WO2011029261A1 - 智控涡轮流量计 - Google Patents

智控涡轮流量计 Download PDF

Info

Publication number
WO2011029261A1
WO2011029261A1 PCT/CN2010/000113 CN2010000113W WO2011029261A1 WO 2011029261 A1 WO2011029261 A1 WO 2011029261A1 CN 2010000113 W CN2010000113 W CN 2010000113W WO 2011029261 A1 WO2011029261 A1 WO 2011029261A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
impeller
ultrasonic probes
turbine flowmeter
regulating valve
Prior art date
Application number
PCT/CN2010/000113
Other languages
English (en)
French (fr)
Inventor
卞尧辉
Original Assignee
南京西奥仪表测控有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京西奥仪表测控有限公司 filed Critical 南京西奥仪表测控有限公司
Publication of WO2011029261A1 publication Critical patent/WO2011029261A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/10Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects using rotating vanes with axial admission

Definitions

  • the present invention relates to the field of fluid measuring devices, and more particularly to a smart turbine flow meter that can be redundantly measured.
  • the object of the present invention is to provide an intelligently controlled turbine flowmeter that can be redundantly measured.
  • the turbine flowmeter In the process of measuring and controlling the turbine flowmeter, when the impeller jams, the fault cannot be continuously measured, the pipeline has many leak points, and the maintenance is not timely and the trade dispute is easily generated. problem.
  • the present invention adopts the following technical solutions to solve the above technical problems, and an intelligently controlled turbine flowmeter capable of redundant measurement, comprising a casing, an impeller, a signal converter and a regulating valve, the impeller is installed in the casing, and the regulating valve
  • the utility model is integrally installed at one end of the casing, and the signal converter processes the measurement and control signals, and further comprises two ultrasonic probes, which are integrally mounted and fixed on the casing.
  • Two ultrasonic probes are fixedly mounted on the housing between the impeller and the adjustment cutting, the ultrasonic probes are mounted at an angle of 45 degrees to the axial direction of the housing, respectively mounted on both sides of the radial direction of the housing, and two ultrasonic probes
  • the axial centerlines are aligned and remain in the same plane in the axial direction of the housing.
  • Ultrasonic probes can be threaded or soldered.
  • the ultrasonic probe can realize the redundant measurement of the flow rate of the fluid.
  • the common flow circuit module compares the turbine flowmeter signal with the ultrasonic probe signal, and then continues to measure with the ultrasonic probe.
  • the utility model has the advantages that the integrated turbine flowmeter, the regulating cutting and the ultrasonic probe structure are adopted, and the continuous metering can be realized when the turbine flowmeter impeller is stuck, the trade settlement dispute is reduced, and the maintenance reaction time of the turbine flowmeter is increased. Reduce the leakage point of the flow measurement and control pipeline.
  • Fig. 1 is a front elevational view showing the structure of an embodiment of the present invention.
  • FIG. 2 is a top plan view of a structure of an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of the A direction according to an embodiment of the present invention. Among them: 1-shell, 2-position housing, 3-signal converter, 4-regulating valve, 5, 6-ultrasonic probe, 7-impeller.
  • the present embodiment is a redundantly measurable intelligently controlled turbine flow meter including a housing 1, an impeller 7, a signal converter 3, an adjustment cut 4, and an ultrasonic probe 5, 6.
  • the impeller 7 is disposed in the casing 1
  • the valve core of the regulating valve 4 is disposed in a lengthened casing 1.
  • the one end of the positioning casing 2 is integrally connected with the end of the casing 1 where the spool is located through the flange, and the casing 1 and The other end of the positioning shell 2 is also provided with a flange for connection with the pipeline, and the adjustment of the cutting 4 is selected as the electric adjustment cutting, and the pneumatic or hydraulic adjustment cutting can be selected according to the measurement and control requirements, and the ultrasonic probes 5 and 6 are in the axial direction of the casing 1 Mounted at a 45-degree angle, mounted on both sides of the housing 1 in the radial direction, and the axial centerlines of the two ultrasonic probes 5, 6 are aligned and held in the same plane in the axial direction of the housing 1, the ultrasonic probes 5, 6 and The housing 1 is screwed, the ultrasonic probes 5, 6 are provided with a protective sleeve, and the ultrasonic probes 5, 6 can also be provided with a protective sleeve.
  • the flow signal of the turbine flowmeter is processed by the signal converter 3 and combined with the secondary instrument for intelligent display, remote transmission, communication and measurement and control through the regulating valve; the ultrasonic probe 5, 6 is normally in the state of electrified redundancy, when the impeller of the turbine flowmeter 7 When the jam occurs, the turbine flow meter signal and the ultrasonic probe signal are compared by the comparison circuit module provided in the signal converter 3, so that the signal converter 3 selects the measured value of the ultrasonic probe 5, 6 and never causes The impeller 7 of the turbine flow meter interrupts the flow measurement and accumulation, which is beneficial to the maintenance time without affecting the feeding, eliminating the flow metering error. Trade disputes, in addition to the integrated mounting structure of the ultrasonic probes 5, 6 on the housing 1, the leakage point of the flow measuring system is well reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Electromagnetism (AREA)

Description

技术领域
本发明涉及一种流体测量装置领域,特别是一种可冗余测量的智 控涡轮流量计。
背景技术
随着新能源的应用, 在城市、 乡镇已经广泛地使用自来水、管道 热水和管道燃气, 特别是天然气这一新能源的应用给用户带来了方 便, 现阶段天然气流量测量仪表的种类较多, 涡轮流量计就是其中的 一种, 由于涡轮流量计的结构紧凑、 重复性好、 范围度宽、 精度高、 元件零点漂移小,抗干扰能力好的特点得到了在天然气流量计量领域 上的广泛的应用。但是, 普通涡轮流量计的缺点也在天然气的计量过 程中日益突出,主要是目前涡轮流量计的叶轮在卡堵时由于不能测量 和计量, 造成计量数据和实际流量发生偏差, 引起贸易纠纷, 目前, 也有通过多加装一块相同仪表的方法来解决, 但这种方法加装复杂、 增加了多处泄漏点、大大提高了设备购置的成本。 因此普通涡轮流量 计存在的问题需要加以解决。
发明内容
本发明的目的是提供一种可冗余测量的智控涡轮流量计,解决涡 轮流量计测控过程中,叶轮卡塞故障时不能连续计量,管线泄漏点多, 检修不及时极易产生贸易纠纷的问题。 为实现上述目的, 本发明采用如下技术方案解决以上技术问题, 一种可冗余测量的智控涡轮流量计, 包括壳体、 叶轮、信号转换器和 调节阀, 叶轮安装在壳体内, 调节阀一体化安装在壳体的一端, 信号 转换器对测控信号进行处理, 还包括两只超声波探头, 分别一体化地 安装固定在壳体上。
两只超声波探头固定安装在叶轮和调节伐之间的壳体上,所述超 声波探头同壳体的轴向成 45度角安装,分别安装在壳体径向的两侧, 并且两只超声波探头的轴向中心线对齐, 保持在壳体轴向同一平面 内。
超声波探头可以螺纹或焊接安装。
超声波探头可以实现对流体的流量进行冗余测量,当涡轮流量计 出现叶轮卡塞故障时,通过通用电路模块对涡轮流量计信号和超声波 探头信号进行比对后, 实现用超声波探头继续计量。
本发明的有益效果是采用一体化的涡轮流量计、调节伐和超声波 探头结构, 实现在涡轮流量计叶轮卡塞故障时也能够连续计量, 减少 贸易结算纠纷, 增加涡轮流量计的检修反应时间, 减少了流量测控管 线的泄漏点。
附图说明
图 1为本发明实施例的结构主视图。
图 2为本发明实施例的结构俯视图。
图 3为本发明实施例的 A向剖面结构示意图。 其中: 1-壳体, 2-定位壳, 3-信号转换器, 4-调节阀, 5、 6-超 声波探头, 7-叶轮。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
本实施例如图 1、 图 2、 图 3所示, 一种可冗余测量的智控涡轮 流量计, 包括壳体 1、 叶轮 7、 信号转换器 3、 调节伐 4和超声波探 头 5、 6。 叶轮 7设置在壳体 1 内, 调节阀 4的阀芯设置在一段加长 的壳体 1内,定位壳 2的一端与阀芯所在的壳体 1一端通过法兰连为 一体, 壳体 1和定位壳 2的另一端也设有法兰以便和管道连接, 调节 伐 4选择为电动调节伐, 也可根据测控需要选择气动或液动调节伐, 超声波探头 5、 6同壳体 1的轴向成 45度角安装, 分别安装在壳体 1 径向的两侧, 并且两只超声波探头 5、 6的轴向中心线对齐, 保持在 壳体 1轴向同一平面内, 超声波探头 5、 6和壳体 1通过螺紋连接, 超声波探头 5、 6自带保护套管, 也可以给超声波探头 5、 6另设保护 套管。
涡轮流量计的流量信号通过信号转换器 3 处理后结合二次仪表 进行智能显示、 远传、 通信和通过调节阀进行测控; 超声波探头 5、 6平时处于通电冗余状态, 当涡轮流量计的叶轮 7因为卡塞出现故障 时,涡轮流量计信号和超声波探头信号通过设置在信号转换器 3中的 比较电路模块进行对比, 使信号转换器 3选择采用超声波探头 5、 6 的测量值, 从而不因涡轮流量计的叶轮 7 卡塞而中断流量测量和累 计, 有利于争取检修时间而又不影响供料, 消除流量计量误差引起的 贸易纠纷, 另外超声波探头 5、 6在壳体 1上一体化的安装结构很好 地减少了流量测量系统的泄漏点。

Claims

权 利 要 求
1、一种可冗余测量的智控涡轮流量计,包括壳体(1)、叶轮(7)、 信号转换器 (3) 和调节阀 (4), 叶轮 (7) 安装在壳体 (1) 内, 调 节阀 (4) 一体化安装在壳体 (1) 的一端, 信号转换器 (3) 对测控 信号进行处理, 其特征是: 还包括两只超声波探头 (5、 6), 分别一 体化 ¾ ^安装固定在壳体 (1) 上。
2、 根据权利要求 1所述的一种可冗余测量的智控涡轮流量计, 其特征是: 两只超声波探头 (5、 6) 固定安装在叶轮 (7) 和调节伐
(4) 之间的壳体 (1) 上, 所述超声波探头 (5、 6) 同壳体 (1) 的 轴向成 45度角安装, 分别安装在壳体(1)径向的两侧, 并且两只超 声波探头 (5、 6) 的轴向中心线对齐, 保持在壳体 (1) 轴向同一平 面内。
3、 根据权利要求 2所述的一种可冗余测量的智控涡轮流量计, 其特征是: 超声波探头 (5、 6) 可以螺纹或悍接安装。
PCT/CN2010/000113 2009-09-09 2010-01-25 智控涡轮流量计 WO2011029261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100348324A CN101639371B (zh) 2009-09-09 2009-09-09 可冗余测量的智控涡轮流量计
CN200910034832.4 2009-09-09

Publications (1)

Publication Number Publication Date
WO2011029261A1 true WO2011029261A1 (zh) 2011-03-17

Family

ID=41614465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000113 WO2011029261A1 (zh) 2009-09-09 2010-01-25 智控涡轮流量计

Country Status (2)

Country Link
CN (1) CN101639371B (zh)
WO (1) WO2011029261A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6474682B2 (ja) * 2015-05-14 2019-02-27 株式会社キーエンス 超音波流量スイッチ
CN105466501A (zh) * 2016-02-01 2016-04-06 唐山海森电子股份有限公司 类机翼涡轮无线流量计
CN117405188B (zh) * 2023-12-14 2024-03-12 益都智能技术(北京)股份有限公司 一种基于物联网远传超声波水表

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2234630Y (zh) * 1994-08-28 1996-09-04 余晓冬 管道流量自动调控装置
CN2259619Y (zh) * 1995-10-13 1997-08-13 同济大学 超声波速差法流量计
JP2000230844A (ja) * 1999-02-10 2000-08-22 Oval Corp 超音波式渦流量計
CN2462357Y (zh) * 2000-09-20 2001-11-28 温州超达流量仪表有限公司 一种气体流量表
CN1455231A (zh) * 2002-04-30 2003-11-12 深圳市建恒工业自控系统有限公司 谐振式超声波传输时间测量方法及应用
CN2881561Y (zh) * 2006-03-31 2007-03-21 张力新 一种超声水表、超声流量计、超声热量表用测量管段
JP2007132656A (ja) * 2006-12-15 2007-05-31 Matsushita Electric Ind Co Ltd ガス保安装置
CN101004353A (zh) * 2007-01-16 2007-07-25 中国计量学院 一种用于超声波流量计时差交叉检测方法
JP2008128825A (ja) * 2006-11-21 2008-06-05 Toshiba Corp 超音波流量計
CN201269765Y (zh) * 2008-08-27 2009-07-08 威海市天罡仪表有限公司 超声流量计

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816443A3 (en) * 1999-03-17 2013-10-30 Panasonic Corporation Ultrasonic flow meter
CN1099023C (zh) * 2000-06-14 2003-01-15 北京三金智能仪表有限公司 燃气表的测控方法及其装置
CN2449203Y (zh) * 2000-11-22 2001-09-19 邵朋诚 组合式质量流量计
TR200604281U (tr) * 2006-08-10 2006-11-21 Elektromed Elektroni̇k Sanayi̇ Ve Sağlik Hi̇zmetleri̇li̇mi̇ted Şi̇rketi̇ Ultrasonik su sayacı

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2234630Y (zh) * 1994-08-28 1996-09-04 余晓冬 管道流量自动调控装置
CN2259619Y (zh) * 1995-10-13 1997-08-13 同济大学 超声波速差法流量计
JP2000230844A (ja) * 1999-02-10 2000-08-22 Oval Corp 超音波式渦流量計
CN2462357Y (zh) * 2000-09-20 2001-11-28 温州超达流量仪表有限公司 一种气体流量表
CN1455231A (zh) * 2002-04-30 2003-11-12 深圳市建恒工业自控系统有限公司 谐振式超声波传输时间测量方法及应用
CN2881561Y (zh) * 2006-03-31 2007-03-21 张力新 一种超声水表、超声流量计、超声热量表用测量管段
JP2008128825A (ja) * 2006-11-21 2008-06-05 Toshiba Corp 超音波流量計
JP2007132656A (ja) * 2006-12-15 2007-05-31 Matsushita Electric Ind Co Ltd ガス保安装置
CN101004353A (zh) * 2007-01-16 2007-07-25 中国计量学院 一种用于超声波流量计时差交叉检测方法
CN201269765Y (zh) * 2008-08-27 2009-07-08 威海市天罡仪表有限公司 超声流量计

Also Published As

Publication number Publication date
CN101639371A (zh) 2010-02-03
CN101639371B (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
CN102680034B (zh) 一种利用超声波进行流量测定的装置
CN201837418U (zh) 高精度宽量程一体化节流装置
WO2011029261A1 (zh) 智控涡轮流量计
CN202329696U (zh) 在线型智能弯管流量计
CN201476818U (zh) 可冗余测量的智控涡轮流量计
CN114993395A (zh) 一种可拆卸式超声波流量计管道及换能器安装结构
CN104655209A (zh) 一种带流量控制功能的超声波水表
CN105222838B (zh) 流量计壳体及流量计
CN220625459U (zh) 一种用于气体流量检测的空气流量标准器
CN203532944U (zh) 一种调压器阀位变送装置
CN104990606A (zh) 一种流量计量装置
CN217276339U (zh) 工业气体超声波流量计
CN2591580Y (zh) 一体化智能差压流量计
CN204043821U (zh) 基于三角反射形式的超声波流量计管段及其应用
CN101769776B (zh) 一种可在线维护的液位压力测量装置
CN210833689U (zh) 一种差压式流量计量系统
CN210570863U (zh) 一种油气回收超声波流量计
CN217058923U (zh) 一种管段式交叉8通道与显示分体式时差式流量计装置
CN202522273U (zh) 智能差压流量转换器
CN110646040A (zh) 一种超宽量程物联网超声波燃气表及使用方法
CN210293324U (zh) 一种微小流量型金属管浮子流量计
CN210291407U (zh) Cng加气机计量超差控制系统
CN209459835U (zh) 超声波水管微漏监控装置
CN213481616U (zh) 一种压力变送器调节组件
CN210268772U (zh) 气体质量流量计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10814863

Country of ref document: EP

Kind code of ref document: A1