JP2004144029A - Centrifugal compressor for turbocharger - Google Patents

Centrifugal compressor for turbocharger Download PDF

Info

Publication number
JP2004144029A
JP2004144029A JP2002310636A JP2002310636A JP2004144029A JP 2004144029 A JP2004144029 A JP 2004144029A JP 2002310636 A JP2002310636 A JP 2002310636A JP 2002310636 A JP2002310636 A JP 2002310636A JP 2004144029 A JP2004144029 A JP 2004144029A
Authority
JP
Japan
Prior art keywords
impeller
centrifugal compressor
communication passage
guide vane
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310636A
Other languages
Japanese (ja)
Other versions
JP4321037B2 (en
Inventor
Hiroshi Uchida
内田 博
Akinobu Kashimoto
柏本 昭信
Yuji Iwakiri
岩切 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002310636A priority Critical patent/JP4321037B2/en
Publication of JP2004144029A publication Critical patent/JP2004144029A/en
Application granted granted Critical
Publication of JP4321037B2 publication Critical patent/JP4321037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a centrifugal compressor for a turbocharger for efficiently circulating air compressed by an impeller to an impeller upstream side to suppress surging. <P>SOLUTION: This centrifugal compressor is constituted of guide vanes 18 disposed to section a plurality of portions of a circumferential direction in an annular air chamber 14 provided at a shroud part 12 of a housing 21 and to curve a front surface facing in a rotating direction of the impeller 11 into a recessed shape and a circulating flow passage 17 communicated with the air chamber 14 by a suction communicating passage 15 opened between an impeller upstream part 19 and a vicinity 20 of an inlet of half vane of the impeller 11 to make compressed air introducible and communicated with the air chamber 14 by an annular blow-off communicating passage 16 opened on a suction port 10 side of the impeller upstream part 19 to make compressed air derivable. Air compressed by the impeller 11 is efficiently circulated to the impeller upstream side to suppress surging of the centrifugal compressor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンへの過給圧を発生させる過給機の給気装置や空気源設備等として用いるターボチャージャ用遠心圧縮機に関する。
【0002】
【従来の技術】
従来、エンジンへの過給を行う過給機は、例えば、翼車を有するタービンとインペラを有する遠心圧縮機(コンプレッサ)とを軸受車室を介して一体構造とされている。そして、翼車とインペラを軸受車室内に回転自在に支持した軸に連結し、エンジンの排気により翼車を回転させることにより、軸を介してインペラが回転される。これにより、吸気を遠心圧縮機で圧縮してエンジンに給気するのである。
【0003】
このように、過給機で用いる遠心圧縮機においては、図10に一例を示すように、空気量が減少してくると、圧縮機の特性曲線Iがサージ線S1を越えてサージング領域Aに入るという特性がある。従って、サージ線S1をS2の位置へと低流量側へ移動させることができれば、エンジンの運転範囲に対してより広い範囲に亘り適合することができる。
【0004】
そのため、従来、サージング領域に入るような低流量容量の運転状況下でも、サージング領域に入らないようにサージ線を低流量側へ移動させるようにした遠心圧縮機が提案されている(特開平5−60097号公報)。
【0005】
すなわち、従来の遠心圧縮機は、図8に示すように、吸込口30からインペラ31の外周部に至るシュラウド部32には、吸込口30側からインペラ31の方向へ向けて縮径する絞り部33が設けられている。シュラウド部32には、内部を空洞とした環状の空気室34が設けられている。空気室34とインペラ31の間には第1開口部35を設けると共に、空気室34と絞り部33の終端付近の間に第2開口部36が設けられている。第1開口部35と空気室34と第2開口部36により循環流路37が形成されている。
【0006】
これにより、絞り部33で吸気を縮流し、その縮流効果で循環流路37に吸引作用を付与して負圧にするのである。そして、回転運転時に、インペラ31に吸引される空気の一部を循環流路37を通して循環させ、サージングの発生する流量容量を減少させるのである。
【0007】
【特許文献1】
特開平5−60097号公報 [請求項1] [0004]
【0008】
【発明が解決しようとする課題】
しかし、従来の遠心圧縮機は、第1開口部35と第2開口部36の圧力が小さいため、図6に示すように循環流の流量を十分大きくすることができなく、サージング発生の抑制効果が十分に得られない。さらに、第2開口部36の上流側で吸込口30を絞り部33で絞っているため、また第1開口部35での空気の旋回速度エネルギを損失しているため、空気力学的な圧力損失が大きくなって遠心圧縮機の効率を低下させるという実用上解決すべき課題を有する。
【0009】
本発明は、以上の課題を解決するために案出されたものである。すなわち、本発明の目的は、エンジンへの加給圧を発生させる加給機の給気装置や空気源設備等として用いられ、インペラで圧縮された空気を効率良くインペラ上流側へと循環させ遠心圧縮機のサージングを抑制するターボチャージャ用遠心圧縮機を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載のターボチャージャ用遠心圧縮機は、インペラの外周部から前方に延びて吸込口を形成するシュラウド部を有するハウジングを備えたターボチャージャ用遠心圧縮機において、ハウジングのシュラウド部に設けた環状の空気室に円周方向複数箇所を区画し、かつインペラ回転方向に対向する正面を凹湾曲して配設するガイドベーンと、空気室にインペラ上流部とインペラ半翼入口付近の間で開口する吸込連通路により導通させ圧縮空気を導入可能とすると共に、インペラ上流部の吸込口側で開口する吹出連通路により導通させ圧縮空気を導出可能に設けた循環流路と、から成り、インペラで圧縮された空気を効率良くインペラ上流側へと循環させ遠心圧縮機のサージングを抑制することを特徴とする。
【0011】
請求項2に記載のターボチャージャ用遠心圧縮機は、インペラ回転方向に対向する正面を凹湾曲に形成して配設するガイドベーンは、インペラの回転方向に角度αで傾斜し、ガイドベーンのインペラ回転方向に対向する背面はインペラの回転軸に平行に形成したことを特徴とする。
【0012】
請求項3に記載のターボチャージャ用遠心圧縮機は、インペラ回転方向に対向する正面を凹湾曲に形成して配設するガイドベーンが、吸込連通路側の厚さ(b1)を吹出連通路側の厚さ(b2)よりも厚く構成すると共に、ガイドベーンの厚さは吸込連通路側の厚さ(b1)から吹出連通路側の厚さ(b2)へと滑らかに減少するように構成したことを特徴とする。
【0013】
請求項4に記載のターボチャージャ用遠心圧縮機は、吸込連通路がスリットからなり、凹湾曲するガイドベーンの高さの1/2以上に至る開口(深さ)を有することを特徴とする。
【0014】
【発明の作用・効果】
インペラ回転方向に対向する正面を凹湾曲に形成して配設するガイドベーンは、内蔵する空気室および吸込連通路と吹出連通路で構成される空気の循環流路を設けたハウジングにより渦の発生を抑制することができ、遠心圧縮機の効率を低下させることなくサージ限界流量の大幅な低減が可能になる。
【0015】
〔作用:効果が生じる理由〕
サージが発生する流量に近い運転条件では、インペラのシュラウド側で
逆流が発生し半翼入口直前および全翼(インペラ)入口直前のシュラウド側
に渦が発生する。この逆流(渦)の発生を抑制することで遠心圧縮機のサー
ジンク゛発生を抑えることができ、サージが発生する限界流量を低減するこ
とができるのである。
【0016】
【発明の実施の形態】
本発明の実施の形態におけるターボチャージャ用遠心圧縮機は、図1乃至図5に示すように、吸込口10からインペラ11の外周部に至るシュラウド部12には、吸込口10側からインペラ11の方向へ向けて縮径する絞り部13が設けられている。シュラウド部12には、内部を空洞とした環状の空気室14が設けられている。空気室14とインペラ11の間には吸込連通路15を設けると共に、空気室14と絞り部13の終端付近の間に円周方向環状に開口する吹出連通路16が設けられている。吸込連通路15と空気室14と吹出連通路16により循環流路17が形成されている。
【0017】
詳しくは、本発明の実施の形態のターボチャージャ用遠心圧縮機は、インペラ11の外周部から前方に延びて吸込口10を形成するシュラウド部12を有するハウジング21が具備されている。このハウジング21のシュラウド部11に設けた環状の空気室14には、円周方向複数箇所を区画し、かつインペラ11の回転方向に対向する正面を凹湾曲して形成するガイドベーン18が配設されている。空気室14には、インペラ上流部19とインペラ半翼入口付近20の間で開口する吸込連通路15により導通させ圧縮空気を導入可能とすると共に、インペラ上流部の吸込口側で円周方向環状に開口する吹出連通路16により導通させ圧縮空気を導出可能とする循環流路17が構成されている。
【0018】
吸込連通路15の配設位置は、図6に示すように渦Uが発生する位置である半翼入口直前(上流側)に配置されている。また、吹出連通路16の配設位置は、図3に示すように、ガイドベーン18の開放端の下流側で、渦Uが発生する位置(インペラ入口)から十分に離れた上流側に配置されている(L≒R1)。さらに、 空気(渦)の旋回速度エネルギを有効に利用するため、吸込みスリットを空気室14に深く切り込むのが好ましい。
【0019】
本発明の実施の形態におけるターボチャージャ用遠心圧縮機は、インペラ11の回転方向に対向する正面を凹湾曲に形成して配設するガイドベーン18が、インペラ11の回転方向に角度αで傾斜し、ガイドベーン18のインペラ回転方向に対向する背面はインペラの回転軸に平行に形成されている。ガイドベーン18は、図1に示すように上端部と下端部が図1に示すように、空気室14の内壁に一体的に接続され、空気室14を区画して構造上の強化が図られている。
【0020】
本発明の実施の形態におけるターボチャージャ用遠心圧縮機は、図2乃至図5に示すように、インペラの回転方向に対向する前面を凸湾曲に形成して配設するガイドベーン18が、吸込連通路側の厚さ(b1)を吹出連通路側の厚さ(b2)よりも厚く構成されている。また、ガイドベーン18の厚さは吸込連通路側の厚さ(b1)から吹出連通路側の厚さ(b2)へと滑らかに減少するように構成されている。
【0021】
本発明の実施の形態におけるターボチャージャ用遠心圧縮機は、吸込連通路15がスリットからなり、凹凸湾曲するガイドベーン18の高さの1/2以上に至る開口(深さ)を有する。
【0022】
上記構成からなる本発明の実施の形態におけるターボチャージャ用遠心圧縮機は、インペラ11で圧縮された空気を空気室14および吸込連通路15と吹出連通路16からなる循環流路17を通じて効率良くインペラ上流側へと循環させることにより、遠心圧縮機のサージングを抑制することができる。
【0023】
すなわち、インペラ11の回転方向に対向する正面を凹湾曲に形成して配 設するガイドベーン18を内蔵する空気室14および吸込連通路15と吹出連通路16で構成される空気の循環流路17を設けたハウジング21により、図3に示すように、渦Uの発生を抑制することができる。このため、本発明の実施の形態のターボチャージャ用遠心圧縮機は、効率を低下させることなくサージ限界流量の大幅な低減が可能になる。
【0024】
すなわち、本発明の実施の形態におけるターボチャージャ用遠心圧縮機は、吸込連通路15の配設位置を、渦Uが発生する位置である半翼入口直前(上流側)に配置し、吹出連通路16の配設位置を、渦Uが発生する位置(インペラ入口)から十分に離れた上流側に配置することにより(L≒R1)、空気(渦)の旋回速度エネルギを有効に利用することができる。吸込連通路15としての吸込みスリットを空気室14に深く切り込むことにより、空気(渦)の旋回速度エネルギをさらに一層有効に利用することができる。
【0025】
また、本発明の実施の形態のターボチャージャ用遠心圧縮機は、空気室14の円周等分にガイドベーン数枚を空気室14内に設置することにより、空気の旋回速度エネルギを効率良く圧力に変換することができる。これにより、吸込連通路15と吹出連通路16の圧力差が小さい場合でも十分な循環流量が得られ、サージング発生の抑制効果を大きくすることができる。
【0026】
【その他の実施の形態】
さらに、本発明のその他の実施の形態におけるターボチャージャ用遠心圧縮機は、図7に示すように、空気室24には、渦Uが発生するインペラ11の入口直前(上流側)に吸込連通路25および吸込みスリット26をそれぞれ配設されている。このように、シュラウド部22を有するハウジング23には、二つの吸込手段と一つの吹出連通路27との合わせて3つの開口する循環連通手段を有することにより、前記実施の形態に比して、渦Uの発生を複数の個所で抑制することができ、サージング発生の抑制効果をさらに大きくすことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるターボチャージャ用遠心圧縮機を示す要部の概略図である。
【図2】本発明の実施の形態におけるのターボチャージャ用遠心圧縮機を示す要部の斜視図である。
【図3】本発明の実施の形態におけるガイドベーンを示す要部の平面図である。
【図4】本発明の実施の形態におけるガイドベーンを示す要部の側面図である。
【図5】本発明の実施の形態におけるガイドベーンを示す要部の斜視図である。
【図6】本発明の実施の形態におけるターボチャージャ用遠心圧縮機の流れの速度分布および流線を示す線図である。
【図7】本発明のその他の実施の形態におけるターボチャージャ用遠心圧縮機を示す要部の概略図である。
【図8】従来の遠心圧縮機を示す要部の概略図である。
【図9】従来の遠心圧縮機におけるシュラウド部における圧力分布を示す線図である。
【図10】遠心圧縮機の流量と圧力の関係例を示す線図である。
【符号の説明】
11…インペラ
10…吸込口
12、22…シュラウド部
13…絞り部
14、24…空気室
15、25…吸込連通路
16、27…吹出連通路
26…吸込みスリット
17…循環流路
18…ガイドベーン
19インペラ上流部
20…インペラ半翼入口付近
21、23…ハウジング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a centrifugal compressor for a turbocharger used as an air supply device or an air source device of a supercharger for generating a supercharging pressure to an engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a supercharger for supercharging an engine has, for example, an integral structure including a turbine having an impeller and a centrifugal compressor (compressor) having an impeller via a bearing casing. Then, the impeller and the impeller are connected to a shaft rotatably supported in the bearing compartment, and the impeller is rotated through the shaft by rotating the impeller by exhaust of the engine. Thereby, the intake air is compressed by the centrifugal compressor and supplied to the engine.
[0003]
Thus, in the centrifugal compressor used in the supercharger, as shown in an example in FIG. 10, when the amount of air decreases, the characteristic curve I of the compressor exceeds the surge line S1 and enters the surging area A. There is a characteristic of entering. Therefore, if the surge line S1 can be moved to the low flow rate side to the position of S2, it can be adapted over a wider range of the operation range of the engine.
[0004]
For this reason, conventionally, a centrifugal compressor has been proposed in which a surge line is moved to a lower flow rate side so as not to enter the surging area even under an operating condition of a low flow capacity such that it enters the surging area (Japanese Patent Laid-Open No. Hei 5 (1993) -107). -60097).
[0005]
That is, in the conventional centrifugal compressor, as shown in FIG. 8, a shroud portion 32 extending from the suction port 30 to the outer peripheral portion of the impeller 31 has a constricted portion that is reduced in diameter from the suction port 30 side toward the impeller 31. 33 are provided. An annular air chamber 34 having a hollow inside is provided in the shroud portion 32. A first opening 35 is provided between the air chamber 34 and the impeller 31, and a second opening 36 is provided between the air chamber 34 and the vicinity of the end of the throttle 33. A circulation channel 37 is formed by the first opening 35, the air chamber 34, and the second opening 36.
[0006]
Thereby, the intake air is contracted by the throttle section 33, and the suction effect is given to the circulation flow path 37 by the contraction effect to make a negative pressure. Then, during the rotation operation, a part of the air sucked into the impeller 31 is circulated through the circulation channel 37 to reduce the flow capacity at which surging occurs.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 5-60097 [Claim 1] [0004]
[0008]
[Problems to be solved by the invention]
However, in the conventional centrifugal compressor, since the pressure in the first opening 35 and the second opening 36 is small, the flow rate of the circulating flow cannot be sufficiently increased as shown in FIG. Is not obtained enough. Further, since the suction port 30 is throttled by the throttle section 33 on the upstream side of the second opening 36, and the turning velocity energy of the air at the first opening 35 is lost, the aerodynamic pressure loss And reduce the efficiency of the centrifugal compressor.
[0009]
The present invention has been devised to solve the above problems. That is, an object of the present invention is to use a centrifugal compressor that is used as an air supply device or air source equipment of a turbocharger that generates a boost pressure to an engine, and efficiently circulates air compressed by an impeller to an upstream side of the impeller. It is an object of the present invention to provide a turbocharger centrifugal compressor that suppresses surging.
[0010]
[Means for Solving the Problems]
The centrifugal compressor for a turbocharger according to claim 1, wherein the centrifugal compressor for a turbocharger includes a housing having a shroud portion extending forward from an outer peripheral portion of an impeller and forming a suction port, provided on a shroud portion of the housing. A guide vane that divides a plurality of locations in the circumferential direction into an annular air chamber and that is arranged with a concavely curved front facing the impeller rotation direction, and between the impeller upstream portion and the vicinity of the impeller half wing inlet in the air chamber. A circulating flow path which is made conductive by an open suction communication passage so that compressed air can be introduced, and is provided by a discharge communication passage which is opened on a suction port side upstream of the impeller so as to be able to draw out compressed air. The compressed air is efficiently circulated upstream of the impeller to suppress surging of the centrifugal compressor.
[0011]
In the centrifugal compressor for a turbocharger according to claim 2, the guide vanes provided with the front face formed in a concave curve facing the impeller rotation direction are inclined at an angle α in the rotation direction of the impeller, and the guide vane impeller is provided. The back surface facing the rotation direction is formed parallel to the rotation axis of the impeller.
[0012]
In the centrifugal compressor for a turbocharger according to the third aspect, the guide vane, which is formed with a concave front surface facing the impeller rotation direction and disposed, has a thickness (b1) on the suction communication passage side and the blow communication passage side. And the thickness of the guide vanes is configured to smoothly decrease from the thickness (b1) on the suction communication passage side to the thickness (b2) on the blow communication passage side. It is characterized by the following.
[0013]
A centrifugal compressor for a turbocharger according to a fourth aspect is characterized in that the suction communication passage is formed of a slit and has an opening (depth) reaching at least half the height of the concavely curved guide vane.
[0014]
[Action and Effect of the Invention]
The guide vane, which is formed with a concave front surface facing the impeller rotation direction, is provided with a vortex generated by a housing provided with a built-in air chamber and an air circulation flow path composed of a suction communication passage and a blow communication passage. And the surge limit flow rate can be greatly reduced without lowering the efficiency of the centrifugal compressor.
[0015]
[Action: Reason for effect]
Under operating conditions close to the flow rate at which surge occurs, backflow occurs on the shroud side of the impeller, and vortices are generated on the shroud side immediately before the half-blade inlet and immediately before the full-blade (impeller) inlet. By suppressing the generation of this backflow (vortex), the generation of a surge in the centrifugal compressor can be suppressed, and the limit flow rate at which a surge occurs can be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIGS. 1 to 5, the centrifugal compressor for a turbocharger according to the embodiment of the present invention includes a shroud portion 12 extending from the suction port 10 to an outer peripheral portion of the impeller 11. There is provided a throttle unit 13 whose diameter decreases in the direction. The shroud portion 12 is provided with an annular air chamber 14 having a hollow interior. A suction communication passage 15 is provided between the air chamber 14 and the impeller 11, and a blow communication passage 16 is provided between the air chamber 14 and the vicinity of the end of the throttle portion 13, the opening communication passage 16 opening in a circumferential direction annularly. A circulation passage 17 is formed by the suction communication passage 15, the air chamber 14, and the discharge communication passage 16.
[0017]
Specifically, the centrifugal compressor for a turbocharger according to the embodiment of the present invention includes a housing 21 having a shroud portion 12 extending forward from an outer peripheral portion of an impeller 11 and forming a suction port 10. The annular air chamber 14 provided in the shroud portion 11 of the housing 21 is provided with a guide vane 18 which defines a plurality of locations in the circumferential direction and has a concavely curved front surface facing the rotation direction of the impeller 11. Have been. The air chamber 14 is communicated with a suction communication passage 15 opened between the impeller upstream section 19 and the vicinity 20 of the impeller half-blade inlet to allow compressed air to be introduced, and has a circumferential annular shape on the suction port side of the impeller upstream section. A circulation flow path 17 is formed, which is made conductive by an outlet communication path 16 that opens to the outside, and through which compressed air can be led out.
[0018]
As shown in FIG. 6, the arrangement position of the suction communication passage 15 is located immediately before (at the upstream side of) the half wing entrance where the vortex U is generated. As shown in FIG. 3, the arrangement position of the outlet communication passage 16 is located downstream of the open end of the guide vane 18 and sufficiently upstream from a position where the vortex U is generated (impeller inlet). (L ≒ R1). Further, it is preferable that the suction slit be cut deep into the air chamber 14 in order to effectively use the energy of the swirling speed of the air (vortex).
[0019]
In the centrifugal compressor for a turbocharger according to the embodiment of the present invention, the guide vane 18 disposed with the front face formed in a concave curve facing the rotation direction of the impeller 11 is inclined at an angle α in the rotation direction of the impeller 11. The rear surface of the guide vane 18 facing the impeller rotation direction is formed parallel to the rotation axis of the impeller. As shown in FIG. 1, the guide vane 18 has an upper end and a lower end integrally connected to the inner wall of the air chamber 14 as shown in FIG. ing.
[0020]
In the centrifugal compressor for a turbocharger according to the embodiment of the present invention, as shown in FIGS. 2 to 5, a guide vane 18 having a front surface formed to have a convex curved surface facing the rotation direction of the impeller has a suction connection. The thickness (b1) on the passage side is configured to be thicker than the thickness (b2) on the outlet communication passage side. Further, the thickness of the guide vane 18 is configured to smoothly decrease from the thickness (b1) on the suction communication passage side to the thickness (b2) on the discharge communication passage side.
[0021]
In the centrifugal compressor for a turbocharger according to the embodiment of the present invention, the suction communication passage 15 is formed of a slit, and has an opening (depth) that reaches half or more of the height of the guide vane 18 that is unevenly curved.
[0022]
The centrifugal compressor for a turbocharger according to the embodiment of the present invention having the above-described configuration efficiently converts the air compressed by the impeller 11 through the air chamber 14 and the circulation flow path 17 including the suction communication path 15 and the blow communication path 16. By circulating upstream, surging of the centrifugal compressor can be suppressed.
[0023]
That is, an air chamber 14 containing a guide vane 18 which is formed with a concave curved front surface facing the rotation direction of the impeller 11, and an air circulation flow passage 17 composed of a suction communication passage 15 and a blow communication passage 16. As shown in FIG. 3, the generation of the vortex U can be suppressed. For this reason, the centrifugal compressor for a turbocharger according to the embodiment of the present invention can significantly reduce the surge limit flow rate without lowering the efficiency.
[0024]
That is, in the centrifugal compressor for a turbocharger according to the embodiment of the present invention, the arrangement position of the suction communication passage 15 is arranged immediately before (on the upstream side of) the half-blade inlet where the vortex U is generated, and the outlet communication passage is provided. By arranging the arrangement position of 16 on the upstream side sufficiently distant from the position (impeller inlet) where the vortex U is generated (L ≒ R1), it is possible to effectively use the turning velocity energy of the air (vortex). it can. By making the suction slit as the suction communication passage 15 deeply cut into the air chamber 14, the turning velocity energy of air (vortex) can be used even more effectively.
[0025]
In addition, the centrifugal compressor for a turbocharger according to the embodiment of the present invention can efficiently reduce the swirling speed energy of air by installing several guide vanes in the air chamber 14 around the circumference of the air chamber 14. Can be converted to Thereby, even when the pressure difference between the suction communication passage 15 and the discharge communication passage 16 is small, a sufficient circulation flow rate can be obtained, and the effect of suppressing the occurrence of surging can be increased.
[0026]
[Other embodiments]
Further, in the centrifugal compressor for a turbocharger according to another embodiment of the present invention, as shown in FIG. 7, a suction communication passage is provided in the air chamber 24 immediately before the inlet of the impeller 11 where the vortex U is generated (upstream side). 25 and a suction slit 26 are provided respectively. As described above, the housing 23 having the shroud portion 22 has the circulation communication means having three openings in combination with the two suction means and the one blowout communication passage 27. Generation of the vortex U can be suppressed at a plurality of locations, and the effect of suppressing generation of surging can be further increased.
[Brief description of the drawings]
FIG. 1 is a schematic view of a main part showing a centrifugal compressor for a turbocharger according to an embodiment of the present invention.
FIG. 2 is a perspective view of a main part showing a centrifugal compressor for a turbocharger according to an embodiment of the present invention.
FIG. 3 is a plan view of a main part showing a guide vane according to the embodiment of the present invention.
FIG. 4 is a side view of a main part showing a guide vane according to the embodiment of the present invention.
FIG. 5 is a perspective view of a main part showing a guide vane according to the embodiment of the present invention.
FIG. 6 is a diagram showing a flow velocity distribution and streamlines of a centrifugal compressor for a turbocharger according to an embodiment of the present invention.
FIG. 7 is a schematic diagram of a main part showing a centrifugal compressor for a turbocharger according to another embodiment of the present invention.
FIG. 8 is a schematic view of a main part showing a conventional centrifugal compressor.
FIG. 9 is a diagram showing a pressure distribution in a shroud portion in a conventional centrifugal compressor.
FIG. 10 is a diagram showing a relationship example between a flow rate and a pressure of the centrifugal compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Impeller 10 ... Suction port 12, 22 ... Shroud part 13 ... Throttle part 14, 24 ... Air chamber 15, 25 ... Suction communication path 16, 27 ... Blowing communication path 26 ... Suction slit 17 ... Circulation flow path 18 ... Guide vane 19 Impeller upstream section 20 ... Near impeller half wing inlet 21, 23 ... Housing

Claims (4)

インペラの外周部から前方に延びて吸込口を形成するシュラウド部を有するハウジングを備えたターボチャージャ用遠心圧縮機において、
ハウジングのシュラウド部に設けた環状の空気室に円周方向複数箇所を区画し、かつインペラ回転方向に対向する正面を凹湾曲して配設するガイドベーンと、
空気室にインペラ上流部とインペラ半翼入口付近の間で開口する吸込連通路により導通させ圧縮空気を導入可能とすると共に、インペラ上流部の吸込口側で開口する吹出連通路により導通させ圧縮空気を導出可能に設けた循環流路と、
から成り、インペラで圧縮された空気を効率良くインペラ上流側へと循環させ遠心圧縮機のサージングを抑制することを特徴とするターボチャージャ用遠心圧縮機。
In a turbocharger centrifugal compressor including a housing having a shroud portion extending forward from an outer peripheral portion of an impeller to form a suction port,
A guide vane that divides a plurality of locations in the circumferential direction into an annular air chamber provided in the shroud portion of the housing, and that is disposed with a concavely curved front face facing the impeller rotation direction;
Compressed air is conducted to the air chamber by a suction communication passage that opens between the upstream portion of the impeller and the vicinity of the impeller half-blade inlet to allow compressed air to be introduced, and communicated by a blowing communication passage that opens to the suction port side of the impeller upstream portion. A circulation channel provided so that
A centrifugal compressor for a turbocharger, wherein air compressed by the impeller is efficiently circulated to the upstream side of the impeller to suppress surging of the centrifugal compressor.
インペラ回転方向に対向する正面を凹湾曲に形成して配設するガイドベーンは、インペラの回転方向に角度αで傾斜し、ガイドベーンのインペラ回転方向に対向する背面はインペラの回転軸に平行に形成したことを特徴とする請求項1に記載のターボチャージャ用遠心圧縮機。The guide vane, which is formed with a concave front facing the impeller rotation direction and is disposed, is inclined at an angle α in the rotation direction of the impeller, and the back face facing the impeller rotation direction of the guide vane is parallel to the rotation axis of the impeller. The centrifugal compressor for a turbocharger according to claim 1, wherein the compressor is formed. インペラ回転方向に対向する正面を凹湾曲に形成して配設するガイドベーンは、吸込連通路側の厚さ(b1)を吹出連通路側の厚さ(b2)よりも厚く構成すると共に、ガイドベーンの厚さは吸込連通路側の厚さ(b1)から吹出連通路側の厚さ(b2)へと滑らかに減少するように構成したことを特徴とする請求項1、請求項2の一に記載のターボチャージャ用遠心圧縮機。The guide vane, which is formed with a concave front surface facing the impeller rotation direction, is arranged such that the thickness (b1) of the suction communication passage is larger than the thickness (b2) of the blow communication passage, and the guide vane is provided with a guide. The thickness of the vane is configured to decrease smoothly from the thickness (b1) on the suction communication passage side to the thickness (b2) on the discharge communication passage side. 4. The centrifugal compressor for a turbocharger according to 1. 吸込連通路はスリットからなり、凹湾曲するガイドベーンの高さの1/2以上に至る開口(深さ)を有することを特徴とする請求項1乃至請求項3の一に記載のターボチャージャ用遠心圧縮機。The turbocharger according to any one of claims 1 to 3, wherein the suction communication passage is formed of a slit and has an opening (depth) reaching at least half the height of the concavely curved guide vane. Centrifugal compressor.
JP2002310636A 2002-10-25 2002-10-25 Centrifugal compressor for turbocharger Expired - Fee Related JP4321037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310636A JP4321037B2 (en) 2002-10-25 2002-10-25 Centrifugal compressor for turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310636A JP4321037B2 (en) 2002-10-25 2002-10-25 Centrifugal compressor for turbocharger

Publications (2)

Publication Number Publication Date
JP2004144029A true JP2004144029A (en) 2004-05-20
JP4321037B2 JP4321037B2 (en) 2009-08-26

Family

ID=32456072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310636A Expired - Fee Related JP4321037B2 (en) 2002-10-25 2002-10-25 Centrifugal compressor for turbocharger

Country Status (1)

Country Link
JP (1) JP4321037B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127108A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Compressor of exhaust turbosupercharger
JP2007127109A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Compressor of exhaust turbosupercharger
WO2009153854A1 (en) * 2008-06-17 2009-12-23 株式会社Ihi Compressor housing for turbo charger
JP2010168915A (en) * 2009-01-20 2010-08-05 Otics Corp Compressor housing for supercharger
WO2011033800A1 (en) * 2009-09-16 2011-03-24 三菱重工業株式会社 Centrifugal compressor
JP2011085095A (en) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd Compressor for exhaust turbocharger
CN102333963A (en) * 2009-02-27 2012-01-25 三菱重工业株式会社 Suction casing and fluid machine
JP2012516968A (en) * 2009-02-05 2012-07-26 ダイムラー・アクチェンゲゼルシャフト Turbine housing for exhaust turbocharger of drive unit and method of manufacturing turbine housing
JP2012177329A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd Multistage supercharger structure
JP2013148053A (en) * 2012-01-23 2013-08-01 Ihi Corp Centrifugal compressor
JPWO2015098826A1 (en) * 2013-12-24 2017-03-23 三菱重工業株式会社 Compressor and turbocharger
WO2018198879A1 (en) * 2017-04-25 2018-11-01 株式会社Ihi Centrifugal compressor
CN111503016A (en) * 2020-04-16 2020-08-07 广东广顺新能源动力科技有限公司 Throttling efficient compressed air system capable of controlling surge point
CN112135975A (en) * 2018-08-23 2020-12-25 株式会社Ihi Centrifugal compressor
US10954960B2 (en) 2016-02-12 2021-03-23 Ihi Corporation Centrifugal compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237056B2 (en) 2013-09-27 2017-11-29 株式会社Ihi Centrifugal compressors and turbochargers
CN104454652B (en) * 2014-10-16 2017-07-25 珠海格力电器股份有限公司 Volute structure, centrifugal compressor and refrigeration equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368599U (en) * 1989-11-07 1991-07-05
JPH0560097A (en) * 1991-09-02 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
JP2001289197A (en) * 2000-04-07 2001-10-19 Ishikawajima Harima Heavy Ind Co Ltd Method and device for increasing operating area of centrifugal compressor
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368599U (en) * 1989-11-07 1991-07-05
JPH0560097A (en) * 1991-09-02 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd Centrifugal compressor
JP2001289197A (en) * 2000-04-07 2001-10-19 Ishikawajima Harima Heavy Ind Co Ltd Method and device for increasing operating area of centrifugal compressor
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127109A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Compressor of exhaust turbosupercharger
JP4592563B2 (en) * 2005-11-07 2010-12-01 三菱重工業株式会社 Exhaust turbocharger compressor
JP2007127108A (en) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd Compressor of exhaust turbosupercharger
WO2009153854A1 (en) * 2008-06-17 2009-12-23 株式会社Ihi Compressor housing for turbo charger
JP2010168915A (en) * 2009-01-20 2010-08-05 Otics Corp Compressor housing for supercharger
US8951007B2 (en) 2009-02-05 2015-02-10 Daimler Ag Turbine housing for an exhaust gas turbocharger and method for producing turbine housing
JP2012516968A (en) * 2009-02-05 2012-07-26 ダイムラー・アクチェンゲゼルシャフト Turbine housing for exhaust turbocharger of drive unit and method of manufacturing turbine housing
CN102333963A (en) * 2009-02-27 2012-01-25 三菱重工业株式会社 Suction casing and fluid machine
US9163643B2 (en) 2009-02-27 2015-10-20 Mitsubishi Heavy Industries, Ltd. Suction casing and fluid machine
CN102472296A (en) * 2009-09-16 2012-05-23 三菱重工业株式会社 Centrifugal compressor
US20120148391A1 (en) * 2009-09-16 2012-06-14 Mitsubishi Heavy Industries, Ltd., Centrifugal compressor
JP2011064118A (en) * 2009-09-16 2011-03-31 Mitsubishi Heavy Ind Ltd Centrifugal compressor
WO2011033800A1 (en) * 2009-09-16 2011-03-24 三菱重工業株式会社 Centrifugal compressor
JP2011085095A (en) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd Compressor for exhaust turbocharger
US8888440B2 (en) 2009-10-16 2014-11-18 Mitsubishi Heavy Industries, Ltd. Compressor of exhaust gas turbocharger
JP2012177329A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd Multistage supercharger structure
WO2013111761A1 (en) * 2012-01-23 2013-08-01 株式会社Ihi Centrifugal compressor
EP2808554A4 (en) * 2012-01-23 2015-09-02 Ihi Corp Centrifugal compressor
JP2013148053A (en) * 2012-01-23 2013-08-01 Ihi Corp Centrifugal compressor
US9816524B2 (en) 2012-01-23 2017-11-14 Ihi Corporation Centrifugal compressor
JPWO2015098826A1 (en) * 2013-12-24 2017-03-23 三菱重工業株式会社 Compressor and turbocharger
US10954960B2 (en) 2016-02-12 2021-03-23 Ihi Corporation Centrifugal compressor
WO2018198879A1 (en) * 2017-04-25 2018-11-01 株式会社Ihi Centrifugal compressor
JPWO2018198879A1 (en) * 2017-04-25 2020-05-14 株式会社Ihi Centrifugal compressor
CN112135975A (en) * 2018-08-23 2020-12-25 株式会社Ihi Centrifugal compressor
US11199198B2 (en) 2018-08-23 2021-12-14 Ihi Corporation Centrifugal compressor
CN112135975B (en) * 2018-08-23 2022-05-06 株式会社Ihi Centrifugal compressor
CN111503016A (en) * 2020-04-16 2020-08-07 广东广顺新能源动力科技有限公司 Throttling efficient compressed air system capable of controlling surge point

Also Published As

Publication number Publication date
JP4321037B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
US7575411B2 (en) Engine intake air compressor having multiple inlets and method
EP2975269B1 (en) Centrifugal compressor
JP2004144029A (en) Centrifugal compressor for turbocharger
US9951793B2 (en) Ported shroud geometry to reduce blade-pass noise
JP5649758B2 (en) Centrifugal compressor
US7261513B2 (en) Centrifugal compressor
CN113217469B (en) Compressor housing, compressor provided with same, and turbocharger provided with same
JP4100030B2 (en) Centrifugal compressor
JP2004332733A (en) Compressor
JP2005023792A (en) Centrifugal compressor with variable vane
JP2010270641A (en) Centrifugal compressor
WO2011000182A1 (en) Dual-passage variable-section turbine of turbocharger
JP6100758B2 (en) Gas turbine diffuser blowing method and corresponding diffuser
WO2018147128A1 (en) Centrifugal compressor and turbocharger
CN105909320A (en) Wastegate with injected flow
JP2010174806A (en) Centrifugal compressor
US10247198B2 (en) Compressor housing
JP2003074360A (en) Turbocharger
JP3758050B2 (en) Centrifugal compressor with diffuser
JP7521873B2 (en) Diffusers, blowers and dust collection equipment
CN208456914U (en) A kind of turbocharger and its centrifugal compressor
JP2000064848A (en) Turbo-charger
JP2013002280A (en) Centrifugal compressor
US12085089B2 (en) Centrifugal compressor impeller and centrifugal compressor
JP5182519B2 (en) Centrifugal compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees