WO2011033800A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2011033800A1
WO2011033800A1 PCT/JP2010/054505 JP2010054505W WO2011033800A1 WO 2011033800 A1 WO2011033800 A1 WO 2011033800A1 JP 2010054505 W JP2010054505 W JP 2010054505W WO 2011033800 A1 WO2011033800 A1 WO 2011033800A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
annular shroud
impeller
forming portion
resin housing
Prior art date
Application number
PCT/JP2010/054505
Other languages
French (fr)
Japanese (ja)
Inventor
誠一 茨木
勲 冨田
靖明 陣内
隆 御子神
正希 東條
明夫 北田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020117031275A priority Critical patent/KR20120013458A/en
Priority to CN2010800292137A priority patent/CN102472296A/en
Priority to US13/380,649 priority patent/US20120148391A1/en
Priority to EP10816914A priority patent/EP2441965A1/en
Publication of WO2011033800A1 publication Critical patent/WO2011033800A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/502Thermal properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps

Definitions

  • the present invention relates to a centrifugal compressor provided with a resin housing applied to, for example, a turbocharger.
  • a turbocharger (exhaust turbine supercharger) mounted on an automobile or the like drives a compressor by an exhaust turbine driven by the energy of exhaust gas, and supplies intake air compressed by the compressor to the engine.
  • a bearing housing that rotatably supports a rotating shaft is provided between a turbine housing of an exhaust turbine and a housing of a turbo compressor.
  • An impeller of a turbo compressor and a wheel of an exhaust turbine are fixed to a rotating shaft passing through the bearing housing.
  • the bearing housing houses a bearing mechanism that rotatably supports the rotating shaft.
  • a seal wall is interposed at the boundary between the bearing housing and the compressor housing to form a compressed gas passage sealed in the compressor housing.
  • Patent Document 1 discloses that the turbocharger housing is made of a thermoplastic resin.
  • Patent Document 2 discloses a housing of a centrifugal compressor in which a housing wall is formed of two layers of a thermosetting resin material and a thermoplastic resin material.
  • an inner wall surface facing a flow path of a compressed gas in a compressor housing of a turbocharger is formed of a resin member having excellent machinability, and the curved inner surface of the compressor impeller and a curved profile portion of the compressor impeller are provided.
  • An invention has been disclosed in which the compressor efficiency is improved by reducing the gap between the impellers and the impeller (impeller) arranged facing the inner wall surface is prevented from being damaged even if the impeller contacts the inner wall surface. Yes.
  • Patent Document 4 discloses that an inner wall surface of a flow path forming portion of a compressor housing of a turbocharger is made of a resin member having excellent machinability for cost reduction.
  • Patent Document 5 discloses that, for the same reason as Patent Document 3, the inner wall surface of the flow path forming portion of the compressor housing of the turbocharger is made of a resin member.
  • FIG. 10 is a schematic diagram showing a compressor portion of the turbocharger 100 having a resin housing.
  • an impeller (impeller) 104 is fixed to the rotating shaft 102.
  • a plurality of blades 106 project radially from the impeller 104.
  • the outer end of the blade 106 forms a curved profile 106a.
  • a housing 110 is disposed around the blade 106.
  • the housing 110 includes a spiral volute portion 110a that forms the scroll portion s, and a flow path forming portion 110b that forms a flow path c of the compressed gas.
  • the flow path forming part 110b is disposed so as to surround the blade 106.
  • the hub surface 108 of the impeller 104 and the inner wall of the flow path forming portion 110b form a flow path c.
  • the flow path c is formed to be curved from the axial direction of the rotating shaft 102 (arrow a direction) to the radial direction of the impeller 104 (arrow b direction).
  • a flow path extending from the flow path c where the blade 106 is disposed to the flow path d disposed on the outlet side of the flow path c functions as a diffuser (static pressure increasing region).
  • the impeller 104 rotates, the compressed gas is sucked into the flow path c from the direction of the arrow a, and the absolute flow velocity is accelerated by the blade 106.
  • the intake air accelerated in the flow path c changes its direction in the direction of the arrow b, enters the area of the diffuser d, decelerates the absolute flow velocity, and increases the static pressure.
  • the compressed gas is compressed as it flows from the flow path c to the diffuser d, and flows out to the scroll portion s.
  • the compressor has higher compression efficiency when the gap T between the inner wall of the flow path forming portion 110b and the curved profile 106a of the impeller 104 is smaller.
  • the gas to be compressed becomes high temperature due to the compression action.
  • the housing 110 is made of resin, the resin has a higher coefficient of thermal expansion than that of metal, plastic, or the like. Therefore, the housing 110 is expanded by receiving the heat of the compressed gas, and as indicated by reference numeral 110 ′, the arrow e Causes thermal deformation in the direction. As a result, the gap T is enlarged, and the compressed gas leaks from the gap T, so that there is a problem that the compression efficiency is lowered.
  • German Patent Publication (DE10260042A1) European Patent Publication (EP1830071A2) JP-A-9-170442 Japanese Patent Laid-Open No. 2001-234753 JP 2002-256878 A
  • the present invention realizes a centrifugal compressor provided with a resin-made housing that does not reduce the compression efficiency and does not offset the advantages such as weight reduction and cost reduction. With the goal.
  • the centrifugal compressor of the present invention comprises: A plurality of blades radially fixed to the rotating shaft, and a resin housing disposed around the impeller, the outer peripheral surface of the impeller and the inner wall of the flow path forming portion of the resin housing
  • An annular shroud made of metal or ceramic material is disposed in a recess formed by engraving the inner wall of the flow path forming portion, and the outer surface of the flow path where the blade is disposed by the annular shroud and the outlet of the flow path Forming the outer surface of the diffuser (static pressure increasing region) arranged on the side,
  • the annular shroud is fixed to a surface or wall facing the annular shroud by the diffuser.
  • the inner wall of the flow path forming portion of the resin housing is engraved (or formed by injection molding) to form a recess, and an annular shroud made of metal or a ceramic material is disposed in the recess.
  • This annular shroud forms the smoothly curved outer surface of the flow path and diffuser.
  • the annular shroud is made of a material having a strength higher than that of a resin (engineering plastic stick) and a coefficient of thermal expansion smaller than that of the resin, such as a metal such as aluminum or carbon steel or ceramic. This annular shroud is fixed to the wall facing the diffuser.
  • the annular shroud is configured separately from the resin housing and is not joined to the inner wall of the resin housing. Therefore, since the thermal deformation of the resin housing is not transmitted to the annular shroud, the gap between the annular shroud and the curved profile of the impeller does not change. Therefore, the compression efficiency is not reduced. Further, by using the annular shroud, it is not necessary to increase the thickness of the resin housing or to provide the reinforcing rib on the resin housing, so that advantages such as weight reduction and cost reduction are not offset.
  • a seal ring may be provided in a receiving groove provided between the back surface of the annular shroud and the recess of the inner wall of the flow path forming portion in the inlet side region of the flow path.
  • the temperature of the compressed gas is low at the impeller inlet portion, the temperature of the inner wall of the annular shroud and the flow path forming part of the resin housing is also low. Therefore, an inexpensive seal ring such as a rubber O-ring can be used. Further, since the impeller inlet portion has a small radius, a small seal ring can be used, and the cost can be reduced accordingly.
  • the flow path forming portion of the resin housing may be divided and formed on the upstream side and the downstream side in the flow direction of the compressed gas, and the divided surface may be made to coincide with the receiving groove of the seal ring. .
  • the thick part of the resin housing can be eliminated.
  • the dividing surface is made coincident with the housing groove of the seal ring, the groove processing of the housing groove becomes unnecessary, so that the molding process becomes easy and the cost can be reduced.
  • a slit-shaped air gap is formed in the flow path forming portion of the resin housing or the divided body of the flow path forming portion so as to open to the outside in the axial direction of the rotating shaft.
  • a compressed gas circulation space is provided between the annular shroud and the flow path forming portion, and at least two communication holes communicating the flow space and the flow path along the flow direction of the compressed gas. It is good to comprise so that the flow of to-be-compressed gas may be formed in this circulation space.
  • a circulating flow path of the compressed gas that enters the flow space from the downstream through hole and returns to the flow path from the upstream through hole can be formed. Therefore, the flow rate at the inlet of the impeller can be maintained at a flow rate that is equal to or higher than the stall limit, so that the lower limit flow rate of the compressed gas can be reduced.
  • the outer surface of the flow path forming portion of the resin housing may be coated with an annular reinforcing layer made of glass fiber.
  • an annular reinforcing layer made of glass fiber having a high tensile strength, in the unlikely event that the blade breaks, the blade fragments or impellers do not penetrate the wall of the flow path forming part.
  • the wall thickness of the required flow path forming part can be reduced. Therefore, the manufacturing cost of the resin housing can be reduced.
  • an impeller having a plurality of blades fixed radially to a rotating shaft, and a resin housing disposed around the impeller, the outer peripheral surface of the impeller,
  • a centrifugal compressor in which a flow path of a compressed gas is formed from the inner wall of the flow path forming portion of the resin housing to the radial direction from the axial direction of the impeller, the inner wall of the flow path forming portion is engraved.
  • An annular shroud made of a metal or a ceramic material is disposed in the formed recess, and an outer surface of the flow path where the impeller is disposed by the annular shroud and an outer surface of the diffuser disposed on the outlet side of the flow path are formed.
  • the gap between the annular shroud and the curved profile of the blade can be maintained at a set size.
  • the annular shroud is disposed, so that it is not necessary to increase the thickness of the resin housing or to provide reinforcing ribs on the resin housing. And benefits such as cost reduction.
  • FIG. 1 is a front view according to a first embodiment of a turbocharger to which the present invention is applied. It is a front view which concerns on 2nd Embodiment of the turbocharger to which this invention is applied. It is a front view which concerns on 3rd Embodiment of the turbocharger to which this invention is applied. It is a front view which concerns on 4th Embodiment of the turbocharger to which this invention is applied. It is a front view which concerns on 5th Embodiment of the turbocharger to which this invention is applied. It is a front view which shows the modification of the said 5th Embodiment. It is a front view which concerns on 6th Embodiment of the turbocharger to which this invention is applied.
  • FIG. 1 shows a part of a compressor section of a turbocharger 10 according to this embodiment.
  • a rotating shaft 12 is disposed at the center of a resin housing 20, and an impeller 14 in which a plurality of blades 16 are radially disposed in the radial direction of the rotating shaft 12 is fixedly provided on the outer peripheral surface of the rotating shaft 12.
  • the hub surface 18 of the impeller 14 is curved from the axial direction of the rotating shaft 12 toward the radial direction from the inlet side to the outlet side in the flow direction (arrow a direction) of the compressed gas.
  • the resin housing 20 includes a spiral volute portion 20a that forms a scroll portion s therein, and a flow path forming portion 20b that forms a flow path c of a compressed gas.
  • the outer end of the blade 16 forms a curved profile 16a.
  • inner wall 20b 1 flow path forming portion 20b of the resin housing 20 are formed.
  • a concave portion 20b 2 for inserting and arranging the annular shroud 22 is formed in the inner wall 20b 1 .
  • the rotary shaft 12 is rotatably supported by a bearing (not shown) provided in the bearing housing 30.
  • a partition wall 32 forming a part of the bearing housing 30 is arranged facing the scroll part s formed by the spiral volute part 20a.
  • An end portion of the volute portion 20 a is attached to the partition wall 32 via a seal ring 34.
  • annular shroud 22 is inserted and disposed in the recess 20b 2 formed in the inner wall 20b 1 of the flow path forming portion 20b.
  • the downstream end portion of the annular shroud 22 in the flow direction of the compressed gas protrudes from the scroll portion s, and the downstream end portion is fixed to the wall 32 by the bolt 26 via the spacer 24.
  • the annular shroud 22 is made of a metal (for example, aluminum or carbon steel) or ceramics having a strength higher than that of the resin and a coefficient of thermal expansion smaller than that of the resin.
  • the annular shroud 22 is separated from the resin housing 20 and is not connected.
  • the gap between the annular shroud 22 and the curved profile 16a of the blade 16 is set to be as small as possible in order to maintain good compression efficiency.
  • the annular shroud 22 is arranged on the flow path c for directing the compressed gas from the axial direction (arrow a direction) to the radial direction (arrow b direction) of the impeller 14 and on the outlet side of the flow path c.
  • An outer wall of the diffuser d that converts kinetic energy into static pressure is formed.
  • the hub surface 18 of the impeller 14 forms the inner surface of the flow path c
  • the partition wall 32 forms the inner surface of the diffuser d.
  • the gas to be compressed is sucked from the inlet side of the blade 16 by the rotation of the impeller 14, and is converted into a static pressure through the flow path c and the diffuser d.
  • the compressed gas exiting the diffuser d flows out to the scroll part s.
  • a plurality of bolts 26 are arranged at intervals in the circumferential direction of the rotating shaft 12, and the presence of the bolts 26 does not hinder the flow of the compressed gas.
  • the annular shroud 22 is fixed to the bearing housing 30 partition wall 32 with only the bolts 26, and the annular shroud 22 and the resin housing 20 are separated from each other.
  • the thermal deformation of the housing 20 is not transmitted. Therefore, even when the resin housing 20 is thermally deformed, the gap between the annular shroud 22 and the curved profile 16a of the blade 16 does not change. Therefore, the compression efficiency is not lowered.
  • annular shroud 22 since the annular shroud 22 is used, there is no need to increase the thickness of the resin housing 20 or to provide a reinforcing rib or the like on the resin housing 20, so that advantages such as weight reduction and cost reduction are offset. None happen.
  • the downstream end 22 a of the annular shroud 22 forms two bent portions and extends until it contacts the partition wall 32 of the bearing housing 30.
  • Flange 22a 1 is formed on the extension end portion.
  • the recess 32a for fitting the flange portion 22a 1 is engraved in the partition wall 32. Then, the flange portion 22a 1 are connected by bolts 40 to the recess 32a.
  • the flange portion 22a 1 is partially formed in the circumferential direction of the impeller 14, therefore, not to close the diffuser d at the downstream side end portion 22a of the shroud 22, of the compressed gas in the diffuser d Does not obstruct the flow.
  • Other configurations are the same as those of the first embodiment. The same parts are denoted by the same reference numerals.
  • annular shroud 22 forms the integral structure to the flange portion 22a 1, and is processed by press molding. Therefore, in addition to the operational effects obtained in the first embodiment, the annular shroud 22 can be easily molded, and when the annular shroud 22 is connected to the partition wall 32, the spacer 24 is used as in the first embodiment. There is an advantage that the connecting work becomes easy.
  • a storage groove 52 is formed in the recess 20b 2 formed in the inner wall 20b 1 of the flow path forming portion 20b of the resin housing 20, and the storage is performed.
  • a rubber or resin seal ring 50 is accommodated in the groove 52.
  • Other configurations are the same as those of the second embodiment.
  • the seal ring 50 even when the resin housing 20 is thermally deformed and a gap is generated between the recess 20b 2 and the back surface of the annular shroud 2 (made of metal or ceramic such as aluminum or carbon steel), by providing the seal ring 50, since the compressed gas from entering between the recess 20b 2 and the annular shroud 22, the compression efficiency of the compressor is not lowered.
  • the temperature of the compressed gas is substantially the same as that of the outside air, and the temperature of the compressed gas is low.
  • an inexpensive O-ring made of rubber can be used at the inlet portion of the impeller 14.
  • the inlet portion of the impeller 14 can use a small-diameter O-ring because the flow path of the compressed gas is not curved in the radial direction and the diameter of the impeller 14 is small. Therefore, the cost of the seal ring 50 can be reduced. (Embodiment 4)
  • the flow path forming portion 20 b of the resin housing 20 is divided into two resin divided bodies 60 and 62.
  • the divided bodies 60 and 62 are divided and formed by a dividing surface 64 having a stepped portion 64a at the center of the thick portion of the flow path forming portion 20b.
  • One end of the dividing surface 64 is connected to the accommodation groove 52 that accommodates the seal ring 34.
  • Other configurations are the same as those of the third embodiment.
  • the thickness of the flow path forming portion 20b can be reduced. This eliminates the possibility that bubbles or the like remain in the flow path forming portion 20b during the molding process of the resin housing 20. Therefore, the quality of the resin housing 20 is improved and the yield can be improved, so that the manufacturing cost of the resin housing 20 can be reduced. Moreover, since the dividing surface 64 is connected to the receiving groove 52, the groove processing of the receiving groove 52 becomes unnecessary, and the corner portion of the divided body 60 is processed. Can be saved. (Embodiment 5)
  • a slit-like gap is formed in the thick portion of the flow path forming portion 20 b of the resin housing 20 in a direction perpendicular to the plate thickness direction, that is, in a direction substantially parallel to the rotation direction of the impeller 14.
  • V is provided. One end of the gap V is open to the outside.
  • Other configurations are the same as those of the third embodiment.
  • the gap V in the flow path forming part 20b by providing the gap V in the flow path forming part 20b, the thick part of the flow path forming part 20b can be eliminated. For this reason, bubbles and the like are not left during the injection molding of the resin housing 20, the quality of the resin housing 20 can be improved, and the yield can be improved, so that an increase in cost can be prevented.
  • the present modified example includes, among the divided bodies 60 and 62 in which the resin housing 20 is divided and formed in the fourth embodiment, inside the thick portion that forms the flow path forming portion 20 b of the divided body 60.
  • a slit-shaped gap Va is provided in a direction perpendicular to the plate thickness direction (a direction substantially parallel to the rotation direction of the impeller 14). One end of the gap Va is open to the outside.
  • Other configurations are the same as those of the fourth embodiment.
  • the slit-shaped gap Va is provided in the flow path forming portion 20b of the divided body 60. It can be lost. For this reason, bubbles and the like do not remain at the time of injection molding of the divided body 60, the quality of the divided body 60 can be improved, and the yield can be improved, thereby preventing an increase in cost. (Embodiment 6)
  • a recess 20 b 2 formed on the inner wall 20 b 1 of the flow path forming portion 20 b is further formed so as to form a circulation flow path 70 on the back side of the annular shroud 22. is doing.
  • An upstream through hole 72 and a downstream through hole 74 are formed in the annular shroud 22 at a position facing the circulation flow path 70.
  • Other configurations are the same as those of the second embodiment.
  • the flow rate of the compressed gas when the flow rate of the compressed gas is small, a part of the compressed gas flowing through the flow path c flows into the circulation flow path 70 from the downstream through hole 74 and flows into the circulation flow path 70.
  • a circulating flow in which the compressed gas returns from the upstream through hole 72 to the flow path c can be formed.
  • the circulation flow is added to the flow of the compressed gas at the inlet of the impeller 14, so that the stall of the impeller 14 can be suppressed. Therefore, the limit lower limit flow rate of the compressor can be reduced.
  • the flow rate of the compressed gas when the flow rate of the compressed gas is large, a part of the compressed gas flowing through the flow path c flows into the circulation flow path 70 from the upstream side through-hole 72, and the compressed gas flowing into the circulation flow path 70 flows downstream. A flow path returning from the through hole 74 to the flow path c can be formed. As a result, the maximum flow rate of the compressed gas can be increased. As a result, the flow width of the compressed gas that can operate the turbocharger can be expanded.
  • the present modification is one in which a circulation channel 70 is formed on the back surface of the annular shroud 22 as in the sixth embodiment.
  • An annular slit 76 is formed between the inlet side end of the annular shroud 22 and the inner wall 20b1 of the passage forming portion 20b at the inlet portion of the passage c.
  • a through hole 74 similar to that of the sixth embodiment is provided on the downstream side of the slit-shaped gap 76.
  • Other configurations are the same as those of the sixth embodiment.
  • the number of through holes drilled in the annular shroud 22 can be reduced as compared with the sixth embodiment, and the recess for fitting the annular shroud 22 to the inner wall 20a of the flow path forming portion 20b. Since there is no need to engrave 20b 2 , there is an advantage that the processing of the annular shroud 22 and the flow path forming portion 20b becomes easy. Further, since the annular slit-shaped gap 76 can be formed, the opening area of the slit-shaped gap 76 can be increased, and the slit-shaped gap 76 can be easily formed.
  • the flow passage forming portion 20b of the resin housing 20 is formed with a thin plate thickness, and an annular glass fiber plate 80 is attached to the back surface thereof.
  • Other configurations are the same as those of the second embodiment.
  • the thickness of the flow path forming portion 20b can be reduced. Further, since the thickness of the flow path forming portion 20b can be reduced, bubbles or the like do not remain at the time of injection molding of the resin housing 20, and the quality of the resin housing 20 can be improved. Therefore, the yield at the time of resin housing molding processing can be improved, and cost increase can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

Disclosed is a centrifugal compressor equipped with a resin housing, that is made in a manner such that compression efficiency is not lost and merits such as weight and cost reduction are not cancelled out. A turbo charger (10) is equipped with a resin housing (20) that comprises a volute section (20a) and a channel formation section (20b), and an impeller (14) that is fixed in the center of the channel formation section (20b) to a rotating shaft (12). An annular shroud (22) is disposed in a recess (20b2) formed on the inner wall (20b1) of the channel formation section (20b), and the annular shroud (22) forms the outer walls of a channel (c) and a diffuser (a static pressure increase region) (d) for compressed gas. The edge of the annular shroud (22) on the downstream side is fixed via a spacer (24) to a partition wall (32), which forms a portion of a bearing housing (30), by means of a bolt (26). Even if the resin housing (20) undergoes thermal deformation, the dimensions of a gap (T) between the annular shroud (22) and the curved profile (16a) of a blade (16) can be maintained at set dimensions.

Description

遠心圧縮機Centrifugal compressor
 本発明は、例えばターボチャージャ等に適用される樹脂製のハウジングを備えた遠心圧縮機に関する。 The present invention relates to a centrifugal compressor provided with a resin housing applied to, for example, a turbocharger.
 自動車等に搭載されるターボチャージャ(排気タービン過給機)は、排気ガスのエネルギで駆動する排気タービンによりコンプレッサを駆動し、コンプレッサで圧縮された吸入空気をエンジンに供給する。この種のターボチャージャでは、排気タービンのタービンハウジングと、ターボコンプレッサのハウジングとの間に、回転軸を回転自在に支承するベアリングハウジングが設けられている。このベアリングハウジング内を通る回転軸に、ターボコンプレッサのインペラと、排気タービンのホイールとが固設されている。 A turbocharger (exhaust turbine supercharger) mounted on an automobile or the like drives a compressor by an exhaust turbine driven by the energy of exhaust gas, and supplies intake air compressed by the compressor to the engine. In this type of turbocharger, a bearing housing that rotatably supports a rotating shaft is provided between a turbine housing of an exhaust turbine and a housing of a turbo compressor. An impeller of a turbo compressor and a wheel of an exhaust turbine are fixed to a rotating shaft passing through the bearing housing.
 ベアリングハウジング内には、回転軸を回転自在に支承する軸受機構が収容されている。ベアリングハウジングとコンプレッサハウジングとの境界には、シール壁が介在し、コンプレッサハウジング内に密閉された被圧縮気体の通路を形成している。 The bearing housing houses a bearing mechanism that rotatably supports the rotating shaft. A seal wall is interposed at the boundary between the bearing housing and the compressor housing to form a compressed gas passage sealed in the compressor housing.
 ターボチャージャ等の渦巻き形状をしたハウジングは、通常、アルミ鋳鉄や鋳鋼製のハウジングが使用されている。しかし、最近、軽量化やコスト低減等の目的で、樹脂製のハウジングが使用されてきている。
 特許文献1には、ターボチャージャのハウジングを熱可塑性樹脂で構成したことが開示されている。また、特許文献2には、ハウジング壁を熱硬化製樹脂材と熱可塑性樹脂材の二層で形成した遠心圧縮機のハウジングが開示されている。
As a spiral housing such as a turbocharger, an aluminum cast iron or cast steel housing is usually used. Recently, however, resin-made housings have been used for the purpose of weight reduction and cost reduction.
Patent Document 1 discloses that the turbocharger housing is made of a thermoplastic resin. Patent Document 2 discloses a housing of a centrifugal compressor in which a housing wall is formed of two layers of a thermosetting resin material and a thermoplastic resin material.
 また、特許文献3には、ターボチャージャのコンプレッサハウジングの被圧縮気体の流路に面する内壁面を被削性の優れた樹脂部材で構成し、該内壁面とコンプレッサのインペラの湾曲プロフィール部との隙間を小さくすることによってコンプレッサ効率を向上させると共に、該内壁面に対面配置されるインペラ(羽根車)が該内壁面に接触してもインペラの損傷を防止するようにした発明が開示されている。 Further, in Patent Document 3, an inner wall surface facing a flow path of a compressed gas in a compressor housing of a turbocharger is formed of a resin member having excellent machinability, and the curved inner surface of the compressor impeller and a curved profile portion of the compressor impeller are provided. An invention has been disclosed in which the compressor efficiency is improved by reducing the gap between the impellers and the impeller (impeller) arranged facing the inner wall surface is prevented from being damaged even if the impeller contacts the inner wall surface. Yes.
 また、特許文献4には、コスト低減のため、ターボチャージャのコンプレッサハウジングの流路形成部の内壁面を被削性の優れた樹脂部材で構成することが開示されている。
 また、特許文献5には、特許文献3と同様の理由により、ターボチャージャのコンプレッサハウジングの流路形成部の内壁面を樹脂部材で構成することが開示されている。
Patent Document 4 discloses that an inner wall surface of a flow path forming portion of a compressor housing of a turbocharger is made of a resin member having excellent machinability for cost reduction.
Patent Document 5 discloses that, for the same reason as Patent Document 3, the inner wall surface of the flow path forming portion of the compressor housing of the turbocharger is made of a resin member.
 図10は、樹脂製のハウジングを備えたターボチャージャ100のコンプレッサ部を示す模式図である。図10において、回転軸102にインペラ(羽根車)104が固設されている。インペラ104には複数のブレード106が放射状に突設されている。ブレード106の外側端は、湾曲プロフィール106aを形成している。ブレード106の周囲にはハウジング110が配置されている。ハウジング110は、スクロール部sを形成する渦巻き形状のボリュート部110aと、被圧縮気体の流路cを形成する流路形成部110bとからなる。 FIG. 10 is a schematic diagram showing a compressor portion of the turbocharger 100 having a resin housing. In FIG. 10, an impeller (impeller) 104 is fixed to the rotating shaft 102. A plurality of blades 106 project radially from the impeller 104. The outer end of the blade 106 forms a curved profile 106a. A housing 110 is disposed around the blade 106. The housing 110 includes a spiral volute portion 110a that forms the scroll portion s, and a flow path forming portion 110b that forms a flow path c of the compressed gas.
 流路形成部110bがブレード106を囲むように配置されている。インペラ104のハブ面108と流路形成部110bの内壁とで流路cを形成している。流路cは、回転軸102の軸方向(矢印a方向)からインペラ104の径方向(矢印b方向)に湾曲して形成されている。ブレード106が配置された流路cから、流路cの出口側に配置された流路dに亘る流路がディフューザ(静圧上昇領域)として機能する。 The flow path forming part 110b is disposed so as to surround the blade 106. The hub surface 108 of the impeller 104 and the inner wall of the flow path forming portion 110b form a flow path c. The flow path c is formed to be curved from the axial direction of the rotating shaft 102 (arrow a direction) to the radial direction of the impeller 104 (arrow b direction). A flow path extending from the flow path c where the blade 106 is disposed to the flow path d disposed on the outlet side of the flow path c functions as a diffuser (static pressure increasing region).
 インペラ104が回転すると、被圧縮気体は、矢印a方向から流路cに吸入され、ブレード106で絶対流速が加速される。流路cで加速された吸気は、矢印b方向に向きを変え、ディフューザーdの領域に入り、絶対流速が減速され、静圧が上昇する。被圧縮気体は、流路cからディフューザーdへ流れるに従い圧縮されて、スクロール部sへ流出する。 When the impeller 104 rotates, the compressed gas is sucked into the flow path c from the direction of the arrow a, and the absolute flow velocity is accelerated by the blade 106. The intake air accelerated in the flow path c changes its direction in the direction of the arrow b, enters the area of the diffuser d, decelerates the absolute flow velocity, and increases the static pressure. The compressed gas is compressed as it flows from the flow path c to the diffuser d, and flows out to the scroll portion s.
 コンプレッサは、流路形成部110bの内壁とインペラ104の湾曲プロフィール106aとの隙間Tが小さいほうが圧縮効率が高い。コンプレッサで被圧縮気体を圧縮すると、圧縮作用のために被圧縮気体が高温になる。ハウジング110を樹脂製とした場合、樹脂は金属やプラスチック等と比べて熱膨張率が高いため、ハウジング110は、被圧縮気体の熱を受けて膨脹し、符号110’で示すように、矢印e方向へ熱変形を起す。これによって、隙間Tが拡大し、隙間Tから被圧縮気体が漏れるため、圧縮効率が低下するという問題がある。 The compressor has higher compression efficiency when the gap T between the inner wall of the flow path forming portion 110b and the curved profile 106a of the impeller 104 is smaller. When the gas to be compressed is compressed by the compressor, the gas to be compressed becomes high temperature due to the compression action. When the housing 110 is made of resin, the resin has a higher coefficient of thermal expansion than that of metal, plastic, or the like. Therefore, the housing 110 is expanded by receiving the heat of the compressed gas, and as indicated by reference numeral 110 ′, the arrow e Causes thermal deformation in the direction. As a result, the gap T is enlarged, and the compressed gas leaks from the gap T, so that there is a problem that the compression efficiency is lowered.
 また、樹脂製のハウジングでは、万一インペラ104が損傷して破片が飛散した場合、破片がハウジングから外部に飛び出さないようにする必要がある。そのため、図11に示すように、ハウジング110の肉厚を厚くしたり、あるいはハウジング110に補強リブ112を設けるなどの工夫が必要になる。従って、軽量化やコスト低減等を目的とした樹脂製ハウジングのメリットが相殺される問題がある。 In the case of a resin housing, if the impeller 104 is damaged and the fragments are scattered, it is necessary to prevent the fragments from jumping out of the housing. Therefore, as shown in FIG. 11, it is necessary to devise such as increasing the thickness of the housing 110 or providing reinforcing ribs 112 on the housing 110. Therefore, there is a problem that the merits of the resin housing for the purpose of weight reduction and cost reduction are offset.
ドイツ国特許公開公報(DE10260042A1)German Patent Publication (DE10260042A1) ヨーロッパ特許公開公報(EP1830071A2)European Patent Publication (EP1830071A2) 特開平9-170442号公報JP-A-9-170442 特開2001-234753号公報Japanese Patent Laid-Open No. 2001-234753 特開2002-256878号公報JP 2002-256878 A
 本発明は、かかる従来技術の課題に鑑み、樹脂製のハウジングを備えた遠心圧縮機において、圧縮効率を低下させず、かつ軽量化やコスト低減等のメリットを相殺しない遠心圧縮機を実現することを目的とする。 In view of the problems of the prior art, the present invention realizes a centrifugal compressor provided with a resin-made housing that does not reduce the compression efficiency and does not offset the advantages such as weight reduction and cost reduction. With the goal.
 かかる目的を達成するため、本発明の遠心圧縮機は、
 回転軸に放射状に固設された複数のブレードと、該インペラの周囲に配置された樹脂製のハウジングとを備え、該インペラの外周面と該樹脂製ハウジングの流路形成部の内壁とで該インペラの軸方向から径方向に向う被圧縮気体の流路を形成してなる遠心圧縮機において、
 前記流路形成部の内壁を刻設して形成した凹部に金属若しくはセラミックス材からなる環状シュラウドを配設し、該環状シュラウドにより前記ブレードが配置された流路の外側面と該流路の出口側に配置されたディフューザー(静圧上昇領域)の外側面を形成し、
 該ディフューザーで該環状シュラウドを該環状シュラウドに対面する面あるいは壁に固設してなるものである。
In order to achieve such an object, the centrifugal compressor of the present invention comprises:
A plurality of blades radially fixed to the rotating shaft, and a resin housing disposed around the impeller, the outer peripheral surface of the impeller and the inner wall of the flow path forming portion of the resin housing In the centrifugal compressor formed by forming the flow path of the compressed gas from the axial direction of the impeller toward the radial direction,
An annular shroud made of metal or ceramic material is disposed in a recess formed by engraving the inner wall of the flow path forming portion, and the outer surface of the flow path where the blade is disposed by the annular shroud and the outlet of the flow path Forming the outer surface of the diffuser (static pressure increasing region) arranged on the side,
The annular shroud is fixed to a surface or wall facing the annular shroud by the diffuser.
 本発明では、樹脂製ハウジングの流路形成部の内壁を刻設(若しくは射出成形により成形)して凹部を形成し、この凹部に金属若しくはセラミックス材からなる環状ショラウドを配置する。この環状シュラウドによって、流路とディフューザーの滑らかに湾曲した外側面を形成する。環状シュラウドは、例えばアルミや炭素鋼等の金属やセラミックのように、樹脂(エンジニアリングプラスチックスチック)より高強度で該樹脂より熱膨脹率の小さい材質のものを採用する。この環状シュラウドをディフューザーで対面配置される壁に固設するようにする。 In the present invention, the inner wall of the flow path forming portion of the resin housing is engraved (or formed by injection molding) to form a recess, and an annular shroud made of metal or a ceramic material is disposed in the recess. This annular shroud forms the smoothly curved outer surface of the flow path and diffuser. The annular shroud is made of a material having a strength higher than that of a resin (engineering plastic stick) and a coefficient of thermal expansion smaller than that of the resin, such as a metal such as aluminum or carbon steel or ceramic. This annular shroud is fixed to the wall facing the diffuser.
 該環状シュラウドは、樹脂製ハウジングとは別体に構成され、樹脂製ハウジングの内壁とは接合されていない。そのため、この環状シュラウドには樹脂製ハウジングの熱変形が伝わらないので、環状シュラウドとインペラの湾曲プロフィールとの隙間は変わらない。従って、圧縮効率を低下させることがない。また、環状シュラウドを用いることで、樹脂製ハウジングの肉厚を厚くしたり、あるいは樹脂製ハウジングに補強リブを設ける必要がないので、軽量化やコスト低減等のメリットが相殺されることはない。 The annular shroud is configured separately from the resin housing and is not joined to the inner wall of the resin housing. Therefore, since the thermal deformation of the resin housing is not transmitted to the annular shroud, the gap between the annular shroud and the curved profile of the impeller does not change. Therefore, the compression efficiency is not reduced. Further, by using the annular shroud, it is not necessary to increase the thickness of the resin housing or to provide the reinforcing rib on the resin housing, so that advantages such as weight reduction and cost reduction are not offset.
 本発明において、流路の入口側領域で環状シュラウドの背面と流路形成部内壁の凹部との間にもうけた収容溝にシールリングを介設するようにするとよい。これによって、樹脂製ハウジングが熱変形して、樹脂製ハウジングの内壁と環状シュラウドとの間に隙間が発生した場合でも、被圧縮気体が該隙間に侵入したり、インペラ下流側の被圧縮気体がインペラ入口側に還流しない。そのため、圧縮効率が低下することはない。 In the present invention, a seal ring may be provided in a receiving groove provided between the back surface of the annular shroud and the recess of the inner wall of the flow path forming portion in the inlet side region of the flow path. As a result, even when the resin housing is thermally deformed and a gap is generated between the inner wall of the resin housing and the annular shroud, the compressed gas enters the gap or the compressed gas on the downstream side of the impeller Does not return to the impeller inlet side. Therefore, the compression efficiency does not decrease.
 インペラ入口部分は、被圧縮気体の温度が低いため、環状シュラウド及び樹脂製ハウジングの流路形成部の内壁の温度も低い。従って、ゴム製のOリングなど安価なシールリングを使用できる。また、インペラ入口部分は、半径が小さいため、小さなシールリングが使用可能であり、この分コストを削減できる。 Since the temperature of the compressed gas is low at the impeller inlet portion, the temperature of the inner wall of the annular shroud and the flow path forming part of the resin housing is also low. Therefore, an inexpensive seal ring such as a rubber O-ring can be used. Further, since the impeller inlet portion has a small radius, a small seal ring can be used, and the cost can be reduced accordingly.
 前記構成に加えて、樹脂製ハウジングの流路形成部を被圧縮気体の流れ方向の上流側と下流側とに分割形成すると共に、この分割面をシールリングの収容溝に一致させるようにするとよい。これによって、樹脂製ハウジングの厚肉部を無くすことができる。そのため、樹脂製ハウジングの成形加工時に、気泡などの残留をなくすことができるので、樹脂製ハウジングの品質を向上させ、歩留まりを改善でき、コストアップを防止できる。
 また、分割面をシールリングの収容溝に一致させたことにより、該収容溝の溝加工が不要になり、そのため、成形加工が容易になり、コスト低減が可能になる。
In addition to the above configuration, the flow path forming portion of the resin housing may be divided and formed on the upstream side and the downstream side in the flow direction of the compressed gas, and the divided surface may be made to coincide with the receiving groove of the seal ring. . Thereby, the thick part of the resin housing can be eliminated. For this reason, it is possible to eliminate bubbles and the like during molding of the resin housing, thereby improving the quality of the resin housing, improving the yield, and preventing an increase in cost.
Further, since the dividing surface is made coincident with the housing groove of the seal ring, the groove processing of the housing groove becomes unnecessary, so that the molding process becomes easy and the cost can be reduced.
 本発明において、樹脂製ハウジングの流路形成部又は該流路形成部の分割体に外部に開口し、回転軸の軸方向に向けられたスリット状空隙をもうけるようにするとよい。これによって、樹脂製ハウジングの厚肉部をなくすことができるため、樹脂製ハウジングの射出成形等による成形加工時に、気泡等の残留をなくすことができる。そのため、樹脂製ハウジングの品質を向上させ、歩留まりを改善でき、コストアップを防止できる。 In the present invention, it is preferable that a slit-shaped air gap is formed in the flow path forming portion of the resin housing or the divided body of the flow path forming portion so as to open to the outside in the axial direction of the rotating shaft. Thereby, since the thick part of the resin housing can be eliminated, it is possible to eliminate residual bubbles and the like when the resin housing is molded by injection molding or the like. Therefore, the quality of the resin housing can be improved, the yield can be improved, and the cost can be prevented from increasing.
 本発明において、環状シュラウドと流路形成部との間に被圧縮気体の流通空間をもうけると共に、被圧縮気体の流れ方向に沿って該流通空間と流路とを連通する少なくとも2個の連通孔を設け、該流通空間に被圧縮気体の流れを形成するように構成するとよい。これによって、流路を流れる被圧縮気体の流量が少ない時は、下流側貫通孔から前記流通空間に入り、上流側の貫通孔から流路に戻る被圧縮気体の循環流路を形成できる。そのため、インペラの入口部の流量を失速限界以上の流量に保持できるので、被圧縮気体の限界下限流量を低減できる。 In the present invention, a compressed gas circulation space is provided between the annular shroud and the flow path forming portion, and at least two communication holes communicating the flow space and the flow path along the flow direction of the compressed gas. It is good to comprise so that the flow of to-be-compressed gas may be formed in this circulation space. Thus, when the flow rate of the compressed gas flowing through the flow path is small, a circulating flow path of the compressed gas that enters the flow space from the downstream through hole and returns to the flow path from the upstream through hole can be formed. Therefore, the flow rate at the inlet of the impeller can be maintained at a flow rate that is equal to or higher than the stall limit, so that the lower limit flow rate of the compressed gas can be reduced.
 また、流路を流れる被圧縮気体の流量が多い時は、被圧縮気体の一部が上流側貫通孔から前記流通空間に入り、下流側開口から流路に戻ることで、被圧縮気体の最大流量を拡大することができる。この結果、遠心圧縮機の上限及び下限の許容流量を拡大することができる。 In addition, when the flow rate of the compressed gas flowing through the flow path is large, a part of the compressed gas enters the flow space from the upstream side through hole and returns to the flow path from the downstream side opening. The flow rate can be increased. As a result, the upper and lower allowable flow rates of the centrifugal compressor can be increased.
 本発明において、樹脂製ハウジングの流路形成部の外面にガラス繊維からなる環状の補強層を被覆するとよい。該流路形成部の外面に引張強度の高いガラス繊維からなる補強層を被覆することで、万一ブレードが破損した場合に、ブレードの破片又はインペラが流路形成部の壁を貫通しないために必要な流路形成部の壁厚を薄くすることができる。そのため、樹脂製ハウジングの製造コストを低減できる。 In the present invention, the outer surface of the flow path forming portion of the resin housing may be coated with an annular reinforcing layer made of glass fiber. By covering the outer surface of the flow path forming part with a reinforcing layer made of glass fiber having a high tensile strength, in the unlikely event that the blade breaks, the blade fragments or impellers do not penetrate the wall of the flow path forming part. The wall thickness of the required flow path forming part can be reduced. Therefore, the manufacturing cost of the resin housing can be reduced.
 本発明の遠心圧縮機によれば、回転軸に放射状に固設された複数のブレードとを有するインペラと、該インペラの周囲に配置された樹脂製のハウジングとを備え、該インペラの外周面と該樹脂製ハウジングの流路形成部の内壁とで該インペラの軸方向から径方向に向う被圧縮気体の流路を形成してなる遠心圧縮機において、流路形成部の内壁を刻設して形成した凹部に金属若しくはセラミックス材からなる環状シュラウドを配設し、該環状シュラウドによりインペラが配置された流路の外側面と該流路の出口側に配置されたディフューザーの外側面を形成し、該ディフューザーで環状シュラウドを環状シュラウドに対面する隔壁に固設してなることにより、環状シュラウドとブレードの湾曲プロフィールとの隙間を設定寸法に保持できるので、圧縮効率を高く維持できると共に、該環状シュラウドを配設したことで、樹脂製ハウジングの肉厚を厚くしたり、あるいは樹脂製ハウジングに補強リブを設ける必要がないので、樹脂製ハウジングの軽量化やコスト低減等のメリットを享受できる。 According to the centrifugal compressor of the present invention, an impeller having a plurality of blades fixed radially to a rotating shaft, and a resin housing disposed around the impeller, the outer peripheral surface of the impeller, In a centrifugal compressor in which a flow path of a compressed gas is formed from the inner wall of the flow path forming portion of the resin housing to the radial direction from the axial direction of the impeller, the inner wall of the flow path forming portion is engraved. An annular shroud made of a metal or a ceramic material is disposed in the formed recess, and an outer surface of the flow path where the impeller is disposed by the annular shroud and an outer surface of the diffuser disposed on the outlet side of the flow path are formed. By fixing the annular shroud to the partition wall facing the annular shroud with the diffuser, the gap between the annular shroud and the curved profile of the blade can be maintained at a set size. In addition to maintaining high compression efficiency, the annular shroud is disposed, so that it is not necessary to increase the thickness of the resin housing or to provide reinforcing ribs on the resin housing. And benefits such as cost reduction.
本発明を適用したターボチャージャの第1実施形態に係る正面図である。1 is a front view according to a first embodiment of a turbocharger to which the present invention is applied. 本発明を適用したターボチャージャの第2実施形態に係る正面図である。It is a front view which concerns on 2nd Embodiment of the turbocharger to which this invention is applied. 本発明を適用したターボチャージャの第3実施形態に係る正面図である。It is a front view which concerns on 3rd Embodiment of the turbocharger to which this invention is applied. 本発明を適用したターボチャージャの第4実施形態に係る正面図である。It is a front view which concerns on 4th Embodiment of the turbocharger to which this invention is applied. 本発明を適用したターボチャージャの第5実施形態に係る正面図である。It is a front view which concerns on 5th Embodiment of the turbocharger to which this invention is applied. 前記第5実施形態の変形例を示す正面図である。It is a front view which shows the modification of the said 5th Embodiment. 本発明を適用したターボチャージャの第6実施形態に係る正面図である。It is a front view which concerns on 6th Embodiment of the turbocharger to which this invention is applied. 前記第6実施形態の変形例を示す正面図である。It is a front view which shows the modification of the said 6th Embodiment. 本発明を適用したターボチャージャの第7実施形態に係る正面図である。It is a front view which concerns on 7th Embodiment of the turbocharger to which this invention is applied. 従来のターボチャージャの一部を示す正面図である。It is a front view which shows a part of conventional turbocharger. 樹脂製ハウジングを厚肉とするか、あるいは補強リブを付設した、比較例として示すターボチャージャの正面図である。It is a front view of the turbocharger shown as a comparative example which made the resin-made housing thick or attached a reinforcing rib.
 以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。 Hereinafter, the present invention will be described in detail using embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.
実施形態1Embodiment 1
 本発明を適用したターボチャージャの第1実施形態を図1により説明する。図1は本実施形態に係るターボチャージャ10のコンプレッサ部の一部を示す。図1において、樹脂製のハウジング20の中心に回転軸12が配置され、回転軸12の外周面に、回転軸12の半径方向に複数のブレード16が放射状に配置されたインペラ14が固設されている。インペラ14のハブ面18は、被圧縮気体の流れ方向(矢印a方向)入口側から出口側に沿って、回転軸12の軸方向から半径方向に向うように湾曲している。樹脂製ハウジング20は、内部にスクロール部sを形成する渦巻き形状のボリュート部20aと、被圧縮気体の流路cを形成する流路形成部20bとからなる。 A first embodiment of a turbocharger to which the present invention is applied will be described with reference to FIG. FIG. 1 shows a part of a compressor section of a turbocharger 10 according to this embodiment. In FIG. 1, a rotating shaft 12 is disposed at the center of a resin housing 20, and an impeller 14 in which a plurality of blades 16 are radially disposed in the radial direction of the rotating shaft 12 is fixedly provided on the outer peripheral surface of the rotating shaft 12. ing. The hub surface 18 of the impeller 14 is curved from the axial direction of the rotating shaft 12 toward the radial direction from the inlet side to the outlet side in the flow direction (arrow a direction) of the compressed gas. The resin housing 20 includes a spiral volute portion 20a that forms a scroll portion s therein, and a flow path forming portion 20b that forms a flow path c of a compressed gas.
 ブレード16の外側端は湾曲プロフィール16aを形成している。該湾曲プロフィール16aに合わせるように、樹脂製ハウジング20の流路形成部20bの内壁20bが形成されている。該内壁20bに環状シュラウド22を挿入配置するための凹部20bが刻設されている。回転軸12は、ベアリングハウジング30に設けられた図示省略の軸受により回転自在に支承されている。渦巻き形状のボリュート部20aが形成するスクロール部sに面して、ベアリングハウジング30の一部を形成している隔壁32が配置されている。ボリュート部20aの端部がシールリング34を介して隔壁32に取り付けられている。 The outer end of the blade 16 forms a curved profile 16a. To match the the curved profile 16a, inner wall 20b 1 flow path forming portion 20b of the resin housing 20 are formed. A concave portion 20b 2 for inserting and arranging the annular shroud 22 is formed in the inner wall 20b 1 . The rotary shaft 12 is rotatably supported by a bearing (not shown) provided in the bearing housing 30. A partition wall 32 forming a part of the bearing housing 30 is arranged facing the scroll part s formed by the spiral volute part 20a. An end portion of the volute portion 20 a is attached to the partition wall 32 via a seal ring 34.
 流路形成部20bの内壁20bに形成された凹部20bに環状シュラウド22が挿入配置されている。環状シュラウド22の被圧縮気体の流れ方向下流側端部がスクロール部sに突き出して配置され、該下流側端部は、スペーサ24を介してボルト26により壁32に固設されている。環状シュラウド22は、樹脂より高強度でかつ樹脂より熱膨脹率が小さい金属(例えばアルミや炭素鋼)又はセラミックスで構成されている。環状シュラウド22は樹脂製ハウジング20とは分離され、接続されていない。環状シュラウド22とブレード16の湾曲プロフィール16aとの間の隙間は、良好な圧縮効率を維持するため、なるべく小さくなるように設定されている。 An annular shroud 22 is inserted and disposed in the recess 20b 2 formed in the inner wall 20b 1 of the flow path forming portion 20b. The downstream end portion of the annular shroud 22 in the flow direction of the compressed gas protrudes from the scroll portion s, and the downstream end portion is fixed to the wall 32 by the bolt 26 via the spacer 24. The annular shroud 22 is made of a metal (for example, aluminum or carbon steel) or ceramics having a strength higher than that of the resin and a coefficient of thermal expansion smaller than that of the resin. The annular shroud 22 is separated from the resin housing 20 and is not connected. The gap between the annular shroud 22 and the curved profile 16a of the blade 16 is set to be as small as possible in order to maintain good compression efficiency.
 こうして、環状シュラウド22によって、被圧縮気体をインペラ14の軸方向(矢印a方向)から半径方向(矢印b方向)に向ける流路cと、流路cの出口側に配置されて被圧縮気体の運動エネルギーを静圧に変換するディフューザーdの外側壁を形成している。インペラ14のハブ面18によって流路cの内側面が形成され、隔壁32によってディフューザーdの内側面が形成されている。 Thus, the annular shroud 22 is arranged on the flow path c for directing the compressed gas from the axial direction (arrow a direction) to the radial direction (arrow b direction) of the impeller 14 and on the outlet side of the flow path c. An outer wall of the diffuser d that converts kinetic energy into static pressure is formed. The hub surface 18 of the impeller 14 forms the inner surface of the flow path c, and the partition wall 32 forms the inner surface of the diffuser d.
 かかる構成により、インペラ14の回転によって被圧縮気体がブレード16の入口側から吸引され、流路c及びディフューザーdを通って静圧に変換される。ディフューザーdを出た圧縮気体は、スクロール部sに流出する。なお、ボルト26は、回転軸12の周方向に間隔を開けて複数個配置されており、ボルト26の存在によって被圧縮気体の流れを阻害することはない。 With this configuration, the gas to be compressed is sucked from the inlet side of the blade 16 by the rotation of the impeller 14, and is converted into a static pressure through the flow path c and the diffuser d. The compressed gas exiting the diffuser d flows out to the scroll part s. A plurality of bolts 26 are arranged at intervals in the circumferential direction of the rotating shaft 12, and the presence of the bolts 26 does not hinder the flow of the compressed gas.
 本実施形態によれば、環状シュラウド22は、ボルト26だけでベアリンブハウジング30隔壁32に固設され、環状シュラウド22と樹脂製ハウジング20とは分離されているので、環状シュラウド22には樹脂製ハウジング20の熱変形が伝わらない。そのため、樹脂製ハウジング20が熱変形した場合でも、環状シュラウド22とブレード16の湾曲プロフィール16aとの隙間は変わらない。従って、圧縮効率を低下させることはない。 According to the present embodiment, the annular shroud 22 is fixed to the bearing housing 30 partition wall 32 with only the bolts 26, and the annular shroud 22 and the resin housing 20 are separated from each other. The thermal deformation of the housing 20 is not transmitted. Therefore, even when the resin housing 20 is thermally deformed, the gap between the annular shroud 22 and the curved profile 16a of the blade 16 does not change. Therefore, the compression efficiency is not lowered.
 また、環状シュラウド22を用いたことで、樹脂製ハウジング20の肉厚を厚くしたり、あるいは樹脂製ハウジング20に補強リブ等を設ける必要がないので、軽量化やコスト低減等のメリットが相殺されることはない。 Further, since the annular shroud 22 is used, there is no need to increase the thickness of the resin housing 20 or to provide a reinforcing rib or the like on the resin housing 20, so that advantages such as weight reduction and cost reduction are offset. Never happen.
実施形態2Embodiment 2
 次に、本発明をターボチャージャに適用した第2実施形態を図2により説明する。図2において、本実施形態は、環状シュラウド22の下流側端部22aが、2箇所の折曲部を形成すると共に、ベアリングハウジング30の隔壁32に接するまで延設されている。その延設端部にフランジ部22aが形成されている。一方、隔壁32には該フランジ部22aを嵌合するための凹部32aが刻設されている。そして、フランジ部22aが凹部32aにボルト40で連結されている。 Next, a second embodiment in which the present invention is applied to a turbocharger will be described with reference to FIG. In FIG. 2, in the present embodiment, the downstream end 22 a of the annular shroud 22 forms two bent portions and extends until it contacts the partition wall 32 of the bearing housing 30. Flange 22a 1 is formed on the extension end portion. On the other hand, the recess 32a for fitting the flange portion 22a 1 is engraved in the partition wall 32. Then, the flange portion 22a 1 are connected by bolts 40 to the recess 32a.
 なお、フランジ部22aは、インペラ14の周方向で部分的に形成されており、そのため、シュラウド22の下流側端部22aでディフューザーdを閉塞しておらず、ディフューザーdでの被圧縮気体の流れを阻害しない。その他の構成は前記第1実施形態と同一である。同一部分には同一符号を付している。 Incidentally, the flange portion 22a 1 is partially formed in the circumferential direction of the impeller 14, therefore, not to close the diffuser d at the downstream side end portion 22a of the shroud 22, of the compressed gas in the diffuser d Does not obstruct the flow. Other configurations are the same as those of the first embodiment. The same parts are denoted by the same reference numerals.
 本実施形態によれば、環状シュラウド22がフランジ部22aまで一体構造をなし、プレス成形で加工されている。そのため、前記第1実施形態で得られる作用効果に加えて、環状シュラウド22の成形加工が容易であると共に、環状シュラウド22を隔壁32に連結するときに、第1実施形態のように、スペーサ24を必要とせず、連結作業が容易になるという利点がある。 According to this embodiment, annular shroud 22 forms the integral structure to the flange portion 22a 1, and is processed by press molding. Therefore, in addition to the operational effects obtained in the first embodiment, the annular shroud 22 can be easily molded, and when the annular shroud 22 is connected to the partition wall 32, the spacer 24 is used as in the first embodiment. There is an advantage that the connecting work becomes easy.
実施形態3Embodiment 3
 次に、本発明をターボチャージャに適用した第3実施形態を図3により説明する。図3において、本実施形態は、流路cの入口領域で、樹脂製ハウジング20の流路形成部20bの内壁20bに刻設された凹部20bに収容溝52を刻設し、該収容溝52にゴム製又は樹脂製のシールリング50を収容させたものである。その他の構成は、前記第2実施形態と同一である。 Next, a third embodiment in which the present invention is applied to a turbocharger will be described with reference to FIG. 3, in the present embodiment, in the entrance region of the flow path c, a storage groove 52 is formed in the recess 20b 2 formed in the inner wall 20b 1 of the flow path forming portion 20b of the resin housing 20, and the storage is performed. A rubber or resin seal ring 50 is accommodated in the groove 52. Other configurations are the same as those of the second embodiment.
 本実施形態によれば、樹脂製ハウジング20が熱変形して、凹部20bと(アルミや炭素鋼等の金属やセラミックからなる)環状シュラウド2の背面との間に隙間が発生した場合でも、シールリング50を設けたことにより、凹部20bと環状シュラウド22間に被圧縮気体が入り込まないため、コンプレッサの圧縮効率が低下しない。 According to the present embodiment, even when the resin housing 20 is thermally deformed and a gap is generated between the recess 20b 2 and the back surface of the annular shroud 2 (made of metal or ceramic such as aluminum or carbon steel), by providing the seal ring 50, since the compressed gas from entering between the recess 20b 2 and the annular shroud 22, the compression efficiency of the compressor is not lowered.
 インペラ14の入口部分で、被圧縮気体の温度は外気と略同一であり、被圧縮気体の温度は低い。また、インペラ14の入口部分では、環状シュラウド22及び流路形成部20bの温度も低いため、ゴム製の安価なOリングを使用できる。また、インペラ14の入口部分は、被圧縮気体の流路が半径方向に湾曲しておらず、インペラ14の径が小さいため、小径のOリングが使用できる。従って、シールリング50のコスト削減が可能になる。
(実施形態4)
At the inlet portion of the impeller 14, the temperature of the compressed gas is substantially the same as that of the outside air, and the temperature of the compressed gas is low. In addition, since the temperatures of the annular shroud 22 and the flow path forming portion 20b are low at the inlet portion of the impeller 14, an inexpensive O-ring made of rubber can be used. Further, the inlet portion of the impeller 14 can use a small-diameter O-ring because the flow path of the compressed gas is not curved in the radial direction and the diameter of the impeller 14 is small. Therefore, the cost of the seal ring 50 can be reduced.
(Embodiment 4)
 次に、本発明をターボチャージャに適用した第4実施形態を図4により説明する。図4において、本実施形態は、樹脂製ハウジング20の流路形成部20bを2つの樹脂製分割体60及び62に分割形成したものである。分割体60及び62は、流路形成部20bの厚肉部の中心部で段部64aを有する分割面64で分割形成されている。分割面64の一端は、シールリング34を収容している収容溝52に接続している。その他の構成は、前記第3実施形態と同一である。 Next, a fourth embodiment in which the present invention is applied to a turbocharger will be described with reference to FIG. In FIG. 4, in this embodiment, the flow path forming portion 20 b of the resin housing 20 is divided into two resin divided bodies 60 and 62. The divided bodies 60 and 62 are divided and formed by a dividing surface 64 having a stepped portion 64a at the center of the thick portion of the flow path forming portion 20b. One end of the dividing surface 64 is connected to the accommodation groove 52 that accommodates the seal ring 34. Other configurations are the same as those of the third embodiment.
 本実施形態によれば、流路形成部20bが分割体60及び62に分割成形されているので、流路形成部20bの肉厚を低減できる。これによって、樹脂製ハウジング20の成形加工時に、流路形成部20bの内部に気泡等が残留する虞がなくなる。そのため、樹脂製ハウジング20の品質が向上すると共に、歩留まりを改善できるため、樹脂製ハウジング20の製造コストを削減できる。
 また、分割面64を収容溝52に接続させることで、収容溝52の溝加工が不要になり、分割体60の角部加工となるため、分割体60の成形加工が容易になり、加工コストを節減できる。
(実施形態5)
According to this embodiment, since the flow path forming portion 20b is divided and formed into the divided bodies 60 and 62, the thickness of the flow path forming portion 20b can be reduced. This eliminates the possibility that bubbles or the like remain in the flow path forming portion 20b during the molding process of the resin housing 20. Therefore, the quality of the resin housing 20 is improved and the yield can be improved, so that the manufacturing cost of the resin housing 20 can be reduced.
Moreover, since the dividing surface 64 is connected to the receiving groove 52, the groove processing of the receiving groove 52 becomes unnecessary, and the corner portion of the divided body 60 is processed. Can be saved.
(Embodiment 5)
 次に、本発明をターボチャージャに適用した第5実施形態を図5により説明する。図5において、本実施形態は、樹脂製ハウジング20の流路形成部20bの厚肉部に、板厚方向と直角方向、即ち、インペラ14の回転方向と略平行な方向に、スリット状の空隙Vを設けたものである。該空隙Vの一端は外部に開口している。その他の構成は、前記第3実施形態と同一である。 Next, a fifth embodiment in which the present invention is applied to a turbocharger will be described with reference to FIG. In FIG. 5, in the present embodiment, a slit-like gap is formed in the thick portion of the flow path forming portion 20 b of the resin housing 20 in a direction perpendicular to the plate thickness direction, that is, in a direction substantially parallel to the rotation direction of the impeller 14. V is provided. One end of the gap V is open to the outside. Other configurations are the same as those of the third embodiment.
 本実施形態によれば、流路形成部20bに空隙Vを設けたことにより、流路形成部20bの厚肉部を無くすことができる。そのため、樹脂製ハウジング20の射出成形時に気泡等の残留がなくなり、樹脂製ハウジング20の品質を向上できると共に、歩留まりを改善できるので、コストアップを防ぐことができる。 According to this embodiment, by providing the gap V in the flow path forming part 20b, the thick part of the flow path forming part 20b can be eliminated. For this reason, bubbles and the like are not left during the injection molding of the resin housing 20, the quality of the resin housing 20 can be improved, and the yield can be improved, so that an increase in cost can be prevented.
 次に、前記第5実施形態の変形例を図6により説明する。図6において、本変形例は、前記第4実施形態で樹脂製ハウジング20を分割形成した分割体60及び62のうち、分割体60の流路形成部20bを形成する厚肉部の内部に、板厚方向と直角方向(インペラ14の回転方向と略平行な方向)に、スリット状の空隙Vaを設けたものである。該空隙Vaの一端は外部へ開口している。その他の構成は、前記第4実施形態と同一である。 Next, a modification of the fifth embodiment will be described with reference to FIG. In FIG. 6, the present modified example includes, among the divided bodies 60 and 62 in which the resin housing 20 is divided and formed in the fourth embodiment, inside the thick portion that forms the flow path forming portion 20 b of the divided body 60. A slit-shaped gap Va is provided in a direction perpendicular to the plate thickness direction (a direction substantially parallel to the rotation direction of the impeller 14). One end of the gap Va is open to the outside. Other configurations are the same as those of the fourth embodiment.
 本変形例によれば、第4実施形態で得られる作用効果に加えて、分割体60の流路形成部20bの内部にスリット状の空隙Vaを設けたので、分割体60の厚肉部を無くすことができる。そのため、分割体60の射出成形時に気泡等の残留がなくなり、分割体60の品質を向上できると共に、歩留まりを改善できるので、コストアップを防ぐことができる。
(実施形態6)
According to the present modification, in addition to the operational effects obtained in the fourth embodiment, the slit-shaped gap Va is provided in the flow path forming portion 20b of the divided body 60. It can be lost. For this reason, bubbles and the like do not remain at the time of injection molding of the divided body 60, the quality of the divided body 60 can be improved, and the yield can be improved, thereby preventing an increase in cost.
(Embodiment 6)
 次に、本発明をターボチャージャに適用した第6実施形態を図7により説明する。図7において、本実施形態は、流路cにおいて、流路形成部20bの内壁20bに刻設された凹部20b2をさらに刻設して、環状シュラウド22の背面側に循環流路70を形成している。そして、循環流路70に面した位置の環状シュラウド22に上流側貫通孔72と下流側貫通孔74を穿設している。その他の構成は、前記第2実施形態と同一である。 Next, a sixth embodiment in which the present invention is applied to a turbocharger will be described with reference to FIG. In FIG. 7, in the present embodiment, in the flow path c, a recess 20 b 2 formed on the inner wall 20 b 1 of the flow path forming portion 20 b is further formed so as to form a circulation flow path 70 on the back side of the annular shroud 22. is doing. An upstream through hole 72 and a downstream through hole 74 are formed in the annular shroud 22 at a position facing the circulation flow path 70. Other configurations are the same as those of the second embodiment.
 本実施形態によれば、被圧縮気体の流量が少ない場合、流路cを流れる被圧縮気体の一部が下流側貫通孔74から循環流路70に流入し、循環流路70に流入した被圧縮気体が上流側貫通孔72から流路cに戻る循環流を形成することができる。これによって、該循環流がインペラ14の入口で被圧縮気体の流れに加わるので、インペラ14の失速を抑制できる。そのため、コンプレッサの限界下限流量を低減できる。 According to the present embodiment, when the flow rate of the compressed gas is small, a part of the compressed gas flowing through the flow path c flows into the circulation flow path 70 from the downstream through hole 74 and flows into the circulation flow path 70. A circulating flow in which the compressed gas returns from the upstream through hole 72 to the flow path c can be formed. As a result, the circulation flow is added to the flow of the compressed gas at the inlet of the impeller 14, so that the stall of the impeller 14 can be suppressed. Therefore, the limit lower limit flow rate of the compressor can be reduced.
 また、被圧縮気体の流量が多い場合、流路cの流れる被圧縮気体の一部が上流側貫通孔72から循環流路70に流入し、循環流路70に流入した被圧縮気体が下流側貫通孔74から流路cに戻る流路を形成できる。これによって、被圧縮気体の最大流量を増大できる。この結果、ターボチャージャの作動可能な被圧縮気体の流量幅を拡大できる。 Further, when the flow rate of the compressed gas is large, a part of the compressed gas flowing through the flow path c flows into the circulation flow path 70 from the upstream side through-hole 72, and the compressed gas flowing into the circulation flow path 70 flows downstream. A flow path returning from the through hole 74 to the flow path c can be formed. As a result, the maximum flow rate of the compressed gas can be increased. As a result, the flow width of the compressed gas that can operate the turbocharger can be expanded.
 次に、前記第6実施形態の変形例を図8により説明する。図8において、本変形例は、第6実施形態と同様に環状シュラウド22の背面に循環流路70を形成するものである。そして、流路cの入口部分で、環状シュラウド22の入口側端部と流路形成部20bの内壁20b1との間に環状をなすスリット状空隙76を形成している。また、スリット状空隙76の下流側には、第6実施形態と同様の貫通孔74を設けている。その他の構成は、前記第6実施形態と同一である。 Next, a modification of the sixth embodiment will be described with reference to FIG. In FIG. 8, the present modification is one in which a circulation channel 70 is formed on the back surface of the annular shroud 22 as in the sixth embodiment. An annular slit 76 is formed between the inlet side end of the annular shroud 22 and the inner wall 20b1 of the passage forming portion 20b at the inlet portion of the passage c. Further, a through hole 74 similar to that of the sixth embodiment is provided on the downstream side of the slit-shaped gap 76. Other configurations are the same as those of the sixth embodiment.
 本変形例によれば、第6実施形態と比べて、環状シュラウド22に穿設する貫通孔の数を低減できると共に、流路形成部20bの内壁20aに環状シュラウド22を嵌合するための凹部20bを刻設する必要がなくなるので、環状シュラウド22と流路形成部20bの加工が容易になるという利点がある。また、環状のスリット状空隙76を形成できるので、スリット状空隙76の開口面積を増大できると共に、スリット状空隙76の形成が容易になる。 According to this modification, the number of through holes drilled in the annular shroud 22 can be reduced as compared with the sixth embodiment, and the recess for fitting the annular shroud 22 to the inner wall 20a of the flow path forming portion 20b. Since there is no need to engrave 20b 2 , there is an advantage that the processing of the annular shroud 22 and the flow path forming portion 20b becomes easy. Further, since the annular slit-shaped gap 76 can be formed, the opening area of the slit-shaped gap 76 can be increased, and the slit-shaped gap 76 can be easily formed.
実施形態7Embodiment 7
 次に、本発明をターボチャージャに適用した第7実施形態を図9により説明する。図9において、本実施形態は、樹脂製ハウジング20の流路形成部20bの板厚を薄く形成し、その背面に環状のガラス繊維板80を被着してなるものである。その他の構成は、前記第2実施形態と同一である。 Next, a seventh embodiment in which the present invention is applied to a turbocharger will be described with reference to FIG. In FIG. 9, in the present embodiment, the flow passage forming portion 20b of the resin housing 20 is formed with a thin plate thickness, and an annular glass fiber plate 80 is attached to the back surface thereof. Other configurations are the same as those of the second embodiment.
 万一、インペラ14が破損した場合に、インペラ14の破片又は破損したインペラ14が樹脂製ハウジング20を突き破ることのない強度を流路形成部20bに付与する必要がある。本実施形態によれば、流路形成部20bの背面に補強用としてガラス繊維板80を被着したので、流路形成部20bの厚さを薄くできる。また、流路形成部20bの厚さを低減できるので、樹脂製ハウジング20の射出成形時に、気泡等が残留しなくなり、樹脂製ハウジング20の品質を向上できる。そのため、樹脂製ハウジング成形加工時の歩留まりを改善でき、コストアップを防ぐことができる。 In the unlikely event that the impeller 14 is damaged, it is necessary to impart strength to the flow path forming portion 20b so that the impeller 14 fragments or the damaged impeller 14 does not break through the resin housing 20. According to the present embodiment, since the glass fiber plate 80 is attached to the back surface of the flow path forming portion 20b for reinforcement, the thickness of the flow path forming portion 20b can be reduced. Further, since the thickness of the flow path forming portion 20b can be reduced, bubbles or the like do not remain at the time of injection molding of the resin housing 20, and the quality of the resin housing 20 can be improved. Therefore, the yield at the time of resin housing molding processing can be improved, and cost increase can be prevented.
 本発明によれば、樹脂製のハウジングを備え、ターボチャージャ等に適用可能な遠心圧縮機において、ハウジングに熱変形が生じても圧縮効率を低下させず、かつハウジングの軽量化やコスト低減を達成できる。 According to the present invention, in a centrifugal compressor having a resin housing and applicable to a turbocharger or the like, even if thermal deformation occurs in the housing, compression efficiency is not lowered, and weight reduction and cost reduction of the housing are achieved. it can.

Claims (6)

  1.  回転軸に放射状に固設された複数のブレードを有するインペラと、該インペラの周囲に配置された樹脂製のハウジングとを備え、該インペラの外周面と該樹脂製ハウジングの流路形成部の内壁とで該インペラの軸方向から径方向に向う被圧縮気体の流路を形成してなる遠心圧縮機において、
     前記樹脂製ハウジングの流路形成部の内壁を刻設して形成した凹部に金属若しくはセラミックス材からなる環状シュラウドを配設し、該環状シュラウドにより前記インペラが配置された流路の外側面と該流路の出口側に配置されたディフューザーの外側面を形成し、
     該ディフューザーで該環状シュラウドを該環状シュラウドに対面する隔壁に固設してなることを特徴とする遠心圧縮機。
    An impeller having a plurality of blades fixed radially to a rotating shaft, and a resin housing disposed around the impeller, and an outer peripheral surface of the impeller and an inner wall of a flow path forming portion of the resin housing In the centrifugal compressor formed by forming a flow path of the compressed gas from the axial direction of the impeller toward the radial direction,
    An annular shroud made of metal or ceramic material is disposed in a recess formed by engraving the inner wall of the flow path forming portion of the resin housing, and the outer surface of the flow path where the impeller is disposed by the annular shroud and the Forming the outer surface of the diffuser arranged on the outlet side of the flow path,
    A centrifugal compressor, wherein the annular shroud is fixed to a partition wall facing the annular shroud by the diffuser.
  2.  前記流路の入口側領域で前記環状シュラウドの背面と前記流路形成部内壁の凹部との間にもうけた収容溝にシールリングを介設したことを特徴とする請求項1に記載の遠心圧縮機。 2. The centrifugal compression according to claim 1, wherein a seal ring is provided in a receiving groove provided between a back surface of the annular shroud and a recess of the inner wall of the flow path forming portion in an inlet side region of the flow path. Machine.
  3.  前記樹脂製ハウジングの流路形成部を被圧縮気体の流れ方向の上流側と下流側とに分割形成すると共に、この分割面を前記シールリングの収容溝に一致させたことを特徴とする請求項2に記載の遠心圧縮機。 The flow path forming portion of the resin housing is divided into an upstream side and a downstream side in the flow direction of the compressed gas, and the divided surface is made to coincide with the receiving groove of the seal ring. 2. The centrifugal compressor according to 2.
  4.  前記樹脂製ハウジングの流路形成部又は該流路形成部の分割体に外部に開口し、前記回転軸の軸方向に向けられたスリット状空隙をもうけたことを特徴とする請求項1~3のいずれかの項に記載の遠心圧縮機。 The slit-shaped gap that opens to the outside of the flow path forming portion of the resin housing or the divided body of the flow path forming portion and that is directed in the axial direction of the rotating shaft is provided. The centrifugal compressor according to any one of the items.
  5.  前記環状シュラウドと前記流路形成部との間に被圧縮気体の流通空間をもうけると共に、被圧縮気体の流れ方向に沿って該流通空間と前記流路とを連通する少なくとも2個の連通孔を設け、該流通空間に被圧縮気体の流れを形成するように構成したことを特徴とする請求項1に記載の遠心圧縮機。 A compressed gas flow space is provided between the annular shroud and the flow path forming portion, and at least two communication holes are provided to communicate the flow space and the flow path along the flow direction of the compressed gas. The centrifugal compressor according to claim 1, wherein the centrifugal compressor is provided so as to form a flow of compressed gas in the circulation space.
  6.  前記樹脂製ハウジングの流路形成部の外面にガラス繊維からなる環状の補強層を被覆したことを特徴とする請求項1に記載の遠心圧縮機。 The centrifugal compressor according to claim 1, wherein the outer surface of the flow path forming portion of the resin housing is coated with an annular reinforcing layer made of glass fiber.
PCT/JP2010/054505 2009-09-16 2010-03-17 Centrifugal compressor WO2011033800A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117031275A KR20120013458A (en) 2009-09-16 2010-03-17 Centrifugal compressor
CN2010800292137A CN102472296A (en) 2009-09-16 2010-03-17 Centrifugal compressor
US13/380,649 US20120148391A1 (en) 2009-09-16 2010-03-17 Centrifugal compressor
EP10816914A EP2441965A1 (en) 2009-09-16 2010-03-17 Centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009215082A JP2011064118A (en) 2009-09-16 2009-09-16 Centrifugal compressor
JP2009-215082 2009-09-16

Publications (1)

Publication Number Publication Date
WO2011033800A1 true WO2011033800A1 (en) 2011-03-24

Family

ID=43758414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054505 WO2011033800A1 (en) 2009-09-16 2010-03-17 Centrifugal compressor

Country Status (6)

Country Link
US (1) US20120148391A1 (en)
EP (1) EP2441965A1 (en)
JP (1) JP2011064118A (en)
KR (1) KR20120013458A (en)
CN (1) CN102472296A (en)
WO (1) WO2011033800A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493973A (en) * 2011-08-26 2013-02-27 Dyson Technology Ltd Rotor assembly with shroud mounted on bearing
CN102996520A (en) * 2012-12-27 2013-03-27 中国航空工业集团公司金城南京机电液压工程研究中心 Housing structure of centrifugal compressor
US9169843B2 (en) 2011-08-26 2015-10-27 Dyson Technology Limited Turbomachine
US9410442B2 (en) 2011-08-26 2016-08-09 Dyson Technology Limited Turbomachine
US9410553B2 (en) 2011-08-26 2016-08-09 Dyson Technology Limited Rotor assembly for a turbomachine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211375A1 (en) * 2012-06-29 2014-04-10 Bayerische Motoren Werke Aktiengesellschaft turbocharger
US9200639B2 (en) 2012-08-19 2015-12-01 Honeywell International Inc. Compressor housing assembly
DE102014204768A1 (en) * 2013-05-16 2014-11-20 Bosch Mahle Turbo Systems Gmbh & Co. Kg Radial compressor for an exhaust gas turbocharger
KR101537061B1 (en) * 2013-06-10 2015-07-15 정현욱 Motor and turbo compressor with the same
WO2016002031A1 (en) 2014-07-02 2016-01-07 三菱重工業株式会社 Compressor
KR101634876B1 (en) * 2014-12-02 2016-06-30 한국기계연구원 Micro gas turbine with damage prevention structure by thermal stress
JP6288516B2 (en) * 2014-12-03 2018-03-07 三菱重工業株式会社 Impeller and rotating machine
JP6270280B2 (en) 2014-12-03 2018-01-31 三菱重工業株式会社 Impeller and rotating machine
JP6204398B2 (en) * 2015-03-23 2017-09-27 カルソニックカンセイ株式会社 Turbine housing
WO2016185592A1 (en) * 2015-05-21 2016-11-24 三菱重工業株式会社 Compressor
WO2017078088A1 (en) * 2015-11-06 2017-05-11 カルソニックカンセイ株式会社 Turbine housing
EP3555481B1 (en) 2016-12-14 2020-09-02 Carrier Corporation Two-stage centrifugal compressor
JP7164346B2 (en) * 2018-07-24 2022-11-01 三菱重工マリンマシナリ株式会社 Rotating machines and turbochargers
JP2020023917A (en) * 2018-08-07 2020-02-13 株式会社オティックス Compressor housing for supercharger
DE102018128255A1 (en) * 2018-11-12 2020-05-14 Ebm-Papst Landshut Gmbh Blower device
EP3904697A1 (en) * 2020-04-29 2021-11-03 ABB Schweiz AG Noise damper for a turbocharger of a combustion engine
US11519423B1 (en) * 2021-11-11 2022-12-06 Progress Rail Locomotive Inc. Compressor joint

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179900A (en) * 1984-09-28 1986-04-23 Nissan Motor Co Ltd Compressor housing
JPH04125633U (en) * 1991-05-01 1992-11-16 石川島播磨重工業株式会社 Turbocharger compressor casing
JPH0952309A (en) * 1995-08-11 1997-02-25 Ebara Corp Plastic part and its manufacture
JPH09170442A (en) 1995-12-20 1997-06-30 Hitachi Ltd Supercharger of internal combustion engine
JP2001234753A (en) 2000-02-24 2001-08-31 Hitachi Ltd Compressor housing for supercharger
JP2002256878A (en) 2002-01-28 2002-09-11 Hitachi Ltd Wall surface member used in supercharger for internal combustion engine
JP2003322026A (en) * 2002-04-30 2003-11-14 Shinano Kenshi Co Ltd Supercharger
JP2004144029A (en) * 2002-10-25 2004-05-20 Toyota Central Res & Dev Lab Inc Centrifugal compressor for turbocharger
DE10260042A1 (en) 2002-12-19 2004-07-08 Volkswagen Ag Automotive exhaust system turbocharger housing fabricated of heat-hardened plastic with a compressor front section and an interior helical contour
JP2004285909A (en) * 2003-03-20 2004-10-14 Iwaki Co Ltd Rear casing structure of magnet pump
EP1830071A2 (en) 2006-03-03 2007-09-05 WOCO Industrietechnik GmbH Plastic compressor casing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001317492A (en) * 2000-05-02 2001-11-16 Honda Motor Co Ltd Centrifugal compressor and jet engine using it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179900A (en) * 1984-09-28 1986-04-23 Nissan Motor Co Ltd Compressor housing
JPH04125633U (en) * 1991-05-01 1992-11-16 石川島播磨重工業株式会社 Turbocharger compressor casing
JPH0952309A (en) * 1995-08-11 1997-02-25 Ebara Corp Plastic part and its manufacture
JPH09170442A (en) 1995-12-20 1997-06-30 Hitachi Ltd Supercharger of internal combustion engine
JP2001234753A (en) 2000-02-24 2001-08-31 Hitachi Ltd Compressor housing for supercharger
JP2002256878A (en) 2002-01-28 2002-09-11 Hitachi Ltd Wall surface member used in supercharger for internal combustion engine
JP2003322026A (en) * 2002-04-30 2003-11-14 Shinano Kenshi Co Ltd Supercharger
JP2004144029A (en) * 2002-10-25 2004-05-20 Toyota Central Res & Dev Lab Inc Centrifugal compressor for turbocharger
DE10260042A1 (en) 2002-12-19 2004-07-08 Volkswagen Ag Automotive exhaust system turbocharger housing fabricated of heat-hardened plastic with a compressor front section and an interior helical contour
JP2004285909A (en) * 2003-03-20 2004-10-14 Iwaki Co Ltd Rear casing structure of magnet pump
EP1830071A2 (en) 2006-03-03 2007-09-05 WOCO Industrietechnik GmbH Plastic compressor casing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493973A (en) * 2011-08-26 2013-02-27 Dyson Technology Ltd Rotor assembly with shroud mounted on bearing
GB2493973B (en) * 2011-08-26 2015-04-15 Dyson Technology Ltd Rotor assembly for a turbomachine
US9169843B2 (en) 2011-08-26 2015-10-27 Dyson Technology Limited Turbomachine
US9410442B2 (en) 2011-08-26 2016-08-09 Dyson Technology Limited Turbomachine
US9410553B2 (en) 2011-08-26 2016-08-09 Dyson Technology Limited Rotor assembly for a turbomachine
US9863429B2 (en) 2011-08-26 2018-01-09 Dyson Technology Limited Rotor assembly for a turbomachine
US11668322B2 (en) 2011-08-26 2023-06-06 Dyson Technology Limited Turbomachine
CN102996520A (en) * 2012-12-27 2013-03-27 中国航空工业集团公司金城南京机电液压工程研究中心 Housing structure of centrifugal compressor

Also Published As

Publication number Publication date
KR20120013458A (en) 2012-02-14
CN102472296A (en) 2012-05-23
JP2011064118A (en) 2011-03-31
EP2441965A1 (en) 2012-04-18
US20120148391A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2011033800A1 (en) Centrifugal compressor
US7108482B2 (en) Centrifugal blower
CN102221016B (en) Compressor gas flow deflector and compressor incorporating the same
EP2123916B1 (en) Compressor housing
JP4819872B2 (en) Introduction of spiral air
US20080056892A1 (en) Radial vaned diffusion system with integral service routings
JP5767636B2 (en) Vacuum pump
EP3144541B1 (en) Compressor
US20160245304A1 (en) Compressor housing for supercharger
WO2016084496A1 (en) Impeller and rotary machine
EP2966280B1 (en) Turbocharger
US20180073520A1 (en) Charging device
JP2012057592A (en) Fixed vane type turbocharger
JP2003003804A (en) Axial flow turbine for exhaust driven super-charger
EP2657481B1 (en) Scroll portion structure for radial turbine or diagonal flow turbine
CN103807006A (en) Exhaust gas turbo charger
US11572894B2 (en) Centrifugal compressor and supercharger
JP7435164B2 (en) Turbines and superchargers
CN113309718A (en) Fan blade for an axial or diagonal fan with a balancing ring
US10883513B2 (en) Impeller, rotary machine, and turbocharger
US20210364011A1 (en) Diagonal fan wheel with increased strength
US11808162B2 (en) Turbine housing for an exhaust gas turbocharger
CZ19119U1 (en) Ventilation unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029213.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117031275

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010816914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13380649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000096

Country of ref document: TH