JP4393571B2 - Biological information measuring device - Google Patents

Biological information measuring device Download PDF

Info

Publication number
JP4393571B2
JP4393571B2 JP2008298270A JP2008298270A JP4393571B2 JP 4393571 B2 JP4393571 B2 JP 4393571B2 JP 2008298270 A JP2008298270 A JP 2008298270A JP 2008298270 A JP2008298270 A JP 2008298270A JP 4393571 B2 JP4393571 B2 JP 4393571B2
Authority
JP
Japan
Prior art keywords
light
biological information
light receiving
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008298270A
Other languages
Japanese (ja)
Other versions
JP2009039568A (en
Inventor
弘 小泉
公久 相原
真司 美野
純一 嶋田
尚一 林田
泰介 小口
尚愛 多々良
昭一 須藤
秀利 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2008298270A priority Critical patent/JP4393571B2/en
Publication of JP2009039568A publication Critical patent/JP2009039568A/en
Application granted granted Critical
Publication of JP4393571B2 publication Critical patent/JP4393571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人体の耳介等の生体の一部で生体情報を検出する生体情報計測装置に関するものである。   The present invention relates to a biological information measuring device that detects biological information from a part of a living body such as a pinna of a human body.

高齢化が進み、成人の生活習慣病への対応が社会的に大きな課題となっている。特に高血圧に関連する疾患の場合、長期の血圧データの収集が非常に重要である点が認識されている。このような観点から、血圧をはじめとした各種の生体情報の計測装置が開発されている。   With the aging of society, dealing with adult lifestyle-related diseases has become a major social issue. It is recognized that long-term blood pressure data collection is very important, especially for diseases related to high blood pressure. From this point of view, various biological information measuring devices including blood pressure have been developed.

従来、外耳部で生体情報を計測する装置については、外耳道又は外耳中の他の部位に、挿入され、常時装着する患者モニタ装置がある(例えば、特許文献1参照。)。特許文献1には、動脈の脈波や血流を検出する方法として、発光素子により生体へ照射した照射光が生体の動脈あるいは動脈内の血球により散乱した散乱光を、受光素子により受光し、散乱光から脈波や血流を検出する方法が開示されている。ここで脈拍、脈波、心電、体温、動脈血酸素飽和度、及び血圧などを生体内へ放射した赤外光、可視光の散乱光の受光量から計算できるとしている。   2. Description of the Related Art Conventionally, there is a patient monitor device that is inserted into other parts of the external auditory canal or the external ear and is always worn as a device that measures biological information at the external ear (see, for example, Patent Document 1). In Patent Document 1, as a method for detecting a pulse wave or blood flow of an artery, scattered light scattered by an arterial body of a living body or blood cells in the artery is scattered by a light receiving element. A method for detecting pulse waves and blood flow from scattered light is disclosed. Here, the pulse, pulse wave, electrocardiogram, body temperature, arterial blood oxygen saturation, blood pressure, and the like can be calculated from the amounts of received infrared light and visible light scattered into the living body.

また、外耳道又は耳朶に装着する装置としては、無線通信手段を有し、動脈血酸素飽和濃度センサ、体温センサ、心電センサ、脈波センサを備えている緊急情報装置がある(例えば、特許文献2参照。)。   Moreover, as an apparatus to be mounted on the ear canal or earlobe, there is an emergency information apparatus that includes wireless communication means and includes an arterial blood oxygen saturation sensor, a body temperature sensor, an electrocardiogram sensor, and a pulse wave sensor (for example, Patent Document 2). reference.).

一方、血圧の測定に関しては、血管の脈動波形による血圧測定装置は、他の方式であるカフ振動法や容積補償法などによる血圧測定装置(例えば、非特許文献1参照。)と並んで有力な血圧の測定方法として認められている。   On the other hand, with regard to blood pressure measurement, blood pressure measurement devices based on pulsation waveforms of blood vessels are prominent along with blood pressure measurement devices using other methods such as the cuff vibration method and volume compensation method (for example, see Non-Patent Document 1). It is accepted as a method for measuring blood pressure.

なお、本願では、耳介の名称は非特許文献2に、耳介の軟骨の名称は非特許文献3による。
特開平9−122083 特開平11−128174 山越 憲一、戸川 達男著、「生体センサと計測装置」、日本エム・イー学会編/ME教科書シリーズ A−1、39頁〜52頁 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.126、(株)医学書院、1996年10月1日発行 Sobotta 図説人体解剖学第1巻(監訳者:岡本道雄)、p.127、(株)医学書院、1996年10月1日発行
In the present application, the name of the pinna is based on Non-Patent Document 2, and the name of the pinna cartilage is based on Non-Patent Document 3.
JP-A-9-128203 JP-A-11-128174 Kenichi Yamakoshi, Tatsuo Togawa, “Biological Sensors and Measuring Devices”, MM Japan Society / ME Textbook Series A-1, pages 39-52 Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 126, Medical School, issued October 1, 1996 Sobotta Illustrated Human Anatomy Volume 1 (Translation by Michio Okamoto), p. 127, Medical School, issued October 1, 1996

しかし、上記の発光素子と受光素子による脈波や血流の検出方法は開発途上であり、実験結果が散見されるのみで、計測結果にはノイズが多く含まれている。本発明者らは、発光素子により生体へ照射した照射光のうち生体の動脈あるいは動脈内の血球により散乱した散乱光を、受光素子により受光する際に、体動により受光素子に多くの雑音光が加わることを見出した。すなわち、発光素子と受光素子とからなるセンサを収容した筐体は、カフに組み込まれるか或いはカフと分離しながらもカフの膨張による締め付けを利用するように配置されることがほとんどである。そして、カフは内部を加圧し、さらに減圧するために、カフの形状は大きく変化する。そのため、発光素子と受光素子と生体との位置関係が微妙に変化するために反射光の方向と反射光の量もさまざまに変化し、この反射光の量の変化が、体動ノイズとなり、脈波の検出に大きな妨害となっていた。   However, the pulse wave and blood flow detection methods using the light emitting element and the light receiving element are under development, and only experimental results are scattered, and the measurement results contain a lot of noise. When receiving scattered light scattered by an artery of a living body or blood cells in the artery among light irradiated to a living body by a light emitting element, the present inventors receive a lot of noise light on the light receiving element due to body movement. Found to join. That is, a housing that houses a sensor composed of a light emitting element and a light receiving element is mostly arranged so as to be incorporated in the cuff or separated from the cuff while utilizing tightening due to the expansion of the cuff. Since the cuff pressurizes the inside and further depressurizes, the shape of the cuff changes greatly. For this reason, the positional relationship between the light emitting element, the light receiving element, and the living body slightly changes, so that the direction of the reflected light and the amount of the reflected light also change variously. It was a great hindrance to wave detection.

そこで本発明は、受光素子を複数個設け、該各受光素子が計測した各受光信号を用いて、体動ノイズを低減し或いはノイズが少ない受光信号を選択し、精度の高い脈波情報を得ることを目的とする。   Therefore, the present invention provides a plurality of light receiving elements and uses each light receiving signal measured by each light receiving element to reduce a body motion noise or select a light receiving signal with less noise to obtain highly accurate pulse wave information. For the purpose.

上記目的を達成するために、本発明に係る生体情報計測装置は、少なくとも1個以上の発光素子と、2個以上の受光素子を設けることとした。   In order to achieve the above object, the biological information measuring apparatus according to the present invention is provided with at least one light emitting element and two or more light receiving elements.

また第1発明に係る生体情報計測装置は、一の面が透光性を有する筺体と、該筺体の内部に配置され、前記一の面を通して前記筺体の外部へ出射光を発光する少なくとも1個の発光素子と、前記筐体の内部に配置され、前記一の面を通して前記出射光が前記筺体の外部で散乱した散乱光を受光する2個以上の受光素子と、前記各受光素子が計測した各受光信号のうち、波形の交流成分と直流成分とからなる評価関数値が最大となる受光信号を選択する第3計測値処理手段と、を備えることを特徴とする。 The biological information measuring apparatus according to the first aspect of the present invention is a housing having one surface that is translucent, and at least one that emits emitted light to the outside of the housing through the one surface. A light emitting element, two or more light receiving elements that are disposed inside the housing and receive scattered light scattered from outside the housing through the one surface, and the light receiving elements measured And a third measured value processing means for selecting a received light signal having a maximum evaluation function value composed of an alternating current component and a direct current component of the waveform among the received light signals.

上記のように、2個以上の受光素子を設けることにより、カフの形状が大きく変化して反射光の方向と反射光の量がさまざまに変化したとしても、各受光素子のうちいずれかは、この変化が少ない受光信号を計測するものがある。したがって、前記各受光素子が計測した各受光信号のうち、波形の交流成分と直流成分とからなる評価関数値を指標として、体動ノイズが最も少ない受光信号を選択することで、精度の高い脈波情報を得ることができる。   As described above, by providing two or more light receiving elements, even if the shape of the cuff changes greatly and the direction of reflected light and the amount of reflected light change variously, Some measure light reception signals with little change. Therefore, among the light receiving signals measured by the light receiving elements, the light receiving signal with the least body motion noise is selected using the evaluation function value composed of the alternating current component and the direct current component of the waveform as an index. Wave information can be obtained.

第1発明に係る生体情報計測装置は、前記第3計測値処理手段が、評価関数を前記交流成分とし、前記各受光信号のうち、前記交流成分が最大の値を有する受光信号を選択する場合を包含する。受光信号のうち、波形の交流成分は、脈波情報等の生体情報を含んでおり、一方、波形成分の直流成分は、ノイズ、迷光の情報を含んでいる。そこで、評価関数を交流成分として、その最大の値を有する受光信号を選択することで、体動ノイズが少ない受光信号を選択するものである。 In the biological information measuring apparatus according to the first aspect, when the third measurement value processing means uses the evaluation function as the alternating current component and selects the received light signal having the maximum value of the alternating current component among the received light signals. Is included. Among the received light signals, the waveform AC component includes biological information such as pulse wave information, while the waveform component DC component includes noise and stray light information. Therefore, the light reception signal with the least body motion noise is selected by selecting the light reception signal having the maximum value with the evaluation function as an AC component.

或いは第1発明に係る生体情報計測装置では、前記第3計測値処理手段が、評価関数を(前記交流成分/前記直流成分)とし、前記各受光信号のうち、(前記交流成分/前記直流成分)が最大の値を有する受光信号を選択する場合を包含する。評価関数を(交流成分/直流成分)として、その最大の値を有する受光信号を選択することで、体動ノイズが少ない受光信号を選択するものである。 Alternatively, in the biological information measuring apparatus according to the first invention , the third measurement value processing means sets the evaluation function to (the AC component / the DC component), and among the received light signals, the AC component / the DC component. ) Includes the case where the received light signal having the maximum value is selected. By selecting the received light signal having the maximum value as the evaluation function (alternating current component / direct current component), the received light signal with less body motion noise is selected.

或いは第1発明に係る生体情報計測装置は、前記第3計測値処理手段が、評価関数を(前記交流成分のうち特定周波数範囲の成分/前記直流成分)とし、前記各受光信号のうち、(前記交流成分のうち特定周波数範囲の成分/前記直流成分)が最大の値を有する受光信号を選択する場合を包含する。交流成分は、脈波情報等の生体情報を多く含んでいるもののノイズも含んでいる。このうち、生体情報由来の交流成分は、例えば0.1〜10Hzに含まれる。一方、ノイズの交流成分は、0.1Hz以下の低周波側で多く、10Hzを超える高周波側にも含まれている。そこで、特定周波数範囲の交流成分、例えば0.5〜10Hzの周波数範囲ではノイズの交流成分に対して生体情報関連の交流成分が多いので、評価関数を(交流成分のうち特定周波数範囲の成分/直流成分)として、その最大の値を有する受光信号を選択することで、体動ノイズが少ない受光信号を選択するものである。 Alternatively, in the biological information measuring apparatus according to the first invention , the third measurement value processing means uses an evaluation function (a component in a specific frequency range of the AC component / the DC component), and among the received light signals, This includes the case of selecting a received light signal having a maximum value of the specific frequency range component / the direct current component) among the alternating current components. The AC component contains a lot of biological information such as pulse wave information, but also includes noise. Among these, the alternating current component derived from biological information is contained in 0.1-10 Hz, for example. On the other hand, the AC component of noise is large on the low frequency side of 0.1 Hz or less, and is also included on the high frequency side exceeding 10 Hz. Therefore, since there are many AC components related to biological information with respect to the AC component of the noise in the AC component of the specific frequency range, for example, in the frequency range of 0.5 to 10 Hz, the evaluation function (the component of the specific frequency range in the AC component / By selecting the light receiving signal having the maximum value as the DC component), the light receiving signal with less body movement noise is selected.

第1発明において、前記筐体の内部に、前記発光素子と前記受光素子との分離壁を設けることが好ましい。分離壁を設けることで、迷光が減り、受光素子が受光する光のうち生体での散乱光の割合を高めることができる。 In the first invention , it is preferable to provide a separation wall between the light emitting element and the light receiving element in the housing. By providing the separation wall, stray light can be reduced, and the proportion of scattered light in the living body out of the light received by the light receiving element can be increased.

第1発明において、前記発光素子及び前記受光素子を同一放物面上、同一球面上若しくは同一双曲面上に配置することが好ましい。これらの面上に発光素子及び受光素子を配置することで、受光素子が受光する光のうち生体での散乱光の割合を高めることができる。 In the first invention , the light emitting element and the light receiving element are preferably arranged on the same paraboloid, the same spherical surface, or the same hyperboloid. By arranging the light emitting element and the light receiving element on these surfaces, it is possible to increase the proportion of scattered light in the living body among the light received by the light receiving element.

第1発明の生体情報計測装置は、前記各受光素子が前記発光素子を中心として同一円周上に所定間隔で配置された構造を有することが好ましい。このとき発光素子と各受光素子との間隔が一定となり、各受光素子から発光素子6への影響を同一条件とすることができる。 The biological information measuring apparatus of the first invention preferably has a structure in which the respective light receiving elements are arranged at predetermined intervals on the same circumference with the light emitting element as the center. At this time, the interval between the light emitting element and each light receiving element becomes constant, and the influence of each light receiving element on the light emitting element 6 can be made the same condition.

第1発明は、前記発光素子を2個以上配置し、該発光素子のうち選択した発光素子を発光させる発光切替手段を設けた場合を包含する。発光素子を単独若しくは任意に発光させることができ、脈波情報が最も大きく出力される発光素子を選択できる。 The first invention includes a case where two or more of the light emitting elements are arranged and a light emission switching means for emitting light of a selected light emitting element among the light emitting elements is provided. The light emitting element can emit light alone or arbitrarily, and the light emitting element that outputs the largest pulse wave information can be selected.

第1発明は、前記一の面を密閉するように覆って、該一の面を押圧面とする、透光性を有する伸縮部材と、前記筺体の内部へ加圧空気を供給する空気供給パイプと、をさらに設けた場合を包含する。本発明は、筐体とカフを分離した形態を含むほか、伸縮部材と空気供給パイプを設け、カフに筐体を組み込んだ形態であっても良い。生体の測定箇所に併せてこれらいずれかの形態を用いることができる。 A first aspect of the present invention is a translucent elastic member that covers the one surface so as to be sealed and uses the one surface as a pressing surface, and an air supply pipe that supplies pressurized air to the inside of the housing And further provided. The present invention includes a form in which the casing and the cuff are separated, and may be a form in which the casing is incorporated in the cuff by providing an elastic member and an air supply pipe. Any of these forms can be used in combination with the measurement location of the living body.

本発明の生体情報計測装置によれば、受光素子を複数個設け、該各受光素子が計測した各受光信号を用いることで、体動ノイズを低減し或いはノイズが少ない受光信号を選択し、精度の高い脈波情報を得ることができる。   According to the biological information measuring apparatus of the present invention, a plurality of light receiving elements are provided, and by using each light receiving signal measured by each light receiving element, a body light noise is reduced or a light receiving signal with less noise is selected and accuracy is selected. High pulse wave information can be obtained.

添付の図面を参照して本発明の実施の形態を説明する。以下に説明する実施の形態は本発明の構成の例であり、本発明は、以下の実施の形態に制限されるものではない。
(第1実施形態)
Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiment described below is an example of the configuration of the present invention, and the present invention is not limited to the following embodiment.
(First embodiment)

最初に、図1及び図2を参照しながら、第1実施形態に係る生体情報計測装置の基本的な構成を説明する。図1は第1実施形態に係る生体情報計測装置の概略断面図である。図2は第1実施形態に係る生体情報計測装置の筐体外部から一の面の方向を見たときの概略平面図である。なお、図2のA−Aでの断面図が図1に相当する。また図2では、発光素子と受光素子の台座は省略した。第1実施形態に係る生体情報計測装置100は、一の面3が透光性を有する筺体2と、筺体2の内部に配置され、一の面3を通して筺体2の外部へ出射光25を発光する少なくとも1個の発光素子6と、筐体2の内部に配置され、一の面3を通して出射光25が筺体2の外部で散乱した散乱光4を受光する8個の受光素子5a〜5hと、各受光素子5a〜5hが計測した各受光信号のうち、体動ノイズが最も少ない受光信号を選択する第1計測値処理手段(不図示)と、を備える。   First, a basic configuration of the biological information measuring apparatus according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic cross-sectional view of the biological information measuring apparatus according to the first embodiment. FIG. 2 is a schematic plan view when viewing the direction of one surface from the outside of the housing of the biological information measuring apparatus according to the first embodiment. Note that a cross-sectional view taken along a line AA in FIG. 2 corresponds to FIG. In FIG. 2, the pedestal of the light emitting element and the light receiving element is omitted. The biological information measuring apparatus 100 according to the first embodiment includes a housing 2 having a translucent surface 3 and an inside of the housing 2, and emits emitted light 25 to the outside of the housing 2 through the surface 3. And at least one light emitting element 6 that is arranged inside the housing 2 and eight light receiving elements 5a to 5h that receive the scattered light 4 that is emitted from the outside of the housing 2 by the emitted light 25 through the one surface 3. First measurement value processing means (not shown) for selecting a light reception signal with the least body motion noise among the light reception signals measured by the light receiving elements 5a to 5h.

なお、図1及び図2並びに以下に説明する図においては、発光素子6の駆動回路、受光素子5a〜5hの信号を増幅する増幅器など通常の技術により実現できる部分は表示していない。   In FIGS. 1 and 2 and the drawings described below, portions that can be realized by ordinary techniques such as a drive circuit of the light emitting element 6 and an amplifier that amplifies the signals of the light receiving elements 5a to 5h are not shown.

筺体2は、発光素子6と受光素子5a〜5hの収容容器の役目を為すと同時に外部光の入射を遮蔽するものである。そして、筺体2の一の面3が透光性を有するように形成されて、一の面3のみから光の入出射が許容される。例えば、一の面3を開口し、該開口を透光性のガラスやプラスチックシートで覆うことにより、一の面3が透光性を有するように形成される。   The housing 2 serves as a container for the light emitting element 6 and the light receiving elements 5a to 5h, and at the same time shields the incidence of external light. The one surface 3 of the housing 2 is formed so as to have translucency, and light is allowed to enter and exit only from the one surface 3. For example, by opening one surface 3 and covering the opening with translucent glass or plastic sheet, the one surface 3 is formed to have translucency.

発光素子6は、発光ダイオード(LED)、EL素子、電球等の発光体であればいずれも使用することができるが、本実施形態では光量、消費電力等の特性からLEDを使用することが好ましい。発光素子6のパッケージの径は0.5〜2mmが好ましく、0.8〜1.2mmがより好ましく、最適は約1mmである。LED等の発光素子では、出射光量が最も良く使われる数十マイクロワットから数百マイクロワットのときに、発光効率最もよくなるのが数百ミクロン角の大きさであるからである。   The light emitting element 6 may be any light emitting element such as a light emitting diode (LED), an EL element, or a light bulb. In the present embodiment, it is preferable to use an LED in view of characteristics such as light quantity and power consumption. . The diameter of the package of the light emitting element 6 is preferably 0.5 to 2 mm, more preferably 0.8 to 1.2 mm, and most preferably about 1 mm. This is because, in a light emitting element such as an LED, when the amount of emitted light is the most commonly used, from several tens of microwatts to several hundreds of microwatts, the light emission efficiency is best when the size is several hundred micron squares.

発光素子6より一の面3を通して筐体2の外部に出射された出射光25は、生体1を照射し、生体1の内部で散乱する。その散乱光4は、一の面3を通して筐体2の内部に入り、受光素子5a〜5hによって計測される。   The emitted light 25 emitted from the light emitting element 6 to the outside of the housing 2 through the one surface 3 irradiates the living body 1 and is scattered inside the living body 1. The scattered light 4 enters the inside of the housing 2 through the one surface 3 and is measured by the light receiving elements 5a to 5h.

受光素子5a〜5hは、フォトトランジスタ、フォトダイオード、光導電素子等の受光素子であればいずれも使用することができるが、本実施形態ではフォトトランジスタを使用することが好ましい。受光素子5a〜5hのパッケージの径は0.5〜2mmが好ましく、0.8〜1.2mmがより好ましく、最適は約1mmである。受光素子の場合も、入射光量が最も良く使われる数十マイクロワットから数百マイクロワットのときに、受光効率最もよくなるのが数百ミクロン角の大きさであるからである。   As the light receiving elements 5a to 5h, any light receiving element such as a phototransistor, a photodiode, or a photoconductive element can be used. In the present embodiment, it is preferable to use a phototransistor. The diameter of the package of the light receiving elements 5a to 5h is preferably 0.5 to 2 mm, more preferably 0.8 to 1.2 mm, and most preferably about 1 mm. This is because, in the case of the light receiving element, when the incident light amount is from several tens of microwatts to several hundreds of microwatts, which is most often used, the light receiving efficiency becomes the best at a size of several hundred micron squares.

図1及び図2に示した第1実施形態に係る生体情報計測装置100では、発光素子を1個、受光素子を8個とし、発光素子6を囲んで受光素子5a〜5hを配列する形態を示したが、本発明はこの配置に限定されない。例えば、図2において、発光素子を2個以上並べ、その周囲に複数の受光素子を配列しても良い。受光素子を複数個設けることで、1個の受光素子のみならず、他の受光素子でも散乱光4を検知することができる。或いは図2では、発光素子6を中心として、受光素子5a〜5hを正方形の辺上及び角に均等間隔で配置させた例を示したが、発光素子6を中心として、受光素子5a〜5hを同心円周上に所定間隔、好ましくは均等間隔で配置させても良い。このとき発光素子6と各受光素子5a〜5hとの間隔が一定となり、各受光素子5a〜5hから発光素子6への影響を同一条件とすることができる。或いは図3に示すように発光素子6と受光素子5とでペア7を作り、ペア7を複数並べることで、隣接する素子が互いに発光と受光とを交互に接するように配置しても良い。図3は、発光素子と受光素子の他の配置例を示す概略図である。発光素子に隣接する受光素子は、全て等価な位置にあるため、見掛けの受光面積が拡大したことと等しい効果を得ることができる。なお図3では、発光素子と受光素子以外の構成は不図示とした。   The biological information measuring apparatus 100 according to the first embodiment shown in FIG. 1 and FIG. 2 has a configuration in which one light emitting element and eight light receiving elements are arranged, and the light receiving elements 5 a to 5 h are arranged surrounding the light emitting element 6. Although shown, the present invention is not limited to this arrangement. For example, in FIG. 2, two or more light emitting elements may be arranged, and a plurality of light receiving elements may be arranged around the light emitting elements. By providing a plurality of light receiving elements, the scattered light 4 can be detected not only by one light receiving element but also by other light receiving elements. Alternatively, FIG. 2 shows an example in which the light receiving elements 5a to 5h are arranged on the sides and corners of the square at regular intervals with the light emitting element 6 as the center, but the light receiving elements 5a to 5h are centered on the light emitting element 6. You may arrange | position with a predetermined space | interval on a concentric periphery, Preferably it is arrange | positioned at equal intervals. At this time, the distance between the light emitting element 6 and each of the light receiving elements 5a to 5h becomes constant, and the influence of the light receiving elements 5a to 5h on the light emitting element 6 can be made the same condition. Alternatively, as shown in FIG. 3, a pair 7 may be formed by the light emitting element 6 and the light receiving element 5, and a plurality of pairs 7 may be arranged so that adjacent elements are in contact with each other alternately for light emission and light reception. FIG. 3 is a schematic diagram illustrating another arrangement example of the light emitting element and the light receiving element. Since the light receiving elements adjacent to the light emitting elements are all at equivalent positions, the same effect as that of the apparent light receiving area can be obtained. In FIG. 3, the configuration other than the light emitting element and the light receiving element is not shown.

また、本発明では、発光素子の個数は1個以上、受光素子の個数は2個以上とし、この関係を満たす範囲内で適宜発光素子と受光素子の個数を増減しても良い。例えば、(1)図2で示したように発光素子を1個、受光素子を複数個の場合、(2)図3で示したように発光素子を複数個、受光素子を複数個、且つ、発光素子と受光素子が同数個の場合、(3)発光素子を複数個、受光素子を複数個、且つ、発光素子が受光素子よりも多い場合、(4)発光素子を複数個、受光素子を複数個、且つ、発光素子が受光素子よりも少ない場合、のいずれであっても良い。   In the present invention, the number of light emitting elements is one or more and the number of light receiving elements is two or more, and the number of light emitting elements and light receiving elements may be appropriately increased or decreased within a range satisfying this relationship. For example, (1) in the case where there is one light emitting element and a plurality of light receiving elements as shown in FIG. 2, (2) a plurality of light emitting elements, a plurality of light receiving elements as shown in FIG. When there are the same number of light emitting elements and light receiving elements, (3) when there are a plurality of light emitting elements, a plurality of light receiving elements, and there are more light emitting elements than the light receiving elements, (4) a plurality of light emitting elements, Any of a plurality of light-emitting elements and a case where there are fewer light-emitting elements than light-receiving elements may be used.

発光素子と受光素子の中心間距離は、1〜5mmとすることが好ましく、1.55〜1.95mmとすることがより好ましい。最適は約1.75mmである。   The center-to-center distance between the light emitting element and the light receiving element is preferably 1 to 5 mm, and more preferably 1.55 to 1.95 mm. The optimum is about 1.75 mm.

ここで、図4に示すように、筐体2の内部に、発光素子6と受光素子5との分離壁8を設けることが好ましい。図4は、図2に示した生体情報計測装置100に分離壁を設けた一形態を示す概略平面図である。分離壁は、遮光性材料で形成されていることが好ましく、壁面を起毛させて分離壁での散乱をさらに低下させても良い。分離壁を設けることで、迷光が減り、受光素子が受光する光のうち生体での散乱光の割合を高めることができる。   Here, as shown in FIG. 4, it is preferable to provide a separation wall 8 between the light emitting element 6 and the light receiving element 5 inside the housing 2. FIG. 4 is a schematic plan view showing an embodiment in which a separation wall is provided in the biological information measuring apparatus 100 shown in FIG. The separation wall is preferably formed of a light-shielding material, and the scattering on the separation wall may be further reduced by raising the wall surface. By providing the separation wall, stray light can be reduced, and the proportion of scattered light in the living body out of the light received by the light receiving element can be increased.

図2或いは図3の実施形態では、発光素子同士を並列に接続する場合が含まれる。図5に本実施形態に係る生体情報計測装置における発光素子の第1接続形態の回路図を示した。図5中、9は回路電源、10は定電流源である。この場合、各発光素子は同時に発光する。ただし、本実施形態では各発光素子の発光強度は同じ強度で発光させる場合のみならず、相互に異なる強度で発光させる場合を含む。或いは、発光素子を2個以上配置し、さらに、発光素子を単独で発光させるか或いは発光素子のうち選択した発光素子のみを発光させる発光切替手段を設けても良い。図6に本実施形態に係る生体情報計測装置における発光素子の第2接続形態の回路図を示した。図6の回路では、発光素子6を4個配置し、スイッチ11を設けることで、各発光素子に対応するスイッチで構成される発光切替手段12により、発光素子を単独で発光させるか或いは発光素子のうち選択した発光素子のみを発光させることが可能である。発光素子の点灯を切り換えることで、脈波が最大となる位置の発光素子を選ぶことが可能となる。また、受光素子の消費電流と比べ、発光素子の消費電流は一般的に数桁多いため、最適な発光素子を選ぶことで省電力に資することができる。   The embodiment of FIG. 2 or FIG. 3 includes a case where the light emitting elements are connected in parallel. The circuit diagram of the 1st connection form of the light emitting element in the biological information measuring device which concerns on FIG. 5 at this embodiment was shown. In FIG. 5, 9 is a circuit power source and 10 is a constant current source. In this case, each light emitting element emits light simultaneously. However, in this embodiment, the light emission intensity of each light emitting element includes not only the case where light is emitted with the same intensity but also the case where light is emitted with mutually different intensity. Alternatively, two or more light emitting elements may be arranged, and a light emission switching unit that causes the light emitting element to emit light alone or emits light from only the light emitting element selected among the light emitting elements may be provided. The circuit diagram of the 2nd connection form of the light emitting element in the biological information measuring device which concerns on FIG. 6 at this embodiment was shown. In the circuit of FIG. 6, four light emitting elements 6 are arranged, and a switch 11 is provided so that the light emitting element is made to emit light alone by the light emission switching means 12 configured by switches corresponding to the respective light emitting elements. Only the selected light emitting element can be made to emit light. By switching the lighting of the light emitting element, it becomes possible to select the light emitting element at the position where the pulse wave becomes maximum. Further, since the current consumption of the light emitting element is generally several orders of magnitude higher than the current consumption of the light receiving element, it is possible to contribute to power saving by selecting an optimum light emitting element.

図2或いは図3の実施形態では、受光素子同士を並列に接続する場合が含まれる。図7に本実施形態に係る生体情報計測装置における受光素子の第1接続形態の回路図を示した。図7において、受光素子5は並列に接続されている。ここでは抵抗13で電流−電圧変換を実施し、電圧信号として脈波を抽出する。この場合、各受光素子は同時に散乱光4を検知する。また、本実施形態では各受光素子の出力値はそれぞれ独立に配線して第1計測値処理手段へ入力される場合と各受光素子の出力値を1つにまとめるように並列配線して第1計測値処理手段へ入力される場合のいずれの場合も含まれる。   The embodiment of FIG. 2 or 3 includes a case where the light receiving elements are connected in parallel. FIG. 7 shows a circuit diagram of a first connection form of the light receiving elements in the biological information measuring apparatus according to the present embodiment. In FIG. 7, the light receiving elements 5 are connected in parallel. Here, current-voltage conversion is performed by the resistor 13, and a pulse wave is extracted as a voltage signal. In this case, each light receiving element detects the scattered light 4 simultaneously. In the present embodiment, the output values of the respective light receiving elements are individually wired and input to the first measurement value processing means, and the output values of the respective light receiving elements are wired in parallel so as to be integrated into the first. Any case of inputting to the measured value processing means is included.

生体情報計測装置100において、発光素子6及び受光素子5a〜5hは、同一平面上に配置したが、図8(a)(b)(c)に示すように発光素子及び受光素子を同一放物面上、同一球面上若しくは同一双曲面上に配置しても良い。図8は、発光素子と受光素子の配置例を示す概略断面図であり、(a)は同一放物面上に配置した場合、(b)は同一球面上に配置した場合、(c)は同一双曲面上に配置した場合を示す。同一放物面上、同一球面上若しくは同一双曲面上に発光素子及び受光素子を配置することで、図8に示すように、発光素子の発光面の法線と受光素子の受光面の法線とを交差させることができ、散乱光の検知効率を上げることができる。これによって、受光素子が受光する光のうち生体での散乱光の割合を高めることができる。なお、発光素子の発光面や受光素子の受光面にレンズを配置し、出射光や散乱光を集束させても良い。   In the biological information measuring apparatus 100, the light emitting element 6 and the light receiving elements 5a to 5h are arranged on the same plane, but the light emitting element and the light receiving element are the same paraboloid as shown in FIGS. You may arrange | position on a surface, the same spherical surface, or the same hyperboloid. FIG. 8 is a schematic cross-sectional view showing an arrangement example of a light emitting element and a light receiving element, where (a) is arranged on the same paraboloid, (b) is arranged on the same spherical surface, (c) is The case where it arrange | positions on the same hyperboloid is shown. By arranging the light emitting element and the light receiving element on the same paraboloid, the same spherical surface, or the same hyperboloid, as shown in FIG. 8, the normal line of the light emitting surface of the light emitting element and the normal line of the light receiving surface of the light receiving element are obtained. And the detection efficiency of scattered light can be increased. Thereby, the ratio of the scattered light in the living body among the light received by the light receiving element can be increased. Note that a lens may be disposed on the light emitting surface of the light emitting element or the light receiving surface of the light receiving element to focus the emitted light or scattered light.

第1計測値処理手段(不図示)は、各受光素子5a〜5hが計測した各受光信号のうち、体動ノイズが最も少ない受光信号を選択する処理を行なう。脈波が最大となる脈波情報を含む受光信号を選択しても良いし、バックグラウンドが最も低い脈波情報を含む受光信号を選択しても良い。或いは、各受光信号を比較して、平均的な脈波情報を含む受光信号を選択しても良い。さらに、測定中の経過時間に対して常に同一受光素子からの受光信号を選択しても良いが、時間経過に伴い、その都度、体動ノイズが最も少ない受光信号を選択していくことが好ましい。   The first measurement value processing means (not shown) performs a process of selecting a light reception signal with the least body movement noise among the light reception signals measured by the light reception elements 5a to 5h. A light reception signal including pulse wave information with a maximum pulse wave may be selected, or a light reception signal including pulse wave information with the lowest background may be selected. Alternatively, each received light signal may be compared to select a received light signal including average pulse wave information. Furthermore, the light reception signal from the same light receiving element may always be selected with respect to the elapsed time during measurement, but it is preferable to select the light reception signal with the least body movement noise each time as time elapses. .

図9は、生体情報計測装置100の具体的な固定方法の一例を示す概略図である。図9に示した生体情報計測装置100は、U字型アーム17の一端側に固定されている。U字型アーム17の他端側には、生体情報計測装置100の一の面3と対向関係を有するようにカフ16が固定されている。耳珠15は、カフ16と一の面3とによって挟まれている。このとき、生体情報計測装置100とカフ16とは分離しながらもカフの膨張により耳珠15を締め付けできる。すなわち、カフ16の内部に空気が供給されて、カフ16が膨張すると、耳珠15は一の面3に押圧される。これにより、耳珠15の脈波の測定を行なうことが可能となる。   FIG. 9 is a schematic diagram illustrating an example of a specific fixing method of the biological information measuring apparatus 100. The biological information measuring apparatus 100 shown in FIG. 9 is fixed to one end side of the U-shaped arm 17. A cuff 16 is fixed to the other end side of the U-shaped arm 17 so as to face the one surface 3 of the biological information measuring device 100. The tragus 15 is sandwiched between the cuff 16 and the one surface 3. At this time, the tragus 15 can be tightened by the expansion of the cuff while the biological information measuring device 100 and the cuff 16 are separated. That is, when air is supplied to the inside of the cuff 16 and the cuff 16 expands, the tragus 15 is pressed against the one surface 3. Thereby, the pulse wave of the tragus 15 can be measured.

本実施形態に係る生体情報計測装置において、他形態として、生体情報計測装置とカフとを一体としても良い。図10は、生体情報計測装置200の具体的な固定方法の一例を示す概略図である。図10に示した生体情報計測装置200は、U字型アーム17の一端側に固定されている。生体情報計測装置200は、一の面を密閉するように覆って、一の面を押圧面19とする、透光性を有する伸縮部材20と、筺体2の内部へ加圧空気を供給する空気供給パイプ18を備えている。透光性を有する伸縮部材20は、剛性の低いプラスチック樹脂シートにより形成されていることが好ましい。また空気供給パイプ18は不図示の空気圧縮機につながっている。筐体2に伸縮部材20と空気供給パイプとを組み込むことで、生体情報計測装置200はカフとしても機能することができる。耳珠15は、生体情報計測装置200とU字型アーム17の他端側とによって挟まれている。このとき、生体情報計測装置200はカフと一体となっており、伸縮部材20の膨張により耳珠15を締め付けできる。すなわち、筐体2の内部に空気供給パイプ18から空気が供給されて、伸縮部材20が膨張すると、耳珠15は押圧面19で押圧される。これにより、耳珠15の脈波の測定を行なうことが可能となる。
(第2実施形態)
In the biological information measuring apparatus according to this embodiment, as another form, the biological information measuring apparatus and the cuff may be integrated. FIG. 10 is a schematic diagram illustrating an example of a specific fixing method of the biological information measuring apparatus 200. The biological information measuring apparatus 200 shown in FIG. 10 is fixed to one end side of the U-shaped arm 17. The biological information measuring apparatus 200 covers one surface so as to be sealed, and uses the one surface as a pressing surface 19, and a translucent elastic member 20 having air permeability, and air supplying pressurized air to the inside of the housing 2. A supply pipe 18 is provided. The translucent member 20 having translucency is preferably formed of a plastic resin sheet having low rigidity. The air supply pipe 18 is connected to an air compressor (not shown). By incorporating the expandable member 20 and the air supply pipe into the housing 2, the biological information measuring device 200 can also function as a cuff. The tragus 15 is sandwiched between the biological information measuring device 200 and the other end of the U-shaped arm 17. At this time, the biological information measuring device 200 is integrated with the cuff, and the tragus 15 can be tightened by the expansion of the elastic member 20. That is, when air is supplied from the air supply pipe 18 to the inside of the housing 2 and the elastic member 20 expands, the tragus 15 is pressed by the pressing surface 19. Thereby, the pulse wave of the tragus 15 can be measured.
(Second Embodiment)

次に第2実施形態に係る生体情報計測装置について説明する。第2実施形態に係る生体情報計測装置は、第1実施形態に係る生体情報計測装置と比較して、計測値処理手段のみが異なるため、計測値処理手段のみを説明し、他の説明は省略する。第2実施形態に係る生体情報計測装置の第2計測値処理手段は、各受光素子が計測した各受光信号を組み合わせ処理して、体動ノイズを低減した受光信号を得る。   Next, a biological information measuring apparatus according to the second embodiment will be described. Since the biological information measuring device according to the second embodiment is different from the biological information measuring device according to the first embodiment only in the measured value processing means, only the measured value processing means will be described, and the other description will be omitted. To do. The second measured value processing means of the biological information measuring apparatus according to the second embodiment performs a combined process on the respective received light signals measured by the respective light receiving elements to obtain a received light signal with reduced body movement noise.

第2計測値処理手段が行なう組み合わせ処理には、例えば3つの処理方法がある。第1の組み合わせ処置は、各受光信号を平均するか或いは各受光信号のうち2以上の受光信号を選択したのち平均する。例えば、図2の受光素子5a〜5hの全て(8個)の受光信号を第2計測値処理手段に入力し、第2計測値処理手段は全て(8個)の受光信号を平均する。或いは、例えば、図2において、第2計測値処理手段は、受光素子5a〜5hのうち、任意の受光信号を選択し、さらに選択された受光信号を平均する。ここで、任意の受光信号を選択する際に、バックグラウンドの高いものやノイズの高いものを排除することで残りの受光信号を選択することが好ましい。各受光信号を平均化することで、ノイズを低減させることができる。   For example, there are three processing methods in the combination processing performed by the second measurement value processing means. In the first combination treatment, each received light signal is averaged or two or more received light signals are selected from each received light signal and then averaged. For example, all (eight) light reception signals of the light receiving elements 5a to 5h in FIG. 2 are input to the second measurement value processing unit, and the second measurement value processing unit averages all (eight) light reception signals. Alternatively, for example, in FIG. 2, the second measurement value processing unit selects an arbitrary received light signal from the light receiving elements 5 a to 5 h and further averages the selected received light signals. Here, when selecting an arbitrary light reception signal, it is preferable to select the remaining light reception signals by eliminating signals with high background or noise. By averaging each received light signal, noise can be reduced.

第2の組み合わせ処置は、各受光信号を加重平均するか或いは各受光信号のうち2以上の受光信号を選択したのち加重平均する。例えば、図2の受光素子5a〜5hの全て(8個)の受光信号を第2計測値処理手段に入力し、第2計測値処理手段は全て(8個)の受光信号のうち、ノイズの少ない受光信号を重視し、一方ノイズの多い受光信号を軽視して、加重平均する。或いは、例えば、図2の受光素子5a〜5hのうち、任意の受光信号を選択して、第2計測値処理手段に入力し、第2計測値処理手段は、選択された受光信号のうち、ノイズの少ない受光信号を重視し、一方ノイズの多い受光信号を軽視して、加重平均することとしても良い。ここで、任意の受光信号を選択する際に、バックグラウンドの高いものやノイズの高いものを排除することが好ましい。各受光信号を加重平均化することで、ノイズをより低減させることができる。   In the second combination treatment, each received light signal is weighted average, or two or more received light signals are selected from each received light signal and then weighted average is performed. For example, all (eight) light reception signals of the light receiving elements 5a to 5h in FIG. 2 are input to the second measurement value processing means, and the second measurement value processing means outputs noise (of eight) of the light reception signals. Emphasize less received light signals, while neglecting noisy received signals and weighted average. Alternatively, for example, an arbitrary received light signal is selected from the light receiving elements 5a to 5h in FIG. 2 and input to the second measured value processing unit, and the second measured value processing unit includes the selected received light signal, The light receiving signal with less noise may be emphasized, while the light receiving signal with much noise may be ignored and the weighted average may be performed. Here, when selecting an arbitrary received light signal, it is preferable to exclude signals with high background or noise. Noise can be further reduced by weighted averaging of each received light signal.

第3の組み合わせ処置は、各受光信号を差分する。例えば、図2の受光素子5a〜5hのうち、生体情報とノイズを含んでいる第1受光信号と、主としてノイズを含んでいる第2受光信号を選択し、第1受光信号から第2受光信号の差分を求めることで、ノイズを低減することができる。ノイズが単一要因による場合には、差分を求めることによりノイズを低減することができる。また、ノイズが複数の要因による場合は、ノイズの種類ごとに分類して、差分を求めることによりノイズを低減してもよい。   In the third combination treatment, each received light signal is subtracted. For example, among the light receiving elements 5a to 5h in FIG. 2, the first light receiving signal including biological information and noise and the second light receiving signal mainly including noise are selected, and the second light receiving signal is selected from the first light receiving signal. The noise can be reduced by obtaining the difference between the two. When the noise is due to a single factor, the noise can be reduced by obtaining the difference. Further, when the noise is caused by a plurality of factors, the noise may be reduced by classifying each type of noise and obtaining a difference.

なお、生体情報とノイズを含んでいる各受光信号の平均を求め、主としてノイズを含んでいる各受光信号の平均を求めた後、これらの差分を求め、ノイズを低減しても良い。   In addition, after calculating | requiring the average of each light reception signal containing biological information and noise, and calculating | requiring the average of each light reception signal mainly containing noise, these differences may be calculated | required and noise may be reduced.

第1実施形態の場合と同様に第2実施形態においても、測定中の経過時間に対して常に同一受光素子からの受光信号を利用しても良いが、時間経過に伴い、その都度、体動ノイズが最も少ない受光信号を利用していくことが望ましい。
(第3実施形態)
Similarly to the case of the first embodiment, in the second embodiment, the received light signal from the same light receiving element may always be used for the elapsed time during measurement. It is desirable to use a light receiving signal with the least noise.
(Third embodiment)

次に第3実施形態に係る生体情報計測装置について説明する。第3実施形態に係る生体情報計測装置は、第1実施形態に係る生体情報計測装置と比較して、計測値処理手段のみが異なるため、計測値処理手段のみを説明し、他の説明は省略する。第3実施形態に係る生体情報計測装置の第3計測値処理手段は、各受光素子が計測した各受光信号のうち、波形の交流成分と直流成分とからなる評価関数値が最大となる受光信号を選択する。   Next, a biological information measuring apparatus according to the third embodiment will be described. Since the biological information measuring apparatus according to the third embodiment is different from the biological information measuring apparatus according to the first embodiment only in the measured value processing means, only the measured value processing means will be described, and other description will be omitted. To do. The third measurement value processing means of the biological information measuring apparatus according to the third embodiment includes a light reception signal that maximizes an evaluation function value composed of an alternating current component and a direct current component of the waveform among the respective light reception signals measured by the respective light receiving elements. Select.

第3計測値処理手段が受光信号を選択するに際して使用する評価関数は、例えば3つの評価関数がある。第1の評価関数は、受光信号の波形の交流成分とするものである。図11は、受光信号強度と経過時間との関係を示すグラフである。波形30は、受光信号を脈波情報として得た脈波波形である。ここで、脈波波形30は、図11で示すように交流成分28と直流成分29とからなる。脈波波形30の交流成分28は、脈波情報等の生体情報を含んでおり、一方、脈波波形30の直流成分29は、ノイズ、迷光の情報を含んでいる。そして、2個以上の受光素子を設けることにより、カフの形状が大きく変化して反射光の方向と反射光の量がさまざまに変化したとしても、各受光素子のうちいずれかは、この変化が少ない受光信号を計測するものがある。したがって、各受光素子が計測した各受光信号のうち、波形の交流成分が最大となる受光信号を選択して精度の高い脈波情報を得ることができる。   There are, for example, three evaluation functions as the evaluation function used when the third measurement value processing means selects the received light signal. The first evaluation function is an AC component of the waveform of the received light signal. FIG. 11 is a graph showing the relationship between the received light signal intensity and the elapsed time. A waveform 30 is a pulse wave waveform obtained from the received light signal as pulse wave information. Here, the pulse wave waveform 30 includes an AC component 28 and a DC component 29 as shown in FIG. The AC component 28 of the pulse wave waveform 30 includes biological information such as pulse wave information, while the DC component 29 of the pulse wave waveform 30 includes noise and stray light information. Even if two or more light receiving elements are provided so that the shape of the cuff changes greatly and the direction of reflected light and the amount of reflected light change variously, any one of the light receiving elements does not change this. Some measure a small number of received light signals. Therefore, it is possible to obtain highly accurate pulse wave information by selecting a received light signal that maximizes the AC component of the waveform from among the received light signals measured by the respective light receiving elements.

第2の評価関数は、評価関数を(交流成分/直流成分)とするものである。生体情報を含んでいる交流成分が、ノイズ、迷光の情報を含んでいる直流成分と比して大きい受光信号から、精度の高い脈波情報を得ることができる。そして、2個以上の受光素子を設けることにより、カフの形状が大きく変化して反射光の方向と反射光の量がさまざまに変化したとしても、各受光素子のうちいずれかは、この変化が少ない受光信号を計測するものがある。したがって、各受光素子が計測した各受光信号のうち、(交流成分/直流成分)が最大となる受光信号を選択して精度の高い脈波情報を得ることができる。   The second evaluation function uses the evaluation function as (AC component / DC component). High-accuracy pulse wave information can be obtained from a light reception signal in which an AC component including biological information is larger than a DC component including noise and stray light information. Even if two or more light receiving elements are provided so that the shape of the cuff changes greatly and the direction of reflected light and the amount of reflected light change variously, any one of the light receiving elements does not change this. Some measure a small number of received light signals. Therefore, it is possible to obtain highly accurate pulse wave information by selecting the light receiving signal having the maximum (AC component / DC component) from the light receiving signals measured by the light receiving elements.

第3の評価関数は、評価関数を(交流成分のうち特定周波数範囲の成分/直流成分)とするものである。図12に、受光信号強度と交流成分の周波数との関係の概念図を示す。交流成分は、脈波情報等の生体情報を多く含んでいるもののノイズも含んでいる。このうち、生体情報由来の交流成分33は、例えば0.1〜10Hzに含まれる。一方、ノイズの交流成分34は、0.1Hz以下の低周波側で多く、10Hzを超える高周波側にも含まれている。そこで、特定周波数範囲32の交流成分、例えば0.5〜10Hzの周波数範囲ではノイズの交流成分に対して生体情報関連の交流成分が多いので、評価関数を(交流成分のうち特定周波数範囲の成分/直流成分)とする。0.3〜6Hzの周波数範囲、さらに0.5〜4Hzの周波数範囲としても良い。そして2個以上の受光素子を設けることにより、カフの形状が大きく変化して反射光の方向と反射光の量がさまざまに変化したとしても、各受光素子のうちいずれかは、この変化が少ない受光信号を計測するものがある。したがって、各受光素子が計測した各受光信号のうち、(交流成分のうち特定周波数範囲の成分/直流成分)が最大となる受光信号を選択して精度の高い脈波情報を得ることができる。   The third evaluation function uses the evaluation function as (the component of the specific frequency range / DC component of the AC component). FIG. 12 shows a conceptual diagram of the relationship between the received light signal intensity and the frequency of the AC component. The AC component contains a lot of biological information such as pulse wave information, but also includes noise. Among these, the AC component 33 derived from biological information is included in, for example, 0.1 to 10 Hz. On the other hand, the AC component 34 of noise is mostly on the low frequency side of 0.1 Hz or less, and is also included on the high frequency side exceeding 10 Hz. Therefore, since there are many biological information-related alternating current components relative to noise alternating current components in the alternating frequency component of the specific frequency range 32, for example, in the frequency range of 0.5 to 10 Hz, the evaluation function (the specific frequency range component of the alternating current component) / DC component). It is good also as a frequency range of 0.3-6 Hz and also a frequency range of 0.5-4 Hz. By providing two or more light receiving elements, even if the shape of the cuff changes greatly and the direction of reflected light and the amount of reflected light change variously, any of the light receiving elements has little change. Some measure light reception signals. Accordingly, it is possible to obtain pulse wave information with high accuracy by selecting a light reception signal having a maximum (a component in a specific frequency range / DC component among AC components) from among the respective light reception signals measured by each light receiving element.

第1実施形態の場合と同様に第3実施形態においても、測定中の経過時間に対して常に同一受光素子からの受光信号を選択しても良いが、時間経過に伴い、その都度、体動ノイズが最も少ない受光信号を選択していくことが好ましい。   As in the case of the first embodiment, in the third embodiment, a light reception signal from the same light receiving element may always be selected with respect to the elapsed time during measurement. It is preferable to select a light receiving signal with the least noise.

本発明に係る生体情報計測装置は、健康や美容のための血圧測定、脈波測定、血流測定に利用することができる。また、細動脈の拍動を検出するのに適しており、透過式を用いることができない場所にも適用できる。   The biological information measuring apparatus according to the present invention can be used for blood pressure measurement, pulse wave measurement, and blood flow measurement for health and beauty. Moreover, it is suitable for detecting the pulsation of an arteriole and can be applied to a place where the transmission type cannot be used.

第1実施形態に係る生体情報計測装置の概略断面図である。It is a schematic sectional drawing of the biological information measuring device which concerns on 1st Embodiment. 第1実施形態に係る生体情報計測装置の筐体外部から一の面の方向を見たときの概略平面図である。It is a schematic plan view when the direction of one surface is seen from the outside of the housing of the biological information measuring device according to the first embodiment. 発光素子と受光素子の他の配置例を示す概略図である。It is the schematic which shows the other example of arrangement | positioning of a light emitting element and a light receiving element. 生体情報計測装置100に分離壁を設けた一形態を示す概略平面図である。It is a schematic plan view which shows one form which provided the separation wall in the biological information measuring device. 本実施形態に係る生体情報計測装置における発光素子の第1接続形態の回路図である。It is a circuit diagram of the 1st connection form of the light emitting element in the living body information measuring device concerning this embodiment. 本実施形態に係る生体情報計測装置における発光素子の第2接続形態の回路図である。It is a circuit diagram of the 2nd connection form of the light emitting element in the living body information measuring device concerning this embodiment. 本実施形態に係る生体情報計測装置における受光素子の第1接続形態の回路図である。It is a circuit diagram of the 1st connection form of the light receiving element in the living body information measuring device concerning this embodiment. 本実施形態に係る生体情報計測装置における発光素子と受光素子の配置例を示す概略断面図であり、(a)は同一放物面上に配置した場合、(b)は同一球面上に配置した場合、(c)は同一双曲面上に配置した場合を示す。It is a schematic sectional drawing which shows the example of arrangement | positioning of the light emitting element and light receiving element in the biological information measuring device which concerns on this embodiment, When (a) arrange | positions on the same paraboloid, (b) has arrange | positioned on the same spherical surface In the case, (c) shows a case where they are arranged on the same hyperboloid. 生体情報計測装置100の具体的な固定方法の一例を示す概略図である。It is the schematic which shows an example of the concrete fixing method of the biometric information measuring device 100. FIG. 生体情報計測装置200の具体的な固定方法の一例を示す概略図である。It is the schematic which shows an example of the concrete fixing method of the biological information measuring device 200. FIG. 受光信号強度と経過時間との関係を示すグラフである。It is a graph which shows the relationship between received light signal intensity and elapsed time. 受光信号強度と交流成分の周波数との関係の概念図である。It is a conceptual diagram of the relationship between a received signal strength and the frequency of an alternating current component.

符号の説明Explanation of symbols

1,生体
2,筺体
3,一の面
4,散乱光
5,5a〜5h,受光素子
6,発光素子
7,ペア
8,分離壁
9,回路電源
10,定電流源
11,スイッチ
12,発光切替手段
13,抵抗
15,耳珠
16,カフ
17,U字型アーム
18,空気供給パイプ
19,押圧面
20,伸縮部材
25,出射光
28,交流成分
29,直流成分
30,脈波波形
32,特定周波数範囲
33,生体情報由来の交流成分
34,ノイズの交流成分
100,200 生体情報計測装置
1, living body 2, housing 3, one surface 4, scattered light 5, 5a-5h, light receiving element 6, light emitting element 7, pair 8, separation wall 9, circuit power supply 10, constant current source 11, switch 12, light emission switching Means 13, resistor 15, tragus 16, cuff 17, U-shaped arm 18, air supply pipe 19, pressing surface 20, telescopic member 25, outgoing light 28, AC component 29, DC component 30, pulse waveform 32, specific Frequency range 33, AC component 34 derived from biological information, AC component 100, 200 of noise Biometric information measuring device

Claims (9)

一の面が透光性を有する筺体と、
該筺体の内部に配置され、前記一の面を通して前記筺体の外部へ出射光を発光する少なくとも1個の発光素子と、
前記筐体の内部に配置され、前記一の面を通して前記出射光が前記筺体の外部で散乱した散乱光を受光する2個以上の受光素子と、
前記各受光素子が計測した各受光信号のうち、波形の交流成分と直流成分とからなる評価関数値が最大となる受光信号を選択する第3計測値処理手段と、
を備えることを特徴とする生体情報計測装置。
A housing whose one surface is translucent,
At least one light emitting element disposed inside the housing and emitting emitted light to the outside of the housing through the one surface;
Two or more light receiving elements that are disposed inside the housing and receive scattered light scattered by the emitted light outside the housing through the one surface;
A third measured value processing means for selecting a received light signal having a maximum evaluation function value composed of an alternating current component and a direct current component of the waveform among the received light signals measured by the light receiving elements;
A biological information measuring device comprising:
前記第3計測値処理手段は、評価関数を前記交流成分とし、前記各受光信号のうち、前記交流成分が最大の値を有する受光信号を選択することを特徴とする請求項1記載の生体情報計測装置。 2. The biological information according to claim 1, wherein the third measurement value processing means uses the evaluation function as the alternating current component, and selects the received light signal having the maximum value of the alternating current component among the received light signals. Measuring device. 前記第3計測値処理手段は、評価関数を(前記交流成分/前記直流成分)とし、前記各受光信号のうち、(前記交流成分/前記直流成分)が最大の値を有する受光信号を選択することを特徴とする請求項1記載の生体情報計測装置。 The third measured value processing means selects the received light signal having the maximum value (the alternating current component / the direct current component) among the received light signals, with the evaluation function being (the alternating current component / the direct current component). The living body information measuring device according to claim 1 characterized by things. 前記第3計測値処理手段は、評価関数を(前記交流成分のうち特定周波数範囲の成分/前記直流成分)とし、前記各受光信号のうち、(前記交流成分のうち特定周波数範囲の成分/前記直流成分)が最大の値を有する受光信号を選択することを特徴とする請求項1記載の生体情報計測装置。 The third measurement value processing means has an evaluation function (a component of a specific frequency range among the AC components / DC component), and among the received light signals, (a component of a specific frequency range among the AC components / the component described above). 2. The biological information measuring device according to claim 1 , wherein a light reception signal having a maximum value of a direct current component) is selected. 前記筐体の内部に、前記発光素子と前記受光素子との分離壁を設けたことを特徴とする請求項1、2、3又は4記載の生体情報計測装置。 5. The biological information measuring apparatus according to claim 1 , wherein a separation wall between the light emitting element and the light receiving element is provided inside the casing. 前記発光素子及び前記受光素子を同一放物面上、同一球面上若しくは同一双曲面上に配置することを特徴とする請求項1、2、3、4又は5記載の生体情報計測装置。 6. The biological information measuring apparatus according to claim 1, wherein the light emitting element and the light receiving element are arranged on the same paraboloid, the same spherical surface, or the same hyperboloid. 前記各受光素子が前記発光素子を中心として同一円周上に所定間隔で配置された構造を有することを特徴とする請求項1、2、3、4、5又は6記載の生体情報計測装置。 7. The biological information measuring device according to claim 1, wherein each of the light receiving elements has a structure arranged at a predetermined interval on the same circumference with the light emitting element as a center. 前記発光素子を2個以上配置し、該発光素子のうち選択した発光素子を発光させる発光切替手段を設けたことを特徴とする請求項1、2、3、4、5、6又は7記載の生体情報計測装置。 Wherein placing the light emitting element 2 or more, according to claim 1,2,3,4,5,6 or 7 wherein the provision of the emission switching means for the light emitting element selected among the light emitting element Biological information measuring device. 前記一の面を密閉するように覆って、該一の面を押圧面とする、透光性を有する伸縮部材と、
前記筺体の内部へ加圧空気を供給する空気供給パイプと、
を設けたことを特徴とする請求項1、2、3、4、5、6、7又は8記載の生体情報計測装置。
Covering the one surface so as to be sealed, and using the one surface as a pressing surface, a translucent member having translucency,
An air supply pipe for supplying pressurized air to the inside of the housing;
9. The biological information measuring device according to claim 1, 2, 3, 4, 5, 6, 7 or 8 .
JP2008298270A 2008-11-21 2008-11-21 Biological information measuring device Active JP4393571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298270A JP4393571B2 (en) 2008-11-21 2008-11-21 Biological information measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298270A JP4393571B2 (en) 2008-11-21 2008-11-21 Biological information measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004293166A Division JP2006102159A (en) 2004-10-06 2004-10-06 Biological information measuring apparatus

Publications (2)

Publication Number Publication Date
JP2009039568A JP2009039568A (en) 2009-02-26
JP4393571B2 true JP4393571B2 (en) 2010-01-06

Family

ID=40440927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298270A Active JP4393571B2 (en) 2008-11-21 2008-11-21 Biological information measuring device

Country Status (1)

Country Link
JP (1) JP4393571B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5607383B2 (en) 2009-02-23 2014-10-15 ギガフォトン株式会社 Temperature control device for gas laser equipment
WO2012064326A1 (en) * 2010-11-10 2012-05-18 Elfi-Tech Ltd. Optical measurement of parameters related to motion of light-scattering particles within a fluid by manipulating analog electrical signals
JP5244973B2 (en) * 2010-06-24 2013-07-24 パイオニア株式会社 Photodetector and fluid measuring device
JP5600575B2 (en) * 2010-12-10 2014-10-01 ローム株式会社 Pulse wave sensor
US9113793B2 (en) 2010-12-10 2015-08-25 Rohm Co., Ltd. Pulse wave sensor
JP5897812B2 (en) * 2011-03-31 2016-03-30 パイオニア株式会社 Photodetector and fluid measuring device
JP5455135B1 (en) * 2012-12-24 2014-03-26 卓 山口 Blood sugar level watch device
JP2015039542A (en) * 2013-08-22 2015-03-02 セイコーエプソン株式会社 Pulse wave measurement apparatus
JP6519978B2 (en) * 2014-03-27 2019-05-29 セイコーエプソン株式会社 Biological information detection apparatus and electronic device
JP5929952B2 (en) 2014-03-27 2016-06-08 セイコーエプソン株式会社 Biological information detection apparatus and electronic device
KR102475651B1 (en) 2015-12-30 2022-12-09 엘지이노텍 주식회사 Wearable device and method for operating thereof
JP6399035B2 (en) * 2016-05-02 2018-10-03 セイコーエプソン株式会社 Biological information detection apparatus and electronic device
WO2017199597A1 (en) * 2016-05-20 2017-11-23 ソニー株式会社 Bioinformation processing device, bioinformation processing method, and information processing device
KR102418120B1 (en) * 2017-11-01 2022-07-07 삼성전자 주식회사 Electronic device comprising a plurality of light emitting unit and a plurality of light receiving unit

Also Published As

Publication number Publication date
JP2009039568A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4393571B2 (en) Biological information measuring device
JP2006102159A (en) Biological information measuring apparatus
KR101033472B1 (en) Method and shape of sensor module for photo-plethysmogram measurement without motion artifact
US20060224054A1 (en) Pulse wave detecting device and method therefor
CA2995809C (en) Device for non-invasive measurement of blood sugar levels
JP6431697B2 (en) Wrist-mounted pulse oximeter
WO2016014833A1 (en) Optical heart rate sensor
JP2014068836A (en) Subject information detection unit, electrically-driven toothbrush, and electrically-driven shaver
CN109009011B (en) Non-contact pulse measuring equipment
US20170049344A1 (en) Pulse wave sensor and pulse wave measurement module
JP2011200465A (en) Skin moisture measuring device
JP4393568B2 (en) Pulse wave measuring instrument
KR102638309B1 (en) Wearable device, and method for health monitoring
JP4719713B2 (en) Biological information measuring device
US20210244297A1 (en) Apparatus and method and computer program product for determining a blood pressure measurement
US20170172432A1 (en) Device for Measuring Psychological Signals
JP2007111461A (en) Bio-optical measurement apparatus
JP2006102191A (en) Blood pressure measuring device
JP2019533509A (en) Device and method for physiological parameter detection
JP2006102171A (en) Pulse wave measuring instrument
WO2019181268A1 (en) Biological information measurement device
JP7319298B2 (en) Apparatus, method and computer program for determining blood pressure measurements
KR20110136113A (en) Potable apparatus for measuring bio-signal
CN110269589A (en) Compact energy-efficient physiological parameter sensors system
CN215272724U (en) Intelligent wearable device with blood pressure detection function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Ref document number: 4393571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350