WO2011033709A1 - Headlight device for vehicle - Google Patents

Headlight device for vehicle Download PDF

Info

Publication number
WO2011033709A1
WO2011033709A1 PCT/JP2010/004474 JP2010004474W WO2011033709A1 WO 2011033709 A1 WO2011033709 A1 WO 2011033709A1 JP 2010004474 W JP2010004474 W JP 2010004474W WO 2011033709 A1 WO2011033709 A1 WO 2011033709A1
Authority
WO
WIPO (PCT)
Prior art keywords
shade
light distribution
distribution pattern
vehicle
advanced position
Prior art date
Application number
PCT/JP2010/004474
Other languages
French (fr)
Japanese (ja)
Inventor
出口博久
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to JP2011531768A priority Critical patent/JP5634406B2/en
Publication of WO2011033709A1 publication Critical patent/WO2011033709A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/68Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens
    • F21S41/683Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on screens by moving screens
    • F21S41/689Flaps, i.e. screens pivoting around one of their edges

Definitions

  • the present invention relates to a vehicle headlamp device, and more particularly to a vehicle headlamp device used in an automobile or the like.
  • the vehicle headlamp device irradiates a low beam or a high beam by directing the light from the light source directly forward or reflecting the light from the light source forward by a reflector.
  • a method of switching a beam by moving a light shielding member called a shade according to a light distribution pattern to be formed has been proposed.
  • the headlamp disclosed in Patent Document 1 includes two masks (shades) that can move forward and backward with respect to the optical axis, and each of the two masks can be independently displaced to a shielding position or a retracting position.
  • the headlamp disclosed in Patent Document 1 includes two masks (shades) that can move forward and backward with respect to the optical axis, and each of the two masks can be independently displaced to a shielding position or a retracting position.
  • it is configured so that three light distribution patterns can be formed.
  • each shade is mechanically A structure that can be advanced and retracted without interference is required.
  • the ridge line portion of the shade that determines the cut-off line that becomes the light / dark boundary of the light distribution pattern is arranged at the rear focal position of the projection lens. There was a need to do. If the shade ridge line part deviates back and forth from the back focus position, the contour of the cut-off line of the formed light distribution pattern may be blurred, or the composition balance between the shielded light and the unshielded light is lost, and the vicinity of the cut-off line A coloring phenomenon due to the spectral component of light may occur in the region.
  • the present inventor has come to recognize that when a plurality of shades are used, a design in consideration of these points is necessary.
  • the headlamp of Patent Document 1 one shade is tilted forward in the optical axis direction and retracted from the optical axis, and the other shade is tilted backward in the optical axis direction and retracted from the optical axis.
  • outline blurring, coloring, or light leakage may occur. Therefore, a proposal of a structure that solves these problems is desired.
  • the present invention has been made in view of such a situation, and the purpose thereof is that there is no mechanical interference even when a plurality of shades are used, and the contour of the light distribution pattern to be formed is colored or colored, and the light distribution pattern is switched.
  • An object of the present invention is to provide a vehicle headlamp device that can prevent light leakage.
  • a vehicle headlamp device is capable of advancing and retracting with respect to an optical axis of a light source capable of irradiating light forward of the vehicle via a projection lens,
  • the upper edge portion is displaced to an advance position where the rear focal plane of the projection lens overlaps and a first retract position in front of the advance position in the optical axis direction, and a first light distribution pattern is formed at the advance position.
  • the first shade that allows the formation of a non-light-shielding pattern and the optical axis can be moved forward and backward, and the first shade is displaced to the advanced position and the second retracted position behind the advanced position in the optical axis direction.
  • the second shade that forms two light distribution patterns and allows the formation of a non-light-shielding pattern at the second retracted position, and the displacement of the first shade so that the first shade that is displaced toward the advanced position stops at the advanced position.
  • the first stopper to be controlled and the displacement toward the advance position
  • the second stopper that regulates the displacement of the second shade so that the two shades stop at the advanced position, and when the first light distribution pattern and the second light distribution pattern are switched to each other, the one that is in the middle of the displacement to the advanced position
  • the first shade so that one shade is displaced to the advanced position and the other shade is displaced to the retracted position while the upper edge of the shade is in proximity to the upper edge of the other shade at the advanced position.
  • a controller for controlling the displacement of the second shade.
  • At least one of the first shade and the second shade is divided into a plurality of small shades arranged in a direction intersecting the optical axis, and a part of the plurality of small shades is in the advanced position, and the remaining small shades
  • the third light distribution pattern may be able to be formed in a state where is in the retracted position. According to this, the visibility of the driver can be further improved while preventing glare given to the preceding vehicle.
  • one of two adjacent small shades may have an overlap portion overlapping the other small shade in the optical axis direction. According to this, when a shade is divided
  • the first shade includes a first rotation shaft positioned rearward in the optical axis direction from the rear focal plane, and a first arm portion extending from the first rotation axis forward in the optical axis direction than the rear focal plane; A first shade body coupled to the first arm portion, the second shade being positioned in front of the rear focal plane in the optical axis direction, and the first arm portion from the second rotation shaft. A second arm portion extending rearward in the optical axis direction from the rear focal plane so as not to interfere with the second focal portion, and a second shade body connected to the second arm portion. According to this, the installation space of a 1st shade and a 2nd shade can be made small.
  • the present invention even when a plurality of shades are used, there is no mechanical interference, and it is possible to prevent blurring and coloring of the light distribution pattern to be formed and light leakage at the time of switching the light distribution pattern.
  • FIGS. 3A to 3C are explanatory views showing the structure of the shade mechanism.
  • 4A and 4B are explanatory diagrams showing the shape of each shade and the shape of a light distribution pattern formed by a combination of the shades.
  • FIGS. 5A to 5C are explanatory diagrams showing the displacement state of each shade when the light distribution pattern is switched.
  • 6A and 6B are explanatory views showing the structure of the shade mechanism of the vehicle headlamp apparatus according to the second embodiment.
  • FIG. 9A and FIG. 9B are explanatory views showing the structure of the shade mechanism of the vehicle headlamp apparatus according to the third embodiment.
  • FIG. 10A and FIG. 10B are explanatory views showing the structure of a shade mechanism according to a modification.
  • FIG. 1 is a schematic vertical sectional view for explaining the internal structure of the vehicle headlamp device according to the first embodiment.
  • the vehicle headlamp device 200 of the present embodiment includes a headlamp unit 210L disposed at the left end portion in the vehicle width direction of the vehicle and a headlamp unit 210R disposed at the right end portion (hereinafter, referred to as “the headlight unit 210R”).
  • the headlamp unit 210L and the headlamp unit 210R are collectively referred to as “headlamp unit 210”).
  • the headlamp units 210L and 210R of this embodiment form a low beam light distribution pattern or an additional light distribution pattern described later by blocking a part of the beam emitted from one light source, for example.
  • the headlamp unit 210R includes a lamp body 212 and a translucent cover 214.
  • the lamp body 212 has an opening in the front direction of the vehicle, and has a detachable cover 212a to be removed when the bulb 14 is replaced on the rear side.
  • a translucent cover 214 is connected to an opening in front of the lamp body 212 to form a lamp chamber 216.
  • the lamp chamber 216 houses the lamp unit 10 that irradiates light in the forward direction of the vehicle.
  • a lamp bracket 218 having a pivot mechanism 218 a serving as a swing center of the lamp unit 10 is formed in a part of the lamp unit 10.
  • the lamp bracket 218 is screwed with an aiming adjustment screw 220 that is rotatably supported on the wall surface of the lamp body 212. Therefore, the lamp unit 10 is supported in a state where it can tilt to a predetermined position in the lamp chamber 216 determined by the adjustment state of the aiming adjustment screw 220.
  • a rotating shaft of a swivel actuator 222 for constituting a variable road headlamp (Adaptive Front-lighing System: AFS) that illuminates the traveling direction when traveling on a curved road or the like. 222a is fixed.
  • the swivel actuator 222 is based on the steering amount data provided from the vehicle side, the shape data of the traveling road provided from the navigation system, the relationship between the relative position of the forward vehicle and the vehicle including the oncoming vehicle and the preceding vehicle, etc.
  • the lamp unit 10 is swiveled (swiveled) in the traveling direction around the pivot mechanism 218a.
  • the swivel actuator 222 can be composed of a stepping motor, for example.
  • a solenoid or the like can be used.
  • the swivel actuator 222 is fixed to the unit bracket 224.
  • a leveling actuator 226 disposed outside the lamp body 212 is connected to the unit bracket 224.
  • the leveling actuator 226 is composed of, for example, a motor that expands and contracts the rod 226a in the directions of arrows M and N.
  • the rod 226a extends in the direction of the arrow M
  • the lamp unit 10 swings so as to be in a backward inclined posture with the pivot mechanism 218a as the center.
  • the rod 226a is shortened in the direction of arrow N
  • the lamp unit 10 swings so as to assume a forward leaning posture with the pivot mechanism 218a as the center.
  • leveling adjustment with the optical axis directed upward can be performed.
  • leveling adjustment that directs the optical axis downward can be performed.
  • the optical axis can be adjusted according to the vehicle posture. As a result, the reach distance of the front irradiation light by the vehicle headlamp device 200 can be adjusted to an optimum distance.
  • This leveling adjustment can also be executed according to the vehicle posture while the vehicle is running. For example, when the vehicle is accelerated while traveling, the vehicle posture is a backward leaning posture, and conversely, when the vehicle is decelerated, it is a forward leaning posture. Therefore, the irradiation direction of the headlamp unit 210 also fluctuates up and down corresponding to the posture state of the vehicle, and the front irradiation distance becomes longer or shorter. Therefore, by executing the leveling adjustment of the lamp unit 10 in real time based on the vehicle posture, it is possible to optimally adjust the front irradiation reach distance even during traveling. This is sometimes referred to as “auto-leveling”.
  • an irradiation control unit 228 (control unit) that performs turning on / off control of the lamp unit 10 and control of formation of a light distribution pattern is disposed.
  • an irradiation control unit 228R for controlling the headlamp unit 210R is arranged.
  • the irradiation controller 228R also controls the swivel actuator 222, the leveling actuator 226, and the like.
  • the headlamp unit 210L may have a dedicated irradiation control unit 228L, or the irradiation control unit 228R provided in the headlamp unit 210R may include each of the headlamp unit 210R and the headlamp unit 210L. Actuator control and light distribution pattern formation control may be collectively controlled.
  • the lamp unit 10 can include an aiming adjustment mechanism.
  • an aiming pivot mechanism (not shown) serving as a swing center at the time of aiming adjustment is disposed at a connecting portion between the rod 226a of the leveling actuator 226 and the unit bracket 224.
  • the above-described aiming adjusting screw 220 is disposed on the lamp bracket 218 with a gap in the vehicle width direction. For example, if the two aiming adjustment screws 220 are rotated counterclockwise, the lamp unit 10 is inclined forward with the aiming pivot mechanism as the center, and the optical axis is adjusted downward.
  • the lamp unit 10 is tilted backward with the aiming pivot mechanism as the center, and the optical axis is adjusted upward.
  • the aiming adjustment screw 220 on the left side in the vehicle width direction is rotated counterclockwise, the lamp unit 10 assumes a right turning posture around the aiming pivot mechanism, and the optical axis is adjusted rightward.
  • the aiming adjustment screw 220 on the right side in the vehicle width direction is rotated in the counterclockwise direction, the lamp unit 10 assumes a left turning posture around the aiming pivot mechanism, and the optical axis is adjusted in the left direction.
  • This aiming adjustment is performed when the vehicle is shipped or inspected, or when the headlamp unit 210 is replaced.
  • the headlamp unit 210 is adjusted to a posture determined by design, and the light distribution pattern formation control of this embodiment is performed based on this posture.
  • the lamp unit 10 includes a bulb 14 as a light source, a lamp housing 17 that supports the reflector 16 on the inner wall, a shade mechanism 18 including a first shade 120 and a second shade 140, and a projection lens 20.
  • a bulb 14 for example, an incandescent bulb, a halogen lamp, a discharge bulb, an LED, or the like can be used. In the present embodiment, an example in which the bulb 14 is constituted by a halogen lamp is shown.
  • the reflector 16 is at least partially elliptical spherical, and the elliptical spherical surface is set so that the cross-sectional shape including the optical axis O of the lamp unit 10 is at least part of an elliptical shape.
  • the elliptical spherical portion of the reflector 16 has a first focal point substantially at the center of the bulb 14 and has a second focal point on a rear focal plane that is a focal plane including the rear focal point of the projection lens 20.
  • the light emitted from the bulb 14 is reflected directly or by the reflector 16, and a part thereof is guided to the projection lens 20 through the shade mechanism 18.
  • the first shade 120 included in the shade mechanism 18 is a plate-like shade that can advance and retreat with respect to the optical axis O, and the light of the bulb 14 is at the advanced position where the upper edge overlaps the rear focal plane of the projection lens 20.
  • a first light distribution pattern is formed by blocking a part of the first light distribution pattern.
  • the first shade 120 allows the formation of a high beam light distribution pattern (non-light-shielding pattern) at the retracted position (first retracted position).
  • the second shade 140 is a plate-like shade that can advance and retreat with respect to the optical axis O, and blocks a part of the light of the bulb 14 at an advanced position where the upper edge overlaps the rear focal plane of the projection lens 20.
  • a second light distribution pattern is formed.
  • the second shade 140 allows the formation of a high beam light distribution pattern at the retracted position (second retracted position).
  • the first shade 120 and the second shade 140 can move forward and backward independently of each other by a shade solenoid 238 provided on each of them.
  • the first shade 120 and the second shade 140 and the respective shade solenoids 238 are connected by a connecting member 239 that transmits the displacement of the rod of the shade solenoid 238 to each shade.
  • FIG. 1 shows a first shade solenoid 238a for the first shade 120 and a connecting member 239a. The configuration of the shade mechanism 18 will be described in detail later.
  • the projection lens 20 is disposed on the optical axis O extending in the vehicle front-rear direction, and the bulb 14 is disposed on the rear side of the rear focal plane of the projection lens 20.
  • the projection lens 20 is a plano-convex aspherical lens having a convex front surface and a flat rear surface, and a virtual vertical front of the vehicle headlamp device 200 with a light source image formed on the rear focal plane as an inverted image. Project on the screen.
  • FIG. 2 is a functional block diagram for explaining the cooperation between the irradiation control unit of the headlight unit configured as described above and the vehicle control unit on the vehicle side.
  • the configuration of the right headlight unit 210R and the left headlight unit 210L is basically the same, so only the headlamp unit 210R side will be described and the headlight unit 210L side will be described. Description is omitted.
  • the irradiation control unit 228R of the headlamp unit 210R controls the power supply circuit 230 based on information obtained from the vehicle control unit 302 mounted on the vehicle 300, and performs lighting control of the bulb 14.
  • the irradiation control unit 228R controls the variable shade control unit 232, the swivel control unit 234, and the leveling control unit 236 based on information obtained from the vehicle control unit 302.
  • the variable shade control unit 232 controls the first shade solenoid 238a connected to the first shade 120 via the connecting member 239a (see FIG. 1) to displace the first shade 120 to the advanced position and the retracted position. .
  • variable shade control unit 232 controls the second shade solenoid 238b connected to the second shade 140 via the connecting member 239 (see FIG. 1) so that the second shade 140 is moved to the advanced position and the retracted position. Displace.
  • shade solenoid 238 the first shade solenoid 238a and the second shade solenoid 238b will be collectively referred to as “shade solenoid 238” where appropriate).
  • the swivel control unit 234 controls the swivel actuator 222 to adjust the optical axis of the lamp unit 10 in the vehicle width direction.
  • the light axis of the lamp unit 10 is directed in the direction of travel when turning such as traveling on a curved road or turning left and right.
  • the leveling control unit 236 controls the leveling actuator 226 to adjust the optical axis of the lamp unit 10 in the vehicle vertical direction.
  • the posture of the lamp unit 10 is adjusted according to the forward and backward tilt of the vehicle posture at the time of acceleration / deceleration to adjust the reach distance of the front irradiation light to the optimum distance.
  • the vehicle control unit 302 provides similar information to the headlamp unit 210L, and the irradiation control unit 228L (control unit) provided in the headlamp unit 210L performs the same control as the irradiation control unit 228R. Execute.
  • the light distribution pattern formed by the headlight units 210L and 210R can be switched according to the operation content of the light switch 304 by the driver.
  • the irradiation controllers 228L and 228R form a desired light distribution pattern by driving the motor 238 via the variable shade controller 232.
  • the headlamp units 210L and 210R of this embodiment are automatically controlled so as to form an optimal light distribution pattern according to the vehicle surroundings detected by various sensors, regardless of the operation of the light switch 304. You can also. For example, when it is detected that there is a preceding vehicle, an oncoming vehicle, a pedestrian, or the like ahead of the host vehicle, the irradiation control units 228L and 228R prevent glare based on information obtained from the vehicle control unit 302. Therefore, it is possible to form a low beam light distribution pattern. In addition, when it can be detected that there is no preceding vehicle, oncoming vehicle, pedestrian, etc. in front of the host vehicle, the irradiation controllers 228L and 228R determine that the driver's visibility should be improved.
  • a high-beam light distribution pattern without light shielding by the first shade 120 and the second shade 140 can be formed.
  • an optimal light distribution pattern that considers the preceding vehicle is selected according to the presence state of the preceding vehicle. It may be formed.
  • Such a control mode may be referred to as an ADB (Adaptive Driving Beam) mode.
  • a camera 306 such as a stereo camera is connected to the vehicle control unit 302 as an object recognition means.
  • Image frame data captured by the camera 306 is subjected to predetermined image processing such as object recognition processing by the image processing unit 308 and provided to the vehicle control unit 302.
  • the vehicle control unit 302 detects at least a vehicle ahead of the host vehicle. Processing is executed.
  • the vehicle control part 302 provides the result of the detection process of a front vehicle to irradiation control part 228L, 228R.
  • Irradiation control units 228L and 228R provide information to each control unit so as to form an optimal light distribution pattern in consideration of the preceding vehicle based on data regarding the preceding vehicle detected by vehicle control unit 302.
  • the vehicle control unit 302 can also acquire information from the steering sensor 310, the vehicle speed sensor 312 and the like that are normally mounted on the vehicle 300, whereby the irradiation control units 228L and 228R are able to acquire the traveling state and the traveling posture of the vehicle 300. Accordingly, it is possible to easily change the light distribution pattern by selecting the light distribution pattern to be formed or changing the direction of the optical axis. For example, when the vehicle control unit 302 determines that the vehicle is turning based on information from the steering sensor 310, the irradiation control units 228L and 228R that have received the information from the vehicle control unit 302 control the shade solenoid 238 to turn. It is possible to form a light distribution pattern that improves the visibility of the direction.
  • a control mode may be referred to as a turning sensitive mode.
  • the vehicle control unit 302 determines that the vehicle is traveling at a high speed based on information from the vehicle speed sensor 312, the irradiation control units 228L and 228R control the displacement state of the first shade 120 and the second shade 140 to control the low beam.
  • a highway mode low beam light distribution pattern in which a part of the light distribution pattern is changed may be formed. Similar control can be realized by controlling the leveling actuator 226 by the leveling control unit 236 to change the lamp unit 10 to the backward tilted posture.
  • the above-described automatic leveling control during acceleration / deceleration by the leveling actuator 226 is control that maintains the irradiation distance constant. If the height of the cut-off line is positively controlled using this control, the same control as the control for selecting the different cut-off lines by displacing the first shade 120 and the second shade 140 can be performed. Such a control mode may be referred to as a speed sensitive mode.
  • the optical axis adjustment of the lamp unit 10 can be performed without using the swivel actuator 222 or the leveling actuator 226.
  • the lamp unit 10 may be swung or the forward tilt posture or the backward tilt posture may be performed by performing the aiming control in real time to improve the visibility in a desired direction.
  • the vehicle control unit 302 can also acquire road shape information and form information, road sign installation information, and the like from the navigation system 314. By acquiring these pieces of information in advance, the irradiation controllers 228L and 228R can control the leveling actuator 226, swivel actuator 222, shade solenoid 238, and the like to smoothly form a light distribution pattern suitable for the traveling road. it can.
  • a control mode may be referred to as a navigation sensitive mode.
  • the automatic light distribution pattern formation control including the various control modes described above is executed when each automatic formation control is instructed by the light switch 304, for example.
  • FIGS. 3A to 3C are explanatory views showing the structure of the shade mechanism.
  • 3A is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210L
  • FIG. 3B is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210R
  • FIG. 3C is a schematic vertical sectional view of the shade mechanism 18 of the headlamp unit 210R.
  • 3A and 3B the illustration of the shade solenoid 238 is omitted, and the illustration of the second shade solenoid 238b is omitted in FIG. 3C.
  • FIG. 3C shows a state where the first shade 120 is in the advanced position and the second shade 140 is in the retracted position.
  • the first shade 120 side is the front in the optical axis direction with respect to the rotating shaft 130
  • the second shade 140 side is the rear in the optical axis direction.
  • the shade mechanism 18 includes a first shade 120, a first stopper 122, a rotating shaft 130, a second shade 140, and a second stopper 142.
  • the second shade 140 is coupled to the rotation shaft 130 on the left side in the vehicle width direction (outside in the vehicle width direction) when viewed from the rear in the optical axis direction.
  • the second shade 140 is connected to the right side in the vehicle width direction (outside in the vehicle width direction) with respect to the rotation shaft 130 when viewed from the rear in the optical axis direction.
  • the headlamp unit 210L and the headlamp unit 210R have the same configuration except for the connecting position of the second shade 140 and the shapes of the first shade 120 and the second shade 140. Therefore, in the following, the structure of the headlamp unit 210R will be described, and the description of the headlamp unit 210L will be omitted.
  • the first shade 120 is a shade that blocks a part of the light of the bulb 14 to form a first light distribution pattern, and is provided so as to be rotatable with respect to the rotating shaft 130 as shown in FIG.
  • the first arm part 120a and the first shade body 120b connected to the first arm part 120a.
  • the rotation shaft 130 is provided so that the center thereof overlaps the rear focal plane F of the projection lens 20.
  • the first arm portion 120a and the first shade body 120b are set so that the upper edge portion of the first shade body 120b overlaps the rear focal plane F when the first shade 120 is in the advanced position.
  • a first arm portion 120a is a connecting portion 120a 1 of the rotary shaft 130, the arm portion 120a 2 extending upward as approaching from the connecting portion 120a 1 on the rear focal plane F, the arm portion A first shade body 120b is provided at the tip of 120a 2 so as to overlap the rear focal plane F in a state where the first shade 120 is in the advanced position.
  • the first stopper 122 regulates the displacement of the first shade 120 so that the first shade 120 that is displaced toward the advanced position stops at the advanced position. Specifically, as shown in FIG. 3C, the first stopper 122 is provided at a position where the first shade 120 comes into contact with the first arm portion 120a in a state where the first shade 120 has reached the advanced position. Since the first arm portion 120a and the first stopper 122 interfere with each other to restrict the rotation of the first shade 120, the first shade 120 can accurately take the advanced position.
  • One end of a substantially L-shaped connecting member 239a is rotatably connected to the first arm portion 120a.
  • the other end of the connecting member 239a is rotatably connected to the rod 238a 1 of the first shade solenoid 238a. Accordingly, the first shade 120 rotates about the rotation shaft 130 in accordance with the forward / backward movement of the rod 238a 1 of the first shade solenoid 238a, and the standing posture and the falling posture of the first shade 120 are switched.
  • the standing posture is a posture in which the first shade 120 is displaced to the advanced position
  • the falling posture is a posture in which the first shade 120 is displaced to the retracted position.
  • the second shade 140 is a shade that blocks a part of the light from the bulb 14 to form a second light distribution pattern.
  • the second shade 140 is provided with a second arm portion 140 a that is rotatable with respect to the rotation shaft 130, A second shade body 140b coupled to the arm part 140a.
  • the second arm portion 140a and the second shade body 140b are set so that the upper edge portion of the second shade body 140b overlaps the rear focal plane F when the second shade 140 is in the advanced position.
  • a second arm portion 140a and the connecting portion 140a 1 of the rotary shaft 130, the arm portion 140a 2 extending upward as approaching from the connecting portion 140a 1 on the rear focal plane F, the arm portion the tip of 140a 2, the second shade body 140b so as to overlap the rear focal plane F is provided in a state where the second shade 140 is in the advanced position.
  • the second stopper 142 regulates the displacement of the second shade 140 so that the second shade 140 that is displaced toward the advanced position stops at the advanced position. Specifically, the second stopper 142 is provided at a position where the second shade 140 contacts the second arm portion 140a in a state where the second shade 140 has reached the advanced position. Since the second arm portion 140a and the second stopper 142 interfere with each other to restrict the rotation of the second shade 140, the second shade 140 can accurately take the advanced position.
  • the second arm portion 140a is coupled to the rod of the second shade solenoid 238b (see FIG. 2) via a coupling member.
  • the second shade 140 rotates about the rotation shaft 130 according to the forward / backward movement of the rod of the second shade solenoid 238b, and the standing posture and the falling posture of the second shade 140 are switched.
  • At least a first shade solenoid 238a is preferably rod 238a 1 during non-control is a biasing spring built type as to protrude.
  • the first shade 120 can be moved to the advanced position only by setting the first shade solenoid 238a to the non-control state. By moving the first shade 120 to the advanced position, a light distribution pattern for the low beam or a light distribution pattern closer to the low beam light distribution pattern than the high beam light distribution pattern can be obtained. Light distribution pattern. That is, a fail-safe function can be realized.
  • the first shade 120 is set so that the upper edge of the first shade body 120b overlaps the rear focal plane F at the advanced position.
  • the second shade 140 is set so that the upper edge portion of the second shade body 140b overlaps the rear focal plane F at the advanced position. Then, the first shade 120 is displaced to the retracted position (first retracted position) ahead of the advanced position in the optical axis direction, and the retracted position (second retracted position) of the second shade 140 is rearward of the advanced position in the optical axis direction. It is comprised so that it may displace.
  • the first shade 120 is displaced from the rear focal plane F to the advanced position and the retracted position in the front area
  • the second shade 140 is displaced from the rear focal plane F to the advanced position and the retracted position in the rear area. Therefore, the first shade 120 and the second shade 140 do not interfere with each other when they are displaced to the retracted position.
  • the first shade 120 and the second shade 140 have a common rotation axis, but separate rotation axes may be provided for each.
  • FIG. 4A and 4B are explanatory diagrams showing the shape of each shade and the shape of a light distribution pattern formed by a combination of the shades.
  • FIG. 4A shows the shape of each shade
  • FIG. 4B shows the posture state of each shade and the shape of the light distribution pattern corresponding thereto.
  • 4A and 4B of the first shade 120 and the second shade 140, the first shade main body 120b and the second shade main body 140b are shown, and other portions are omitted.
  • 4A and 4B show a state in which each shade is viewed from the front of the vehicle headlamp device 200 toward the bulb 14.
  • the light distribution pattern shown in FIG. 4 (B) is a light distribution pattern formed on a virtual vertical screen arranged at a predetermined position in front of the lamp, for example, at a position 25 m ahead of the lamp.
  • the first shade 120 (first shade body 120b) of the left headlight unit 210L (shown as LH in the figure) is in the vehicle width direction from the VV line.
  • ridgeline 120b 1 extending in the horizontal direction on the left
  • a ridge 120b 2 extending horizontally at a position higher than the ridge 120b 1 in the vehicle width direction right side of the line V-V
  • an obliquely extending ridge line 120b 3 connecting the left ends of the two.
  • the second shade 140 (second shade body 140b) of the headlight unit 210L includes a ridge 140b 2 of the ridge 120b 2 of the same shape, and a ridge line 120b 3 and ridge 140b 3 of the same shape. Moreover, and a second shade 140 is notched part of the left side in the vehicle width direction, therefore, a ridge such as the shade height becomes lower as going to a portion left in the vehicle width direction of the ridge 120b 1 with a ridge 140b 4.
  • a shows that RH) headlamp unit 210R of the right first shade 120 of the (first shade body 120b) includes a ridge 120b 1 as with the headlamp unit 210L, and ridge 120b 2, ridge and a 120b 3.
  • the second shade 140 of the headlight unit 210R (second shade body 140b is) has a ridge line 140b 1 of the same shape as the ridge 120b 1, and a ridge line 140b 3 of the same shape as the ridge 120b 3.
  • a second shade 140 is notched part of the right side in the vehicle width direction, therefore, a ridge such as the shade height decreases as part of the ridge 120b 2 and go to the right in the vehicle width direction with a ridge 140b 5.
  • the shade states of the headlamp unit 210L and the headlamp unit 210R are combined.
  • the following light distribution pattern can be formed.
  • the first shade 120 (first shade body 120b) is in the advanced position
  • the second shade 140 (second shade body 140b) is in the retracted position.
  • the low beam light distribution pattern LoL is formed by the headlamp unit 210L
  • the low beam light distribution pattern LoR is formed by the headlamp unit 210R.
  • the low beam light distribution pattern LoL and the low beam light distribution pattern LoR are combined to form a low beam light distribution pattern as a whole.
  • This light distribution pattern for low beams is a light distribution pattern that is designed so as not to give glare to the preceding vehicle or pedestrian in an area where traffic regulations are left-hand traffic.
  • the low beam light distribution pattern Lo has an oncoming lane side cut-off line extending parallel to the horizontal HH line on the right side (opposite lane side) of the VV line, and on the left side of the VV line ( On the own lane side), the own lane side cut-off line that extends parallel to the HH line at a position higher than the oncoming lane side cut off line, and both between the oncoming lane side cut off line and the own lane side cut off line Each has an oblique cut-off line to be connected.
  • the diagonal cut-off line extends at an inclination angle of 45 ° from the intersection of the opposite lane side cut-off line and the VV line diagonally upward to the left.
  • the low-beam light distribution patterns LoL and LoR correspond to the first light distribution pattern.
  • the projection lens 20 of the present embodiment is a plano-convex aspherical lens having a convex front surface and a flat rear surface, and thus a light source formed on the rear focal plane F.
  • the image is projected on a virtual vertical screen in front of the vehicle as an up / down / left / right inverted image. Therefore, the self-lane side cutoff line formed by the ridge 120b 1 of the first shade 120, is formed opposite lane cutoff line by the edge line 120b 2, the oblique cutoff line is formed by the ridge 120b 3.
  • the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210L, the first shade 120 is in the advanced position, and the second shade 140 is in the retracted position in the headlamp unit 210R. It is in.
  • a left-side high light distribution pattern Hi1L that forms a so-called “left-side high beam” is formed by the headlamp unit 210L, and a low-beam light distribution pattern LoR is formed by the headlamp unit 210R. Then, the left-side high light distribution pattern Hi1L and the low-beam light distribution pattern LoR are combined to form the left-side high light distribution pattern as a whole.
  • This left-side high light distribution pattern is an additional light distribution pattern that shields the opposite lane side of the high beam light distribution pattern when passing on the left side and irradiates only the own lane side in the high beam region.
  • the left-side high light distribution pattern is preferably used when there is no preceding vehicle or pedestrian in the own lane, and there is an oncoming vehicle or pedestrian in the oncoming lane, and glare is given to the oncoming vehicle or pedestrian.
  • the driver's visibility can be enhanced by irradiating only the own lane side with a high beam.
  • the high beam area on the own lane side of the left high-side light distribution pattern Hi1L corresponds to the notch of the second shade 140 of the headlamp unit 210L.
  • the first shade 120 is in the advanced position and the second shade 140 is in the retracted position in the headlamp unit 210L, and the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210R. It is in.
  • a low beam light distribution pattern LoL is formed by the headlamp unit 210L
  • a right piece high light distribution pattern Hi1R that forms a so-called “right piece high beam” is formed by the headlamp unit 210R.
  • the low beam light distribution pattern LoL and the right piece high light distribution pattern Hi1R are combined to form a right piece high light distribution pattern as a whole.
  • This right-side high light distribution pattern is an additional light distribution pattern that shields the own lane side of the high beam light distribution pattern when passing on the left side and irradiates only the opposite lane side in the high beam region.
  • the right-side high light distribution pattern is preferably used when there is no oncoming vehicle or pedestrian in the oncoming lane, and there is a preceding vehicle or pedestrian in the own lane, giving glare to the preceding vehicle or pedestrian.
  • the driver's visibility can be improved by irradiating only the opposite lane side with a high beam.
  • the high beam region on the opposite lane side of the right-side high light distribution pattern Hi1R corresponds to the cutout portion of the second shade 140 of the headlamp unit 210R.
  • the left piece high light distribution pattern Hi1L and the right piece high light distribution pattern Hi1R correspond to the second light distribution pattern.
  • the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210L, and the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210R. It is in.
  • the left high light distribution pattern Hi1L is formed by the headlamp unit 210L
  • the right high light distribution pattern Hi1R is formed by the headlamp unit 210R. Then, the left-side high light distribution pattern Hi1L and the right-side high light distribution pattern Hi1R are combined to form a so-called split light distribution pattern as a whole.
  • This split light distribution pattern is an additional light distribution pattern having a light shielding region at the center above the horizontal line and having high beam regions on both sides in the horizontal direction of the light shielding region.
  • the split light distribution pattern is preferably used when a forward vehicle is present at a relatively long distance, and glare is not given to the forward vehicle, and the opposite lane side and the own lane side are irradiated with a high beam to improve driver visibility. Can be increased.
  • the first shade 120 and the second shade 140 are both in the retracted position in the headlamp unit 210L and the headlamp unit 210R.
  • the high beam light distribution pattern HiL is formed by the headlamp unit 210L
  • the high beam light distribution pattern HiR is formed by the headlamp unit 210R.
  • the high-beam light distribution pattern HiL and the high-beam light distribution pattern HiR are combined to form a high-beam light distribution pattern as a whole.
  • This high beam light distribution pattern is a light distribution pattern that illuminates a wide area in the front and far away, and is formed, for example, when it is not necessary to consider glare to the vehicle ahead or a pedestrian.
  • FIGS. 5A to 5C are explanatory diagrams showing the displacement state of each shade when the light distribution pattern is switched.
  • the irradiation control unit 228R performs the low beam light distribution pattern in a state where the first shade 120 is in the advanced position and the second shade 140 is in the retracted position. It is assumed that the light distribution pattern switching control from the LoR to the right-side high light distribution pattern Hi1R is executed. In this case, first, the irradiation control unit 228R controls the variable shade control unit 232 to drive the second shade solenoid 238b (both see FIG. 2) in order to displace the second shade 140 in the retracted position to the advanced position. Thereby, the second shade 140 starts to be displaced in the direction of the arrow shown in FIG.
  • the irradiation controller 228R approaches the upper edge of the second shade 140 that is in the process of being displaced to the advanced position to the upper edge of the first shade 120 that is in the advanced position.
  • the state be In this state, a part of the first shade body 120b of the first shade 120 and a part of the second shade body 140b of the second shade 140 are in contact with each other, and the upper edge of the first shade body 120b and the second The upper edge of the shade body 140b overlaps in the optical axis direction.
  • the irradiation control unit 228R moves the second shade 140 to the advanced position and retracts the first shade 120 while maintaining the state where the upper edge of the first shade 120 and the upper edge of the second shade 140 are close to each other. Displace to the position side.
  • the irradiation control unit 228R displaces the first shade 120 to the retracted position, as shown in FIG.
  • the irradiation control unit 228R sets the upper edge of the second shade 140 that is in the process of moving to the advanced position to the advanced position.
  • the second shade 140 is displaced to the advanced position while being close to the upper edge of a certain first shade 120, and the first shade 120 is displaced to the retracted position side.
  • the first light distribution pattern and the second light distribution pattern are formed only by the shade moved to the rear focal plane F. Therefore, the cut-off line of the formed light distribution pattern is not accompanied by outline blurring or coloring, and a clear light distribution pattern can be formed.
  • the irradiation control unit 228R includes a timer circuit and a switch circuit (both not shown), and the timer circuit measures an elapsed time after the drive signal is input to the second shade solenoid 238b to displace the second shade 140. . After a predetermined time determined by the displacement speed (rotation speed) of the second shade 140 and the displacement distance between the advanced position and the retracted position has elapsed, the timer circuit outputs a signal to the switch circuit. When receiving a signal from the timer circuit, the switch circuit outputs a control signal to the variable shade control unit 232 so as to drive the first shade solenoid 238a. In this way, the irradiation control unit 228R can control the switching timing of each shade.
  • the irradiation control unit 228R can perform the same control when switching the light distribution pattern from the second light distribution pattern to the first light distribution pattern. Further, the irradiation controller 228L can be controlled in the same manner as the irradiation controller 228R.
  • the vehicle headlamp device 200 is displaced to the advanced position and the retracted position ahead of the advanced position in the optical axis direction, and the low beam light distribution pattern LoL
  • the first shade 120 is provided that forms the LoR and allows the formation of the high-beam light distribution patterns HiL and HiR at the retracted position.
  • the vehicle headlamp device 200 is displaced to the advanced position and the retracted position behind the advanced position in the optical axis direction, and the left high-side light distribution pattern Hi1L or the right high-side light distribution at the advanced position.
  • a second shade 140 is provided that forms the pattern Hi1R and allows the formation of the high-beam light distribution patterns HiL and HiR at the retracted position.
  • the vehicle headlamp device 200 also includes a first stopper 122 that regulates the displacement of the first shade 120 so that the first shade 120 takes the advanced position and a second stopper 140 so that the second shade 140 takes the advanced position. And a second stopper 142 for restricting the displacement of the shade 140. Therefore, the upper edge portions of the first shade 120 and the second shade 140 can be made to coincide with the rear focal plane F with high accuracy, and therefore, a good light distribution pattern without outline blurring or coloring can be formed.
  • the first shade 120 and the second shade 140 are configured to rotate around the rotation shaft 130, the displacement of the shade can be achieved simply by providing a stopper with a simple structure such as a rod-shaped member on the rotation track. Can be easily regulated. Therefore, the structure of the 1st stopper 122 and the 2nd stopper 142 can be simplified, and the manufacturing cost of the vehicle headlamp apparatus 200 can be reduced.
  • the irradiation control unit 228 switches between the first light distribution pattern and the second light distribution pattern, the upper edge portion of one shade that is in the process of being displaced to the advanced position.
  • the irradiation control unit 228 switches between the first light distribution pattern and the second light distribution pattern, the upper edge portion of one shade that is in the process of being displaced to the advanced position.
  • one shade is displaced to the advanced position and the other shade is displaced to the retracted position side. Therefore, it is possible to prevent light leakage from occurring when switching the light distribution pattern.
  • each light distribution pattern is formed by the rotary shade having the outer peripheral surface of the cut-off line shape
  • the light of the bulb 14 is blocked by a part of the outer peripheral surface extending in the vicinity of the rear focal plane F.
  • the illuminance of the light distribution pattern tends to be low.
  • each light distribution pattern is formed by the plate-like first shade 120 and the second shade 140. Therefore, the light distribution is compared with the above-described rotary shade. The illuminance of the pattern can be increased.
  • the vehicle headlamp device 200 is configured to rotate the first shade 120 and the second shade 140 around the rotation shaft 130.
  • the sliding part of a shade can be reduced compared with the structure made to slide back and forth with respect to the optical axis O by sliding a plate-shaped shade up and down along a rail.
  • the possibility of damage to the shade can be reduced, and the life of the shade can be extended. Therefore, the operational reliability and the life of the vehicle headlamp device 200 can be improved.
  • FIGS. 6A and 6B are explanatory views showing the structure of the shade mechanism of the vehicle headlamp apparatus according to the second embodiment.
  • 6A is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210L
  • FIG. 6B is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210R.
  • the shade solenoid 238 is not shown.
  • the first shade 120 side is the front in the optical axis direction with respect to the rotation shaft 130
  • the second shade 140 side is the rear in the optical axis direction.
  • the shade mechanism 18 includes a first shade 120, a first stopper 122, a rotating shaft 130, a second shade 140, and a second stopper 142.
  • the first shade 120 is divided into a first small shade 124 and a second small shade 126 arranged in the direction intersecting the optical axis O or in the vehicle width direction.
  • the second small shade 126 has an overlap portion 126c that overlaps the first small shade 124 in the optical axis direction. Thereby, it is possible to prevent the light of the bulb 14 from leaking forward from the boundary between the first small shade 124 and the second small shade 126 in the optical axis direction.
  • Each of the first small shade 124 and the second small shade 126 is provided with a shade solenoid (not shown).
  • the headlamp unit 210 can arrange the first small shade 124 at the advanced position overlapping the rear focal plane F and the second small shade 126 at the retracted position. In this state, the light of the bulb 14 can be arranged.
  • a third light distribution pattern can be formed by blocking a part of the first light distribution pattern.
  • FIG. 7 is an explanatory diagram showing the shape of each shade.
  • the first small shade main body 124b of the first small shade 124, the second small shade main body 126b of the second small shade 126, and the second shade main body 140b are shown, and other portions are omitted. .
  • bulb 14 from the front of the vehicle headlamp apparatus 200 is shown.
  • the first small shade 124 (first small shade main body 124 b) of the left headlight unit 210 ⁇ / b> L is the ridgeline of the first shade 120 of the first embodiment. 120b having 2 and the ridge 124b 2 of the same shape, and a ridge line 120b 3 and ridge 124b 3 of the same shape of the first shade 120.
  • first small shade 124 is partially cut out on the left side in the vehicle width direction, and therefore, goes to the left side in the vehicle width direction with part of the ridge line 124b 1 having the same shape as the ridge line 120b 1 of the first shade 120 As a result, a ridgeline 124b 4 is formed which is composed of a ridgeline whose shade height decreases.
  • Second small shade 126 (second small shade body 126b) has a shade shape corresponding to the notched portions of the first small shade 124 has a ridge 126b 1 that forms part of the ridge line 124b 1.
  • the second shade 140 (second shade body 140b) has the same shape as the second shade 140 of the headlamp unit 210R of the first embodiment.
  • First small shade 124 of the right headlamp unit 210R (in the figure shows the RH) (first small shade body 124b) are ridge edges 120b 1 and the same shape of the first shade 120 of Embodiment 1 124b 1 and a ridge line 124b 3 having the same shape as the ridge line 120b 3 of the first shade 120. Further, the first small shade 124 is notched at a part on the right side in the vehicle width direction, and therefore, from a part of the ridge line 124b 2 and a ridge line whose shade height decreases toward the right side in the vehicle width direction. with a ridge 124b 5 made.
  • Second small shade 126 (second small shade body 126b) has a shade shape corresponding to the notched portions of the first small shade 124 has a ridge 126b 2 which constitutes a part of the ridge line 124b 2.
  • the second shade 140 (second shade body 140b) has the same shape as the second shade 140 of the headlamp unit 210L of the first embodiment.
  • the notch 123 of the first small shade 124 of the headlamp unit 210L is smaller in width in the vehicle width direction than the notch 125 of the second shade 140 of the headlamp unit 210R.
  • the notch 127 of the first small shade 124 of the headlamp unit 210R is smaller in width in the vehicle width direction than the notch 129 of the second shade 140 of the headlamp unit 210L.
  • FIG. 8 is an explanatory diagram showing the posture state of each shade and the shape of the light distribution pattern corresponding to the posture state.
  • the light distribution pattern shown in FIG. 8 is a light distribution pattern formed on a virtual vertical screen disposed at a predetermined position in front of the lamp, for example, at a position 25 m ahead of the lamp.
  • the first small shade 124 (first small shade main body 124b) and the second small shade 126 (second small shade main body 126b) are advanced in the headlight unit 210L and the headlight unit 210R.
  • the second shade 140 (second shade body 140b) is in the retracted position.
  • the low beam light distribution pattern LoL and the low beam light distribution pattern LoR are formed, and the low beam light distribution pattern is formed as a whole.
  • the first small shade 124 is in the advanced position
  • the second small shade 126 and the second shade 140 are in the retracted position in the headlamp unit 210L
  • the first small shade 124 and the second shade are in the headlamp unit 210R.
  • the small shade 126 is in the retracted position
  • the second shade 140 is in the advanced position.
  • the vehicle width direction width of the upper lane side irradiation area (part corresponding to the notch 123) from the cut-off line of the low beam light distribution pattern is relatively small.
  • the left high-side light distribution pattern Hi3L is formed, and the width in the vehicle width direction of the upper lane side irradiation area (the part corresponding to the notch 125) from the cut-off line of the low-beam light distribution pattern by the headlamp unit 210R A relatively large distant left piece high light distribution pattern Hi2R is formed. Then, the near left piece high light distribution pattern Hi3L and the far left piece high light distribution pattern Hi2R are combined to form the far left piece high light distribution pattern as a whole.
  • the far left high-side light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is relatively far away.
  • the headlamp unit 210L forms the near left high-beam light distribution pattern Hi3L
  • the headlamp unit 210R forms the low-beam light distribution pattern LoR.
  • a light distribution pattern is formed.
  • the near left piece high light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is closer than when forming the far left piece high light distribution pattern.
  • the first small shade 124 and the second small shade 126 are in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210L, and the first small shade 124 is in the advanced position in the headlamp unit 210R.
  • the second small shade 126 and the second shade 140 are in the retracted position.
  • the headlight unit 210L causes the far-right direction in which the width in the vehicle width direction of the upper opposite lane side irradiation area (the part corresponding to the notch 129) from the cut-off line of the low beam light distribution pattern is relatively large.
  • the one-side light distribution pattern Hi2L is formed, and the headlight unit 210R determines the width in the vehicle width direction of the opposite lane side irradiation area (the part corresponding to the notch 127) from the cut-off line of the low beam light distribution pattern.
  • a relatively small near right piece high light distribution pattern Hi3R is formed.
  • the distant right piece high light distribution pattern Hi2L and the near right piece high light distribution pattern Hi3R are combined to form the far right piece high light distribution pattern as a whole.
  • the far right high-side light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is relatively far away.
  • the near left piece high light distribution pattern Hi3L and the near right piece high light distribution pattern Hi3R correspond to the third light distribution pattern.
  • the low light distribution pattern LoL is formed by the headlamp unit 210L
  • the near right high light distribution pattern Hi3R is formed by the headlamp unit 210R, and as a whole the near right high A light distribution pattern is formed.
  • the near right piece high light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is closer than when forming the far right piece high light distribution pattern.
  • the far right high light distribution pattern Hi2L is formed by the headlamp unit 210L
  • the far left high light distribution pattern Hi2R is formed by the headlamp unit 210R.
  • a pattern is formed.
  • the far-distance light distribution pattern is an additional light distribution pattern that is formed when the vehicle ahead is relatively far away.
  • the headlight unit 210L forms the near left high-light distribution pattern Hi3L
  • the headlight unit 210R forms the near-right high-light distribution pattern Hi3R.
  • a split light distribution pattern is formed.
  • the near split light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is closer than when forming the far split light distribution pattern, and the light blocking area width at the center is the far split light distribution pattern. It is wider than the light-shielding region width at the center of the.
  • the first shade 120 is divided into two small shades, but the number of small shades is not particularly limited. Further, the second shade 140 may be divided into a plurality of small shades. As the number of small shades increases, the configuration becomes more complicated, but more light distribution patterns can be formed, and switching of the light distribution pattern according to the presence of the preceding vehicle can be realized with higher accuracy. Also in this embodiment, the high beam light distribution pattern HiL and the high beam light distribution pattern HiR can be formed.
  • the first shade 120 is divided into a first small shade 124 and a second small shade 126. Therefore, it is possible to form a right-side high light distribution pattern or a left-side high light distribution pattern in which the width in the vehicle width direction of the irradiation region on the opposite lane side or the own lane side is different. Thereby, since the light distribution pattern can be switched with higher accuracy in accordance with the presence of the preceding vehicle, the visibility of the driver can be improved while preventing glare given to the preceding vehicle further than in the first embodiment. it can.
  • the second small shade 126 has an overlap portion 126c that overlaps the first small shade 124 in the optical axis direction. Therefore, it is possible to prevent the light of the bulb 14 from leaking forward from the boundary between the first small shade 124 and the second small shade 126 in the optical axis direction. Therefore, when the shade is divided, it is possible to prevent the vehicle ahead from receiving glare due to light leaking from the boundary.
  • the vehicle headlamp device according to the third embodiment is different from the first embodiment in the structure of the shade mechanism 18.
  • this embodiment will be described. Since the main configuration of the vehicle headlamp device, the light distribution pattern that can be formed, the switching control of the light distribution pattern, and the like are the same as those in the first embodiment, the same reference numerals are used for the same configurations as those in the first embodiment. The description and illustration are omitted as appropriate.
  • FIG. 9A and 9 (B) are explanatory views showing the structure of the shade mechanism of the vehicle headlamp device according to the third embodiment.
  • FIG. 9A is a schematic vertical sectional view of the shade mechanism 18, and
  • FIG. 9B is a schematic plan view of the shade mechanism 18.
  • the side where the first shade 120 exists (the left side in the drawing) is the front in the optical axis direction with respect to the rear focal plane F, and the illustration of the shade solenoid is omitted. is doing.
  • FIG. 9A shows a state in which the first shade 120 is in the retracted position and the second shade 140 is in the advanced position.
  • the first shade 120 includes a first rotation shaft 130a located behind the rear focal plane F in the optical axis direction, and a rear focal plane F extending from the first rotation shaft 130a.
  • a first arm portion 120a having a portion extending further forward in the optical axis direction, and a first shade body 120b coupled to the first arm portion 120a.
  • the second shade 140 has a second rotating shaft 130b positioned in front of the rear focal plane F in the optical axis direction and the rear focal plane F so as not to interfere with the first arm portion 120a from the second rotating shaft 130b.
  • It includes a second arm portion 140a having a portion extending rearward in the optical axis direction, and a second shade body 140b connected to the second arm portion 140a.
  • two first arm portions 120a arranged in the vehicle width direction extend from the first rotation shaft 130a
  • two second arm portions 140a arranged in the vehicle width direction extend from the second rotation shaft 130b.
  • the two second arm portions 140a are arranged outside the two first arm portions 120a so as not to interfere with the two first arm portions 120a. That is, the two first arm portions 120a are arranged between the two second arm portions 140a.
  • the first rotation shaft 130a of the first shade 120 that falls forward in the optical axis direction with respect to the rear focal plane F is disposed rearward in the optical axis direction with respect to the rear focal plane F, and the rear focal point.
  • the second rotating shaft 130b of the second shade 140 that falls backward in the optical axis direction from the surface F is disposed in front of the rear focal plane F in the optical axis direction.
  • the following effects can be obtained in addition to the effects of the first embodiment. That is, according to the configuration of the present embodiment, the amount of rotation of each shade necessary for retracting the upper edge portions of the first shade 120 and the second shade 140 from the optical axis O can be reduced. In other words, the upper edge can be retracted from the optical axis with a small amount of displacement. Therefore, the installation space of the shade mechanism 18 can be reduced, and the degree of freedom in designing the vehicle headlamp device 200 can be increased. In addition, it is possible to quickly switch the light distribution pattern.
  • the present invention is not limited to the above-described embodiments, and it is possible to combine the embodiments or to add various modifications such as design changes based on the knowledge of those skilled in the art. Embodiments to which modifications are made are also included in the scope of the present invention.
  • Each of the above-described embodiments and a new embodiment resulting from the combination of each of the above-described embodiments and the following modified examples have the effects of the combined embodiments and modified examples.
  • the irradiation control units 228L and 228R determine the presence state of the preceding vehicle, but the vehicle control unit 302 may execute these determinations.
  • the irradiation controllers 228L and 228R control turning on / off of the bulb 14, driving of the swivel actuator 222 and the shade solenoid 238, and the like based on an instruction from the vehicle controller 302.
  • the drive mechanism of the first shade 120 and the second shade 140 is not limited to the shade solenoid.
  • motors 250a and 250b are provided as drive sources for the first shade 120 and the second shade 140, and the first shade 120 and the second shade 140 and the motors 250a and 250b are respectively provided.
  • the structure connected via the gear mechanism may be sufficient.
  • motors 250a and 250b are provided as drive sources for the first shade 120 and the second shade 140, and the first shade 120 and the second shade 140 and the motors 250a and 250b are respectively provided.
  • the structure connected via the link mechanism may be sufficient.
  • FIG. 10A and FIG. 10B are explanatory views showing the structure of a shade mechanism according to a modification.
  • the second shade 140 has a shape corresponding to the left-side high light distribution pattern or the right-side high light distribution pattern, but the second shade 140 has, for example, a traffic regulation on the right side. It may have a shape corresponding to a light distribution pattern for a right-passing low beam called “Dover low beam”, which is used in a traffic area. In this case, even if left-hand traffic and right-hand traffic vary depending on the region in Europe, etc., it is possible to switch between the low-beam light distribution pattern and the right-hand traffic low-beam light distribution pattern without causing light leakage. . In addition, it is possible to form a good low-beam light distribution pattern and a right-handed low-beam light distribution pattern that are free from outline blurring and coloring. Or the shape corresponding to the light distribution pattern for highway modes may be sufficient.
  • the present invention can be used for a vehicle headlamp device, and in particular, can be used for a vehicle headlamp device used in an automobile or the like.

Abstract

A headlight device for a vehicle is provided with: a first shade (120) which is displaced to an advanced position coinciding with a rear focal point surface (F) and to a first retreated position located further forward in the optical axis direction than the advanced position, and which forms at the advanced position a first light distribution pattern; a second shade (140) which is displaced to the advance position and to a second retreated position located further rearward in the optical axis direction than the advanced position, and which forms at the advanced position a second light distribution pattern; a first stopper (122); a second stopper (142); and a control unit which, when switching between the first light distribution pattern and the second light distribution pattern, controls the displacements of the first and second shades in such a manner that, while the upper edge of one of the shades which is in the middle of displacement to the advanced position is brought close to the upper edge of the other shade which is located at the advanced position, said shade is displaced to the advanced position and the other shade is displaced to the retreated position side.

Description

車両用前照灯装置Vehicle headlamp device
 本発明は、車両用前照灯装置に関し、特に、自動車などに用いられる車両用前照灯装置に関するものである。 The present invention relates to a vehicle headlamp device, and more particularly to a vehicle headlamp device used in an automobile or the like.
 車両用前照灯装置は、光源からの光を直接前方に向けるか光源からの光をリフレクタで前方へ反射させてロービームまたはハイビームを照射するようになっている。光源が単一の場合におけるロービームとハイビームのビーム切り替え方法の1つとして、シェードと呼ばれる遮光部材を、形成したい配光パターンに応じて移動させてビームを切り替える方法が提案されている。 The vehicle headlamp device irradiates a low beam or a high beam by directing the light from the light source directly forward or reflecting the light from the light source forward by a reflector. As one of beam switching methods between a low beam and a high beam when a single light source is used, a method of switching a beam by moving a light shielding member called a shade according to a light distribution pattern to be formed has been proposed.
 一方、近年の車両の高性能化、高機能化に伴い、車両用前照灯装置においても様々な状況に対応できる配光パターンの形成が望まれている。これに対し、例えば特許文献1のヘッドランプは、光軸に対して進退可能な2つのマスク(シェード)を備え、2つのマスクをそれぞれ独立に遮蔽位置、あるいは後退位置に変位させることで、少なくても3つの配光パターンを形成できるように構成されている。 On the other hand, with the recent high performance and high performance of vehicles, the formation of a light distribution pattern that can cope with various situations is also desired in vehicle headlamp devices. On the other hand, for example, the headlamp disclosed in Patent Document 1 includes two masks (shades) that can move forward and backward with respect to the optical axis, and each of the two masks can be independently displaced to a shielding position or a retracting position. However, it is configured so that three light distribution patterns can be formed.
特開2003-100121号公報JP 2003-100121 A
 上述の特許文献1のヘッドランプのように、光軸に対して進退自在な複数のシェードを設け、所望の配光パターンを形成するシェードを選択的に変位させる場合は、各シェードを機構的に干渉することなく進退させる構造が必要である。また、各シェードの干渉を回避すべく複数のシェードのそれぞれの変位タイミングをずらすことが考えられるが、その場合には、配光パターンの切り替え時にいずれのシェードによっても光が遮蔽されず非遮光パターンが形成される状態、すなわち光漏れが発生してしまうおそれがあった。 In the case of providing a plurality of shades that can move forward and backward with respect to the optical axis as in the above-described headlamp of Patent Document 1 and selectively displacing the shades that form a desired light distribution pattern, each shade is mechanically A structure that can be advanced and retracted without interference is required. In addition, it is conceivable to shift the displacement timing of each of the plurality of shades in order to avoid interference between the shades. In this case, the light is not blocked by any shade when switching the light distribution pattern, and the non-light-shielding pattern. There is a possibility that light leakage occurs.
 また、車両用前照灯装置は投影レンズを介して車両前方へ光を照射するため、配光パターンの明暗境界となるカットオフラインを決定するシェードの稜線部を、投影レンズの後方焦点位置に配置する必要があった。後方焦点位置から前後にシェードの稜線部がずれると、形成される配光パターンのカットオフラインの輪郭がぼけてしまう場合や、遮蔽される光と遮蔽されない光の構成バランスが崩れ、カットオフラインの近傍領域に光の分光成分による色付き現象が生じてしまう場合がある。 In addition, since the vehicle headlamp device irradiates light forward of the vehicle through the projection lens, the ridge line portion of the shade that determines the cut-off line that becomes the light / dark boundary of the light distribution pattern is arranged at the rear focal position of the projection lens. There was a need to do. If the shade ridge line part deviates back and forth from the back focus position, the contour of the cut-off line of the formed light distribution pattern may be blurred, or the composition balance between the shielded light and the unshielded light is lost, and the vicinity of the cut-off line A coloring phenomenon due to the spectral component of light may occur in the region.
 本発明者は、複数のシェードを用いる場合には、これらの点に配慮した設計が必要になることを認識するに至った。これに対し、特許文献1のヘッドランプでは、一方のシェードを光軸方向前方に傾倒して光軸から後退させ、他方のシェードを光軸方向後方に傾倒して光軸から後退させることで両者の干渉を回避しているが、輪郭ぼけや色付き、あるいは光漏れが生じてしまうおそれがあった。したがって、これらの問題を解消する構造の提案が望まれている。 The present inventor has come to recognize that when a plurality of shades are used, a design in consideration of these points is necessary. On the other hand, in the headlamp of Patent Document 1, one shade is tilted forward in the optical axis direction and retracted from the optical axis, and the other shade is tilted backward in the optical axis direction and retracted from the optical axis. However, there is a risk that outline blurring, coloring, or light leakage may occur. Therefore, a proposal of a structure that solves these problems is desired.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、複数のシェードを用いる場合でも機構的な干渉がなく、形成する配光パターンの輪郭ぼけや色付き、および配光パターン切り替え時の光漏れを防ぐことができる車両用前照灯装置を提供することにある。 The present invention has been made in view of such a situation, and the purpose thereof is that there is no mechanical interference even when a plurality of shades are used, and the contour of the light distribution pattern to be formed is colored or colored, and the light distribution pattern is switched. An object of the present invention is to provide a vehicle headlamp device that can prevent light leakage.
 上記課題を解決するために、本発明のある態様の車両用前照灯装置は、投影レンズを介して車両前方へ光を照射可能な光源と、光源の光軸に対して進退可能であり、上縁部が投影レンズの後方焦点面と重なる進出位置と、進出位置よりも光軸方向前方の第1退避位置とに変位し、進出位置で第1配光パターンを形成し、第1退避位置で非遮光パターンの形成を許容する第1シェードと、光軸に対して進退可能であり、進出位置と、進出位置よりも光軸方向後方の第2退避位置とに変位し、進出位置で第2配光パターンを形成し、第2退避位置で非遮光パターンの形成を許容する第2シェードと、進出位置に向けて変位する第1シェードが進出位置で停止するように第1シェードの変位を規制する第1ストッパと、進出位置に向けて変位する第2シェードが進出位置で停止するように第2シェードの変位を規制する第2ストッパと、第1配光パターンと第2配光パターンを相互に切り換える際に、進出位置への変位途中にある一方のシェードの上縁部を進出位置にある他方のシェードの上縁部と近接させた状態で、一方のシェードを進出位置に変位させるとともに他方のシェードを退避位置側に変位させるように第1シェードおよび第2シェードの変位を制御する制御部と、を備えたことを特徴とする。 In order to solve the above problems, a vehicle headlamp device according to an aspect of the present invention is capable of advancing and retracting with respect to an optical axis of a light source capable of irradiating light forward of the vehicle via a projection lens, The upper edge portion is displaced to an advance position where the rear focal plane of the projection lens overlaps and a first retract position in front of the advance position in the optical axis direction, and a first light distribution pattern is formed at the advance position. The first shade that allows the formation of a non-light-shielding pattern and the optical axis can be moved forward and backward, and the first shade is displaced to the advanced position and the second retracted position behind the advanced position in the optical axis direction. The second shade that forms two light distribution patterns and allows the formation of a non-light-shielding pattern at the second retracted position, and the displacement of the first shade so that the first shade that is displaced toward the advanced position stops at the advanced position. The first stopper to be controlled and the displacement toward the advance position The second stopper that regulates the displacement of the second shade so that the two shades stop at the advanced position, and when the first light distribution pattern and the second light distribution pattern are switched to each other, the one that is in the middle of the displacement to the advanced position The first shade so that one shade is displaced to the advanced position and the other shade is displaced to the retracted position while the upper edge of the shade is in proximity to the upper edge of the other shade at the advanced position. And a controller for controlling the displacement of the second shade.
 この態様によれば、複数のシェードを用いる場合でも機構的な干渉がなく、形成する配光パターンの輪郭ぼけや色付き、および配光パターン切り替え時の光漏れを防ぐことができる。 According to this aspect, there is no mechanical interference even when a plurality of shades are used, and it is possible to prevent blurring of the light distribution pattern to be formed, coloring, and light leakage at the time of switching the light distribution pattern.
 上記態様において、第1シェードおよび第2シェードの少なくとも一方は、光軸に交わる方向に並ぶ複数の小シェードに分割されており、複数の小シェードの一部が進出位置にあり、残りの小シェードが退避位置にある状態で第3配光パターンを形成可能であってもよい。これによれば、前方車両に与えるグレアを防ぎながら、運転者の視認性をより向上させることができる。 In the above aspect, at least one of the first shade and the second shade is divided into a plurality of small shades arranged in a direction intersecting the optical axis, and a part of the plurality of small shades is in the advanced position, and the remaining small shades The third light distribution pattern may be able to be formed in a state where is in the retracted position. According to this, the visibility of the driver can be further improved while preventing glare given to the preceding vehicle.
 上記態様において、隣接する2つの小シェードの一方には、他方の小シェードと光軸方向に重なるオーバーラップ部を有すしてもよい。これによれば、シェードが分割されている場合に、境界から漏れた光によって前方車両がグレアを受けるのを防ぐことができる。 In the above aspect, one of two adjacent small shades may have an overlap portion overlapping the other small shade in the optical axis direction. According to this, when a shade is divided | segmented, it can prevent that a preceding vehicle receives glare by the light which leaked from the boundary.
 上記態様において、第1シェードは、後方焦点面よりも光軸方向後方に位置する第1回転軸と、当該第1回転軸から後方焦点面よりも光軸方向前方に延びる第1アーム部と、当該第1アーム部に連結された第1シェード本体とを含み、第2シェードは、後方焦点面よりも光軸方向前方に位置する第2回転軸と、当該第2回転軸から第1アーム部と干渉しないように後方焦点面よりも光軸方向後方に延びる第2アーム部と、当該第2アーム部に連結された第2シェード本体とを含んでもよい。これによれば、第1シェードおよび第2シェードの設置スペースを小さくすることができる。 In the above aspect, the first shade includes a first rotation shaft positioned rearward in the optical axis direction from the rear focal plane, and a first arm portion extending from the first rotation axis forward in the optical axis direction than the rear focal plane; A first shade body coupled to the first arm portion, the second shade being positioned in front of the rear focal plane in the optical axis direction, and the first arm portion from the second rotation shaft. A second arm portion extending rearward in the optical axis direction from the rear focal plane so as not to interfere with the second focal portion, and a second shade body connected to the second arm portion. According to this, the installation space of a 1st shade and a 2nd shade can be made small.
 本発明によれば、複数のシェードを用いる場合でも機構的な干渉がなく、形成する配光パターンの輪郭ぼけや色付き、および配光パターン切り替え時の光漏れを防ぐことができる。 According to the present invention, even when a plurality of shades are used, there is no mechanical interference, and it is possible to prevent blurring and coloring of the light distribution pattern to be formed and light leakage at the time of switching the light distribution pattern.
実施形態1に係る車両用前照灯装置の内部構造を説明する概略鉛直断面図である。1 is a schematic vertical cross-sectional view illustrating an internal structure of a vehicle headlamp device according to a first embodiment. 前照灯ユニットの照射制御部と車両側の車両制御部との動作連携を説明する機能ブロック図である。It is a functional block diagram explaining operation | movement cooperation with the irradiation control part of a headlamp unit, and the vehicle control part by the side of a vehicle. 図3(A)~図3(C)は、シェード機構の構造を示す説明図である。FIGS. 3A to 3C are explanatory views showing the structure of the shade mechanism. 図4(A)、図4(B)は、各シェードの形状と、各シェードの組み合わせにより形成される配光パターンの形状を示す説明図である。4A and 4B are explanatory diagrams showing the shape of each shade and the shape of a light distribution pattern formed by a combination of the shades. 図5(A)~図5(C)は、配光パターンの切り替え時における各シェードの変位状態を示す説明図である。FIGS. 5A to 5C are explanatory diagrams showing the displacement state of each shade when the light distribution pattern is switched. 図6(A)、図6(B)は、実施形態2に係る車両用前照灯装置のシェード機構の構造を示す説明図である。6A and 6B are explanatory views showing the structure of the shade mechanism of the vehicle headlamp apparatus according to the second embodiment. 各シェードの形状を示す説明図である。It is explanatory drawing which shows the shape of each shade. 各シェードの姿勢状態とそれに対応する配光パターンの形状を示す説明図である。It is explanatory drawing which shows the attitude | position state of each shade, and the shape of the light distribution pattern corresponding to it. 図9(A)、図9(B)は、実施形態3に係る車両用前照灯装置のシェード機構の構造を示す説明図である。FIG. 9A and FIG. 9B are explanatory views showing the structure of the shade mechanism of the vehicle headlamp apparatus according to the third embodiment. 図10(A)、図10(B)は、変形例に係るシェード機構の構造を示す説明図である。FIG. 10A and FIG. 10B are explanatory views showing the structure of a shade mechanism according to a modification.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 (実施形態1)
 図1は、実施形態1に係る車両用前照灯装置の内部構造を説明する概略鉛直断面図である。本実施形態の車両用前照灯装置200は、車両の車幅方向の左側端部に配置された前照灯ユニット210Lと右側端部に配置された前照灯ユニット210Rとを備える(以下、適宜、前照灯ユニット210Lと前照灯ユニット210Rを総称して「前照灯ユニット210」という)。本実施形態の前照灯ユニット210L,210Rは、例えば1つの光源から照射されるビームの一部を遮ることによりロービーム用配光パターンや後述する付加配光パターンを形成し、遮らないときにハイビーム用配光パターン(非遮光パターン)を形成する、いわゆる配光可変式前照灯である。前照灯ユニット210L,210Rの大部分は左右対称の構造を有する点以外は実質的に同一の構成であるため、以下では、右側の前照灯ユニット210Rの構造を説明し、左側の前照灯ユニットの説明は適宜省略する。なお、前照灯ユニット210Lの各部材について記載する場合には、説明の便宜上、各部材に対して前照灯ユニット210Rの対応する部材と同一の符号を付す。また、前照灯ユニット210R側の符号が末尾に「R」を含む場合には、末尾の「R」を「L」に置き換える。
(Embodiment 1)
FIG. 1 is a schematic vertical sectional view for explaining the internal structure of the vehicle headlamp device according to the first embodiment. The vehicle headlamp device 200 of the present embodiment includes a headlamp unit 210L disposed at the left end portion in the vehicle width direction of the vehicle and a headlamp unit 210R disposed at the right end portion (hereinafter, referred to as “the headlight unit 210R”). As appropriate, the headlamp unit 210L and the headlamp unit 210R are collectively referred to as “headlamp unit 210”). The headlamp units 210L and 210R of this embodiment form a low beam light distribution pattern or an additional light distribution pattern described later by blocking a part of the beam emitted from one light source, for example. This is a so-called variable light distribution headlamp that forms a light distribution pattern (non-light-shielding pattern). Since most of the headlight units 210L and 210R have substantially the same configuration except that they have a symmetrical structure, the structure of the right headlight unit 210R will be described below and the left headlight unit 210R will be described. Description of the lamp unit is omitted as appropriate. In addition, when describing each member of the headlamp unit 210L, for convenience of explanation, the same reference numerals as the corresponding members of the headlamp unit 210R are attached to the respective members. Further, when the sign on the headlamp unit 210R side includes “R” at the end, “R” at the end is replaced with “L”.
 前照灯ユニット210Rは、ランプボディ212と透光カバー214を含む。ランプボディ212は、車両前方方向に開口部を有し、後方側にはバルブ14の交換時等に取り外す着脱カバー212aを有する。そして、ランプボディ212の前方の開口部には、透光カバー214が接続されて灯室216が形成される。灯室216には、光を車両前方方向に照射する灯具ユニット10が収納されている。灯具ユニット10の一部には、当該灯具ユニット10の揺動中心となるピボット機構218aを有するランプブラケット218が形成されている。ランプブラケット218は、ランプボディ212の壁面に回転自在に支持されたエイミング調整ネジ220と螺合している。したがって、灯具ユニット10はエイミング調整ネジ220の調整状態で定められた灯室216内の所定位置に傾動可能な状態で支持されることになる。 The headlamp unit 210R includes a lamp body 212 and a translucent cover 214. The lamp body 212 has an opening in the front direction of the vehicle, and has a detachable cover 212a to be removed when the bulb 14 is replaced on the rear side. A translucent cover 214 is connected to an opening in front of the lamp body 212 to form a lamp chamber 216. The lamp chamber 216 houses the lamp unit 10 that irradiates light in the forward direction of the vehicle. A lamp bracket 218 having a pivot mechanism 218 a serving as a swing center of the lamp unit 10 is formed in a part of the lamp unit 10. The lamp bracket 218 is screwed with an aiming adjustment screw 220 that is rotatably supported on the wall surface of the lamp body 212. Therefore, the lamp unit 10 is supported in a state where it can tilt to a predetermined position in the lamp chamber 216 determined by the adjustment state of the aiming adjustment screw 220.
 また、灯具ユニット10の下面には、曲線道路走行時等に進行方向を照らす曲線道路用配光可変前照灯(Adaptive Front-lighing System:AFS)などを構成するためのスイブルアクチュエータ222の回転軸222aが固定されている。スイブルアクチュエータ222は車両側から提供される操舵量のデータやナビゲーションシステムから提供される走行道路の形状データ、対向車や先行車を含む前方車両と自車との相対位置の関係等に基づいて、灯具ユニット10を、ピボット機構218aを中心として進行方向に旋回(スイブル:swivel)させる。その結果、灯具ユニット10の照射領域が車両の正面ではなく曲線道路のカーブの先に向き、運転者の前方視認性が向上する。スイブルアクチュエータ222は、例えばステッピングモータで構成することができる。なお、スイブル角度が固定値の場合には、ソレノイドなども利用可能である。 In addition, on the lower surface of the lamp unit 10, a rotating shaft of a swivel actuator 222 for constituting a variable road headlamp (Adaptive Front-lighing System: AFS) that illuminates the traveling direction when traveling on a curved road or the like. 222a is fixed. The swivel actuator 222 is based on the steering amount data provided from the vehicle side, the shape data of the traveling road provided from the navigation system, the relationship between the relative position of the forward vehicle and the vehicle including the oncoming vehicle and the preceding vehicle, etc. The lamp unit 10 is swiveled (swiveled) in the traveling direction around the pivot mechanism 218a. As a result, the irradiation area of the lamp unit 10 is directed to the tip of the curved road instead of the front of the vehicle, and the driver's forward visibility is improved. The swivel actuator 222 can be composed of a stepping motor, for example. When the swivel angle is a fixed value, a solenoid or the like can be used.
 スイブルアクチュエータ222は、ユニットブラケット224に固定されている。ユニットブラケット224には、ランプボディ212の外部に配置されたレベリングアクチュエータ226が接続されている。レベリングアクチュエータ226は、例えばロッド226aを矢印M,N方向に伸縮させるモータなどで構成されている。ロッド226aが矢印M方向に伸長した場合、灯具ユニット10はピボット機構218aを中心として後傾姿勢になるように揺動する。逆にロッド226aが矢印N方向に短縮した場合、灯具ユニット10はピボット機構218aを中心として前傾姿勢になるように揺動する。灯具ユニット10が後傾姿勢になると、光軸を上方に向けるレベリング調整ができる。また、灯具ユニット10が前傾姿勢になると、光軸を下方に向けるレベリング調整ができる。このような、レベリング調整をすることで車両姿勢に応じた光軸調整ができる。その結果、車両用前照灯装置200による前方照射光の到達距離を最適な距離に調整することができる。 The swivel actuator 222 is fixed to the unit bracket 224. A leveling actuator 226 disposed outside the lamp body 212 is connected to the unit bracket 224. The leveling actuator 226 is composed of, for example, a motor that expands and contracts the rod 226a in the directions of arrows M and N. When the rod 226a extends in the direction of the arrow M, the lamp unit 10 swings so as to be in a backward inclined posture with the pivot mechanism 218a as the center. On the other hand, when the rod 226a is shortened in the direction of arrow N, the lamp unit 10 swings so as to assume a forward leaning posture with the pivot mechanism 218a as the center. When the lamp unit 10 is tilted backward, leveling adjustment with the optical axis directed upward can be performed. In addition, when the lamp unit 10 is in the forward tilted posture, leveling adjustment that directs the optical axis downward can be performed. By performing such leveling adjustment, the optical axis can be adjusted according to the vehicle posture. As a result, the reach distance of the front irradiation light by the vehicle headlamp device 200 can be adjusted to an optimum distance.
 このレベリング調整は、車両走行中の車両姿勢に応じて実行することもできる。例えば、車両が走行中に加速する場合は車両姿勢は後傾姿勢となり、逆に減速する場合は前傾姿勢となる。したがって、前照灯ユニット210の照射方向も車両の姿勢状態に対応して上下に変動して、前方照射距離が長くなったり短くなったりする。そこで、車両姿勢に基づき灯具ユニット10のレベリング調整をリアルタイムで実行することで走行中でも前方照射の到達距離を最適に調整できる。これを「オートレベリング」と称することもある。 This leveling adjustment can also be executed according to the vehicle posture while the vehicle is running. For example, when the vehicle is accelerated while traveling, the vehicle posture is a backward leaning posture, and conversely, when the vehicle is decelerated, it is a forward leaning posture. Therefore, the irradiation direction of the headlamp unit 210 also fluctuates up and down corresponding to the posture state of the vehicle, and the front irradiation distance becomes longer or shorter. Therefore, by executing the leveling adjustment of the lamp unit 10 in real time based on the vehicle posture, it is possible to optimally adjust the front irradiation reach distance even during traveling. This is sometimes referred to as “auto-leveling”.
 灯具ユニット10下方位置の灯室216の内壁面には、灯具ユニット10の点消灯制御や配光パターンの形成制御を実行する照射制御部228(制御部)が配置されている。図1の場合、前照灯ユニット210Rを制御するための照射制御部228Rが配置されている。この照射制御部228Rは、スイブルアクチュエータ222、レベリングアクチュエータ226等の制御も実行する。なお、前照灯ユニット210Lは専用の照射制御部228Lを有していてもよいし、前照灯ユニット210Rに設けられた照射制御部228Rが前照灯ユニット210Rおよび前照灯ユニット210Lの各アクチュエータの制御や配光パターンの形成制御を一括して制御するようにしてもよい。 On the inner wall surface of the lamp chamber 216 at the lower position of the lamp unit 10, an irradiation control unit 228 (control unit) that performs turning on / off control of the lamp unit 10 and control of formation of a light distribution pattern is disposed. In the case of FIG. 1, an irradiation control unit 228R for controlling the headlamp unit 210R is arranged. The irradiation controller 228R also controls the swivel actuator 222, the leveling actuator 226, and the like. The headlamp unit 210L may have a dedicated irradiation control unit 228L, or the irradiation control unit 228R provided in the headlamp unit 210R may include each of the headlamp unit 210R and the headlamp unit 210L. Actuator control and light distribution pattern formation control may be collectively controlled.
 灯具ユニット10はエイミング調整機構を備えることができる。例えば、レベリングアクチュエータ226のロッド226aとユニットブラケット224の接続部分に、エイミング調整時の揺動中心となるエイミングピボット機構(図示せず)を配置する。また、ランプブラケット218には前述したエイミング調整ネジ220が車幅方向に間隔を空けて配置されている。例えば2本のエイミング調整ネジ220を反時計回り方向に回転させれば、灯具ユニット10はエイミングピボット機構を中心に前傾姿勢となり光軸が下方に調整される。同様に2本のエイミング調整ネジ220を時計回り方向に回転させれば、灯具ユニット10はエイミングピボット機構を中心に後傾姿勢となり光軸が上方に調整される。また、車幅方向左側のエイミング調整ネジ220を反時計回り方向に回転させれば、灯具ユニット10はエイミングピボット機構を中心に右旋回姿勢となり右方向に光軸が調整される。また、車幅方向右側のエイミング調整ネジ220を反時計回り方向に回転させれば、灯具ユニット10はエイミングピボット機構を中心に左旋回姿勢となり左方向に光軸が調整される。このエイミング調整は、車両出荷時や車検時、前照灯ユニット210の交換時に行われる。そして、前照灯ユニット210が設計上定められた姿勢に調整され、この姿勢を基準に本実施形態の配光パターンの形成制御が行われる。 The lamp unit 10 can include an aiming adjustment mechanism. For example, an aiming pivot mechanism (not shown) serving as a swing center at the time of aiming adjustment is disposed at a connecting portion between the rod 226a of the leveling actuator 226 and the unit bracket 224. Further, the above-described aiming adjusting screw 220 is disposed on the lamp bracket 218 with a gap in the vehicle width direction. For example, if the two aiming adjustment screws 220 are rotated counterclockwise, the lamp unit 10 is inclined forward with the aiming pivot mechanism as the center, and the optical axis is adjusted downward. Similarly, if the two aiming adjusting screws 220 are rotated in the clockwise direction, the lamp unit 10 is tilted backward with the aiming pivot mechanism as the center, and the optical axis is adjusted upward. Further, if the aiming adjustment screw 220 on the left side in the vehicle width direction is rotated counterclockwise, the lamp unit 10 assumes a right turning posture around the aiming pivot mechanism, and the optical axis is adjusted rightward. If the aiming adjustment screw 220 on the right side in the vehicle width direction is rotated in the counterclockwise direction, the lamp unit 10 assumes a left turning posture around the aiming pivot mechanism, and the optical axis is adjusted in the left direction. This aiming adjustment is performed when the vehicle is shipped or inspected, or when the headlamp unit 210 is replaced. The headlamp unit 210 is adjusted to a posture determined by design, and the light distribution pattern formation control of this embodiment is performed based on this posture.
 灯具ユニット10は、光源としてのバルブ14、リフレクタ16を内壁に支持する灯具ハウジング17、第1シェード120および第2シェード140を含むシェード機構18、投影レンズ20を備える。バルブ14は、例えば、白熱球やハロゲンランプ、放電球、LEDなどが使用可能である。本実施形態では、バルブ14をハロゲンランプで構成する例を示す。 The lamp unit 10 includes a bulb 14 as a light source, a lamp housing 17 that supports the reflector 16 on the inner wall, a shade mechanism 18 including a first shade 120 and a second shade 140, and a projection lens 20. As the bulb 14, for example, an incandescent bulb, a halogen lamp, a discharge bulb, an LED, or the like can be used. In the present embodiment, an example in which the bulb 14 is constituted by a halogen lamp is shown.
 リフレクタ16は、その少なくとも一部が楕円球面状であり、この楕円球面は、灯具ユニット10の光軸Oを含む断面形状が楕円形状の少なくとも一部となるように設定されている。リフレクタ16の楕円球面状部分は、バルブ14の略中央に第1焦点を有し、投影レンズ20の後方焦点を含む焦点面である後方焦点面上に第2焦点を有する。バルブ14から放射された光は、直接あるいはリフレクタ16で反射して、その一部がシェード機構18を経て投影レンズ20へと導かれる。 The reflector 16 is at least partially elliptical spherical, and the elliptical spherical surface is set so that the cross-sectional shape including the optical axis O of the lamp unit 10 is at least part of an elliptical shape. The elliptical spherical portion of the reflector 16 has a first focal point substantially at the center of the bulb 14 and has a second focal point on a rear focal plane that is a focal plane including the rear focal point of the projection lens 20. The light emitted from the bulb 14 is reflected directly or by the reflector 16, and a part thereof is guided to the projection lens 20 through the shade mechanism 18.
 シェード機構18に含まれる第1シェード120は、光軸Oに対して進退可能な板状のシェードであり、その上縁部が投影レンズ20の後方焦点面と重なる進出位置において、バルブ14の光の一部を遮って第1配光パターンを形成する。また、第1シェード120は、退避位置(第1退避位置)においてハイビーム用配光パターン(非遮光パターン)の形成を許容する。第2シェード140は、光軸Oに対して進退可能な板状のシェードであり、その上縁部が投影レンズ20の後方焦点面と重なる進出位置において、バルブ14の光の一部を遮って第2配光パターンを形成する。また、第2シェード140は、退避位置(第2退避位置)においてハイビーム用配光パターンの形成を許容する。第1シェード120および第2シェード140は、それぞれに設けられたシェードソレノイド238によって互いに独立に進退移動可能である。第1シェード120および第2シェード140とそれぞれのシェードソレノイド238とは、シェードソレノイド238のロッドの変位を各シェードに伝達する連結部材239により連結されている。図1には、第1シェード120用の第1シェードソレノイド238aと、連結部材239aが示されている。シェード機構18の構成は後に詳細に説明する。 The first shade 120 included in the shade mechanism 18 is a plate-like shade that can advance and retreat with respect to the optical axis O, and the light of the bulb 14 is at the advanced position where the upper edge overlaps the rear focal plane of the projection lens 20. A first light distribution pattern is formed by blocking a part of the first light distribution pattern. The first shade 120 allows the formation of a high beam light distribution pattern (non-light-shielding pattern) at the retracted position (first retracted position). The second shade 140 is a plate-like shade that can advance and retreat with respect to the optical axis O, and blocks a part of the light of the bulb 14 at an advanced position where the upper edge overlaps the rear focal plane of the projection lens 20. A second light distribution pattern is formed. The second shade 140 allows the formation of a high beam light distribution pattern at the retracted position (second retracted position). The first shade 120 and the second shade 140 can move forward and backward independently of each other by a shade solenoid 238 provided on each of them. The first shade 120 and the second shade 140 and the respective shade solenoids 238 are connected by a connecting member 239 that transmits the displacement of the rod of the shade solenoid 238 to each shade. FIG. 1 shows a first shade solenoid 238a for the first shade 120 and a connecting member 239a. The configuration of the shade mechanism 18 will be described in detail later.
 投影レンズ20は車両前後方向に延びる光軸O上に配置され、バルブ14は投影レンズ20の後方焦点面よりも後方側に配置される。投影レンズ20は、前方側表面が凸面で後方側表面が平面の平凸非球面レンズからなり、後方焦点面上に形成される光源像を反転像として車両用前照灯装置200前方の仮想鉛直スクリーン上に投影する。 The projection lens 20 is disposed on the optical axis O extending in the vehicle front-rear direction, and the bulb 14 is disposed on the rear side of the rear focal plane of the projection lens 20. The projection lens 20 is a plano-convex aspherical lens having a convex front surface and a flat rear surface, and a virtual vertical front of the vehicle headlamp device 200 with a light source image formed on the rear focal plane as an inverted image. Project on the screen.
 図2は、上述のように構成された前照灯ユニットの照射制御部と車両側の車両制御部との動作連携を説明する機能ブロック図である。なお、上述のように右側の前照灯ユニット210Rおよび左側の前照灯ユニット210Lの構成は基本的に同一であるため、前照灯ユニット210R側のみの説明を行い前照灯ユニット210L側の説明は省略する。 FIG. 2 is a functional block diagram for explaining the cooperation between the irradiation control unit of the headlight unit configured as described above and the vehicle control unit on the vehicle side. As described above, the configuration of the right headlight unit 210R and the left headlight unit 210L is basically the same, so only the headlamp unit 210R side will be described and the headlight unit 210L side will be described. Description is omitted.
 前照灯ユニット210Rの照射制御部228Rは、車両300に搭載された車両制御部302から得られた情報に基づいて電源回路230の制御を行いバルブ14の点灯制御を実行する。また、照射制御部228Rは車両制御部302から得られた情報に基づいて可変シェード制御部232、スイブル制御部234、レベリング制御部236を制御する。可変シェード制御部232は、第1シェード120に連結部材239a(図1参照)を介して接続された第1シェードソレノイド238aを制御して、第1シェード120を進出位置と退避位置とに変位させる。また、可変シェード制御部232は、第2シェード140に連結部材239(図1参照)を介して接続された第2シェードソレノイド238bを制御して、第2シェード140を進出位置と退避位置とに変位させる。(以下、適宜、第1シェードソレノイド238aと第2シェードソレノイド238bを総称して「シェードソレノイド238」という)。 The irradiation control unit 228R of the headlamp unit 210R controls the power supply circuit 230 based on information obtained from the vehicle control unit 302 mounted on the vehicle 300, and performs lighting control of the bulb 14. The irradiation control unit 228R controls the variable shade control unit 232, the swivel control unit 234, and the leveling control unit 236 based on information obtained from the vehicle control unit 302. The variable shade control unit 232 controls the first shade solenoid 238a connected to the first shade 120 via the connecting member 239a (see FIG. 1) to displace the first shade 120 to the advanced position and the retracted position. . Further, the variable shade control unit 232 controls the second shade solenoid 238b connected to the second shade 140 via the connecting member 239 (see FIG. 1) so that the second shade 140 is moved to the advanced position and the retracted position. Displace. (Hereinafter, the first shade solenoid 238a and the second shade solenoid 238b will be collectively referred to as “shade solenoid 238” where appropriate).
 スイブル制御部234は、スイブルアクチュエータ222を制御して灯具ユニット10の光軸を車幅方向について調整する。例えば、曲路走行や右左折走行などの旋回時に灯具ユニット10の光軸をこれから進行する方向に向ける。また、レベリング制御部236は、レベリングアクチュエータ226を制御して、灯具ユニット10の光軸を車両上下方向について調整する。例えば、加減速時における車両姿勢の前傾、後傾に応じて灯具ユニット10の姿勢を調整して前方照射光の到達距離を最適な距離に調整する。車両制御部302は、前照灯ユニット210Lに対しても同様の情報を提供し、前照灯ユニット210Lに設けられた照射制御部228L(制御部)が、照射制御部228Rと同様の制御を実行する。 The swivel control unit 234 controls the swivel actuator 222 to adjust the optical axis of the lamp unit 10 in the vehicle width direction. For example, the light axis of the lamp unit 10 is directed in the direction of travel when turning such as traveling on a curved road or turning left and right. Further, the leveling control unit 236 controls the leveling actuator 226 to adjust the optical axis of the lamp unit 10 in the vehicle vertical direction. For example, the posture of the lamp unit 10 is adjusted according to the forward and backward tilt of the vehicle posture at the time of acceleration / deceleration to adjust the reach distance of the front irradiation light to the optimum distance. The vehicle control unit 302 provides similar information to the headlamp unit 210L, and the irradiation control unit 228L (control unit) provided in the headlamp unit 210L performs the same control as the irradiation control unit 228R. Execute.
 本実施形態の場合、前照灯ユニット210L,210Rによって形成される配光パターンは、運転者によるライトスイッチ304の操作内容に応じて切り替え可能である。この場合、ライトスイッチ304の操作に応じて、照射制御部228L,228Rが可変シェード制御部232を介してモータ238の駆動により所望の配光パターンを形成する。 In the case of this embodiment, the light distribution pattern formed by the headlight units 210L and 210R can be switched according to the operation content of the light switch 304 by the driver. In this case, according to the operation of the light switch 304, the irradiation controllers 228L and 228R form a desired light distribution pattern by driving the motor 238 via the variable shade controller 232.
 また、本実施形態の前照灯ユニット210L,210Rは、ライトスイッチ304の操作によらず、各種センサで検出された車両周囲状況に応じた最適な配光パターンを形成するように自動制御することもできる。例えば、自車の前方に先行車や対向車、歩行者等が存在することが検出できた場合には、照射制御部228L,228Rは車両制御部302から得られた情報に基づいてグレアを防止するべきであると判定し、ロービーム用配光パターンを形成することができる。また、自車の前方に先行車や対向車、歩行者等が存在しないことが検出できた場合には、照射制御部228L,228Rは運転者の視認性を向上させるべきであると判定して第1シェード120および第2シェード140による遮光を伴わないハイビーム用配光パターンを形成することができる。また、ロービーム用配光パターンおよびハイビーム用配光パターンに加えて、後述する付加配光パターンを形成可能な場合には、前方車両の存在状態に応じて前方車両を考慮した最適な配光パターンを形成してもよい。このような制御モードをADB(Adaptive Driving Beam)モードという場合がある。 In addition, the headlamp units 210L and 210R of this embodiment are automatically controlled so as to form an optimal light distribution pattern according to the vehicle surroundings detected by various sensors, regardless of the operation of the light switch 304. You can also. For example, when it is detected that there is a preceding vehicle, an oncoming vehicle, a pedestrian, or the like ahead of the host vehicle, the irradiation control units 228L and 228R prevent glare based on information obtained from the vehicle control unit 302. Therefore, it is possible to form a low beam light distribution pattern. In addition, when it can be detected that there is no preceding vehicle, oncoming vehicle, pedestrian, etc. in front of the host vehicle, the irradiation controllers 228L and 228R determine that the driver's visibility should be improved. A high-beam light distribution pattern without light shielding by the first shade 120 and the second shade 140 can be formed. In addition to the low-beam light distribution pattern and the high-beam light distribution pattern, when an additional light distribution pattern, which will be described later, can be formed, an optimal light distribution pattern that considers the preceding vehicle is selected according to the presence state of the preceding vehicle. It may be formed. Such a control mode may be referred to as an ADB (Adaptive Driving Beam) mode.
 このように先行車や対向車などの対象物を検出するために、車両制御部302には対象物の認識手段として例えばステレオカメラなどのカメラ306が接続されている。カメラ306で撮影された画像フレームデータは、画像処理部308で対象物認識処理など所定の画像処理が施されて車両制御部302に提供され、車両制御部302で少なくとも自車に対する前方車両の検出処理が実行される。そして、車両制御部302は、前方車両の検出処理の結果を照射制御部228L,228Rに提供する。照射制御部228L,228Rは、車両制御部302で検出された前方車両に関するデータに基づき、その前方車両を考慮した最適な配光パターンを形成するように各制御部に情報を提供する。 Thus, in order to detect an object such as a preceding vehicle or an oncoming vehicle, a camera 306 such as a stereo camera is connected to the vehicle control unit 302 as an object recognition means. Image frame data captured by the camera 306 is subjected to predetermined image processing such as object recognition processing by the image processing unit 308 and provided to the vehicle control unit 302. The vehicle control unit 302 detects at least a vehicle ahead of the host vehicle. Processing is executed. And the vehicle control part 302 provides the result of the detection process of a front vehicle to irradiation control part 228L, 228R. Irradiation control units 228L and 228R provide information to each control unit so as to form an optimal light distribution pattern in consideration of the preceding vehicle based on data regarding the preceding vehicle detected by vehicle control unit 302.
 また、車両制御部302は、車両300に通常搭載されているステアリングセンサ310、車速センサ312などからの情報も取得可能であり、これにより照射制御部228L,228Rは車両300の走行状態や走行姿勢に応じて、形成する配光パターンを選択したり光軸の方向を変化させて、簡易的に配光パターンを変化させたりすることができる。例えば、車両制御部302がステアリングセンサ310からの情報に基づき車両が旋回していると判定した場合、車両制御部302から情報を受け取った照射制御部228L,228Rはシェードソレノイド238を制御して旋回方向の視界を向上させるような配光パターンを形成することができる。また、第1シェード120および第2シェード140の変位状態は変化させずに、スイブル制御部234によりスイブルアクチュエータ222を制御して灯具ユニット10の光軸を旋回方向に向けて視界を向上させてもよい。このような制御モードを旋回感応モードという場合がある。 In addition, the vehicle control unit 302 can also acquire information from the steering sensor 310, the vehicle speed sensor 312 and the like that are normally mounted on the vehicle 300, whereby the irradiation control units 228L and 228R are able to acquire the traveling state and the traveling posture of the vehicle 300. Accordingly, it is possible to easily change the light distribution pattern by selecting the light distribution pattern to be formed or changing the direction of the optical axis. For example, when the vehicle control unit 302 determines that the vehicle is turning based on information from the steering sensor 310, the irradiation control units 228L and 228R that have received the information from the vehicle control unit 302 control the shade solenoid 238 to turn. It is possible to form a light distribution pattern that improves the visibility of the direction. Further, the displacement state of the first shade 120 and the second shade 140 is not changed, and the swivel actuator 222 is controlled by the swivel control unit 234 to improve the field of view by turning the optical axis of the lamp unit 10 in the turning direction. Good. Such a control mode may be referred to as a turning sensitive mode.
 また、夜間に高速走行しているときには、対向車や先行車、道路標識やメッセージボードの認識をできるだけ早く行えるように自車前方を照明することが好ましい。そこで、車両制御部302が車速センサ312からの情報に基づき高速走行していると判定したときに、照射制御部228L,228Rは第1シェード120および第2シェード140の変位状態を制御してロービーム用配光パターンの一部の形状を変えたハイウェイモードのロービーム用配光パターンを形成してもよい。同様の制御は、レベリング制御部236によりレベリングアクチュエータ226を制御して灯具ユニット10を後傾姿勢に変化させることでも実現できる。上述したレベリングアクチュエータ226による加減速時のオートレベリング制御は、照射距離を一定に維持するような制御である。この制御を利用して、積極的にカットオフラインの高さを制御すれば、第1シェード120および第2シェード140を変位させて異なるカットオフラインを選択する制御と同等の制御ができる。このような制御モードを速度感応モードという場合がある。 Also, when driving at high speeds at night, it is preferable to illuminate the front of the host vehicle so that oncoming vehicles, preceding vehicles, road signs and message boards can be recognized as soon as possible. Therefore, when the vehicle control unit 302 determines that the vehicle is traveling at a high speed based on information from the vehicle speed sensor 312, the irradiation control units 228L and 228R control the displacement state of the first shade 120 and the second shade 140 to control the low beam. A highway mode low beam light distribution pattern in which a part of the light distribution pattern is changed may be formed. Similar control can be realized by controlling the leveling actuator 226 by the leveling control unit 236 to change the lamp unit 10 to the backward tilted posture. The above-described automatic leveling control during acceleration / deceleration by the leveling actuator 226 is control that maintains the irradiation distance constant. If the height of the cut-off line is positively controlled using this control, the same control as the control for selecting the different cut-off lines by displacing the first shade 120 and the second shade 140 can be performed. Such a control mode may be referred to as a speed sensitive mode.
 なお、灯具ユニット10の光軸調整は、スイブルアクチュエータ222やレベリングアクチュエータ226を用いずに実行することもできる。例えば、エイミング制御をリアルタイムで実行するようにして灯具ユニット10を旋回させたり前傾姿勢や後傾姿勢にして、所望する方向の視認性を向上させてもよい。 The optical axis adjustment of the lamp unit 10 can be performed without using the swivel actuator 222 or the leveling actuator 226. For example, the lamp unit 10 may be swung or the forward tilt posture or the backward tilt posture may be performed by performing the aiming control in real time to improve the visibility in a desired direction.
 この他、車両制御部302は、ナビゲーションシステム314から道路の形状情報や形態情報、道路標識の設置情報などを取得することもできる。これらの情報を事前に取得することにより、照射制御部228L,228Rはレベリングアクチュエータ226、スイブルアクチュエータ222、シェードソレノイド238等を制御して、走行道路に適した配光パターンをスムーズに形成することもできる。このような制御モードをナビ感応モードという場合もある。 In addition, the vehicle control unit 302 can also acquire road shape information and form information, road sign installation information, and the like from the navigation system 314. By acquiring these pieces of information in advance, the irradiation controllers 228L and 228R can control the leveling actuator 226, swivel actuator 222, shade solenoid 238, and the like to smoothly form a light distribution pattern suitable for the traveling road. it can. Such a control mode may be referred to as a navigation sensitive mode.
 このように、自車の走行状態や自車周囲の状況に応じて自車の配光パターンを自動的に変更することにより、先行車や対向車等の前方車両の運転者や同乗者に与えるグレアを抑制しつつ、自車運転者の視界向上が可能となる。以上説明した各種制御モードを含む配光パターンの自動形成制御は、例えばライトスイッチ304によってそれぞれの自動形成制御が指示された場合に実行される。 In this way, by automatically changing the light distribution pattern of the own vehicle according to the traveling state of the own vehicle and the situation around the own vehicle, it is given to the driver and passengers of the preceding vehicle such as the preceding vehicle and the oncoming vehicle It is possible to improve the visibility of the driver of the vehicle while suppressing glare. The automatic light distribution pattern formation control including the various control modes described above is executed when each automatic formation control is instructed by the light switch 304, for example.
 次に、シェード機構18の構造を詳細に説明する。図3(A)~図3(C)は、シェード機構の構造を示す説明図である。なお、図3(A)は、前照灯ユニット210Lのシェード機構18の概略水平断面図であり、図3(B)は、前照灯ユニット210Rのシェード機構18の概略水平断面図であり、図3(C)は、前照灯ユニット210Rのシェード機構18の概略鉛直断面図である。また、図3(A)、図3(B)では、シェードソレノイド238の図示を省略しており、図3(C)では、第2シェードソレノイド238bの図示を省略している。また、図3(C)では、第1シェード120が進出位置にあり、第2シェード140が退避位置にある状態を示している。さらに、図3(A)~図3(C)では、回転軸130に対して第1シェード120側が光軸方向前方であり、第2シェード140側が光軸方向後方である。 Next, the structure of the shade mechanism 18 will be described in detail. FIGS. 3A to 3C are explanatory views showing the structure of the shade mechanism. 3A is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210L, and FIG. 3B is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210R. FIG. 3C is a schematic vertical sectional view of the shade mechanism 18 of the headlamp unit 210R. 3A and 3B, the illustration of the shade solenoid 238 is omitted, and the illustration of the second shade solenoid 238b is omitted in FIG. 3C. FIG. 3C shows a state where the first shade 120 is in the advanced position and the second shade 140 is in the retracted position. Further, in FIGS. 3A to 3C, the first shade 120 side is the front in the optical axis direction with respect to the rotating shaft 130, and the second shade 140 side is the rear in the optical axis direction.
 図3(A)、図3(B)に示すように、シェード機構18は、第1シェード120、第1ストッパ122、回転軸130、第2シェード140、第2ストッパ142を備える。前照灯ユニット210Lのシェード機構18では、光軸方向後方から見た場合に、第2シェード140は回転軸130に対して車幅方向左寄り(車幅方向外側)に連結されている。また、前照灯ユニット210Rのシェード機構18では、光軸方向後方から見た場合に、第2シェード140は回転軸130に対して車幅方向右寄り(車幅方向外側)に連結されている。前照灯ユニット210Lと前照灯ユニット210Rとは、第2シェード140の連結位置と、第1シェード120および第2シェード140の形状を除いて他の部分の構成は同一である。そのため、以下では、前照灯ユニット210Rの構造を説明し、前照灯ユニット210Lの説明は省略する。 3A and 3B, the shade mechanism 18 includes a first shade 120, a first stopper 122, a rotating shaft 130, a second shade 140, and a second stopper 142. In the shade mechanism 18 of the headlamp unit 210L, the second shade 140 is coupled to the rotation shaft 130 on the left side in the vehicle width direction (outside in the vehicle width direction) when viewed from the rear in the optical axis direction. Further, in the shade mechanism 18 of the headlamp unit 210R, the second shade 140 is connected to the right side in the vehicle width direction (outside in the vehicle width direction) with respect to the rotation shaft 130 when viewed from the rear in the optical axis direction. The headlamp unit 210L and the headlamp unit 210R have the same configuration except for the connecting position of the second shade 140 and the shapes of the first shade 120 and the second shade 140. Therefore, in the following, the structure of the headlamp unit 210R will be described, and the description of the headlamp unit 210L will be omitted.
 第1シェード120は、バルブ14の光の一部を遮って第1配光パターンを形成するシェードであり、図3(C)に示すように、回転軸130に対して回動可能に設けられた第1アーム部120aと、第1アーム部120aに連結された第1シェード本体120bとを含む。回転軸130は、その中心が投影レンズ20の後方焦点面Fと重なるように設けられている。第1アーム部120aおよび第1シェード本体120bは、第1シェード120が進出位置にあるときに、第1シェード本体120bの上縁部が後方焦点面Fと重なるように設定されている。本実施形態では、第1アーム部120aが回転軸130との連結部120aと、この連結部120aから後方焦点面Fに近づくように上方に延びる腕部120aを有し、この腕部120aの先端に、第1シェード120が進出位置にある状態で後方焦点面Fと重なるように第1シェード本体120bが設けられている。 The first shade 120 is a shade that blocks a part of the light of the bulb 14 to form a first light distribution pattern, and is provided so as to be rotatable with respect to the rotating shaft 130 as shown in FIG. The first arm part 120a and the first shade body 120b connected to the first arm part 120a. The rotation shaft 130 is provided so that the center thereof overlaps the rear focal plane F of the projection lens 20. The first arm portion 120a and the first shade body 120b are set so that the upper edge portion of the first shade body 120b overlaps the rear focal plane F when the first shade 120 is in the advanced position. In this embodiment, a first arm portion 120a is a connecting portion 120a 1 of the rotary shaft 130, the arm portion 120a 2 extending upward as approaching from the connecting portion 120a 1 on the rear focal plane F, the arm portion A first shade body 120b is provided at the tip of 120a 2 so as to overlap the rear focal plane F in a state where the first shade 120 is in the advanced position.
 第1ストッパ122は、進出位置に向けて変位する第1シェード120が進出位置で停止するように、第1シェード120の変位を規制する。具体的には、第1ストッパ122は、図3(C)に示すように第1シェード120が進出位置に到達した状態で第1アーム部120aと接触する位置に設けられている。第1アーム部120aと第1ストッパ122とが干渉して第1シェード120の回転が規制されることで、第1シェード120は正確に進出位置を取ることが可能になる。 The first stopper 122 regulates the displacement of the first shade 120 so that the first shade 120 that is displaced toward the advanced position stops at the advanced position. Specifically, as shown in FIG. 3C, the first stopper 122 is provided at a position where the first shade 120 comes into contact with the first arm portion 120a in a state where the first shade 120 has reached the advanced position. Since the first arm portion 120a and the first stopper 122 interfere with each other to restrict the rotation of the first shade 120, the first shade 120 can accurately take the advanced position.
 第1アーム部120aには、略L字形状の連結部材239aの一端が回動可能に連結されている。そして、連結部材239aの他端は、第1シェードソレノイド238aのロッド238aに対して回動可能に連結されている。これにより、第1シェードソレノイド238aのロッド238aの進退動作にしたがって第1シェード120が回転軸130を軸として回動し、第1シェード120の起立姿勢および転倒姿勢が切り替えられる。起立姿勢が第1シェード120を進出位置に変位させた姿勢であり、転倒姿勢が第1シェード120を退避位置に変位させた姿勢である。具体的には、第1シェードソレノイド238aのロッド238aが矢印Pの方向に変位して収納状態になるとき、第1シェード120が矢印Pの方向に変位して転倒し、図3(C)において破線で示す退避位置を取る。また、ロッド238aが矢印Qの方向に変位して突出状態になるとき、第1シェード120が矢印PQの方向に変位して起立し、図3(C)において実線で示す進出位置を取る。 One end of a substantially L-shaped connecting member 239a is rotatably connected to the first arm portion 120a. The other end of the connecting member 239a is rotatably connected to the rod 238a 1 of the first shade solenoid 238a. Accordingly, the first shade 120 rotates about the rotation shaft 130 in accordance with the forward / backward movement of the rod 238a 1 of the first shade solenoid 238a, and the standing posture and the falling posture of the first shade 120 are switched. The standing posture is a posture in which the first shade 120 is displaced to the advanced position, and the falling posture is a posture in which the first shade 120 is displaced to the retracted position. Specifically, when the rod 238a 1 of the first shade solenoid 238a is accommodated state displaced in the direction of arrow P 1, the first shade 120 from overturning displaced in the direction of arrow P 2, FIG. 3 ( In C), a retracted position indicated by a broken line is taken. Also, when the rod 238a 1 is projected state displaced in the direction of arrow Q 1, the first shade 120 is erected displaced in the direction of arrow PQ 2, the advanced position shown by the solid line in FIG. 3 (C), take.
 第2シェード140は、バルブ14の光の一部を遮って第2配光パターンを形成するシェードであり、回転軸130に対して回動可能に設けられた第2アーム部140aと、第2アーム部140aに連結された第2シェード本体140bとを含む。第2アーム部140aおよび第2シェード本体140bは、第2シェード140が進出位置にあるときに、第2シェード本体140bの上縁部が後方焦点面Fと重なるように設定されている。本実施形態では、第2アーム部140aが回転軸130との連結部140aと、この連結部140aから後方焦点面Fに近づくように上方に延びる腕部140aを有し、この腕部140aの先端に、第2シェード140が進出位置にある状態で後方焦点面Fと重なるように第2シェード本体140bが設けられている。 The second shade 140 is a shade that blocks a part of the light from the bulb 14 to form a second light distribution pattern. The second shade 140 is provided with a second arm portion 140 a that is rotatable with respect to the rotation shaft 130, A second shade body 140b coupled to the arm part 140a. The second arm portion 140a and the second shade body 140b are set so that the upper edge portion of the second shade body 140b overlaps the rear focal plane F when the second shade 140 is in the advanced position. In this embodiment, a second arm portion 140a and the connecting portion 140a 1 of the rotary shaft 130, the arm portion 140a 2 extending upward as approaching from the connecting portion 140a 1 on the rear focal plane F, the arm portion the tip of 140a 2, the second shade body 140b so as to overlap the rear focal plane F is provided in a state where the second shade 140 is in the advanced position.
 第2ストッパ142は、進出位置に向けて変位する第2シェード140が進出位置で停止するように、第2シェード140の変位を規制する。具体的には、第2ストッパ142は、第2シェード140が進出位置に到達した状態で第2アーム部140aと接触する位置に設けられている。第2アーム部140aと第2ストッパ142とが干渉して第2シェード140の回転が規制されることで、第2シェード140は正確に進出位置を取ることが可能になる。 The second stopper 142 regulates the displacement of the second shade 140 so that the second shade 140 that is displaced toward the advanced position stops at the advanced position. Specifically, the second stopper 142 is provided at a position where the second shade 140 contacts the second arm portion 140a in a state where the second shade 140 has reached the advanced position. Since the second arm portion 140a and the second stopper 142 interfere with each other to restrict the rotation of the second shade 140, the second shade 140 can accurately take the advanced position.
 第2シェード140についても、第1シェード120と同様に、第2アーム部140aが連結部材を介して第2シェードソレノイド238b(図2参照)のロッドに連結されている。これにより、第2シェードソレノイド238bのロッドの進退動作にしたがって第2シェード140が回転軸130を軸として回動し、第2シェード140の起立姿勢および転倒姿勢が切り替えられる。 As for the second shade 140, similarly to the first shade 120, the second arm portion 140a is coupled to the rod of the second shade solenoid 238b (see FIG. 2) via a coupling member. As a result, the second shade 140 rotates about the rotation shaft 130 according to the forward / backward movement of the rod of the second shade solenoid 238b, and the standing posture and the falling posture of the second shade 140 are switched.
 このような構成において、少なくとも第1シェードソレノイド238aは、非制御時にロッド238aが突出するような付勢スプリング内蔵タイプとすることが望ましい。この場合、第1シェードソレノイド238aを非制御状態にするだけで、第1シェード120を進出位置に移動させることができる。第1シェード120が進出位置に移動することにより、ロービーム用配光パターンか、あるいはハイビーム用配光パターンよりはロービーム用配光パターンに近い配光パターンが得られるので、対向車や歩行者にグレアを与え難い配光パターンにできる。つまり、フェールセーフ機能を実現できる。 In such a configuration, at least a first shade solenoid 238a is preferably rod 238a 1 during non-control is a biasing spring built type as to protrude. In this case, the first shade 120 can be moved to the advanced position only by setting the first shade solenoid 238a to the non-control state. By moving the first shade 120 to the advanced position, a light distribution pattern for the low beam or a light distribution pattern closer to the low beam light distribution pattern than the high beam light distribution pattern can be obtained. Light distribution pattern. That is, a fail-safe function can be realized.
 本実施形態に係る車両用前照灯装置200では、第1シェード120が、進出位置において第1シェード本体120bの上縁部が後方焦点面Fと重なるように設定されている。また、第2シェード140が、進出位置において第2シェード本体140bの上縁部が後方焦点面Fと重なるように設定されている。そして、第1シェード120が進出位置よりも光軸方向前方の退避位置(第1退避位置)に変位し、第2シェード140が進出位置よりも光軸方向後方の退避位置(第2退避位置)に変位するように構成されている。すなわち、第1シェード120は後方焦点面Fから前方の領域において進出位置と退避位置とに変位し、第2シェード140は後方焦点面Fから後方の領域において進出位置と退避位置とに変位する。そのため、第1シェード120および第2シェード140は、それぞれが退避位置に変位する際に互いに干渉することがない。なお、本実施形態において、第1シェード120および第2シェード140は回転軸を共通としているが、それぞれに対して別々の回転軸が設けられていてもよい。 In the vehicle headlamp device 200 according to the present embodiment, the first shade 120 is set so that the upper edge of the first shade body 120b overlaps the rear focal plane F at the advanced position. Further, the second shade 140 is set so that the upper edge portion of the second shade body 140b overlaps the rear focal plane F at the advanced position. Then, the first shade 120 is displaced to the retracted position (first retracted position) ahead of the advanced position in the optical axis direction, and the retracted position (second retracted position) of the second shade 140 is rearward of the advanced position in the optical axis direction. It is comprised so that it may displace. That is, the first shade 120 is displaced from the rear focal plane F to the advanced position and the retracted position in the front area, and the second shade 140 is displaced from the rear focal plane F to the advanced position and the retracted position in the rear area. Therefore, the first shade 120 and the second shade 140 do not interfere with each other when they are displaced to the retracted position. In the present embodiment, the first shade 120 and the second shade 140 have a common rotation axis, but separate rotation axes may be provided for each.
 図4(A)、図4(B)は、各シェードの形状と、各シェードの組み合わせにより形成される配光パターンの形状を示す説明図である。図4(A)では各シェードの形状を示し、図4(B)では各シェードの姿勢状態とそれに対応する配光パターンの形状を示している。なお、図4(A)、図4(B)では、第1シェード120および第2シェード140のうち、第1シェード本体120bおよび第2シェード本体140bを示して他の部分は省略している。また、図4(A)、図4(B)では、各シェードを車両用前照灯装置200の正面からバルブ14に向かって見た状態を示している。図4(B)に示す配光パターンは、灯具前方の所定位置、例えば灯具前方25mの位置に配置された仮想鉛直スクリーン上に形成された配光パターンである。 4A and 4B are explanatory diagrams showing the shape of each shade and the shape of a light distribution pattern formed by a combination of the shades. FIG. 4A shows the shape of each shade, and FIG. 4B shows the posture state of each shade and the shape of the light distribution pattern corresponding thereto. 4A and 4B, of the first shade 120 and the second shade 140, the first shade main body 120b and the second shade main body 140b are shown, and other portions are omitted. 4A and 4B show a state in which each shade is viewed from the front of the vehicle headlamp device 200 toward the bulb 14. The light distribution pattern shown in FIG. 4 (B) is a light distribution pattern formed on a virtual vertical screen arranged at a predetermined position in front of the lamp, for example, at a position 25 m ahead of the lamp.
 図4(A)に示すように、左側の前照灯ユニット210L(図では、LHと示している)の第1シェード120(第1シェード本体120b)は、V-V線よりも車幅方向左側で水平方向に延びる稜線120bと、V-V線よりも車幅方向右側において稜線120bよりも高い位置で水平に延びる稜線120bと、稜線120bの右側の端部と稜線120bの左側の端部をつなぐ、斜めに延びる稜線120bとを有する。また、前照灯ユニット210Lの第2シェード140(第2シェード本体140b)は、稜線120bと同一形状の稜線140bと、稜線120bと同一形状の稜線140bとを有する。また、第2シェード140は、車幅方向左側の一部が切り欠かれており、そのため、稜線120bの一部と車幅方向左側にいくにつれてシェード高さが低くなるような稜線とからなる稜線140bを有する。 As shown in FIG. 4A, the first shade 120 (first shade body 120b) of the left headlight unit 210L (shown as LH in the figure) is in the vehicle width direction from the VV line. ridgeline 120b 1 extending in the horizontal direction on the left, a ridge 120b 2 extending horizontally at a position higher than the ridge 120b 1 in the vehicle width direction right side of the line V-V, right end portion of the ridge 120b 1 and ridge 120b 2 And an obliquely extending ridge line 120b 3 connecting the left ends of the two. The second shade 140 (second shade body 140b) of the headlight unit 210L includes a ridge 140b 2 of the ridge 120b 2 of the same shape, and a ridge line 120b 3 and ridge 140b 3 of the same shape. Moreover, and a second shade 140 is notched part of the left side in the vehicle width direction, therefore, a ridge such as the shade height becomes lower as going to a portion left in the vehicle width direction of the ridge 120b 1 with a ridge 140b 4.
 右側の前照灯ユニット210R(図では、RHと示している)の第1シェード120(第1シェード本体120b)は、前照灯ユニット210Lと同様に稜線120bと、稜線120bと、稜線120bとを有する。また、前照灯ユニット210Rの第2シェード140(第2シェード本体140bは)、稜線120bと同じ形状の稜線140bと、稜線120bと同じ形状の稜線140bとを有する。また、第2シェード140は、車幅方向右側の一部が切り欠かれており、そのため、稜線120bの一部と車幅方向右側にいくにつれてシェード高さが低くなるような稜線とからなる稜線140bを有する。 (In the figure, a shows that RH) headlamp unit 210R of the right first shade 120 of the (first shade body 120b) includes a ridge 120b 1 as with the headlamp unit 210L, and ridge 120b 2, ridge and a 120b 3. Further, the second shade 140 of the headlight unit 210R (second shade body 140b is) has a ridge line 140b 1 of the same shape as the ridge 120b 1, and a ridge line 140b 3 of the same shape as the ridge 120b 3. Moreover, and a second shade 140 is notched part of the right side in the vehicle width direction, therefore, a ridge such as the shade height decreases as part of the ridge 120b 2 and go to the right in the vehicle width direction with a ridge 140b 5.
 このような構成において、本実施形態に係る車両用前照灯装置200では、図4(B)に示すように、前照灯ユニット210Lおよび前照灯ユニット210Rのそれぞれのシェード状態を組み合わせることで、次のような配光パターンを形成することができる。 In such a configuration, in the vehicle headlamp device 200 according to the present embodiment, as shown in FIG. 4B, the shade states of the headlamp unit 210L and the headlamp unit 210R are combined. The following light distribution pattern can be formed.
 まず、第1モードでは、前照灯ユニット210Lおよび前照灯ユニット210Rで第1シェード120(第1シェード本体120b)が進出位置、第2シェード140(第2シェード本体140b)が退避位置にある。この場合には、前照灯ユニット210Lによりロービーム用配光パターンLoLが形成され、前照灯ユニット210Rによりロービーム用配光パターンLoRが形成される。そして、ロービーム用配光パターンLoLとロービーム用配光パターンLoRとが合成されて、全体としてロービーム用配光パターンが形成される。このロービーム用配光パターンは、交通法規が左側通行の地域において、前方車両や歩行者にグレアを与えないように配慮された配光パターンである。ロービーム用配光パターンLoは、V-V線よりも右側(対向車線側)に、水平ラインであるH-H線と平行に延びる対向車線側カットオフラインを、またV-V線よりも左側(自車線側)に、対向車線側カットオフラインよりも高い位置でH-H線と平行に延びる自車線側カットオフラインを、そして対向車線側カットオフラインと自車線側カットオフラインとの間に、両者をつなぐ斜めカットオフラインをそれぞれ有する。斜めカットオフラインは、対向車線側カットオフラインとV-V線との交点から左斜め上方へ45°の傾斜角で延びている。本実施形態では、ロービーム用配光パターンLoL,LoRが第1配光パターンに相当する。 First, in the first mode, in the headlamp unit 210L and the headlamp unit 210R, the first shade 120 (first shade body 120b) is in the advanced position, and the second shade 140 (second shade body 140b) is in the retracted position. . In this case, the low beam light distribution pattern LoL is formed by the headlamp unit 210L, and the low beam light distribution pattern LoR is formed by the headlamp unit 210R. Then, the low beam light distribution pattern LoL and the low beam light distribution pattern LoR are combined to form a low beam light distribution pattern as a whole. This light distribution pattern for low beams is a light distribution pattern that is designed so as not to give glare to the preceding vehicle or pedestrian in an area where traffic regulations are left-hand traffic. The low beam light distribution pattern Lo has an oncoming lane side cut-off line extending parallel to the horizontal HH line on the right side (opposite lane side) of the VV line, and on the left side of the VV line ( On the own lane side), the own lane side cut-off line that extends parallel to the HH line at a position higher than the oncoming lane side cut off line, and both between the oncoming lane side cut off line and the own lane side cut off line Each has an oblique cut-off line to be connected. The diagonal cut-off line extends at an inclination angle of 45 ° from the intersection of the opposite lane side cut-off line and the VV line diagonally upward to the left. In the present embodiment, the low-beam light distribution patterns LoL and LoR correspond to the first light distribution pattern.
 ここで、図1に示すように、本実施形態の投影レンズ20は、前方側表面が凸面で後方側表面が平面の平凸非球面レンズであるため、後方焦点面F上に形成される光源像は上下左右の反転像として車両前方の仮想鉛直スクリーン上に投影される。そのため、第1シェード120の稜線120bによって自車線側カットオフラインが形成され、稜線120bによって対向車線側カットオフラインが形成され、稜線120bによって斜めカットオフラインが形成される。 Here, as shown in FIG. 1, the projection lens 20 of the present embodiment is a plano-convex aspherical lens having a convex front surface and a flat rear surface, and thus a light source formed on the rear focal plane F. The image is projected on a virtual vertical screen in front of the vehicle as an up / down / left / right inverted image. Therefore, the self-lane side cutoff line formed by the ridge 120b 1 of the first shade 120, is formed opposite lane cutoff line by the edge line 120b 2, the oblique cutoff line is formed by the ridge 120b 3.
 第2モードでは、前照灯ユニット210Lで第1シェード120が退避位置、第2シェード140が進出位置にあり、前照灯ユニット210Rで第1シェード120が進出位置、第2シェード140が退避位置にある。この場合には、前照灯ユニット210Lにより、いわゆる「左片ハイビーム」を形成する左片ハイ用配光パターンHi1Lが形成され、前照灯ユニット210Rによりロービーム用配光パターンLoRが形成される。そして、左片ハイ用配光パターンHi1Lとロービーム用配光パターンLoRとが合成されて、全体として左片ハイ用配光パターンが形成される。この左片ハイ用配光パターンは、左側通行時にハイビーム用配光パターンの対向車線側を遮光し、自車線側のみハイビーム領域で照射する付加配光パターンである。左片ハイ用配光パターンは、自車線に先行車や歩行者が存在せず、対向車線に対向車や歩行者が存在する場合に利用することが好ましく、対向車や歩行者にグレアを与えず、自車線側のみをハイビーム照射して運転者の視認性を高めることができる。左片ハイ用配光パターンHi1Lの自車線側のハイビーム領域は、前照灯ユニット210Lの第2シェード140の切り欠き部に対応している。 In the second mode, the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210L, the first shade 120 is in the advanced position, and the second shade 140 is in the retracted position in the headlamp unit 210R. It is in. In this case, a left-side high light distribution pattern Hi1L that forms a so-called “left-side high beam” is formed by the headlamp unit 210L, and a low-beam light distribution pattern LoR is formed by the headlamp unit 210R. Then, the left-side high light distribution pattern Hi1L and the low-beam light distribution pattern LoR are combined to form the left-side high light distribution pattern as a whole. This left-side high light distribution pattern is an additional light distribution pattern that shields the opposite lane side of the high beam light distribution pattern when passing on the left side and irradiates only the own lane side in the high beam region. The left-side high light distribution pattern is preferably used when there is no preceding vehicle or pedestrian in the own lane, and there is an oncoming vehicle or pedestrian in the oncoming lane, and glare is given to the oncoming vehicle or pedestrian. In addition, the driver's visibility can be enhanced by irradiating only the own lane side with a high beam. The high beam area on the own lane side of the left high-side light distribution pattern Hi1L corresponds to the notch of the second shade 140 of the headlamp unit 210L.
 第3モードでは、前照灯ユニット210Lで第1シェード120が進出位置、第2シェード140が退避位置にあり、前照灯ユニット210Rで第1シェード120が退避位置、第2シェード140が進出位置にある。この場合には、前照灯ユニット210Lによりロービーム用配光パターンLoLが形成され、前照灯ユニット210Rにより、いわゆる「右片ハイビーム」を形成する右片ハイ用配光パターンHi1Rが形成される。そして、ロービーム用配光パターンLoLと右片ハイ用配光パターンHi1Rとが合成されて、全体として右片ハイ用配光パターンが形成される。この右片ハイ用配光パターンは、左側通行時にハイビーム用配光パターンの自車線側を遮光し、対向車線側のみハイビーム領域で照射する付加配光パターンである。右片ハイ用配光パターンは、対向車線に対向車や歩行者が存在せず、自車線に先行車や歩行者が存在する場合に利用することが好ましく、先行車や歩行者にグレアを与えず、対向車線側のみをハイビーム照射して運転者の視認性を高めることができる。右片ハイ用配光パターンHi1Rの対向車線側のハイビーム領域は、前照灯ユニット210Rの第2シェード140の切り欠き部に対応している。本実施形態では、左片ハイ用配光パターンHi1Lおよび右片ハイ用配光パターンHi1Rが第2配光パターンに相当する。 In the third mode, the first shade 120 is in the advanced position and the second shade 140 is in the retracted position in the headlamp unit 210L, and the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210R. It is in. In this case, a low beam light distribution pattern LoL is formed by the headlamp unit 210L, and a right piece high light distribution pattern Hi1R that forms a so-called “right piece high beam” is formed by the headlamp unit 210R. Then, the low beam light distribution pattern LoL and the right piece high light distribution pattern Hi1R are combined to form a right piece high light distribution pattern as a whole. This right-side high light distribution pattern is an additional light distribution pattern that shields the own lane side of the high beam light distribution pattern when passing on the left side and irradiates only the opposite lane side in the high beam region. The right-side high light distribution pattern is preferably used when there is no oncoming vehicle or pedestrian in the oncoming lane, and there is a preceding vehicle or pedestrian in the own lane, giving glare to the preceding vehicle or pedestrian. In addition, the driver's visibility can be improved by irradiating only the opposite lane side with a high beam. The high beam region on the opposite lane side of the right-side high light distribution pattern Hi1R corresponds to the cutout portion of the second shade 140 of the headlamp unit 210R. In the present embodiment, the left piece high light distribution pattern Hi1L and the right piece high light distribution pattern Hi1R correspond to the second light distribution pattern.
 第4モードでは、前照灯ユニット210Lで第1シェード120が退避位置、第2シェード140が進出位置にあり、前照灯ユニット210Rで第1シェード120が退避位置、第2シェード140が進出位置にある。この場合には、前照灯ユニット210Lにより左片ハイ用配光パターンHi1Lが形成され、前照灯ユニット210Rにより右片ハイ用配光パターンHi1Rが形成される。そして、左片ハイ用配光パターンHi1Lと右片ハイ用配光パターンHi1Rとが合成されて、全体としていわゆるスプリット配光パターンが形成される。このスプリット配光パターンは、水平ラインよりも上方の中央部に遮光領域を有し、遮光領域の水平方向両側にハイビーム領域を有する付加配光パターンである。スプリット配光パターンは、比較的遠方に前方車両が存在する場合に利用することが好ましく、この前方車両にグレアを与えず、対向車線側および自車線側をハイビーム照射して運転者の視認性を高めることができる。 In the fourth mode, the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210L, and the first shade 120 is in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210R. It is in. In this case, the left high light distribution pattern Hi1L is formed by the headlamp unit 210L, and the right high light distribution pattern Hi1R is formed by the headlamp unit 210R. Then, the left-side high light distribution pattern Hi1L and the right-side high light distribution pattern Hi1R are combined to form a so-called split light distribution pattern as a whole. This split light distribution pattern is an additional light distribution pattern having a light shielding region at the center above the horizontal line and having high beam regions on both sides in the horizontal direction of the light shielding region. The split light distribution pattern is preferably used when a forward vehicle is present at a relatively long distance, and glare is not given to the forward vehicle, and the opposite lane side and the own lane side are irradiated with a high beam to improve driver visibility. Can be increased.
 第5モードでは、前照灯ユニット210Lおよび前照灯ユニット210Rで第1シェード120および第2シェード140がともに退避位置にある。この場合には、前照灯ユニット210Lによりハイビーム用配光パターンHiLが形成され、前照灯ユニット210Rによりハイビーム用配光パターンHiRが形成される。そして、ハイビーム用配光パターンHiLとハイビーム用配光パターンHiRとが合成されて、全体としてハイビーム用配光パターンが形成される。このハイビーム用配光パターンは、前方の広範囲および遠方を照明する配光パターンであり、例えば、前方車両や歩行者へのグレアを配慮する必要のない場合に形成される。 In the fifth mode, the first shade 120 and the second shade 140 are both in the retracted position in the headlamp unit 210L and the headlamp unit 210R. In this case, the high beam light distribution pattern HiL is formed by the headlamp unit 210L, and the high beam light distribution pattern HiR is formed by the headlamp unit 210R. Then, the high-beam light distribution pattern HiL and the high-beam light distribution pattern HiR are combined to form a high-beam light distribution pattern as a whole. This high beam light distribution pattern is a light distribution pattern that illuminates a wide area in the front and far away, and is formed, for example, when it is not necessary to consider glare to the vehicle ahead or a pedestrian.
 続いて、本実施形態に係る車両用前照灯装置200における、配光パターンの切り替え制御について説明する。図5(A)~図5(C)は、配光パターンの切り替え時における各シェードの変位状態を示す説明図である。 Subsequently, the light distribution pattern switching control in the vehicle headlamp device 200 according to the present embodiment will be described. FIGS. 5A to 5C are explanatory diagrams showing the displacement state of each shade when the light distribution pattern is switched.
 例えば、図5(A)に示すように、前照灯ユニット210Rにおいて第1シェード120が進出位置にあり、第2シェード140が退避位置にある状態で、照射制御部228Rがロービーム用配光パターンLoRから右片ハイ用配光パターンHi1Rへの配光パターンの切り替え制御を実行したとする。この場合、まず照射制御部228Rは、退避位置にある第2シェード140を進出位置に変位させるべく、可変シェード制御部232を制御して第2シェードソレノイド238b(ともに図2参照)を駆動させる。これにより、図5(A)に示す矢印の方向に第2シェード140が変位し始める。 For example, as shown in FIG. 5A, in the headlamp unit 210R, the irradiation control unit 228R performs the low beam light distribution pattern in a state where the first shade 120 is in the advanced position and the second shade 140 is in the retracted position. It is assumed that the light distribution pattern switching control from the LoR to the right-side high light distribution pattern Hi1R is executed. In this case, first, the irradiation control unit 228R controls the variable shade control unit 232 to drive the second shade solenoid 238b (both see FIG. 2) in order to displace the second shade 140 in the retracted position to the advanced position. Thereby, the second shade 140 starts to be displaced in the direction of the arrow shown in FIG.
 次に、照射制御部228Rは、図5(B)に示すように、進出位置への変位途中にある第2シェード140の上縁部を進出位置にある第1シェード120の上縁部と近接させた状態とする。この状態では、第1シェード120の第1シェード本体120bの一部と第2シェード140の第2シェード本体140bの一部とが接触しており、第1シェード本体120bの上縁部と第2シェード本体140bの上縁部とが光軸方向に重なっている。 Next, as shown in FIG. 5B, the irradiation controller 228R approaches the upper edge of the second shade 140 that is in the process of being displaced to the advanced position to the upper edge of the first shade 120 that is in the advanced position. Let the state be In this state, a part of the first shade body 120b of the first shade 120 and a part of the second shade body 140b of the second shade 140 are in contact with each other, and the upper edge of the first shade body 120b and the second The upper edge of the shade body 140b overlaps in the optical axis direction.
 照射制御部228Rは、第1シェード120の上縁部と第2シェード140の上縁部とが近接した状態を維持しながら、第2シェード140を進出位置に変位させるとともに第1シェード120を退避位置側に変位させる。そして、第2シェード140が進出位置に到達すると、図5(C)に示すように、照射制御部228Rは第1シェード120を退避位置に変位させる。 The irradiation control unit 228R moves the second shade 140 to the advanced position and retracts the first shade 120 while maintaining the state where the upper edge of the first shade 120 and the upper edge of the second shade 140 are close to each other. Displace to the position side. When the second shade 140 reaches the advanced position, the irradiation control unit 228R displaces the first shade 120 to the retracted position, as shown in FIG.
 このように、照射制御部228Rは、配光パターンを第1配光パターンから第2配光パターンに切り換える際に、進出位置への変位途中にある第2シェード140の上縁部を進出位置にある第1シェード120の上縁部と近接させた状態で、第2シェード140を進出位置に変位させ、第1シェード120を退避位置側に変位させる。これにより、第1シェード120および第2シェード140の少なくとも一方が光軸O上に位置する状態を維持することができるため、配光パターンの切り替え時に光漏れが発生するのを回避することができる。また、本実施形態では、第1配光パターンおよび第2配光パターンが後方焦点面Fに移動したシェードのみによって形成される。そのため、形成された配光パターンのカットオフラインは輪郭ぼけや色付きを伴うことがなく、明瞭な配光パターンを形成することができる。 In this way, when switching the light distribution pattern from the first light distribution pattern to the second light distribution pattern, the irradiation control unit 228R sets the upper edge of the second shade 140 that is in the process of moving to the advanced position to the advanced position. The second shade 140 is displaced to the advanced position while being close to the upper edge of a certain first shade 120, and the first shade 120 is displaced to the retracted position side. Thereby, since the state where at least one of the first shade 120 and the second shade 140 is positioned on the optical axis O can be maintained, it is possible to avoid light leakage at the time of switching the light distribution pattern. . In the present embodiment, the first light distribution pattern and the second light distribution pattern are formed only by the shade moved to the rear focal plane F. Therefore, the cut-off line of the formed light distribution pattern is not accompanied by outline blurring or coloring, and a clear light distribution pattern can be formed.
 照射制御部228Rは、タイマー回路とスイッチ回路(ともに図示せず)を備え、第2シェード140を変位させるべく第2シェードソレノイド238bに駆動信号を入力してからの経過時間をタイマー回路が計測する。そして、第2シェード140の変位速度(回動速度)と、進出位置と退避位置との間の変位距離とで定まる所定の時間が経過した後、タイマー回路はスイッチ回路に信号を出力する。スイッチ回路は、タイマー回路から信号を受信すると、第1シェードソレノイド238aを駆動するように可変シェード制御部232に制御信号を出力する。このようにして、照射制御部228Rは、各シェードの切り替えタイミングを制御することができる。 The irradiation control unit 228R includes a timer circuit and a switch circuit (both not shown), and the timer circuit measures an elapsed time after the drive signal is input to the second shade solenoid 238b to displace the second shade 140. . After a predetermined time determined by the displacement speed (rotation speed) of the second shade 140 and the displacement distance between the advanced position and the retracted position has elapsed, the timer circuit outputs a signal to the switch circuit. When receiving a signal from the timer circuit, the switch circuit outputs a control signal to the variable shade control unit 232 so as to drive the first shade solenoid 238a. In this way, the irradiation control unit 228R can control the switching timing of each shade.
 なお、照射制御部228Rは、配光パターンを第2配光パターンから第1配光パターンに切り替える場合にも同様の制御を実行可能である。また、照射制御部228Lについても照射制御部228Rと同様の制御が可能である。 Note that the irradiation control unit 228R can perform the same control when switching the light distribution pattern from the second light distribution pattern to the first light distribution pattern. Further, the irradiation controller 228L can be controlled in the same manner as the irradiation controller 228R.
 以上説明したように、本実施形態に係る車両用前照灯装置200は、進出位置と、進出位置よりも光軸方向前方の退避位置とに変位し、進出位置でロービーム用配光パターンLoL,LoRを形成し、退避位置でハイビーム用配光パターンHiL,HiRの形成を許容する第1シェード120を備える。また、車両用前照灯装置200は、進出位置と、進出位置よりも光軸方向後方の退避位置とに変位し、進出位置で左片ハイ用配光パターンHi1L、あるいは右片ハイ用配光パターンHi1Rを形成し、退避位置でハイビーム用配光パターンHiL,HiRの形成を許容する第2シェード140を備える。このように、第1シェード120と第2シェード140とを、後方焦点面Fを挟んでそれぞれ反対の方向に退避させることで、それぞれのシェードが退避位置に変位する際に他方のシェードと干渉するのを回避することができる。 As described above, the vehicle headlamp device 200 according to the present embodiment is displaced to the advanced position and the retracted position ahead of the advanced position in the optical axis direction, and the low beam light distribution pattern LoL, The first shade 120 is provided that forms the LoR and allows the formation of the high-beam light distribution patterns HiL and HiR at the retracted position. In addition, the vehicle headlamp device 200 is displaced to the advanced position and the retracted position behind the advanced position in the optical axis direction, and the left high-side light distribution pattern Hi1L or the right high-side light distribution at the advanced position. A second shade 140 is provided that forms the pattern Hi1R and allows the formation of the high-beam light distribution patterns HiL and HiR at the retracted position. Thus, by retracting the first shade 120 and the second shade 140 in opposite directions across the rear focal plane F, each shade interferes with the other shade when displaced to the retracted position. Can be avoided.
 また、車両用前照灯装置200は、第1シェード120が進出位置を取るように第1シェード120の変位を規制する第1ストッパ122と、第2シェード140が進出位置を取るように第2シェード140の変位を規制する第2ストッパ142とを備える。したがって、第1シェード120および第2シェード140の上縁部を高精度に後方焦点面Fに一致させることができ、そのため、輪郭ぼけや色付きのない良好な配光パターンを形成することができる。また、第1シェード120および第2シェード140が回転軸130を中心に回動する構成であるため、例えば棒状部材のような、簡単な構造のストッパを回動軌道上に設けるだけでシェードの変位を簡単に規制することができる。そのため、第1ストッパ122および第2ストッパ142の構造を簡単にすることができ、車両用前照灯装置200の製造コストを低減することができる。 The vehicle headlamp device 200 also includes a first stopper 122 that regulates the displacement of the first shade 120 so that the first shade 120 takes the advanced position and a second stopper 140 so that the second shade 140 takes the advanced position. And a second stopper 142 for restricting the displacement of the shade 140. Therefore, the upper edge portions of the first shade 120 and the second shade 140 can be made to coincide with the rear focal plane F with high accuracy, and therefore, a good light distribution pattern without outline blurring or coloring can be formed. In addition, since the first shade 120 and the second shade 140 are configured to rotate around the rotation shaft 130, the displacement of the shade can be achieved simply by providing a stopper with a simple structure such as a rod-shaped member on the rotation track. Can be easily regulated. Therefore, the structure of the 1st stopper 122 and the 2nd stopper 142 can be simplified, and the manufacturing cost of the vehicle headlamp apparatus 200 can be reduced.
 また、車両用前照灯装置200では、照射制御部228が、第1配光パターンと第2配光パターンを相互に切り換える際に、進出位置への変位途中にある一方のシェードの上縁部を進出位置にある他方のシェードの上縁部と近接させた状態で、一方のシェードを進出位置に変位させるとともに他方のシェードを退避位置側に変位させている。そのため、配光パターンの切り替え時に光漏れが発生するのを防ぐことができる。 Further, in the vehicle headlamp device 200, when the irradiation control unit 228 switches between the first light distribution pattern and the second light distribution pattern, the upper edge portion of one shade that is in the process of being displaced to the advanced position. In a state in which is placed close to the upper edge of the other shade at the advanced position, one shade is displaced to the advanced position and the other shade is displaced to the retracted position side. Therefore, it is possible to prevent light leakage from occurring when switching the light distribution pattern.
 さらに、カットオフライン形状の外周面を有する回転シェードにより各配光パターンを形成する構成では、後方焦点面F近傍に延在する外周面の一部によりバルブ14の光が遮られてしまい、形成される配光パターンの照度が低くなる傾向にある。これに対し、本実施形態の車両用前照灯装置200では、板状の第1シェード120および第2シェード140によって各配光パターンを形成しているため、上述の回転シェードと比べて配光パターンの照度を高めることができる。また、車両用前照灯装置200では、第1シェード120および第2シェード140を回転軸130周りに回動させる構成である。そのため、板状のシェードをレールに沿って上下方向にスライドさせることで光軸Oに対して進退移動させる構成と比べて、シェードの摺動部分を減らすことができる。これにより、シェードが破損する可能性を減らすことができ、またシェードの長寿命化を図ることができるため、車両用前照灯装置200の作動信頼性の向上と長寿命化を図ることができる。 Further, in the configuration in which each light distribution pattern is formed by the rotary shade having the outer peripheral surface of the cut-off line shape, the light of the bulb 14 is blocked by a part of the outer peripheral surface extending in the vicinity of the rear focal plane F. The illuminance of the light distribution pattern tends to be low. On the other hand, in the vehicle headlamp device 200 according to the present embodiment, each light distribution pattern is formed by the plate-like first shade 120 and the second shade 140. Therefore, the light distribution is compared with the above-described rotary shade. The illuminance of the pattern can be increased. Further, the vehicle headlamp device 200 is configured to rotate the first shade 120 and the second shade 140 around the rotation shaft 130. Therefore, the sliding part of a shade can be reduced compared with the structure made to slide back and forth with respect to the optical axis O by sliding a plate-shaped shade up and down along a rail. As a result, the possibility of damage to the shade can be reduced, and the life of the shade can be extended. Therefore, the operational reliability and the life of the vehicle headlamp device 200 can be improved. .
 (実施形態2)
 実施形態2に係る車両用前照灯装置は、第1シェード120および第2シェード140の少なくとも一方が複数の小シェードに分割されたものである。以下、本実施形態について説明する。なお、車両用前照灯装置の主な構成や、配光パターンの切り替え制御等は実施形態1と同様であるため、実施形態1と同様の構成については同一の符号を付し、その説明および図示は適宜省略する。
(Embodiment 2)
In the vehicle headlamp device according to the second embodiment, at least one of the first shade 120 and the second shade 140 is divided into a plurality of small shades. Hereinafter, this embodiment will be described. Since the main configuration of the vehicle headlamp device, the light distribution pattern switching control, and the like are the same as those in the first embodiment, the same reference numerals are given to the same configurations as those in the first embodiment, and the description and The illustration is omitted as appropriate.
 図6(A)、図6(B)は、実施形態2に係る車両用前照灯装置のシェード機構の構造を示す説明図である。なお、図6(A)は、前照灯ユニット210Lのシェード機構18の概略水平断面図であり、図6(B)は、前照灯ユニット210Rのシェード機構18の概略水平断面図である。また、図6(A)、図6(B)では、シェードソレノイド238の図示を省略している。さらに、図6(A)、図6(B)では、回転軸130に対して第1シェード120側が光軸方向前方であり、第2シェード140側が光軸方向後方である。 FIGS. 6A and 6B are explanatory views showing the structure of the shade mechanism of the vehicle headlamp apparatus according to the second embodiment. 6A is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210L, and FIG. 6B is a schematic horizontal sectional view of the shade mechanism 18 of the headlamp unit 210R. 6A and 6B, the shade solenoid 238 is not shown. Further, in FIGS. 6A and 6B, the first shade 120 side is the front in the optical axis direction with respect to the rotation shaft 130, and the second shade 140 side is the rear in the optical axis direction.
 図6(A)、図6(B)に示すように、シェード機構18は、第1シェード120、第1ストッパ122、回転軸130、第2シェード140、第2ストッパ142を備える。第1シェード120は、光軸Oに交わる方向あるいは車幅方向に並ぶ第1小シェード124と第2小シェード126とに分割されている。第2小シェード126は、第1小シェード124と光軸方向に重なるオーバーラップ部126cを有する。これにより、バルブ14の光が第1小シェード124と第2小シェード126との境界から光軸方向前方に漏れるのを防ぐことができる。第1小シェード124および第2小シェード126には、それぞれにシェードソレノイド(図示せず)が設けられている。したがって、前照灯ユニット210は、第1小シェード124を後方焦点面Fと重なる進出位置に配置し、第2小シェード126を退避位置に配置することができ、この状態で、バルブ14の光の一部を遮って第3配光パターンを形成することができる。 6A and 6B, the shade mechanism 18 includes a first shade 120, a first stopper 122, a rotating shaft 130, a second shade 140, and a second stopper 142. The first shade 120 is divided into a first small shade 124 and a second small shade 126 arranged in the direction intersecting the optical axis O or in the vehicle width direction. The second small shade 126 has an overlap portion 126c that overlaps the first small shade 124 in the optical axis direction. Thereby, it is possible to prevent the light of the bulb 14 from leaking forward from the boundary between the first small shade 124 and the second small shade 126 in the optical axis direction. Each of the first small shade 124 and the second small shade 126 is provided with a shade solenoid (not shown). Therefore, the headlamp unit 210 can arrange the first small shade 124 at the advanced position overlapping the rear focal plane F and the second small shade 126 at the retracted position. In this state, the light of the bulb 14 can be arranged. A third light distribution pattern can be formed by blocking a part of the first light distribution pattern.
 図7は、各シェードの形状を示す説明図である。なお、図7では、第1小シェード124の第1小シェード本体124bと、第2小シェード126の第2小シェード本体126bと、第2シェード本体140bを示して他の部分は省略している。また、各シェードを車両用前照灯装置200の正面からバルブ14に向かって見た状態を示している。 FIG. 7 is an explanatory diagram showing the shape of each shade. In FIG. 7, the first small shade main body 124b of the first small shade 124, the second small shade main body 126b of the second small shade 126, and the second shade main body 140b are shown, and other portions are omitted. . Moreover, the state which looked at each shade toward the valve | bulb 14 from the front of the vehicle headlamp apparatus 200 is shown.
 図7に示すように、左側の前照灯ユニット210L(図では、LHと示している)の第1小シェード124(第1小シェード本体124b)は、実施形態1の第1シェード120の稜線120bと同一形状の稜線124bと、第1シェード120の稜線120bと同一形状の稜線124bとを有する。また、第1小シェード124は、車幅方向左側の一部が切り欠かれており、そのため、第1シェード120の稜線120bと同一形状の稜線124bの一部と車幅方向左側にいくにつれてシェード高さが低くなるような稜線とからなる稜線124bを有する。第2小シェード126(第2小シェード本体126b)は、第1小シェード124の切り欠かれた部分に対応するシェード形状を有し、稜線124bの一部を構成する稜線126bを有する。また、第2シェード140(第2シェード本体140b)は、実施形態1の前照灯ユニット210Rの第2シェード140と同一の形状を有する。 As shown in FIG. 7, the first small shade 124 (first small shade main body 124 b) of the left headlight unit 210 </ b> L (indicated by LH in the drawing) is the ridgeline of the first shade 120 of the first embodiment. 120b having 2 and the ridge 124b 2 of the same shape, and a ridge line 120b 3 and ridge 124b 3 of the same shape of the first shade 120. In addition, the first small shade 124 is partially cut out on the left side in the vehicle width direction, and therefore, goes to the left side in the vehicle width direction with part of the ridge line 124b 1 having the same shape as the ridge line 120b 1 of the first shade 120 As a result, a ridgeline 124b 4 is formed which is composed of a ridgeline whose shade height decreases. Second small shade 126 (second small shade body 126b) has a shade shape corresponding to the notched portions of the first small shade 124 has a ridge 126b 1 that forms part of the ridge line 124b 1. The second shade 140 (second shade body 140b) has the same shape as the second shade 140 of the headlamp unit 210R of the first embodiment.
 右側の前照灯ユニット210R(図では、RHと示している)の第1小シェード124(第1小シェード本体124b)は、実施形態1の第1シェード120の稜線120bと同一形状の稜線124bと、第1シェード120の稜線120bと同一形状の稜線124bとを有する。また、第1小シェード124は、車幅方向右側の一部が切り欠かれており、そのため、稜線124bの一部と車幅方向右側にいくにつれてシェード高さが低くなるような稜線とからなる稜線124bを有する。第2小シェード126(第2小シェード本体126b)は、第1小シェード124の切り欠かれた部分に対応するシェード形状を有し、稜線124bの一部を構成する稜線126bを有する。また、第2シェード140(第2シェード本体140b)は、実施形態1の前照灯ユニット210Lの第2シェード140と同一の形状を有する。 First small shade 124 of the right headlamp unit 210R (in the figure shows the RH) (first small shade body 124b) are ridge edges 120b 1 and the same shape of the first shade 120 of Embodiment 1 124b 1 and a ridge line 124b 3 having the same shape as the ridge line 120b 3 of the first shade 120. Further, the first small shade 124 is notched at a part on the right side in the vehicle width direction, and therefore, from a part of the ridge line 124b 2 and a ridge line whose shade height decreases toward the right side in the vehicle width direction. with a ridge 124b 5 made. Second small shade 126 (second small shade body 126b) has a shade shape corresponding to the notched portions of the first small shade 124 has a ridge 126b 2 which constitutes a part of the ridge line 124b 2. The second shade 140 (second shade body 140b) has the same shape as the second shade 140 of the headlamp unit 210L of the first embodiment.
 ここで、前照灯ユニット210Lの第1小シェード124の切り欠き部123は、前照灯ユニット210Rの第2シェード140の切り欠き部125よりも、その車幅方向の幅が小さい。また、前照灯ユニット210Rの第1小シェード124の切り欠き部127は、前照灯ユニット210Lの第2シェード140の切り欠き部129よりも、その車幅方向の幅が小さい。 Here, the notch 123 of the first small shade 124 of the headlamp unit 210L is smaller in width in the vehicle width direction than the notch 125 of the second shade 140 of the headlamp unit 210R. Further, the notch 127 of the first small shade 124 of the headlamp unit 210R is smaller in width in the vehicle width direction than the notch 129 of the second shade 140 of the headlamp unit 210L.
 このような構成において、本実施形態に係る車両用前照灯装置200では、図8に示すように、前照灯ユニット210Lおよび前照灯ユニット210Rのそれぞれのシェード状態を組み合わせることで、次のような配光パターンを形成することができる。図8は、各シェードの姿勢状態とそれに対応する配光パターンの形状を示す説明図である。なお、図8に示す配光パターンは、灯具前方の所定位置、例えば灯具前方25mの位置に配置された仮想鉛直スクリーン上に形成された配光パターンである。 In such a configuration, in the vehicle headlamp device 200 according to the present embodiment, as shown in FIG. 8, by combining the shade states of the headlamp unit 210L and the headlamp unit 210R, the following Such a light distribution pattern can be formed. FIG. 8 is an explanatory diagram showing the posture state of each shade and the shape of the light distribution pattern corresponding to the posture state. The light distribution pattern shown in FIG. 8 is a light distribution pattern formed on a virtual vertical screen disposed at a predetermined position in front of the lamp, for example, at a position 25 m ahead of the lamp.
 まず、第1モードでは、前照灯ユニット210Lおよび前照灯ユニット210Rで第1小シェード124(第1小シェード本体124b)および第2小シェード126(第2小シェード本体126b)が進出位置、第2シェード140(第2シェード本体140b)が退避位置にある。この場合には、ロービーム用配光パターンLoLおよびロービーム用配光パターンLoRが形成され、全体としてロービーム用配光パターンが形成される。 First, in the first mode, the first small shade 124 (first small shade main body 124b) and the second small shade 126 (second small shade main body 126b) are advanced in the headlight unit 210L and the headlight unit 210R. The second shade 140 (second shade body 140b) is in the retracted position. In this case, the low beam light distribution pattern LoL and the low beam light distribution pattern LoR are formed, and the low beam light distribution pattern is formed as a whole.
 第2モードでは、前照灯ユニット210Lで第1小シェード124が進出位置、第2小シェード126および第2シェード140が退避位置にあり、前照灯ユニット210Rで第1小シェード124および第2小シェード126が退避位置、第2シェード140が進出位置にある。この場合には、前照灯ユニット210Lにより、ロービーム用配光パターンのカットオフラインから上方の自車線側照射領域(切り欠き部123に対応する部分)の車幅方向幅が相対的に小さい近方左片ハイ用配光パターンHi3Lが形成され、前照灯ユニット210Rによりロービーム用配光パターンのカットオフラインから上方の自車線側照射領域(切り欠き部125に対応する部分)の車幅方向幅が相対的に大きい遠方左片ハイ用配光パターンHi2Rが形成される。そして、近方左片ハイ用配光パターンHi3Lと遠方左片ハイ用配光パターンHi2Rとが合成されて、全体として遠方左片ハイ用配光パターンが形成される。遠方左片ハイ用配光パターンは、前方車両が比較的遠方にある場合に形成される付加配光パターンである。 In the second mode, the first small shade 124 is in the advanced position, the second small shade 126 and the second shade 140 are in the retracted position in the headlamp unit 210L, and the first small shade 124 and the second shade are in the headlamp unit 210R. The small shade 126 is in the retracted position, and the second shade 140 is in the advanced position. In this case, by the headlight unit 210L, the vehicle width direction width of the upper lane side irradiation area (part corresponding to the notch 123) from the cut-off line of the low beam light distribution pattern is relatively small. The left high-side light distribution pattern Hi3L is formed, and the width in the vehicle width direction of the upper lane side irradiation area (the part corresponding to the notch 125) from the cut-off line of the low-beam light distribution pattern by the headlamp unit 210R A relatively large distant left piece high light distribution pattern Hi2R is formed. Then, the near left piece high light distribution pattern Hi3L and the far left piece high light distribution pattern Hi2R are combined to form the far left piece high light distribution pattern as a whole. The far left high-side light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is relatively far away.
 第3モードでは、前照灯ユニット210Lで近方左片ハイ用配光パターンHi3Lが形成され、前照灯ユニット210Rでロービーム用配光パターンLoRが形成されて、全体として近方左片ハイ用配光パターンが形成される。近方左片ハイ用配光パターンは、遠方左片ハイ用配光パターンを形成する場合よりも前方車両が近方にある場合に形成される付加配光パターンである。 In the third mode, the headlamp unit 210L forms the near left high-beam light distribution pattern Hi3L, and the headlamp unit 210R forms the low-beam light distribution pattern LoR. A light distribution pattern is formed. The near left piece high light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is closer than when forming the far left piece high light distribution pattern.
 第4モードでは、前照灯ユニット210Lで第1小シェード124および第2小シェード126が退避位置、第2シェード140が進出位置にあり、前照灯ユニット210Rで第1小シェード124が進出位置、第2小シェード126および第2シェード140が退避位置にある。この場合には、前照灯ユニット210Lにより、ロービーム用配光パターンのカットオフラインから上方の対向車線側照射領域(切り欠き部129に対応する部分)の車幅方向幅が相対的に大きい遠方右片ハイ用配光パターンHi2Lが形成され、前照灯ユニット210Rにより、ロービーム用配光パターンのカットオフラインから上方の対向車線側照射領域(切り欠き部127に対応する部分)の車幅方向幅が相対的に小さい近方右片ハイ用配光パターンHi3Rが形成される。そして、遠方右片ハイ用配光パターンHi2Lと近方右片ハイ用配光パターンHi3Rとが合成されて、全体として遠方右片ハイ用配光パターンが形成される。遠方右片ハイ用配光パターンは、前方車両が比較的遠方にある場合に形成される付加配光パターンである。本実施形態では、近方左片ハイ用配光パターンHi3L、および近方右片ハイ用配光パターンHi3Rが第3配光パターンに相当する。 In the fourth mode, the first small shade 124 and the second small shade 126 are in the retracted position and the second shade 140 is in the advanced position in the headlamp unit 210L, and the first small shade 124 is in the advanced position in the headlamp unit 210R. The second small shade 126 and the second shade 140 are in the retracted position. In this case, the headlight unit 210L causes the far-right direction in which the width in the vehicle width direction of the upper opposite lane side irradiation area (the part corresponding to the notch 129) from the cut-off line of the low beam light distribution pattern is relatively large. The one-side light distribution pattern Hi2L is formed, and the headlight unit 210R determines the width in the vehicle width direction of the opposite lane side irradiation area (the part corresponding to the notch 127) from the cut-off line of the low beam light distribution pattern. A relatively small near right piece high light distribution pattern Hi3R is formed. The distant right piece high light distribution pattern Hi2L and the near right piece high light distribution pattern Hi3R are combined to form the far right piece high light distribution pattern as a whole. The far right high-side light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is relatively far away. In the present embodiment, the near left piece high light distribution pattern Hi3L and the near right piece high light distribution pattern Hi3R correspond to the third light distribution pattern.
 第5モードでは、前照灯ユニット210Lでロービーム用配光パターンLoLが形成され、前照灯ユニット210Rで近方右片ハイ用配光パターンHi3Rが形成されて、全体として近方右片ハイ用配光パターンが形成される。近方右片ハイ用配光パターンは、遠方右片ハイ用配光パターンを形成する場合よりも前方車両が近方にある場合に形成される付加配光パターンである。 In the fifth mode, the low light distribution pattern LoL is formed by the headlamp unit 210L, and the near right high light distribution pattern Hi3R is formed by the headlamp unit 210R, and as a whole the near right high A light distribution pattern is formed. The near right piece high light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is closer than when forming the far right piece high light distribution pattern.
 第6モードでは、前照灯ユニット210Lで遠方右片ハイ用配光パターンHi2Lが形成され、前照灯ユニット210Rで遠方左片ハイ用配光パターンHi2Rが形成されて、全体として遠方スプリット配光パターンが形成される。遠方スプリット配光パターンは、前方車両が比較的遠方にある場合に形成される付加配光パターンである。 In the sixth mode, the far right high light distribution pattern Hi2L is formed by the headlamp unit 210L, and the far left high light distribution pattern Hi2R is formed by the headlamp unit 210R. A pattern is formed. The far-distance light distribution pattern is an additional light distribution pattern that is formed when the vehicle ahead is relatively far away.
 第7モードでは、前照灯ユニット210Lで近方左片ハイ用配光パターンHi3Lが形成され、前照灯ユニット210Rで近方右片ハイ用配光パターンHi3Rが形成されて、全体として近方スプリット配光パターンが形成される。近方スプリット配光パターンは、遠方スプリット配光パターンを形成する場合よりも前方車両が近方にある場合に形成される付加配光パターンであり、中央部の遮光領域幅が遠方スプリット配光パターンの中央部の遮光領域幅よりも広い。 In the seventh mode, the headlight unit 210L forms the near left high-light distribution pattern Hi3L, and the headlight unit 210R forms the near-right high-light distribution pattern Hi3R. A split light distribution pattern is formed. The near split light distribution pattern is an additional light distribution pattern formed when the vehicle ahead is closer than when forming the far split light distribution pattern, and the light blocking area width at the center is the far split light distribution pattern. It is wider than the light-shielding region width at the center of the.
 なお、本実施形態では、第1シェード120が2つの小シェードに分割されているが、小シェードの数は特に限定されない。また、第2シェード140が複数の小シェードに分割されていてもよい。小シェードの数が多いほど構成は複雑になるが、より多くの配光パターンを形成することができ、前方車両の存在に応じた配光パターンの切り替えをより高精度に実現することができる。また、本実施形態においても、ハイビーム用配光パターンHiLおよびハイビーム用配光パターンHiRを形成可能である。 In the present embodiment, the first shade 120 is divided into two small shades, but the number of small shades is not particularly limited. Further, the second shade 140 may be divided into a plurality of small shades. As the number of small shades increases, the configuration becomes more complicated, but more light distribution patterns can be formed, and switching of the light distribution pattern according to the presence of the preceding vehicle can be realized with higher accuracy. Also in this embodiment, the high beam light distribution pattern HiL and the high beam light distribution pattern HiR can be formed.
 以上説明した本実施形態の構成によっても、第1シェード120と第2シェード140との干渉を回避しながら、形成する配光パターンの輪郭ぼけや色付き、および配光パターン切り替え時の光漏れを防ぐことができる。また、他の効果も同様に得られる。 Even with the configuration of the present embodiment described above, while avoiding interference between the first shade 120 and the second shade 140, the contour and color of the light distribution pattern to be formed and light leakage at the time of switching the light distribution pattern are prevented. be able to. Other effects can be obtained in the same manner.
 さらに本実施形態では、第1シェード120が第1小シェード124と第2小シェード126とに分割されている。そのため、対向車線側あるいは自車線側の照射領域の車幅方向幅が異なる右片ハイ用配光パターンあるいは左片ハイ用配光パターンを形成することができる。これにより、前方車両の存在に応じてより高精度に配光パターンを切り替えることができるため、実施形態1よりもさらに、前方車両に与えるグレアを防ぎながら、運転者の視認性を向上させることができる。 Further, in the present embodiment, the first shade 120 is divided into a first small shade 124 and a second small shade 126. Therefore, it is possible to form a right-side high light distribution pattern or a left-side high light distribution pattern in which the width in the vehicle width direction of the irradiation region on the opposite lane side or the own lane side is different. Thereby, since the light distribution pattern can be switched with higher accuracy in accordance with the presence of the preceding vehicle, the visibility of the driver can be improved while preventing glare given to the preceding vehicle further than in the first embodiment. it can.
 また本実施形態では、第2小シェード126が、第1小シェード124と光軸方向に重なるオーバーラップ部126cを有する。そのため、バルブ14の光が第1小シェード124と第2小シェード126との境界から光軸方向前方に漏れるのを防ぐことができる。したがって、シェードが分割されている場合に、境界から漏れた光によって前方車両がグレアを受けるのを防ぐことができる。 In the present embodiment, the second small shade 126 has an overlap portion 126c that overlaps the first small shade 124 in the optical axis direction. Therefore, it is possible to prevent the light of the bulb 14 from leaking forward from the boundary between the first small shade 124 and the second small shade 126 in the optical axis direction. Therefore, when the shade is divided, it is possible to prevent the vehicle ahead from receiving glare due to light leaking from the boundary.
 (実施形態3)
 実施形態3に係る車両用前照灯装置は、シェード機構18の構造が実施形態1と異なる。以下、本実施形態について説明する。なお、車両用前照灯装置の主な構成や、形成可能な配光パターン、配光パターンの切り替え制御等は実施形態1と同様であるため、実施形態1と同様の構成については同一の符号を付し、その説明および図示は適宜省略する。
(Embodiment 3)
The vehicle headlamp device according to the third embodiment is different from the first embodiment in the structure of the shade mechanism 18. Hereinafter, this embodiment will be described. Since the main configuration of the vehicle headlamp device, the light distribution pattern that can be formed, the switching control of the light distribution pattern, and the like are the same as those in the first embodiment, the same reference numerals are used for the same configurations as those in the first embodiment. The description and illustration are omitted as appropriate.
 図9(A)、図9(B)は、実施形態3に係る車両用前照灯装置のシェード機構の構造を示す説明図である。なお、図9(A)は、シェード機構18の概略鉛直断面図であり、図9(B)は、シェード機構18の概略平面図である。また、図9(A)、図9(B)では、後方焦点面Fに対して第1シェード120が存在する側(図面左側)が光軸方向前方であり、また、シェードソレノイドの図示を省略している。さらに、図9(A)では、第1シェード120が退避位置にあり、第2シェード140が進出位置にある状態を示している。 9 (A) and 9 (B) are explanatory views showing the structure of the shade mechanism of the vehicle headlamp device according to the third embodiment. FIG. 9A is a schematic vertical sectional view of the shade mechanism 18, and FIG. 9B is a schematic plan view of the shade mechanism 18. 9A and 9B, the side where the first shade 120 exists (the left side in the drawing) is the front in the optical axis direction with respect to the rear focal plane F, and the illustration of the shade solenoid is omitted. is doing. Further, FIG. 9A shows a state in which the first shade 120 is in the retracted position and the second shade 140 is in the advanced position.
 本実施形態に係る車両用前照灯装置200において、第1シェード120は、後方焦点面Fよりも光軸方向後方に位置する第1回転軸130aと、第1回転軸130aから後方焦点面Fよりも光軸方向前方に延びる部分を有する第1アーム部120aと、第1アーム部120aに連結された第1シェード本体120bとを含む。また、第2シェード140は、後方焦点面Fよりも光軸方向前方に位置する第2回転軸130bと、第2回転軸130bから第1アーム部120aと干渉しないように後方焦点面Fよりも光軸方向後方に延びる部分を有する第2アーム部140aと、第2アーム部140aに連結された第2シェード本体140bとを含む。本実施形態では、車幅方向に並ぶ2本の第1アーム部120aが第1回転軸130aから延び、また車幅方向に並ぶ2本の第2アーム部140aが第2回転軸130bから延びている。そして、2本の第2アーム部140aは、2本の第1アーム部120aと干渉しないように、それらの外側に配置されている。すなわち、2本の第2アーム部140aの間に2本の第1アーム部120aが配置されている。 In the vehicle headlamp device 200 according to the present embodiment, the first shade 120 includes a first rotation shaft 130a located behind the rear focal plane F in the optical axis direction, and a rear focal plane F extending from the first rotation shaft 130a. A first arm portion 120a having a portion extending further forward in the optical axis direction, and a first shade body 120b coupled to the first arm portion 120a. Further, the second shade 140 has a second rotating shaft 130b positioned in front of the rear focal plane F in the optical axis direction and the rear focal plane F so as not to interfere with the first arm portion 120a from the second rotating shaft 130b. It includes a second arm portion 140a having a portion extending rearward in the optical axis direction, and a second shade body 140b connected to the second arm portion 140a. In the present embodiment, two first arm portions 120a arranged in the vehicle width direction extend from the first rotation shaft 130a, and two second arm portions 140a arranged in the vehicle width direction extend from the second rotation shaft 130b. Yes. The two second arm portions 140a are arranged outside the two first arm portions 120a so as not to interfere with the two first arm portions 120a. That is, the two first arm portions 120a are arranged between the two second arm portions 140a.
 このように、本実施形態では、後方焦点面Fよりも光軸方向前方に転倒する第1シェード120の第1回転軸130aを、後方焦点面Fよりも光軸方向後方に配置し、後方焦点面Fよりも光軸方向後方に転倒する第2シェード140の第2回転軸130bを、後方焦点面Fよりも光軸方向前方に配置している。これにより、第1シェード120の回転軸が後方焦点面Fよりも光軸方向前方にあり、第2シェード140の回転軸が後方焦点面Fよりも光軸方向後方にある構成と比べて、進出位置にある第1シェード120および第2シェード140の回動初期における上縁部の下方変位量を増やすことができる。そのため、本実施形態によれば、実施形態1の効果に加えて次のような効果が得られる。すなわち、本実施形態の構成によれば、第1シェード120および第2シェード140の上縁部を光軸Oから退避させるために必要な各シェードの回動量を小さくすることができる。言い換えれば、少ない変位量で上縁部を光軸から退避させることができる。そのため、シェード機構18の設置スペースを小さくすることができ、車両用前照灯装置200の設計の自由度を高めることができる。また、配光パターンの迅速な切り替えが可能となる。 Thus, in the present embodiment, the first rotation shaft 130a of the first shade 120 that falls forward in the optical axis direction with respect to the rear focal plane F is disposed rearward in the optical axis direction with respect to the rear focal plane F, and the rear focal point. The second rotating shaft 130b of the second shade 140 that falls backward in the optical axis direction from the surface F is disposed in front of the rear focal plane F in the optical axis direction. As a result, the first shade 120 rotates forward in the optical axis direction with respect to the rear focal plane F, and the second shade 140 rotates forward in the optical axis direction with respect to the rear focal plane F. It is possible to increase the downward displacement amount of the upper edge portion in the initial rotation of the first shade 120 and the second shade 140 in the position. Therefore, according to the present embodiment, the following effects can be obtained in addition to the effects of the first embodiment. That is, according to the configuration of the present embodiment, the amount of rotation of each shade necessary for retracting the upper edge portions of the first shade 120 and the second shade 140 from the optical axis O can be reduced. In other words, the upper edge can be retracted from the optical axis with a small amount of displacement. Therefore, the installation space of the shade mechanism 18 can be reduced, and the degree of freedom in designing the vehicle headlamp device 200 can be increased. In addition, it is possible to quickly switch the light distribution pattern.
 本発明は、上述の実施形態に限定されるものではなく、各実施形態を組み合わせたり、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような組み合わせられ、もしくは変形が加えられた実施形態も本発明の範囲に含まれる。上述の各実施形態同士、および上述の各実施形態と以下の変形例との組合せによって生じる新たな実施形態は、組み合わされる実施形態および変形例それぞれの効果をあわせもつ。 The present invention is not limited to the above-described embodiments, and it is possible to combine the embodiments or to add various modifications such as design changes based on the knowledge of those skilled in the art. Embodiments to which modifications are made are also included in the scope of the present invention. Each of the above-described embodiments and a new embodiment resulting from the combination of each of the above-described embodiments and the following modified examples have the effects of the combined embodiments and modified examples.
 例えば、上述の各実施形態では、照射制御部228L,228Rが、前方車両の存在状態等を判断しているが、車両制御部302がこれらの判断を実行するようにしてもよく、上述した各実施形態と同様の効果を得ることができる。この場合、照射制御部228L,228Rは、車両制御部302からの指示に基づいてバルブ14の点消灯や、スイブルアクチュエータ222およびシェードソレノイド238の駆動等を制御する。 For example, in each of the above-described embodiments, the irradiation control units 228L and 228R determine the presence state of the preceding vehicle, but the vehicle control unit 302 may execute these determinations. The same effect as the embodiment can be obtained. In this case, the irradiation controllers 228L and 228R control turning on / off of the bulb 14, driving of the swivel actuator 222 and the shade solenoid 238, and the like based on an instruction from the vehicle controller 302.
 また、第1シェード120および第2シェード140の駆動機構は、シェードソレノイドに限定されない。例えば、図10(A)に示すように、第1シェード120および第2シェード140の駆動源としてモータ250a,250bを備え、第1シェード120および第2シェード140とモータ250a,250bとが、それぞれギア機構を介して連結された構成であってもよい。あるいは、図10(B)に示すように、第1シェード120および第2シェード140の駆動源としてモータ250a,250bを備え、第1シェード120および第2シェード140とモータ250a,250bとが、それぞれリンク機構を介して連結された構成であってもよい。図10(A)、図10(B)は、変形例に係るシェード機構の構造を示す説明図である。 Further, the drive mechanism of the first shade 120 and the second shade 140 is not limited to the shade solenoid. For example, as shown in FIG. 10A, motors 250a and 250b are provided as drive sources for the first shade 120 and the second shade 140, and the first shade 120 and the second shade 140 and the motors 250a and 250b are respectively provided. The structure connected via the gear mechanism may be sufficient. Alternatively, as shown in FIG. 10B, motors 250a and 250b are provided as drive sources for the first shade 120 and the second shade 140, and the first shade 120 and the second shade 140 and the motors 250a and 250b are respectively provided. The structure connected via the link mechanism may be sufficient. FIG. 10A and FIG. 10B are explanatory views showing the structure of a shade mechanism according to a modification.
 また、上述の各実施形態では、第2シェード140が左片ハイ用配光パターン、あるいは右片ハイ用配光パターンに対応した形状であるが、第2シェード140は、例えば、交通法規が右側通行である地域で利用する、いわゆる「ドーバーロービーム」と称される右通行ロービーム用配光パターンに対応した形状であってもよい。この場合には、欧州等で左側通行と右側通行が地域によって変化するような場合でも、光漏れを起こすことなくロービーム用配光パターンと右側通行ロービーム用配光パターンとの相互切り替えが可能となる。また、輪郭ぼけや色付きのない良好なロービーム用配光パターンおよび右側通行ロービーム用配光パターンの形成が可能となる。あるいは、ハイウェイモード用の配光パターンに対応した形状であってもよい。 In each of the above-described embodiments, the second shade 140 has a shape corresponding to the left-side high light distribution pattern or the right-side high light distribution pattern, but the second shade 140 has, for example, a traffic regulation on the right side. It may have a shape corresponding to a light distribution pattern for a right-passing low beam called “Dover low beam”, which is used in a traffic area. In this case, even if left-hand traffic and right-hand traffic vary depending on the region in Europe, etc., it is possible to switch between the low-beam light distribution pattern and the right-hand traffic low-beam light distribution pattern without causing light leakage. . In addition, it is possible to form a good low-beam light distribution pattern and a right-handed low-beam light distribution pattern that are free from outline blurring and coloring. Or the shape corresponding to the light distribution pattern for highway modes may be sufficient.
 14 バルブ、 18 シェード機構、 20 投影レンズ、 120 第1シェード、 120a 第1アーム部、 120b 第1シェード本体、 122 第1ストッパ、 124 第1小シェード、 126 第2小シェード、 130 回転軸、 130a 第1回転軸、 130b 第2回転軸、 140 第2シェード、 140b 第2シェード本体、 140a 第2アーム部、 142 第2ストッパ、 200 車両用前照灯装置、 F 後方焦点面。 14 valve, 18 shade mechanism, 20 projection lens, 120 1st shade, 120a 1st arm, 120b 1st shade body, 122 1st stopper, 124 1st small shade, 126 2nd small shade, 130 rotating shaft, 130a 1st rotating shaft, 130b 2nd rotating shaft, 140 2nd shade, 140b 2nd shade body, 140a 2nd arm part, 142 2nd stopper, 200 vehicle headlamp device, F rear focal plane.
 本発明は、車両用前照灯装置に利用可能であり、特に、自動車などに用いられる車両用前照灯装置に利用可能である。 The present invention can be used for a vehicle headlamp device, and in particular, can be used for a vehicle headlamp device used in an automobile or the like.

Claims (4)

  1.  投影レンズを介して車両前方へ光を照射可能な光源と、
     前記光源の光軸に対して進退可能であり、上縁部が前記投影レンズの後方焦点面と重なる進出位置と、進出位置よりも光軸方向前方の第1退避位置とに変位し、進出位置で第1配光パターンを形成し、第1退避位置で非遮光パターンの形成を許容する第1シェードと、
     光軸に対して進退可能であり、前記進出位置と、進出位置よりも光軸方向後方の第2退避位置とに変位し、進出位置で第2配光パターンを形成し、第2退避位置で非遮光パターンの形成を許容する第2シェードと、
     進出位置に向けて変位する前記第1シェードが進出位置で停止するように前記第1シェードの変位を規制する第1ストッパと、
     進出位置に向けて変位する前記第2シェードが進出位置で停止するように前記第2シェードの変位を規制する第2ストッパと、
     第1配光パターンと第2配光パターンを相互に切り換える際に、進出位置への変位途中にある一方のシェードの上縁部を進出位置にある他方のシェードの上縁部と近接させた状態で、一方のシェードを進出位置に変位させるとともに他方のシェードを退避位置側に変位させるように前記第1シェードおよび前記第2シェードの変位を制御する制御部と、
    を備えたことを特徴とする車両用前照灯装置。
    A light source capable of emitting light to the front of the vehicle via a projection lens;
    Advancing and retreating with respect to the optical axis of the light source, and the upper edge portion is displaced to an advancing position where it overlaps the rear focal plane of the projection lens, and a first retracting position forward of the advancing position in the optical axis direction. Forming a first light distribution pattern and allowing a non-light-shielding pattern to be formed at the first retracted position;
    It can move forward and backward with respect to the optical axis, and is displaced to the advanced position and a second retracted position behind the advanced position in the optical axis direction to form a second light distribution pattern at the advanced position, and at the second retracted position A second shade that allows formation of a non-light-shielding pattern;
    A first stopper that regulates displacement of the first shade so that the first shade that is displaced toward the advanced position stops at the advanced position;
    A second stopper that regulates displacement of the second shade so that the second shade that is displaced toward the advanced position stops at the advanced position;
    When the first light distribution pattern and the second light distribution pattern are switched to each other, the upper edge portion of one shade in the middle of the displacement to the advanced position is brought close to the upper edge portion of the other shade in the advanced position And a controller for controlling the displacement of the first shade and the second shade so as to displace one shade to the advanced position and displace the other shade to the retracted position side;
    A vehicle headlamp device comprising:
  2.  前記第1シェードおよび前記第2シェードの少なくとも一方は、光軸に交わる方向に並ぶ複数の小シェードに分割されており、
     前記複数の小シェードの一部が進出位置にあり、残りの小シェードが退避位置にある状態で第3配光パターンを形成可能であることを特徴とする請求項1に記載の車両用前照灯装置。
    At least one of the first shade and the second shade is divided into a plurality of small shades arranged in a direction intersecting the optical axis,
    2. The vehicle headlamp according to claim 1, wherein the third light distribution pattern can be formed in a state in which a part of the plurality of small shades is in the advanced position and the remaining small shades are in the retracted position. Lamp device.
  3.  隣接する2つの小シェードの一方には、他方の小シェードと光軸方向に重なるオーバーラップ部を有することを特徴とする請求項2に記載の車両用前照灯装置。 The vehicle headlamp device according to claim 2, wherein one of two adjacent small shades has an overlap portion overlapping with the other small shade in the optical axis direction.
  4.  前記第1シェードは、後方焦点面よりも光軸方向後方に位置する第1回転軸と、当該第1回転軸から後方焦点面よりも光軸方向前方に延びる第1アーム部と、当該第1アーム部に連結された第1シェード本体とを含み、
     前記第2シェードは、後方焦点面よりも光軸方向前方に位置する第2回転軸と、当該第2回転軸から前記第1アーム部と干渉しないように後方焦点面よりも光軸方向後方に延びる第2アーム部と、当該第2アーム部に連結された第2シェード本体とを含むことを特徴とする請求項1乃至3のいずれか1項に記載の車両用前照灯装置。
    The first shade includes a first rotation shaft positioned rearward in the optical axis direction with respect to the rear focal plane, a first arm portion extending forward in the optical axis direction from the rear rotation plane with respect to the first rotation axis, and the first shade. A first shade body coupled to the arm portion,
    The second shade is located behind the rear focal plane in the optical axis direction so as not to interfere with the first arm portion from the second rotational axis, and a second rotational axis positioned in front of the rear focal plane in the optical axis direction. The vehicular headlamp device according to any one of claims 1 to 3, further comprising: a second arm portion that extends, and a second shade body that is coupled to the second arm portion.
PCT/JP2010/004474 2009-09-15 2010-07-09 Headlight device for vehicle WO2011033709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011531768A JP5634406B2 (en) 2009-09-15 2010-07-09 Vehicle headlamp device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-213587 2009-09-15
JP2009213587 2009-09-15

Publications (1)

Publication Number Publication Date
WO2011033709A1 true WO2011033709A1 (en) 2011-03-24

Family

ID=43758327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004474 WO2011033709A1 (en) 2009-09-15 2010-07-09 Headlight device for vehicle

Country Status (2)

Country Link
JP (1) JP5634406B2 (en)
WO (1) WO2011033709A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001234A (en) * 2011-06-16 2013-01-07 Koito Mfg Co Ltd Head light control device for vehicle
FR3021392A1 (en) * 2014-05-20 2015-11-27 Valeo Iluminacion Sa ELLIPTICAL OPTICAL MODULE FOR AUTOMOBILE SCALE DEVICE
CN111981434A (en) * 2018-05-31 2020-11-24 亳州易泽信息科技有限公司 Transmission method of automobile hood for weakening influence of high beam during meeting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306414A (en) * 1999-04-16 2000-11-02 Stanley Electric Co Ltd Projector lighting fixture for vehicle
JP2001250407A (en) * 2000-03-08 2001-09-14 Koito Mfg Co Ltd Vehicle headlamp
JP2002133914A (en) * 2000-10-24 2002-05-10 Ichikoh Ind Ltd Head lamp for vehicle
JP2003100121A (en) * 2001-07-26 2003-04-04 Valeo Vision Elliptical head lamp having mask with lateral swing shafts
JP2003178613A (en) * 2001-10-30 2003-06-27 Valeo Vision Elliptic type lighting system for automobile
JP2006164687A (en) * 2004-12-06 2006-06-22 Ichikoh Ind Ltd Head lamp
JP2009083835A (en) * 2007-09-14 2009-04-23 Koito Mfg Co Ltd Lamp for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306414A (en) * 1999-04-16 2000-11-02 Stanley Electric Co Ltd Projector lighting fixture for vehicle
JP2001250407A (en) * 2000-03-08 2001-09-14 Koito Mfg Co Ltd Vehicle headlamp
JP2002133914A (en) * 2000-10-24 2002-05-10 Ichikoh Ind Ltd Head lamp for vehicle
JP2003100121A (en) * 2001-07-26 2003-04-04 Valeo Vision Elliptical head lamp having mask with lateral swing shafts
JP2003178613A (en) * 2001-10-30 2003-06-27 Valeo Vision Elliptic type lighting system for automobile
JP2006164687A (en) * 2004-12-06 2006-06-22 Ichikoh Ind Ltd Head lamp
JP2009083835A (en) * 2007-09-14 2009-04-23 Koito Mfg Co Ltd Lamp for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001234A (en) * 2011-06-16 2013-01-07 Koito Mfg Co Ltd Head light control device for vehicle
FR3021392A1 (en) * 2014-05-20 2015-11-27 Valeo Iluminacion Sa ELLIPTICAL OPTICAL MODULE FOR AUTOMOBILE SCALE DEVICE
EP2947379A3 (en) * 2014-05-20 2016-04-27 Valeo Iluminacion Elliptical optical module for a motor vehicle lighting device
CN111981434A (en) * 2018-05-31 2020-11-24 亳州易泽信息科技有限公司 Transmission method of automobile hood for weakening influence of high beam during meeting
CN111981434B (en) * 2018-05-31 2021-11-30 亳州易泽信息科技有限公司 Transmission method of automobile hood for weakening influence of high beam during meeting

Also Published As

Publication number Publication date
JP5634406B2 (en) 2014-12-03
JPWO2011033709A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5398443B2 (en) Vehicle headlamp device
JP5833861B2 (en) Vehicle headlamp device and light distribution control method
JP5424771B2 (en) Light distribution control system for vehicle headlamps
JP5438410B2 (en) Vehicle headlamp device
JP5424742B2 (en) Vehicle headlamp device
JP5546326B2 (en) Control device, vehicle lamp system, vehicle lamp
JP5107821B2 (en) Vehicle headlamp device
JP5430282B2 (en) Light distribution control system for vehicle headlamps
JP5539796B2 (en) Vehicle headlight system
EP2230128B1 (en) Automotive headlamp apparatus for controlling light distribution pattern
JP2010257909A (en) Vehicle headlamp apparatus
JP5634406B2 (en) Vehicle headlamp device
JP2009283443A (en) Headlight device for vehicle
JP5470157B2 (en) VEHICLE LIGHT SYSTEM, CONTROL DEVICE, VEHICLE LIGHT, AND CONTROL METHOD FOR VEHICLE LIGHT
JP2011240870A (en) Vehicle headlamp system, control device, and vehicle headlamp
EP2384933B1 (en) Vehicle headlamp system, control device and vehicle headlamp
JP2010015837A (en) Headlight device for vehicle
JP2014015170A (en) Control device, headlight system for vehicle
JP2014010969A (en) Headlight for vehicle
JP5610949B2 (en) Vehicle headlamp
JP5530125B2 (en) Vehicle headlamp device
JP5557611B2 (en) VEHICLE LIGHT SYSTEM, CONTROL DEVICE, AND VEHICLE LIGHT
JP2011238378A (en) Lamp fixture system for vehicle, control device, and lamp fixture for vehicle
JP2010092754A (en) Vehicular headlight device
RU2441778C2 (en) Headlamp searchlight-type system for automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531768

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10816824

Country of ref document: EP

Kind code of ref document: A1