニウムケイ酸塩は、石綿材が施工された建材等に含まれる水酸化カルシウムとの反応によって、ガラス状物質であるケイ酸カルシウムを生成する。従って、この成分により石綿材を固定化することができ、石綿材が周囲の環境に放出されるのを確実に防ぐことができる。
 また、本発明の石綿処理剤においては、溶剤として(c)水が用いられているため、有機溶剤等に比べ、溶剤自体の安全性の点でも優れている。また、(a)アルカリ金属ケイ酸塩および(b)第4級アンモニウムケイ酸塩も有害性が低いため安全性の点で問題がない。
 従って、除去作業現場だけでなく、処分場への運搬、処分場における取り扱い時、埋め立て処分後においても有害な石綿の外部漏洩を未然に防ぎ、安全性を高めることができる。
The treatment agent for asbestos material of the present invention includes (a) alkali metal silicate, (b) quaternary ammonium silicate, and (c) water, and (a) the asbestos material by the alkali metal silicate. It can be detoxified.
Asbestos material is considered to change into a harmless and stable chemical structure compound by reaction with alkali metal silicate, and the compound obtained by this reaction is unlikely to be harmful again due to environmental changes such as pH. Therefore, safety can be ensured even if the waste bag packed with waste asbestos is damaged and the waste asbestos leaks.
Moreover, (b) quaternary ammonium silicate in the asbestos material treatment agent of this invention has the effect | action which improves the permeability to the asbestos of the other component in the composition containing this. Therefore, the detoxification reaction can be promoted by deeply penetrating the components contained in the asbestos treating agent of the present invention into the asbestos material and acting on the entire asbestos material.
(B) A quaternary ammonium silicate produces | generates the calcium silicate which is a glassy substance by reaction with the calcium hydroxide contained in the building materials etc. in which the asbestos material was constructed. Therefore, the asbestos material can be fixed by this component, and the asbestos material can be reliably prevented from being released to the surrounding environment.
Further, in the asbestos treatment agent of the present invention, (c) water is used as a solvent, so that it is also superior in terms of safety of the solvent itself as compared with an organic solvent or the like. Further, (a) alkali metal silicate and (b) quaternary ammonium silicate have no problem in terms of safety because they are low in toxicity.
Accordingly, it is possible to prevent harmful asbestos from being leaked to the outside and improve safety not only at the removal work site but also at the time of transportation to the disposal site, handling at the disposal site, and after landfill disposal.
 本発明の石綿材の処理方法によれば、施工対象物から除去された石綿材に対し、本発明の石綿材処理剤を用いるので、廃棄用袋への梱包前に石綿材を確実に無害化し、また廃棄後も石綿材の外部環境への飛散等を防止することが可能であるため、安全性を確保することができる。
 さらに、石綿材処理剤の散布後、廃棄用袋への石綿材の梱包前に、当該石綿材の圧縮を行うことによって、石綿材の減容化を図ることができるため、運搬や処分費用の大幅削減を安全に行うことができる。さらには、石綿の廃棄場における場所の使用量を抑えることができ、廃棄上の運営コスト面でさらに有利になる。 厳しい漏出防止管理が必要となる特別管理型の産業廃棄物処分場では、処分スペースの不足が問題となっているため、減容化が可能な本発明の技術的意義は大きい。
According to the method for treating asbestos material of the present invention, the asbestos material treatment agent of the present invention is used for the asbestos material removed from the construction object, so that the asbestos material is surely detoxified before packing into the disposal bag. Moreover, since it is possible to prevent the asbestos material from scattering to the outside environment after disposal, safety can be ensured.
In addition, asbestos material can be reduced in volume by compressing the asbestos material after the asbestos material treatment agent is sprayed and before packing the asbestos material into the disposal bag. Significant reductions can be made safely. Furthermore, the amount of use in the asbestos disposal site can be reduced, which is further advantageous in terms of the operational cost for disposal. In a specially managed industrial waste disposal site that requires strict leakage prevention management, the shortage of disposal space is a problem. Therefore, the technical significance of the present invention that can reduce the volume is great.
本発明の石綿材の処理方法の一例の手順を示す図である。It is a figure which shows the procedure of an example of the processing method of the asbestos material of this invention. 石綿材の圧縮処理に使用可能な圧縮装置を示す模式図である。It is a schematic diagram which shows the compression apparatus which can be used for the compression process of asbestos material. X線回折の結果を示すグラフである。ギ酸処理なしの場合の結果。It is a graph which shows the result of X-ray diffraction. Results without formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of X-ray diffraction. It is a result in the case with formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of X-ray diffraction. This is the result without formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of X-ray diffraction. It is a result in the case with formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of X-ray diffraction. This is the result without formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of X-ray diffraction. It is a result in the case with formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of X-ray diffraction. This is the result without formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of X-ray diffraction. It is a result in the case with formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of X-ray diffraction. This is the result without formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of X-ray diffraction. It is a result in the case with formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of X-ray diffraction. This is the result without formic acid treatment. X線回折の結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of X-ray diffraction. It is a result in the case with formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. This is the result without formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. It is a result in the case with formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. This is the result without formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. It is a result in the case with formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。ギ酸処理なしの場合の結果である。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. This is the result without formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。ギ酸処理ありの場合の結果である。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. It is a result in the case with formic acid treatment. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method. 石綿材の表面の成分分析を、SEM-EDX法を用いて行った結果を示すグラフである。It is a graph which shows the result of having performed the component analysis of the surface of asbestos material using SEM-EDX method.
 本発明の石綿材処理剤(以下、単に処理剤ということがある。)は、廃石綿材を処理する処理剤であって、(a)アルカリ金属ケイ酸塩と、(b)第4級アンモニウムケイ酸塩と、(c)水とを含むものである。 The asbestos material treatment agent of the present invention (hereinafter, sometimes simply referred to as a treatment agent) is a treatment agent for treating waste asbestos material, and includes (a) an alkali metal silicate and (b) a quaternary ammonium. It contains silicate and (c) water.
 本発明の石綿材処理剤において使用する(a)アルカリ金属ケイ酸塩は、MSiO、MHSi(M:アルカリ金属)などがあり、特に、MSiO(M:アルカリ金属)が好ましい。
 ここで、アルカリ金属としては、K、Na、Liのうち1または2以上が好ましい。
 また、石綿材処理剤中におけるアルカリ金属ケイ酸塩の配合量は、処理剤全体に対して5~45質量%が好ましい。
 配合量5質量%未満の場合、石綿材を無害化する効果が不足し、45質量%を超えれば他の成分の比率が低くなり、その成分による効果を低減してしまうが、上記範囲とすることによって、高い無害化効果を保ちつつ、他の成分の作用効果を十分に発揮させることができる。
The (a) alkali metal silicate used in the asbestos material treatment agent of the present invention includes M 2 SiO 3 , MHSi 2 O 5 (M: alkali metal), etc., and particularly M 2 SiO 3 (M: alkali metal). ) Is preferred.
Here, as an alkali metal, 1 or 2 or more is preferable among K, Na, and Li.
The blending amount of the alkali metal silicate in the asbestos treatment agent is preferably 5 to 45% by mass with respect to the entire treatment agent.
When the blending amount is less than 5% by mass, the effect of detoxifying the asbestos material is insufficient, and when it exceeds 45% by mass, the ratio of the other components is lowered, and the effect of the component is reduced, but the above range is set. By this, the effect of another component can fully be exhibited, maintaining the high detoxification effect.
 本発明の処理剤において使用する(b)第4級アンモニウムケイ酸塩は、(RN)O・nSiO(Rは炭素数1以上のアルキル基であり、nは1以上の整数である)で表されるものが好ましく、ジメチルエタノールアンモニウムシリケート、モノメチルトリプロパノールアンモニウムシリケート、ジメチルジプロパノールアンモニウムシリケート、モノメチルトリプロパノールアンモニウムシリケートなどの液状のシリケートを例示できる。
 当該第4級アンモニウムケイ酸塩としては、これらの化合物のうち1または2以上を使用できる。
 第4級アンモニウムケイ酸塩中のSiO含有率は15~40質量%が好ましく、20~30質量%がさらに好ましい。
The (b) quaternary ammonium silicate used in the treating agent of the present invention is (R 3 N) 2 O · nSiO 2 (R is an alkyl group having 1 or more carbon atoms, and n is an integer of 1 or more. And a liquid silicate such as dimethylethanolammonium silicate, monomethyltripropanolammonium silicate, dimethyldipropanolammonium silicate, monomethyltripropanolammonium silicate, and the like.
As the quaternary ammonium silicate, one or more of these compounds can be used.
The SiO 2 content in the quaternary ammonium silicate is preferably 15 to 40% by mass, more preferably 20 to 30% by mass.
 処理剤中の(b)第4級アンモニウムケイ酸塩の配合量は、処理剤全体に対して3~25質量%が好適である。
 この配合量は、3質量%未満の場合、アルカリ金属ケイ酸塩の浸透を促進する効果が薄れ、25質量%を超えると他の成分の比率が低くなり他成分の効果を低減するが、上記範囲とすることによって、アルカリ金属ケイ酸塩を石綿材中に十分に浸透させて無害化を促進でき、しかも他の成分の作用効果を十分に発揮させることができる。
 (c)水は、(a)アルカリ金属ケイ酸塩および(b)第4級アンモニウムケイ酸塩の溶剤として機能し、これらを石綿材の深部まで浸透させる。
The blending amount of (b) quaternary ammonium silicate in the treating agent is preferably 3 to 25% by mass with respect to the whole treating agent.
When the blending amount is less than 3% by mass, the effect of promoting the penetration of the alkali metal silicate is weakened, and when it exceeds 25% by mass, the ratio of the other components is reduced and the effect of the other components is reduced. By setting it as the range, the alkali metal silicate can be sufficiently permeated into the asbestos material to promote detoxification, and the effects of other components can be sufficiently exhibited.
(C) Water functions as a solvent for (a) alkali metal silicates and (b) quaternary ammonium silicates, allowing them to penetrate deep into the asbestos material.
 処理剤には、さらに、(d)界面活性剤を添加することもできる。
 界面活性剤としては、ノニオン系、陰イオン系、陽イオン系、シリコン系等のものが使用できる。界面活性剤は、アルカリ金属ケイ酸塩および第4級アンモニウムケイ酸塩の分散性を高めるとともに、石綿材に対する処理剤の浸透力を高める機能を有する。
 界面活性剤の配合量は、処理剤全体に対して0.1~1質量%が好ましく、この範囲とすることで処理剤を石綿材の広い範囲に行き渡らせることができる。
Further, (d) a surfactant can be added to the treatment agent.
As the surfactant, nonionic, anionic, cationic, silicon or the like can be used. The surfactant has a function of enhancing the dispersibility of the alkali metal silicate and the quaternary ammonium silicate and increasing the penetration of the treatment agent into the asbestos material.
The blending amount of the surfactant is preferably 0.1 to 1% by mass with respect to the entire treating agent. By setting the amount within this range, the treating agent can be spread over a wide range of asbestos materials.
 好ましい配合の具体例としては、(a)アルカリ金属ケイ酸塩5~45質量%、(b)第4級アンモニウムケイ酸塩3~25質量%、(d)界面活性剤0.1~1質量%を含み、残部が(c)水である配合を挙げることができる。 Specific examples of preferable blends include (a) alkali metal silicate 5 to 45% by mass, (b) quaternary ammonium silicate 3 to 25% by mass, and (d) surfactant 0.1 to 1% by mass. %, With the balance being (c) water.
 以下、本発明の石綿材の処理方法の一実施形態について説明する。
 図1は、この処理方法の手順を示す図である。(1)予備作業
 本発明において、石綿材の施工対象物は、例えばコンクリート建築、木造建築などの建築物等であり、具体的には、例えばボイラー室、機械室、空調機械室、駐車場などにおける、躯体(鉄骨等)天井材、壁材などである。
 石綿材は、例えば建築物の建材(鉄骨など)の表面に、吹き付け施工などにより被覆層として形成される。また、石綿材を含有する建材(スレート板など)が建築物に使用されることもある。
 石綿材は、コンクリート、モルタルなどのセメント系材料とともに使用されることが多い。セメント系材料には、通常、酸化カルシウム(CaO)および二酸化ケイ素(SiO)が含まれる。CaOの一部は水との反応によりCa(OH)となる。セメント系材料は、これらに加え、酸化アルミニウム(Al)、酸化第二鉄(Fe)も含むことが多い。
Hereinafter, one embodiment of the processing method of asbestos material of the present invention is described.
FIG. 1 is a diagram showing the procedure of this processing method. (1) Preliminary work In the present invention, the asbestos material construction object is, for example, a building such as a concrete building or a wooden building. Specifically, for example, a boiler room, a machine room, an air conditioning machine room, a parking lot, etc. In the above, it is a casing (steel frame etc.) ceiling material, wall material and the like.
Asbestos material is formed as a coating layer on the surface of a building material (such as a steel frame) of a building by spraying or the like. Moreover, building materials (slate board etc.) containing asbestos material may be used for a building.
Asbestos is often used with cement-based materials such as concrete and mortar. Cementitious materials typically include calcium oxide (CaO) and silicon dioxide (SiO 2 ). A part of CaO becomes Ca (OH) 2 by reaction with water. In addition to these, cementitious materials often contain aluminum oxide (Al 2 O 3 ) and ferric oxide (Fe 2 O 3 ).
 図1に示すように、石綿材の除去に先だって、次のように石綿材の外部漏洩を防ぐ措置を施すことが好ましい。
 除去作業現場を清掃した後、石綿材の付着を防ぐため、石綿材が施工されていない部分の床面、壁面等をシートなどで覆うことにより養生する。
 除去作業現場を閉鎖空間とするセキュリティーゾーンを設置し、このセキュリティーゾーンを負圧化する負圧除じん機を設置する。
As shown in FIG. 1, prior to removal of asbestos material, it is preferable to take measures to prevent external leakage of asbestos material as follows.
After cleaning the removal work site, in order to prevent the asbestos material from adhering, it is cured by covering the floor, wall surface, etc. of the part where the asbestos material is not constructed with a sheet or the like.
A security zone with the removal work site as a closed space will be installed, and a negative pressure dust remover will be installed to make this security zone negative.
(2)石綿材除去作業
 施工対象物に施工された石綿材を、適切な工具を用いて削り取ることなどにより除去する。以下、除去された石綿材を廃石綿材ということがある。
 この際、石綿材に金属ケイ酸塩などからなる飛散防止剤を散布することによって石綿材の飛散を抑えることができる。また、空気中に飛散した石綿材の粉じんは負圧除じん機によって浄化され外部に廃棄される。
 作業者は防護服を着用して石綿材の被曝を防ぐことが好ましい。
(2) Asbestos material removal work The asbestos material constructed on the construction object is removed by scraping it with an appropriate tool. Hereinafter, the removed asbestos material may be referred to as waste asbestos material.
At this time, scattering of the asbestos material can be suppressed by spraying a scattering inhibitor made of metal silicate or the like on the asbestos material. The asbestos dust scattered in the air is purified by a negative pressure dust remover and discarded to the outside.
The operator preferably wears protective clothing to prevent asbestos exposure.
(3)処理剤散布作業
 廃石綿材に、上述の処理剤を散布する。散布方法としては、吹き付けを採用してもよいし、刷毛などの塗布具を用いて塗布する方法を採用してもよい。
 処理剤の散布量は、石綿材100質量部に対し、30~70質量部が好適である。散布量をこの範囲とすることによって、高い無害化効果が得られる。なお、処理剤の散布量は、石綿材の種類や成分などに応じて上記範囲外にも設定できる。
(3) Processing agent spraying operation The above-mentioned processing agent is sprayed on waste asbestos material. As a spraying method, spraying may be employed, or a method of applying using an applicator such as a brush may be employed.
The application amount of the treatment agent is preferably 30 to 70 parts by mass with respect to 100 parts by mass of the asbestos material. A high detoxifying effect can be obtained by setting the spraying amount within this range. In addition, the spreading amount of the treatment agent can be set outside the above range depending on the type and components of the asbestos material.
 処理剤に含まれる(a)アルカリ金属ケイ酸塩は、石綿材と反応し、これを無害化する。
 (a)アルカリ金属ケイ酸塩と石綿材との反応については、詳細は明らかではないが、次の推測が可能である。
 例えば式(1)に示す構造を有する石綿材が、強塩基条件下(例えばpH10以上)で、(a)アルカリ金属ケイ酸塩(ケイ酸カリウム:KSiO)と反応することにより、式(2)に示す構造となるとともに、式(3)~(5)に示す分解生成物が生じる反応が考えられる。
 強塩基条件とするためには、強塩基化合物、例えばKOH、Ca(OH)、NaOH等の存在下で反応を行わせればよい。この例ではKOHが用いられている。
The (a) alkali metal silicate contained in the treatment agent reacts with the asbestos material to render it harmless.
(A) The reaction between the alkali metal silicate and the asbestos material is not clear in detail, but the following estimation is possible.
For example, an asbestos material having a structure represented by the formula (1) reacts with (a) an alkali metal silicate (potassium silicate: K 2 SiO 3 ) under a strong base condition (for example, pH 10 or more), whereby the formula It is conceivable that the reaction has the structure shown in (2) and the decomposition products shown in formulas (3) to (5).
In order to obtain strong base conditions, the reaction may be carried out in the presence of a strong base compound such as KOH, Ca (OH) 2 , NaOH or the like. In this example, KOH is used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記反応では、一部のマグネシウムが、KOHとの反応により、式(3)~(5)に示す生成物として脱離している。
 また、式(6)に示すように、石綿材中の一対のシラノール基(Si-OH)とキレート結合しているマグネシウムは、一方のシラノール基から離れてケイ酸カリウムと結合し、マグネシウムが離れたシラノール基にはカリウムがイオン結合する。
 ケイ酸カリウムが前記シラノール基に結合した構造は化学的に安定であると考えられ、pHが低くなっても式(6)の逆反応は起こりにくい。
In the above reaction, a part of magnesium is eliminated as a product represented by the formulas (3) to (5) by reaction with KOH.
Further, as shown in the formula (6), magnesium that is chelate-bonded to a pair of silanol groups (Si—OH) in the asbestos material is separated from one silanol group and is bonded to potassium silicate, and the magnesium is separated. Potassium is ionically bonded to the silanol group.
The structure in which potassium silicate is bonded to the silanol group is considered to be chemically stable, and the reverse reaction of formula (6) hardly occurs even when the pH is lowered.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 このように、マグネシウムの脱離反応およびケイ酸カリウムとの結合反応によって、石綿材は無害化される。
 上述のように、式(6)の反応については逆反応が起こりにくいと考えられるため、石綿材は再有害化しにくい。
 本発明の処理剤の使用により、石綿材をpH変化による再有害化が起こりにくい形態とすることができることは、本願発明者によって初めて見出された知見であり、その技術的意義は極めて高い。
Thus, the asbestos material is rendered harmless by the elimination reaction of magnesium and the binding reaction with potassium silicate.
As described above, since the reverse reaction is unlikely to occur with respect to the reaction of the formula (6), the asbestos material is not easily detoxified.
The use of the treatment agent of the present invention makes it possible for the asbestos material to be in a form in which re-poisoning is unlikely to occur due to a change in pH.
 これに対し、(a)アルカリ金属ケイ酸塩を用いず、式(1)に示す石綿材を、単に強塩基条件下に置く(例えばKOHを添加する)だけでは、式(7)に示すように構造の変化は起こるものの、pHが低くなれば容易に逆反応が起こり、加水分解により式(1)に示す構造に戻ってしまう。 In contrast, (a) without using an alkali metal silicate, the asbestos material represented by the formula (1) is simply put under strong base conditions (for example, KOH is added) as shown in the formula (7). However, when the pH is lowered, the reverse reaction easily occurs and the structure shown in Formula (1) is restored by hydrolysis.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (b)第4級アンモニウムケイ酸塩は、石綿材に対する浸透性(濡れ性)を高める作用を有する。このため、処理剤中の他成分を石綿材の内部に深く浸透させ、全体に行き渡らせることができる。よって、(a)アルカリ金属ケイ酸塩を石綿材の全体に作用させ、上記無害化反応を促進することができる。 (B) Quaternary ammonium silicate has the effect of increasing the permeability (wetability) to asbestos material. For this reason, the other component in a processing agent can osmose | permeate deeply inside the asbestos material, and can be spread over the whole. Therefore, (a) alkali metal silicate can act on the whole asbestos material, and the said detoxification reaction can be accelerated | stimulated.
 第4級アンモニウムケイ酸塩は、水酸化カルシウム(Ca(OH))が存在する場合には、これと反応し、ガラス状物質であるケイ酸カルシウムを生成する。
 石綿材がセメント系材料(コンクリート、モルタル等)とともに使用されている場合には、石綿材は、このセメント系材料に含まれる水酸化カルシウムと反応し、ガラス状物質であるケイ酸カルシウムを生成するため、石綿材を固定化することができる。
 式(8)は、ケイ酸カルシウムの生成反応の一例である。
When calcium hydroxide (Ca (OH) 2 ) is present, the quaternary ammonium silicate reacts with this to produce calcium silicate which is a glassy substance.
When asbestos is used together with cement-based materials (concrete, mortar, etc.), asbestos reacts with calcium hydroxide contained in the cement-based material to produce glassy calcium silicate. Therefore, the asbestos material can be fixed.
Formula (8) is an example of the formation reaction of calcium silicate.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 第4級アンモニウムケイ酸塩がガラス状物質であるケイ酸カルシウムを生成し、石綿材を固定化するため、仮にアルカリ金属ケイ酸塩による無害化反応が不十分となった場合でも、有害な石綿材が飛散などにより放出されるのを防ぐことができる。 Since quaternary ammonium silicate produces calcium silicate, which is a glassy substance, and asbestos material is fixed, even if the detoxification reaction by alkali metal silicate becomes insufficient, harmful asbestos The material can be prevented from being released due to scattering or the like.
 表1は、第4級アンモニウムケイ酸塩による固化作用を示す実験結果である。
 例1では、コンクリートからなる試験体に、第4級アンモニウムケイ酸塩の17.4質量%水溶液を、刷毛を用いて塗布し(平均塗着量0.14g/cm)その強度および硬度を測定した。比較のため、第4級アンモニウムケイ酸塩水溶液の塗布を行わない例2の結果を併せて示す。
 圧縮強度はJIS A1108に準じて測定した。シュミットハンマー強度はJSCE-G504に準じて測定した。マイクロビッカース硬度は、マイクロビッカース硬度計(スクラッチ試験機)を用いて測定した。
Table 1 shows the experimental results showing the solidification action by the quaternary ammonium silicate.
In Example 1, a 17.4 mass% aqueous solution of quaternary ammonium silicate was applied to a test specimen made of concrete using a brush (average coating amount 0.14 g / cm 2 ). It was measured. For comparison, the results of Example 2 in which no quaternary ammonium silicate aqueous solution is applied are also shown.
The compressive strength was measured according to JIS A1108. The Schmidt hammer strength was measured according to JSCE-G504. The micro Vickers hardness was measured using a micro Vickers hardness meter (scratch tester).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、例1では例2に比べ機械的強度が高くなったことから、第4級アンモニウムケイ酸塩による固化作用が確認された。 As shown in Table 1, since the mechanical strength in Example 1 was higher than that in Example 2, the solidification action by the quaternary ammonium silicate was confirmed.
(4)石綿材回収および圧縮作業
 処理剤を散布した石綿材は、廃棄用袋に入れ、圧縮装置を用いて圧縮処理することができる。
 図2は、圧縮装置の一例を示すものである。この装置を用いて石綿材1を圧縮するには、廃棄用袋2に入れた石綿材1を圧縮容器3内で押圧体4により圧縮する。
 これによって、石綿材1の減容化を図ることができる。石綿材1の容積は、圧縮前に対して例えば1/3~1/4程度とすることができる。
 このため、運搬や処分費用を大幅に削減できる。さらには、処理剤の使用量を抑えることができ、コスト面でさらに有利になる。
 特に、厳しい漏出防止管理が必要となる特別管理型の産業廃棄物処分場では、処分スペースの不足が問題となっているため、減容化が可能な本方法の技術的意義は大きい。
(4) Asbestos material collection and compression work The asbestos material sprayed with the treatment agent can be put into a disposal bag and compressed using a compression device.
FIG. 2 shows an example of the compression device. In order to compress the asbestos material 1 using this apparatus, the asbestos material 1 put in the disposal bag 2 is compressed by the pressing body 4 in the compression container 3.
Thereby, volume reduction of the asbestos material 1 can be achieved. The volume of the asbestos material 1 can be, for example, about 1/3 to 1/4 of that before compression.
For this reason, transportation and disposal costs can be greatly reduced. Furthermore, the amount of treatment agent used can be reduced, which is further advantageous in terms of cost.
In particular, in a specially managed industrial waste disposal site that requires strict leakage prevention management, the shortage of disposal space is a problem. Therefore, the technical significance of this method capable of volume reduction is great.
 容積が減少するため、処理剤を石綿材1全体に行き渡らせ、アルカリ金属ケイ酸塩による無害化反応を確実に進行させることができるという効果も得られる。また、ケイ酸カルシウム生成による固定化も促進することができる。圧縮処理には石綿材の飛散防止という効果もある。 Since the volume is reduced, the treatment agent can be spread over the entire asbestos material 1 and the detoxification reaction with the alkali metal silicate can be surely advanced. Also, immobilization by the production of calcium silicate can be promoted. The compression treatment also has the effect of preventing the asbestos material from scattering.
 また、石綿材1の容量が小さくなるため、廃棄用袋2内に石綿材1を追加投入し、再圧縮することができる。これによって、1つの廃棄用袋2に多くの石綿材1を詰め込むことができるため、処分が必要な袋詰め石綿材(梱包石綿材)の数を少なくでき、運搬や処分費用をさらに削減できる。
 上記石綿材除去作業において使用した防護服および養生シート等を廃棄用袋2に入れ、圧縮処理することもできる。
 石綿材1の外部漏洩を確実に防ぐため、廃棄用袋2は複数使用される。具体的には二重袋に梱包される。廃棄用袋2の使用により石綿材の飛散防止が可能である。なお、廃棄用袋2は3枚以上使用してもよい。
Moreover, since the capacity of the asbestos material 1 becomes small, the asbestos material 1 can be additionally charged into the disposal bag 2 and recompressed. Thereby, since many asbestos materials 1 can be stuffed in one disposal bag 2, the number of bagging asbestos materials (packing asbestos materials) which need to be disposed can be reduced, and transportation and disposal costs can be further reduced.
The protective clothing and curing sheets used in the asbestos material removing operation can be put into the disposal bag 2 and compressed.
In order to reliably prevent external leakage of the asbestos material 1, a plurality of disposal bags 2 are used. Specifically, it is packed in a double bag. By using the disposal bag 2, it is possible to prevent the asbestos material from scattering. Three or more disposal bags 2 may be used.
(5)処分場へ搬出
 廃棄用袋2の開口を封止した後、この袋詰め石綿材(梱包石綿材)を作業現場から搬出し、特別管理型の産業廃棄物処分場に運搬する。袋詰め石綿材は前記産業廃棄物処分場において埋め立てなどの処分がなされる。
(5) Carrying out to disposal site After sealing the opening of the disposal bag 2, this bagging asbestos material (packing asbestos material) is carried out from the work site and transported to a specially managed industrial waste disposal site. Bagged asbestos materials are disposed of in landfills at the industrial waste disposal site.
 本発明の処理剤は、(a)アルカリ金属ケイ酸塩と(b)第4級アンモニウムケイ酸塩とを含むものであるので、(a)アルカリ金属ケイ酸塩によって石綿材を無害化することができる。
 石綿材はアルカリ金属ケイ酸塩との反応によって無害で安定な化学構造に変化すると考えられ、この化合物はpH等の環境変化よる再有害化が起こりにくいことから、仮に梱包用の廃棄用袋が破損して、廃石綿材が漏出したとしても安全性を確保できる。
 また、(b)第4級アンモニウムケイ酸塩は浸透性を高める作用を有するので、処理剤を石綿材の内部に深く浸透させ、アルカリ金属ケイ酸塩を石綿材の全体に作用させ、上記無害化反応を促進することができる。
 さらに、(b)第4級アンモニウムケイ酸塩は、石綿材が施工される建材等に含まれる水酸化カルシウムとの反応によって、ガラス状物質であるケイ酸カルシウムを生成するため、セメント粒子間が固結されること等により石綿材が固定化されることによって、石綿材が外部に放出されるのを確実に防ぐことができる。
 また、溶剤として(c)水が用いられているため、有機溶剤等に比べ、溶剤自体の安全性の点でも優れている。また、(a)アルカリ金属ケイ酸塩および(b)第4級アンモニウムケイ酸塩も有害性が低いため安全性の点で問題がない。
 従って、除去作業現場だけでなく、処分場への運搬、処分場における取り扱い時、埋め立て処分後においても有害な石綿の外部漏洩を未然に防ぎ、安全性を高めることができる。
Since the treatment agent of the present invention contains (a) alkali metal silicate and (b) quaternary ammonium silicate, (a) the asbestos material can be rendered harmless by the alkali metal silicate. .
Asbestos material is thought to change to a harmless and stable chemical structure by reaction with alkali metal silicate, and this compound is unlikely to be harmed again due to environmental changes such as pH, so if a disposal bag for packing is used. Even if it is damaged and waste asbestos material leaks, safety can be secured.
In addition, (b) quaternary ammonium silicate has the effect of increasing the permeability, so that the treatment agent is deeply penetrated into the asbestos material, and the alkali metal silicate is allowed to act on the whole of the asbestos material. The chemical reaction can be promoted.
Furthermore, (b) quaternary ammonium silicate produces calcium silicate which is a glassy substance by reaction with calcium hydroxide contained in building materials and the like on which asbestos materials are constructed. By fixing the asbestos material by being consolidated or the like, it is possible to reliably prevent the asbestos material from being released to the outside.
In addition, since (c) water is used as a solvent, the solvent itself is also superior in terms of safety compared to an organic solvent or the like. Further, (a) alkali metal silicate and (b) quaternary ammonium silicate have no problem in terms of safety because they are low in toxicity.
Accordingly, it is possible to prevent harmful asbestos from being leaked to the outside and improve safety not only at the removal work site but also at the time of transportation to the disposal site, handling at the disposal site, and after landfill disposal.
 本発明の石綿材の処理方法によれば、上記処理剤を用いるので、石綿材を確実に無害化し、安全性を確保することができる。
 さらに、石綿材の圧縮を行うことによって、石綿材の減容化を図ることができるため、運搬や処分費用を大幅に削減できる。さらには、処理剤の使用量を抑えることができ、コスト面でさらに有利になる。
 特に、厳しい漏出防止管理が必要となる特別管理型の産業廃棄物処分場では、処分スペースの不足が問題となっているため、減容化が可能な本方法の技術的意義は大きい。
According to the asbestos material processing method of the present invention, since the above-mentioned treatment agent is used, the asbestos material can be reliably rendered harmless and safety can be ensured.
Furthermore, asbestos material can be reduced in volume by compressing the asbestos material, so that transportation and disposal costs can be greatly reduced. Furthermore, the amount of treatment agent used can be reduced, which is further advantageous in terms of cost.
In particular, in a specially managed industrial waste disposal site that requires strict leakage prevention management, the shortage of disposal space is a problem. Therefore, the technical significance of this method capable of volume reduction is great.
 以下、具体例により本発明の作用効果を示す。
 石綿の定量は次のように行った。石綿材(標準試料)と内標準物質(タルク:MgSi10(OH))とを既知量混合したものについて、石綿材(標準試料)と内標準物質との回折線強度比をX線回折装置で測定して検量線を作成した。石綿材(標準試料)は、社団法人日本作業環境測定協会により提供されたクリソタイル95%の標準試料である。
 測定対象試料に既知量の内標準物質を添加し、X線回折装置で測定対象試料と内標準物質との回折線強度比を求めた。この回折線強度比から前記検量線を用いて石綿材質量比を求め、その値から石綿材含有量を算出した。
Hereafter, the effect of this invention is shown by a specific example.
Asbestos was quantified as follows. For asbestos material (standard sample) and internal standard substance (talc: Mg 3 Si 4 O 10 (OH) 2 ) mixed in known amounts, the diffraction line intensity ratio between asbestos material (standard sample) and internal standard substance A calibration curve was prepared by measurement with an X-ray diffractometer. Asbestos material (standard sample) is a 95% chrysotile standard sample provided by the Japan Working Environment Measurement Association.
A known amount of the internal standard substance was added to the sample to be measured, and the diffraction line intensity ratio between the sample to be measured and the internal standard substance was determined with an X-ray diffractometer. The asbestos material mass ratio was determined from the diffraction line intensity ratio using the calibration curve, and the asbestos material content was calculated from the value.
(試験例1)(ブランク試験)
 石綿材(標準試料)について、上記X線回折方法により成分分析を行った。
 比較のため、石綿材にギ酸処理を行うこと以外は同様の試験も行った。
 ギ酸処理は、石綿材に、20質量%ギ酸水溶液を加え、乾燥させる処理である。結果を表2に示す。
 図3A及びBはX線回折の結果を示すグラフである。横軸はX線の入射角であり、縦軸はX線強度である。図3Aはギ酸処理なしの場合の結果であり、図3Bはギ酸処理ありの場合の結果である。P1、P2は石綿材(標準試料)を示すピークであり、P3、P4は内標準物質(タルク)を示すピークである。
(Test Example 1) (Blank test)
Asbestos material (standard sample) was subjected to component analysis by the X-ray diffraction method.
For comparison, a similar test was conducted except that the asbestos material was treated with formic acid.
The formic acid treatment is a treatment in which 20% by mass aqueous formic acid solution is added to asbestos and dried. The results are shown in Table 2.
3A and 3B are graphs showing the results of X-ray diffraction. The horizontal axis is the X-ray incident angle, and the vertical axis is the X-ray intensity. FIG. 3A shows the results without formic acid treatment, and FIG. 3B shows the results with formic acid treatment. P1 and P2 are peaks indicating asbestos material (standard sample), and P3 and P4 are peaks indicating internal standard substance (talc).
(試験例2)(水酸化カルシウムのみ処理)
 石綿材(標準試料)0.6gに、20質量%水酸化カルシウム(Ca(OH))水溶液9.0gを加えて混合した。
 40℃で1週間乾燥させた後、この石綿材についてX線回折法により成分分析を行い、石綿含有率を算定した。
 石綿含有率は、試験例1(ブランク試験)における石綿量に対する、本試験例で得られた石綿量の比率(質量%)である。
 比較のため、乾燥済みの石綿材に、成分分析に先だって、ギ酸処理を行うこと以外は同様の試験を行った。結果を表2に示す。
 図4Aはギ酸処理なしの場合のX線回折の結果を示すグラフであり、図4Bはギ酸処理ありの場合のX線回折の結果を示すグラフである。
(Test Example 2) (Calcium hydroxide only treatment)
9.0 g of a 20% by mass calcium hydroxide (Ca (OH) 2 ) aqueous solution was added to and mixed with 0.6 g of asbestos material (standard sample).
After drying at 40 ° C. for 1 week, the asbestos material was subjected to component analysis by X-ray diffraction method to calculate the asbestos content.
The asbestos content is the ratio (mass%) of the asbestos amount obtained in this test example to the asbestos amount in test example 1 (blank test).
For comparison, a similar test was performed on the dried asbestos material, except that formic acid treatment was performed prior to component analysis. The results are shown in Table 2.
FIG. 4A is a graph showing the results of X-ray diffraction without formic acid treatment, and FIG. 4B is a graph showing the results of X-ray diffraction with formic acid treatment.
(試験例3)(セメント水のみ処理)
 石綿材(標準試料)0.6gに、セメント水7.5gを加えて混合した。
 セメント水とは、ポルトランドセメントを水に懸濁させたものである(セメント:水=1:3(質量基準))。
 40℃で1週間乾燥させた後、この石綿材についてX線回折法により成分分析を行い、石綿含有率を算定した。
 比較のため、乾燥済みの石綿材に、成分分析に先だって、ギ酸処理を行うこと以外は同様の試験を行った。結果を表2に示す。
 図5Aはギ酸処理なしの場合のX線回折の結果を示すグラフであり、図5Bはギ酸処理ありの場合のX線回折の結果を示すグラフである。
(Test Example 3) (Cement water only treatment)
7.5 g of cement water was added to and mixed with 0.6 g of asbestos material (standard sample).
Cement water is obtained by suspending Portland cement in water (cement: water = 1: 3 (mass basis)).
After drying at 40 ° C. for 1 week, the asbestos material was subjected to component analysis by X-ray diffraction method to calculate the asbestos content.
For comparison, a similar test was performed on the dried asbestos material, except that formic acid treatment was performed prior to component analysis. The results are shown in Table 2.
FIG. 5A is a graph showing the results of X-ray diffraction without formic acid treatment, and FIG. 5B is a graph showing the results of X-ray diffraction with formic acid treatment.
(試験例4)(処理剤のみ処理)
 石綿材(標準試料)0.6gに、処理剤3mlを加えて混合し、40℃で24時間乾燥させた。
 処理剤の配合は、(a)アルカリ金属ケイ酸塩(ケイ酸カリウム:KSiO)9.3質量%、(b)第4級アンモニウムケイ酸塩(ジメチルエタノールアンモニウムシリケート)10.6質量%、(d)界面活性剤0.5質量%、および(c)水79.6質量%とした。
 界面活性剤としては、ノニオン系界面活性剤を使用した。
 この石綿材に再び処理剤3mlを加えて混合し、40℃で24時間乾燥させた後、三たび処理剤3mlを加えて混合し、40℃で24時間乾燥させた。
 この石綿材についてX線回折法により成分分析を行い、石綿含有率を算定した。
 比較のため、乾燥済みの石綿材に、成分分析に先だって、ギ酸処理を行うこと以外は同様の試験を行った。結果を表2に示す。
 図6Aはギ酸処理なしの場合のX線回折の結果を示すグラフであり、図6Bはギ酸処理ありの場合のX線回折の結果を示すグラフである。
(Test Example 4) (Treatment agent only treatment)
To 0.6 g of asbestos material (standard sample), 3 ml of the treatment agent was added and mixed, and dried at 40 ° C. for 24 hours.
The compounding of the processing agent was (a) alkali metal silicate (potassium silicate: K 2 SiO 3 ) 9.3 mass%, (b) quaternary ammonium silicate (dimethylethanolammonium silicate) 10.6 mass %, (D) 0.5% by mass of surfactant, and (c) 79.6% by mass of water.
A nonionic surfactant was used as the surfactant.
The asbestos material was mixed again with 3 ml of the treatment agent, dried at 40 ° C. for 24 hours, then mixed with 3 ml of the treatment agent three times, and dried at 40 ° C. for 24 hours.
About this asbestos material, the component analysis was performed by the X ray diffraction method, and the asbestos content rate was computed.
For comparison, a similar test was performed on the dried asbestos material, except that formic acid treatment was performed prior to component analysis. The results are shown in Table 2.
FIG. 6A is a graph showing the results of X-ray diffraction without formic acid treatment, and FIG. 6B is a graph showing the results of X-ray diffraction with formic acid treatment.
(試験例5)(処理剤+水酸化カルシウム処理)
 石綿材(標準試料)0.6gに、試験例4と同様の処理剤3mlを加えて混合し、40℃で24時間乾燥させた。
 この石綿材に20質量%水酸化カルシウム(Ca(OH))水溶液9.0gを加えて混合し、40℃で1週間乾燥させた後、再び処理剤3mlを加えて混合し、40℃で24時間乾燥させた後、三たび処理剤3mlを加えて混合し、40℃で24時間乾燥させた。
 この石綿材についてX線回折法により成分分析を行い、石綿含有率を算定した。
 比較のため、乾燥済みの石綿材に、成分分析に先だって、ギ酸処理を行うこと以外は同様の試験を行った。結果を表2に示す。
 図7Aはギ酸処理なしの場合のX線回折の結果を示すグラフであり、図7Bはギ酸処理ありの場合のX線回折の結果を示すグラフである。
(Test Example 5) (Treatment agent + calcium hydroxide treatment)
To 0.6 g of asbestos material (standard sample), 3 ml of the same treatment agent as in Test Example 4 was added and mixed, and dried at 40 ° C. for 24 hours.
To this asbestos material, 9.0 g of a 20% by mass calcium hydroxide (Ca (OH) 2 ) aqueous solution was added and mixed, dried at 40 ° C. for 1 week, then added again with 3 ml of the treatment agent, and mixed at 40 ° C. After drying for 24 hours, 3 ml of the treatment agent was added and mixed three times and dried at 40 ° C. for 24 hours.
About this asbestos material, the component analysis was performed by the X ray diffraction method, and the asbestos content rate was computed.
For comparison, a similar test was performed on the dried asbestos material, except that formic acid treatment was performed prior to component analysis. The results are shown in Table 2.
FIG. 7A is a graph showing the results of X-ray diffraction without formic acid treatment, and FIG. 7B is a graph showing the results of X-ray diffraction with formic acid treatment.
(試験例6)(処理剤+セメント水処理)
 石綿材(標準試料)0.6gに、試験例4と同様の処理剤3mlを加えて混合し、40℃で24時間乾燥させた。
 この石綿材に試験例3と同様のセメント水7.5gを加えて混合し、40℃で1週間乾燥させた後、再び処理剤3mlを加えて混合し、40℃で24時間乾燥させた後、三たび処理剤3mlを加えて混合し、40℃で24時間乾燥させた。
 この石綿材についてX線回折法により成分分析を行い、石綿含有率を算定した。
 比較のため、乾燥済みの石綿材に、成分分析に先だって、ギ酸処理を行うこと以外は同様の試験を行った。結果を表2に示す。
 図8Aはギ酸処理なしの場合のX線回折の結果を示すグラフであり、図8Bはギ酸処理ありの場合のX線回折の結果を示すグラフである。
(Test Example 6) (Treatment agent + cement water treatment)
To 0.6 g of asbestos material (standard sample), 3 ml of the same treatment agent as in Test Example 4 was added and mixed, and dried at 40 ° C. for 24 hours.
After adding 7.5 g of cement water similar to Test Example 3 to this asbestos material and mixing, drying at 40 ° C. for 1 week, adding 3 ml of treatment agent again, mixing and drying at 40 ° C. for 24 hours. Three times, 3 ml of the treatment agent was added and mixed, and dried at 40 ° C. for 24 hours.
About this asbestos material, the component analysis was performed by the X ray diffraction method, and the asbestos content rate was computed.
For comparison, a similar test was performed on the dried asbestos material, except that formic acid treatment was performed prior to component analysis. The results are shown in Table 2.
FIG. 8A is a graph showing the results of X-ray diffraction without formic acid treatment, and FIG. 8B is a graph showing the results of X-ray diffraction with formic acid treatment.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2に示すように、試験例2、3より、石綿材を水酸化カルシウムまたはセメント水で処理した場合には、石綿含有率は減少するが、ギ酸処理によってpHを低下させると、石綿含有率は100%またはそれに近い値まで戻ってしまうことがわかる。
 これに対し、試験例4~6に示すように、処理剤を用いた場合には、石綿含有率は低くなり、この含有率はギ酸処理によって大きく上昇することはなかった。
 このことから、本発明の処理剤を用いることによって、石綿の一部が無害化され、pH環境の変化によっても再有害化が起こりにくかったことがわかる。
 このことは、本発明の処理剤との反応により、石綿の化学構造が無害な構造に不可逆的に変化したことによると考えることができる。
 また、水酸化カルシウムまたはセメント水の存在下では、石綿含有率は、より低くなった。
As shown in Table 2, from Test Examples 2 and 3, when the asbestos material was treated with calcium hydroxide or cement water, the asbestos content decreased, but when the pH was lowered by formic acid treatment, the asbestos content was reduced. It can be seen that returns to 100% or close to it.
On the other hand, as shown in Test Examples 4 to 6, when the treatment agent was used, the asbestos content was low, and this content was not greatly increased by the formic acid treatment.
From this, it can be seen that by using the treatment agent of the present invention, a part of asbestos was rendered harmless and re-toxification was unlikely to occur even when the pH environment changed.
This can be attributed to the irreversible change of the chemical structure of asbestos to a harmless structure due to the reaction with the treating agent of the present invention.
Moreover, in the presence of calcium hydroxide or cement water, the asbestos content was lower.
 図9A及びBは、試験例1で用いた石綿材(標準試料)の表面の成分分析を、走査型電子顕微鏡-エネルギー分散型X線分析法(SEM-EDX法)を用いて行った結果を示すグラフであり、縦軸は含有率(質量%)を示す。図9Aはギ酸処理なしの場合の結果であり、図9Bはギ酸処理ありの場合の結果である。これらより、ギ酸処理による石綿材の成分の変化はほとんど起こらないことがわかる。 9A and 9B show the results of component analysis of the surface of the asbestos material (standard sample) used in Test Example 1 using a scanning electron microscope-energy dispersive X-ray analysis method (SEM-EDX method). The vertical axis represents the content (% by mass). FIG. 9A shows the results without formic acid treatment, and FIG. 9B shows the results with formic acid treatment. From these, it can be seen that almost no change in the composition of the asbestos material due to the formic acid treatment occurs.
 図10A及びBは、試験例2で処理された石綿材のSEM-EDX法による成分分析結果である。図10Aはギ酸処理なしの場合の結果であり、図10Bはギ酸処理ありの場合の結果である。
 図11A及びBは、試験例3で処理された石綿材のSEM-EDX法による成分分析結果である。図11Aはギ酸処理なしの場合の結果であり、図11Bはギ酸処理ありの場合の結果である。
 これらより、石綿材を水酸化カルシウムまたはセメント水で処理した場合には、マグネシウム含有量は減少するが、ギ酸処理(pH低下)によって100%またはそれに近い値まで戻ってしまうことがわかる。
10A and 10B are component analysis results of the asbestos material processed in Test Example 2 by the SEM-EDX method. FIG. 10A shows the results without formic acid treatment, and FIG. 10B shows the results with formic acid treatment.
11A and 11B show the component analysis results of the asbestos material processed in Test Example 3 by the SEM-EDX method. FIG. 11A shows the results without formic acid treatment, and FIG. 11B shows the results with formic acid treatment.
From these, it can be seen that when the asbestos material is treated with calcium hydroxide or cement water, the magnesium content decreases, but it returns to 100% or a value close to it by formic acid treatment (pH reduction).
 図12は、試験例5(ギ酸処理あり)で処理された石綿材のSEM-EDX法による成分分析結果であり、図13は、試験例6(ギ酸処理あり)で処理された石綿材の成分分析結果である。
 これらより、処理剤の使用によって、ギ酸処理(pH低下)を行ってもマグネシウム含有量は増加せず、脱離したマグネシウムの再結合が起こりにくくなったことが確認された。
FIG. 12 shows the result of component analysis of the asbestos material treated in Test Example 5 (with formic acid treatment) by the SEM-EDX method, and FIG. 13 shows the components of the asbestos material treated in Test Example 6 (with formic acid treatment). It is an analysis result.
From these results, it was confirmed that the magnesium content did not increase even when formic acid treatment (pH reduction) was performed by using a treatment agent, and recombination of detached magnesium was less likely to occur.
(試験例7~12)
 表3に示す材料からなる試験体表面に、第4級アンモニウムケイ酸塩(固形分換算2.5質量%)の水溶液を塗布し、乾燥させた。この表面における水の接触角を測定した。
(Test Examples 7 to 12)
An aqueous solution of a quaternary ammonium silicate (2.5% by mass in terms of solid content) was applied to the surface of a test body made of the material shown in Table 3 and dried. The contact angle of water on this surface was measured.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表3に示すように、第4級アンモニウムケイ酸塩によって接触角が大幅に小さくなった。
 このことから、第4級アンモニウムケイ酸塩には、浸透性(濡れ性)を高める効果があることがわかる。
As shown in Table 3, the contact angle was greatly reduced by the quaternary ammonium silicate.
From this, it can be seen that the quaternary ammonium silicate has an effect of increasing the permeability (wetting property).
(試験例13~15)
 石綿材(嵩比重:約0.1~0.2g/cm)300gに対し、試験例4で用いたものと同様の処理剤を散布した。処理剤の使用量は、100g(試験例13)、150g(試験例14)、または200g(試験例15)とした。図2に示す圧縮装置を用いて、石綿材を圧縮処理した。圧縮率は約70~80%とした。
(Test Examples 13 to 15)
A treatment agent similar to that used in Test Example 4 was sprayed on 300 g of asbestos material (bulk specific gravity: about 0.1 to 0.2 g / cm 3 ). The amount of treatment agent used was 100 g (Test Example 13), 150 g (Test Example 14), or 200 g (Test Example 15). The asbestos material was compression-processed using the compression apparatus shown in FIG. The compression rate was about 70-80%.
 試験例13~15のいずれにおいても、圧縮処理によって固形化した石綿材が得られた。
 特に、試験例14では、固形化した石綿材は、外部から強い圧力を加えてもその形状はごくわずかしか崩れず、試験例15では、固形化した石綿材は、外部から強い圧力を加えてもその形状がほとんど崩れず、運搬等の際の取り扱いがしやすい形態となった。
In any of Test Examples 13 to 15, asbestos material solidified by the compression treatment was obtained.
In particular, in Test Example 14, the solidified asbestos material collapses only slightly even when a strong pressure is applied from the outside. In Test Example 15, the solidified asbestos material is applied with a strong pressure from the outside. However, the shape did not collapse so that it was easy to handle during transportation.
(試験例16)
 試験例6と同様に処理した石綿材を、pH7.8~8.3の水に浸漬し、重金属等の溶出量を測定した。測定方法は「金属等を含む産業廃棄物に係る判定基準を定める省令(総務省令第5号)」に準拠した。結果を表4に示す。
(Test Example 16)
The asbestos material treated in the same manner as in Test Example 6 was immersed in water having a pH of 7.8 to 8.3, and the elution amount of heavy metals and the like was measured. The measurement method complies with the “Ministerial Ordinance (Ministry of Internal Affairs and Communications Ordinance No. 5) that establishes the criteria for judging industrial waste including metals. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表4より、本発明により処理された石綿材では、検出項目のいずれについても重金属等の溶出がほとんど起こらず、規制値を満たすことがわかる。 From Table 4, it can be seen that the asbestos material treated according to the present invention hardly elutions heavy metals or the like in any of the detection items and satisfies the regulation value.
 本発明によれば、石綿材を、環境変化よる再有害化が起こりにくい形態で無害化できるため、除去作業現場だけでなく、処分場への運搬、処分場における取り扱い時、埋め立て処分後においても有害な石綿の外部漏洩を未然に防ぎ、安全性を高めることができる。 According to the present invention, asbestos material can be rendered harmless in a form that is unlikely to be re-harmful due to environmental changes, so that it can be used not only at the removal work site, but also during transportation to the disposal site, handling at the disposal site, and after landfill disposal. Prevents harmful asbestos from leaking outside and improves safety.
1・・・石綿材、2・・・廃棄用袋、3・・・圧縮容器、4・・・押圧体。 DESCRIPTION OF SYMBOLS 1 ... Asbestos material, 2 ... Waste bag, 3 ... Compression container, 4 ... Pressing body.

Claims (6)

  1.  (a)アルカリ金属ケイ酸塩、
    (b)第4級アンモニウムケイ酸塩、及び
    (c)水を含む、石綿材処理剤。
    (A) alkali metal silicate,
    An asbestos treatment agent comprising (b) quaternary ammonium silicate and (c) water.
  2.  前記(a)アルカリ金属ケイ酸塩の、前記処理剤全体に対する配合量が5~45質量%であり、前記(b)第4級アンモニウムケイ酸塩の、前記処理剤全体に対する配合量が3~25質量%である、請求項1に記載の石綿材処理剤。 The blending amount of (a) alkali metal silicate with respect to the entire treating agent is 5 to 45% by mass, and the blending amount of (b) quaternary ammonium silicate with respect to the entire treating agent is 3 to The asbestos-material processing agent of Claim 1 which is 25 mass%.
  3.  前記(a)アルカリ金属ケイ酸塩が、MSiO(M:アルカリ金属)である、請求項1または2に記載の石綿材処理剤。 Wherein (a) an alkali metal silicate, M 2 SiO 3: a (M an alkali metal), asbestos material processing agent according to claim 1 or 2.
  4.  前記(b)第4級アンモニウムケイ酸塩が、(RN)O・nSiO(Rは炭素数1以上のアルキル基であり、nは1以上の整数である)である、請求項1~3の何れか一項に記載の石綿材処理剤。 The (b) quaternary ammonium silicate is (R 3 N) 2 O.nSiO 2 (R is an alkyl group having 1 or more carbon atoms, and n is an integer of 1 or more). The asbestos material treatment agent according to any one of 1 to 3.
  5.  (i)施工対象物から除去された石綿材に対し、請求項1~4の何れか一項に記載の石綿材処理剤を散布する工程;
     (ii)当該石綿処理剤を散布された当該石綿材を廃棄用袋に梱包する工程;
    を含む、石綿材を処理する方法。
    (i) a step of spraying the asbestos material treatment agent according to any one of claims 1 to 4 to the asbestos material removed from the construction object;
    (ii) packing the asbestos material sprayed with the asbestos treatment agent into a disposal bag;
    A method of treating asbestos material, comprising:
  6.  前記工程(i)の後、前記工程(ii)の前に、前記石綿処理剤を散布した前記石綿材を圧縮処理にかける工程;
    を含む、請求項5に記載の石綿材を処理する方法。
    After the step (i) and before the step (ii), subjecting the asbestos material sprayed with the asbestos treatment agent to compression treatment;
    The method of processing the asbestos material of Claim 5 containing this.
PCT/JP2010/065810 2009-09-15 2010-09-14 Asbestos material-treating agent and asbestos material-treating method using same WO2011034047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137023084A KR101340407B1 (en) 2009-09-15 2010-09-14 A treatment agent for asbestos materials and a method for treating asbestos materials using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-213234 2009-09-15
JP2009213234A JP5122541B2 (en) 2009-09-15 2009-09-15 Waste asbestos material treatment agent, waste asbestos material treatment method using the same, and waste asbestos material scattering prevention method

Publications (1)

Publication Number Publication Date
WO2011034047A1 true WO2011034047A1 (en) 2011-03-24

Family

ID=43758650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065810 WO2011034047A1 (en) 2009-09-15 2010-09-14 Asbestos material-treating agent and asbestos material-treating method using same

Country Status (3)

Country Link
JP (1) JP5122541B2 (en)
KR (2) KR101340407B1 (en)
WO (1) WO2011034047A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101755124B1 (en) 2015-11-13 2017-07-06 전남대학교산학협력단 Method of detoxification for material containing asbestos

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035385A (en) * 1989-05-30 1991-01-11 Daiso Co Ltd Method for solidifying asbestos
JPH0375283A (en) * 1989-05-20 1991-03-29 Nippon Steel Chem Co Ltd Asbestos treating agent
JP2000001624A (en) * 1998-06-17 2000-01-07 Sanyo Chem Ind Ltd Aqueous resin dispersion composition and coating agent
JP2007210804A (en) * 2006-02-07 2007-08-23 Nachuru:Kk Asbestus solidification method
WO2008041416A1 (en) * 2006-09-29 2008-04-10 K.K.M-Tec Method of treating asbestos
JP2008161731A (en) * 2006-08-02 2008-07-17 Shoji Tougeda Asbestos treatment agent, asbestos treatment method and asbestos treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007037403A1 (en) 2005-09-30 2009-04-16 芳信 林 Asbestos treatment method using silicone resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375283A (en) * 1989-05-20 1991-03-29 Nippon Steel Chem Co Ltd Asbestos treating agent
JPH035385A (en) * 1989-05-30 1991-01-11 Daiso Co Ltd Method for solidifying asbestos
JP2000001624A (en) * 1998-06-17 2000-01-07 Sanyo Chem Ind Ltd Aqueous resin dispersion composition and coating agent
JP2007210804A (en) * 2006-02-07 2007-08-23 Nachuru:Kk Asbestus solidification method
JP2008161731A (en) * 2006-08-02 2008-07-17 Shoji Tougeda Asbestos treatment agent, asbestos treatment method and asbestos treatment apparatus
WO2008041416A1 (en) * 2006-09-29 2008-04-10 K.K.M-Tec Method of treating asbestos

Also Published As

Publication number Publication date
JP5122541B2 (en) 2013-01-16
KR20110044788A (en) 2011-04-29
JP2011062600A (en) 2011-03-31
KR20130113525A (en) 2013-10-15
KR101340407B1 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JPWO2008041416A1 (en) Asbestos treatment method
US20100113859A1 (en) Method of asbestos detoxification and aqueous solution for asbestos detoxification
JP5122541B2 (en) Waste asbestos material treatment agent, waste asbestos material treatment method using the same, and waste asbestos material scattering prevention method
EP0946448B1 (en) Composition and method to remove asbestos
AU714840B2 (en) Composition and method to remove asbestos
JP2011072550A (en) Method of treating fluorine-containing waste acid in detoxification treatment of asbestos-containing waste material
JP2011072915A (en) Asbestos detoxifying treatment method
KR101240571B1 (en) Composition of Preventing Dust-Scattering and Method of Preventing Dust-Scattering Using the Same
JP2008100873A (en) Construction method for inhibiting scattering of asbestos
JP2008049205A (en) Treatment method of chrysotile or chrysotile inclusion
US20220049189A1 (en) Decontamination paste and method for decontaminating a substrate made of a solid material using said paste
EP1470093B1 (en) Non-ionic foam composition for treating asbestos-containing materials and method of using same
JP2009241014A (en) Method for treating fluorine-containing waste acid in detoxification treatment of asbestos-containing waste material and aqueous solution for detoxifying asbestos-containing waste material
CN109069894B (en) In situ microencapsulation treatment of asbestos fibers and other harmful materials using a combination of a copolymer and a coacervated polymer system
WO1998013313A1 (en) Composition and method to remove asbestos
JP5513714B2 (en) Detoxification liquid for substances containing asbestos or rock wool
AU2002245309B2 (en) Non-ionic foam composition for treating asbestos-containing materials and method of using same
JP5655189B2 (en) Asbestos scattering prevention method
JP2011062600A5 (en) Asbestos treating agent, method of treating asbestos using the same, and method of preventing asbestos scattering
JP2013006169A (en) Method for preventing asbestos dissolved residue from scattering using glucomannan-containing asbestos solubilizing agent
AU2002245309A1 (en) Non-ionic foam composition for treating asbestos-containing materials and method of using same
JP2008264774A (en) Method for detoxifying removed asbestos without scattering it in the air

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20117006078

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817160

Country of ref document: EP

Kind code of ref document: A1