WO2011033628A1 - Living organism information measurement device, living organism information measurement system, and communication method and usage method for living organism information measurement device - Google Patents

Living organism information measurement device, living organism information measurement system, and communication method and usage method for living organism information measurement device Download PDF

Info

Publication number
WO2011033628A1
WO2011033628A1 PCT/JP2009/066183 JP2009066183W WO2011033628A1 WO 2011033628 A1 WO2011033628 A1 WO 2011033628A1 JP 2009066183 W JP2009066183 W JP 2009066183W WO 2011033628 A1 WO2011033628 A1 WO 2011033628A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
biological information
receiving element
pulse oximeter
Prior art date
Application number
PCT/JP2009/066183
Other languages
French (fr)
Japanese (ja)
Inventor
謙治 蛤
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Priority to JP2011531703A priority Critical patent/JP5168415B2/en
Priority to PCT/JP2009/066183 priority patent/WO2011033628A1/en
Publication of WO2011033628A1 publication Critical patent/WO2011033628A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1495Calibrating or testing of in-vivo probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • A61B2560/0228Operational features of calibration, e.g. protocols for calibrating sensors using calibration standards

Definitions

  • the present invention relates to a biological information measuring device, a biological information measuring system, a method of using the biological information measuring device, and a communication method realized as a pulse rate meter, a pulse wave meter, a pulse oximeter, or the like.
  • SpO 2 value can be measured noninvasively by simply fitting a probe having a light emitting element and a light receiving element for measuring the light absorption characteristics to a finger. It is a highly reliable device, and it is possible to perform measurement for a long time by continuously mounting the probe because of a small burden on the subject.
  • the miniaturization of devices including recording media has progressed, and it is possible not only to use the device in a hospital room, but also to perform long-time measurements carried by the subject.
  • Patent Document 1 a pulse oximeter is connected to a personal computer by wire to transfer data.
  • Patent Document 2 discloses a monitoring device that attaches a diagnostic device to a body and wirelessly transmits acquired data to a main device.
  • a connector or the like is required in the conventional technique of Patent Document 1
  • a wireless communication unit is required in the conventional technique of Patent Document 2.
  • the pulse oximeter performs the long-time measurement while conducting normal social life such as at bedtime. For this reason, further miniaturization is desired.
  • An object of the present invention is to provide a biological information measuring device, a biological information measuring system, and a method for using the biological information measuring device that can be further miniaturized.
  • the first light emitting element for irradiating light to the living tissue, and the living body The first light receiving element that receives light transmitted or reflected by the tissue is used as an optical communication interface with an external device.
  • FIG. 5 is a flowchart for explaining a method of reading various setting information from the pulse oximeter shown in FIG. 4 and shows the operation on the simulator side.
  • FIG. 5 is a flowchart for explaining a method of reading various setting information from the pulse oximeter shown in FIG. 4, and shows the operation on the pulse oximeter side.
  • FIG. 1 is a block diagram showing an electrical configuration of a pulse oximeter system that is a biological information measurement system according to Embodiment 1 according to the first focus of the present invention.
  • the pulse oximeter system includes a pulse oximeter 1, a general-purpose personal computer 2 storing dedicated software, and an interface device 3 interposed therebetween, and the personal computer 2 and interface The device 3 corresponds to the external device and the external communication unit of the present invention.
  • the pulse oximeter 1 includes a main body 4 and a probe 6.
  • the probe 6 includes light emitting diodes 61 and 62, a photodiode 63, an identification resistor 64, and a support member 65.
  • the light emitting diodes 61 and 62 which are first light emitting elements, irradiate a subject's finger with light of two wavelengths of red light and infrared light, respectively, as living tissue with blood flow.
  • the photodiode 63 which is a first light receiving element receives the light having the two wavelengths transmitted from the light emitting diodes 61 and 62 transmitted or reflected (transmitted in the example of FIG. 1) by the subject's finger. To do.
  • the identification resistor 64 represents the type of the light emitting diodes 61 and 62 in the probe 6 by its resistance value.
  • the support member 65 sandwiches the subject's finger between the light emitting diodes 61 and 62 and the photodiode 63 facing each other.
  • Different types of probes 6 are prepared so that the probe 6 can be appropriately selected depending on whether the subject is an adult, a child, or a newborn, and whether the measurement time is long or short, disposable or reusable, etc.
  • the main body 4 can be attached and detached with a connector or the like to be exchanged.
  • the characteristics of the light emitting diodes 61 and 62 used are different between the different types of probes 6, and the identification resistor 64 indicates the characteristics of the light emitting diodes 61 and 62 by the resistance value as described above. .
  • the resistance value of the identification resistor 64 is set to 10 k ⁇ in the case of a combination of 660 nm and 900 nm for red and infrared among the light emitting diodes 61 and 62, and 650 nm and 900 nm. Is set to 12 k ⁇ .
  • the probe 6 is shown to be separable from the main body 4, but the probe 6 may be configured integrally with the main body 4.
  • the main body section 4 includes a CPU 41, a timing generation section 42, an LED driver section 43, a current / voltage conversion section 44, a waveform shaping section 45, an analog / digital conversion section 47, a measurement data storage section 48, and a display.
  • the CPU 41 controls the overall operation of the pulse oximeter 1, and includes a light emission control unit 41a, a calculation unit 41b, and a communication unit 41c as main functions.
  • the light emission control unit 41 a generates a control signal for alternately emitting the red light and the infrared light, and drives the LED driver unit 43 via the timing generation unit 42.
  • the light emitting diodes 61 and 62 on the probe 6 side are modulated at a predetermined level to emit light alternately.
  • the calculation unit 41b calculates the SpO 2 value based on the signal received by the photodiode 63 on the probe 6 side.
  • the communication unit 41c communicates with the personal computer 2 as will be described later.
  • the timing generator 42 generates a timing signal for alternately causing the light emitting diodes 61 and 62 to emit light in response to a signal from the light emission controller 41a of the CPU 41.
  • the LED driver 43 is lit to drive the light emitting diodes 61 and 62 in response to a timing signal from the timing generator 42.
  • the current / voltage converter 44 converts the current signal from the photodiode 63 into a voltage signal.
  • the waveform shaping unit 45 restores a pulse component having a predetermined period from the voltage signal obtained by the current-voltage conversion unit 44.
  • the analog / digital conversion unit 47 performs analog / digital conversion on the voltage signal obtained by the current-voltage conversion unit 44 in accordance with the timing signal from the timing generation unit 42, and converts the red light signal component and the infrared signal. This is separated into light signal components and given to the calculation unit 41b of the CPU 41.
  • the measurement data storage unit 48 is composed of a non-volatile memory, and stores the calculation result of the calculation unit 41b.
  • the display unit 49 is realized by a liquid crystal display panel or the like, and displays a current measurement value (SpO 2 value and pulse rate), and also displays a warning when a hypoxic state is reached.
  • the setting unit 50 performs various settings such as a threshold value for determining the low oxygen state.
  • the setting state storage unit 51 stores a setting value in the setting unit 50.
  • the model information storage unit 52 stores the manufacturer name, model number, product number, and the like of the pulse oximeter 1.
  • the calibration curve storage unit 53 defines the relationship between the ratio of the red light pulse wave signal and the infrared light pulse wave signal, which varies depending on the light emission characteristics of the light emitting diodes 61 and 62 described later, and the SpO 2 value.
  • the calibration curve (data) is stored.
  • the calibration curve is a table in which various ratios of a pulse wave signal of red light and a pulse wave signal of infrared light and SpO 2 values corresponding to the respective ratios are stored as a table. .
  • the calibration curve may be an expression representing the relationship between the ratio of the red light pulse wave signal and the infrared light pulse wave signal and the SpO 2 value.
  • the relationship between the ratio of the red light pulse wave signal to the infrared light pulse wave signal and the SpO 2 value varies depending on the characteristics of the red light and infrared light (emission intensity, peak wavelength, half width, etc.). For this reason, even if the red light and infrared light characteristics of the light emitting diodes 61 and 62 of the probe 6 are different from the standard characteristics, various red light and infrared light characteristics are calculated in order to calculate a correct SpO 2 value. Are stored in the calibration curve storage unit 53. Then, an appropriate calibration table corresponding to the characteristics of the red light and infrared light of the probe 6 to be used is selected by the configuration curve selection unit 55 and used for the calculation of the SpO 2 value.
  • the LED wavelength information analysis unit 54 reads the resistance value of the identification resistor 64, refers to a pre-stored table, and determines the light emission characteristics of the light emitting diodes 61 and 62 corresponding to the read resistance value. Is.
  • the calibration curve selection unit 55 selects and reads the calibration curve in the calibration curve storage unit 53 in response to the light emission characteristics of the light emitting diodes 61 and 62 obtained by the LED wavelength information analysis unit 54. .
  • the transmitted light of the subject's finger due to the light emission of the light emitting diodes 61 and 62 is converted into a current signal according to the light reception level by the photodiode 63, and the main body 4 Is input.
  • the current signal is converted into a voltage signal by the current / voltage converter 44, and converted into a digital value by the analog / digital converter 47 in response to the timing signal from the timing generator 42.
  • the light component is separated into a red light component and an infrared light component and input to the calculation unit 41 b of the CPU 41.
  • the resistance value of the identification resistor 64 is read by the LED wavelength information analysis unit 54 and given to the calibration curve selection unit 55.
  • the calibration curve selection unit 55 includes a light emitting diode 61 of the probe 6 that is actually attached to the main body 4 among a plurality of calibration curves corresponding to various light emitting diodes stored in the calibration curve storage unit 53. One corresponding to 62 is selected and set in the calculation unit 41b of the CPU 41. Therefore, the identification resistor 64 serves as an identification member that represents the type of the light emitting diodes 61 and 62, and the LED wavelength information analysis unit 54 serves as a reading unit that reads the resistance value of the identification resistor 64.
  • the calculation unit 41b calculates the SpO 2 value from the ratio of the pulse wave signal of the red light and the infrared light by using the digital value of the light reception signal at the light emitting diodes 61 and 62.
  • the calculation unit 41b obtains the pulse rate from the period of the pulse wave signal of the red light or infrared light, and sequentially stores the measurement data in the storage unit 48, and if necessary, the display unit 49.
  • the display unit 49 particularly provides voice notification. I do.
  • the personal computer 2 that is an external data processing device is connected to the communication unit 41c of the CPU 41 via an connector to an insulating circuit made of a photocoupler.
  • the measurement data stored in the measurement data storage unit 48 is transferred for a long time, and various settings are made.
  • the pulse oximeter 1 is connected to the personal computer 2 through the interface device 3, and the measurement data is transferred and various settings are performed.
  • the interface device 3 includes a simulated finger 7 and a main body 8.
  • the simulated finger 7 includes a main body 71, a photodiode 72, a light emitting diode 73, and a light shielding plate 74.
  • the main body 71 is sandwiched (engaged) between the support members 65.
  • a photodiode 72 which is a second light receiving element, is attached to one surface side of the main body 71 so as to face at least one of the light emitting diodes 61 and 62, and a second light receiving element is attached to the other surface side.
  • a light emitting diode 73 which is a light emitting element is attached to face the photodiode 63.
  • a light shielding plate 74 is interposed between the light emitting diode 73 and the photodiode 72.
  • the main body 8 includes an LED driver 81 that drives the light emitting diode 73 in response to an output signal of the personal computer 2, a current-voltage converter 82 that converts a current signal from the photodiode 72 into a voltage signal,
  • the voltage signal is waveform-shaped, that is, provided with a waveform shaping unit 83 that converts the voltage signal into a binary signal and uses it as an input signal of the personal computer 2.
  • a current-voltage conversion unit 44 and a waveform shaping unit 45 are provided on the main body 4 side of the pulse oximeter 1 in order to realize communication with the personal computer 2, and the CPU 41 includes A communication unit 41c is provided. Then, the light emitting diode 73 emits light by the personal computer 2, and the current signal obtained by the photodiode 63 is converted into a voltage signal by the current-voltage conversion unit 44 and then input to the waveform shaping unit 45. .
  • the waveform shaping unit 45 converts the input signal into waveform shaping, that is, a binary signal, and inputs the signal to the communication unit 41c.
  • the personal computer 2 serving as the second communication unit first communicates with the pulse oximeter 1 via the LED driver unit 81 in a predetermined format (command) to drive the light emitting diode 73.
  • the communication unit 41c of the CPU 41 which is the first communication unit and is also a detection unit as described above, monitors the input signal from the waveform shaping unit 45, and is shown in FIG. While the optical signal for measurement as shown in FIG. 5 is being transmitted, the waveform shaping unit 45 does not output the shaped pulse, and the communication unit 41c remains on standby (monitored).
  • the waveform shaping unit 45 outputs a shaped pulse, and the communication unit 41c decodes the pulse.
  • the state is switched to a state where optical communication is possible.
  • the communication unit 41c uses at least one of the light emitting diodes 61 and 62 and the photodiode 63 as an optical communication interface to communicate with the personal computer 2 side. Communicate.
  • the stored data in the measurement data storage unit 48 as described above can be transferred, and various settings can be made to the CPU 41.
  • FIG. 3 is a waveform diagram showing an example of a communication signal between the personal computer 2 and the communication unit 41c including the signal (command) in the predetermined format.
  • a pulse having a cycle shorter than that of red light and infrared light is used, and the red light and infrared light irradiation light and transmitted light can be distinguished.
  • the waveform shaping unit 45 is omitted and the pulse conversion result by the waveform shaping unit 45 is not used, but the communication unit 41c is switched to a state in which optical communication is possible from the conversion result of the analog / digital conversion unit 47. Is also possible. In that case, the communication unit 41c of the pulse oximeter 1 obtains the period from the time series of the digital value of the analog / digital conversion unit 47, and if it is a predetermined period different from the period during normal measurement, Recognized as a communication signal from the computer 2.
  • the communication unit 41c when detecting the connection of the external communication unit, the communication unit 41c is used as a detection unit and is not detected optically by a signal (command) in a predetermined format, for example, a magnet is provided on the simulated finger 7, By providing the probe 6 with a magnetic field detection element such as a Hall element, the communication unit 41c may magnetically recognize that the simulated finger 7 is worn and set the communicable state. By detecting by the above method, the connection can be detected without requiring an electrical connection terminal.
  • the light emitting diodes 61 and 62 and the photodiode 63 of the pulse oximeter 1 as an optical communication interface for performing optical communication with the personal computer 2, communication between the pulse oximeter 1 and the personal computer 2 can be performed. For this reason, it is not necessary to mount an interface such as a connector or a wireless communication circuit in particular, and it is possible to reduce the size and cost.
  • the biological information measuring apparatus includes a first light emitting element that irradiates light to a biological tissue, and a first light receiving element that receives the transmitted or reflected light of the light in the biological tissue.
  • a calculation unit that calculates biological information using a light reception signal from the first light receiving element, a detection unit that detects whether the biological information measurement device is in a communicable state, and the detection unit
  • a first communication unit that performs optical communication with the outside by using the first light emitting element and the first light receiving element as an optical communication interface with the outside when it is detected that communication is possible; It is characterized by providing.
  • the light from a 1st light emitting element is irradiated to a biological tissue, the permeation
  • the calculation unit calculates predetermined biological information
  • the calculation result in the calculation unit that is, measurement data is transferred to an external device such as a personal computer, or the biological information measurement apparatus
  • the first communication unit provided for reading out the specifications and setting contents of the device and setting from the outside connects the first light emitting element and the first light receiving element to the optical communication interface with the external device. Use as a face.
  • a light reception signal from the first light receiving element is input to the first communication unit, and when the signal is monitored and a predetermined signal format, that is, a command to perform optical communication is input, the external communication Perform optical communication with the device.
  • the first communication unit is configured such that the light reception signal is larger than a predetermined value because the light reception signal is outside a predetermined light reception signal range, for example, there is no living tissue between the light emitting element and the light receiving element.
  • optical communication is performed.
  • the first communication unit includes an operation unit for selecting the biological information measurement device between a measurement mode for measuring biological information and a communication mode for performing optical communication, When the operation detects that the communication mode is selected, optical communication is performed.
  • the biological information measuring system includes the biological information measuring device and an external communication unit, wherein the external communication unit includes a second light emitting element, a second light receiving element, and the first light receiving element.
  • a second communication unit that uses the second light-emitting element and the second light-receiving element as an optical communication interface with the outside, and the biological information measuring device and the external communication unit are engaged with each other by an engagement unit.
  • the optical communication is possible, and in the engaged state, the first light emitting element and the second light receiving element face each other, and the first light receiving element and the second light emitting element face each other. It is arranged so that it may be arranged.
  • the biological information measuring apparatus originally provides the biological information by configuring the external device with the second light emitting element, the second light receiving element, and the second communication unit as described above.
  • the first light emitting element and the first light receiving element to be acquired as an optical communication interface as described above, a biological information measurement system that communicates with the external device can be realized.
  • the first light emitting element irradiates a living tissue with blood flow with light of two wavelengths, red light and infrared light, and the first light receiving element. Receives the transmitted or reflected light of each of the two wavelengths of light in the living tissue, and the calculation unit uses the light reception signal in the first light receiving element to receive two light in the living tissue. It is a pulse oximeter that calculates blood oxygen saturation from the difference in light absorption characteristics of wavelengths.
  • the biological information measuring device can be realized as a pulse oximeter that calculates blood oxygen saturation.
  • FIG. 4 is a block diagram showing an electrical configuration of the pulse oximeter system according to the second embodiment according to the second focus of the present invention.
  • This pulse oximeter system is similar to the pulse oximeter system shown in FIG. 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the pulse oximeter 1 ′ is basically the same as the pulse oximeter 1 described above.
  • the simulator 10 is used as an external device or an external communication unit instead of the personal computer 2.
  • a biological simulator is known and used as a device for evaluating the function and performance of the pulse oximeters 1 and 1'.
  • the simulator 10 serving as the biological simulator is configured by including a simulated finger 3 ′ in the main body 11.
  • the simulated finger 3 ′ is similar to the simulated finger 3, and the light emitting diode 73 is a light emitting diode that generates one of red light and infrared light, and a light emitting diode 75 that generates the other light is further provided. .
  • the main body 11 includes a CPU 101, a current / voltage converter 102, a waveform shaping unit 103, a waveform shaping unit 104, an LED driver unit 105, a display unit 106, a setting unit 107, and a calibration curve selection unit 108. , An R / IR setting unit 109, an AC setting unit 110, a DC setting unit 111, and a pulse rate setting unit 112.
  • the CPU 101 includes a control unit 101a, a calibration curve storage unit 101b, and a communication unit 101c.
  • the control unit 101a controls a simulation operation and an optical communication operation, which will be described later, a processing operation of measurement data obtained by the optical communication operation, and the like.
  • the calibration curve storage unit 101b stores a calibration curve corresponding to the emission characteristics (peak intensity, peak wavelength, half-value width, etc.) of each type of light emitting diode of each manufacturer.
  • the communication unit 101c serves as a second communication unit in the claims, and performs optical communication with the communication unit 41c 'on the pulse oximeter 1' side as described later.
  • the current-voltage conversion unit 102 converts the current signal from the photodiode 72 into a voltage signal, similar to the current-voltage conversion unit 82 and the current-voltage conversion unit 44.
  • the waveform shaping unit 103 restores a pulse component having a predetermined period from the voltage signal obtained by the current-voltage conversion unit 44, and also performs the simulation of the light emitting diodes 61 and 62 during simulation. A pulse for detecting the light emission timing is generated.
  • the DC setting unit 111 sets a DC component for driving the light emitting diodes 73 and 75 to be turned on during the simulation, that is, a basic light emission intensity, and a pulse for driving the light emitting diodes 73 and 75 to be turned on during optical communication described later.
  • the signal is generated.
  • the AC setting unit 110 sets the light emission intensity of the AC component that drives the light emitting diodes 73 and 75 to turn on during the simulation, that is, the modulation component corresponding to the target SpO 2 value.
  • the pulse rate setting unit 112 sets the light emission intensity of a low frequency component that lights and drives the light emitting diodes 73 and 75 in the simulation, that is, a modulation component corresponding to the pulse.
  • the waveform shaping unit 104 is at a level corresponding to the set values by the AC setting unit 110, the DC setting unit 111, and the pulse rate setting unit 112, and at the light emission timing obtained by the waveform shaping unit 103, A drive signal for lighting the light emitting diodes 73 and 75 is created. Further, the waveform shaping unit 104 generates a drive signal for driving the light emitting diode 73 or 75 in response to the pulse signal from the DC setting unit 111 during the optical communication.
  • the LED driver unit 105 drives the light emitting diodes 73 and 75 to light in response to a drive signal from the waveform shaping unit 104.
  • the calibration curve selection unit 108 selects a calibration curve corresponding to the light emission characteristics of the light emitting diodes 61 and 62 on the pulse oximeter 1 ′ side during the simulation.
  • the R / IR setting unit 109 is set to 0.6. If the wavelength of the light emitting diodes 61 and 62 is a combination of 650 nm and 900 nm, the ratio of the red light modulation degree and the infrared light modulation degree is 0.58 when SpO 2 of the calibration curve is 97%. The R / IR setting unit 109 is set to 0.58.
  • control unit 101a sets the modulation degree of red light and infrared light in the AC setting unit 110.
  • the value read from the setting unit 107 by the CPU 101 is set as the modulation degree of the infrared light.
  • the red light modulation degree is set to a value obtained by multiplying the infrared light modulation degree by the ratio of the red light modulation degree and the infrared light modulation degree set in the R / IR setting unit 109.
  • the display unit 106 includes a liquid crystal display panel and the like, and can display various setting screens necessary for the simulation and the status of the simulation.
  • the setting unit 107 sets various parameters necessary for the simulation, such as SpO 2 value, pulse rate, and pulse wave signal intensity (modulation degree) of infrared light.
  • the SpO 2 value and the pulse rate as the simulation target values are input from the setting unit 107 by the user with reference to the display unit 106.
  • CPU 101 is set.
  • the control unit 101a of the CPU 101 sets the DC component value for driving the red and infrared light emitting diodes 73 and 75 in the DC setting unit 111, and the AC component. Is set in the AC setting unit 110, and the pulse rate value is set in the pulse rate setting unit 112.
  • the waveform shaping unit 104 forms a simulation waveform, and the light emitting diodes 73 and 75 are connected via the LED driver unit 105. By driving to emit light, the pulse oximeter 1 ′ can be simulated.
  • a current-voltage conversion unit 102 and a waveform shaping unit 103 similar to the current-voltage conversion unit 82 and the waveform shaping unit 83 for reception are provided in the main body unit 11 and for transmission.
  • the DC setting unit 111, the waveform shaping unit 104, and the LED driver unit 105 are shared.
  • the communication unit 101c of the CPU 101 serving as the second communication unit uses these to communicate with the communication unit 41c 'on the pulse oximeter 1' side.
  • the control unit 101a of the CPU 101 causes the communication unit 101c to connect one of the light emitting diodes 73 and 75 from the DC setting unit 111 and the waveform shaping unit 104 via the LED driver unit 105 in advance.
  • the communication unit 41c ′ in the CPU 41 ′ on the pulse oximeter 1 ′ side is switched to a state capable of optical communication by being driven by a signal (command) of a predetermined format.
  • control unit 101a sends the calibration curve information corresponding to the type of the light emitting diodes 61 and 62 of the current probe 6 from the calibration curve selection unit 55 to the communication unit 101c, the current-voltage conversion unit 102, and the waveform. Reading is performed via the shaping unit 103.
  • the control unit 101a causes the calibration curve selection unit 108 to select a corresponding one of the plurality of calibration curves stored in the calibration curve storage unit 101b in the CPU 101, and from the selected calibration curve. Then, the ratio of the modulation factor of the red light and the modulation factor of the infrared light corresponding to the SpO 2 setting value of the target value of the simulation set by the setting unit 107 is read, and the value is read to the R / IR setting unit 109. Set.
  • the light emission characteristics (the peak intensity, the peak wavelength, the half width, etc.) of the two light emitting diodes 61 and 62 of the current probe 6 can be reproduced in a pseudo manner by the light emitting diodes 73 and 75 on the simulator 10 side.
  • the control unit 101a also reads out alarm information set from the setting unit 50 and stored in the setting state storage unit 51 and model information stored in the model information storage unit 52.
  • the AC setting unit 110 includes a ratio of the modulation degree of red light and infrared light set in the R / IR setting unit 109, and the modulation degree of infrared light set in the setting unit 107. Therefore, the degree of modulation of red light and infrared light is set by the control unit 101a.
  • the pulse rate that is the target value of the simulation set in the setting unit 107 is set in the pulse rate setting unit 112 by the control unit 101a.
  • Drive waveforms of the light emitting diodes 73 and 75 for modulating red light and infrared light are generated at a frequency corresponding to the pulse rate set to 112.
  • the light emission timings of the light emitting diodes 73 and 75 are generated by the waveform shaping unit 103 and input to the waveform shaping unit 104 as described above.
  • the drive waveform output from the waveform shaping unit 104 is input to the LED driver unit 105, and the light emitting diodes 73 and 75 are driven.
  • the calibration curve storage unit 101b on the simulator 10 side stores a plurality of calibration curves, and the type is selected according to the calibration curve information obtained from the calibration curve selection unit 55.
  • the selected calibration curve itself may be read from the calibration curve selection unit 55.
  • the correspondence between model information (manufacturer name, model name, serial number, etc. of the pulse oximeter) and the calibration curve is registered and stored in the simulator 10 in advance, and the simulator 10 stores the pulse oxymeter before the simulation.
  • An appropriate calibration curve may be selected by reading the model information (the manufacturer name, model name, serial number, etc. of the pulse oximeter) stored in the model information storage unit 52 by communicating with the meter 1 ′.
  • the simulator 10 uses two types of light emitting diodes 73 and 75.
  • the simulator 10 has one light emitting diode, and the light emission timing, light emission intensity, modulation degree, and modulation frequency are set to red.
  • Time-division driving may be performed so as to correspond to light and infrared light.
  • FIG. 5 and 6 are flowcharts for explaining a method of reading various setting information from the pulse oximeter 1 'as described above.
  • FIG. 5 shows the operation on the simulator 10 side.
  • the control unit 101a requests the model information stored in the model information storage unit 52 on the pulse oximeter 1 ′ side via the communication unit 101c. If it is received in step S2, it is set in the control unit 101a in step S3.
  • step S4 the control unit 101a requests information on the currently selected calibration curve from the calibration curve selection unit 55 on the pulse oximeter 1 ′ side via the communication unit 101c, and receives it in step S5. Then, in step S6, the corresponding calibration curve is read from the calibration curve storage unit 101b to the calibration curve selection unit 108 and set in the R / IR setting unit 109.
  • step S7 the control unit 101a requests the alarm setting value stored in the setting state storage unit 51 on the pulse oximeter 1 ′ side via the communication unit 101c, and when received in step S8.
  • step S9 the alarm setting value is set in the control unit 101a.
  • the signal received by the photodiode 63 by the communication unit 41c ′ in step S11 is a rectangular wave pulse within 100 ⁇ 10 ⁇ s as shown in FIG. It is determined whether or not the signal is a communication signal with the simulator 10 that can be shaped by the shaping unit 45. If not, the normal measurement operation is restored.
  • the communication unit 41c ′ is switched to a state capable of optical communication, as shown in FIG. To accept a request for data. In step S12, it is determined whether the requested data is the model information.
  • the communication unit 41c ′ is stored in the model information storage unit 52 in step S13. Is read out and sent back to the communication unit 101c on the simulator 10 side, once the data request is accepted, and the normal measurement operation is resumed.
  • step S12 determines whether the data is alarm set value information. If the data is alarm set value information, step S15 is performed. Then, the communication unit 41c ′ reads the alarm setting value information stored in the setting state storage unit 51, returns the information to the communication unit 101c on the simulator 10 side, and once completes the process of accepting the data request. Return to the measurement operation. If it is determined in step S14 that the requested data is not information on the alarm set value, the process proceeds to step S16, where it is determined whether the information is calibration curve information. If the requested data is calibration curve information, step S17 is performed. Then, the communication unit 41c ′ reads out the information of the calibration curve selected by the calibration curve selection unit 55, returns the information to the communication unit 101c on the simulator 10 side, once finishes the process of accepting the data request, Return to measurement operation.
  • control unit 101a can automatically and accurately set a calibration curve that differs depending on the probe 6 on the simulator 10 side, and the expected performance can be obtained in the pulse oximeter 1 ′. It is possible to easily determine whether or not the probe 6 has failed or whether the probe 6 has failed. Therefore, the control unit 101a becomes an evaluation unit and a warning unit.
  • US Pat. No. 5,784,151 and US Pat. No. 5,348,005 show a method for setting the model information of the pulse oximeter as described above. According to this, the user is registered in the simulator. This is a method of selecting the applicable one from the displayed model list of the pulse oximeter.
  • the conventional technology there is a trouble for the user to select a corresponding model from a number of pulse oximeter models that are sequentially displayed on the display screen of the simulator, and the calibration curve is different even in the same model pulse oximeter. There is a problem that it is not possible to cope with such a case.
  • the model of the pulse oximeter 1 ′ can be easily and accurately set in the simulator 10, but also the oximeter having the same model but different calibration curves can be used. It becomes possible to respond.
  • the alarm set value of the pulse oximeter 1 ′ can be automatically transmitted to the simulator 10 and set, the SpO 2 value near the alarm set value is automatically checked when the simulator 10 confirms the alarm function of the pulse oximeter 1 ′. The convenience can be improved by sweeping the data of the pulse rate.
  • the biological information measuring device is a pulse oximeter for calculating oxygen saturation, and includes a probe unit attached to a biological tissue, and the external communication unit Is characterized by functioning as an interface of a simulator for evaluating the performance of the pulse oximeter by engaging with the probe unit and performing optical communication.
  • the external communication unit can be realized as a simulator for measuring the performance of the pulse oximeter.
  • the pulse oximeter includes a first storage unit that stores information for selecting a calibration curve used when calculating the oxygen saturation
  • the simulator includes a plurality of simulators.
  • Information about the calibration curve is obtained by optical communication from a second storage unit storing a plurality of calibration curves corresponding to the type of pulse oximeter and the first storage unit of the pulse oximeter, and corresponds to the information
  • an evaluation unit that reads the calibration curve from the second storage unit and evaluates the pulse oximeter.
  • the external communication unit can be realized as a simulator for measuring the performance of the pulse oximeter, and complicated calibration curve setting for the simulator can be automated.
  • a pulse wave meter As a device for measuring biological information using a light emitting element and a light receiving element, a pulse wave meter, a pulse rate meter, an acceleration pulse wave meter, a blood vessel age measuring device derived from an acceleration pulse wave meter, a blood pressure meter, a jaundice meter, etc.
  • the shape of the engaging portion of the external communication unit may be formed in accordance with the shape of the probe used when measuring biological information.
  • the present invention provides a first light emitting element that generates light when using a biological information measuring device that measures biological information of the biological tissue by irradiating the biological tissue with light and using transmitted or reflected light. And the first light receiving element that receives the transmitted or reflected light is used as an optical communication interface with the outside.
  • measurement data from the biological information measuring device and various settings to the biological information measuring device can be performed without using a connector or a wireless communication circuit, so the biological information measuring device can be downsized. This is preferable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Computational Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Disclosed is a pulse oximeter which is reduced in size and with which living tissue in which there is blood flow is irradiated with red light and infrared light, and the degree of oxygen saturation in the blood is measured based on the difference in the light absorption characteristics of the two wavelengths using the transmitted light or the reflected light. An interface device (3) is constructed by means of a pseudo-finger (7), which has a photodiode (72) and a light-emitting diode (73) which face, respectively, at least one of the light-emitting diodes (61, 62) and a photodiode (63) of a probe (6), and by means of a main body (8) which drives them. The interface device is connected to a personal computer (2) and is used as an optical communication interface. Thus, it is not necessary to include a connector or a wireless communication device for data transmission in the pulse oximeter (1), and the size can be reduced.

Description

生体情報測定装置および生体情報測定システムならびに生体情報測定装置の使用方法および通信方法Biological information measuring device, biological information measuring system, and method of using and information on biological information measuring device
 本発明は、脈拍数計、脈波計或いはパルスオキシメータなどとして実現される生体情報測定装置および生体情報測定システムならびに生体情報測定装置の使用方法および通信方法に関するものである。 The present invention relates to a biological information measuring device, a biological information measuring system, a method of using the biological information measuring device, and a communication method realized as a pulse rate meter, a pulse wave meter, a pulse oximeter, or the like.
 生体組織に光を照射し、その透過または反射光から、前記生体組織での光の吸光特性の変化を求めることで、脈拍や血中酸素飽和度(SpO値)を非観血的に測定するようにした生体情報測定装置が、従来から用いられている。たとえば、前記パルスオキシメータでは、前記吸光特性を測定する発光素子および受光素子が備えられたプローブを、指に嵌めているだけで、前記SpO値を非観血的に測定できるという非常に利便性の高い装置であり、被験者への負担の小ささから、連続して前記プローブを装着して、長時間の測定を行うことが可能である。一方、記録媒体を始め、装置の小型化が進み、病室に据え置いての使用だけでなく、被験者が携行しての長時間の測定も可能になっている。 Non-invasive measurement of pulse and blood oxygen saturation (SpO 2 value) by irradiating a living tissue with light and determining the change in light absorption characteristics in the living tissue from the transmitted or reflected light A biological information measuring apparatus configured to do so has been used conventionally. For example, in the pulse oximeter, the SpO 2 value can be measured noninvasively by simply fitting a probe having a light emitting element and a light receiving element for measuring the light absorption characteristics to a finger. It is a highly reliable device, and it is possible to perform measurement for a long time by continuously mounting the probe because of a small burden on the subject. On the other hand, the miniaturization of devices including recording media has progressed, and it is possible not only to use the device in a hospital room, but also to perform long-time measurements carried by the subject.
 このような携帯型のパルスオキシメータでは、パーソナルコンピュータなどにデータを転送して、解析を行う必要がある。そこで本件出願人による特許文献1では、パルスオキシメータをパーソナルコンピュータへ有線で接続し、データを転送している。一方、特許文献2には、診断装置を体に装着して、取得したデータを本体機器へ無線送信するモニタリング装置が開示されている。 Such a portable pulse oximeter needs to perform analysis by transferring data to a personal computer or the like. Therefore, in Patent Document 1 by the present applicant, a pulse oximeter is connected to a personal computer by wire to transfer data. On the other hand, Patent Document 2 discloses a monitoring device that attaches a diagnostic device to a body and wirelessly transmits acquired data to a main device.
 したがって、外部との通信インタフェイス用に、特許文献1の従来技術ではコネクタなどが必要になり、特許文献2の従来技術では無線通信ユニットが必要になる。一方、パルスオキシメータは、前記長時間の測定として、就寝時等、通常の社会生活を営みながら測定が行われる。このため、一層の小型化が希望されている。 Therefore, for the communication interface with the outside, a connector or the like is required in the conventional technique of Patent Document 1, and a wireless communication unit is required in the conventional technique of Patent Document 2. On the other hand, the pulse oximeter performs the long-time measurement while conducting normal social life such as at bedtime. For this reason, further miniaturization is desired.
特開2008-253579号公報JP 2008-253579 A 米国特許第7215991号明細書US Pat. No. 7,215,991
 本発明の目的は、一層の小型化を図ることができる生体情報測定装置および生体情報測定システムならびに生体情報測定装置の使用方法を提供することである。 An object of the present invention is to provide a biological information measuring device, a biological information measuring system, and a method for using the biological information measuring device that can be further miniaturized.
 上述の目的を達成するために、本発明の生体情報測定装置および生体情報測定システムならびに生体情報測定装置の使用方法および通信方法では、生体組織に光を照射する第1の発光素子と、前記生体組織による透過光または反射光を受光する第1の受光素子とを、外部機器との光通信インタフェイスとして使用する。 In order to achieve the above-described object, in the biological information measuring device, the biological information measuring system, the method for using the biological information measuring device, and the communication method of the present invention, the first light emitting element for irradiating light to the living tissue, and the living body The first light receiving element that receives light transmitted or reflected by the tissue is used as an optical communication interface with an external device.
 したがって、該生体情報測定装置と外部機器との通信のために、コネクタや無線通信回路などのインタフェイスを特に搭載する必要はなく、小型化することができるとともに、光通信なので、絶縁の点も問題ない。 Therefore, it is not necessary to mount an interface such as a connector or a wireless communication circuit for communication between the biological information measuring device and an external device, and it can be downsized and optically communicated. no problem.
本発明の第1の着眼点による実施の形態1に係る生体情報測定システムであるパルスオキシメータシステムの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the pulse oximeter system which is the biological information measuring system which concerns on Embodiment 1 by the 1st point of focus of this invention. パルスオキシメータの測定時の発光パターンを示す波形図である。It is a wave form diagram which shows the light emission pattern at the time of the measurement of a pulse oximeter. 前記パルスオキシメータの本発明による通信時の発光パターンの一例を示す波形図である。It is a wave form diagram which shows an example of the light emission pattern at the time of communication by this invention of the said pulse oximeter. 本発明の第2の着眼点による実施の形態2に係る生体情報測定システムであるパルスオキシメータシステムの電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the pulse oximeter system which is the biological information measuring system which concerns on Embodiment 2 by the 2nd point of focus of this invention. 図4で示すパルスオキシメータからの各種設定情報の読出し方法を説明するためのフローチャートであり、シミュレータ側の動作を示す。FIG. 5 is a flowchart for explaining a method of reading various setting information from the pulse oximeter shown in FIG. 4 and shows the operation on the simulator side. 前記図4で示すパルスオキシメータからの各種設定情報の読出し方法を説明するためのフローチャートであり、パルスオキシメータ側の動作を示す。FIG. 5 is a flowchart for explaining a method of reading various setting information from the pulse oximeter shown in FIG. 4, and shows the operation on the pulse oximeter side.
 以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.
[第1の着眼点に基づく実施の形態1]
 図1は、本発明の第1の着眼点による実施の形態1に係る生体情報測定システムであるパルスオキシメータシステムの電気的構成を示すブロック図である。このパルスオキシメータシステムは、パルスオキシメータ1と、専用ソフトウェアを格納した汎用のパーソナルコンピュータ2と、それらの間に介在されるインタフェイス装置3とを備えて構成され、前記パーソナルコンピュータ2およびインタフェイス装置3が、本件発明の外部機器および外部通信ユニットに相当する。
[First embodiment based on first focus]
FIG. 1 is a block diagram showing an electrical configuration of a pulse oximeter system that is a biological information measurement system according to Embodiment 1 according to the first focus of the present invention. The pulse oximeter system includes a pulse oximeter 1, a general-purpose personal computer 2 storing dedicated software, and an interface device 3 interposed therebetween, and the personal computer 2 and interface The device 3 corresponds to the external device and the external communication unit of the present invention.
 前記パルスオキシメータ1は、本体部4とプローブ6とを備えて構成される。プローブ6は、発光ダイオード61,62と、フォトダイオード63と、識別抵抗64と、支持部材65とを備えて構成される。第1の発光素子である前記発光ダイオード61,62は、血流のある生体組織として、被験者の指に、赤色光と赤外光との2つの波長の光をそれぞれ照射する。第1の受光素子である前記フォトダイオード63は、前記発光ダイオード61,62からの前記2つの波長の光が、前記被験者の指で透過または反射(この図1の例では透過)した光を受光する。前記識別抵抗64は、その抵抗値で、このプローブ6における前記発光ダイオード61,62の種別を表す。前記支持部材65は、前記発光ダイオード61,62とフォトダイオード63とを相互に対向させて、間に前記被験者の指を挟み込む。 The pulse oximeter 1 includes a main body 4 and a probe 6. The probe 6 includes light emitting diodes 61 and 62, a photodiode 63, an identification resistor 64, and a support member 65. The light emitting diodes 61 and 62, which are first light emitting elements, irradiate a subject's finger with light of two wavelengths of red light and infrared light, respectively, as living tissue with blood flow. The photodiode 63 which is a first light receiving element receives the light having the two wavelengths transmitted from the light emitting diodes 61 and 62 transmitted or reflected (transmitted in the example of FIG. 1) by the subject's finger. To do. The identification resistor 64 represents the type of the light emitting diodes 61 and 62 in the probe 6 by its resistance value. The support member 65 sandwiches the subject's finger between the light emitting diodes 61 and 62 and the photodiode 63 facing each other.
 このプローブ6は、被検者が成人か小児か新生児かによって、また測定時間の長短、ディスポーザブルか再使用用途か、などに応じて適切に選択可能なように異なるタイプのものが用意され、前記本体部4から、コネクタなどで着脱して交換可能となっている。そのような種類の異なるプローブ6間で、使用される発光ダイオード61,62の特性が異なり、前記識別抵抗64は、そのような発光ダイオード61,62の特性を、前述のように抵抗値で示す。たとえば、該識別抵抗64の抵抗値は、前記発光ダイオード61,62の内、赤色用と赤外用とが、660nmと900nmとの組合わせの場合には10kΩに設定されており、650nmと900nmとの組合わせの場合には12kΩに設定されている。ここでは、プローブ6が、本体部4とは分離可能な構成を示しているが、プローブ6が本体部4と一体的に構成されているものでもよい。 Different types of probes 6 are prepared so that the probe 6 can be appropriately selected depending on whether the subject is an adult, a child, or a newborn, and whether the measurement time is long or short, disposable or reusable, etc. The main body 4 can be attached and detached with a connector or the like to be exchanged. The characteristics of the light emitting diodes 61 and 62 used are different between the different types of probes 6, and the identification resistor 64 indicates the characteristics of the light emitting diodes 61 and 62 by the resistance value as described above. . For example, the resistance value of the identification resistor 64 is set to 10 kΩ in the case of a combination of 660 nm and 900 nm for red and infrared among the light emitting diodes 61 and 62, and 650 nm and 900 nm. Is set to 12 kΩ. Here, the probe 6 is shown to be separable from the main body 4, but the probe 6 may be configured integrally with the main body 4.
 前記本体部4は、CPU41と、タイミング発生部42と、LEDドライバ部43と、電流電圧変換部44と、波形整形部45と、アナログ/デジタル変換部47と、測定データ記憶部48と、表示部49と、設定部50と、設定状態記憶部51と、機種情報記憶部52と、校正カーブ記憶部53と、LED波長情報分析部54と、校正カーブ選択部55とを備えて構成される。 The main body section 4 includes a CPU 41, a timing generation section 42, an LED driver section 43, a current / voltage conversion section 44, a waveform shaping section 45, an analog / digital conversion section 47, a measurement data storage section 48, and a display. A unit 49, a setting unit 50, a setting state storage unit 51, a model information storage unit 52, a calibration curve storage unit 53, an LED wavelength information analysis unit 54, and a calibration curve selection unit 55. .
 CPU41は、このパルスオキシメータ1の全体の動作を制御するもので、特に主な機能として、発光制御部41aと、演算部41bと、通信部41cとを備えて構成される。前記発光制御部41aは、たとえば図2で示すように、前記赤色光と赤外光とを交互に発光させる制御信号を発生し、前記タイミング発生部42を介して、LEDドライバ部43を駆動し、プローブ6側の前記発光ダイオード61,62を所定のレベルで変調して交互に発光させるものである。前記演算部41bは、プローブ6側の前記フォトダイオード63で受光された信号に基づき、SpO値を算出するものである。前記通信部41cは、後述するようにして、パーソナルコンピュータ2と通信を行うものである。 The CPU 41 controls the overall operation of the pulse oximeter 1, and includes a light emission control unit 41a, a calculation unit 41b, and a communication unit 41c as main functions. For example, as shown in FIG. 2, the light emission control unit 41 a generates a control signal for alternately emitting the red light and the infrared light, and drives the LED driver unit 43 via the timing generation unit 42. The light emitting diodes 61 and 62 on the probe 6 side are modulated at a predetermined level to emit light alternately. The calculation unit 41b calculates the SpO 2 value based on the signal received by the photodiode 63 on the probe 6 side. The communication unit 41c communicates with the personal computer 2 as will be described later.
 前記タイミング発生部42は、前記CPU41の発光制御部41aからの信号に応答して、前記発光ダイオード61,62を交互に発光させるためのタイミング信号を発生するものである。前記LEDドライバ部43は、前記タイミング発生部42からのタイミング信号に応答して、前記発光ダイオード61,62を点灯駆動するものである。 The timing generator 42 generates a timing signal for alternately causing the light emitting diodes 61 and 62 to emit light in response to a signal from the light emission controller 41a of the CPU 41. The LED driver 43 is lit to drive the light emitting diodes 61 and 62 in response to a timing signal from the timing generator 42.
 前記電流電圧変換部44は、前記フォトダイオード63からの電流信号を電圧信号に変換するものである。前記波形整形部45は、前記電流電圧変換部44で得られた電圧信号から、所定周期のパルス成分を復元するものである。前記アナログ/デジタル変換部47は、前記タイミング発生部42からのタイミング信号に応じて、前記電流電圧変換部44で得られた電圧信号をアナログ/デジタル変換するとともに、赤色光の信号成分と赤外光の信号成分とに分離して、CPU41の演算部41bに与えるものである。 The current / voltage converter 44 converts the current signal from the photodiode 63 into a voltage signal. The waveform shaping unit 45 restores a pulse component having a predetermined period from the voltage signal obtained by the current-voltage conversion unit 44. The analog / digital conversion unit 47 performs analog / digital conversion on the voltage signal obtained by the current-voltage conversion unit 44 in accordance with the timing signal from the timing generation unit 42, and converts the red light signal component and the infrared signal. This is separated into light signal components and given to the calculation unit 41b of the CPU 41.
 前記測定データ記憶部48は、不揮発性のメモリから成り、前記演算部41bでの演算結果を記憶してゆくものである。前記表示部49は、液晶表示パネルなどで実現され、現在の測定値(SpO値や脈拍数)を表示し、また低酸素状態となると警告表示なども行うものである。前記設定部50は、前記低酸素状態と判定する閾値等、各種の設定を行うものである。前記設定状態記憶部51は、前記設定部50での設定値を記憶するものである。 The measurement data storage unit 48 is composed of a non-volatile memory, and stores the calculation result of the calculation unit 41b. The display unit 49 is realized by a liquid crystal display panel or the like, and displays a current measurement value (SpO 2 value and pulse rate), and also displays a warning when a hypoxic state is reached. The setting unit 50 performs various settings such as a threshold value for determining the low oxygen state. The setting state storage unit 51 stores a setting value in the setting unit 50.
 前記機種情報記憶部52は、このパルスオキシメータ1のメーカ名、型番、品番などを記憶しているものである。前記校正カーブ記憶部53は、後述する発光ダイオード61,62の発光特性に応じて異なる赤色光の脈波信号と赤外光の脈波信号との比と、SpO値との関係を規定する校正カーブ(データ)を記憶しているものである。前記校正カーブは、一般的には、赤色光の脈波信号と赤外光の脈波信号との種々の比と、それぞれの比に対応するSpO値とがテーブルとして記憶されるものである。しかしながら、前記校正カーブは、赤色光の脈波信号と赤外光の脈波信号との比と、SpO値との関係を表す式であってもよい。前記赤色光の脈波信号と赤外光の脈波信号との比と、SpO値との関係は、赤色光および赤外光の特性(発光強度、ピーク波長、半値幅など)によって異なる。このため、プローブ6の発光ダイオード61,62の赤色光および赤外光の特性が標準的な特性と異なっても、正しいSpO値を演算するために、種々の赤色光および赤外光の特性に対応した複数の校正テーブルが、前記校正カーブ記憶部53に記憶されている。そして、使用するプローブ6の赤色光および赤外光の特性に応じた適正な校正テーブルが、構成カーブ選択部55で選択されて、SpO値の演算に使用される。 The model information storage unit 52 stores the manufacturer name, model number, product number, and the like of the pulse oximeter 1. The calibration curve storage unit 53 defines the relationship between the ratio of the red light pulse wave signal and the infrared light pulse wave signal, which varies depending on the light emission characteristics of the light emitting diodes 61 and 62 described later, and the SpO 2 value. The calibration curve (data) is stored. In general, the calibration curve is a table in which various ratios of a pulse wave signal of red light and a pulse wave signal of infrared light and SpO 2 values corresponding to the respective ratios are stored as a table. . However, the calibration curve may be an expression representing the relationship between the ratio of the red light pulse wave signal and the infrared light pulse wave signal and the SpO 2 value. The relationship between the ratio of the red light pulse wave signal to the infrared light pulse wave signal and the SpO 2 value varies depending on the characteristics of the red light and infrared light (emission intensity, peak wavelength, half width, etc.). For this reason, even if the red light and infrared light characteristics of the light emitting diodes 61 and 62 of the probe 6 are different from the standard characteristics, various red light and infrared light characteristics are calculated in order to calculate a correct SpO 2 value. Are stored in the calibration curve storage unit 53. Then, an appropriate calibration table corresponding to the characteristics of the red light and infrared light of the probe 6 to be used is selected by the configuration curve selection unit 55 and used for the calculation of the SpO 2 value.
 前記LED波長情報分析部54は、前記識別抵抗64の抵抗値を読取り、予め記憶しているテーブルを参照し、読取った抵抗値に対応している前記発光ダイオード61,62の発光特性を判定するものである。前記校正カーブ選択部55は、前記LED波長情報分析部54で得られた発光ダイオード61,62の発光特性に応答して、前記校正カーブ記憶部53における校正カーブを選択して読出すものである。 The LED wavelength information analysis unit 54 reads the resistance value of the identification resistor 64, refers to a pre-stored table, and determines the light emission characteristics of the light emitting diodes 61 and 62 corresponding to the read resistance value. Is. The calibration curve selection unit 55 selects and reads the calibration curve in the calibration curve storage unit 53 in response to the light emission characteristics of the light emitting diodes 61 and 62 obtained by the LED wavelength information analysis unit 54. .
 上述のように構成されるパルスオキシメータ1において、前記発光ダイオード61,62の発光による被験者の指の透過光は、フォトダイオード63にて受光レベルに応じた電流信号に変換され、前記本体部4に入力される。前記本体部4において、前記電流信号は、電流電圧変換部44にて電圧信号に変換され、前記タイミング発生部42からのタイミング信号に応答して、アナログ/デジタル変換部47にてデジタル値に変換されるとともに、赤色光成分と赤外光成分とに分離されて、CPU41の前記演算部41bに入力される。 In the pulse oximeter 1 configured as described above, the transmitted light of the subject's finger due to the light emission of the light emitting diodes 61 and 62 is converted into a current signal according to the light reception level by the photodiode 63, and the main body 4 Is input. In the main body 4, the current signal is converted into a voltage signal by the current / voltage converter 44, and converted into a digital value by the analog / digital converter 47 in response to the timing signal from the timing generator 42. At the same time, the light component is separated into a red light component and an infrared light component and input to the calculation unit 41 b of the CPU 41.
 一方、前記識別抵抗64の抵抗値は、前記LED波長情報分析部54によって読取られ、校正カーブ選択部55に与えられる。前記校正カーブ選択部55は、前記校正カーブ記憶部53に記憶されている各種の発光ダイオードに対応した複数の校正カーブの内、実際に本体部4に装着されているプローブ6の発光ダイオード61,62に対応したものを選択し、CPU41の演算部41bに設定する。したがって、前記識別抵抗64は、発光ダイオード61,62の種別を表す識別部材となり、前記LED波長情報分析部54は、その識別抵抗64の抵抗値を読取る読取り手段となる。 On the other hand, the resistance value of the identification resistor 64 is read by the LED wavelength information analysis unit 54 and given to the calibration curve selection unit 55. The calibration curve selection unit 55 includes a light emitting diode 61 of the probe 6 that is actually attached to the main body 4 among a plurality of calibration curves corresponding to various light emitting diodes stored in the calibration curve storage unit 53. One corresponding to 62 is selected and set in the calculation unit 41b of the CPU 41. Therefore, the identification resistor 64 serves as an identification member that represents the type of the light emitting diodes 61 and 62, and the LED wavelength information analysis unit 54 serves as a reading unit that reads the resistance value of the identification resistor 64.
 これによって、前記演算部41bは、前記発光ダイオード61,62での受光信号のデジタル値を利用して、赤色光と赤外光との脈波信号の比から、前記SpO値を演算する。また、前記演算部41bは、脈拍数を、前記赤色光または赤外光の脈波信号の周期から求め、それらの測定データを記憶部48に順次記憶させてゆくとともに、必要に応じて表示部49に表示させる。さらにまた、求められたSpO値が、使用者によって予め設定部50から設定され、設定状態記憶部51に記憶されているアラーム値を超えた場合には、前記表示部49から、特に音声報知を行う。 Accordingly, the calculation unit 41b calculates the SpO 2 value from the ratio of the pulse wave signal of the red light and the infrared light by using the digital value of the light reception signal at the light emitting diodes 61 and 62. In addition, the calculation unit 41b obtains the pulse rate from the period of the pulse wave signal of the red light or infrared light, and sequentially stores the measurement data in the storage unit 48, and if necessary, the display unit 49. Furthermore, when the determined SpO 2 value is set in advance by the user from the setting unit 50 and exceeds the alarm value stored in the setting state storage unit 51, the display unit 49 particularly provides voice notification. I do.
 上述のように構成されるパルスオキシメータ1において、従来では、CPU41の通信部41cには、フォトカプラから成る絶縁回路に、コネクタを介して、外部のデータ処理装置であるパーソナルコンピュータ2が接続され、前記測定データ記憶部48に記憶されている長時間の測定データの転送が行われたり、各種の設定が行われている。これに対して、本実施の形態では、前記パルスオキシメータ1がインタフェイス装置3を介してパーソナルコンピュータ2に接続され、前記測定データの転送や各種の設定が行われることである。 In the pulse oximeter 1 configured as described above, conventionally, the personal computer 2 that is an external data processing device is connected to the communication unit 41c of the CPU 41 via an connector to an insulating circuit made of a photocoupler. The measurement data stored in the measurement data storage unit 48 is transferred for a long time, and various settings are made. On the other hand, in the present embodiment, the pulse oximeter 1 is connected to the personal computer 2 through the interface device 3, and the measurement data is transferred and various settings are performed.
 詳しくは、先ず前記インタフェイス装置3は、模擬指7と、本体部8とを備えて構成される。前記模擬指7は、本体部71と、フォトダイオード72と、発光ダイオード73と、遮光板74とを備えて構成される。前記本体部71は、前記支持部材65の間に挟み込まれ(係合す)る。そして、その本体部71の一方の面側に、第2の受光素子であるフォトダイオード72が、前記発光ダイオード61、62の少なくとも一方に対向して取り付けられ、他方の面側に、第2の発光素子である発光ダイオード73が前記フォトダイオード63に対向して取り付けられている。また、前記本体部71において、前記発光ダイオード73とフォトダイオード72との間には、遮光板74が介在されている。 Specifically, first, the interface device 3 includes a simulated finger 7 and a main body 8. The simulated finger 7 includes a main body 71, a photodiode 72, a light emitting diode 73, and a light shielding plate 74. The main body 71 is sandwiched (engaged) between the support members 65. A photodiode 72, which is a second light receiving element, is attached to one surface side of the main body 71 so as to face at least one of the light emitting diodes 61 and 62, and a second light receiving element is attached to the other surface side. A light emitting diode 73 which is a light emitting element is attached to face the photodiode 63. In the main body 71, a light shielding plate 74 is interposed between the light emitting diode 73 and the photodiode 72.
 前記本体部8は、パーソナルコンピュータ2の出力信号に応答して前記発光ダイオード73を駆動するLEDドライバ部81と、前記フォトダイオード72からの電流信号を電圧信号に変換する電流電圧変換部82と、その電圧信号を波形整形、すなわち2値の信号に変換して、前記パーソナルコンピュータ2の入力信号とする波形整形部83とを備えて構成される。 The main body 8 includes an LED driver 81 that drives the light emitting diode 73 in response to an output signal of the personal computer 2, a current-voltage converter 82 that converts a current signal from the photodiode 72 into a voltage signal, The voltage signal is waveform-shaped, that is, provided with a waveform shaping unit 83 that converts the voltage signal into a binary signal and uses it as an input signal of the personal computer 2.
 これに対して、パルスオキシメータ1の本体部4側には、前記パーソナルコンピュータ2との通信を実現するために、電流電圧変換部44および波形整形部45が設けられるとともに、CPU41には、前記通信部41cが設けられる。そして、前記パーソナルコンピュータ2によって発光ダイオード73が発光され、フォトダイオード63で得られた前記電流信号は、電流電圧変換部44で電圧信号に変換された後、前記波形整形部45にも入力される。この波形整形部45は、入力信号を波形整形、すなわち2値の信号に変換し、前記通信部41cに入力する。 On the other hand, a current-voltage conversion unit 44 and a waveform shaping unit 45 are provided on the main body 4 side of the pulse oximeter 1 in order to realize communication with the personal computer 2, and the CPU 41 includes A communication unit 41c is provided. Then, the light emitting diode 73 emits light by the personal computer 2, and the current signal obtained by the photodiode 63 is converted into a voltage signal by the current-voltage conversion unit 44 and then input to the waveform shaping unit 45. . The waveform shaping unit 45 converts the input signal into waveform shaping, that is, a binary signal, and inputs the signal to the communication unit 41c.
 ここで注目すべきは、前記のように第2の通信部となるパーソナルコンピュータ2は、パルスオキシメータ1と通信を行う際には、先ずLEDドライバ部81を介して、予め定める形式の信号(コマンド)で発光ダイオード73を駆動することである。一方、パルスオキシメータ1側では、前記のように第1の通信部となり、また検出部でもあるCPU41の通信部41cは、前記波形整形部45からの入力信号を監視しており、前記図2で示すような測定用の光信号が送信されている間は、前記波形整形部45からは整形されたパルスは出力されず、該通信部41cは待機(監視)したままとなる。 It should be noted here that the personal computer 2 serving as the second communication unit, as described above, first communicates with the pulse oximeter 1 via the LED driver unit 81 in a predetermined format ( Command) to drive the light emitting diode 73. On the other hand, on the pulse oximeter 1 side, the communication unit 41c of the CPU 41, which is the first communication unit and is also a detection unit as described above, monitors the input signal from the waveform shaping unit 45, and is shown in FIG. While the optical signal for measurement as shown in FIG. 5 is being transmitted, the waveform shaping unit 45 does not output the shaped pulse, and the communication unit 41c remains on standby (monitored).
 これに対して、フォトダイオード63で前記予め定める形式の信号(コマンド)が受信されると、前記波形整形部45からは整形されたパルスが出力され、前記通信部41cは、このパルスをデコードして、前記予め定める形式の信号(コマンド)であることが確認されると、光通信可能な状態に切換わる。該通信部41cが前記光通信可能な状態となると、該通信部41cは、発光ダイオード61,62の少なくとも一方とフォトダイオード63とを光通信インタフェイスとして使用して、前記パーソナルコンピュータ2側と光通信を行う。こうして、前述のような測定データ記憶部48の記憶データの転送が可能となったり、CPU41への各種の設定が可能となる。 On the other hand, when the predetermined signal (command) is received by the photodiode 63, the waveform shaping unit 45 outputs a shaped pulse, and the communication unit 41c decodes the pulse. When it is confirmed that the signal (command) has the predetermined format, the state is switched to a state where optical communication is possible. When the communication unit 41c is in a state capable of optical communication, the communication unit 41c uses at least one of the light emitting diodes 61 and 62 and the photodiode 63 as an optical communication interface to communicate with the personal computer 2 side. Communicate. Thus, the stored data in the measurement data storage unit 48 as described above can be transferred, and various settings can be made to the CPU 41.
 図3は、前記予め定める形式の信号(コマンド)を含むパーソナルコンピュータ2と通信部41cとの間の通信信号の一例を示す波形図である。この図3の例では、赤色光および赤外光の周期より短い周期のパルスが使用され、前記赤色光および赤外光の照射光および透過光との識別が可能となっている。 FIG. 3 is a waveform diagram showing an example of a communication signal between the personal computer 2 and the communication unit 41c including the signal (command) in the predetermined format. In the example of FIG. 3, a pulse having a cycle shorter than that of red light and infrared light is used, and the red light and infrared light irradiation light and transmitted light can be distinguished.
 なお、波形整形部45を省略して、該波形整形部45によるパルス変換結果を用いるのではなく、アナログ/デジタル変換部47の変換結果から、前記通信部41cを光通信可能な状態に切換えることも可能である。その場合、パルスオキシメータ1の通信部41cは、前記アナログ/デジタル変換部47のデジタル値の時系列からその周期を求め、それが通常測定時の周期とは異なる所定の周期であれば、パーソナルコンピュータ2からの通信信号と認識する。 Note that the waveform shaping unit 45 is omitted and the pulse conversion result by the waveform shaping unit 45 is not used, but the communication unit 41c is switched to a state in which optical communication is possible from the conversion result of the analog / digital conversion unit 47. Is also possible. In that case, the communication unit 41c of the pulse oximeter 1 obtains the period from the time series of the digital value of the analog / digital conversion unit 47, and if it is a predetermined period different from the period during normal measurement, Recognized as a communication signal from the computer 2.
 または、前記外部通信ユニットの接続を検出するにあたって、検出部として前記通信部41cを用い、所定形式の信号(コマンド)によって光学的に検出するのではなく、たとえば模擬指7に磁石を設けるとともに、プローブ6にホール素子などの磁界検出素子を設けることによって、通信部41cは模擬指7が装着されていることを磁気的に認識して、通信可能な状態に設定してもよい。上記方法で検出することで、電気的な接続端子を必要とせず、接続を検出できる。 Alternatively, when detecting the connection of the external communication unit, the communication unit 41c is used as a detection unit and is not detected optically by a signal (command) in a predetermined format, for example, a magnet is provided on the simulated finger 7, By providing the probe 6 with a magnetic field detection element such as a Hall element, the communication unit 41c may magnetically recognize that the simulated finger 7 is worn and set the communicable state. By detecting by the above method, the connection can be detected without requiring an electrical connection terminal.
 このようにパルスオキシメータ1の発光ダイオード61,62およびフォトダイオード63を、パーソナルコンピュータ2と光通信を行う光通信インタフェイスとして使用することで、該パルスオキシメータ1とパーソナルコンピュータ2との通信のために、コネクタや無線通信回路などのインタフェイスを特に搭載する必要はなく、小型化および低コスト化することができるとともに、光通信なので、絶縁の点も問題ない。 Thus, by using the light emitting diodes 61 and 62 and the photodiode 63 of the pulse oximeter 1 as an optical communication interface for performing optical communication with the personal computer 2, communication between the pulse oximeter 1 and the personal computer 2 can be performed. For this reason, it is not necessary to mount an interface such as a connector or a wireless communication circuit in particular, and it is possible to reduce the size and cost.
 本発明の第1の着眼点による生体情報測定装置は、生体組織に光を照射する第1の発光素子と、前記生体組織での前記光の透過または反射光を受光する第1の受光素子と、前記第1の受光素子での受光信号を利用して、生体情報を算出する演算部と、当該生体情報測定装置が通信可能な状態であるかどうかを検出する検出部と、前記検出部が通信可能な状態であることを検出したとき、前記第1の発光素子および第1の受光素子を、外部との光通信インタフェイスとして使用して、外部と光通信を行う第1の通信部と、を備えることを特徴とする。 The biological information measuring apparatus according to the first aspect of the present invention includes a first light emitting element that irradiates light to a biological tissue, and a first light receiving element that receives the transmitted or reflected light of the light in the biological tissue. A calculation unit that calculates biological information using a light reception signal from the first light receiving element, a detection unit that detects whether the biological information measurement device is in a communicable state, and the detection unit A first communication unit that performs optical communication with the outside by using the first light emitting element and the first light receiving element as an optical communication interface with the outside when it is detected that communication is possible; It is characterized by providing.
 上記の構成によれば、生体組織に第1の発光素子からの光を照射し、前記生体組織での光の透過または反射光を第1の受光素子で受光して、その受光信号を利用して、演算部が予め定める生体情報を演算するようにした生体情報測定装置において、前記演算部での演算結果、すなわち測定データをパーソナルコンピュータなどの外部機器へ転送したり、或いは該生体情報測定装置の仕様や設定内容を読出したり、外部から設定を行ったりするために設けられる第1の通信部が、前記第1の発光素子と第1の受光素子とを、前記外部機器との光通信インタフェイスとして使用する。 According to said structure, the light from a 1st light emitting element is irradiated to a biological tissue, the permeation | transmission or reflected light of the said biological tissue is received with a 1st light receiving element, and the light reception signal is utilized. In the biological information measuring apparatus in which the calculation unit calculates predetermined biological information, the calculation result in the calculation unit, that is, measurement data is transferred to an external device such as a personal computer, or the biological information measurement apparatus The first communication unit provided for reading out the specifications and setting contents of the device and setting from the outside connects the first light emitting element and the first light receiving element to the optical communication interface with the external device. Use as a face.
 たとえば、第1の通信部には前記第1の受光素子での受光信号が入力されており、それを監視し、予め定める信号形式、すなわち光通信を行うべきコマンドが入力されると、前記外部機器との光通信を行う。或いは、前記第1の通信部は、前記受光信号が予め定める受光信号の範囲外、たとえば発光素子と受光素子との間に生体組織がないことで、受光信号が所定の値より大きくなったことを検出すると、光通信を行う。もしくは、前記第1の通信部は、該生体情報測定装置を、生体情報を測定する測定モードと、光通信を行う通信モードとの間で選択するための操作部を備える場合、前記操作部の操作により、前記通信モードが選択されたことが検出されたときには、光通信を行う。 For example, a light reception signal from the first light receiving element is input to the first communication unit, and when the signal is monitored and a predetermined signal format, that is, a command to perform optical communication is input, the external communication Perform optical communication with the device. Alternatively, the first communication unit is configured such that the light reception signal is larger than a predetermined value because the light reception signal is outside a predetermined light reception signal range, for example, there is no living tissue between the light emitting element and the light receiving element. When it is detected, optical communication is performed. Alternatively, when the first communication unit includes an operation unit for selecting the biological information measurement device between a measurement mode for measuring biological information and a communication mode for performing optical communication, When the operation detects that the communication mode is selected, optical communication is performed.
 したがって、該生体情報測定装置と外部機器との通信のために、コネクタや無線通信回路などのインタフェイスを特に搭載する必要はなく、小型化することができるとともに、光通信なので、絶縁の点も問題ない。 Therefore, it is not necessary to mount an interface such as a connector or a wireless communication circuit for communication between the biological information measuring device and an external device, and it can be downsized and optically communicated. no problem.
 好ましくは、前記の生体情報測定装置と、外部通信ユニットとを備えて構成される生体情報測定システムであって、前記外部通信ユニットは、第2の発光素子および第2の受光素子と、前記第2の発光素子および第2の受光素子を外部との光通信インタフェイスとして用いる第2の通信部とを備え、前記生体情報測定装置と当該外部通信ユニットとは、係合部で係合することにより前記光通信可能な状態になり、その係合状態で、前記第1の発光素子と前記第2の受光素子とが対向し、前記第1の受光素子と第2の発光素子とが対向するように配置されていることを特徴とする。 Preferably, the biological information measuring system includes the biological information measuring device and an external communication unit, wherein the external communication unit includes a second light emitting element, a second light receiving element, and the first light receiving element. A second communication unit that uses the second light-emitting element and the second light-receiving element as an optical communication interface with the outside, and the biological information measuring device and the external communication unit are engaged with each other by an engagement unit. Thus, the optical communication is possible, and in the engaged state, the first light emitting element and the second light receiving element face each other, and the first light receiving element and the second light emitting element face each other. It is arranged so that it may be arranged.
 上記の構成によれば、外部機器を、上記のような第2の発光素子、第2の受光素子および第2の通信部を備えて構成することで、生体情報測定装置が、本来生体情報を取得すべき第1の発光素子および第1の受光素子を、前述のように光通信インタフェイスとして使用して該外部機器との通信を行う生体情報測定システムを実現することができる。 According to the above configuration, the biological information measuring apparatus originally provides the biological information by configuring the external device with the second light emitting element, the second light receiving element, and the second communication unit as described above. By using the first light emitting element and the first light receiving element to be acquired as an optical communication interface as described above, a biological information measurement system that communicates with the external device can be realized.
 また好ましくは、前記生体情報測定装置は、前記第1の発光素子が、血流のある生体組織に、赤色光と赤外光との2つの波長の光を照射し、前記第1の受光素子が、前記生体組織での前記2つの波長の光それぞれの透過または反射光を受光し、前記演算部が、前記第1の受光素子での受光信号を利用して、前記生体組織での2つの波長の光の吸光特性の差から血中酸素飽和度を演算するパルスオキシメータであることを特徴とする。 Also preferably, in the biological information measuring apparatus, the first light emitting element irradiates a living tissue with blood flow with light of two wavelengths, red light and infrared light, and the first light receiving element. Receives the transmitted or reflected light of each of the two wavelengths of light in the living tissue, and the calculation unit uses the light reception signal in the first light receiving element to receive two light in the living tissue. It is a pulse oximeter that calculates blood oxygen saturation from the difference in light absorption characteristics of wavelengths.
 上記の構成によれば、前記生体情報測定装置を、血中酸素飽和度を演算するパルスオキシメータとして実現することができる。 According to the above configuration, the biological information measuring device can be realized as a pulse oximeter that calculates blood oxygen saturation.
[第2の着眼点に基づく実施の形態2]
 図4は、本発明の第2の着眼点による実施の形態2に係るパルスオキシメータシステムの電気的構成を示すブロック図である。このパルスオキシメータシステムは、前述の図1で示すパルスオキシメータシステムに類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。このパルスオキシメータシステムでは、パルスオキシメータ1’は、基本的には前述のパルスオキシメータ1と同一である。本実施の形態では、前記パーソナルコンピュータ2に代えて、外部機器或いは外部通信ユニットとして、シミュレータ10が用いられることである。
[Embodiment 2 based on second focus]
FIG. 4 is a block diagram showing an electrical configuration of the pulse oximeter system according to the second embodiment according to the second focus of the present invention. This pulse oximeter system is similar to the pulse oximeter system shown in FIG. 1 described above, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In this pulse oximeter system, the pulse oximeter 1 ′ is basically the same as the pulse oximeter 1 described above. In the present embodiment, the simulator 10 is used as an external device or an external communication unit instead of the personal computer 2.
 これらのパルスオキシメータ1,1’を数十台規模で使用する大病院などでは、パルスオキシメータ1,1’の機能や性能を評価する装置として、生体シミュレータが知られ、利用されている。その生体シミュレータとなるシミュレータ10は、本体部11に、模擬指3’を備えて構成される。模擬指3’は、前記の模擬指3に類似し、前記発光ダイオード73を赤色光または赤外光の一方を発生する発光ダイオードとし、他方の光を発生する発光ダイオード75がさらに設けられている。 In large hospitals where these pulse oximeters 1 and 1 'are used on a scale of several tens, a biological simulator is known and used as a device for evaluating the function and performance of the pulse oximeters 1 and 1'. The simulator 10 serving as the biological simulator is configured by including a simulated finger 3 ′ in the main body 11. The simulated finger 3 ′ is similar to the simulated finger 3, and the light emitting diode 73 is a light emitting diode that generates one of red light and infrared light, and a light emitting diode 75 that generates the other light is further provided. .
 前記本体部11は、CPU101と、電流電圧変換部102と、波形整形部103と、波形整形部104と、LEDドライバ部105と、表示部106と、設定部107と、校正カーブ選択部108と、R/IR設定部109と、AC設定部110と、DC設定部111と、脈拍数設定部112とを備えて構成される。 The main body 11 includes a CPU 101, a current / voltage converter 102, a waveform shaping unit 103, a waveform shaping unit 104, an LED driver unit 105, a display unit 106, a setting unit 107, and a calibration curve selection unit 108. , An R / IR setting unit 109, an AC setting unit 110, a DC setting unit 111, and a pulse rate setting unit 112.
 前記CPU101は、制御部101aと、校正カーブ記憶部101bと、通信部101cとを備えて構成される。前記制御部101aは、後述するシミュレーション動作および光通信動作、ならびにその光通信動作によって得られた測定データの処理動作などを制御する。前記校正カーブ記憶部101bは、各メーカの各型の発光ダイオードの発光特性(ピーク強度、ピーク波長、半値幅等)に対応した校正カーブを記憶しているものである。前記通信部101cは、前記特許請求の範囲における第2の通信部となり、後述するようにしてパルスオキシメータ1’側の通信部41c’と光通信を行うものである。 The CPU 101 includes a control unit 101a, a calibration curve storage unit 101b, and a communication unit 101c. The control unit 101a controls a simulation operation and an optical communication operation, which will be described later, a processing operation of measurement data obtained by the optical communication operation, and the like. The calibration curve storage unit 101b stores a calibration curve corresponding to the emission characteristics (peak intensity, peak wavelength, half-value width, etc.) of each type of light emitting diode of each manufacturer. The communication unit 101c serves as a second communication unit in the claims, and performs optical communication with the communication unit 41c 'on the pulse oximeter 1' side as described later.
 前記電流電圧変換部102は、前記電流電圧変換部82および前記電流電圧変換部44と同様に、フォトダイオード72からの電流信号を電圧信号に変換するものである。前記波形整形部103は、前記波形整形部45と同様に、前記電流電圧変換部44で得られた電圧信号から、所定周期のパルス成分を復元するとともに、シミュレーションの際に発光ダイオード61,62の発光タイミングを検知するパルスを生成するものである。 The current-voltage conversion unit 102 converts the current signal from the photodiode 72 into a voltage signal, similar to the current-voltage conversion unit 82 and the current-voltage conversion unit 44. Similarly to the waveform shaping unit 45, the waveform shaping unit 103 restores a pulse component having a predetermined period from the voltage signal obtained by the current-voltage conversion unit 44, and also performs the simulation of the light emitting diodes 61 and 62 during simulation. A pulse for detecting the light emission timing is generated.
 一方、前記DC設定部111は、シミュレーションの際に発光ダイオード73,75を点灯駆動するDC成分、すなわち基本の発光強度を設定するとともに、後述の光通信時に発光ダイオード73,75を点灯駆動するパルスの信号を生成するものである。これに対して、前記AC設定部110は、前記シミュレーションの際に発光ダイオード73,75を点灯駆動するAC成分、すなわち目標SpO値に対応した変調成分の発光強度を設定するものである。前記脈拍数設定部112は、前記シミュレーションの際に発光ダイオード73,75を点灯駆動する低周波成分、すなわち脈拍に対応した変調成分の発光強度を設定するものである。 On the other hand, the DC setting unit 111 sets a DC component for driving the light emitting diodes 73 and 75 to be turned on during the simulation, that is, a basic light emission intensity, and a pulse for driving the light emitting diodes 73 and 75 to be turned on during optical communication described later. The signal is generated. On the other hand, the AC setting unit 110 sets the light emission intensity of the AC component that drives the light emitting diodes 73 and 75 to turn on during the simulation, that is, the modulation component corresponding to the target SpO 2 value. The pulse rate setting unit 112 sets the light emission intensity of a low frequency component that lights and drives the light emitting diodes 73 and 75 in the simulation, that is, a modulation component corresponding to the pulse.
 前記波形整形部104は、前記シミュレーション時には、前記AC設定部110、DC設定部111および脈拍数設定部112による設定値に対応したレベルで、かつ前記波形整形部103で得られた発光タイミングで、前記発光ダイオード73,75を点灯駆動するための駆動信号を作成する。また、前記波形整形部104は、前記光通信時には、DC設定部111からのパルスの信号に応答して、発光ダイオード73または75を点灯駆動するための駆動信号を作成する。前記LEDドライバ部105は、前記波形整形部104からの駆動信号に応答して、前記発光ダイオード73,75を点灯駆動するものである。 At the time of the simulation, the waveform shaping unit 104 is at a level corresponding to the set values by the AC setting unit 110, the DC setting unit 111, and the pulse rate setting unit 112, and at the light emission timing obtained by the waveform shaping unit 103, A drive signal for lighting the light emitting diodes 73 and 75 is created. Further, the waveform shaping unit 104 generates a drive signal for driving the light emitting diode 73 or 75 in response to the pulse signal from the DC setting unit 111 during the optical communication. The LED driver unit 105 drives the light emitting diodes 73 and 75 to light in response to a drive signal from the waveform shaping unit 104.
 ここで、前記校正カーブ選択部108は、前記シミュレーション時に、パルスオキシメータ1’側の発光ダイオード61,62の発光特性に対応した校正カーブを選択する。制御部101aは、選択された校正カーブから、シミュレーションするSpO値に対応した赤色光の変調度と赤外光の変調度との比を読み取って、それをR/IR設定部109に設定する。たとえば、シミュレートするSpO値が97%の場合で、発光ダイオード61,62の波長が660nmと900nmとの組合せであれば、選択された校正カーブでは、SpO=97%のときは赤色光の変調度と赤外光の変調度との比が0.6なので、前記R/IR設定部109には0.6が設定される。発光ダイオード61,62の波長が650nmと900nmとの組合せであれば、校正カーブのSpO=97%のときは赤色光の変調度と赤外光の変調度との比が0.58なので、前記R/IR設定部109には0.58が設定される。 Here, the calibration curve selection unit 108 selects a calibration curve corresponding to the light emission characteristics of the light emitting diodes 61 and 62 on the pulse oximeter 1 ′ side during the simulation. The control unit 101a reads the ratio of the modulation factor of red light and the modulation factor of infrared light corresponding to the SpO 2 value to be simulated from the selected calibration curve, and sets it in the R / IR setting unit 109. . For example, when the SpO 2 value to be simulated is 97% and the wavelength of the light emitting diodes 61 and 62 is a combination of 660 nm and 900 nm, red light is emitted when SpO 2 = 97% in the selected calibration curve. Since the ratio of the modulation degree to the modulation degree of infrared light is 0.6, the R / IR setting unit 109 is set to 0.6. If the wavelength of the light emitting diodes 61 and 62 is a combination of 650 nm and 900 nm, the ratio of the red light modulation degree and the infrared light modulation degree is 0.58 when SpO 2 of the calibration curve is 97%. The R / IR setting unit 109 is set to 0.58.
 また、制御部101aは、前記AC設定部110に、赤色光および赤外光の変調度を設定する。赤外光の変調度はCPU101が設定部107から読み取った値が設定される。赤色光の変調度は、前記R/IR設定部109に設定された赤色光の変調度と赤外光の変調度との比を前記赤外光の変調度に掛けた値が設定される。 Also, the control unit 101a sets the modulation degree of red light and infrared light in the AC setting unit 110. The value read from the setting unit 107 by the CPU 101 is set as the modulation degree of the infrared light. The red light modulation degree is set to a value obtained by multiplying the infrared light modulation degree by the ratio of the red light modulation degree and the infrared light modulation degree set in the R / IR setting unit 109.
 前記表示部106は、液晶表示パネルなどから成り、シミュレーションに必要な各種設定画面や、シミュレーションの状況を表示できる。前記設定部107は、SpO値、脈拍数、赤外光の脈波信号強度(変調度)など、シミュレーションに必要な各種パラメータの設定を行うものである。 The display unit 106 includes a liquid crystal display panel and the like, and can display various setting screens necessary for the simulation and the status of the simulation. The setting unit 107 sets various parameters necessary for the simulation, such as SpO 2 value, pulse rate, and pulse wave signal intensity (modulation degree) of infrared light.
 上述のように構成されるパルスオキシメータ1’およびシミュレータ10において、前記設定部107からは、シミュレーションの目標値となるSpO値および脈拍数が、表示部106を参照しながら使用者によって入力され、CPU101に設定される。CPU101の制御部101aは、それらの設定値に応答して、前記赤色光および赤外光の発光ダイオード73,75を発光駆動するためのDC成分の値をDC設定部111に設定し、AC成分の値をAC設定部110に設定し、脈拍数の値を脈拍数設定部112に設定する。そして、それらのDC設定部111、AC設定部110および脈拍数設定部112の設定値に基づいて、波形整形部104は、シミュレーション波形を形成し、LEDドライバ部105を介して発光ダイオード73,75を発光駆動することで、パルスオキシメータ1’のシミュレーションが可能になる。 In the pulse oximeter 1 ′ and the simulator 10 configured as described above, the SpO 2 value and the pulse rate as the simulation target values are input from the setting unit 107 by the user with reference to the display unit 106. , CPU 101 is set. In response to these set values, the control unit 101a of the CPU 101 sets the DC component value for driving the red and infrared light emitting diodes 73 and 75 in the DC setting unit 111, and the AC component. Is set in the AC setting unit 110, and the pulse rate value is set in the pulse rate setting unit 112. Then, based on the set values of the DC setting unit 111, the AC setting unit 110, and the pulse rate setting unit 112, the waveform shaping unit 104 forms a simulation waveform, and the light emitting diodes 73 and 75 are connected via the LED driver unit 105. By driving to emit light, the pulse oximeter 1 ′ can be simulated.
 一方、前記の光通信のためには、受信用の前記電流電圧変換部82および波形整形部83と同様の電流電圧変換部102および波形整形部103が本体部11に設けられるとともに、送信用には前記DC設定部111、波形整形部104およびLEDドライバ部105が共用される。そして、パーソナルコンピュータ2に代わって、上述のように第2の通信部となるCPU101の通信部101cが、これらを使用して、パルスオキシメータ1’側の通信部41c’と通信を行う。 On the other hand, for the optical communication, a current-voltage conversion unit 102 and a waveform shaping unit 103 similar to the current-voltage conversion unit 82 and the waveform shaping unit 83 for reception are provided in the main body unit 11 and for transmission. The DC setting unit 111, the waveform shaping unit 104, and the LED driver unit 105 are shared. Then, instead of the personal computer 2, the communication unit 101c of the CPU 101 serving as the second communication unit uses these to communicate with the communication unit 41c 'on the pulse oximeter 1' side.
 そして、シミュレーションに先立って、CPU101の制御部101aは、前記通信部101cに、前記DC設定部111および波形整形部104からLEDドライバ部105を介して、前記発光ダイオード73,75の一方を前記予め定める形式の信号(コマンド)で駆動させて、パルスオキシメータ1’側のCPU41’内の通信部41c’を前記光通信可能な状態に切換える。 Prior to the simulation, the control unit 101a of the CPU 101 causes the communication unit 101c to connect one of the light emitting diodes 73 and 75 from the DC setting unit 111 and the waveform shaping unit 104 via the LED driver unit 105 in advance. The communication unit 41c ′ in the CPU 41 ′ on the pulse oximeter 1 ′ side is switched to a state capable of optical communication by being driven by a signal (command) of a predetermined format.
 続いて、制御部101aは、前記通信部101cに、前記校正カーブ選択部55から、現在のプローブ6の発光ダイオード61,62の種類に対応した校正カーブの情報を、電流電圧変換部102および波形整形部103を介して読取らせる。 Subsequently, the control unit 101a sends the calibration curve information corresponding to the type of the light emitting diodes 61 and 62 of the current probe 6 from the calibration curve selection unit 55 to the communication unit 101c, the current-voltage conversion unit 102, and the waveform. Reading is performed via the shaping unit 103.
 その読取りの結果、制御部101aは、該CPU101内の校正カーブ記憶部101bに記憶されている複数の校正カーブの内、対応するものを校正カーブ選択部108によって選択させ、選択された校正カーブから、前記設定部107で設定されたシミュレーションの目標値のSpO設定値に対応した赤色光の変調度と赤外光の変調度との比を読み出して、その値をR/IR設定部109に設定する。これによって、現在のプローブ6の2つの発光ダイオード61、62の発光特性(前記ピーク強度、ピーク波長、半値幅等)をシミュレータ10側の発光ダイオード73、75で擬似的に再現することができる。 As a result of the reading, the control unit 101a causes the calibration curve selection unit 108 to select a corresponding one of the plurality of calibration curves stored in the calibration curve storage unit 101b in the CPU 101, and from the selected calibration curve. Then, the ratio of the modulation factor of the red light and the modulation factor of the infrared light corresponding to the SpO 2 setting value of the target value of the simulation set by the setting unit 107 is read, and the value is read to the R / IR setting unit 109. Set. Thereby, the light emission characteristics (the peak intensity, the peak wavelength, the half width, etc.) of the two light emitting diodes 61 and 62 of the current probe 6 can be reproduced in a pseudo manner by the light emitting diodes 73 and 75 on the simulator 10 side.
 また、前記制御部101aは、前記設定部50から設定され、設定状態記憶部51に記憶されているアラームの情報や、機種情報記憶部52に記憶されている機種情報も読出しておく。 The control unit 101a also reads out alarm information set from the setting unit 50 and stored in the setting state storage unit 51 and model information stored in the model information storage unit 52.
 一方、前記AC設定部110には、R/IR設定部109に設定された赤色光と赤外光との変調度の比と、前記設定部107に設定されている赤外光の変調度とから、赤色光と赤外光との変調度が、制御部101aによって設定される。前記設定部107に設定された前記シミュレーションの目標値となる脈拍数は、制御部101aによって、脈拍数設定部112に設定される。波形整形部104では、前記AC設定部110に設定された赤色光および赤外光の変調度で、前記DC設定部に設定された赤色光および赤外光のベース発光強度を、脈拍数設定部112に設定された脈拍数に対応した周波数で、赤色光および赤外光を変調するための発光ダイオード73,75の駆動波形が生成される。発光ダイオード73,75の発光タイミングは、前述の通り波形整形部103で生成され、波形整形部104に入力される。こうして、波形整形部104から出力される前記駆動波形がLEDドライバー部105に入力されて、発光ダイオード73,75が駆動される。 On the other hand, the AC setting unit 110 includes a ratio of the modulation degree of red light and infrared light set in the R / IR setting unit 109, and the modulation degree of infrared light set in the setting unit 107. Therefore, the degree of modulation of red light and infrared light is set by the control unit 101a. The pulse rate that is the target value of the simulation set in the setting unit 107 is set in the pulse rate setting unit 112 by the control unit 101a. In the waveform shaping unit 104, the base light emission intensity of the red light and the infrared light set in the DC setting unit with the modulation degree of the red light and the infrared light set in the AC setting unit 110, and the pulse rate setting unit Drive waveforms of the light emitting diodes 73 and 75 for modulating red light and infrared light are generated at a frequency corresponding to the pulse rate set to 112. The light emission timings of the light emitting diodes 73 and 75 are generated by the waveform shaping unit 103 and input to the waveform shaping unit 104 as described above. Thus, the drive waveform output from the waveform shaping unit 104 is input to the LED driver unit 105, and the light emitting diodes 73 and 75 are driven.
 なお、上述の説明では、シミュレータ10側の校正カーブ記憶部101bには、複数の校正カーブが記憶されており、その種類を前記校正カーブ選択部55から得られた校正カーブの情報に応じて選択しているけれども、前記校正カーブ選択部55から、選択されている校正カーブ自体を読出すようにしてもよい。また、事前に機種情報(パルスオキシメータのメーカ名、型名、シリアルナンバーなど)と校正カーブとの対応関係をシミュレータ10に登録して記憶させておき、シミュレーションに先立って、シミュレータ10がパルスオキシメータ1’と通信して機種情報記憶部52に記憶された前記機種情報(パルスオキシメータのメーカ名、型名、シリアルナンバーなど)を読み取って、適正な校正カーブを選択してもよい。なお、ここではシミュレータ10には発光ダイオード73,75の2種類を用いた実施例を示したが、シミュレータの発光ダイオードは1つにして、発光タイミングと発光強度、変調度、変調周波数を、赤色光および赤外光に相当するよう、時分割駆動してもよい。 In the above description, the calibration curve storage unit 101b on the simulator 10 side stores a plurality of calibration curves, and the type is selected according to the calibration curve information obtained from the calibration curve selection unit 55. However, the selected calibration curve itself may be read from the calibration curve selection unit 55. In addition, the correspondence between model information (manufacturer name, model name, serial number, etc. of the pulse oximeter) and the calibration curve is registered and stored in the simulator 10 in advance, and the simulator 10 stores the pulse oxymeter before the simulation. An appropriate calibration curve may be selected by reading the model information (the manufacturer name, model name, serial number, etc. of the pulse oximeter) stored in the model information storage unit 52 by communicating with the meter 1 ′. In this example, the simulator 10 uses two types of light emitting diodes 73 and 75. However, the simulator 10 has one light emitting diode, and the light emission timing, light emission intensity, modulation degree, and modulation frequency are set to red. Time-division driving may be performed so as to correspond to light and infrared light.
 図5および図6は、上述のようなパルスオキシメータ1’からの各種設定情報の読出し方法を説明するためのフローチャートである。先ず、図5はシミュレータ10側の動作であり、ステップS1では、制御部101aは、通信部101cを介して、パルスオキシメータ1’側の機種情報記憶部52に記憶されている機種情報を要求し、ステップS2で受信されると、ステップS3で該制御部101aに設定する。 5 and 6 are flowcharts for explaining a method of reading various setting information from the pulse oximeter 1 'as described above. First, FIG. 5 shows the operation on the simulator 10 side. In step S1, the control unit 101a requests the model information stored in the model information storage unit 52 on the pulse oximeter 1 ′ side via the communication unit 101c. If it is received in step S2, it is set in the control unit 101a in step S3.
 次に、ステップS4では、制御部101aは、通信部101cを介して、パルスオキシメータ1’側の校正カーブ選択部55から、現在選択されている校正カーブの情報を要求し、ステップS5で受信されると、ステップS6で、対応する校正カーブを校正カーブ記憶部101bから校正カーブ選択部108に読出させ、R/IR設定部109に設定させる。 Next, in step S4, the control unit 101a requests information on the currently selected calibration curve from the calibration curve selection unit 55 on the pulse oximeter 1 ′ side via the communication unit 101c, and receives it in step S5. Then, in step S6, the corresponding calibration curve is read from the calibration curve storage unit 101b to the calibration curve selection unit 108 and set in the R / IR setting unit 109.
 最後に、ステップS7では、制御部101aは、通信部101cを介して、パルスオキシメータ1’側の設定状態記憶部51に記憶されているアラーム設定値を要求し、ステップS8で受信されると、ステップS9で、そのアラーム設定値を該制御部101aに設定する。こうして、パルスオキシメータ1’のシミュレーションに必要な総てのパラメータの収集が終了すると、シミュレーションモードでの発光ダイオード73,75の発光駆動に移る。 Finally, in step S7, the control unit 101a requests the alarm setting value stored in the setting state storage unit 51 on the pulse oximeter 1 ′ side via the communication unit 101c, and when received in step S8. In step S9, the alarm setting value is set in the control unit 101a. Thus, when the collection of all parameters necessary for the simulation of the pulse oximeter 1 ′ is completed, the light emission diodes 73 and 75 are driven to emit light in the simulation mode.
 一方、図6のパルスオキシメータ1’側では、ステップS11で、通信部41c’が、フォトダイオード63で受信された信号が、図3で示すような100±10μs以内の矩形波パルス、すなわち波形整形部45で整形できるシミュレータ10側との通信の信号であるか否かを判断し、そうでないときには通常の測定動作に復帰する。これに対して、前記ステップS11で、受信信号がシミュレータ10側との通信の信号であるときには、該通信部41c’は光通信可能な状態に切換わり、シミュレータ10側からの図5で示すようなデータ要求を受付ける処理を開始する。そして、ステップS12では、要求されたデータが前記機種情報であるか否かが判断され、機種情報である場合にはステップS13で、該通信部41c’は、機種情報記憶部52に記憶されている機種情報を読出して、シミュレータ10側の通信部101cへ返信し、一旦データ要求を受付ける処理を終了して通常の測定動作に復帰する。 On the other hand, on the pulse oximeter 1 ′ side in FIG. 6, the signal received by the photodiode 63 by the communication unit 41c ′ in step S11 is a rectangular wave pulse within 100 ± 10 μs as shown in FIG. It is determined whether or not the signal is a communication signal with the simulator 10 that can be shaped by the shaping unit 45. If not, the normal measurement operation is restored. On the other hand, when the received signal is a signal for communication with the simulator 10 in the step S11, the communication unit 41c ′ is switched to a state capable of optical communication, as shown in FIG. To accept a request for data. In step S12, it is determined whether the requested data is the model information. If the requested data is model information, the communication unit 41c ′ is stored in the model information storage unit 52 in step S13. Is read out and sent back to the communication unit 101c on the simulator 10 side, once the data request is accepted, and the normal measurement operation is resumed.
 これに対して、前記ステップS12で要求されたデータが機種情報でない場合はステップS14に移り、アラーム設定値の情報であるか否かが判断され、アラーム設定値の情報である場合にはステップS15で、前記通信部41c’は、設定状態記憶部51に記憶されているアラーム設定値の情報を読出して、シミュレータ10側の通信部101cへ返信し、一旦データ要求を受付ける処理を終了して通常の測定動作に復帰する。また、前記ステップS14で、要求されたデータが前記アラーム設定値の情報でない場合はステップS16に移り、校正カーブの情報であるか否かが判断され、校正カーブの情報である場合にはステップS17で、前記通信部41c’は、校正カーブ選択部55で選択されている校正カーブの情報を読出して、シミュレータ10側の通信部101cへ返信し、一旦データ要求を受付ける処理を終了して通常の測定動作に復帰する。 On the other hand, if the data requested in step S12 is not model information, the process proceeds to step S14, where it is determined whether the data is alarm set value information. If the data is alarm set value information, step S15 is performed. Then, the communication unit 41c ′ reads the alarm setting value information stored in the setting state storage unit 51, returns the information to the communication unit 101c on the simulator 10 side, and once completes the process of accepting the data request. Return to the measurement operation. If it is determined in step S14 that the requested data is not information on the alarm set value, the process proceeds to step S16, where it is determined whether the information is calibration curve information. If the requested data is calibration curve information, step S17 is performed. Then, the communication unit 41c ′ reads out the information of the calibration curve selected by the calibration curve selection unit 55, returns the information to the communication unit 101c on the simulator 10 side, once finishes the process of accepting the data request, Return to measurement operation.
 このように構成することで、制御部101aは、プローブ6によって異なる校正カーブを、シミュレータ10側に自動的に、かつ正確に設定することができ、パルスオキシメータ1’に所期の性能が出ているか、故障していないか、またプローブ6が故障していないかを、容易に判定することができる。したがって、制御部101aは、評価部および警告部となる。 With this configuration, the control unit 101a can automatically and accurately set a calibration curve that differs depending on the probe 6 on the simulator 10 side, and the expected performance can be obtained in the pulse oximeter 1 ′. It is possible to easily determine whether or not the probe 6 has failed or whether the probe 6 has failed. Therefore, the control unit 101a becomes an evaluation unit and a warning unit.
 ここで、米国特許第5784151号公報および米国特許第5348005号公報には、上述のようなパルスオキシメータの機種情報の設定方法を示しているが、それによれば、使用者がシミュレータに登録されているパルスオキシメータの機種リストの表示から、該当するものを選択する方法である。しかしながら、その従来技術では、使用者がシミュレータの表示画面に順次表示される多数のパルスオキシメータの機種から該当機種を選択する煩わしさがあり、また同一機種のパルスオキシメータでも、校正カーブが異なるような場合に対応できないという問題がある。 Here, US Pat. No. 5,784,151 and US Pat. No. 5,348,005 show a method for setting the model information of the pulse oximeter as described above. According to this, the user is registered in the simulator. This is a method of selecting the applicable one from the displayed model list of the pulse oximeter. However, in the conventional technology, there is a trouble for the user to select a corresponding model from a number of pulse oximeter models that are sequentially displayed on the display screen of the simulator, and the calibration curve is different even in the same model pulse oximeter. There is a problem that it is not possible to cope with such a case.
 これに対して、本実施の形態では、上述のように、シミュレータ10に、容易かつ正確にパルスオキシメータ1’の機種を設定できるだけでなく、同じ機種でも校正カーブが異なるようなオキシメータにも対応できるようになる。また、パルスオキシメータ1’のアラーム設定値も自動的にシミュレータ10に伝送、設定できるので、シミュレータ10によるパルスオキシメータ1’のアラーム機能の確認において、自動的にアラーム設定値近傍のSpO値や脈拍数のデータを掃引することで、利便性を高めることができる。 On the other hand, in the present embodiment, as described above, not only the model of the pulse oximeter 1 ′ can be easily and accurately set in the simulator 10, but also the oximeter having the same model but different calibration curves can be used. It becomes possible to respond. In addition, since the alarm set value of the pulse oximeter 1 ′ can be automatically transmitted to the simulator 10 and set, the SpO 2 value near the alarm set value is automatically checked when the simulator 10 confirms the alarm function of the pulse oximeter 1 ′. The convenience can be improved by sweeping the data of the pulse rate.
 本発明の第2の着眼点による生体情報測定システムでは、前記生体情報測定装置は、酸素飽和度を算出するパルスオキシメータであって、生体組織に装着されるプローブ部を備え、前記外部通信ユニットは、前記プローブ部に係合して光通信を行うことで、前記パルスオキシメータの性能を評価するシミュレータのインタフェイスとして機能することを特徴とする。 In the biological information measuring system according to the second aspect of the present invention, the biological information measuring device is a pulse oximeter for calculating oxygen saturation, and includes a probe unit attached to a biological tissue, and the external communication unit Is characterized by functioning as an interface of a simulator for evaluating the performance of the pulse oximeter by engaging with the probe unit and performing optical communication.
 上記の構成によれば、上記の外部通信ユニットを、パルスオキシメータの性能測定用のシミュレータとして実現することができる。 According to the above configuration, the external communication unit can be realized as a simulator for measuring the performance of the pulse oximeter.
 好ましくは、前記生体情報測定システムでは、前記パルスオキシメータは、前記酸素飽和度を算出するときに使用する校正カーブを選定するための情報を記憶する第1記憶部を備え、前記シミュレータは、複数の種類のパルスオキシメータに対応した複数の校正カーブを記憶する第2記憶部と、前記パルスオキシメータの第1記憶部から、光通信により前記校正カーブに関する情報を取得し、前記情報に対応した校正カーブを前記第2記憶部から読み出して、前記パルスオキシメータの評価を行う評価部とを備えることを特徴とする。 Preferably, in the biological information measurement system, the pulse oximeter includes a first storage unit that stores information for selecting a calibration curve used when calculating the oxygen saturation, and the simulator includes a plurality of simulators. Information about the calibration curve is obtained by optical communication from a second storage unit storing a plurality of calibration curves corresponding to the type of pulse oximeter and the first storage unit of the pulse oximeter, and corresponds to the information And an evaluation unit that reads the calibration curve from the second storage unit and evaluates the pulse oximeter.
 上記の構成によれば、上記の外部通信ユニットを、前記パルスオキシメータの性能測定用のシミュレータとして実現し、このシミュレータに対する煩雑な校正カーブの設定を自動化することができる。 According to the above configuration, the external communication unit can be realized as a simulator for measuring the performance of the pulse oximeter, and complicated calibration curve setting for the simulator can be automated.
 なお、発光素子および受光素子を使って生体情報を測定する装置としては、脈波計、脈拍数計、加速度脈波計、加速度脈波計から派生した血管年齢測定装置、血圧計、黄疸計などがある。それぞれ、生体情報を測定するときに使用するプローブの形状に合わせて、外部通信ユニットの係合部の形状を形成すればよい。 In addition, as a device for measuring biological information using a light emitting element and a light receiving element, a pulse wave meter, a pulse rate meter, an acceleration pulse wave meter, a blood vessel age measuring device derived from an acceleration pulse wave meter, a blood pressure meter, a jaundice meter, etc. There is. The shape of the engaging portion of the external communication unit may be formed in accordance with the shape of the probe used when measuring biological information.
 本発明は、生体組織に光を照射し、透過または反射した光を利用して、前記生体組織の生体情報を測定する生体情報測定装置を使用するにあたって、前記光を発生する第1の発光素子と、前記透過または反射した光を受光する第1の受光素子とを、外部との光通信インタフェイスとして使用する。これによって、コネクタや無線通信回路を用いることなく、該生体情報測定装置からの測定データの吸い上げや、該生体情報測定装置への各種設定を行うことができるので、該生体情報測定装置を小型化することができ、好適である。 The present invention provides a first light emitting element that generates light when using a biological information measuring device that measures biological information of the biological tissue by irradiating the biological tissue with light and using transmitted or reflected light. And the first light receiving element that receives the transmitted or reflected light is used as an optical communication interface with the outside. As a result, measurement data from the biological information measuring device and various settings to the biological information measuring device can be performed without using a connector or a wireless communication circuit, so the biological information measuring device can be downsized. This is preferable.

Claims (15)

  1.  生体情報測定装置であって、
     生体組織に光を照射する第1の発光素子と、
     前記生体組織での前記光の透過または反射光を受光する第1の受光素子と、
     前記第1の受光素子での受光信号を利用して、生体情報を算出する演算部と、
     当該生体情報測定装置が通信可能な状態であるかどうかを検出する検出部と、
     前記検出部が通信可能な状態であることを検出したとき、前記第1の発光素子および第1の受光素子を、外部との光通信インタフェイスとして使用して、外部と光通信を行う第1の通信部と、
    を備えることを特徴とする生体情報測定装置。
    A biological information measuring device,
    A first light emitting element for irradiating light to a living tissue;
    A first light receiving element that receives the light transmitted or reflected by the living tissue;
    A calculation unit that calculates biological information using a light reception signal in the first light receiving element;
    A detection unit for detecting whether or not the biological information measuring device is in a communicable state;
    When detecting that the detection unit is in a communicable state, the first light emitting element and the first light receiving element are used as an optical communication interface with the outside to perform optical communication with the outside. The communication department of
    A biological information measuring device comprising:
  2.  前記検出部は、前記第1の受光素子での受光信号を監視し、前記受光信号が予め定める信号形式であることを検出すると、前記第1の通信部は光通信を行うこと特徴とする請求項1記載の生体情報測定装置。 The detection unit monitors a light reception signal at the first light receiving element, and detects that the light reception signal has a predetermined signal format, the first communication unit performs optical communication. Item 1. The biological information measuring device according to Item 1.
  3.  前記検出部は、前記第1の受光素子での受光信号を監視し、前記受光信号が予め定める受光信号の範囲外であることを検出すると、前記第1の通信部は光通信を行うこと特徴とする請求項1記載の生体情報測定装置。 The detection unit monitors a light reception signal at the first light receiving element, and detects that the light reception signal is outside a predetermined light reception signal range, the first communication unit performs optical communication. The biological information measuring device according to claim 1.
  4.  前記検出部は、当該生体情報測定装置を、生体情報を測定する測定モードと、光通信を行う通信モードとの間で選択するための操作部を含み、前記操作部の操作により、前記通信モードが選択されたことが検出されたときには、前記第1の通信部は光通信を行うこと特徴とする請求項1記載の生体情報測定装置。 The detection unit includes an operation unit for selecting the biological information measurement device between a measurement mode for measuring biological information and a communication mode for performing optical communication, and the communication mode is determined by an operation of the operation unit. The biological information measuring apparatus according to claim 1, wherein when it is detected that is selected, the first communication unit performs optical communication.
  5.  前記第1の発光素子は、赤色光と赤外光との異なる2つの波長の光を照射し、
     前記第1の受光素子は、前記2つの波長の光のそれぞれが前記生体組織を透過または反射した光を受光し、
     前記演算部は、前記第1の受光素子での各受光信号を利用して血中酸素飽和度を演算することを特徴とする請求項1~4のいずれか1項に記載の生体情報測定装置。
    The first light emitting element emits light of two different wavelengths, red light and infrared light,
    The first light receiving element receives light transmitted through or reflected by the biological tissue, each of the two wavelengths of light,
    The biological information measuring apparatus according to any one of claims 1 to 4, wherein the calculation unit calculates a blood oxygen saturation level using each received light signal from the first light receiving element. .
  6.  生体情報測定装置と外部通信ユニットとを備えて構成される生体情報測定システムであって、
     前記生体情報測定装置は、
      生体組織に光を照射する第1の発光素子と、
      前記生体組織での前記光の透過または反射光を受光する第1の受光素子と、
      前記第1の受光素子での受光信号を利用して、生体情報を算出する演算部と、
      当該生体情報測定装置が通信可能な状態であるかどうかを検出する検出部と、
      前記検出部が通信可能な状態であることを検出したときに、前記第1の発光素子および第1の受光素子を、外部との光通信インタフェイスとして使用して、外部と光通信を行う第1の通信部と、
    を備え、
     前記外部通信ユニットは、
      第2の発光素子および第2の受光素子と、
      前記第2の発光素子および第2の受光素子を外部との光通信インタフェイスとして用いる第2の通信部とを備え、
     前記生体情報測定装置と当該外部通信ユニットとは、係合部で係合することにより前記光通信可能な状態になり、その係合状態で、前記第1の発光素子と前記第2の受光素子とが対向し、前記第1の受光素子と第2の発光素子とが対向するように配置されていることを特徴とする生体情報測定システム。
    A biological information measuring system comprising a biological information measuring device and an external communication unit,
    The biological information measuring device includes:
    A first light emitting element for irradiating light to a living tissue;
    A first light receiving element that receives the light transmitted or reflected by the living tissue;
    A calculation unit that calculates biological information using a light reception signal in the first light receiving element;
    A detection unit for detecting whether or not the biological information measuring device is in a communicable state;
    When the detection unit detects that communication is possible, the first light emitting element and the first light receiving element are used as an optical communication interface with the outside to perform optical communication with the outside. 1 communication unit;
    With
    The external communication unit is
    A second light emitting element and a second light receiving element;
    A second communication unit that uses the second light emitting element and the second light receiving element as an optical communication interface with the outside,
    The biological information measuring device and the external communication unit are engaged with each other by an engaging portion to be in a state where the optical communication is possible, and in the engaged state, the first light emitting element and the second light receiving element. Are disposed so that the first light receiving element and the second light emitting element are opposed to each other.
  7.  前記検出部は、前記外部通信ユニットを非電気的に検出する検出素子を備えることを特徴とする請求項6記載の生体情報測定システム。 The biological information measurement system according to claim 6, wherein the detection unit includes a detection element for non-electrically detecting the external communication unit.
  8.  前記検出部は、前記外部通信ユニットに設置された磁石を検出する磁界検出素子であることを特徴とする請求項6記載の生体情報測定システム。 The biological information measurement system according to claim 6, wherein the detection unit is a magnetic field detection element that detects a magnet installed in the external communication unit.
  9.  前記生体情報測定装置は、酸素飽和度を算出するパルスオキシメータであって、生体組織に装着されるプローブ部を備え、
     前記外部通信ユニットは、前記プローブ部に係合して光通信を行うことで、前記パルスオキシメータの性能を評価するシミュレータのインタフェイスとして機能することを特徴とする請求項6記載の生体情報測定システム。
    The biological information measuring device is a pulse oximeter for calculating oxygen saturation, and includes a probe unit attached to a biological tissue,
    The biological information measurement according to claim 6, wherein the external communication unit functions as an interface of a simulator for evaluating the performance of the pulse oximeter by engaging with the probe unit and performing optical communication. system.
  10.  前記パルスオキシメータは、前記酸素飽和度を算出するときに使用する校正カーブを選定するための情報を記憶する第1記憶部を備え、
     前記シミュレータは、複数の種類のパルスオキシメータに対応した複数の校正カーブを記憶する第2記憶部と、前記パルスオキシメータの第1記憶部から、光通信により前記校正カーブに関する情報を取得し、前記情報に対応した校正カーブを前記第2記憶部から読み出して、前記パルスオキシメータの評価を行う評価部とを備えることを特徴とする請求項9記載の生体情報測定システム。
    The pulse oximeter includes a first storage unit that stores information for selecting a calibration curve to be used when calculating the oxygen saturation.
    The simulator acquires information on the calibration curve by optical communication from a second storage unit that stores a plurality of calibration curves corresponding to a plurality of types of pulse oximeters, and a first storage unit of the pulse oximeter, The biological information measurement system according to claim 9, further comprising: an evaluation unit that reads a calibration curve corresponding to the information from the second storage unit and evaluates the pulse oximeter.
  11.  前記校正カーブを選定するための情報は、前記パルスオキシメータの製造メーカ、製品型名、製造番号の少なくとも1であることを特徴とする請求項10記載の生体情報測定システム。 11. The biological information measuring system according to claim 10, wherein the information for selecting the calibration curve is at least one of a manufacturer, a product model name, and a manufacturing number of the pulse oximeter.
  12.  前記パルスオキシメータは、前記酸素飽和度を算出するときに使用する校正カーブを記憶する第1記憶部を備え、
     前記シミュレータは、前記パルスオキシメータの第1記憶部から、光通信により前記校正カーブを取得し、前記パルスオキシメータの評価を行う評価部を備えることを特徴とする請求項9記載の生体情報測定システム。
    The pulse oximeter includes a first storage unit that stores a calibration curve used when calculating the oxygen saturation.
    The biological information measurement according to claim 9, wherein the simulator includes an evaluation unit that acquires the calibration curve by optical communication from the first storage unit of the pulse oximeter and evaluates the pulse oximeter. system.
  13.  前記パルスオキシメータは、測定した酸素飽和度または脈拍数が予め設定された判定条件に適するどうか判定し、判定条件外と判定したときに警告する警告部と、前記判定条件を設定する設定部とを備え、
     前記シミュレータは、前記パルスオキシメータとの前記光通信を介して、前記判定条件を読み出し、または、前記判定条件を書き換えることを特徴とする請求項9記載の生体情報測定システム。
    The pulse oximeter determines whether or not the measured oxygen saturation or pulse rate is suitable for a preset determination condition, and warns when it is determined that the determination condition is not satisfied, and a setting unit for setting the determination condition; With
    The biological information measuring system according to claim 9, wherein the simulator reads the determination condition or rewrites the determination condition via the optical communication with the pulse oximeter.
  14.  生体組織に光を照射し、透過または反射した光を利用して、予め定める生体情報を得る生体情報測定装置の使用方法において、
     前記光を発生する第1の発光素子と、前記透過または反射した光を受光する第1の受光素子とを、外部との光通信インタフェイスとして使用することを特徴とする生体情報測定装置の使用方法。
    In a method of using a biological information measuring device that irradiates a biological tissue with light and uses transmitted or reflected light to obtain predetermined biological information,
    Use of the biological information measuring apparatus, wherein the first light emitting element for generating the light and the first light receiving element for receiving the transmitted or reflected light are used as an optical communication interface with the outside. Method.
  15.  生体組織に光を照射し、透過または反射した光を利用して、予め定める生体情報を得る生体情報測定装置の通信方法において、
     前記透過または反射した光を受光する第1の受光素子で受光信号を受光するステップと、
     前記第1の受光素子での受光信号が予め定める信号形式であるかどうか検出するステップと、
     前記受光信号が予め定める信号形式であることを検出したときには、前記生体組織に光を照射する第1の発光素子と前記第1の受光素子とを、外部との光通信インタフェイスとして駆動するステップと、
    を備えることを特徴とする生体情報測定装置の通信方法。
    In the communication method of the biological information measuring device for obtaining predetermined biological information by irradiating the biological tissue with light and using the transmitted or reflected light,
    Receiving a light reception signal with a first light receiving element that receives the transmitted or reflected light; and
    Detecting whether the light reception signal at the first light receiving element is in a predetermined signal format;
    When it is detected that the light reception signal has a predetermined signal format, the step of driving the first light emitting element for irradiating the living tissue with light and the first light receiving element as an optical communication interface with the outside When,
    A communication method of a biological information measuring device, comprising:
PCT/JP2009/066183 2009-09-16 2009-09-16 Living organism information measurement device, living organism information measurement system, and communication method and usage method for living organism information measurement device WO2011033628A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011531703A JP5168415B2 (en) 2009-09-16 2009-09-16 Biological information measuring system, method of using biological information measuring apparatus and communication method
PCT/JP2009/066183 WO2011033628A1 (en) 2009-09-16 2009-09-16 Living organism information measurement device, living organism information measurement system, and communication method and usage method for living organism information measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066183 WO2011033628A1 (en) 2009-09-16 2009-09-16 Living organism information measurement device, living organism information measurement system, and communication method and usage method for living organism information measurement device

Publications (1)

Publication Number Publication Date
WO2011033628A1 true WO2011033628A1 (en) 2011-03-24

Family

ID=43758255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066183 WO2011033628A1 (en) 2009-09-16 2009-09-16 Living organism information measurement device, living organism information measurement system, and communication method and usage method for living organism information measurement device

Country Status (2)

Country Link
JP (1) JP5168415B2 (en)
WO (1) WO2011033628A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016513527A (en) * 2013-03-14 2016-05-16 オル−ニム メディカル エルティーディー.Or−Nim Medical Ltd. Probe for non-invasive optical monitoring
WO2016100145A1 (en) * 2014-12-16 2016-06-23 Microsoft Technology Licensing, Llc Optical communication with optical sensors
JP2022517813A (en) * 2019-01-29 2022-03-10 ムラタ バイオス インコーポレイテッド Pulse oximetry system
US11426103B2 (en) 2008-07-03 2022-08-30 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11478154B2 (en) * 2017-09-25 2022-10-25 Belun Technology (Ip) Company Limited Testing device for non-invasive physiological information detecting device and method thereof
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2607715B1 (en) 2015-10-01 2018-01-17 Solutex Na, Lcc PROCESS FOR THE PREPARATION AND STABILIZATION OF EMULSIONS WITH OMEGA-3 THROUGH ISOMETRIC CRYSTAL NETWORKS OF CELLULOSE DERIVATIVES

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354591A (en) * 1999-06-14 2000-12-26 Terumo Corp Blood sugar level measuring apparatus and blood sugar level processing system using the same
JP2005312913A (en) * 2004-03-30 2005-11-10 Toshiba Corp Biological information measuring device
JP2006166085A (en) * 2004-12-08 2006-06-22 Nec Corp Portable communications terminal
JP2008253579A (en) * 2007-04-05 2008-10-23 Konica Minolta Sensing Inc Method, system, and program for analyzing pulse wave data

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382758C (en) * 2004-04-29 2008-04-23 Ge医疗系统环球技术有限公司 X ray CT apparatus and projection data collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354591A (en) * 1999-06-14 2000-12-26 Terumo Corp Blood sugar level measuring apparatus and blood sugar level processing system using the same
JP2005312913A (en) * 2004-03-30 2005-11-10 Toshiba Corp Biological information measuring device
JP2006166085A (en) * 2004-12-08 2006-06-22 Nec Corp Portable communications terminal
JP2008253579A (en) * 2007-04-05 2008-10-23 Konica Minolta Sensing Inc Method, system, and program for analyzing pulse wave data

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11484229B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11751773B2 (en) 2008-07-03 2023-09-12 Masimo Corporation Emitter arrangement for physiological measurements
US11647914B2 (en) 2008-07-03 2023-05-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642037B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642036B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11484230B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11426103B2 (en) 2008-07-03 2022-08-30 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
JP2016513527A (en) * 2013-03-14 2016-05-16 オル−ニム メディカル エルティーディー.Or−Nim Medical Ltd. Probe for non-invasive optical monitoring
KR102457325B1 (en) 2014-12-16 2022-10-20 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 Optical communication with optical sensors
CN107113057B (en) * 2014-12-16 2019-10-18 微软技术许可有限责任公司 Optical communication with optical sensor
US10076254B2 (en) 2014-12-16 2018-09-18 Microsoft Technology Licensing, Llc Optical communication with optical sensors
CN107113057A (en) * 2014-12-16 2017-08-29 微软技术许可有限责任公司 Optical communication with optical sensor
KR20170094406A (en) * 2014-12-16 2017-08-17 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 Optical communication with optical sensors
WO2016100145A1 (en) * 2014-12-16 2016-06-23 Microsoft Technology Licensing, Llc Optical communication with optical sensors
US11478154B2 (en) * 2017-09-25 2022-10-25 Belun Technology (Ip) Company Limited Testing device for non-invasive physiological information detecting device and method thereof
JP2022517813A (en) * 2019-01-29 2022-03-10 ムラタ バイオス インコーポレイテッド Pulse oximetry system
JP7170147B2 (en) 2019-01-29 2022-11-11 ムラタ バイオス インコーポレイテッド Non-transitory computer-readable storage medium, computer-implemented method and system

Also Published As

Publication number Publication date
JP5168415B2 (en) 2013-03-21
JPWO2011033628A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5168415B2 (en) Biological information measuring system, method of using biological information measuring apparatus and communication method
EP2449965B1 (en) Biological signal measuring apparatus and biological signal measuring method
JP6626915B2 (en) Wireless and handheld tissue oximetry devices
JP3845776B2 (en) Absorbent concentration measuring device in blood
KR100826187B1 (en) Apparatus for measurement bionic information and Mobile terminal having function measurement bionic information and Remocon having function measurement bionic information and Method thereof
JP4710084B2 (en) Biological information measuring device
WO2021067345A1 (en) Wireless teeth whitening system
US8890682B2 (en) Blood glucose measuring device
JP4393571B2 (en) Biological information measuring device
CN108135540B (en) Non-invasive measurement device for blood glucose levels
WO1997022293A1 (en) Method and apparatus for facilitating compatibility between pulse oximeters and sensor probes
EP3600039B1 (en) Systems and methods for driving optical sensors
US20100179391A1 (en) Systems and methods for a wireless sensor proxy with feedback control
EP2050391A1 (en) Finger-clamp type oximeter with several display modes
JP2011251007A (en) Bio-pulse wave sensor and bio-pulse wave measuring device
CN114246560A (en) Wearable device and method for executing registration process therein
KR20190143340A (en) Apparatus and method for measuring bio-information
JP2015136380A5 (en)
TW201244694A (en) Device for responding emotions and emotion recognition method thereof
WO2019087633A1 (en) Biological information measurement device, information processing device, biological information measurement method, and program
WO2019077969A1 (en) Bioinformation measurement device, information processing device, bioinformation measurement method, and program
CN111616859A (en) Disposable automatic alarm aseptic color-changing metering gauze
JP2024068988A (en) Biological signal measuring device and determination method
CN113143241A (en) Device and method for detecting health state of human muscle and massage equipment
CN112244798A (en) Wearable heart rate blood oxygen detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849487

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011531703

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849487

Country of ref document: EP

Kind code of ref document: A1