WO2011033677A1 - Defect detecting device - Google Patents

Defect detecting device Download PDF

Info

Publication number
WO2011033677A1
WO2011033677A1 PCT/JP2009/066459 JP2009066459W WO2011033677A1 WO 2011033677 A1 WO2011033677 A1 WO 2011033677A1 JP 2009066459 W JP2009066459 W JP 2009066459W WO 2011033677 A1 WO2011033677 A1 WO 2011033677A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
plug
pipe
air plug
defect detection
Prior art date
Application number
PCT/JP2009/066459
Other languages
French (fr)
Japanese (ja)
Inventor
上野秀雄
Original Assignee
株式会社サンフロイント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サンフロイント filed Critical 株式会社サンフロイント
Priority to PCT/JP2009/066459 priority Critical patent/WO2011033677A1/en
Priority to AU2009352792A priority patent/AU2009352792A1/en
Publication of WO2011033677A1 publication Critical patent/WO2011033677A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/022Test plugs for closing off the end of a pipe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2823Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pigs or moles traveling in the pipe

Definitions

  • the present invention relates to an internal investigation of an old buried pipe and a defect detection device for detecting a defect with a high possibility of oil leakage.
  • Patent Literature 1 has been proposed as a method for solving such a problem.
  • the present invention is an ultrasonic inspection method for detecting a discontinuous portion of the inspection object by irradiating the inspection object with ultrasonic waves, and is an invention for setting a defect inspection range of the inspection object and performing defect inspection. .
  • the present invention makes it possible to inspect underground pipes buried underground, prevent oil leaks that cause soil contamination, etc., conduct internal investigations to inspect cracks, pitting corrosion, and corrosion of buried pipes, and more accurately It is an object of the present invention to provide a buried pipe defect detection device capable of detecting defects with oil leakage.
  • the above-described problem includes an internal inspection unit that detects an internal defect of a pipe, and a pipe defect detection unit that detects oil leakage from the defect detected by the internal inspection unit, and the pipe defect
  • the detection unit includes a first air plug, a second air plug connected to the first air plug via a flexible connecting member, the first air plug, and the second air plug; Air pressure supply means for supplying air to the gap between the first and second air plugs, and inserting the first and second air plugs into the pipe in the order of the first and second air plugs.
  • the present invention provides a defect detection device that can detect an accurate defect location and can detect a specific oil leakage location.
  • FIG. 1 It is an external view of the internal inspection apparatus of this invention. It is a figure explaining the system configuration of an internal inspection device. It is a figure which shows the example which uses an internal inspection apparatus for piping inspection. It is a block diagram of the piping defect detection apparatus containing two air plugs. It is a figure which shows a part of work process using a piping defect detection apparatus.
  • (A), (b) is a figure which shows a part of work process using the piping defect detection apparatus of this example.
  • (A), (b) is a figure which shows a part of work process using the piping defect detection apparatus of this example.
  • FIG. 1 is an external view of the internal inspection device.
  • an internal inspection apparatus 1 includes a video scope 2 in which an optical adapter is detachable, a control unit 3 that houses the video scope 2, a monitor 5 that performs various displays, and a power supply unit 6. Yes.
  • FIG. 2 is a diagram for explaining the system configuration of the internal inspection apparatus 1.
  • a fiber unit 7 is connected to the internal soundness investigation device 1.
  • the fiber unit 7 is stored in the control unit 3 shown in FIG. 1, for example.
  • the video scope 2 includes a light source device for obtaining illumination light necessary for shooting and an electric bending device for bending the video scope 2 electrically freely.
  • the captured image from the image sensor at the tip of the video scope 2 is supplied to the captured image processing unit 8.
  • control unit 3 includes a CPU 9, a ROM 10, a RAM 11, a LAN interface (hereinafter referred to as a LAN interface) 12, and a USB interface (hereinafter referred to as a USB interface) 13. , An input interface (hereinafter referred to as input I / F) 14, and a microphone input processing unit 15.
  • the fiber unit 7 and the controller 4 described above are connected to the input I / F 14.
  • the controller 4 performs drive control of the video scope 2.
  • USB I / F 13 is an interface when a USB memory is attached and the captured image data acquired by the internal soundness investigation device 1 is stored in the USB memory.
  • the LAN I / F 12 is an interface for connecting a personal computer (PC).
  • the captured image processing unit 8 processes the captured image supplied from the video scope 2, performs processing necessary for displaying on the monitor 5, and further processes the processed captured image via the signal line.
  • the microphone input processing unit 15 is a processing unit for recording information collected by the microphone in the USB memory, and is configured to record audio information in the USB memory corresponding to the captured image.
  • the CPU 9 performs processing according to the program stored in the ROM 10 and drives the internal soundness investigation device 1 using the RAM 11 as a work area.
  • the ROM 10 stores image data of normal piping (standard sample) measured in advance, and the image data of the standard sample is used for comparison with measurement data, as will be described later.
  • FIG. 3 shows an example of a lubrication pipe installed in a gas station or the like, which is a target of defect inspection.
  • the defect detection of the lubrication pipe is performed as follows. First, the video scope 2 is inserted from the oil inlet 26 of the oil pipe 22 as shown in FIG. Thereafter, the operator inspects cracks, pitting corrosion, and corrosion in the lubrication pipe 22 while operating the controller 4 described above.
  • a light emitting unit is provided at the tip of the video scope 2 to illuminate the inside of the oiling tube 22, and the inside of the oiling tube 22 is displayed on the monitor 5 described above. Therefore, the operator operates the controller 4 while looking at the monitor 5 and confirms cracks, pitting corrosion, and corrosion generated in the lubrication pipe 22.
  • the distal end of the video scope 2 can be flexibly bent, and the operator operates the controller 4 while looking at the monitor 5, so that the inner wall of the lubrication pipe 22 is sequentially cracked from the vicinity of the lubrication opening 26 of the lubrication pipe 22. I will check.
  • the lubrication pipe 22 has bent portions 32 and 33, the video scope 2 is configured flexibly as described above, and is curved according to the shape of the lubrication pipe 22 and provided at the end of the lubrication pipe 22. The inspection can be surely performed up to the position of the valve 28.
  • the standard sample stored in the ROM 10 in advance and the captured image recorded in the USB memory are compared to identify cracks, pitting corrosion, and corrosion locations in the embedded pipe. Moreover, when the crack, pitting corrosion, or corrosion has generate
  • the identification of cracks, pitting corrosion, and corrosion shall be determined in consideration of the age of burial, surrounding environment, aging, etc.
  • the control unit 3 also has a function of enlarging the captured image, and an operator can display an enlarged image of the inner wall of the lubrication pipe 22 on the monitor 5 and record it in a USB memory as necessary. In addition, even minute cracks can be confirmed. Furthermore, the operator can record voice information such as comments at the inspection target position via the microphone, which can be used as a reference when considering cracks and the like later.
  • FIG. 4 is a diagram illustrating the oil leakage detection device of this example.
  • reference numerals 37 and 38 denote air plugs.
  • 37 is a first air plug and 38 is a second air plug.
  • a connecting pipe 39 is provided between the air plugs 37 and 38.
  • the air plug 38 is provided with a pressing member 40 for moving the air plugs 37 and 38 in the pipe.
  • This pressing member 40 is provided with three pipes. These three pipes are pipes a to c as shown in the enlarged portion A of FIG.
  • the pipe a is a pipe for supplying air to the air plug 38.
  • the pipe b is a pipe that supplies air to the air plug 37
  • the pipe c is a pipe that supplies air to a gap formed between the air plugs 37 and 38.
  • the outer periphery of the pressing member 40 is formed of a resin such as plastic, has strength, and can be bent flexibly to some extent. Therefore, as will be described later, the air plugs 37 and 38 can be pushed and moved in the buried piping, and at the bent portion of the piping, it can be bent according to the piping.
  • connection pipe 14 is formed using a flexible material, such as rubber, as shown in the enlarged portion C of FIG. 4, and a pipe for sending air to the air plug 37 is disposed inside. .
  • FIG. 5 is a view showing a state in which the first and second air plugs 37 and 38 are inserted into the pipe from the oil filling port 26 of the oil filling pipe 22 described above.
  • the air plugs 37 and 38 are in a contracted state because they are not pressurized, and are fed in the direction of the arrow through the oil supply pipe 22.
  • the air plugs 37 and 38 are moved by the pressing member 40 as described above.
  • the air plugs 37, 38 pass through the bent portion D of the lubrication pipe 22 and enter the interior of the lubrication pipe 22.
  • the connecting pipe 40 is also made of a flexible material as described above, it moves together with the air plugs 37 and 38.
  • the pressing member 40 also has strength as described above and can be bent, so that it moves along the lubrication pipe 22.
  • FIG. 6A shows this state.
  • the convex part 41 is provided in the inner wall of the edge part of the oil supply pipe
  • air is first supplied only to the air plug 37 by a compressor (not shown). In this case, air is supplied through the pipe b described above.
  • the air plug 37 is pressurized by the air supply, and the air plug 37 is brought into pressure contact with the inner wall of the lubrication pipe 22.
  • FIG. 2B shows a state in which the air plug 38 is pressurized by the air supply and is pressed against the inner wall of the lubrication pipe 22. In this state, the gap 40 between the air plugs 37 and 38 is sealed.
  • the crack in the oil supply pipe 22 in the corresponding range is a specific oil leak. That is, it can be determined that there is a defect such as a crack in the range of the gap 19 of the corresponding oil supply pipe 2 and oil has leaked from the defect such as the crack.
  • the air plugs 37 and 38 are first evacuated, and the pressing member 40 is pulled out for a predetermined length (predetermined distance).
  • This predetermined length corresponds to the length of the connection pipe 39. For example, if the length of the connection pipe 39 is 1 m, the pressing member 40 is pulled out at intervals of 1 m. Thereafter, the air plug 37 is pressurized, then the air plug 38 is pressurized, and then the gap 41 formed between the air plugs 37, 38 is pressurized. Also in this case, after pressurizing the gap 41, a pressure gauge provided in the compressor is checked to determine a pressure drop. Thereafter, the above process is repeated to detect a defect in the lubrication pipe 22 at regular intervals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A piping defect detecting device for inspecting a defect such as a crack in buried piping. A defect detecting device provided with an inside inspecting unit for detecting a defect located inside piping, and also with a piping defect detecting unit for detecting a leakage of oil from the defect detected by the inside inspecting unit.  The piping defect detecting unit is provided with a first air plug, a second air plug connected to the first air plug through a flexible connecting member, and an air pressure supply means for supplying air to the first air plug, the second air plug, and a gap between the first and second air plugs.

Description

欠陥検出装置Defect detection device
 本発明は古くなった埋設配管の内部調査、及び油漏れの可能性の高い欠陥を検出する欠陥検出装置に関する。 The present invention relates to an internal investigation of an old buried pipe and a defect detection device for detecting a defect with a high possibility of oil leakage.
 現在多くの埋設タンクや、地上タンク、縦置き型タンク等の各種タンクが使用されており、これらのタンクと給油口、又は給出口とを配管で接続している。特に配管が地下に埋設されている場合、配管に亀裂、孔食、及び腐食等の欠陥が生じると、配管から油が漏れ出し、問題となる。例えば、ガソリンスタンドで使用される地下タンクにガソリンを注油する場合注油管が使用され、また地下タンクから地上(自動車)に給油する場合給油管が使用されている。 Currently, many buried tanks, various tanks such as above-ground tanks, vertical tanks, etc. are used, and these tanks are connected to a fuel filler port or a feed outlet by piping. In particular, when piping is buried underground, if defects such as cracks, pitting corrosion, and corrosion occur in the piping, oil leaks from the piping, which causes a problem. For example, an oil supply pipe is used when gasoline is injected into an underground tank used at a gas station, and an oil supply pipe is used when oil is supplied from the underground tank to the ground (automobile).
 この場合、注油管や給油管は、ほとんど地下に埋設され、古くなると亀裂等が生じ、油漏れの原因になる。このような問題を解決する方法として、例えば特許文献1が提案されている。この発明は、被検査物に超音波を照射して上記被検査物の不連続部を検出する超音波検査方法であり、被検査物の欠陥検査範囲を設定し、欠陥検査を行う発明である。 In this case, the oil supply pipe and the oil supply pipe are almost buried underground, and when they become old, cracks and the like occur, causing oil leakage. For example, Patent Literature 1 has been proposed as a method for solving such a problem. The present invention is an ultrasonic inspection method for detecting a discontinuous portion of the inspection object by irradiating the inspection object with ultrasonic waves, and is an invention for setting a defect inspection range of the inspection object and performing defect inspection. .
特開平10-115605号公報Japanese Patent Laid-Open No. 10-115605
 しかしながら、上記従来の方法においては、地下に埋設された配管の検査によって実際に油漏れのある欠陥を検出することは困難である。そこで、本発明は地下に埋設した埋設配管の検査を可能とし、土壌汚染等の原因となる油漏れを防止し、埋設配管の亀裂、孔食、及び腐食を検査する内部調査を行い、更に正確に油漏れのある欠陥検出行なうことができる埋設配管の欠陥検出装置を提供するものである。 However, in the conventional method, it is difficult to detect a defect that actually leaks oil by inspecting underground pipes. Therefore, the present invention makes it possible to inspect underground pipes buried underground, prevent oil leaks that cause soil contamination, etc., conduct internal investigations to inspect cracks, pitting corrosion, and corrosion of buried pipes, and more accurately It is an object of the present invention to provide a buried pipe defect detection device capable of detecting defects with oil leakage.
 上記課題は本発明によれば、配管の内部の欠陥を検出する内部検査ユニットと、該内部検査ユニットによって検出した欠陥からの油漏れを検出する配管欠陥検出ユニットと、を有し、前記配管欠陥検出ユニットは、第1のエアープラグと、該第1のエアープラグにフレキシブルな接続部材を介して接続された第2のエアープラグと、前記第1のエアープラグ、及び第2のエアープラグ、及び第1、第2のエアープラグ間の隙間にエアーを供給するエアー圧力供給手段とを有し、前記第1、第2のエアープラグを、前記第1、第2のエアープラグの順に配管に挿入後、前記エアー圧力供給手段から前記第1のエアープラグにエアーを供給し、前記配管に圧接した後、前記第1のエアープラグを引き戻すエアープラグ移動手段と、該エアープラグ移動手段によって前記第1のエアープラグを引き戻した後、前記エアー圧力供給手段から前記第1のエアープラグ、及び前記隙間にエアーを供給し、前記第1のエアープラグを前記配管に圧接すると共に、前記隙間の圧力低下を検出する検出手段とを有する欠陥検出装置を提供することによって達成できる。 According to the present invention, the above-described problem includes an internal inspection unit that detects an internal defect of a pipe, and a pipe defect detection unit that detects oil leakage from the defect detected by the internal inspection unit, and the pipe defect The detection unit includes a first air plug, a second air plug connected to the first air plug via a flexible connecting member, the first air plug, and the second air plug; Air pressure supply means for supplying air to the gap between the first and second air plugs, and inserting the first and second air plugs into the pipe in the order of the first and second air plugs. After that, air is supplied from the air pressure supply means to the first air plug, presses against the pipe, and then pulls back the first air plug; and the air plug After pulling back the first air plug by the moving means, air is supplied from the air pressure supply means to the first air plug and the gap, and the first air plug is pressed against the pipe, This can be achieved by providing a defect detection device having detection means for detecting a pressure drop in the gap.
 本発明は正確な欠陥箇所を検出することができ、具体的な油漏れ箇所の検出が可能な欠陥検出装置を提供するものである。 The present invention provides a defect detection device that can detect an accurate defect location and can detect a specific oil leakage location.
本発明の内部検査装置の外観図である。It is an external view of the internal inspection apparatus of this invention. 内部検査装置のシステム構成を説明する図である。It is a figure explaining the system configuration of an internal inspection device. 内部検査装置を配管検査に使用する例を示す図である。It is a figure which shows the example which uses an internal inspection apparatus for piping inspection. 2個のエアープラグを含む配管欠陥検出装置の構成図である。It is a block diagram of the piping defect detection apparatus containing two air plugs. 配管欠陥検出装置を使用した作業工程の一部を示す図である。It is a figure which shows a part of work process using a piping defect detection apparatus. (a)、(b)は、本例の配管欠陥検出装置を使用した作業工程の一部を示す図である。(A), (b) is a figure which shows a part of work process using the piping defect detection apparatus of this example. (a)、(b)は、本例の配管欠陥検出装置を使用した作業工程の一部を示す図である。(A), (b) is a figure which shows a part of work process using the piping defect detection apparatus of this example.
 以下、本発明の実施の形態を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、内部検査装置の外観図である。同図において、内部検査装置1は光学アダプタを着脱自在に構成したビデオスコープ2と、このビデオスコープ2を収納する制御ユニット3と、各種表示を行うモニタ5と、電源供給部6で構成されている。 FIG. 1 is an external view of the internal inspection device. In FIG. 1, an internal inspection apparatus 1 includes a video scope 2 in which an optical adapter is detachable, a control unit 3 that houses the video scope 2, a monitor 5 that performs various displays, and a power supply unit 6. Yes.
 図2は上記内部検査装置1のシステム構成を説明する図である。同図に示すように、内部健全度調査装置1には、ファイバーユニット7が接続されている。このファイバーユニット7は、例えは図1に示した制御ユニット3内に格納されている。
また、ビデオスコープ2は、撮影時に必要な照明光を得るための光源装置と、ビデオスコープ2を電気的に自在に湾曲させるための電動湾曲装置とを含んで構成されている。また、ビデオスコープ2の先端の撮像素子からの撮像画像は、撮像画像処理部8に供給される。
FIG. 2 is a diagram for explaining the system configuration of the internal inspection apparatus 1. As shown in the figure, a fiber unit 7 is connected to the internal soundness investigation device 1. The fiber unit 7 is stored in the control unit 3 shown in FIG. 1, for example.
In addition, the video scope 2 includes a light source device for obtaining illumination light necessary for shooting and an electric bending device for bending the video scope 2 electrically freely. The captured image from the image sensor at the tip of the video scope 2 is supplied to the captured image processing unit 8.
 制御ユニット3の回路構成は、上記撮像画像処理部8以外に、CPU9、ROM10、RAM11、LANインターフェイス(以下、LANドI/Fで示す)12、USBインターフェイス(以下、USBI/Fで示す)13、入力インターフェイス(以下、入力I/Fで示す)14、及びマイク入力処理部15で構成されている。 In addition to the captured image processing unit 8, the control unit 3 includes a CPU 9, a ROM 10, a RAM 11, a LAN interface (hereinafter referred to as a LAN interface) 12, and a USB interface (hereinafter referred to as a USB interface) 13. , An input interface (hereinafter referred to as input I / F) 14, and a microphone input processing unit 15.
 また、上記入力I/F14には、ファイバーユニット7、及び前述のコントローラ4が接続されている。コントローラ4は、ビデオスコープ2の駆動制御を行う。 Also, the fiber unit 7 and the controller 4 described above are connected to the input I / F 14. The controller 4 performs drive control of the video scope 2.
 尚、USBI/F13は、USBメモリを装着し、内部健全度調査装置1によって取得した撮像画像のデータをUSBメモリに記憶する際のインターフェイスである。また、LANドI/F12はパーソナルコンピュータ(PC)を接続する際のインターフェイスである。 Note that the USB I / F 13 is an interface when a USB memory is attached and the captured image data acquired by the internal soundness investigation device 1 is stored in the USB memory. The LAN I / F 12 is an interface for connecting a personal computer (PC).
 撮像画像処理部8は、ビデオスコープ2から供給された撮像画像の処理を行い、モニタ5に表示するために必要な処理を行い、更に処理された撮像画像を信号線を介して前述のUSBメモリに記録する。また、マイク入力処理部15は、マイクにより集音された情報をUSBメモリに記録する為の処理部であり、撮像画像に対応して音声情報をUSBメモリに記録させる構成である。 The captured image processing unit 8 processes the captured image supplied from the video scope 2, performs processing necessary for displaying on the monitor 5, and further processes the processed captured image via the signal line. To record. The microphone input processing unit 15 is a processing unit for recording information collected by the microphone in the USB memory, and is configured to record audio information in the USB memory corresponding to the captured image.
 尚、CPU9は上記ROM10に記憶されたプログラムに従って処理を行い、RAM11をワークエリアとして使用して内部健全度調査装置1の駆動を行う。また、上記ROM10には予め測定した正常配管(スタンダードサンプル)の画像データが記憶されており、後述する様にスタンダードサンプルの画像データは、測定データとの比較に使用される。 Note that the CPU 9 performs processing according to the program stored in the ROM 10 and drives the internal soundness investigation device 1 using the RAM 11 as a work area. The ROM 10 stores image data of normal piping (standard sample) measured in advance, and the image data of the standard sample is used for comparison with measurement data, as will be described later.
 以上の構成において、以下に本例の内部検査装置1を使用して欠陥検査を行う例を説明する。
図3は、欠陥検査の対象である、例えばガソリンスタンド等に設置された注油管の例を示す。通常このような注油管の欠陥検出のためには、例えばコンクリートを壊し、穴を掘る必要があった。しかし、本例の場合、以下のようにして注油管の欠陥検出を行なう。
先ず、同図に示すようにビデオスコープ2を注油管22の注油口26から挿入する。その後、作業者は前述のコントローラ4を操作しながら注油管22内の亀裂、孔食、及び腐食を検査する。この場合、ビデオスコープ2の先端には、例えば発光部が設けられ、注油管22の内部を照明しており、注油管22の内部は前述のモニタ5に映し出されている。したがって、作業者はモニタ5を見ながらコントローラ4を操作し、注油管22内に生じた亀裂、孔食、及び腐食を確認する。
In the above configuration, an example in which defect inspection is performed using the internal inspection apparatus 1 of the present example will be described below.
FIG. 3 shows an example of a lubrication pipe installed in a gas station or the like, which is a target of defect inspection. Usually, in order to detect such a defect in the lubrication pipe, for example, it was necessary to break concrete and dig a hole. However, in the case of this example, the defect detection of the lubrication pipe is performed as follows.
First, the video scope 2 is inserted from the oil inlet 26 of the oil pipe 22 as shown in FIG. Thereafter, the operator inspects cracks, pitting corrosion, and corrosion in the lubrication pipe 22 while operating the controller 4 described above. In this case, for example, a light emitting unit is provided at the tip of the video scope 2 to illuminate the inside of the oiling tube 22, and the inside of the oiling tube 22 is displayed on the monitor 5 described above. Therefore, the operator operates the controller 4 while looking at the monitor 5 and confirms cracks, pitting corrosion, and corrosion generated in the lubrication pipe 22.
 この際、ビデオスコープ2の先端はフレキシブルに湾曲可能であり、作業者はモニタ5を見ながらコントローラ4を操作し、注油管22の注油口26近傍から順次、注油管22の内壁の亀裂等の確認してゆく。尚、注油管22には折曲部32、33を有するが、ビデオスコープ2は上記のようにフレキシブルに構成されており、注油管22の形状に従って湾曲し、注油管22の終端に設けられたバルブ28の位置まで確実に検査を行うことができる。 At this time, the distal end of the video scope 2 can be flexibly bent, and the operator operates the controller 4 while looking at the monitor 5, so that the inner wall of the lubrication pipe 22 is sequentially cracked from the vicinity of the lubrication opening 26 of the lubrication pipe 22. I will check. Although the lubrication pipe 22 has bent portions 32 and 33, the video scope 2 is configured flexibly as described above, and is curved according to the shape of the lubrication pipe 22 and provided at the end of the lubrication pipe 22. The inspection can be surely performed up to the position of the valve 28.
 またこの間、ビデオスコープ2による撮像画像はモニタ5に順次表示されると共に、前述のUSBメモリにも記録される。したがって、検査終了後において、USBメモリに記録された撮像画像を精査し、微小な亀裂等も確認することができる。 During this time, images captured by the video scope 2 are sequentially displayed on the monitor 5 and also recorded in the USB memory described above. Therefore, after the inspection is completed, the captured image recorded in the USB memory can be examined closely to confirm a minute crack or the like.
 具体的には、前述のようにROM10に予め記憶したスタンダードサンプルと、USBメモリに記録された撮像画像の比較を行い、埋設配管内部の亀裂、孔食、及び腐食箇所を特定する。また、亀裂、又は孔食、又は腐食が発生している場合、埋設配管の入口から発生箇所までの距離、及び大きさを特定する。 Specifically, as described above, the standard sample stored in the ROM 10 in advance and the captured image recorded in the USB memory are compared to identify cracks, pitting corrosion, and corrosion locations in the embedded pipe. Moreover, when the crack, pitting corrosion, or corrosion has generate | occur | produced, the distance and magnitude | size from the entrance of a buried piping to an occurrence location are specified.
 また、亀裂、孔食、及び腐食の特定は、埋設年数、周囲環境、経年変化等を考慮して決定する。 Also, the identification of cracks, pitting corrosion, and corrosion shall be determined in consideration of the age of burial, surrounding environment, aging, etc.
 また、制御ユニット3には撮像画像を拡大する機能も有しており、作業者は必要に応じて注油管22の内壁の拡大画像をモニタ5に表示し、またUSBメモリに記録することができ、更に微小な亀裂等も確認することができる。
さらに、マイクを介して作業者は検査対象位置におけるコメント等の音声情報を記録することができ、後に亀裂等を検討する際の参考にすることができる。
The control unit 3 also has a function of enlarging the captured image, and an operator can display an enlarged image of the inner wall of the lubrication pipe 22 on the monitor 5 and record it in a USB memory as necessary. In addition, even minute cracks can be confirmed.
Furthermore, the operator can record voice information such as comments at the inspection target position via the microphone, which can be used as a reference when considering cracks and the like later.
 以上のようにして、埋設配管内部の亀裂、孔食、及び腐食箇所を検査した後、実際に当該亀裂等から油漏れ等が発生しているか検査を行う。
図4は、本例の油漏れ検出装置を説明する図面である。同図において、37及び38はエアープラグを示す。ここで、37は第1のエアープラグであり、38は第2のエアープラグである。また、エアープラグ37と38間には、接続用パイプ39が設けられている。また、エアープラグ38にはエアープラグ37及び38を配管内で移動させるための押圧部材40が設けられている。
As described above, after inspecting cracks, pitting corrosion, and corroded portions in the buried piping, it is inspected whether oil leakage or the like actually occurs from the cracks.
FIG. 4 is a diagram illustrating the oil leakage detection device of this example. In the figure, reference numerals 37 and 38 denote air plugs. Here, 37 is a first air plug and 38 is a second air plug. A connecting pipe 39 is provided between the air plugs 37 and 38. The air plug 38 is provided with a pressing member 40 for moving the air plugs 37 and 38 in the pipe.
 この押圧部材40には3本のパイプが配設されている。この3本のパイプは、同図の拡大部Aに示すようにパイプa~cである。ここで、パイプaは上記エアープラグ38にエアーを供給するパイプである。また、パイプbは上記エアープラグ37にエアーを供給するパイプであり、パイプcは上記エアープラグ37と38間に形成される隙間にエアーを供給するパイプである。尚、上記押圧部材40の外周は、例えばプラスチック等の樹脂で形成され、強度を有すると共に、ある程度フレキシブルに曲げることができる。したがって、後述するようにエアープラグ37及び38を押し、埋設配管内を移動させることができると共に、配管の曲がり部では配管に合わせて曲がることができる。 This pressing member 40 is provided with three pipes. These three pipes are pipes a to c as shown in the enlarged portion A of FIG. Here, the pipe a is a pipe for supplying air to the air plug 38. The pipe b is a pipe that supplies air to the air plug 37, and the pipe c is a pipe that supplies air to a gap formed between the air plugs 37 and 38. The outer periphery of the pressing member 40 is formed of a resin such as plastic, has strength, and can be bent flexibly to some extent. Therefore, as will be described later, the air plugs 37 and 38 can be pushed and moved in the buried piping, and at the bent portion of the piping, it can be bent according to the piping.
 また、図4に示すエアープラグ38内には2本のパイプb、cが通り、パイプbは上記接続用パイプ39に連結する。また、パイプcの先端には弁c’が設けられ、後述する隙間へのエアー供給を行う。尚、接続用パイプ14は、図4の拡大部Cに示すようにフレキシブルな材料、例えばゴム等を使用して形成され、内部にエアープラグ37にエアーを送るためのパイプが配設されている。 Further, two pipes b and c pass through the air plug 38 shown in FIG. 4, and the pipe b is connected to the connecting pipe 39. In addition, a valve c 'is provided at the tip of the pipe c, and air is supplied to a gap described later. The connection pipe 14 is formed using a flexible material, such as rubber, as shown in the enlarged portion C of FIG. 4, and a pipe for sending air to the air plug 37 is disposed inside. .
 以上の構成の欠陥検出装置において、以下に本例の作業工程を説明する。
図5は、前述の注油管22の注油口26から第1、第2のエアープラグ37、38を管内に挿入する状態を示す図である。同図に示すように、エアープラグ37、38は加圧されていない為縮んだ状態であり、注油管22の管内を矢印方向に送られる。ここで、エアープラグ37、38の移動は前述のように押圧部材40によって行われる。
In the defect detection apparatus having the above configuration, the working process of this example will be described below.
FIG. 5 is a view showing a state in which the first and second air plugs 37 and 38 are inserted into the pipe from the oil filling port 26 of the oil filling pipe 22 described above. As shown in the figure, the air plugs 37 and 38 are in a contracted state because they are not pressurized, and are fed in the direction of the arrow through the oil supply pipe 22. Here, the air plugs 37 and 38 are moved by the pressing member 40 as described above.
 その後、押圧部材40によってエアープラグ37、38を押していくと、エアープラグ37、38は注油管22の折り曲がり部Dを通り、注油管22の奥に入っていく。尚、注油管22の折り曲がり部Dにおいて、エアープラグ37、38にはエアーが注入されていない為、形状を少し変化させながら通過できる。また、接続用パイプ40も前述のようにフレキシブルな材料で形成されているので、エアープラグ37、38と共に移動する。また、押圧部材40も前述のように強度を有すると共に、曲げることができるので注油管22に沿って移動する。 Thereafter, when the air plugs 37, 38 are pushed by the pressing member 40, the air plugs 37, 38 pass through the bent portion D of the lubrication pipe 22 and enter the interior of the lubrication pipe 22. In addition, in the bending part D of the oil supply pipe | tube 22, since air is not injected into the air plugs 37 and 38, it can pass, changing a shape a little. Further, since the connecting pipe 40 is also made of a flexible material as described above, it moves together with the air plugs 37 and 38. Further, the pressing member 40 also has strength as described above and can be bent, so that it moves along the lubrication pipe 22.
 以後、エアープラグ37、38を押し続けると、エアープラグ37、38は注油管22の端部に達する。図6(a)はこの状態を示す図である。尚、注油管22の端部の内壁に凸部41が周設されていれば、エアープラグ37、38の移動は止まる。また、上記のような構成がない場合でも、押圧部材40に設けられたメモリによってエアープラグ37、38の位置を知ることができる。 Thereafter, when the air plugs 37 and 38 are continuously pressed, the air plugs 37 and 38 reach the end of the oil supply pipe 22. FIG. 6A shows this state. In addition, if the convex part 41 is provided in the inner wall of the edge part of the oil supply pipe | tube 22, the movement of the air plugs 37 and 38 will stop. Even if there is no configuration as described above, the positions of the air plugs 37 and 38 can be known by the memory provided in the pressing member 40.
 このようにしてエアープラグ37、38を注油管22の端部まで移動させた後、不図示のコンプレッサによって、先ずエアープラグ37のみにエアーを供給する。この場合、前述のパイプbを通してエアー供給が行われる。同図(b)は上記エアー供給によってエアープラグ37を加圧し、エアープラグ37を注油管22の内壁に圧接する状態とする。 After moving the air plugs 37 and 38 to the end of the lubrication pipe 22 in this way, air is first supplied only to the air plug 37 by a compressor (not shown). In this case, air is supplied through the pipe b described above. In FIG. 5B, the air plug 37 is pressurized by the air supply, and the air plug 37 is brought into pressure contact with the inner wall of the lubrication pipe 22.
 この状態において、押圧部材40を引き戻すと、エアープラグ37は図6(b)に示す矢印方向に移動する。
一方、接続用パイプ39は上記エアープラグ37の移動に伴って伸びるが、接続用パイプ39が完全に伸びた状態で停止する。すなわち、エアープラグ37は前述のように注油管22の内壁に圧接しており、エアープラグ37が注油管22の端部に固定された状態であるため、図7(a)の状態となる。
In this state, when the pressing member 40 is pulled back, the air plug 37 moves in the arrow direction shown in FIG.
On the other hand, the connecting pipe 39 extends as the air plug 37 moves, but stops when the connecting pipe 39 is fully extended. That is, since the air plug 37 is in pressure contact with the inner wall of the oil supply pipe 22 as described above and the air plug 37 is fixed to the end of the oil supply pipe 22, the state shown in FIG.
 この状態において、次にエアープラグ38にエアーを供給する。この場合、不図示のコンプレッサからパイプaを通してエアー供給を行う。同図(b)は上記エアー供給によってエアープラグ38を加圧し、注油管22の内壁に圧接する状態を示す。この状態において、エアープラグ37、38間の隙間40は密封される。
In this state, air is then supplied to the air plug 38. In this case, air is supplied from a compressor (not shown) through the pipe a. FIG. 2B shows a state in which the air plug 38 is pressurized by the air supply and is pressed against the inner wall of the lubrication pipe 22. In this state, the gap 40 between the air plugs 37 and 38 is sealed.
次に、この状態において、コンプレッサからパイプcを通してエアープラグ37、38間の隙間40にエアーを注入する。この場合、パイプcを通して送られたエアーは弁c’から隙間40に供給され、隙間40を加圧する。そして、一定の圧力まで加圧した後、例えばコンペレッサに設けられた圧力計を確認し、圧力低下を判断する。この場合、例えば一定圧力に達した後の測定時間と許容圧力範囲を予め設定し、当該時間内に上記許容圧力範囲内の圧力を維持すれば、対応する範囲の注油管22に問題はないと判断する。 Next, in this state, air is injected from the compressor into the gap 40 between the air plugs 37 and 38 through the pipe c. In this case, the air sent through the pipe c is supplied from the valve c ′ to the gap 40 and pressurizes the gap 40. Then, after pressurizing to a certain pressure, for example, a pressure gauge provided in the compressor is checked to determine a pressure drop. In this case, for example, if the measurement time after reaching a certain pressure and the permissible pressure range are set in advance and the pressure within the permissible pressure range is maintained within the time, there is no problem with the corresponding lubrication pipe 22. to decide.
 一方、一定圧力に達した後、当該時間内に許容圧力範囲以下の圧力になれば、対応する範囲の注油管22にある亀裂は具体的に油漏れする亀裂であることが分かる。すなわち、対応する注油管2の隙間19の範囲において、亀裂等の欠損が有り、当該亀裂等の欠陥から油が漏れていると判断できる。 On the other hand, after reaching a certain pressure, if the pressure falls below the allowable pressure range within the time, it can be seen that the crack in the oil supply pipe 22 in the corresponding range is a specific oil leak. That is, it can be determined that there is a defect such as a crack in the range of the gap 19 of the corresponding oil supply pipe 2 and oil has leaked from the defect such as the crack.
 したがって、上記処理を順次注油管22の注油口26まで繰り返すことによって注油管2の全ての箇所について欠陥検出を行うことができる。すなわち、上記処理後、先ずエアープラグ37、38のエアーを抜き、所定長(所定距離)押圧部材40を引き抜く。この所定長は、上記接続用パイプ39の長さに対応し、例えば接続用パイプ39の長さが1mであれば、1m間隔で押圧部材40を引き抜く。その後、エアープラグ37を加圧し、次にエアープラグ38を加圧し、その後エアープラグ37、38間に形成される隙間41を加圧する。この場合も、上記隙間41への加圧後、コンペレッサに設けられた圧力計を確認し、圧力低下を判断する。以下、上記処理を繰り返し、一定間隔毎に注油管22の欠陥を検出する。 Therefore, it is possible to detect a defect in all locations of the lubrication pipe 2 by sequentially repeating the above processing up to the lubrication port 26 of the lubrication pipe 22. That is, after the above processing, the air plugs 37 and 38 are first evacuated, and the pressing member 40 is pulled out for a predetermined length (predetermined distance). This predetermined length corresponds to the length of the connection pipe 39. For example, if the length of the connection pipe 39 is 1 m, the pressing member 40 is pulled out at intervals of 1 m. Thereafter, the air plug 37 is pressurized, then the air plug 38 is pressurized, and then the gap 41 formed between the air plugs 37, 38 is pressurized. Also in this case, after pressurizing the gap 41, a pressure gauge provided in the compressor is checked to determine a pressure drop. Thereafter, the above process is repeated to detect a defect in the lubrication pipe 22 at regular intervals.
 以上のように処理することによって、注油管22の欠陥個所を一定間隔毎に検査することができ、かつ上記処理によって実際に油漏れする欠陥個所を検出することができる。
尚、上記例は注油管22について説明したが、ガソリン、軽油、重油等を流す埋設配管一般についても、欠陥検査を行うことができる。
By processing as described above, it is possible to inspect defective portions of the oil supply pipe 22 at regular intervals, and it is possible to detect defective portions that actually leak through the above processing.
In addition, although the said example demonstrated the lubrication pipe | tube 22, a defect test | inspection can also be performed also about the underground piping in which gasoline, light oil, heavy oil, etc. flow.
1・・・内部健全度調査装置
2・・・ビデオスコープ
3・・・制御ユニット
4・・・コントローラ
5・・・モニタ
6・・・電源供給部
7・・・ファイバーユニット
8・・・撮像画像処理部
9・・・CPU
10・・ROM
11・・RAM
12・・LANドI/F
13・・USBI/F
14・・入力I/F
15・・マイク入力処理部
22・・注油管
26・・注油口
32、33・・折曲部
37・・第1のエアープラグ
38・・第2のエアープラグ
39・・接続用パイプ
40・・押圧部材
41・・隙間
DESCRIPTION OF SYMBOLS 1 ... Internal soundness investigation apparatus 2 ... Video scope 3 ... Control unit 4 ... Controller 5 ... Monitor 6 ... Power supply part 7 ... Fiber unit 8 ... Captured image Processor 9 ... CPU
10. ROM
11..RAM
12. ・ LAN de I / F
13. USB I / F
14. Input I / F
15. · Microphone input processing unit 22 · · Lubrication pipe 26 · · Lubrication ports 32 and 33 · · Bending portion 37 · · First air plug 38 · · Second air plug 39 · · Connection pipe 40 · · Press member 41 ・ ・ Gap

Claims (5)

  1.  配管の内部の欠陥を検出する内部検査ユニットと、
     該内部検査ユニットによって検出した欠陥からの油漏れを検出する配管欠陥検出ユニットと、を有し、
     前記配管欠陥検出ユニットは、第1のエアープラグと、該第1のエアープラグにフレキシブルな接続部材を介して接続された第2のエアープラグと、前記第1のエアープラグ、及び第2のエアープラグ、及び第1、第2のエアープラグ間の隙間にエアーを供給するエアー圧力供給手段とを有し、
     前記第1、第2のエアープラグを、前記第1、第2のエアープラグの順に配管に挿入後、前記エアー圧力供給手段から前記第1のエアープラグにエアーを供給し、前記配管に圧接した後、前記第1のエアープラグを引き戻すエアープラグ移動手段と、該エアープラグ移動手段によって前記第1のエアープラグを引き戻した後、前記エアー圧力供給手段から前記第1のエアープラグ、及び前記隙間にエアーを供給し、前記第1のエアープラグを前記配管に圧接すると共に、前記隙間の圧力低下を検出する検出手段と、
     を有することを特徴とする欠陥検出装置。
    An internal inspection unit that detects defects inside the piping;
    A piping defect detection unit that detects oil leakage from a defect detected by the internal inspection unit;
    The piping defect detection unit includes a first air plug, a second air plug connected to the first air plug via a flexible connecting member, the first air plug, and a second air plug. An air pressure supply means for supplying air to the gap between the plug and the first and second air plugs;
    After the first and second air plugs are inserted into the pipe in the order of the first and second air plugs, air is supplied from the air pressure supply means to the first air plug and pressed against the pipe. Thereafter, an air plug moving means for pulling back the first air plug, and after the first air plug is pulled back by the air plug moving means, from the air pressure supply means to the first air plug and the gap. Detecting means for supplying air, pressing the first air plug against the pipe, and detecting a pressure drop in the gap;
    A defect detection apparatus comprising:
  2.  前記内部検査ユニットは、ビデオスコープと、該ビデオスコープで撮像した撮像画像を処理する処理手段と、前記撮像画像を表示するモニタと、前記撮像画像を記録する記録手段とを有することを特徴とする請求項1に記載の欠陥検出装置。 The internal inspection unit includes a video scope, a processing unit that processes a captured image captured by the video scope, a monitor that displays the captured image, and a recording unit that records the captured image. The defect detection apparatus according to claim 1.
  3.  前記接続部材は所定の長さを有することを特徴とする請求項1、又は2に記載の欠陥検出装置。 3. The defect detection apparatus according to claim 1, wherein the connecting member has a predetermined length.
  4.  配管の内部の欠陥を検出する内部検査ユニットと、該内部検査ユニットによって検出した欠陥の油漏れを検出する配管欠陥検出ユニットとを備える欠陥検出装置における欠陥検査方法であって、
     前記配管欠陥検出ユニットは、第1のエアープラグと、該第1のエアープラグにフレキシブルな接続部材を介して接続された第2のエアープラグと、前記第1のエアープラグ、及び第2のエアープラグ、及び第1、第2のエアープラグ間の隙間にエアーを供給するエアー圧力供給手段とを備え、
     前記第1、第2のエアープラグを、前記第1、第2のエアープラグの順に配管に挿入後、前記エアー圧力供給手段から前記第1のエアープラグにエアーを供給し、前記配管に圧接した後、前記第1のエアープラグを引き戻すエアープラグ移動手段とを備え、
    該エアープラグ移動手段によって前記第1のエアープラグを引き戻した後、前記エアー圧力供給手段から前記第1のエアープラグ、及び前記隙間にエアーを供給し、前記第1のエアープラグを前記配管に圧接すると共に、前記隙間の圧力低下を検出することを特徴とする欠陥検出方法。
    A defect inspection method in a defect detection apparatus comprising an internal inspection unit for detecting defects inside a pipe and a pipe defect detection unit for detecting oil leakage of the defects detected by the internal inspection unit,
    The piping defect detection unit includes a first air plug, a second air plug connected to the first air plug via a flexible connecting member, the first air plug, and a second air plug. An air pressure supply means for supplying air to the gap between the plug and the first and second air plugs;
    After the first and second air plugs are inserted into the pipe in the order of the first and second air plugs, air is supplied from the air pressure supply means to the first air plug and pressed against the pipe. And an air plug moving means for pulling back the first air plug.
    After the first air plug is pulled back by the air plug moving means, air is supplied from the air pressure supply means to the first air plug and the gap, and the first air plug is pressed against the pipe. And detecting a pressure drop in the gap.
  5.  前記接続部材は、所定の長さを有することを特徴とする請求項4に記載の欠陥検出方法。 5. The defect detection method according to claim 4, wherein the connecting member has a predetermined length.
PCT/JP2009/066459 2009-09-19 2009-09-19 Defect detecting device WO2011033677A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/066459 WO2011033677A1 (en) 2009-09-19 2009-09-19 Defect detecting device
AU2009352792A AU2009352792A1 (en) 2009-09-19 2009-09-19 Defect detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066459 WO2011033677A1 (en) 2009-09-19 2009-09-19 Defect detecting device

Publications (1)

Publication Number Publication Date
WO2011033677A1 true WO2011033677A1 (en) 2011-03-24

Family

ID=43758303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066459 WO2011033677A1 (en) 2009-09-19 2009-09-19 Defect detecting device

Country Status (2)

Country Link
AU (1) AU2009352792A1 (en)
WO (1) WO2011033677A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230183055A1 (en) * 2014-08-11 2023-06-15 Franklin Fueling Systems, Llc Fuel verification system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005780A (en) * 2000-06-26 2002-01-09 Sanfurointo:Kk Defect position detecting device for buried pipe
JP2003015057A (en) * 2001-07-03 2003-01-15 Babcock Hitachi Kk Remote drive type optical microscope device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005780A (en) * 2000-06-26 2002-01-09 Sanfurointo:Kk Defect position detecting device for buried pipe
JP2003015057A (en) * 2001-07-03 2003-01-15 Babcock Hitachi Kk Remote drive type optical microscope device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230183055A1 (en) * 2014-08-11 2023-06-15 Franklin Fueling Systems, Llc Fuel verification system

Also Published As

Publication number Publication date
AU2009352792A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US8387461B2 (en) Inspection method
EP2109497B1 (en) Seal for tube
CN211423696U (en) Sewer line defect detection device and sewer line maintenance car
CN101308153A (en) Digital image-forming tube bar material defect nondestructive flaw detection system
KR100832345B1 (en) Leak rate and life cycles test system of pneumatic angle valve for vacuum
WO2011033677A1 (en) Defect detecting device
JP5108852B2 (en) Vacuum pump inspection method and vacuum pressure measuring device
KR101357810B1 (en) capsule check system for check in tube.
JP3140465U (en) Internal health survey device
KR101008210B1 (en) Automation system for manual ultrasonic inspection instrument
TWI592606B (en) Inside-wall soundness inspection apparatus
JP3159268U (en) Internal health survey device
JP2007155358A (en) Leakage location inspecting structure for buried gas pipe
JP7441048B2 (en) Buried piping inspection device
KR20170130023A (en) Apparatus, Method, System and Program for Pipeline Visual Inspection
JP4457243B2 (en) Embedded piping defect detection system
US10883358B2 (en) Insertion tool for inspection of vessel
KR20090120138A (en) Inside soundness inspection apparatus
JP3710417B2 (en) Nondestructive inspection method for pipe joints
KR101187563B1 (en) Fuel leak test device for wing fuel tank
JP2010230596A (en) Underground piping gas leakage investigation method
AU2011100633A4 (en) Inside-wall soundness inspection apparatus
RU83336U1 (en) VISUAL DETECTION OF HIDDEN DEFECTS
CN113007592A (en) Online detection method for gas storage cylinder
KR20090114136A (en) High pressure tube tester of vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009352792

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009352792

Country of ref document: AU

Date of ref document: 20090919

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP