WO2011030880A1 - Inkjet recording ink and ink cartridge - Google Patents

Inkjet recording ink and ink cartridge Download PDF

Info

Publication number
WO2011030880A1
WO2011030880A1 PCT/JP2010/065679 JP2010065679W WO2011030880A1 WO 2011030880 A1 WO2011030880 A1 WO 2011030880A1 JP 2010065679 W JP2010065679 W JP 2010065679W WO 2011030880 A1 WO2011030880 A1 WO 2011030880A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
inkjet recording
ink
recording ink
liquid
Prior art date
Application number
PCT/JP2010/065679
Other languages
French (fr)
Inventor
Minoru Hakiri
Shin Hasegawa
Hiroyuki Fushimi
Mitsuru Naruse
Naoya Morohoshi
Original Assignee
Ricoh Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Company, Ltd. filed Critical Ricoh Company, Ltd.
Priority to CN201080039935.0A priority Critical patent/CN102575118B/en
Priority to US13/391,905 priority patent/US8770735B2/en
Priority to EP10815473.3A priority patent/EP2475727A4/en
Publication of WO2011030880A1 publication Critical patent/WO2011030880A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2107Ink jet for multi-colour printing characterised by the ink properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black

Definitions

  • the present invention relates to an inkjet recording ink attaining high image density, excelling in jetting stability, and excelling in ink liquid storage stability.
  • the inkjet recording method offers ease of full-color printing since it involves a simpler process. And also, the inkjet recording method has the benefit of enabling the production of high-resolution images despite being of simple constitution.
  • dye-based inks are used in which various types of water-soluble dyes are dissolved in water or a mixture of water and an organic solvent.
  • Such dye-based inks have a disadvantage of having poor light resistance, though they are excellent in color tone sharpness.
  • pigment-based inks in which carbon black and various types of organic pigments are dispersed are superior in light resistance compared to dye-based inks, and thus studies on pigment-based inks are being intensively made.
  • pigment-based inks are more likely to cause nozzle clogging compared to dye-based inks.
  • Pigment inks are generally prepared as follows.
  • a coloring material and a dispersant are preliminarily dispersed in an aqueous solvent to prepare a dispersion product. After that, the dispersion product is dispersed to a predetermined degree by a media-type disperser, followed by diluting to a predetermined concentration.
  • Water-based pigment inks usually contain a surfactant and a water-soluble resin to disperse a hydrophobic pigment therein, but the reliability of images obtained using such inks is extremely low.
  • film-formable resin fine particles are added into the inks in aim of improving the quality of images.
  • the problem for example, is that air bubbles may be generated inside the ink tank and/or inkjet head, which could cause degradation in image quality.
  • the problem for example, is that air bubbles may be generated inside the ink tank and/or inkjet head, which could cause degradation in image quality.
  • research has been conducted into the effectiveness of methods that change the surface of a pigment to a hydrophilic group, or, the effectiveness of employing a resin containing a hydrophilic group.
  • a given component may be stable when used alone, combined use of several different components has problematically caused degradation of dispersion stability as well as degradation of storage stability.
  • particles in the dispersion liquid have a diameter equal to or less than 0.1 ⁇ , an aldehyde naphthalene sulfonate dispersant and/or at least one sulfone solvent (PTL 14).
  • PTLs 16 and 17 there is also proposed use of an AB or BAB block copolymer as a pigment dispersant.
  • PTL 18 there is proposed use of a specific pigment, a water-soluble resin and a solvent.
  • a pigment dispersion method which does not use a dispersant
  • examples of such methods include a method of introducing, into carbon black, a substituent containing a water-soluble group (PTL 19); a method of polymerizing a water-soluble monomer or the like on the surface of carbon black (PTL 20); and a method of oxidizing carbon black (PTL 21).
  • a method of attaining water resistance and jetting stability by incorporating, into an ink, an oxidized carbon black and a terpolymer of acrylic acid, styrene and ormethyl styrene (PTL 22).
  • inkjet recording liquid wherein the volume average particle diameter of the dispersion particles in the inkjet recording liquid is in the range of 30 nm to 200 nm (PTL 23).
  • the anionic surfactant preferably has a molecular weight (m) falling within the range of 1,000 ⁇ m ⁇ 30,000 according to the description, the anionic surfactant is considered to be unsatisfactory as far as dispersion stability is concerned.
  • m molecular weight
  • Some pigments that are vulnerable to strong shock during dispersion lack in stability after dispersion, and cause severe problems regarding jetting stability of the formed ink liquid.
  • JP-A Japanese Patent Application Laid-Open
  • PTL19 US Pat. No. 5571311
  • PTL20 JP-A No. 08-81646
  • an inkjet recording ink which contains a pigment dispersion liquid (containing at least a first carbon black and a dispersant), a second carbon black, a penetrant, a wetting agent and water, wherein the first carbon black has an average particle diameter D50 of 70 nm to 180 nm as measured by a dynamic light scattering method and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter, the dispersant is a condensate of naphthalene sulfonic acid and formalin, the second carbon black is carbon black coated with a resin, and the penetrant is a
  • An inkjet recording ink including:
  • a pigment dispersion liquid containing at least a first carbon black and a dispersant a pigment dispersion liquid containing at least a first carbon black and a dispersant
  • the first carbon black has an average particle diameter D50 of 70 nm to 180 nm as measured by a dynamic light scattering method and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter
  • dispersant is a condensate of naphthalene sulfonic acid and formalin
  • the second carbon black is carbon black coated with a resin
  • the penetrant is 2-ethyl- l, 3-hexandiol
  • ⁇ 2 The inkjet recording ink according to ⁇ 1 > above, further including a polyoxyalkylene derivative.
  • n is in the range of 8 to 9.
  • ⁇ 4 The inkjet recording ink according to any one of ⁇ l > to ⁇ 3 > above, further including an aqueous polyurethane resin.
  • ⁇ 6 > The inkjet recording ink according to one of ⁇ 4 > and ⁇ 5 > above, wherein the aqueous polyurethane resin has an acid value of 40 mgKOH/g to 120 mgKOH/g.
  • ⁇ 7 The inkjet recording ink according to any one of ⁇ 1 > to ⁇ 6 > above, wherein the amount of 2-ethyl- l,3-hexandiol is 0.1% by mass to 10% by mass.
  • An ink cartridge including:
  • the inkjet recording ink of the present invention is superior to conventional inks in that it attains high image density, excellent jetting stability, and excellent ink liquid storage stability.
  • Fig. 1 is a perspective view of the schematic
  • Fig. 2 is a front cross-sectional view of the schematic internal configuration of an ink cartridge of the present invention.
  • the inkjet recording ink of the present invention includes a pigment dispersion liquid containing at least a first carbon black and a dispersant, a second carbon black, a penetrant, a wetting agent and water! and, if necessary, includes other components.
  • the inkjet recording ink contains a polyoxyalkylene derivative and aqueous polyurethane resin.
  • the ratio by mass of the dispersant to the first carbon black (regarded as l) is preferably 0.1 to 2.
  • the ratio is more preferably 0.25 to 1.
  • the dispersant in such an amount, it is possible to provide an inkjet recording ink wherein the first carbon black has an average particle diameter (D50) of 70 nm to 180 nm and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter.
  • D50 average particle diameter
  • the average particle diameter (D50) is a value which is obtained by measuring the average diameter of primary aggregates of carbon black contained in the pigment dispersion liquid or ink liquid using a particle distribution meter
  • Measurement Conditions 1) Solid Content Concentration of Measurement Liquid: 0.1% by mass in water (solvent)
  • the above dispersant is a condensate of naphthalene sulfonic acid and formalin.
  • naphthalene sulfonic acid-formalin condensate as the dispersant of the first carbon black
  • the total amount of the dimer, trimer and tetramer of naphthalene sulfonic acid in the naphthalene sulfonic acid-formalin condensate is less than 20%, nozzle clogging tends to occur due to poor storage stability of the pigment dispersion liquid and ink as a result of
  • naphthalene sulfonic acid-formalin condensate exceeds 80%, dispersion becomes difficult to perform.
  • the pigment dispersion liquid is obtained, for example, as follows. Specifically, the first carbon black, the dispersant, water, and optionally used various additives are dispersed with a bead mill, for example, a disperser such as DYNOMILL
  • KDL-Type manufactured by K.K. SHINMARU ENTERPRISES CORPORATION
  • AGITATOR MILL LMZ manufactured by ASHIZAWA FINETECH LTD.
  • SC MILL manufactured by MITSUI MINING K.K.
  • the beads used in the dispersers are usually ceramic beads, and generally, zirconia balls are used.
  • the diameter of the beads is preferably 0.05 mm or less, more preferably 0.03 i o mm or less.
  • the average primary particle diameter of the first carbon black can be chosen suitably according to the intended purpose without any restriction.
  • the average primary particle diameter of the first carbon black is 10.0 nm to 30.0 nm
  • the average primary particle diameter of the first carbon black is 15.0 nm to 20.0 nm while the BET surface area thereof is 150 m 2 /g to 300 m 2 /g.
  • the term "average primary particle diameter of the carbon black" refers to an
  • surfactants e.g., nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric
  • surfactants include water-soluble organic solvents, preservatives, pH adjusters and pH buffers.
  • dispersion liquid is preferably 5% by mass to 50% by mass with respect to the total mass of the pigment dispersion liquid.
  • an amount of less than 5% by mass leads to poor productivity.
  • an amount of greater than 50% leads to difficulty of dispersion since the viscosity of the formed pigment dispersion liquid becomes excessively high.
  • carbon black commercially available examples include #10B, #20B, #30, #33, #40, #44, #45, #45L, #50, #55, #95, #260, #900, #1000, #2200B, #2300, #2350, #2400B, #2650, #2700,
  • the second carbon black is carbon black coated with resin (resin-coated carbon black).
  • the resin-coated carbon black is generally termed
  • capsule pigment is a pigment coated with a resin. This pigment is obtained by imparting hydrophilicity to its surface in order to facilitate dispersion in water.
  • Examples of the resin with which carbon black is coated include polyamides, polyurethanes, polyesters, polyureas, epoxy resins, polycarbonates, urea resins, melamine resins, phenol resins, polysaccharides, gelatin, gum arabic, dextran, casein, proteins, natural rubbers, carboxypolymethylenes, polyvinyl alcohols, polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl chlorides, polyvinylidene chlorides, cellulose, ethyl cellulose, methyl cellulose, nitro cellulose, hydroxyethyl cellulose, cellulose acetate, polyethylenes, polystyrenes, (meth)acrylic acid polymers or copolymers, (meth)acrylate polymers or copolymers, (meth)acrylic acid-(meth)acrylate copolymers,
  • styrene-(meth)acrylic acid copolymers styrene-maleic acid copolymers, sodium alginate, fatty acids, paraffins, beeswax, water wax, hardened beef tallow, carnauba wax and albumin.
  • organic polymers containing an anionic group such as a carboxylic group or a sulfonic group
  • nonionic organic polymers examples include polyvinyl alcohols
  • polyethylene glycol monomethacrylates polypropylene glycol monomethacrylates, methoxy polyethylene glycol
  • the method of coating the pigment with the resin is not particularly limited and may be appropriately selected
  • the above penetrant may be selected according to the intended purpose without any restriction.
  • Preferable examples of the penetrant include 2-ethyl- l,3"hexandiol,
  • 2-ethyl- l,3-hexandiol 2,2,4-trimethyl- l,3-pentandiol and 2,2-dimethyl- l, 3-propandiol.
  • 2-ethyl- l,3-hexandiol are more preferable.
  • 2-ethyl- l,3-hexandiol it is possible to eliminate bleeding by increasing the permeability of the ink as well as confining the pigment to the surface (of paper) and thus attain a printed image of high image density and a low degree of print-through.
  • jetting stability can also be improved.
  • the amount of the above penetrant is preferably 0.1% by mass to 10.0% by mass, more preferably 1.5% by mass to 5.0% by mass, with respect to the total mass of the ink liquid. When the amount is less than 0.1% by mass, the effects of the
  • wetting agent examples include polyalcohols (e.g., ethylene glycol, diethylene glycol, 1,3-butylene glycol, 3-methyl- l, 3-butylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, 1,5-pentandiol, 1,6-hexandiol, glycerin, 1,2,6-hexantriol, 1,2,4-butantriol, 1,2,3-butantriol and petriol), polyalcohol alkyl ethers (e.g., ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, tetraethylene glycol monomethyl ether and propylene glycol monoethyl ether), polyalcohol aryl ethers (e.g., ethylene glycol monophenyl ether and ethylene glycol monobenzyl ether), nitrogen
  • N-hydroxyethyl-2-pyrrolidone 1,3-dimethyl imidazolidinone, ⁇ -caprolactam and ybutyrolactone
  • amides e.g., formamide, N-methyl formamide and ⁇ , ⁇ -dimethyl formamide
  • sulfur-containing compounds e.g., monoethanol amine
  • diethanol amine triethanol amine, monoethyl amine, diethyl amine, amines such as triethyl amine, dimethyl sulfoxide, sulfolane and thiodiethanol) propylene carbonate and ethylene carbonate.
  • incorporation of at least one of 1, 3-butyl glycol, diethylene glycol, triethylene glycol and glycerin attains the excellent effects of preventing clogging (i.e., poor spraying characteristics caused by moisture evaporation) due to drying of the ink and improving saturation of images formed by the present invention.
  • the amount of the wetting agent is, for example, 0% by mass to 50% by mass with respect to the total mass of the ink, more preferably 5% by mass to 40% by mass, even more
  • the polyoxyalkylene derivative is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferable to use a polyoxyalkylene derivative represented by following General Formula: C ieH27(C2H40)nH.
  • n is preferably in the range of 8 to 9. When n is less than 8, permeability increases which in turn causes bleeding and sharpness of the image to become bad and also produces bad influence on jetting stability. When n exceeds 9, permeability decreases to produce bad influences such as poor embedding of the image. Both cases are not preferred.
  • Examples of commercially available products of the polyoxyalkylene derivative include SOFTAL EP-7025, SOFTAL EP-5035 and SOFTAL EP-9050 (these products are
  • OA-613 and OA-615 (these products are manufactured by NOF CORPORATION) and EMULGEN LS- 106 (manufactured by Kao Corporation).
  • the aqueous polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the aqueous polyurethane resin is
  • polyurethane resin refers to a polymer composed of a diisocyanate compound and a diol compound and having, as the backbone, a polyurethane skeleton formed of a plurality of urethane bonds.
  • the water-dispersible polyurethane resin generally used is obtained by introducing into the polyurethane backbone a hydrophilic moiety necessary for stable dispersion in water, or a polyurethane resin dispersed in water with an external emulsifying agent. More preferably, the water-dispersible polyurethane resin is those of self-dispersing type containing the hydrophilic group introduced into the backbone
  • the self-emulsifying polyurethane resin is not
  • ester-based polyurethanes ether-based polyurethanes and carbonate-based polyurethanes.
  • These water-dispersible polyurethane resins can be obtained by reacting together (i) a diisocyanate compound, (ii) a diol compound such as a polyether diol, a polyester diol or a polycarbonate diol, (iii) an acid group-containing diol such as a carboxylic acid group-containing diol or a sulfonic acid group-containing diol.
  • anionic self-emulsifying ether polyurethanes are preferred.
  • polyurethane include those described in, for example, JP-A Nos. 2009-67907, 2009- 173805 and 2009- 161726.
  • a dispersion liquid obtained by dispersing carbon black (used in a black pigment ink) together with a polyurethane resin is stabilized as compared to that obtained by dispersing carbon black sole. Although the reason for this is unclear, this is likely because the polyurethane resin surrounds carbon black particles to form protective colloids.
  • the method of synthesizing the aqueous polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the following methods.
  • a method including reacting together a polyfunctional isocyanate compound; at least one of a compound having two or more active hydrogen-containing groups reactable with an isocyanate group, and a compound having an active
  • a method including charging the urethane polymer before neutralization obtained in the method described in (l) into an aqueous solution containing a neutralizing agent and a chain extender, and emulsifying and performing chain extension reaction to obtain an aqueous polyurethane resin.
  • a method including adding a neutralizing agent, a chain extender and water to the urethane polymer before
  • a method including charging into water the neutralized urethane polymer obtained in the method described in (l), and emulsifying and adding a chain extender thereto, to thereby obtain an aqueous polyurethane resin.
  • a method including charging the urethane polymer before neutralization obtained in the method described in (l) into an aqueous solution containing a neutralizing agent, and adding a chain extender thereto, to thereby obtain an aqueous
  • a method including adding water and a chain extender sequentially to the neutralized urethane polymer obtained in the method described in (l), to thereby obtain an aqueous
  • a method including adding an aqueous solution containing a neutralizing agent to the urethane polymer before
  • the acid value of the aqueous polyurethane resin is preferably in the range of 40 mgKOH/g to 120 mgKOH/g. If the acid value is less than 40 mgKOH/g, the storage stability of the ink becomes poor; whereas when the acid value exceeds 120 mgKOH/g, the viscosity becomes high which leads to poor jetting stability. Both cases are not preferred.
  • the acid value is indicated by milligrams (mg) of potassium hydroxide necessary for the neutralization of free fatty acids contained in 1 g of fat. Alternatively, the acid value is measured according to JIS
  • the inkjet recording ink may contain other components such as water, the materials described as additives to the pigment dispersion liquid described above, as well as
  • water-soluble organic solvents examples include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; polyalcohols, pyrrolidone derivatives such as N-methyl pyrrolidone, ketones such as acetone and methyl ethyl, and alkanol amines.
  • the inkjet recording ink is obtained by known methods.
  • One employable known method includes agitating and mixing together the above-described pigment dispersion liquid, the second carbon black, water, and the water-soluble organic solvent; filtrating the resultant mixture with, for example, a filter or a centrifugal machine; and optional degassing.
  • the amount of the carbon black contained in the inkjet recording ink is preferably 1% by mass to 20% by mass with respect to the total mass of the inkjet recording ink.
  • image density is low which degrades the sharpness of images.
  • amount exceeds 20% by mass the ink viscosity tends to be high, and nozzle clogging readily occurs.
  • the inkjet recording ink obtained in the manner set forth above is able to retain water and moistness, which, as a result, realizes excellent storage stability since there is no aggregation of colorants and no increase in viscosity even when the inkjet recording ink is stored for long a period of time. And it is also possible to realize an inkjet recording ink capable of
  • the inkjet recording ink of the present invention obtained in this manner is suited to use with an ink cartridge configured to contain it.
  • Fig. 1 is a perspective view of the schematic configuration of the ink cartridge of the present invention.
  • Fig. 2 is a front cross-sectional view of the schematic internal configuration of the ink cartridge of the present invention.
  • an ink cartridge 20 includes a cartridge housing 49 and a liquid absorber 42 contained therein.
  • the liquid absorber 42 is a porous material which has absorbed the inkjet recording ink of the present invention.
  • the cartridge housing 49 contains a case 43 and an upper covering member 44 provided on the large, top opening of the case.
  • the symbol "A" denotes a space.
  • the upper covering member 44 is provided with a port open to atmosphere (atmosphere-opened port) 47 having grooves 48 and a
  • Reference numeral 55 denotes a seal member for the atmosphere-opened port 47. Also, the case 43 of the cartridge housing 49 has at the bottom a liquid-supplying port 45 for supplying each liquid to an
  • the cartridge housing 49 is provided with a cap member 50 which has a liquid
  • reference numeral 71 denotes a cartridge-positioning portion
  • reference numeral 81a denotes a cartridge-detaching hook
  • reference numeral 82 denotes a cartridge-detaching dent.
  • Images can be formed by using an inkjet printing device for forming images to jet for recording (printing) the inkjet recording ink of the present invention onto an image supporting medium such as paper.
  • printing methods include continuous spray type printing as well as on-demand type printing.
  • on-demand type printing methods include the piezo method, the thermal method and the
  • NIPEX150-IQ Manufactured by DEGUSSA: Gas Black
  • pigment dispersion liquid (A) having carbon black having an average particle diameter of 121.4 nm and a standard deviation of 48.3 nm.
  • Pigment dispersion liquid (C) was prepared in the same manner as in Preparation Example 1 except that HAITENOL18E (anionic surfactant, manufactured by DAIICHI KOUGYOU SEIYAKU CO., LTD) was used as the naphthalene acid-sulfonate condensate.
  • HAITENOL18E anionic surfactant, manufactured by DAIICHI KOUGYOU SEIYAKU CO., LTD
  • Pigment dispersion liquid (D) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX- 180, manufactured by degussa) and that the dispersion time was changed to 25 minutes.
  • the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
  • the carbon black contained in pigment dispersion liquid (D) was found to have an average particle diameter of 72.3 nm and a standard deviation of 31.4 nm.
  • Pigment dispersion liquid (E) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX-60, manufactured by degussa) and that the dispersion time was changed to 8 minutes.
  • the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
  • (E) was found to have an average particle diameter of 176.2 nm and a standard deviation of 69.5 nm.
  • Pigment dispersion liquid (F) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX-60, manufactured by degussa) and that the dispersion time was changed to 5 minutes.
  • the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
  • (F) was found to have an average particle diameter of 189.6 nm and a standard deviation of 70.8 nm.
  • Pigment dispersion liquid (G) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (Printex 95, manufactured by degussa).
  • the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
  • the carbon black contained in pigment dispersion liquid (G) was found to have an average particle diameter of 178.3 nm and a standard deviation of 98.3 nm.
  • Pigment dispersion liquid (H) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX- 180, manufactured by degussa) and that the dispersion time was changed to 35 minutes.
  • the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
  • the carbon black contained in pigment dispersion liquid (H) was found to have an average particle diameter of 58.2 nm and a standard deviation of 26.3 nm.
  • ink liquid (a) After the above components had been agitated for 30 minutes, the resultant mixture was filtrated with a membrane filter having a pore size of 0.8 ⁇ , and degassed in vacuum, to thereby prepare ink liquid (a).
  • Ink liquid (b) was prepared in the same manner as in Example 1 except that the polyoxyalkylene derivative
  • Ink liquid (c) was prepared in the same manner as in Example 1 except that W5661 was not used and that the amount of the distilled water was increased by 2.0 parts.
  • Comparative ink liquid (d) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (C), that
  • 2-ethyl" l,3-hexandiol was changed to sodium polyoxyethylene (3) tridecyl ether acetate, and that the polyoxyalkylene derivative was changed to FS-300 (fluorine -containing surfactant)
  • Comparative ink liquid (e) was prepared in the same manner as in Example 1 except that resin-coated carbon
  • dispersion liquid (B) was not used and that the amount of the distilled water was increased by 25 parts.
  • Comparative ink liquid (f) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was not used and that the amount of the distilled water was increased by 25 parts.
  • Ink liquid (g) was prepared in the same manner as in Example 1 except that the polyoxyalkylene derivative and
  • Ink liquid (h) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (D).
  • Ink liquid (i) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (E).
  • Ink liquid (j) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (F).
  • Ink liquid (k) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (G).
  • Ink liquid (1) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (H).
  • Ink liquid (m) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (C).
  • Ink liquid (n) was prepared in the same manner as in Example 1 except that 2-ethyl- l, 3-hexandiol was changed to sodium polyoxyethylene (3) tridecyl ether acetate.
  • Ink liquid (o) was prepared in the same manner as in Example 1 except that the polyoxyalkylene derivative was changed to FS-300 (fluorine-containing surfactant)
  • Ink liquid (p) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 37 mgKOH/g
  • the anionic self-emulsifying ether polyurethane having an acid value of 37 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component.
  • the acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
  • Ink liquid (q) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 128 mgKOH/g
  • the anionic self-emulsifying ether polyurethane having an acid value of 128 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component.
  • the acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
  • Ink liquid (r) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- l,3-hexandiol was changed from 3.0 parts to 0.05 parts and that the amount of the distilled water was changed from 12.0 parts to 14.95 parts. (Example 11)
  • Ink liquid (s) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- l,3-hexandiol was changed from 3.0 parts to 12.0 parts and that the amount of the distilled water was changed from 12.0 parts to 3.0 parts.
  • Ink liquid (t) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- l,3-hexandiol was changed from 3.0 parts to 0.1 parts and that the amount of the distilled water was changed from 12.0 parts to 14.9 parts.
  • Ink liquid (u) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- 1,3-hexandiol was changed from 3.0 parts to 10 parts and that the amount of the distilled water was changed from 12.0 parts to 5.0 parts.
  • Ink liquid (v) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- 1,3-hexandiol was changed from 3.0 parts to 1.5 parts and that the amount of the distilled water was changed from 12.0 parts to 13.5 parts.
  • Ink liquid (w) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- 1,3-hexandiol was changed from 3.0 parts to 5.0 parts and that the amount of the distilled water was changed from 12.0 parts to 10.0 parts.
  • Ink liquid (x) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 40 mgKOH/g
  • the anionic self-emulsifying ether polyurethane having an acid value of 40 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component.
  • the acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
  • Ink liquid (y) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 120 mgKOH/g
  • the anionic self-emulsifying ether polyurethane having an acid value of 120 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component.
  • the acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
  • each of the above-prepared ink liquids was used to print PPC paper 4024 sheets (manufactured by Fuji Xerox Co., Ltd.) and evaluated for jetting stability and image density.
  • each ink liquid was also evaluated for ink liquid storage stability.
  • the image density was measured with an Xrite densitometer (X-rite 938, manufactured by X-rite Co.), and the ink liquid storage stability was tested as follows. The evaluation results are shown in Table 1.
  • the printer After printing, the printer was left to stand for 1 month at 40°C with the printer head being capped. Evaluation was then made to find out whether or not the printer, after standing for 1 month, could recover to its initial jetting state. The evaluation was made as to the number of cleaning operations needed to recover to the initial jetting state.
  • Each ink was put into a polyethylene container, tightly sealed, and stored for 3 weeks at a temperature of 70°C. After the storage, the properties of particle diameters, surface tension, and viscosity were measured and evaluation was made as to the amount of change observed from the initial property states in the following manner.
  • Cap member 51 Liquid leakage-preventing protrusion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Ink Jet (AREA)

Abstract

An inkjet recording ink including a pigment dispersion liquid containing at least a first carbon black and a dispersant, a second carbon black, a penetrant, a wetting agent and water, wherein the first carbon black has an average particle diameter D50 of 70 nm to 180 nm as measured by a dynamic light scattering method and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter, wherein the dispersant is a condensate of naphthalene sulfonic acid and formalin, wherein the second carbon black is carbon black coated with a resin, and wherein the penetrant is a 2-ethyl-1,3-hexandiol.

Description

DESCRIPTION
Title of Invention
INKJET RECORDING INK AND INK CARTRIDGE Technical Field
The present invention relates to an inkjet recording ink attaining high image density, excelling in jetting stability, and excelling in ink liquid storage stability.
Background Art
Compared to other printing methods, the inkjet recording method offers ease of full-color printing since it involves a simpler process. And also, the inkjet recording method has the benefit of enabling the production of high-resolution images despite being of simple constitution.
As inkjet recording inks, dye-based inks are used in which various types of water-soluble dyes are dissolved in water or a mixture of water and an organic solvent. Such dye-based inks have a disadvantage of having poor light resistance, though they are excellent in color tone sharpness. Meanwhile, pigment-based inks in which carbon black and various types of organic pigments are dispersed are superior in light resistance compared to dye-based inks, and thus studies on pigment-based inks are being intensively made. However, pigment-based inks are more likely to cause nozzle clogging compared to dye-based inks. Pigment inks are generally prepared as follows. A coloring material and a dispersant are preliminarily dispersed in an aqueous solvent to prepare a dispersion product. After that, the dispersion product is dispersed to a predetermined degree by a media-type disperser, followed by diluting to a predetermined concentration.
Water-based pigment inks usually contain a surfactant and a water-soluble resin to disperse a hydrophobic pigment therein, but the reliability of images obtained using such inks is extremely low. Thus, according to some disclosed techniques, film-formable resin fine particles are added into the inks in aim of improving the quality of images. However, it is difficult to keep a plurality of components in a state of being finely and stably dispersed throughout the ink for a long period of time. And so, when a dispersant such as a surfactant is used in a large amount in order to stably disperse such fine particles, a problem inconveniently occurs. Specifically, the problem, for example, is that air bubbles may be generated inside the ink tank and/or inkjet head, which could cause degradation in image quality. Likewise, in aim of improving dispersibility, research has been conducted into the effectiveness of methods that change the surface of a pigment to a hydrophilic group, or, the effectiveness of employing a resin containing a hydrophilic group. However, while a given component may be stable when used alone, combined use of several different components has problematically caused degradation of dispersion stability as well as degradation of storage stability.
In addition, there have been reports of a surface treated pigment ink excelling in storage stability and jetting stability (PTLs 1 to 3)," an ink set able to maintain a stable inkjet (PTL 4); a method of incorporating, into an ink, a water-insoluble color material and charged resin pseudo-fine particles smaller than the color material in order to attain a high image density (PTL 5); a method of incorporating a self-dispersible pigment which is defined in term of a DBP oil absorption amount (PTL
6) ; and an aqueous carbon black dispersion liquid containing a surface reformed carbon black and a nonionic surfactant that has an HLB value of 7 to 18 and has an acetylene skeleton (PTL
7) . There is also report of an aqueous ink employing an acetylene glycol surfactant (PTL 8).
Methods for the purpose of stabilizing dispersion have been reported. Examples of these methods include a method of dispersing in water a water-dispersible resin having a carboxyl group and a nonionic hydrophilic group in its structure (PTL 9); a method of either unifying the polarities of a water-soluble polymer and a surfactant or adding nonions (PTL 10); a method of unifying the polarities of colored ion-containing polyester resin and a hydrophilic group of a colorant (PTL 11) and a method of unifying the dispersion polarities of pigment and resin fine particles (PTL 12). There is also disclosure of a printing ink employing gemini-type surfactant as a dispersant (PTL 13).
Also, there have been reports of an aqueous inkjet recording ink composition containing a pigment dispersion liquid in which at least 70% of the particles in the dispersion liquid have a diameter of less than 0.1 μπι, and the other
particles in the dispersion liquid have a diameter equal to or less than 0.1 μπι, an aldehyde naphthalene sulfonate dispersant and/or at least one sulfone solvent (PTL 14).
In PTL 15, there is proposed a recording liquid consisting of an aqueous medium containing a pigment, a polymer
dispersant and a nonionic surfactant. In PTLs 16 and 17, there is also proposed use of an AB or BAB block copolymer as a pigment dispersant. And, in PTL 18, there is proposed use of a specific pigment, a water-soluble resin and a solvent.
As a pigment dispersion method which does not use a dispersant, several methods have been disclosed. Examples of such methods include a method of introducing, into carbon black, a substituent containing a water-soluble group (PTL 19); a method of polymerizing a water-soluble monomer or the like on the surface of carbon black (PTL 20); and a method of oxidizing carbon black (PTL 21). Also, there is disclosed a method of attaining water resistance and jetting stability by incorporating, into an ink, an oxidized carbon black and a terpolymer of acrylic acid, styrene and ormethyl styrene (PTL 22).
There is also proposed an inkjet recording liquid wherein the volume average particle diameter of the dispersion particles in the inkjet recording liquid is in the range of 30 nm to 200 nm (PTL 23).
However, while ink liquids of the aforementioned
conventional methods could attain high image density in the case of color pigment inks, they were not satisfactory in that they could not provide sufficient performance in the case of black color pigment inks. Also, examples of using beads of a diameter in the range of about 0.05 mm to about 1.0 mm in bead mill dispersion have been filed (PTLs 24 to 26), they do not exhibit satisfactory dispersion stability.
Also, use of an anionic surfactant as the dispersant is described in PTL 27. Although the anionic surfactant
preferably has a molecular weight (m) falling within the range of 1,000 < m < 30,000 according to the description, the anionic surfactant is considered to be unsatisfactory as far as dispersion stability is concerned. Some pigments that are vulnerable to strong shock during dispersion lack in stability after dispersion, and cause severe problems regarding jetting stability of the formed ink liquid.
Citation List
Patent Literature
PTLl : Japanese Patent Application Laid-Open (JP-A) No.
2007- 186642
PTL2: JP-A No. 2006-282781
PTL3: JP-A No. 2005- 105227
PTL4: JP-A No. 2007- 119551
PTL5: JP-A No. 2006-8858
PTL6: JP-A No. 2002-3767
PTL7: JP-A No. 2006-219584
PTL8: JP-A No. 2004- 123904
PTL9: JP-A No. 05-239392
PTLIO: JP-A No. 08-283633
PTLll: JP-A No. 2000-63727
PTL12: JP-A No. 2001-81366
PTL13: JP-A No. 2003-509571
PTL14: JP-A No. 08-333531
PTL15: JP-A No. 56- 147871
PTL16: US Pat. No. 5085698
PTL17: US Pat. No. 5221334
PTL18: US Pat. No. 5172133
PTL19: US Pat. No. 5571311 PTL20: JP-A No. 08-81646
PTL21 - JP-A No. 08-3498
PTL22- JP-A No. 09- 194775
PTL23: JP-A No. 2000- 144028
PTL24: JP-A No. 2005-281691
PTL25: JP-A No. 2005-314528
PTL26: JP-A No. 2006- 188626
PTL27: Japanese Patent (JP-B) No. 3625595 Summary of Invention
Technical Problem
The present invention has been made under such
circumstances and aims to provide technology relating to an inkjet recording ink that attains high image density, and excels in jetting stability and storage stability.
Solution to Problem
The present inventors conducted extensive studies and have found that the above-described problems can be solved with an inkjet recording ink which contains a pigment dispersion liquid (containing at least a first carbon black and a dispersant), a second carbon black, a penetrant, a wetting agent and water, wherein the first carbon black has an average particle diameter D50 of 70 nm to 180 nm as measured by a dynamic light scattering method and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter, the dispersant is a condensate of naphthalene sulfonic acid and formalin, the second carbon black is carbon black coated with a resin, and the penetrant is a
2-ethyl- l,3-hexandiol.
Means for solving the above mentioned problems are as follows.
< 1 > An inkjet recording ink including:
a pigment dispersion liquid containing at least a first carbon black and a dispersant,
a second carbon black,
a penetrant,
a wetting agent, and
water,
wherein the first carbon black has an average particle diameter D50 of 70 nm to 180 nm as measured by a dynamic light scattering method and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter,
wherein the dispersant is a condensate of naphthalene sulfonic acid and formalin,
wherein the second carbon black is carbon black coated with a resin, and wherein the penetrant is 2-ethyl- l, 3-hexandiol.
< 2 > The inkjet recording ink according to < 1 > above, further including a polyoxyalkylene derivative.
< 3 > The inkjet recording ink according to < 2 > above, wherein the polyoxyalkylene derivative is a polyoxyalkylene derivative represented by the following General Formula^
Figure imgf000010_0001
where n is in the range of 8 to 9.
< 4 > The inkjet recording ink according to any one of < l > to < 3 > above, further including an aqueous polyurethane resin.
< 5 > The inkjet recording ink according to < 4 > above, wherein the aqueous polyurethane resin is an anionic
self-emulsifying ether polyurethane.
< 6 > The inkjet recording ink according to one of < 4 > and < 5 > above, wherein the aqueous polyurethane resin has an acid value of 40 mgKOH/g to 120 mgKOH/g.
< 7 > The inkjet recording ink according to any one of < 1 > to < 6 > above, wherein the amount of 2-ethyl- l,3-hexandiol is 0.1% by mass to 10% by mass.
< 8 > An ink cartridge including:
the inkjet recording ink according to any one of < 1 > to < 7 > above, and
a container, wherein the inkjet recording ink is housed in the
container.
Advantageous Effects of Invention
The inkjet recording ink of the present invention is superior to conventional inks in that it attains high image density, excellent jetting stability, and excellent ink liquid storage stability.
Brief Description of Drawings
Fig. 1 is a perspective view of the schematic
configuration of an ink cartridge of the present invention.
Fig. 2 is a front cross-sectional view of the schematic internal configuration of an ink cartridge of the present invention.
Description of Embodiments
Herein below, detail description will be given with respect to the present invention.
(Inkjet Recording Ink)
The inkjet recording ink of the present invention includes a pigment dispersion liquid containing at least a first carbon black and a dispersant, a second carbon black, a penetrant, a wetting agent and water! and, if necessary, includes other components. Preferably, the inkjet recording ink contains a polyoxyalkylene derivative and aqueous polyurethane resin. < First Carbon Black, Dispersant, and Pigment Dispersion Liquid >
In the inkjet recording ink, the ratio by mass of the dispersant to the first carbon black (regarded as l) is preferably 0.1 to 2. The ratio is more preferably 0.25 to 1. By using the dispersant in such an amount, it is possible to provide an inkjet recording ink wherein the first carbon black has an average particle diameter (D50) of 70 nm to 180 nm and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter. Thus, the formed inkjet recording ink can attain high image density, good jetting stability, and good storage stability.
The average particle diameter (D50) is a value which is obtained by measuring the average diameter of primary aggregates of carbon black contained in the pigment dispersion liquid or ink liquid using a particle distribution meter
(manufactured by NIKKISO CO., LTD). The measurement conditions used are set forth below.
Dispersion liquid/Ink Liquid Measurement Conditions
Measuring Instrument: Particle Distribution Meter UPA150 (manufactured by NIKKISO CO., LTD)
Measurement Conditions: 1) Solid Content Concentration of Measurement Liquid: 0.1% by mass in water (solvent)
2) Transparent Particles: Yes
3) Spherical Particles: No
4) Part. Refractive Index: 1.86
5) Part. Density: 1.86 (gm/cm^)
6) Fluid: Default Fluid
7) Fluid Refractive Index: 1.33
8) Viscosity High 30°C: 0.797 cp
9) Viscosity Low 20°C: 1.002 cp
10) Display Format: Volume Distribution
On the other hand, when the amount of the dispersant is less than 0.1, it is difficult to achieve the above-described effects, and additionally, nozzle clogging tends to occur due to
degradation of storage stability of the resultant pigment
dispersion liquid and ink. Likewise, when the amount of the dispersant exceeds 2, inkjet printing tends to become difficult to perform since the viscosity of the pigment dispersion liquid and ink becomes too high.
The above dispersant is a condensate of naphthalene sulfonic acid and formalin.
While it is a characteristic of the present invention to use the naphthalene sulfonic acid-formalin condensate as the dispersant of the first carbon black, when the total amount of the dimer, trimer and tetramer of naphthalene sulfonic acid in the naphthalene sulfonic acid-formalin condensate is less than 20%, nozzle clogging tends to occur due to poor storage stability of the pigment dispersion liquid and ink as a result of
degradation in dispersibility. Likewise, when the amount of the dimer to tetramer of naphthalene sulfonic acid in the
naphthalene sulfonic acid-formalin condensate exceeds 80%, dispersion becomes difficult to perform.
The pigment dispersion liquid is obtained, for example, as follows. Specifically, the first carbon black, the dispersant, water, and optionally used various additives are dispersed with a bead mill, for example, a disperser such as DYNOMILL
KDL-Type (manufactured by K.K. SHINMARU ENTERPRISES CORPORATION), AGITATOR MILL LMZ (manufactured by ASHIZAWA FINETECH LTD.) or SC MILL (manufactured by MITSUI MINING K.K.). After dispersion in the bead mill, the resultant dispersion product is further dispersed with a
bead-less mill, such as high-speed shearing-force-type CLEAR SS5 (manufactured by M TECHNIQUE CO., LTD), CABITRON CDIOIO (manufactured by EURO TECH, LTD), MODULE
DR2000 (manufactured by K.K. SHINMARU ENTERPRISES CORPORATION), thin-film rotation-type T. K. FILMIX
(manufactured by TOKUSHUKIKAKOUGYOU K.K.), super-high pressure shock-type ALTEMIZER (manufactured by SUGINO MACHINE LTD.) or NANOMIZER (manufactured by YOSHIDA KIKAI CO., LTD).
By pre-treating coarse particles with a homogenizer or the like at the stage prior to the treatment by the disperser, it is 5 possible to sharpen the particle distribution even more, which leads to improvements in image density and jetting stability.
The beads used in the dispersers are usually ceramic beads, and generally, zirconia balls are used. The diameter of the beads is preferably 0.05 mm or less, more preferably 0.03 i o mm or less.
The average primary particle diameter of the first carbon black can be chosen suitably according to the intended purpose without any restriction. For example, the average primary particle diameter of the first carbon black is 10.0 nm to 30.0 nm
15 while the BET surface area thereof is 100 m2/g to 400 m2/g.
More preferably, the average primary particle diameter of the first carbon black is 15.0 nm to 20.0 nm while the BET surface area thereof is 150 m2/g to 300 m2/g. The term "average primary particle diameter of the carbon black" refers to an
2 0 average diameter of small spherical components (components having fine crystalline profiles which are inseparable) contained in carbon black aggregate, which is obtained by measuring the diameters of the small spherical components under an electron microscope and averaging the measurements. Since the first carbon black is vulnerable to shocks during dispersion due to being a high structure having a small average primary particle diameter, setting the beads used in the above mentioned disperser to a diameter exceeding 0.05 mm will destroy the structure due to strong shock energy among the beads which in turn leads to a loss in stability of the obtained carbon black dispersion liquid. Thus, it is preferable that the beads used have a diameter of 0.05 mm or less.
Examples of the above additional components usable include various types of surfactants (e.g., nonionic surfactants, anionic surfactants, cationic surfactants and amphoteric
surfactants), water-soluble organic solvents, preservatives, pH adjusters and pH buffers.
The pigment concentration of the above pigment
dispersion liquid is preferably 5% by mass to 50% by mass with respect to the total mass of the pigment dispersion liquid. Here, an amount of less than 5% by mass leads to poor productivity. While, an amount of greater than 50% leads to difficulty of dispersion since the viscosity of the formed pigment dispersion liquid becomes excessively high.
Examples of carbon black commercially available include #10B, #20B, #30, #33, #40, #44, #45, #45L, #50, #55, #95, #260, #900, #1000, #2200B, #2300, #2350, #2400B, #2650, #2700,
#4000B, CF9, MA8, MA11, MA77, MA100, MA220, MA230, MA600 and MCF88 (these products are manufactured by
MITSUBISHI CHEMICAL CORPORATION); MONARCH 120, MONARCH 700, MONARCH 800, MONARCH 880, MONARCH 1000, MONARCH 1100, MONARCH 1300, MONARCH 1400, MOGAL L, REGAL 99R, REGAL 250R, REGAL 300R, REGAL 330R, REGAL 400R, REGAL 500R and REGAL 660R (these products are manufactured by CABOT CORPORATION); and PRINTEX A, PRINTEX G, PRINTEX U, PRINTEX V, PRINTEX 55, PRINTEX 140U, PRINTEX 140V, SPECIAL BLACK 4, SPECIAL BLACK 4A, SPECIAL BLACK 5, SPECIAL BLACK 6, SPECIAL BLACK 100, SPECIAL BLACK 250, COLOR BLACK FW1, COLOR BLACK FW2, COLOR BLACK FW2V, COLOR BLACK FW18, COLOR BLACK FW200, COLOR BLACK S150, COLOR BLACK S 160 and COLOR BLACK S170 (these products are manufactured by DEGUSSA Co.).
< Second Carbon Black >
The second carbon black is carbon black coated with resin (resin-coated carbon black).
The resin-coated carbon black is generally termed
"capsule pigment," and is a pigment coated with a resin. This pigment is obtained by imparting hydrophilicity to its surface in order to facilitate dispersion in water.
Examples of the resin with which carbon black is coated include polyamides, polyurethanes, polyesters, polyureas, epoxy resins, polycarbonates, urea resins, melamine resins, phenol resins, polysaccharides, gelatin, gum arabic, dextran, casein, proteins, natural rubbers, carboxypolymethylenes, polyvinyl alcohols, polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl chlorides, polyvinylidene chlorides, cellulose, ethyl cellulose, methyl cellulose, nitro cellulose, hydroxyethyl cellulose, cellulose acetate, polyethylenes, polystyrenes, (meth)acrylic acid polymers or copolymers, (meth)acrylate polymers or copolymers, (meth)acrylic acid-(meth)acrylate copolymers,
styrene-(meth)acrylic acid copolymers, styrene-maleic acid copolymers, sodium alginate, fatty acids, paraffins, beeswax, water wax, hardened beef tallow, carnauba wax and albumin.
Further examples thereof include organic polymers containing an anionic group such as a carboxylic group or a sulfonic group; and nonionic organic polymers. Examples of the nonionic organic polymers include polyvinyl alcohols,
polyethylene glycol monomethacrylates, polypropylene glycol monomethacrylates, methoxy polyethylene glycol
monomethacrylates and (co)polymers thereof; and cation ring-opening polymers such as 2-oxazolines.
The method of coating the pigment with the resin is not particularly limited and may be appropriately selected
depending on the intended purpose. Examples thereof include methods described in JP-B No. 4138214, and JP-A Nos. 2010-095713 and 2008-260926.
< Penetrant >
The above penetrant may be selected according to the intended purpose without any restriction. Preferable examples of the penetrant include 2-ethyl- l,3"hexandiol,
2,2,4-trimethyl- l,3-pentandiol and 2,2-dimethyl- l, 3-propandiol. Among these, 2-ethyl- l,3-hexandiol are more preferable. By using 2-ethyl- l,3-hexandiol, it is possible to eliminate bleeding by increasing the permeability of the ink as well as confining the pigment to the surface (of paper) and thus attain a printed image of high image density and a low degree of print-through. In addition, it has been found that, by combining the penetrant with a mixed system (mixture) of the above mentioned pigments, jetting stability can also be improved.
The amount of the above penetrant is preferably 0.1% by mass to 10.0% by mass, more preferably 1.5% by mass to 5.0% by mass, with respect to the total mass of the ink liquid. When the amount is less than 0.1% by mass, the effects of the
penetrant cannot be obtained sufficiently. Whereas when the amount exceeds 10.0% by mass, the solubility of the penetrant itself decreases, and thus reliability will be poor.
< Wetting Agent >
Examples of the wetting agent include polyalcohols (e.g., ethylene glycol, diethylene glycol, 1,3-butylene glycol, 3-methyl- l, 3-butylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, 1,5-pentandiol, 1,6-hexandiol, glycerin, 1,2,6-hexantriol, 1,2,4-butantriol, 1,2,3-butantriol and petriol), polyalcohol alkyl ethers (e.g., ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, tetraethylene glycol monomethyl ether and propylene glycol monoethyl ether), polyalcohol aryl ethers (e.g., ethylene glycol monophenyl ether and ethylene glycol monobenzyl ether), nitrogen-containing heterocyclic compounds (e.g., 2-pyrrolidone, N-methyl-2-pyrrolidone,
N-hydroxyethyl-2-pyrrolidone, 1,3-dimethyl imidazolidinone, ε-caprolactam and ybutyrolactone), amides (e.g., formamide, N-methyl formamide and Ν,Ν-dimethyl formamide),
sulfur-containing compounds (e.g., monoethanol amine,
diethanol amine, triethanol amine, monoethyl amine, diethyl amine, amines such as triethyl amine, dimethyl sulfoxide, sulfolane and thiodiethanol) propylene carbonate and ethylene carbonate.
Among these, incorporation of at least one of 1, 3-butyl glycol, diethylene glycol, triethylene glycol and glycerin attains the excellent effects of preventing clogging (i.e., poor spraying characteristics caused by moisture evaporation) due to drying of the ink and improving saturation of images formed by the present invention.
The amount of the wetting agent is, for example, 0% by mass to 50% by mass with respect to the total mass of the ink, more preferably 5% by mass to 40% by mass, even more
preferably 10% by mass to 35% by mass.
< Polyoxyalkylene derivative >
The polyoxyalkylene derivative is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferable to use a polyoxyalkylene derivative represented by following General Formula: C ieH27(C2H40)nH. In this General Formula, "n" is preferably in the range of 8 to 9. When n is less than 8, permeability increases which in turn causes bleeding and sharpness of the image to become bad and also produces bad influence on jetting stability. When n exceeds 9, permeability decreases to produce bad influences such as poor embedding of the image. Both cases are not preferred.
Examples of commercially available products of the polyoxyalkylene derivative include SOFTAL EP-7025, SOFTAL EP-5035 and SOFTAL EP-9050 (these products are
manufactured by NIPPON SHOKUBAI CO., LTD.), OA-611,
OA-613 and OA-615 (these products are manufactured by NOF CORPORATION) and EMULGEN LS- 106 (manufactured by Kao Corporation).
< Aqueous Polyurethane Resin > The aqueous polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose. The aqueous polyurethane resin is
preferably a water-dispersible polyurethane resin.
Here, the "polyurethane resin" refers to a polymer composed of a diisocyanate compound and a diol compound and having, as the backbone, a polyurethane skeleton formed of a plurality of urethane bonds.
The water-dispersible polyurethane resin generally used is obtained by introducing into the polyurethane backbone a hydrophilic moiety necessary for stable dispersion in water, or a polyurethane resin dispersed in water with an external emulsifying agent. More preferably, the water-dispersible polyurethane resin is those of self-dispersing type containing the hydrophilic group introduced into the backbone
(self-emulsifying polyurethane resins).
The self-emulsifying polyurethane resin is not
particularly limited and may be appropriately selected
depending on the intended purpose. Examples thereof include various water-dispersible polyurethane resins such as
ester-based polyurethanes, ether-based polyurethanes and carbonate-based polyurethanes. These water-dispersible polyurethane resins can be obtained by reacting together (i) a diisocyanate compound, (ii) a diol compound such as a polyether diol, a polyester diol or a polycarbonate diol, (iii) an acid group-containing diol such as a carboxylic acid group-containing diol or a sulfonic acid group-containing diol. Among them, anionic self-emulsifying ether polyurethanes are preferred.
Examples of the anionic self-emulsifying ether
polyurethane include those described in, for example, JP-A Nos. 2009-67907, 2009- 173805 and 2009- 161726.
A dispersion liquid obtained by dispersing carbon black (used in a black pigment ink) together with a polyurethane resin is stabilized as compared to that obtained by dispersing carbon black sole. Although the reason for this is unclear, this is likely because the polyurethane resin surrounds carbon black particles to form protective colloids.
The method of synthesizing the aqueous polyurethane resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the following methods.
(l) A method including reacting together a polyfunctional isocyanate compound; at least one of a compound having two or more active hydrogen-containing groups reactable with an isocyanate group, and a compound having an active
hydrogen-containing group reactable with an isocyanate group and having a carboxyl group and a sulfonyl group in the molecule thereof; and a compound having an active hydrogen-containing group reactable with an isocyanate group and having a cationic group in the molecule thereof at such an equivalence ratio that the isocyanate group is excessive in the presence or absence of an organic solvent, to thereby produce a urethane polymer having an isocynate group at the end thereof, neutralizing at least one of the carboxyl group and sulfonyl group in the urethane polymer with a neutralizing agent, charging the thus-neutralized urethane polymer into an aqueous solution containing a chain extender, emulsifying and
performing chain extension reaction, and removing the
optionally used organic solvent from the reaction system, to thereby obtain an aqueous polyurethane resin.
(2) A method including charging the urethane polymer before neutralization obtained in the method described in (l) into an aqueous solution containing a neutralizing agent and a chain extender, and emulsifying and performing chain extension reaction to obtain an aqueous polyurethane resin.
(3) A method including adding a chain extender and water to the neutralized urethane polymer obtained in the method described in (l), to thereby obtain an aqueous polyurethane resin.
(4) A method including adding a neutralizing agent, a chain extender and water to the urethane polymer before
neutralization obtained in the method described in (l), to thereby obtain an aqueous polyurethane resin. (5) A method including charging into water the neutralized urethane polymer obtained in the method described in (l), and emulsifying and adding a chain extender thereto, to thereby obtain an aqueous polyurethane resin.
(6) A method including charging the urethane polymer before neutralization obtained in the method described in (l) into an aqueous solution containing a neutralizing agent, and adding a chain extender thereto, to thereby obtain an aqueous
polyurethane resin.
(7) A method including adding water and a chain extender sequentially to the neutralized urethane polymer obtained in the method described in (l), to thereby obtain an aqueous
polyurethane resin.
(8) A method including adding an aqueous solution containing a neutralizing agent to the urethane polymer before
neutralization obtained in the method described in (l), and adding a chain extender thereto, to thereby obtain an aqueous polyurethane resin.
The acid value of the aqueous polyurethane resin is preferably in the range of 40 mgKOH/g to 120 mgKOH/g. If the acid value is less than 40 mgKOH/g, the storage stability of the ink becomes poor; whereas when the acid value exceeds 120 mgKOH/g, the viscosity becomes high which leads to poor jetting stability. Both cases are not preferred. The acid value is indicated by milligrams (mg) of potassium hydroxide necessary for the neutralization of free fatty acids contained in 1 g of fat. Alternatively, the acid value is measured according to JIS
K2501.
< Other Components >
The inkjet recording ink may contain other components such as water, the materials described as additives to the pigment dispersion liquid described above, as well as
water-soluble organic solvents. Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, 1-propanol and 2-propanol; polyalcohols, pyrrolidone derivatives such as N-methyl pyrrolidone, ketones such as acetone and methyl ethyl, and alkanol amines.
The inkjet recording ink is obtained by known methods. One employable known method includes agitating and mixing together the above-described pigment dispersion liquid, the second carbon black, water, and the water-soluble organic solvent; filtrating the resultant mixture with, for example, a filter or a centrifugal machine; and optional degassing.
The amount of the carbon black contained in the inkjet recording ink is preferably 1% by mass to 20% by mass with respect to the total mass of the inkjet recording ink. When the amount is less than 1% by mass, image density is low which degrades the sharpness of images. When the amount exceeds 20% by mass, the ink viscosity tends to be high, and nozzle clogging readily occurs.
The inkjet recording ink obtained in the manner set forth above is able to retain water and moistness, which, as a result, realizes excellent storage stability since there is no aggregation of colorants and no increase in viscosity even when the inkjet recording ink is stored for long a period of time. And it is also possible to realize an inkjet recording ink capable of
maintaining fluidity at dried portions even in cases in which the nozzle tips or the like of inkjet printers are left in an opened state. Also, there are no occurrences of nozzle clogging in cases of restarting during or immediately after printing, making it possible to attain high jetting stability.
(Ink Cartridge)
The inkjet recording ink of the present invention obtained in this manner is suited to use with an ink cartridge configured to contain it.
Fig. 1 is a perspective view of the schematic configuration of the ink cartridge of the present invention. Fig. 2 is a front cross-sectional view of the schematic internal configuration of the ink cartridge of the present invention.
As illustrated in Figs. 1 and 2, an ink cartridge 20 includes a cartridge housing 49 and a liquid absorber 42 contained therein. The liquid absorber 42 is a porous material which has absorbed the inkjet recording ink of the present invention. The cartridge housing 49 contains a case 43 and an upper covering member 44 provided on the large, top opening of the case. The symbol "A" denotes a space. Further, the upper covering member 44 is provided with a port open to atmosphere (atmosphere-opened port) 47 having grooves 48 and a
cartridge-detaching protrusion 81. Reference numeral 55 denotes a seal member for the atmosphere-opened port 47. Also, the case 43 of the cartridge housing 49 has at the bottom a liquid-supplying port 45 for supplying each liquid to an
unillustrated recording head. A seal ring 46 is fitted into peripheral portions of the liquid-supplying port 45. In order for the ink cartridge to be prevented from leaking the liquid before mounted to an image forming apparatus, the cartridge housing 49 is provided with a cap member 50 which has a liquid
leakage-preventing protrusion 51 for sealing the
liquid-supplying port 45. Notably, reference numeral 71 denotes a cartridge-positioning portion, reference numeral 81a denotes a cartridge-detaching hook, and reference numeral 82 denotes a cartridge-detaching dent.
Images can be formed by using an inkjet printing device for forming images to jet for recording (printing) the inkjet recording ink of the present invention onto an image supporting medium such as paper. Examples of printing methods include continuous spray type printing as well as on-demand type printing. Examples of the on-demand type printing methods include the piezo method, the thermal method and the
electrostatic method.
Examples
The present invention will be described in detail by way of Examples and Comparative Examples, but should not be construed as being limited to Examples. The units referred to as "parts" in the following Examples are units by mass.
(Preparation Example l)
< Preparation of Pigment Dispersion Liquid (A) >
Formulation
Carbon Black: 200 parts
NIPEX150-IQ (Manufactured by DEGUSSA: Gas Black)
Naphthalene sulfonate acid-formalin condensate: 50 parts
(Total amount of dimers, trimers and tetramers of naphthalene sulfonate acid: 30%)
[PIONIN A-45-PN, manufactured by TAKEMOTO OIL & FAT CO., LTD]
Distilled Water: 750 parts
The above-listed components were pre-mixed and then dispersed for 15 minutes at a liquid temperature of 30°C at a rotational speed of 100 m/s using a bead mill disperser (UAM-015, manufactured by KOTOBUKU INDUSTRIES CO., LTD) using zirconia beads (density 6.03 x 10~6 g/m2) having a diameter of 0.03 mm. After this, coarse particles were
separated from the mixture using a centrifuge machine
(Model-3600, manufactured by KUBOTA CORPORATION), to thus prepare pigment dispersion liquid (A) having carbon black having an average particle diameter of 121.4 nm and a standard deviation of 48.3 nm.
(Preparation Example 2)
< Preparation of Pigment Dispersion Liquid (B) (Resin-Coated Carbon Dispersion Liquid (B)) >
- Preparation of Polymer Solution -
First, a 1 L-flask equipped with a mechanical agitator, a thermometer, a nitrogen gas induction tube, a refluxing tube, and a dropping funnel was thoroughly purged with nitrogen gas. Next, 11.2 g of styrene, 2.8 g of acrylic acid, 12.0 g of lauryl methacrylate, 4.0 g of polyethylene glycol methacrylate, 4.0 g of styrene macromer (trade name: AS*6, manufactured by
TOUAGOUSEI CO., LTD), and 0.4 g of mercapto ethanol were charged in the flask and heated to 65°C. Next, a liquid mixture of 100.8 g of styrene, 25.2 g of acrylic acid, 108.0 g of lauryl methacrylate, 36.0 g of polyethylene glycol methacrylate, 60.0 g of hydroxyl ethyl methacrylate, 36.0 g of styrene macromer (trade name: AS-6, manufactured by TOUAGOU CO., LTD), 3.6 g of mercapto ethanol, 2.4 g of azobisdimethyl(valeronitrile) and 18 g of methyl ethyl ketone was added dropwise to the flask for 2.5 hours. After completion of dropwise addition, a liquid mixture of 0.8 g of azobisdimethyl(valeronitrile) and 18 g of methyl ethyl ketone was added dropwise to the flask for 0.5 hours. The resultant mixture was then matured for 1 hour at 65°C. Thereafter, 0.8 g of azobisdimethyl(valeronitrile) was added to the flask, followed by maturing for 1 hour. After completion of reaction, 364 g of methyl ethyl ketone was added thereto, to thereby prepare 800 g of a polymer solution having a concentration of 50% by mass.
- Preparation of Resin-Coated Carbon Black and Preparation of Pigment Dispersion Liquid (B) -
Twenty eight grams of the above-prepared polymer solution, 26 g of carbon black, 13.6 g of a 1 mol/L potassium hydroxide solution, 20 g of methyl ethyl ketone and 30 g of ion exchange water were thoroughly agitated and then kneaded with a three roll mill (MIXING ROLL MILL, manufactured by INOUE MANUFACTURING CO., LTD.). The resultant paste was put into 200 g of ion exchange water, followed by thorough agitation. Thereafter, the methyl ethyl ketone and water were evaporated away using an evaporator, to thereby prepare a polymer fine particle dispersion of carbon black (pigment dispersion liquid (B)). (Preparation Example 3)
< Preparation of Pigment Dispersion Liquid (C) >
Pigment dispersion liquid (C) was prepared in the same manner as in Preparation Example 1 except that HAITENOL18E (anionic surfactant, manufactured by DAIICHI KOUGYOU SEIYAKU CO., LTD) was used as the naphthalene acid-sulfonate condensate.
(Preparation Example 4)
< Preparation of Pigment Dispersion Liquid (D) >
Pigment dispersion liquid (D) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX- 180, manufactured by degussa) and that the dispersion time was changed to 25 minutes.
In the thus-prepared pigment dispersion liquid (D), the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
The carbon black contained in pigment dispersion liquid (D) was found to have an average particle diameter of 72.3 nm and a standard deviation of 31.4 nm.
(Preparation Example 5)
< Preparation of Pigment Dispersion Liquid (E) >
Pigment dispersion liquid (E) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX-60, manufactured by degussa) and that the dispersion time was changed to 8 minutes.
In the thus-prepared pigment dispersion liquid (E), the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
The carbon black contained in pigment dispersion liquid
(E) was found to have an average particle diameter of 176.2 nm and a standard deviation of 69.5 nm.
(Preparation Example 6)
< Preparation of Pigment Dispersion Liquid (F) >
Pigment dispersion liquid (F) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX-60, manufactured by degussa) and that the dispersion time was changed to 5 minutes.
In the thus-prepared pigment dispersion liquid (F), the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
The carbon black contained in pigment dispersion liquid
(F) was found to have an average particle diameter of 189.6 nm and a standard deviation of 70.8 nm.
(Preparation Example 7)
< Preparation of Pigment Dispersion Liquid (G) >
Pigment dispersion liquid (G) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (Printex 95, manufactured by degussa).
In the thus-prepared pigment dispersion liquid (G), the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
The carbon black contained in pigment dispersion liquid (G) was found to have an average particle diameter of 178.3 nm and a standard deviation of 98.3 nm.
(Preparation Example 8)
< Preparation of Pigment Dispersion Liquid (H) >
Pigment dispersion liquid (H) was prepared in the same manner as in Preparation Example 1 except that the carbon black was changed to carbon black (NIPEX- 180, manufactured by degussa) and that the dispersion time was changed to 35 minutes.
In the thus-prepared pigment dispersion liquid (H), the solid content concentration was 25% by mass, and the pigment concentration was 20% by mass.
The carbon black contained in pigment dispersion liquid (H) was found to have an average particle diameter of 58.2 nm and a standard deviation of 26.3 nm.
(Example l)
< Preparation of Ink Liquid (a) >
Formulation Pigment Dispersion Liquid (A) (Solid Content
Concentration^ 20% by mass): 25 parts
Resin-Coated Carbon Dispersion Liquid (B) (Solid
Content Concentration: 20% by mass) : 25 parts
Glycerin: 7.5 parts
Diethylene Glycol: 22.5 parts
2-Ethyl- l,3-hexandiol: 3.0 parts
Polyoxyalkylene Derivative
General Formula: C18H27(C2H40)nH (n = 8) : 3.0 parts W5661 (anionic self-emulsifying ether polyurethane, manufactured by Mitsui Chemicals, Inc.) : 2.0 parts (acid value: 48 mgKOH/g, weight average molecular weight: 20,000, average particle diameter: 11.0 nm)
Distilled Water: 12.0 parts
After the above components had been agitated for 30 minutes, the resultant mixture was filtrated with a membrane filter having a pore size of 0.8 μπι, and degassed in vacuum, to thereby prepare ink liquid (a).
(Example 2)
< Preparation of Ink Liquid (b) >
Ink liquid (b) was prepared in the same manner as in Example 1 except that the polyoxyalkylene derivative
(Ci8H27(C2H40)nH where n = 8) was not used and that the amount of the distilled water was increased by 3.0 parts. (Example 3)
< Preparation of Ink Liquid (c) >
Ink liquid (c) was prepared in the same manner as in Example 1 except that W5661 was not used and that the amount of the distilled water was increased by 2.0 parts.
(Comparative Example l)
< Preparation of Ink Liquid (d) >
Comparative ink liquid (d) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (C), that
2-ethyl" l,3-hexandiol was changed to sodium polyoxyethylene (3) tridecyl ether acetate, and that the polyoxyalkylene derivative was changed to FS-300 (fluorine -containing surfactant)
manufactured by DUPONT.
(Comparative Example 2)
< Preparation of Ink Liquid (e) >
Comparative ink liquid (e) was prepared in the same manner as in Example 1 except that resin-coated carbon
dispersion liquid (B) was not used and that the amount of the distilled water was increased by 25 parts.
(Comparative Example 3)
< Preparation of Ink Liquid (f) >
Comparative ink liquid (f) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was not used and that the amount of the distilled water was increased by 25 parts.
(Example 4)
< Preparation of Ink Liquid (g) >
Ink liquid (g) was prepared in the same manner as in Example 1 except that the polyoxyalkylene derivative and
W5661 (anionic self-emulsifying ether polyurethane,
manufactured by Mitsui Chemicals, Inc.) were not used and that the amount of the distilled water was changed from 12.0 parts to 17.0 parts.
(Example 5)
< Preparation of Ink Liquid (h) >
Ink liquid (h) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (D).
(Example 6)
< Preparation of Ink Liquid (i) >
Ink liquid (i) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (E).
(Comparative Example 4)
< Preparation of Ink Liquid (j) >
Ink liquid (j) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (F).
(Comparative Example 5)
< Preparation of Ink Liquid (k) >
Ink liquid (k) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (G).
(Comparative Example 6)
< Preparation of Ink Liquid (1) >
Ink liquid (1) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (H).
(Comparative Example 7)
< Preparation of Ink Liquid (m) >
Ink liquid (m) was prepared in the same manner as in Example 1 except that pigment dispersion liquid (A) was changed to pigment dispersion liquid (C).
(Comparative Example 8)
< Preparation of Ink Liquid (n) >
Ink liquid (n) was prepared in the same manner as in Example 1 except that 2-ethyl- l, 3-hexandiol was changed to sodium polyoxyethylene (3) tridecyl ether acetate.
(Example 7)
< Preparation of Ink Liquid (o) >
Ink liquid (o) was prepared in the same manner as in Example 1 except that the polyoxyalkylene derivative was changed to FS-300 (fluorine-containing surfactant)
manufactured by DUPONT.
(Example 8)
< Preparation of Ink Liquid (p) >
Ink liquid (p) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 37 mgKOH/g
(manufactured by Mitsui Chemicals, Inc.).
Notably, the anionic self-emulsifying ether polyurethane having an acid value of 37 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component. The acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
(Example 9)
< Preparation of Ink Liquid (q) >
Ink liquid (q) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 128 mgKOH/g
(manufactured by Mitsui Chemicals, Inc.).
Notably, the anionic self-emulsifying ether polyurethane having an acid value of 128 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component. The acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
(Example 10)
< Preparation of Ink Liquid (r) >
Ink liquid (r) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- l,3-hexandiol was changed from 3.0 parts to 0.05 parts and that the amount of the distilled water was changed from 12.0 parts to 14.95 parts. (Example 11)
< Preparation of Ink Liquid (s) >
Ink liquid (s) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- l,3-hexandiol was changed from 3.0 parts to 12.0 parts and that the amount of the distilled water was changed from 12.0 parts to 3.0 parts.
(Example 12)
< Preparation of Ink Liquid (t) >
Ink liquid (t) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- l,3-hexandiol was changed from 3.0 parts to 0.1 parts and that the amount of the distilled water was changed from 12.0 parts to 14.9 parts.
(Example 13) < Preparation of Ink Liquid (u) >
Ink liquid (u) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- 1,3-hexandiol was changed from 3.0 parts to 10 parts and that the amount of the distilled water was changed from 12.0 parts to 5.0 parts.
(Example 14)
< Preparation of Ink Liquid (v) >
Ink liquid (v) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- 1,3-hexandiol was changed from 3.0 parts to 1.5 parts and that the amount of the distilled water was changed from 12.0 parts to 13.5 parts.
(Example 15)
< Preparation of Ink Liquid (w) >
Ink liquid (w) was prepared in the same manner as in Example 1 except that the amount of 2-ethyl- 1,3-hexandiol was changed from 3.0 parts to 5.0 parts and that the amount of the distilled water was changed from 12.0 parts to 10.0 parts.
(Example 16)
< Preparation of Ink Liquid (x) >
Ink liquid (x) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 40 mgKOH/g
(manufactured by Mitsui Chemicals, Inc.). Notably, the anionic self-emulsifying ether polyurethane having an acid value of 40 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component. The acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
(Example 17)
< Preparation of Ink Liquid (y) >
Ink liquid (y) was prepared in the same manner as in Example 1 except that the anionic self-emulsifying ether polyurethane was changed to an anionic self-emulsifying ether polyurethane having an acid value of 120 mgKOH/g
(manufactured by Mitsui Chemicals, Inc.).
Notably, the anionic self-emulsifying ether polyurethane having an acid value of 120 mgKOH/g was synthesized by reacting a diisocyanate compound with a polyol containing a polyether diol as a main component. The acid value was adjusted by controlling the amounts of the functional groups (carboxyl group and amino group) contained in the polyol.
Using an inkjet printer MJ-930C (manufactured by EPSON), each of the above-prepared ink liquids was used to print PPC paper 4024 sheets (manufactured by Fuji Xerox Co., Ltd.) and evaluated for jetting stability and image density. In addition, each ink liquid was also evaluated for ink liquid storage stability. Here, the image density was measured with an Xrite densitometer (X-rite 938, manufactured by X-rite Co.), and the ink liquid storage stability was tested as follows. The evaluation results are shown in Table 1.
- Image Density -
The solid image of each image sample was measured with the Xrite densitometer, and the measurements were evaluated according to the following criteria.
A- 1.5 < Image Density
B: 1.4 < Image Density < 1.5
C: 1.2 < Image Density < 1.4
D: Image Density < 1.2
- Jetting Stability -
After printing, the printer was left to stand for 1 month at 40°C with the printer head being capped. Evaluation was then made to find out whether or not the printer, after standing for 1 month, could recover to its initial jetting state. The evaluation was made as to the number of cleaning operations needed to recover to the initial jetting state.
A: Recovered with 1 cleaning operation
B: Recovered with 2 to 3 cleaning operations
C: No recovery even with 3 or more cleaning operations
- Storage Stability -
Each ink was put into a polyethylene container, tightly sealed, and stored for 3 weeks at a temperature of 70°C. After the storage, the properties of particle diameters, surface tension, and viscosity were measured and evaluation was made as to the amount of change observed from the initial property states in the following manner.
A: Particle diameter, surface tension and viscosity all changed less than 5%
B: Particle diameter, surface tension and viscosity all changed less than 10%
C: Particle diameter, surface Tension and viscosity all changed less than 30%
D: At least one of particle diameter, surface tension and
viscosity changed 30% or more
Table 1
Figure imgf000045_0001
Reference Sings List
20: Ink cartridge
42·' Liquid absorber
43: Case
44: Upper covering member
45- Liquid-supplying port
46: Seal ring
47 '· Atmosphere -opened port
48· Groove
49: Cartridge housing
50: Cap member 51: Liquid leakage-preventing protrusion
55^ Seal member
71· Cartridge-positioning portion
81: Cartridge-detaching protrusion 81a: Cartridge-detaching hook
82: Cartridge-detaching dent
A: Space

Claims

1. An inkjet recording ink comprising:
a pigment dispersion liquid containing at least a first carbon black and a dispersant,
a second carbon black,
a penetrant,
a wetting agent, and
water,
wherein the first carbon black has an average particle diameter D50 of 70 nm to 180 nm as measured by a dynamic light scattering method and has a particle diameter standard deviation equal to or smaller than 1/2 of the average particle diameter,
wherein the dispersant is a condensate of naphthalene sulfonic acid and formalin,
wherein the second carbon black is carbon black coated with a resin, and
wherein the penetrant is 2-ethyl- l, 3"hexandiol.
2. The inkjet recording ink according to claim 1, further comprising a polyoxyalkylene derivative.
3. The inkjet recording ink according to claim 2, wherein the polyoxyalkylene derivative is a polyoxyalkylene derivative represented by the following General Formula:
Figure imgf000048_0001
where n is in the range of 8 to 9.
4. The inkjet recording ink according to any one of claims 1 to 3, further comprising an aqueous polyurethane resin.
5. The inkjet recording ink according to claim 4, wherein the aqueous polyurethane resin is an anionic self-emulsifying ether polyurethane.
6. The inkjet recording ink according to one of claims 4 and
5, wherein the aqueous polyurethane resin has an acid value of 40 mgKOH/g to 120 mgKOH/g.
7. The inkjet recording ink according to any one of claims 1 to 6, wherein the amount of 2-ethyl- l, 3"hexandiol is 0.1% by mass to 10% by mass.
8. An ink cartridge comprising:
the inkjet recording ink according to any one of claims 1 to 7, and
a container,
wherein the inkjet recording ink is housed in the
container.
PCT/JP2010/065679 2009-09-09 2010-09-06 Inkjet recording ink and ink cartridge WO2011030880A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080039935.0A CN102575118B (en) 2009-09-09 2010-09-06 Inkjet recording ink and ink cartridge
US13/391,905 US8770735B2 (en) 2009-09-09 2010-09-06 Inkjet recording ink and ink cartridge
EP10815473.3A EP2475727A4 (en) 2009-09-09 2010-09-06 Inkjet recording ink and ink cartridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009208593 2009-09-09
JP2009-208593 2009-09-09

Publications (1)

Publication Number Publication Date
WO2011030880A1 true WO2011030880A1 (en) 2011-03-17

Family

ID=43732545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065679 WO2011030880A1 (en) 2009-09-09 2010-09-06 Inkjet recording ink and ink cartridge

Country Status (5)

Country Link
US (1) US8770735B2 (en)
EP (1) EP2475727A4 (en)
JP (1) JP5593969B2 (en)
CN (1) CN102575118B (en)
WO (1) WO2011030880A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136037A1 (en) * 2010-04-30 2011-11-03 Ricoh Company, Ltd. Inkjet recording ink and inkjet recording device using the same
EP2507328A1 (en) * 2009-12-03 2012-10-10 Ricoh Company, Ltd. Inkjet recording ink set and ink cartridge, and recording device, image forming method, and image-formed article using such ink set
CN103160164A (en) * 2011-12-08 2013-06-19 株式会社理光 Inkjet recording ink
EP2650339A1 (en) * 2012-04-13 2013-10-16 Ricoh Company, Ltd. Ink set and inkjet recording method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2061846B1 (en) * 2006-09-15 2015-10-07 Ricoh Company, Ltd. Ink for inkjet recording, ink set for inkjet recording, ink media set for inkjet recording, ink cartridge, inkjet recording method, and inkjet recording apparatus
JP5757405B2 (en) 2011-04-01 2015-07-29 株式会社リコー Inkjet recording ink set, ink cartridge using the same, inkjet recording apparatus, image forming method, and image formed article
JP2013060563A (en) * 2011-09-15 2013-04-04 Ricoh Co Ltd Inkjet recording ink, cartridge, inkjet recording apparatus, image forming method, and image-recorded matter
JP5846545B2 (en) * 2011-12-08 2016-01-20 株式会社リコー Ink for inkjet recording
JP2013159711A (en) 2012-02-06 2013-08-19 Ricoh Co Ltd Inkjet recording ink set, pigment ink, as well as recording device and recorded article using ink set and pigment ink
JP6051840B2 (en) 2012-03-19 2016-12-27 株式会社リコー Ink jet recording ink, ink cartridge, ink jet recording method, ink jet recording apparatus, and ink recorded matter
JP5942535B2 (en) 2012-03-28 2016-06-29 株式会社リコー Ink jet recording ink, ink cartridge, ink jet recording apparatus, and image formed product
JP5910248B2 (en) 2012-03-30 2016-04-27 株式会社リコー Ink jet recording ink, ink cartridge, ink jet recording apparatus, and image formed product
JP5966724B2 (en) * 2012-07-25 2016-08-10 株式会社リコー Ink jet recording ink, ink cartridge, and ink jet recording apparatus
JP6015913B2 (en) 2012-09-14 2016-10-26 株式会社リコー Ink jet recording ink, ink cartridge, ink jet recording apparatus, image forming method, and image formed article
BR112015008333B1 (en) * 2012-10-15 2021-10-05 Sun Chemical Corporation PRINTING INK OR COATING TO IMPROVE THE COLOR PROPERTIES AND STAINING METHODS OF A SUBSTRATE IN CONTACT WITH PRINTING APPLICATIONS
JP6171548B2 (en) * 2013-05-14 2017-08-02 セイコーエプソン株式会社 Ink jet recording apparatus and ink jet recording method
WO2016063891A1 (en) * 2014-10-21 2016-04-28 株式会社Screenホールディングス Pigment composition, and aqueous ink composition for inkjet printing
JP2017014337A (en) * 2015-06-29 2017-01-19 株式会社リコー Ink, ink cartridge, liquid discharge device, and recorded matter
TWI604628B (en) * 2015-09-02 2017-11-01 原相科技股份有限公司 Optical detecting module with great light utilization efficiency
ES2835775T3 (en) * 2015-12-18 2021-06-23 Kao Corp Method for producing an aqueous dispersion of pigments
JP6313503B1 (en) 2017-04-21 2018-04-18 東洋インキScホールディングス株式会社 Water-based inkjet ink and method for producing printed matter
JP7340430B2 (en) * 2019-02-06 2023-09-07 日本化薬株式会社 Ink, inkjet recording method and recording media
WO2020162270A1 (en) * 2019-02-06 2020-08-13 日本化薬株式会社 Ink, inkjet recording method and recording media

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123097A (en) * 1999-10-28 2001-05-08 Kao Corp Aqueous ink for ink jet recording
JP2006321895A (en) * 2005-05-18 2006-11-30 Sony Corp Recording liquid and method for recording
JP2009149815A (en) * 2007-12-21 2009-07-09 Ricoh Co Ltd Ink for inkjet recording, and ink cartridge, inkjet recording method, inkjet recording device and ink recorded material
JP2009173805A (en) * 2008-01-25 2009-08-06 Ricoh Co Ltd Inkjet recording ink, ink cartridge, inkjet printing device, and image forming method

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56147871A (en) 1980-04-17 1981-11-17 Canon Inc Recording solution
US5085698A (en) 1990-04-11 1992-02-04 E. I. Du Pont De Nemours And Company Aqueous pigmented inks for ink jet printers
US5221334A (en) 1990-04-11 1993-06-22 E. I. Du Pont De Nemours And Company Aqueous pigmented inks for ink jet printers
JP2899088B2 (en) 1990-08-31 1999-06-02 キヤノン株式会社 Ink jet ink, method of manufacturing the same, and ink jet recording method using such ink
JPH05239392A (en) 1992-03-02 1993-09-17 Nippon Paint Co Ltd Water-based ink composition for ink jet
JP3405817B2 (en) 1994-06-20 2003-05-12 オリヱント化学工業株式会社 Aqueous pigment ink and method for producing the same
JPH0881646A (en) 1994-09-14 1996-03-26 Mita Ind Co Ltd Ink
US5571311A (en) 1994-12-15 1996-11-05 Cabot Corporation Ink jet ink formulations containing carbon black products
JPH08283633A (en) 1995-04-10 1996-10-29 Seiko Epson Corp Image-forming ink and its production
JPH08333531A (en) 1995-06-07 1996-12-17 Xerox Corp Water-base ink-jet ink composition
JP3379319B2 (en) 1996-01-22 2003-02-24 東洋インキ製造株式会社 Ink jet ink and method for producing the same
JP2000063727A (en) 1998-08-25 2000-02-29 Fujitsu Ltd Printing liquid
JP4016510B2 (en) 1998-11-06 2007-12-05 富士ゼロックス株式会社 Inkjet recording liquid and inkjet recording method
JP2001081366A (en) 1999-09-10 2001-03-27 Fuji Xerox Co Ltd Recording liquid for ink printer, its production and method for recording image
DE19943668A1 (en) 1999-09-13 2001-03-15 Rwe Dea Ag Surfactant composition containing gemini surfactants and co-amphiphiles, their preparation and their use
JP2002003767A (en) 2000-06-23 2002-01-09 Canon Inc Ink, ink jet printing method, ink cartridge, printing unit, ink set and image printer
CN100386215C (en) * 2001-09-20 2008-05-07 株式会社理光 Ink jet recording method, recording device, ink/ recording medium set, recording matter
US6786959B2 (en) 2002-04-18 2004-09-07 Ricoh Company Limited Pigment dispersion, method for preparing the pigment dispersion, inkjet ink using the pigment dispersion, method for preparing the inkjet ink, ink cartridge containing the inkjet ink, image forming method and apparatus using the inkjet ink, and print image produced by the image forming method and apparatus
WO2004018211A1 (en) 2002-06-24 2004-03-04 Ricoh Company, Ltd. Ink-jet recording apparatus and ink-jet recording method
JP4389436B2 (en) 2002-10-02 2009-12-24 セイコーエプソン株式会社 Water-based ink
DE60315578T2 (en) 2002-10-29 2008-05-21 Ricoh Co., Ltd. An ink jet printing ink, ink cartridge containing the ink, an ink jet recording apparatus and method containing the ink, image formed by the method
JP2005105227A (en) 2003-10-02 2005-04-21 Konica Minolta Holdings Inc Aqueous ink for inkjet
JP2005281691A (en) 2004-03-05 2005-10-13 Canon Inc Ink composition, production method of ink composition, and liquid imparting method and unit using ink composition
JP4696468B2 (en) 2004-04-28 2011-06-08 Dic株式会社 Aqueous pigment dispersion for water-based ink for ink-jet recording and water-based ink for ink-jet recording
JP2006008858A (en) 2004-06-25 2006-01-12 Canon Inc Ink set for inkjet recording, inkjet recording device and inkjet recording method
JP2006188626A (en) 2005-01-07 2006-07-20 Konica Minolta Medical & Graphic Inc Method for producing pigment dispersion, active light-curable ink for ink jet and composition thereof
JP2006219584A (en) 2005-02-10 2006-08-24 Seiko Epson Corp Water-based carbon black dispersion, method for producing the same and water-based ink
JP5116002B2 (en) 2005-03-17 2013-01-09 株式会社リコー Water-based pigment dispersion manufacturing method, water-based pigment ink manufacturing method, ink cartridge using the ink, ink jet recording apparatus, image forming method, and image formed product thereby
JP2006282781A (en) 2005-03-31 2006-10-19 Seiko Epson Corp Water-based ink
DE602006014325D1 (en) 2005-06-01 2010-07-01 Ricoh Kk Pigment dispersion, ink for ink-jet printing containing this dispersion, preparation method for pigment dispersion and ink-using printing method
US20090114121A1 (en) 2005-10-20 2009-05-07 Ricoh Company, Ltd. Recording ink, recording medium, ink media set, ink recorded matter, ink jet recording method, and ink jet recording apparatus
JP5510696B2 (en) 2005-10-24 2014-06-04 株式会社リコー Ink for recording, ink set including the ink, recording method using the ink or ink set, recording apparatus and recorded matter, and ink cartridge
JP4928110B2 (en) 2005-10-26 2012-05-09 株式会社リコー Ink set, ink cartridge, ink jet recording apparatus, and ink jet recording method
JP2007144975A (en) 2005-10-26 2007-06-14 Ricoh Co Ltd Inkjet recording medium and recording method
JP2007186642A (en) 2006-01-16 2007-07-26 Seiko Epson Corp Ink composition, recording method using the same, and recorded article
US20070197685A1 (en) 2006-01-18 2007-08-23 Tamotsu Aruga Recording ink as well as ink media set, ink cartridge, ink recorded matter, inkjet recording apparatus and inkjet recording method
CN101454164A (en) 2006-04-18 2009-06-10 株式会社理光 Inkjet media, recording method, recording apparatus, ink-media set, and ink recorded matter
DE602007005423D1 (en) 2006-08-04 2010-05-06 Ricoh Kk Ink-jet ink, process for producing the same, ink cartridge, ink-jet image recording method and image
DE602007004150D1 (en) 2006-08-11 2010-02-25 Ricoh Kk Pigment dispersion, inkjet ink with the pigment dispersion, image forming method and image forming apparatus
EP2061846B1 (en) 2006-09-15 2015-10-07 Ricoh Company, Ltd. Ink for inkjet recording, ink set for inkjet recording, ink media set for inkjet recording, ink cartridge, inkjet recording method, and inkjet recording apparatus
CN101378912B (en) 2006-09-19 2010-12-08 株式会社理光 Ink, ink cartridge, ink jet recording apparatus and method, and fixation temperature control apparatus
CN101379150B (en) 2006-09-19 2012-05-23 株式会社理光 Recording ink, ink media set, ink cartridge, ink recorded matter, inkjet recording apparatus, and inkjet recording method
EP2097270B1 (en) 2006-12-27 2015-04-22 Ricoh Company, Ltd. Ink-media set, ink composition, ink cartridge, inkjet recording method, inkjet recording apparatus, and ink recorded matter
US8096651B2 (en) 2007-03-19 2012-01-17 Ricoh Company, Ltd. Ink-jet recording method, ink, ink cartridge, recording apparatus, and recorded matter
JP5224092B2 (en) 2007-09-14 2013-07-03 株式会社リコー Ink for recording, ink media set, ink cartridge, ink record, ink jet recording apparatus, and ink jet recording method
JP5360455B2 (en) 2007-11-26 2013-12-04 株式会社リコー Inkjet recording ink, inkjet recording ink set, inkjet recording ink-media set, ink cartridge, inkjet recording method, inkjet recording apparatus
JP5534160B2 (en) * 2009-12-03 2014-06-25 株式会社リコー Inkjet recording ink set, ink cartridge, recording apparatus using the same, image forming method, and image formed product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123097A (en) * 1999-10-28 2001-05-08 Kao Corp Aqueous ink for ink jet recording
JP2006321895A (en) * 2005-05-18 2006-11-30 Sony Corp Recording liquid and method for recording
JP2009149815A (en) * 2007-12-21 2009-07-09 Ricoh Co Ltd Ink for inkjet recording, and ink cartridge, inkjet recording method, inkjet recording device and ink recorded material
JP2009173805A (en) * 2008-01-25 2009-08-06 Ricoh Co Ltd Inkjet recording ink, ink cartridge, inkjet printing device, and image forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2475727A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2507328A1 (en) * 2009-12-03 2012-10-10 Ricoh Company, Ltd. Inkjet recording ink set and ink cartridge, and recording device, image forming method, and image-formed article using such ink set
US9056995B2 (en) 2009-12-03 2015-06-16 Ricoh Company, Ltd. Inkjet recording ink set and ink cartridge, and recording device, image forming method, and image-formed article using such ink set
EP2507328A4 (en) * 2009-12-03 2014-10-01 Ricoh Co Ltd Inkjet recording ink set and ink cartridge, and recording device, image forming method, and image-formed article using such ink set
WO2011136037A1 (en) * 2010-04-30 2011-11-03 Ricoh Company, Ltd. Inkjet recording ink and inkjet recording device using the same
JP2011231265A (en) * 2010-04-30 2011-11-17 Ricoh Co Ltd Inkjet recording ink and recording device using the same, and recording material
US9045659B2 (en) 2010-04-30 2015-06-02 Ricoh Company, Ltd. Inkjet recording ink and inkjet recording device using the same
US8815002B2 (en) 2011-12-08 2014-08-26 Ricoh Company, Ltd. Inkjet recording ink
CN103160164A (en) * 2011-12-08 2013-06-19 株式会社理光 Inkjet recording ink
CN103160164B (en) * 2011-12-08 2015-07-01 株式会社理光 Inkjet recording ink
CN103374252A (en) * 2012-04-13 2013-10-30 株式会社理光 Ink set and inkjet recording method
CN103374252B (en) * 2012-04-13 2015-01-28 株式会社理光 Ink set and inkjet recording method
US8956451B2 (en) 2012-04-13 2015-02-17 Ricoh Company, Ltd. Ink set and inkjet recording method
EP2650339A1 (en) * 2012-04-13 2013-10-16 Ricoh Company, Ltd. Ink set and inkjet recording method

Also Published As

Publication number Publication date
US8770735B2 (en) 2014-07-08
US20120154492A1 (en) 2012-06-21
CN102575118B (en) 2014-07-30
JP2011080041A (en) 2011-04-21
CN102575118A (en) 2012-07-11
JP5593969B2 (en) 2014-09-24
EP2475727A1 (en) 2012-07-18
EP2475727A4 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US8770735B2 (en) Inkjet recording ink and ink cartridge
CA2831550C (en) Inkjet recording ink set, ink cartridge, inkjet recording device, inkjet recording method, and image formed matter
US9045659B2 (en) Inkjet recording ink and inkjet recording device using the same
US8529048B2 (en) Inkjet ink, ink cartridge, image forming device, image forming method, and image formed matter
JP5729142B2 (en) Ink jet recording ink, ink cartridge, ink jet recording apparatus, ink jet recording method, and ink recorded matter
WO2007022162A1 (en) Improved pigment ink jet ink composition
JP2012140476A (en) Aqueous inkjet ink
US9303170B2 (en) Aqueous pigment dispersions with components to interact with cellulose
JP7392292B2 (en) Water-based ink for inkjet recording
JP2008144098A (en) Aqueous pigment dispersion and ink composition using the same
JP2018503719A (en) Carbon black pigment for improved durability
JP2005350561A (en) Pigment ink, ink set using the same, ink cartridge, printing unit, image-printing device and inkjet-printing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039935.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815473

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010815473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13391905

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE