WO2011027875A1 - 腸管バリア機能改善剤 - Google Patents

腸管バリア機能改善剤 Download PDF

Info

Publication number
WO2011027875A1
WO2011027875A1 PCT/JP2010/065180 JP2010065180W WO2011027875A1 WO 2011027875 A1 WO2011027875 A1 WO 2011027875A1 JP 2010065180 W JP2010065180 W JP 2010065180W WO 2011027875 A1 WO2011027875 A1 WO 2011027875A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
barrier function
intestinal
mice
intestinal barrier
Prior art date
Application number
PCT/JP2010/065180
Other languages
English (en)
French (fr)
Inventor
真嗣 福田
英博 藤
正平 服部
大野 博司
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to JP2011529963A priority Critical patent/JPWO2011027875A1/ja
Publication of WO2011027875A1 publication Critical patent/WO2011027875A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to an intestinal barrier function improving agent comprising a microorganism having a specific gene cluster, and a preventive and / or therapeutic agent for a disease associated with a decrease in the barrier function.
  • EHEC Enterohemorrhagic Escherichia coli EC
  • Gnotobiotic mice are a model system suitable for analyzing the infection mechanism of O157, and studies using this model system show that Shiga toxin (Stx) ⁇ produced by O157 is a decisive factor in infection death.
  • Stx Shiga toxin
  • probiotic strains containing bifidobacteria have been reported to prevent this death from infection (Non-patent Documents 1 and 2). Although many of these probiotic strains appear to inhibit O157 growth and / or toxin production, the exact mechanism of such preventive effects remains unclear.
  • the object of the present invention is to provide a probiotic strain effective in preventing O157 infection death, to elucidate the mechanism of the preventive effect, and to use the probiotic strain based on the mechanism for other pharmaceutical uses.
  • An object of the present invention is to provide a new probiotic strain search means using the mechanism as an index.
  • mice with established non-preventive strains showed inflammation in the colon epithelium and apoptotic death of cells compared with mice with established preventive strains (prevented mice with O157 infection).
  • the present inventors determined and compared the whole genome sequences of the prophylactic strain and the non-preventive strain in order to elucidate the mechanism of sugar consumption / acetate mass production ability of the prophylactic strain.
  • Two loci present in the genome of ATP are completely deleted in the genome of non-preventive strains, and these loci are sugars of the ATP-binding cassette (ABC) type that contain fructose-specific sugar-binding proteins. We found that it encodes a component protein of the transporter.
  • ABSC ATP-binding cassette
  • an intestinal barrier function improving agent comprising, as an active ingredient, a living cell of a microorganism that can be resident in the intestine of a mammal, having an ability to produce an acetate from a saccharide transported into the cell by the ABC transporter.
  • the microorganism is a bacterium belonging to the genus Bifidobacterium or the genus Lactobacillus.
  • the saccharide is fructose.
  • test sample consists of each nucleotide sequence shown in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 in a test sample containing a microorganism that can be resident in the intestine of a mammal Detecting a gene encoding a protein constituting the ABC transporter, or one or more genes selected from the group consisting of each ortholog of the gene, or an expression product thereof (2) detecting the gene or the expression product thereof
  • the test sample is determined to contain a candidate microorganism having an intestinal barrier function improving action.
  • intestinal resident microorganisms having a specific gene cluster of the present invention By ingesting intestinal resident microorganisms having a specific gene cluster of the present invention as probiotics, sugar consumption in the intestinal tract, particularly the colon, is increased, acetate concentration is increased, and the barrier function is reduced. Inflammation and apoptosis of the epithelial cells are suppressed, and barrier permeation of various pathogenic microorganisms including O157 and / or toxins produced by them or allergen substances can be prevented. In addition, microorganisms effective for improving the intestinal barrier function can be searched using the presence or absence of the gene cluster in the microorganism genome as an index.
  • FIG. 1a shows changes in the survival rate of sterile (GF) mice ( ⁇ ), BL + O157-fixed mice ⁇ ( ⁇ ), and BA + O157-fixed mice ⁇ ( ⁇ ) administered with O157 alone.
  • FIG. 1b-e shows in the intestinal tract of GF mice treated with O157 alone (O157; same as below), BL + O157-fixed mice (BL + O157; same as below), and BA + O157-fixed mice (BA + O157; same as below). The viable count of O157, Stx2 concentration, mucin and IgA amounts, and pH are shown.
  • FIG. 1f shows the serum Stx2 concentration of O157, BL + O157 and BA + O157 mice. **: P ⁇ 0.01 FIG.
  • FIG. 2 shows an immunohistochemical analysis of the mouse distal colon.
  • a shows hematoxylin-eosin sputum (HE) sputum staining of the mouse distal colon 5-7 days after O157 administration.
  • b shows immunostaining of the distal colon of BL + O157 mice and BA + O157 mice 7 days after administration of O157.
  • c shows HE stained wrinkles (top panel) wrinkles and TUNEL stained wrinkles (other panels) of the mouse distal colon 1 day after administration of O157.
  • the scale bar indicates 100 ⁇ m.
  • FIG. 3 shows the gene expression profile of mouse colon epithelium one day after O157 administration.
  • a shows a self-organizing map (SOM) and hierarchical cluster analysis HC (HCA) ⁇ ⁇ ⁇ ⁇ in transcriptome data.
  • b shows partial least square discriminant analysis analysis (PLS-DA) in the transcriptome data on the first day after O157 administration.
  • c shows the quantitative RT-PCR analysis of the gene which contributes to a main component in the 1st day after O157 administration.
  • FIG. 4 shows a gene network on the first day after administration of O157, as predicted from Ingenuity-Pathway analysis.
  • FIG. 5 shows fecal metabolite profiles and colonic epithelial gene expression profiles of prophylactic and non-preventive bifidobacteria-only mice.
  • b shows the organic acid concentration in mouse feces measured by HPLC. *: P ⁇ 0.05, **: p ⁇ 0.01.
  • FIG. 6 shows the signal intensity of the sugar region by 1 H-NMR and 1 H, 13 C-NMR measurements.
  • FIG. 7 shows a comparison of gene expression profiles between BL isolated colon colon epithelium and BA isolated colon colon epithelium.
  • FIG. 8 shows a functional analysis of acetic acid contributing to prevention of cell death due to O157 infection using Caco-2 cells.
  • a shows the quantitative RT-PCR analysis result of three genes which increased in colon epithelium of preventive bifidobacteria colonization mouse
  • b shows transepithelial electrical resistance TER (TER) ⁇ of Caco-2 cells 16 hours after O157 infection.
  • c shows the number of dead cells in Caco-2 cells 8 hours after O157 infection.
  • FIG. 9 shows genomic profiling and metabolite profiling in five bifidobacterial strains.
  • a indicates the region encompassing the gene for the specific ABC sugar transporter in the sequenced bifidobacteria strain. The genes and their orientation are indicated by arrows. Gray bars indicate orthologous areas.
  • b shows the partial least square discriminant analysis (PLS-DA) in the metabolomic data of the bifidobacteria strain
  • c shows fructose consumption and acetic acid production after 12 hours of culture in four Bifidobacteria strains.
  • PLS-DA partial least square discriminant analysis
  • 10a shows the results of quantitative RT-PCR analysis in which the expression of a COG gene specific to a preventive bifidobacteria was examined in the intestinal tract of BL and BF isolated mice.
  • b shows the quantitative RT-PCR analysis results of fructokinase in four Bifidobacteria strains.
  • the present invention provides an intestinal barrier function improving agent using probiotics.
  • Intestinal epithelial cells inhibit absorption of foreign substances, as well as an absorption function for taking up various nutrients contained in foods and an information transmission function for receiving stimuli from the luminal side and transmitting the information to the basement membrane side.
  • Tight junctions (TJ) which connect epithelial cells closely, physically impede permeation of substances other than low-molecular substances. If the barrier function of intestinal epithelial cells decreases for some reason, such as cell death or inflammatory response due to infection with pathogenic microorganisms, invasion of foreign substances such as pathogenic microorganisms, toxins, allergens, etc., infections, food poisoning, food allergies, etc. cause.
  • intestinal barrier function improvement means not only returning from a state in which the barrier function of the intestinal tract, that is, the physical substance permeation inhibiting function in the intestinal epithelium, to a more normal state, but also exogenous or intrinsic. It also includes the prophylactic meaning of preventing or suppressing the decrease in the intestinal barrier function due to sex factors.
  • the intestinal barrier function-improving agent of the present invention can be preferably used prophylactically because initial invasion of toxins due to reduced barrier function often causes fatal symptoms, such as O157 infection.
  • the intestinal tract serving as a target site of the barrier function improving agent of the present invention is not particularly limited as long as the barrier function is lowered or it is necessary to prevent the barrier function from being lowered, for example, small intestinal fistula (eg, jejunum, ileum), For example, many pathogenic microorganisms such as pathogenic Escherichia coli, Salmonella, Clostridium botulinum, etc. grow in the colon fistula (eg, colon, cecum).
  • small intestinal fistula eg, jejunum, ileum
  • pathogenic microorganisms such as pathogenic Escherichia coli, Salmonella, Clostridium botulinum, etc. grow in the colon fistula (eg, colon, cecum).
  • the intestinal barrier function improving agent of the present invention contains, as an active ingredient, living cells of microorganisms that can be resident in the intestine of mammals (hereinafter also referred to as “intestinal resident bacteria”).
  • intestinal resident bacteria living cells of microorganisms that can be resident in the intestine of mammals
  • intestinal resident microorganisms include, but are not limited to, bacteria and fungi such as yeast.
  • bacteria that perform lactic acid fermentation collectively called lactic acid bacteria (eg, Bifidobacterium, Lactobacillus, Leuconostoc, Enterococcus, Lactococcus, Pedio Bacteria belonging to the genus Pediococcus), bacteria belonging to the genus Streptococcus, bacteria belonging to the genus Eubacterium, yeasts (eg, brewer's yeast, etc.), more preferably Bifidobacterium Examples thereof include lactic acid bacteria belonging to the genus, Lactobacillus genus, Leuconostoc genus, particularly preferably bacteria belonging to the genus Bifidobacterium.
  • lactic acid bacteria eg, Bifidobacterium, Lactobacillus, Leuconostoc, Enterococcus, Lactococcus, Pedio Bacteria belonging to the genus Pediococcus
  • bacteria belonging to the genus Streptococcus bacteria belonging
  • bad bacteria that produce spoilage substances and carcinogenic substances such as Clostridium perfringens, Clostridium, Staphylococcus, Pseudomonas aeruginosa, Baionella, and Escherichia coli are not suitable for use in the present invention.
  • Lactobacillus bacteria, Streptococcus bacteria, yeast, etc. are distributed from the upper small intestine to the lower small intestine
  • Bifidobacterium bacteria, Eubacterium bacteria, etc. are distributed from the lower small intestine to the large intestine.
  • the intestinal resident bacteria to be used can be selected.
  • the intestinal resident bacteria which are active ingredients of the intestinal barrier function improving agent of the present invention include the following gene clusters (a) and / or (b): (A) a gene encoding a protein constituting an ABC transporter comprising the nucleotide sequences shown in SEQ ID NOs: 1, 3, 5 and 7, or a gene cluster comprising each ortholog of the gene (b) It has a gene cluster consisting of each nucleotide sequence shown in 9, 11, 13, 15, 17, and 19 that encodes a protein that constitutes an ABC transporter, or a gene cluster that includes each ortholog of the gene. It is characterized by.
  • Each nucleotide sequence shown in SEQ ID NOs: 1, 3, 5 and 7 is Bifidobacterium longum subsp.
  • BN Longum NCC2705
  • NC_004307.2 strain genome sequence
  • BL0033 (41952-42935)
  • BL0034 43076-44617
  • BL0035 (44619-45689)
  • BL0036 45686-46708 locus respectively
  • BL0033 encodes the periplasmic component of the ABC sugar transporter
  • BL0034 encodes the ATPase component of the transporter
  • BL0035 and BL0036 are both paralogs that encode the permease component of the transporter. is there.
  • the nucleotide sequences shown in SEQ ID NOs: 9, 11, 13, 15, 17 and 19 are BL1691 (2111349-2112299) and BL1692 (2112324-2113190 (complementary), respectively, in the genomic sequence of BN strain (NC_004307.2). Sequences)), BL1693 (positions 2113228-2114397 (complementary strand)), BL1694 (positions 2114649-2115806), BL1695 (positions 2115907-2117460) and BL1696 (positions 2117460-2118677) Yes, it forms a gene cluster (2111349-2118677) consisting of about 7.3 kb.
  • BL1692 and BL1695 are paralogs that encode the ATPase component of the ABC type sugar transporter, BL1694 encodes the periplasmic component of the transporter, BL1696 encodes the permease component, and BL1691 and BL1693 It encodes a transcriptional regulator.
  • the indigenous intestinal bacteria carrying the gene cluster of (a) and (b) into the genome other BN strain, for example, Bifidobacterium longum subsp longum (Bifidobacteriumlongum subsp. Longum) JCM 1217 T (hereinafter sometimes abbreviated as “BL”) strain, Bifidobacterium longum subsp. Infantis 157F (hereinafter sometimes abbreviated as “BF”)
  • BL Bifidobacterium longum subsp longum
  • BF Bifidobacterium longum subsp. Infantis 157F
  • the BL and BF strains have a gene cluster containing an ortholog of each gene of BL0033 to BL0036 and a gene cluster containing an ortholog of each gene of BL1691 to BL1696 in the genome.
  • the ortholog of each gene of BL0033 to BL0036 and BL1691 to BL1696 includes about 60% or more, preferably about the nucleotide sequence of each gene (SEQ ID NO: 2n-1 (n is an integer of 1 to 10)) and the overlapping region, A nucleotide sequence having a homology of about 70% or more, more preferably about 80% or more, more preferably about 90% or more, particularly preferably about 95% or more, and most preferably 97%.
  • Examples thereof include a base sequence that hybridizes and a sequence that encodes a protein having substantially the same function as the protein consisting of the amino acid sequence shown in SEQ ID NO: 2n (n is an integer of 1 to 10).
  • substantially the same function means a function as a periplasmic component, an ATPase component or a permease component of an ABC transporter, or a transcriptional regulator.
  • the stringent conditions are, for example, the conditions described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, such as 6 ⁇ SSC (sodium chloride / sodium citrate) / 45 ° C.
  • Hybridization followed by 0.2 ⁇ SSC / 0.1% SDS / 50-65 ° C. one or more times.
  • a person skilled in the art can easily perform the above-mentioned (a) and / or (b) from among known intestinal resident bacteria or newly isolated intestinal resident bacteria by the screening method of the present invention described later.
  • a strain having a gene cluster in the genome can be selected.
  • the above-mentioned (a) and / or (b) is obtained by searching the genome of intestinal resident bacteria whose entire genome sequence has been determined using a COG database that can be downloaded from the NCBI website. It is also possible to select a strain having the gene cluster (1) in the genome.
  • COG Clusters of Orthologous Groups
  • a set of genes composed of orthologs (species homologous genes) and paralogs (similar genes on the same genome) (Science, 278 (5338): 631 -7 (1997)).
  • BL0033 and BL1694 genes of BN strains are in the COG family: ABC-type sugar transporter periplasmic component (COG1879)
  • BL0034, BL1692 and BL1695 genes are in the COG family: ABC-type sugar transporter ATPase component (COG1129)
  • the BL0035, BL0036 and BL1696 genes are classified into the COG family: ABC-type sugar transporter permease component (COG1172)
  • the BL1691 and BL1693 genes are classified into the COG family: transcriptional regulator / sugar kinase (COG1940).
  • the genome sequence information of the candidate intestinal resident bacteria is accessed, the presence of the gene belonging to the COG is examined from the COG data list, and the gene of (a) and / or (b) is further determined from the position information of the gene
  • intestinal resident bacteria that can be used for the intestinal barrier function improving agent of the present invention can be selected.
  • the resident bacteria in the intestine that are active ingredients of the intestinal barrier function improving agent of the present invention include saccharides that are transported into cells by the ABC transporter contained in the cluster. From the above, it is further characterized by having the ability to produce acetate. Examples of the saccharide include fructose, ribose, mannose and the like, and fructose is preferable.
  • the intestinal resident bacteria used in the present invention metabolize the saccharide taken up by the transporter to produce acetate and release it to the outside of the cell, thereby causing an anti-inflammatory response and an anti-apoptotic action in the surrounding intestinal epithelial cells.
  • intestinal resident bacteria eg, Apoe, C3, Pla2g2a, etc.
  • genes eg, Apoe, C3, Pla2g2a, etc.
  • the ability of intestinal resident bacteria to produce acetate is determined by, for example, cultivating a test strain in a medium containing a labeled saccharide (eg, fructose) as a carbon source for a certain period of time (eg, 3-24 hours). And the amount of acetate produced can be detected.
  • a negative control an intestinal resident strain having no gene cluster of (a) and (b), for example, Bifidobacterium longum subsp.
  • BT Infantis JCM 1222 T
  • BA Bifidobacterium adolescentis JCM 1275 T
  • a test strain that consumes a significant amount of substrate saccharide and produces a high amount of acetate can be selected as an intestinal resident bacterium that can be used for the intestinal barrier function improving agent of the present invention.
  • Intestinal tract having the gene cluster of (a) and / or (b) in the genome and having the ability to produce acetate from a saccharide transported into the cell by the ABC transporter contained in the cluster
  • indigenous bacteria normally reside in the intestine of mammals that are hosts (eg, humans, cows, horses, pigs, sheep, goats, dogs, cats, rabbits, hamsters, guinea pigs, mice, rats, etc.) Since it coexists with this, it can be safely administered to mammals as a medicine or food (additive).
  • the intestinal barrier function improving agent of the present invention is suitable for diseases involving a decrease in intestinal barrier function, preferably pathogenic microorganisms, toxins, allergens, etc. Is useful for the prevention and / or treatment of diseases caused by penetrating the intestinal barrier and entering the bloodstream.
  • diseases include pathogenic Escherichia coli such as enterohemorrhagic Escherichia coli such as O157, pathogenic microbial infections such as Salmonella and Clostridium botulinum, inflammatory bowel disease, food allergy, etc. It is not limited to.
  • the intestinal resident bacteria of the present invention can be contained in the intestinal barrier function improving agent of the present invention in any form acceptable for pharmaceuticals or food processing.
  • the intestinal resident bacteria of the present invention can be cultured in a medium suitable for each strain.
  • a medium suitable for each strain for example, in the case of a lactic acid strain belonging to the genus Bifidobacterium or Lactobacillus, various media such as a milk medium, a medium containing milk components, or a semi-synthetic medium not containing them can be used.
  • An example of such a medium is a reduced skim milk medium obtained by reducing skim milk and then heat sterilizing.
  • the culture can be performed by static culture or neutralization culture with a constant pH control, but there is no particular limitation on the culture method as long as the bacteria grow well.
  • the microbial cells separated or collected from the lactic acid bacteria culture solution by filtration or centrifugation, or the lactic acid bacteria culture solution can be used as they are, or as a concentrate obtained by concentrating the medium.
  • the bacterial cells themselves they can be used in the form of viable cells, wet cells, dried fungi (obtained by spray drying, freeze drying, vacuum drying, drum drying, etc.).
  • the intestinal resident bacteria of the present invention may be used as a fermented product using them.
  • examples of fermented products include lactic acid bacteria beverages, sour milk, fermented milk, and yogurt.
  • the intestinal barrier function-improving agent of the present invention is a carrier, diluent or excipient that can be used as it is, or a pharmacologically acceptable cell (bacteria) or culture (fermented) of the intestinal resident bacteria of the present invention.
  • it can be formulated as a pharmaceutical composition, and can be administered orally or parenterally (eg, tube administration, enteral administration, etc.).
  • compositions for oral administration include solid or liquid dosage forms, specifically tablets (including dragees and film-coated tablets), pills, granules, powders, capsules (including soft capsules). Syrup, emulsion, suspension and the like.
  • Such a composition is produced by a known method and may contain a carrier, a diluent or an excipient usually used in the pharmaceutical field.
  • a carrier and excipient for tablets for example, lactose, starch, sucrose, and magnesium stearate are used.
  • a composition for parenteral administration for example, an injection, a suppository or the like is used.
  • the intestinal resident bacteria of the present invention can be prepared by suspending or emulsifying in a sterile aqueous liquid or oily liquid usually used for injection.
  • the aqueous liquid for injection for example, isotonic solution containing physiological saline, glucose and other adjuvants, and the like are used.
  • the oily liquid for example, sesame oil, soybean oil and the like are used.
  • the suppository used for rectal administration can be prepared by mixing the intestinal resident bacteria of the present invention with an ordinary suppository base.
  • the dosage of the intestinal barrier function improving agent of the present invention varies depending on the administration subject, target disease, symptom, administration route, etc., but is usually 0.5 to 10 g as a dry product per day for an adult, Can be administered separately.
  • each strain is administered as a viable bacteria per adult per person at a dose of 10 8 to 10 12 cfu / day, thereby achieving the intended effect of the present invention.
  • the intestinal resident bacteria of the present invention are established in the intestinal tract and exhibit a desired effect.
  • the intestinal barrier function improving agent of the present invention may contain other active ingredients as long as an undesirable interaction is not caused by blending with intestinal resident bacteria. Furthermore, the intestinal barrier function improving agent of the present invention may be used in combination with other drugs such as anti-inflammatory drugs, antibiotics, antiviral drugs, antitoxins, antiallergic drugs and the like depending on the target disease.
  • the intestinal barrier function improving agent of the present invention and the above agent may be administered to a subject at the same time or at different times.
  • preferable concomitant drugs for the intestinal barrier function improving agent of the present invention include substances (prebiotics) that promote the growth and / or metabolism of intestinal resident bacteria contained in the barrier function improving agent.
  • Saccharides eg, fructose, ribose, mannose, etc.
  • fructose, or oligosaccharides that are digested in the intestine to produce the saccharides, preferably 2-10 monosaccharides, preferably sucrose Lactose fructose oligosaccharide, fructooligosaccharide and the like are mentioned as prebiotics used in combination with the intestinal barrier function improving agent of the present invention.
  • These prebiotics can be blended with the intestinal barrier function-improving agent of the present invention together with the intestinal resident bacteria of the present invention, or can be administered to a subject as separate preparations at the same time or at different times. Good.
  • the action mechanism of the barrier function-improving agent of the present invention is an anti-inflammatory and / or anti-apoptotic effect in intestinal epithelial cells in response to stimulation with a high concentration of acetate produced by the intestinal resident bacteria of the present invention.
  • the expression of the genes involved is induced, and the decrease in the barrier function of the intestinal epithelium is prevented or suppressed. Therefore, the barrier function-improving agent of the present invention is also useful for improving the barrier function of epithelial cells at sites other than the intestinal tract, as long as the intestinal resident bacteria can be established.
  • lactic acid bacteria belonging to the genus Bifidobacterium and Lactobacillus are known to be resident in the vagina of women, they are useful for improving the barrier function of the vaginal epithelium, such as candidiasis, It can be used for prevention of sexually transmitted disease epilepsy (eg, AIDS, syphilis, gonococcal infection, chlamydia infection, genital herpes, trichomoniasis, pointed condylome, etc.) and uterine cancer.
  • sexually transmitted disease epilepsy eg, AIDS, syphilis, gonococcal infection, chlamydia infection, genital herpes, trichomoniasis, pointed condylome, etc.
  • Formulations suitable for vaginal administration can be provided, for example, as pessaries, suppositories, tampons, creams, gels, pastes, foams or sprays containing appropriate carriers in the field of pharmaceutical technology in addition to the lactic acid bacteria.
  • the active ingredient can be combined with a lubricant as a coating on the condom.
  • the intestinal barrier function improving agent of the present invention includes not only pharmaceuticals but also food compositions containing functional foods such as foods for specified health use.
  • a food composition includes a fermented food obtained using the intestinal resident bacteria of the present invention and a processed food in which the intestinal resident bacteria are artificially added.
  • fermented foods obtained using the same include lactic acid bacteria beverages, sour milk, fermented milk, yogurt and the like.
  • processed foods artificially added with intestinal resident bacteria of the present invention include milk, yogurt, cheese, fermented milk, tofu, porridge, kuzuyu, tea and fruit juice, bread, biscuits Food ingredients such as crackers, pizza crusts, formula milk, liquid foods, food for the sick, infant milk powder, breast milk powder for lactating women (including those with biological standards such as powdered milk), nutritional foods, etc.
  • Examples of the foods produced in this way are not only those to which the intestinal resident bacteria of the present invention are added at the time of production of these foods, but also various protein meals (whole milk powder, skim milk powder, etc.) , Partially skimmed milk powder, casein, whey powder, whey protein, whey protein concentrate, whey protein isolate, ⁇ -casein, ⁇ -casein, ⁇ -casein, ⁇ -lactoglobulin, ⁇ -lactalbumin, lac Animal and vegetable proteins such as ferrin, soybean protein, chicken egg protein, meat protein, etc., vegetable proteins such as lecithin, soybean protein, etc., various sugarcane (monosaccharides such as glucose and fructose, disaccharides such as sucrose, xylitol and glycerin) Polyhydric alcohol such as dextrin, modified starch cake (dextrin, soluble starch, British starch, oxidized starch, starch ester, starch ether, etc.), polys
  • Vegetable fats and oils various vitamin meal (vitamin A, carotene, vitamin B group, vitamin C, vitamin D group, vitamin E, vitamin K group, vitamin P, vitamin Q, niacin, nicotinic acid, pantothenic acid, biotin, inositol, choline, folic acid, etc.) and various minerals (calcium, potassium, magnesium, sodium, copper, iron, manganese, zinc, selenium, etc.), Foods prepared by mixing various nutrients such as organic acid candy (malic acid, citric acid, lactic acid, tartaric acid, etc.) candy at an arbitrary ratio and adjusting the viscosity to the extent that it is easy to swallow by adding a gelling agent to the mixture as it is or further Compositions and the like are also exemplified.
  • organic acid candy malic acid, citric acid, lactic acid, tartaric acid, etc.
  • the food composition containing the intestinal resident bacteria of the present invention is used as a meal meal (food) meal, or as a material for meal meal (feeding) meal, and as a snack, supplement, dietary supplement, etc. Preferably ingested between.
  • the present invention also provides a method for screening a microorganism having an action of improving intestinal barrier function, comprising the following steps (1) and (2).
  • (1) Construct ABC transporter consisting of each nucleotide sequence shown in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19 in a test sample containing intestinal resident bacteria
  • the test sample containing the intestinal resident bacteria may be an isolated intestinal microbial strain, It may be an unpurified sample (eg, fermented food (preferably lactic acid fermented food), feces, etc.) that is known or predicted to contain endogenous bacteria.
  • the intestinal resident bacteria contained in the test sample are characterized in that the gene cluster of the above (a) and / or (b), which is a characteristic of the intestinal resident bacteria of the present invention, is represented on the genome. It is determined whether or not it has. Examples of the determination method include a method of directly detecting the whole or a part of the gene cluster, or a method of detecting the expression of one or more genes constituting the cluster at the RNA level or the protein level.
  • a strain having one or more of the orthologs of 10 genes contained in the cluster at a distant position on the genome (that is, not constituting the cluster) is also expected. The presence or absence of the gene cluster in the genome is directly detected.
  • a nucleotide sequence adjacent to the upstream or downstream of the cluster which is conserved in both a known strain having the gene cluster and a strain not having the cluster of the same or the same genus, and a nucleotide sequence in the cluster
  • genomic PCR is performed, and an amplified fragment having the expected base length is detected, the test sample contains a candidate microorganism having an action to improve the intestinal barrier function Can be determined.
  • the candidate microorganism determined to have an intestinal barrier function improving action by the above method is cultured in a medium containing an appropriate saccharide, preferably fructose as a carbon source, to reduce fructose and / or produce acetate. By confirming, it can select as intestinal resident bacteria of this invention.
  • an appropriate saccharide preferably fructose as a carbon source
  • Example 1 O157 infection and lactic acid bacteria-administered bacterial strain, cell line and culture conditions Bifidobacterium longum subsp. Longum JCM 1217 T (BL), Bifidobacterium longum subsp. Infantis JCM 1222 T (BT) and Bifidobacterium adolescentis JCM 1275 T (BA) Purchased from Collection of Microorganisms (JCM). Bifidobacterium longum subsp. Infantis 157F (BF) was isolated from feces of newborn humans by conventional methods. Rifampicin resistant mutant E. coli O157: H7 strain 44 Rf was isolated from bovine feces. E.
  • coli O157: H7 strain 44 Rf Stx2-deficient strain was prepared by Datsenko and Wanner method (Proc. Natl. Acad. Sci. USA, 97, 6640-5 (2000)). It was confirmed by RT-PCR and ELISA that this Stx2-deficient strain does not express the stx2 gene and does not synthesize the Stx2 protein.
  • Bifidobacteria and E. coli O157: H7 strain 44 Rf were anaerobically cultured in BL agar medium (Nissui) and TS agar medium (BBL, Becton Dickinson), respectively.
  • Vero cells were purchased from the American Type Culture Collection (ATCC) and cultured in monolayer in modified Eagle's medium (D-MEM: GIBCO) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin-glutamine dulbecco (GIBCO). . The culture was performed in a plastic petri dish in an environment of 37 ° C. and 5% CO 2 .
  • D-MEM modified Eagle's medium
  • GIBCO penicillin-streptomycin-glutamine dulbecco
  • mice Animals Sterile BALB / c mice (GF mice) were housed in an isolator under a 12 hour light cycle and fed an autoclaved standard rodent diet (CMF, Oriental Yeast Co. Ltd, Japan). 8-16 week old male or female GF mice were established by a single oral administration of 10 8 colony forming units (CFU) of bifidobacteria (BL or BA, respectively). GF mice or bifidobacteria (BL or BA) single colonization (7 days) Mice (hereinafter sometimes referred to as BL mice or BA mice. The same procedure applies when other bifidobacterial strains (BF, BN, BT) colonize alone. 10 4 CFU of E.
  • CFU colony forming units
  • mice H7 strain 44 Rf was orally administered once (hereinafter referred to as O157 mice, BL mice, and BA mice after administration of O157 to GF mice).
  • O157 mice BL mice
  • BA mice after administration of O157 to GF mice.
  • the mice administered with O157 are sometimes referred to as BL + 0157 mice and BA + O157 mice, respectively, and the same procedure is used when O157 is administered to mice that have established other bifidobacterial strains).
  • Stx2 cytotoxicity was measured in a 96-well microtiter plate according to the method described in J. Clin. Microbiol., 25, 115-8 (1987). Vero cell suspension (5 ⁇ 10 3 cells / well) was added to a 96-well microtiter plate and the plate was incubated for 24 hours at 37 ° C. in 5% CO 2 environment. A 10-fold dilution series of mouse serum or mouse fecal suspension was prepared, 5 ⁇ l of each dilution was added to each well, and incubated at 37 ° C. in a 5% CO 2 environment for 24 hours. Cell morphology was observed under a phase contrast microscope. Shiga toxin (100 ng / ml: VTEC-RPLA "Seiken" (Denka Seiken)) was used as a standard.
  • biotinylated anti-mouse IgA monoclonal antibody C10-1 clone; BD
  • streptavidin-HRP Amersham
  • a chromogenic substrate phenylenediamine Sigma
  • citrate-phosphate buffer pH 5.0
  • sulfosalicylic acid (final concentration 10%) was added to remove proteins, followed by centrifugation at 10,000 ⁇ g for 10 minutes.
  • the HPLC column was kept at 60 ° C., and 3 mM HClO 4 was passed as a mobile phase at a flow rate of 1 ml / min.
  • the eluate from the column was mixed with 125 mg / l bromothymol blue (BTB) solution dissolved in 15 mM Na 2 HPO 4 injected at 1.5 ml / min, and then the absorbance at 430 nm was measured. The organic acid concentration was measured.
  • BTB bromothymol blue
  • Example 2 Immunohistological analysis of large intestine Using a frozen section of a mouse large intestine fixed with 4% paraformaldehyde, immunostaining for CD4, CD11b, CD11c and Ki67 was performed. Sections were incubated with 1% goat serum (Roche) in PBS for 30 minutes at room temperature and then incubated overnight at 4 ° C. with 2 ⁇ g / ml of each primary antibody or the same concentration of control IgG. The primary antibody was detected with each secondary antibody (4 ⁇ g / ml) labeled with Alexa 488 (Molecular Probes) or Cy3 (Perkin Elmer).
  • Alexa 488 Molecular Probes
  • Cy3 Perkin Elmer
  • TdT-mediated dUTP nick end labeling (TUNEL) staining was performed by staining a frozen section of a mouse large intestine fixed with 4% paraformaldehyde with an in situ cell death detection kit, Fluorescein (Roche). Hematoxylin-eosin (HE) staining was performed by deparaffinizing and rehydrating mouse colon sections fixed with 10% formalin (Richard-Allan Scientific).
  • Example 3 Comprehensive Analysis of Host Responses in O157-Infected Death-prevented and Non-prevented Mice
  • Transcriptome analysis of the host intestinal epithelial layer was conducted to comprehensively examine the host responses of mice to BL and BA during O157 infection .
  • the gene expression profiles of the intestinal epithelial layers of BL + O157 mice, BA + O157 mice and O157 mice on the first day after O157 infection were compared and analyzed.
  • a combination of clustering algorithms such as self-organizing mapping (SOM) and hierarchical clustering analysis (HCA) was used.
  • SOM self-organizing mapping
  • HCA hierarchical clustering analysis
  • HBSS Hank's solution
  • RNA was then labeled and hybridized to an Affymetrix mouse genome 430 2.0 array according to standard protocols provided by Affymetrix.
  • the resulting GeneChip data set was analyzed using GeneSpring GX 7.3.1 (Agilent). The array data was normalized using the gcRMA algorithm. Probe sets classified as A or B targeting specific RefSeq and GenBank transcripts were used (Bioinformatics, 23, 2934-41 (2007)).
  • SOM Self-organizing mapping
  • HCA hierarchical cluster analysis
  • Partial least square discriminant analysis PLS-DA was performed using the pls package (ver 2.0) using the “simpls” method, running on R software.
  • the expressed gene cluster profiling data set subjected to SOM analysis was imported into R software and analyzed.
  • Principal component (PC) score on 3D Cartesian coordinates with PC1 axis as the principal component that contributes most to the difference between samples, and PC2 axis and PC3 axis as the principal component corresponding to the second and third contributions to the difference, respectively. Were plotted to visualize the data.
  • Real-time quantitative RT-PCR Mouse colonic epithelial total RNA was extracted using a commercially available kit (RNeasy; Qiagen). 1 ⁇ g of total RNA was reverse transcribed using RevaTra Ace (TOYOBO). Using the obtained cDNA as a template, real-time PCR was performed using SYBR Premix Ex Taq TM (TaKaRa) and specific primers (Table 1) for each gene. Assays were performed in triplicate using the Thermal Cycler Dice Real Time System (TaKaRa). The transcription level between samples was normalized to the expression level of GAPDH.
  • Example 4 Prevention of Onset of Inflammation and Intestinal Epithelial Cell Apoptosis Analysis of Fecal Metabolic Profile of BL and BA Mice by PLS-DA, Mechanism by which BL Prevents Inflammation Induced by O157 and Intestinal Epithelial Cell Apoptosis I investigated.
  • Example 5 Quantification of Short-Chain Fatty Acid
  • the fecal content of short-chain fatty acids such as acetic acid which is the main end product of Bifidobacterium sugar fermentation, was quantified according to the method described in Example 1.
  • Example 6 Differences in Host Intestinal Epithelial Response between BL and BA Mice
  • the element at position (i, j) is microarray data (24 differences in expression levels between BL mice and BA mice are more than twice or less than half Gene) and a 1 H NMR spectrum, a two-dimensional correlation map defined as a correlation coefficient between the i-th gene and the j-th bins was calculated as a matrix.
  • a positive (or negative) higher coefficient means that there is a positive (or negative) correlation between the signals or peaks of the i-th and j-th signals.
  • Example 7 Effect of increased amount of acetic acid Among the genes identified in Example 6, proteins encoded by genes such as Apoe, C3, and Pla2g2a are molecules downstream of retinoid X receptor ⁇ (RXR ⁇ ). This nuclear receptor plays a central role in cellular energy metabolism and transcriptional control of inflammatory responses. Therefore, in order to examine the relationship between these genes and the amount of acetic acid, the following experiment was performed in the presence (5 mM or 10 mM) and absence of acetic acid.
  • RXR ⁇ retinoid X receptor ⁇
  • Quantitative RT-PCR Is the mRNA expression level of the three genes (Apoe, C3, and Pla2g2a) whose expression levels increased in the colon epithelium of preventive bifidobacteria-fixed mice similarly increased in this experiment using Caco-2 cells? Whether or not was examined by RT-PCR according to the method described in Example 2.
  • the primers used for PCR are shown in Table 6.
  • the transcription level between samples was normalized to the expression level of GAPDH.
  • Caco-2 cells were purchased from the American Type Culture Collection (ATCC) and used in modified Eagle's medium (D-MEM: GIBCO) supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin-glutamine dulbecco (GIBCO). Monolayer culture was performed. The culture was performed in a plastic petri dish in a 37 ° C., 5% CO 2 environment.
  • Transepithelial electrical resistance (TER) measurement Caco-2 cells are seeded on the upper area of a collagen-coated Transwell filter (diameter 6.5 mm, pore diameter 0.4 mm; Costar) and transepithelial electrical resistance is measured using an EVOM ohmmeter (World Precision Instruments). While monitoring the resistance (TER), the cells were cultured for 7 to 12 days until a stable TER value of 500 W / cm 2 was reached. O157 was added to the upper region of Transwell (moi 10), and after incubation for 16 hours in a 37 ° C., 5% CO 2 environment, the TER value was measured.
  • Caco-2 cells were cultured in 6-well plates for 7 to 12 days. Cells were infected with O157 (moi 10) and incubated for 8 hours at 37 ° C. in a 5% CO 2 environment before apoptotic cells were stained with 0.5% trypan blue and counted under a phase contrast microscope.
  • Example 8 Elucidation of Acetic Acid Production Mechanism
  • BA and BN that are publicly available as well as genomic sequences from human intestinal flora.
  • Genome sequencing Genomic sequences of BF, BT and BL were determined by whole genome shotgun method. For the three genomes, a genomic library with a small insert (2 kb) and a large insert (10 kb), respectively, was constructed and 7.8, 6.3, and 7.8 of the entire genomic clone using the ABI 3730xl sequencer (Applied Biosystems), respectively. The 26880 (BF), 30720 (BT) and 28416 (BL) sequences covering 7.6 times were read. The read sequences are joined using the Phred-Phrap-Consed program (Genome Res., 11, 614-25 (2001)), and the gap is designed to anneal to each end of the clone or adjacent contig across the gap.
  • the sequence of the PCR product amplified using the prepared oligonucleotide primers was directly sequenced.
  • the overall accuracy of the completed sequence was estimated to be an error rate of less than 1 in 10000 bases ( ⁇ 40 Phrap score).
  • the general characteristics of the sequenced Bifidobacterium genome are shown in Table 7.
  • RNA was extracted from the intestinal contents of BL mice or BF mice, and prophylactic bifidobacteria specific by quantitative RT-PCR according to the method described in Example 3 Intestinal expression of genetic genes was examined. The level of transcription between samples was normalized to the expression level of 16S RNA.
  • the primers used are shown in Table 8.
  • Example 9 In Vitro Bifidobacteria Fructose Consumption and Production of Acetic Acid Using a medium containing 13 C-labeled glucose and fructose (Silantes, Co. Ltd., Munchen, Germany), BF strains and non-preventive BA and BT strains were cultured in vitro, metabolomic analysis was performed by 1 H, 13 C NMR measurement, and carbohydrate metabolism of O157-infected death-preventing bifidobacteria using PLS-DA method The ability was analyzed.
  • Example 10 Glucose assimilation of O157 infection death preventive and non-preventive Bifidobacteria strains BN, BL and BF strains that prevent O157 infection death and non-preventive BT and The BA strain was subjected to liquid culture, and the growth rate and the amount of acetic acid produced were measured. The growth rate was determined by measuring the time until the OD value of the culture reached 1.0 after inoculation with the Bifidobacteria strain, and scored it in 5 stages.
  • the intestinal barrier function-improving agent of the present invention induces the expression of genes involved in anti-inflammatory and anti-apoptotic effects in epithelial cells by increasing the acetate concentration in the intestinal tract, particularly the colon epithelium, and decreases the intestinal barrier function It can suppress inflammation and apoptosis of epithelial cells that cause O157, thus preventing not only death of O157 infection but also barrier penetration of various pathogenic microorganisms and / or toxins produced by them, or allergen substances It is also useful for the prevention and / or treatment of various diseases caused by the invasion of these foreign substances.
  • the screening method of the present invention can select microorganisms effective for improving the intestinal barrier function quickly and easily by examining the presence or absence of specific gene clusters in the microorganism genome. Useful as a search tool for ticks.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pulmonology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

 本発明は、ABCトランスポーターを構成する蛋白質をコードする遺伝子群を含んでなる2つの遺伝子クラスターの少なくとも一方、好ましくは両方をゲノム中に有し、かつ該ABCトランスポーターにより細胞内に輸送される糖類から酢酸塩を生成する能力を有する腸内常在菌の生細胞を有効成分とする、腸管バリア機能改善剤を提供する。また、ゲノム中の該遺伝子クラスターの有無を指標とする、腸管バリア機能改善作用を有する微生物のスクリーニング方法も提供される。

Description

腸管バリア機能改善剤
 本発明は、特定の遺伝子クラスターを有する微生物を含有してなる腸管バリア機能改善剤、該バリア機能の低下が関与する疾患の予防および/または治療剤に関する。
 食物経由の人畜共通病原体である腸管出血性大腸菌 (EHEC) は、軽い下痢から出血性大腸炎や溶血性尿毒症症候群といった重篤な疾患まで広範にわたる病気を引き起こす。志賀毒素産生大腸菌 (STEC) O157:H7は、世界規模の公衆衛生問題を引き起こす重要なEHEC血清型である。
 ノトバイオートマウスは、O157の感染メカニズムを解析するのに適したモデル系であり、このモデル系を用いた研究により、O157によって産生される志賀毒素 (Stx) が感染死に決定的な因子であること、並びにビフィズス菌を含むある特定のプロバイオティクス株がこの感染死を予防することが報告されている (非特許文献1,2)。これらのプロバイオティクス株の多くはO157の増殖および/または毒素産生を阻害するらしいが、かかる予防効果の正確なメカニズムは未解明のままである。
Asahara, T. et al., Infect. Immun., 72, 2240-7 (2004) Gagnon, M. et al., Int. J. Food Microbiol., 111, 26-33 (2006)
 本発明の目的は、O157感染死の予防に有効なプロバイオティクス株を提供するとともに、該予防効果のメカニズムを解明し、該メカニズムに基づく該プロバイオティクス株の他の医薬用途への利用や、該メカニズムを指標とした新規なプロバイオティクス株の探索手段を提供することである。
 本発明者らは、上記の目的を達成すべく、ノトバイオートマウスモデルと統合オミクス技術とを組み合わせて、O157感染死を予防し得るビフィズス菌株 (予防性株) と予防できないビフィズス菌株 (非予防性株) との間の遺伝子発現や代謝産物における差違を検討した。その結果、非予防性株が定着したマウス (O157感染死非予防マウス) では、予防性株が定着したマウス (O157感染死予防マウス) と比較して、結腸上皮における炎症と細胞のアポトーシス死が顕著に認められ、血中Stx2濃度が上昇していたことから、結腸上皮における炎症およびアポトーシスにより腸管バリア機能が低下して血中Stx2濃度が増加することがO157感染死の直接的な要因であることが示唆された。さらに、糞中代謝物の比較分析から、予防性株によるO157感染死の予防効果は、糖消費による酢酸塩濃度の上昇が抗炎症および/または抗アポトーシス作用を誘導することによって、腸管のバリア機能を改善し、Stx2の血中への吸収を阻止することに基づくことが示唆された。
 そこで、本発明者らは、予防性株の糖消費・酢酸塩大量生成能のメカニズムを解明すべく、予防性株と非予防性株の全ゲノム配列を決定し、比較したところ、予防性株のゲノムに存在する2つの遺伝子座が非予防性株のゲノムでは完全に欠失しており、これらの遺伝子座は、フルクトース特異的な糖結合蛋白質を含む、ATP結合カセット (ABC) 型の糖トランスポーターの成分蛋白質をコードしていることを見出した。
 本発明者らは、これらの知見に基づいて、予防性株は、糖、特にフルクトースの能動輸送システムを有することにより、それを有しない非予防性株よりも優れた糖消費および酢酸塩生成能を発揮し、その結果、O157により惹起される結腸上皮における炎症およびアポトーシスが抑制されて、腸管バリア機能の低下を阻止しているとの結論に達し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]以下の(a)および/または(b)の遺伝子クラスター:
(a)配列番号1、3、5および7に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログを含んでなる遺伝子クラスター
(b)配列番号9、11、13、15、17および19に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログを含んでなる遺伝子クラスター
をゲノム中に有し、かつ該ABCトランスポーターにより細胞内に輸送される糖類から酢酸塩を生成する能力を有する、哺乳動物の腸内に常在し得る微生物の生細胞を有効成分とする、腸管バリア機能改善剤。
[2]前記微生物が、ビフィドバクテリウム (Bifidobacterium) 属またはラクトバチルス(Lactobacillus) 属に属する細菌である、上記[1]記載の剤。
[3]前記糖類がフルクトースである、上記[1]または[2]記載の剤。
[4]フルクトースもしくはそれを構成糖とするオリゴ糖を組み合わせてなる、上記[1]~[3]のいずれかに記載の剤。
[5]機能性食品である、上記[1]~[4]のいずれかに記載の剤。
[6]腸管バリア機能の低下が関与する疾患の予防および/または治療用である、上記[1]~[4]のいずれかに記載の剤。
[7]前記疾患が病原性微生物、毒素もしくはアレルゲンの腸管バリア透過に起因するものである、上記[6]記載の剤。
[8]以下の(1)および(2)の工程を含む、腸管バリア機能改善作用を有する微生物のスクリーニング方法。
(1)哺乳動物の腸内に常在し得る微生物を含有する被験試料において、配列番号1、3、5、7、9、11、13、15、17および19に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログからなる群より選択される1以上の遺伝子、あるいはその発現産物を検出する工程
(2)該遺伝子またはその発現産物が検出された場合に、該被験試料は腸管バリア機能改善作用を有する候補微生物を含有すると判定する工程
 本発明の特定の遺伝子クラスターを有する腸内常在性微生物をプロバイオティクスとして摂取することにより、腸管、特に結腸における糖消費が亢進されて、酢酸塩濃度が上昇し、バリア機能低下の原因となる上皮細胞の炎症やアポトーシスが抑制され、O157を含む種々の病原性微生物および/またはそれらが産生する毒素、あるいはアレルゲン物質などのバリア透過を阻止することができる。また、微生物ゲノム中における該遺伝子クラスターの有無を指標として、腸管バリア機能改善に有効な微生物を探索することができる。
図1aは、O157単独投与無菌 (GF) マウス(▲)、BL+O157定着マウス (◆) 及びBA+O157定着マウス (●) の生存率の推移を示す。図1b-eは、O157単独投与GFマウス (O157; 以下同様)、BL+O157定着マウス (BL+O157; 以下同様) 及びBA+O157定着マウス (BA+O157; 以下同様) の腸管内における、O157の生菌数、Stx2濃度、ムチン及びIgA量、並びにpHを示す。図1fは、O157マウス、BL+O157マウス及びBA+O157マウスの血清中Stx2濃度を示す。**: P<0.01 図2は、マウス遠位結腸の免疫組織化学解析を示す。aは、O157投与後5~7日目のマウス遠位結腸のヘマトキシリン-エオシン (HE) 染色を示す。bは、O157投与後7日目のBL+O157マウス及びBA+O157マウスのマウス遠位結腸の免疫染色を示す。cは、O157投与後1日目のマウス遠位結腸のHE染色 (最上段のパネル) およびTUNEL染色 (その他のパネル) を示す。図中、スケールバーは100 μmを示す。 図3は、O157投与後1日目におけるマウス結腸上皮の遺伝子発現プロファイルを示す。aは、トランスクリプトームデータにおける自己組織化マップ (SOM) 及び階層的クラスター解析 (HCA) を示す。bは、O157投与後1日目のトランスクリプトームデータにおける部分最少二乗判別分析 (PLS-DA) を示す。cは、O157投与後1日目における、主成分に寄与する遺伝子の定量的RT-PCR解析を示す。 図4は、Ingenuity Pathway解析から予測される、O157投与後1日目における遺伝子ネットワークを示す。 図5は、予防性及び非予防性ビフィズス菌単独定着マウスの糞便中代謝物プロファイルと結腸上皮の遺伝子発現プロファイルを示す。aは、無菌マウス (n=5) へのビフィズス菌投与後7日目におけるマウス糞便のメタボロームデータにおける部分最少二乗判別分析 (PLS-DA) を示す。bは、HPLCにより測定したマウス糞便中の有機酸濃度を示す。*: p<0.05、**: p<0.01。cは、BL-単独定着マウス又はBA-単独定着マウス (n=3) における結腸上皮の遺伝子発現プロファイル (y軸) と糞便中の代謝物プロファイル (x軸) との間の共変動解析結果を示す。 図6は、1H-NMR及び1H、13C-NMR測定による、糖領域のシグナル強度を示す。 図7は、BL単独定着マウス結腸上皮とBA単独定着マウス結腸上皮との間の遺伝子発現プロファイルの比較を示す。 図8は、Caco-2細胞を用いたO157感染による細胞死の予防に寄与する酢酸の機能解析を示す。aは、予防性ビフィズス菌定着マウスの結腸上皮で増加していた3つの遺伝子の定量的RT-PCR解析結果を示す。**: p<0.01。bは、O157感染16時間後の、Caco-2細胞の経上皮電気抵抗 (TER) を示す。cは、O157感染8時間後の、Caco-2細胞における死細胞の数を示す。 図9は、5つのビフィズス菌株におけるゲノムのプロファイリング及び代謝物プロファイリングを示す。aは、配列決定されたビフィズス菌株における特異的ABC型糖トランスポーターの遺伝子を包含する領域を示す。遺伝子及びそれらの配向性を矢印で示す。灰色のバーは、オルソロガスな領域を示す。bは、インビトロで12時間インキュベーション後13C標識培地で培養したビフィズス菌株のメタボロームデータにおける部分最少二乗判別分析(PLS-DA) を示す。cは、4つのビフィズス菌株における、12時間培養後のフルクトース消費量及び酢酸生成量を示す。 図10aは、BL及びBF単独定着マウスの腸管内における、予防性ビフィズス菌特異的なCOG遺伝子の発現を調べた定量的RT-PCR解析結果を示す。bは、4つのビフィズス菌株における、フルクトキナーゼの定量的RT-PCR解析結果を示す。
 本発明はプロバイオティクスを利用した腸管バリア機能改善剤を提供する。腸管上皮細胞は、食品中に含まれる各種栄養素を取り込むための吸収機能や、管腔側からの刺激を受容してその情報を基底膜側に伝達する情報伝達機能とともに、異物の透過を阻害するバリア機能を有する。上皮細胞同士を密接につなぎ合わせるタイトジャンクション (TJ) は低分子物質以外の物質の透過を物理的に阻害している。病原性微生物の感染などによる細胞死や炎症応答など、何らかの理由で腸管上皮細胞のバリア機能が低下すると、病原性微生物、毒素、アレルゲンなどの異物の侵入を招き、感染症、食中毒、食物アレルギーなどを引き起こす。
 本発明において「腸管バリア機能改善」とは、腸管のバリア機能、即ち腸管上皮における物理的な物質透過阻害機能が低下した状態から、より正常に近い状態に戻すことだけでなく、外因性もしくは内因性の要因により腸管のバリア機能が低下するのを阻止または抑制する予防的な意味をも包含する。O157感染のように、バリア機能の低下による毒素の初期的侵入が致命的な症状を引き起こす場合が少なくないので、本発明の腸管バリア機能改善剤は、好ましくは予防的に使用され得る。
 本発明のバリア機能改善剤の標的部位となる腸管は、バリア機能が低下しているかバリア機能の低下を予防する必要がある限り、特に制限はなく、例えば、小腸 (例、空腸、回腸)、大腸 (例、盲腸、結腸、直腸) が挙げられるが、例えば、病原性大腸菌、サルモネラ菌、ボツリヌス菌等の病原性微生物の多くは大腸 (例、結腸、盲腸) 内で増殖するので、これらの病原性微生物感染症の予防および/または治療を目的とする場合には、大腸 (例、結腸、盲腸) のバリア機能を改善するものであることが望ましい。
 本発明の腸管バリア機能改善剤は、哺乳動物の腸内に常在し得る微生物(以下、「腸内常在菌」ともいう)の生細胞を有効成分とする。腸内常在性の微生物としては、例えば、細菌類、酵母などの真菌類などが含まれるが、これらに限定されない。好ましくは、乳酸菌と総称される乳酸発酵を行う細菌類(例、ビフィドバクテリウム属、ラクトバチルス属、リューコノストック (Leuconostoc) 属、エンテロコッカス (Enterococcus) 属、ラクトコッカス (Lactococcus) 属、ペディオコッカス (Pediococcus) 属などに属する細菌等)、ストレプトコッカス (Streptococcus) 属に属する細菌、ユウバクテリウム(Eubacterium) 属に属する細菌、酵母 (例、ビール酵母等) など、より好ましくは、ビフィドバクテリウム属、ラクトバチルス属、リューコノストック属に属する乳酸菌、特に好ましくはビフィドバクテリウム属に属する細菌が挙げられる。一方、ウエルシュ菌、クロストリジウム、ブドウ球菌、緑膿菌、ベイオネラ菌、大腸菌などの、腐敗物質や発がん性物質を生成するいわゆる悪玉菌は、本発明における使用に適さない。
 ラクトバチルス属細菌、ストレプトコッカス属細菌、酵母などは小腸上部から小腸下部、ビフィドバクテリウム属細菌、ユウバクテリウム属細菌などは小腸下部から大腸にかけて分布するので、バリア機能の改善が必要な腸管部位に応じて、使用する腸内常在菌を選択することもできる。
 本発明の腸管バリア機能改善剤の有効成分である腸内常在菌は、以下の(a)および/または(b)の遺伝子クラスター:
(a)配列番号1、3、5および7に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログを含んでなる遺伝子クラスター
(b)配列番号9、11、13、15、17および19に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログを含んでなる遺伝子クラスターをゲノム中に有することを特徴とする。
 配列番号1、3、5および7に示される各ヌクレオチド配列は、NCBIデータベースに登録されるビフィドバクテリウム・ロンガム・サブスピーシーズ・ロンガム (Bifidobacterium longum subsp. longum) NCC2705 (以下、「BN」と略記する場合がある) 株のゲノム配列 (NC_004307.2) 中、それぞれBL0033 (41952~42935位)、BL0034 (43076~44617位)、BL0035 (44619~45689位) およびBL0036 (45686~46708位) のlocus tagを付された遺伝子の配列であり、約4.8kbからなる遺伝子クラスター (41952~46708位) を形成している。BL0033はABC型の糖トランスポーターのペリプラズミック成分をコードしており、BL0034は同トランスポーターのATPase成分をコードしており、BL0035およびBL0036はいずれも同トランスポーターのパーミアーゼ成分をコードするパラログである。
 配列番号9、11、13、15、17および19に示される各ヌクレオチド配列は、BN株のゲノム配列 (NC_004307.2) 中、それぞれBL1691 (2111349~2112299位)、BL1692 (2112324~2113190位 (相補鎖))、BL1693 (2113228~2114397位 (相補鎖))、BL1694 (2114649~2115806位)、BL1695 (2115907~2117460位) およびBL1696 (2117460~2118677位) のlocus tagを付された遺伝子の配列であり、約7.3kbからなる遺伝子クラスター (2111349~2118677位) を形成している。BL1692およびBL1695はABC型の糖トランスポーターのATPase成分をコードするパラログであり、BL1694は同トランスポーターのペリプラズミック成分をコードしており、BL1696はパーミアーゼ成分をコードしており、BL1691およびBL1693は転写調節因子をコードしている。
 上記(a)および(b)の遺伝子クラスターをゲノム中に有する腸内常在菌としては、BN株の他、例えば、ビフィドバクテリウム・ロンガム・サブスピーシーズ・ロンガム (Bifidobacteriumlongum subsp. longum) JCM 1217T (以下、「BL」と略記する場合がある) 株、ビフィドバクテリウム・ロンガム・サブスピーシーズ・インファンティス (Bifidobacterium longum subsp. infantis)157F (以下、「BF」と略記する場合がある) 等が挙げられるが、これらに限定されない。BLおよびBF株は、BN株のBL0033~BL0036の各遺伝子のオルソログを含む遺伝子クラスターおよびBL1691~BL1696の各遺伝子のオルソログを含む遺伝子クラスターをゲノム中に有する。BL0033~BL0036およびBL1691~BL1696の各遺伝子のオルソログとしては、各遺伝子のヌクレオチド配列 (配列番号2n-1 (nは1~10の整数))と、オーバーラップする領域に関して約60%以上、好ましくは約70%以上、より好ましくは約80%以上、いっそう好ましくは約90%以上、特に好ましくは約95%以上、最も好ましくは97%の相同性を有する塩基配列である。本発明における「ヌクレオチド配列の相同性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。
 より具体的には、BL0033~BL0036およびBL1691~BL1696の各遺伝子のオルソログとしては、配列番号2n-1 (nは1~10の整数) に示されるヌクレオチド配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、配列番号2n (nは1~10の整数) に示されるアミノ酸配列からなる蛋白質と実質的に同質の機能を有する蛋白質をコードする配列が挙げられる。ここで「実質的に同質の機能」とは、ABCトランスポーターのペリプラズミック成分、ATPase成分またはパーミアーゼ成分、あるいは転写調節因子としての機能を意味する。ストリンジェントな条件とは、例えば、Current Protocols in Molecular Biology, John Wiley & Sons,6.3.1-6.3.6, 1999に記載される条件、例えば、6×SSC (sodium chloride/sodium citrate)/45℃でのハイブリダイゼーション、次いで0.2×SSC/0.1% SDS/50~65℃での一回以上の洗浄等が挙げられる。
 当業者であれば、後述する本発明のスクリーニング法により、公知の腸内常在菌または新たに分離された腸内常在菌の中から、容易に上記(a)および/または(b)の遺伝子クラスターをゲノム中に有する菌株を選択することができる。
 あるいは、NCBIのWebサイト上からダウンロードすることができるCOGデータベースを利用して、全ゲノム配列が決定されている腸内常在菌のゲノムを検索することにより、上記(a)および/または(b)の遺伝子クラスターをゲノム中に有する菌株を選択することもできる。COG (Clusters of Orthologous Groups) はオルソログ(種間の相同な遺伝子) およびパラログ (同一ゲノム上の類似する遺伝子) から構成される遺伝子 (蛋白質) のセットを意味する (Science, 278(5338):631-7(1997))。NCBI COGデータベースでは、BN株のBL0033およびBL1694遺伝子はCOG family: ABC-type sugar transporter periplasmic component (COG1879) に、BL0034、BL1692およびBL1695遺伝子はCOG family: ABC-type sugar transporter ATPase component (COG1129) に、BL0035、BL0036およびBL1696遺伝子はCOG family: ABC-type sugar transporter permease component (COG1172) に、BL1691およびBL1693遺伝子はCOG family: transcriptional regulator/sugar kinase (COG1940) に、それぞれ分類されている。したがって、候補腸内常在菌のゲノム配列情報にアクセスし、そのCOGデータ一覧から上記COGに属する遺伝子の存在を調べ、さらに該遺伝子の位置情報から上記(a)および/または(b)の遺伝子クラスターの存在を確認することにより、本発明の腸管バリア機能改善剤に用いることができる腸内常在菌を選択することができる。
 本発明の腸管バリア機能改善剤の有効成分である腸内常在菌は、上記遺伝子クラスターをゲノム中に有することに加えて、該クラスター中に含まれるABCトランスポーターにより細胞内に輸送される糖類から、酢酸塩を生成する能力を有することをさらなる特徴とする。該糖類としては、例えば、フルクトース、リボース、マンノースなどが挙げられるが、好ましくはフルクトースである。本発明に用いられる腸内常在菌は、該トランスポーターにより取り込んだ糖類を代謝して酢酸塩を生成し、細胞外に放出することにより、周囲の腸管上皮細胞において抗炎症応答や抗アポトーシス作用に関与する遺伝子 (例、Apoe、C3、Pla2g2a等) の発現を誘導し、腸管バリア機能の低下を抑制すると考えられる。腸内常在菌の酢酸塩生成能は、例えば、標識した糖類 (例、フルクトース) を炭素源として含有する培地で被験菌株を一定時間 (例、3~24時間) 培養し、該糖類の減少と酢酸塩の生成量とを検出することにより評価することができる。この際、陰性対照として上記(a)および(b)の遺伝子クラスターを有しない腸内常在菌株、例えば、ビフィドバクテリウム・ロンガム・サブスピーシーズ・インファンティス (Bifidobacterium longum subsp. infantis) JCM 1222T (以下「BT」と略記する場合がある) 株やビフィドバクテリウム・アドレッセンティス (Bifidobacterium adolescentis) JCM 1275T(以下、「BA」と略記する場合がある) 株を用い、該陰性対照と比較して有意に基質糖類を高消費し、かつ酢酸塩を高産生した被験菌株を、本発明の腸管バリア機能改善剤に用いることができる腸内常在菌として選択することができる。
 上記(a)および/または(b)の遺伝子クラスターをゲノム中に有し、かつ該クラスター中に含まれるABCトランスポーターにより細胞内に輸送される糖類から、酢酸塩を生成する能力を有する腸内常在菌は、本来、宿主である哺乳動物 (例、ヒト、ウシ、ウマ、ブタ、ヒツジ、ヤギ、イヌ、ネコ、ウサギ、ハムスター、モルモット、マウス、ラット等) の腸内に常在し、これと共生しているので、医薬もしくは食品 (添加物) として安全に哺乳動物に投与することができる。
 本発明の腸内常在菌は腸管バリア機能を改善する作用を有するので、本発明の腸管バリア機能改善剤は、腸管バリア機能の低下が関与する疾患、好ましくは病原性微生物、毒素もしくはアレルゲン等が腸管バリアを透過して血流中などに侵入することに起因する疾患の予防および/または治療に有用である。そのような疾患としては、例えば、O157等の腸管出血性大腸菌をはじめとする病原性大腸菌、サルモネラ菌、ボツリヌス菌等の病原性微生物感染症、炎症性腸疾患、食物アレルギーなどが挙げられるが、それらに限定されない。
 本発明の腸内常在菌は、生きた細胞である限り、医薬上もしくは食品加工上許容されるいかなる形態でも、本発明の腸管バリア機能改善剤に含有させることができ、例えば、細胞 (菌体) 自体、その培養 (発酵) 物などの形態で用いられる。
 本発明の腸内常在菌は、各菌株に適した培地によって培養できる。例えば、ビフィドバクテリウム属やラクトバチルス属に属する乳酸菌株の場合、乳培地または乳成分を含む培地、あるいはそれらを含まない半合成培地等の種々の培地を用いることができる。このような培地としては、脱脂乳を還元して加熱殺菌した還元脱脂乳培地を例示することができる。培養は、静置培養またはpHを一定にコントロールした中和培養で行うことできるが、菌が良好に生育する条件であれば特に培養法に制限はない。培養終了後、乳酸菌培養液から濾過もしくは遠心分離などにより分離回収した菌体や、乳酸菌培養液をそのまま、あるいは培地を濃縮した濃縮物として使用することもできる。菌体自体を用いる場合、生菌体、湿潤菌体、乾燥菌 (噴霧乾燥、凍結乾燥、真空乾燥、ドラム乾燥などによって得られる) の形態で用いられ得る。
 また、本発明の腸内常在菌は、それらを用いた発酵物として使用してもよい。例えば、ビフィドバクテリウム属やラクトバチルス属に属する乳酸菌株の場合、発酵物として、例えば、乳酸菌飲料、酸乳、発酵乳、ヨーグルトなどが例示される。
 本発明の腸管バリア機能改善剤は、上記本発明の腸内常在菌の細胞 (菌体)または培養 (発酵) 物をそのまま、あるいは薬理学的に許容され得る担体、希釈剤もしくは賦形剤とともに医薬組成物として製剤化することができ、経口的または非経口的(例、経管投与、経腸投与など)に投与することができる。
 例えば、経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぷん、蔗糖、ステアリン酸マグネシウムが用いられる。
 非経口投与のための組成物としては、例えば、注入剤、坐剤等が用いられる。注入剤の調製方法としては、例えば、本発明の腸内常在菌を、通常注入剤に用いられる無菌の水性液、または油性液に懸濁または乳化することによって調製できる。注入用の水性液としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液等が用いられる。油性液としては、例えば、ゴマ油、大豆油等が用いられる。直腸投与に用いられる坐剤は、本発明の腸内常在菌を通常の坐薬用基剤に混合することによって調製され得る。
 本発明の腸管バリア機能改善剤の投与量は、投与対象、対象疾患、症状、投与ルートなどによっても異なるが、通常成人1日あたり、乾燥物として0.5~10gであり、これを1日数回に分けて投与することができる。好ましくは、それぞれの株が生菌として成人一人あたり、108~1012cfu/日投与することで本発明の目的とする効果を発揮させることが可能となる。このように投与することによって腸管内に本発明の腸内常在菌が定着し、所望の効果を発揮する。
 本発明の腸管バリア機能改善剤は、腸内常在菌との配合により好ましくない相互作用を生じない限り他の活性成分を含有してもよい。
 さらに、本発明の腸管バリア機能改善剤は、対象疾患に応じて、他の薬剤、例えば、抗炎症薬、抗生物質、抗ウイルス剤、抗毒素、抗アレルギー薬などと併用してもよい。本発明の腸管バリア機能改善剤および上記薬剤は、同時または異なった時間に、対象に投与すればよい。
 本発明の腸管バリア機能改善剤の好ましい併用薬の例として、該バリア機能改善剤に含有される腸内常在菌の増殖および/または代謝を促進する物質(プレバイオティクス)が挙げられる。本発明の腸内常在菌は、上記(a)および/または(b)の遺伝子クラスターによってコードされるABCトランスポーターにより細胞内に輸送される糖類を代謝して酢酸塩を大量に生成するので、該糖類 (例、フルクトース、リボース、マンノース等)、好ましくはフルクトース、あるいは腸内で消化されて該糖類を生成するオリゴ糖、好ましくは2~10の単糖からなるオリゴ糖、好ましくはショ糖、乳糖果糖オリゴ糖、フルクトオリゴ糖などが、本発明の腸管バリア機能改善剤に併用されるプレバイオティクスとして挙げられる。これらのプレバイオティクスは、本発明の腸内常在菌とともに本発明の腸管バリア機能改善剤に配合することもできるし、別個の製剤として、同時または異なった時間に、対象に投与してもよい。
 本発明のバリア機能改善剤の作用機序は、本発明の腸内常在菌が生成する高濃度の酢酸塩による刺激に応答して、腸管上皮細胞において抗炎症作用および/または抗アポトーシス作用に関与する遺伝子群の発現が誘導され、腸管上皮のバリア機能低下を阻止または抑制するというものである。従って、本発明のバリア機能改善剤は、腸内常在菌が定着し得る限り、腸管以外の部位における上皮細胞のバリア機能改善にも有用である。例えば、ビフィドバクテリウム属やラクトバチルス属に属する乳酸菌は、女性の膣内にも常在することが知られているので、膣上皮のバリア機能改善にも有用であり、例えば、カンジダ症、性感染症 (例、エイズ、梅毒、淋菌感染症、クラミジア感染症、性器ヘルペス、トリコモナス症、尖形コンジローム等)、子宮がんの予防に用いることができる。膣投与に適した製剤としては、例えば、該乳酸菌に加えて、製剤技術分野において適当な担体を含むペッサリー、坐薬、タンポン、クリーム、ゲル、ペースト、泡またはスプレー剤として提供され得る。同様に、有効成分をコンドーム上のコーティングとしての潤滑剤と組み合わせることもできる。
 本発明の腸管バリア機能改善剤は、医薬のみならず、特定保健用食品などの機能性食品を含む食品組成物をも包含する。このような食品組成物としては、本発明の腸内常在菌を用いて得られた発酵食品の他、該腸内常在菌を人工的に加えた加工食品も含まれる。具体的には、例えば、ビフィドバクテリウム属やラクトバチルス属に属する乳酸菌の場合、それを用いて得られた発酵食品としては、乳酸菌飲料、酸乳、発酵乳、ヨーグルトなどが挙げられる。本発明の腸内常在菌を人工的に加えた加工食品としては、例えば、牛乳やヨーグルト、チーズ、発酵乳、豆腐、おかゆ、くず湯、お茶や果汁などからなる清涼飲料水、パン、ビスケット、クラッカー、ピッツァクラスト、調製粉乳、流動食、病人用食品、幼児用粉乳、授乳婦用粉乳等の食品 (粉ミルクなど生物学的規格を有するものを含む)、栄養食品など、各種食用素材を原料にして製造された食品が例示され、これらの食品の製造時に本発明の腸内常在菌を添加したもののみならず、経腸栄養剤等のように、各種蛋白質 (全脂粉乳、脱脂粉乳、部分脱脂粉乳、カゼイン、ホエー粉、ホエイ蛋白質、ホエイ蛋白質濃縮物、ホエイ蛋白質分離物、α-カゼイン、β-カゼイン、κ-カゼイン、β-ラクトグロブリン、α-ラクトアルブミン、ラクトフェリン、大豆蛋白質、鶏卵蛋白質、肉蛋白質等の動植物性蛋白質やレシチン、大豆蛋白質等の植物性蛋白質など)、各種糖質 (グルコースやフルクトース等の単糖類、ショ糖などの二糖類、キシリトールやグリセリンなどの多価アルコール、デキストリン、加工澱粉 (デキストリンのほか、可溶性澱粉、ブリティッシュスターチ、酸化澱粉、澱粉エステル、澱粉エーテル等)、食物繊維などの多糖類など)、各種脂質(ラード、魚油等、これらの分別油、水素添加油、エステル交換油等の動物性油脂や、大豆油、ヤシ油、サフラワー油、コーン油、ナタネ油、ヤシ油、これらの分別油、水素添加油、エステル交換油等の植物性油脂など)、各種ビタミン (ビタミンA、カロチン類、ビタミンB群、ビタミンC、ビタミンD群、ビタミンE、ビタミンK群、ビタミンP、ビタミンQ、ナイアシン、ニコチン酸、パントテン酸、ビオチン、イノシトール、コリン、葉酸など) や各種ミネラル (カルシウム、カリウム、マグネシウム、ナトリウム、銅、鉄、マンガン、亜鉛、セレンなど)、有機酸 (リンゴ酸、クエン酸、乳酸、酒石酸など) などの各種栄養素を任意の割合で混合し、そのまま、あるいはさらにそれらの混合物にゲル化剤を加え、嚥下しやすい程度に粘度を調製した食品組成物なども例示される。
 本発明の腸内常在菌を含有する食品組成物は、食事 (食餌) の一品目として、あるいはその素材として食事 (給餌) の際に、また、おやつ、サプリメント、栄養補助食品等として食事の間に摂取されるのが好ましい。
 本発明はまた、以下の(1)および(2)の工程を含む、腸管バリア機能改善作用を有する微生物のスクリーニング方法を提供する。
(1)腸内常在菌を含有する被験試料において、配列番号1、3、5、7、9、11、13、15、17および19に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログからなる群より選択される1以上の遺伝子、あるいはその発現産物を検出する工程
(2)該遺伝子またはその発現産物が検出された場合に、該被験試料は腸管バリア機能改善作用を有する候補微生物を含有すると判定する工程
 腸内常在菌を含有する被験試料は、単離された腸内常在菌株の菌体であってもよいし、腸内常在菌を含有することが既知であるかもしくは含有すると予測される未精製の試料 (例、発酵食品 (好ましくは乳酸発酵食品)、糞便など) であってもよい。
 本発明のスクリーニング法は、被験試料中に含有される腸内常在菌が、本発明の腸内常在菌の特徴である、上記(a)および/または(b)の遺伝子クラスターをゲノム上に有するか否かを判定するものである。当該判定の手法としては、該遺伝子クラスターの全体もしくは一部を直接検出する方法、あるいは該クラスターを構成する1以上の遺伝子の発現をRNAレベルもしくは蛋白質レベルで検出する方法が挙げられるが、2つのクラスター中に含まれる10遺伝子のオルソログのうちの1以上を、ゲノム上の離れた (即ち、クラスターを構成しない) 位置に有する菌株も存在すると予測されるので、好ましくは、工程(1)において、ゲノム中の該遺伝子クラスターの有無が直接検出される。例えば、該遺伝子クラスターを有する既知菌株、および同種もしくは同属の該クラスターを有しない菌株の両方で保存されている、該クラスターの上流もしくは下流に隣接するヌクレオチド配列と、該クラスター内部のヌクレオチド配列とを、それぞれ標的配列とする一対のプライマーを設計し、ゲノミックPCRを行い、予測される塩基長を有する増幅断片が検出された場合には、被験試料は腸管バリア機能改善作用を有する候補微生物を含有すると判定することができる。
 好ましくは、上記方法により腸管バリア機能改善作用を有すると判定された候補微生物を、適当な糖類、好ましくはフルクトースを炭素源として含有する培地で培養し、フルクトースの減少および/または酢酸塩の生成を確認することにより、本発明の腸内常在菌として選択することができる。
 以下に実施例を挙げて本発明をさらに具体的に説明するが、これらは単なる例示であって、本発明を何ら限定するものではない。
実施例1 O157感染と乳酸菌投与
細菌の菌株、細胞系及び培養条件
 Bifidobacterium longum subsp. longumJCM 1217T (BL)、Bifidobacteriumlongum subsp. infantis JCM 1222T (BT) 及びBifidobacterium adolescentis JCM 1275T(BA) をJapan Collection of Microorganisms (JCM)から購入した。Bifidobacterium longum subsp. infantis157F (BF) は、ヒト新生児の糞便から常法により単離した。リファンピシン耐性変異体である、大腸菌O157:H7菌株44Rfはウシ糞便より分離した。大腸菌O157:H7菌株44Rf Stx2欠損株をDatsenko及びWanner法により作製した (Proc. Natl. Acad. Sci. USA, 97, 6640-5 (2000))。RT-PCR及びELISAで、このStx2欠損株が、stx2遺伝子を発現せず、Stx2蛋白質を合成しないことを確認した。ビフィズス菌及び大腸菌O157:H7菌株44RfをBL寒天培地 (ニッスイ) 及びTS寒天培地 (BBL、Becton Dickinson) 中でそれぞれ嫌気的に培養した。
 ベロ細胞はAmerican Type Culture Collection (ATCC) から購入し、10% ウシ胎仔血清及び1% ペニシリン-ストレプトマイシン-グルタミンダルベッコ (GIBCO) を補充した変法イーグル培地 (D-MEM: GIBCO) で単層培養した。培養はプラスチックシャーレで37℃、5%CO2環境下で行った。
動物
 無菌BALB/cマウス (GFマウス) はアイソレーター内で12時間明期のサイクル下で飼育し、オートクレーブした標準のげっ歯動物食餌 (CMF, Oriental Yeast Co. Ltd, Japan) を与えた。8~16週齢雄又は雌GFマウスに、108コロニー形成単位 (CFU) のビフィズス菌 (それぞれ、BL又はBA) を単回経口投与して定着させた。GFマウス又はビフィズス菌 (BL又はBA) 単独定着 (7日間) マウス (以下、BLマウス又はBAマウスという場合がある。他のビフィズス菌株 (BF、BN、BT) が単独で定着した場合も同じ要領で表記する。) に、104CFUの大腸菌O157:H7菌株44Rfを単回経口投与することで感染させた (以下、GFマウスにO157を投与したものをO157マウス、BLマウス、BAマウスにO157を投与したものをそれぞれBL+0157マウス、BA+O157マウスという場合がある。他のビフィズス菌株が定着したマウスにO157を投与した場合も同じ要領で表記する)。
糞便中の細菌数の計数
 糞便懸濁液に50倍量の嫌気性溶液A (4.5 g/l KH2PO4, 6 g/l Na2HPO4, 12.5 g/l L-cysteine・HCl, 0.5 g/l Tween80, 0.75 g/l Bacto Agar) を加えてホモジナイズした。10倍希釈系列を調製し、各希釈液の50 μlをTS寒天プレート (O157用) 又はBL寒天プレート (ビフィズス菌用) 上に塗布した。プレートを37℃で嫌気的にインキュベートし、CFUを計数した。
Stx2細胞毒性についてのアッセイ
 J. Clin. Microbiol., 25, 115-8 (1987) に記載の方法に従って、Stx2細胞毒性を96穴マイクロタイタープレートで測定した。ベロ細胞懸濁液 (5×103細胞/ウェル) を96穴マイクロタイタープレートに添加し、プレートを37℃、5% CO2環境下で24時間インキュベートした。マウスの血清又はマウスの糞便懸濁液の10倍希釈系列を調製し、各希釈液の5 μlを各ウェルに添加し、37℃、5% CO2環境下で24時間インキュベートした。細胞形態を位相差顕微鏡下で観察した。志賀毒素 (100 ng/ml: VTEC-RPLA 「生研」 (デンカ生研)) をスタンダードとして用いた。
ムチンの量の測定
 J. Gastroenterol. Hepatol., 19, 303-13 (2004) に記載の方法に従って、粗ムチンをマウス盲腸内容物から単離し、ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動(SDS-PAGE)により解析した。凍結乾燥試料をNaCl溶液でホモジナイズし、直ちに10000×gで30分間遠心分離した。上清を別のチューブに移し、次いでエタノールを添加した。粗ムチンを-20℃で一晩放置して沈殿させ、SDS-PAGEにより分離した。電気泳動後、過ヨウ素酸シッフ試薬 (PAS) でゲルを染色し、糖(糖蛋白質)を検出した。PAS染色された範囲の強度をGelDoc XR (Bio-Rad Laboratories) を用いて解析した。
総IgA量についてのアッセイ
 J. Gastroenterol. Hepatol. (2004, 上述) に記載の方法に従って、盲腸IgAをNunc-Immunoプレート(MaxiSorb F96; Nalge Nunc International, Rochester) を用いてELISAにより測定した。96穴プレートの各ウェルに抗マウスIgAモノクローナル抗体 (C10-3 clone; BD) 溶液を添加し、4℃で一晩インキュベーションした。精製マウスIgA (553476; BD) をスタンダードとして用いた。1% ウシ血清アルブミン (BSA) 含有PBSでブロッキングした後、適当に希釈した試料又はスタンダード50 μlを各ウェルに添加し、4℃で一晩インキュベートした。PBSで3回洗浄後、ビオチン化抗マウスIgAモノクローナル抗体 (C10-1 clone; BD) を各ウェルに添加し、プレートを室温で2時間インキュベートした。洗浄後、ストレプトアビジン-HRP (Amersham) を各ウェルに添加し、プレートを室温で2時間インキュベートした。洗浄後、クエン酸-リン酸バッファ (pH 5.0) に溶解した発色基質フェニレンジアミン (Sigma) を各ウェルに添加し、吸光度をマイクロプレートリーダー(NJ-2300; System Instruments)で測定した。
pH及び有機酸濃度の測定
 蒸留水で盲腸内容物をホモジナイズした後、ホモジネートの一部を等量の蒸留水で希釈し、盲腸中pHをコンパクトpHメーター(Model C-1; 堀場製作所) で測定した。盲腸中及び糞便中の有機酸 (ギ酸、酢酸、プロピオン酸、イソ酪酸、n-酪酸、イソ吉草酸、n-吉草酸、クエン酸、リンゴ酸、コハク酸及び乳酸) 濃度の測定は、イオン交換カラム (Ionpak KC-811; 昭和電工) 及び紫外線検出器 (Model 800; 日本分光) を備えた装置を用い、高速液体クロマトグラフィー (HPLC) により行った。試料にスルホサリチル酸 (最終濃度10%) を添加して蛋白質を除いた後、10000×gで10分間遠心分離した。HPLCのカラムを60℃に保ち、3 mM HClO4を移動相として流速1 ml/分で通液した。カラムからの溶出液は、1.5 ml/分で注入された、15 mM Na2HPO4中に溶解した125 mg/l ブロモチモールブルー (BTB) 溶液と混合した後、430nmにおける吸光度を計測することにより、有機酸濃度を測定した。
結果
 O157を単独投与したGFマウスは、感染後7日目までに100%死亡した。しかし、O157投与前にBLを投与した場合、その後にO157を投与してもマウスは死亡しなかった。対照的に、O157投与前にBAを投与した場合ではO157による感染死は予防できなかった (図1a)。BL及びO157が定着したマウス (BL+O157) 及びBA及びO157が定着したマウス(BA+O157) の腸管内において、O157の生菌数、Stx2濃度、pH、ムチン量及びIgA量に有意な差はなかった (図1b-e)。実際、BL及びO157のインビトロでの共培養系においては、競合阻害は観察されなかった。一方、BL+O157マウスの血清中Stx2濃度は、BA+O157マウスのそれよりも著しく低かった (図1f)。これらのマウスにおいて、腸、脾臓、腎臓、及び肝臓へのO157の感染はなかった。これらのデータから、血清中でのStx2の増加がBA+O157マウスの死亡の直接的な要因であり、この増加はStx2に対する腸管上皮層のバリア機能の低下に起因するものと考えられた。
実施例2 大腸の免疫組織学的分析
 4% パラホルムアルデヒドで固定したマウス大腸の凍結切片を用い、CD4、CD11b、CD11c及びKi67の免疫染色を行った。切片を1% ヤギ血清 (Roche) と共にPBS中で30分間、室温でインキュベートし、次いで、2 μg/mlの各一次抗体又は同じ濃度のコントロールIgGと共に、一晩4℃でインキュベートした。一次抗体は、Alexa 488 (Molecular Probes) 又はCy3 (Perkin Elmer) で標識した各二次抗体 (4 μg/ml) で検出した。TdT介在dUTPニック末端標識(TUNEL) 染色は、4% パラホルムアルデヒドで固定したマウス大腸の凍結切片を、in Situ Cell Death Detection Kit, Fluorescein (Roche) で染色して行った。ヘマトキシリン-エオシン (HE) 染色は、10% ホルマリン(Richard-Allan Scientific) で固定したマウス大腸切片を脱パラフィン化し、再水和して行った。
結果
 大腸の免疫組織学的分析により、O157感染後5~7日の感染死非予防マウスの遠位結腸において軽微な炎症 (図2aに示す杯細胞の減少及び図2bに示す炎症細胞の浸潤として表される) が観察されたが、感染死予防マウスにおいては見られなかった。また、感染死非予防マウスでは、結腸上皮細胞のアポトーシス死が顕著に観察された (図2b)。一方、O157感染後1日目には、いずれのマウスでも遠位結腸に炎症は認められなかったが、感染死非予防マウスでは、既に上皮細胞のアポトーシス死が観察された (図2c)。
実施例3 O157感染死予防マウスおよび非予防マウスにおける宿主応答の網羅的解析
 宿主腸管上皮層のトランスクリプトーム解析を行い、O157感染時の、BL及びBAに対するマウスの宿主応答を網羅的に調べた。O157感染後1日目のBL+O157マウス、BA+O157マウス及びO157マウスの腸管上皮層の遺伝子発現プロファイルを比較・解析した。自己組織化マッピング (SOM) 及び階層的クラスタリング解析 (HCA) 等のクラスタリングアルゴリズムを組み合わせて用いた。
結腸上皮の遺伝子発現プロファイリング
 遠位結腸の小断片をマウス大腸から切除し、30 mM EDTA含有ハンクス液 (HBSS) に浸漬した。氷上で20分間インキュベーション後、実体顕微鏡でモニタリングしながら、細針を用いた操作で結腸上皮を単離した。各群2匹のマウス結腸上皮を混合し、Affymetrix社の提供する標準プロトコルにより全RNAを抽出した。次いで、RNAをラベル化し、Affymetrix社の提供する標準プロトコルに従って、Affymetrixマウスゲノム430 2.0アレイにハイブリダイズさせた。GeneSpring GX 7.3.1 (Agilent) を用いて、得られたGeneChipデータセットを解析した。gcRMAアルゴリズムを用いてアレイデータを正規化した。特定のRefSeq及びGenBank transcriptsを標的とするA又はBに分類されるプローブセットを用いた (Bioinformatics, 23, 2934-41 (2007))。
自己組織化マッッピング (SOM) 及び階層的クラスター解析 (HCA)
 O157マウス、BA+O157マウス又はBL+O157マウスにおいて、GFマウスと比較して、遺伝子発現量が2倍以上に増加または2分の1以下に減少した遺伝子群を選択した(約4000遺伝子)。GeneSpring GX 7.3.1 (Agilent) を用いてSOM及びHCAを行った。
部分最少二乗判別分析 (PLS-DA)
 PLS-DAは、Rソフトウェアで動作する、“simpls”法を用いたpls package (ver 2.0) を使用して行った。SOM解析に供した発現遺伝子群プロファイリングデータセットをRソフトウェアにインポートし、解析した。サンプル間の差異に最も寄与する主成分をPC1軸、差異への寄与が2番目、3番目に相当する主成分をそれぞれPC2軸及びPC3軸とする3次元直交座標上に主成分(PC) スコアをプロットして、データを可視化した。
リアルタイム定量的RT-PCR
 市販のキット (RNeasy; Qiagen) を用いて、マウス結腸上皮全RNAを抽出した。1 μgの全RNAをRevaTra Ace (TOYOBO) を用いて逆転写した。得られたcDNAを鋳型とし、SYBR Premix Ex TaqTM(TaKaRa) 及び各遺伝子についての特異的プライマー (表1) を用いて、リアルタイムPCRを行った。Thermal Cycler Dice Real Time System (TaKaRa) を用いて、アッセイを3連で行った。試料間の転写レベルはGAPDHの発現レベルに対して正規化した。
Figure JPOXMLDOC01-appb-T000001
結果
 BL+O157マウスの結腸上皮における遺伝子発現プロファイルは、BA+O157マウス及びO157マウスのそれらとは大きく異なっていた (図3a)。感染死非予防マウス(BA+O157及びO157) において発現量が2倍以上に増加した遺伝子群をジーンオントロジー (GO) データベースを用いて解析したところ、免疫応答及び生体防御応答にかかわる遺伝子群の発現が増加していることが明らかになった (表2及び図4)。さらに、部分最少二乗判別分析 (PLS-DA) から、8つの遺伝子レベルの上昇が、感染死予防マウス (BL+O157) と感染死非予防マウスとの間の違いに寄与していることが示唆された (図3b及び表3)。定量的PCR (qPCR) によりこれらの遺伝子の発現量を検証したところ、8つの遺伝子のうちの7つが、O157による感染死非予防マウスで有意に増加していることが明らかとなった (図3c)。これらの遺伝子には、炎症関連遺伝子 (ケモカインCxcl9及びCxcl10、並びにRegIIIファミリーReg3b及びReg3g) が含まれていた。前述の組織学的分析では、O157感染後1日目には明らかな炎症は認められなかったが、上皮細胞のアポトーシスが観察された (図2c)。これらの結果は、O157が感染死非予防マウスの上皮細胞のアポトーシスを引き起こして大腸で炎症を生じるのに対し、感染死予防マウスでは予防性株 (BL) によりアポトーシスが抑制されていることを示唆している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例4 炎症の発症および腸管上皮細胞のアポトーシスの予防
 BLマウス及びBAマウスの糞便代謝プロファイルをPLS-DAにより解析し、BLがO157により誘導される炎症及び腸管上皮細胞のアポトーシスを予防する機序を調べた。
1H及び1H、13C NMR測定
 凍結乾燥した糞便10 mgを90% 重水 (D2O) 含有100 mM KPi及び1 mM 2,2-ジメチル-2-シラペンタン-5-スルホン酸ナトリウム (DSS) で穏やかに振盪し、糞便中の代謝物を抽出した。次いで、1H NMRおよび1H, 13C NMRを用いて解析を行った。得られたデータはNMRPipeソフトウェアを用いてNMRスペクトルを解析した。
結果
 BLマウスとBAマウスとの間で糞便中代謝物の組成に著しい差異があった (図5a)。ローディングプロット解析及び1H、13C NMR測定の結果、BLマウスにおける糞便中の糖質の量が、BAマウスよりも有意に低いことが示唆された (図6及び表4)。これらのデータは、ビフィズス菌による糖消費の程度が、O157感染からの宿主の生存率に関連することを意味する。
Figure JPOXMLDOC01-appb-T000004
実施例5 短鎖脂肪酸の定量
 ビフィズス菌の糖発酵の主要最終生成物である、酢酸等の短鎖脂肪酸の糞便中含量を、実施例1記載の方法にしたがって定量した。
結果
 酢酸の濃度は、BAマウスよりBLマウスで有意に高かった(図5b)。他のビフィズス菌での類似観察も行ったところ、O157感染死を予防できるBFを投与したマウスでは、予防できないBTを投与したマウスよりも、糞便中の酢酸濃度は高かった (図5b及び図6)。したがって、予防性BL及びBFは、非予防性BA及びBTよりも、大量の酢酸を遠位結腸において産生するとみられ、このことが最終的にO157感染による死亡の予防をもたらす可能性がある。
実施例6 BLマウス及びBAマウスの宿主腸管上皮応答における差異
 BLマウス及びBAマウスの結腸上皮における遺伝子発現プロファイルを解析した。
代謝物及び発現した遺伝子の共変動解析
 位置 (i、j) における要素が、マイクロアレイデータ (BLマウスとBAマウスとの間で発現レベルに2倍以上あるいは2分の1以下の差がある24の遺伝子) と1H NMRスペクトルとのセットにおけるi番遺伝子とj番binsとの間の相関係数として定義される、二次元相関マップをマトリクスとして計算した。正 (又は負) に高い係数ほど、i番とj番とのシグナルもしくはピーク間で正 (又は負) 相関があることを意味する。
結果
 BLマウスとBAマウスとの間で発現レベルに2倍以上あるいは2分の1以下の差があった24の遺伝子を同定した (表5及び図7)。共変動解析の結果、24遺伝子のうちのいくつかの発現変動とBLマウス及びBAマウスにおける糞便中代謝物のうちのいくつかの代謝物量との間に強い相関が認められた (図5c)。
Figure JPOXMLDOC01-appb-T000005
実施例7 酢酸量の上昇が及ぼす効果
 実施例6で同定された遺伝子の中で、Apoe、C3、及びPla2g2a等の遺伝子によりコードされる蛋白質は、レチノイドX受容体α (RXRα) の下流の分子であり、この核内受容体は、細胞エネルギーの代謝及び炎症反応の転写制御において中心的役割を果たしている。そこで、これらの遺伝子と酢酸量の関係を調べるために、酢酸の存在下 (5 mM又は10 mM) および非存在下で、以下の実験を行った。
定量的RT-PCR
 予防性ビフィズス菌定着マウスの結腸上皮においてその発現量が増加していた3つの遺伝子 (Apoe、C3、及びPla2g2a) のmRNA発現量が、Caco-2細胞を用いた本実験でも同様に増加するか否かを、実施例2記載の方法にしたがってRT-PCRにより検討した。PCRに使用したプライマーを表6に示す。試料間の転写レベルはGAPDHの発現レベルに対して正規化した。尚、Caco-2細胞はAmerican Type Culture Collection (ATCC) から購入し、10% ウシ胎仔血清及び1% ペニシリン-ストレプトマイシン-グルタミンダルベッコ (GIBCO) を補充した変法イーグル培地 (D-MEM: GIBCO) で単層培養した。培養はプラスチックシャーレで37℃、5% CO2環境下で行った。
Figure JPOXMLDOC01-appb-T000006
経上皮電気抵抗 (TER) 測定
 コラーゲンコーティングしたTranswellフィルター (直径6.5 mm、孔径0.4 mm; Costar) の上部域にCaco-2細胞を播種し、EVOM抵抗計 (World Precision Instruments) を用いて経上皮電気抵抗 (TER) をモニターしながら、500 W/cm2の安定なTER値となるまで7~12日間培養した。Transwellの上部域にO157を添加し (moi 10)、37℃、5% CO2環境下で16時間インキュベートした後に、TER値を測定した。
死細胞数の測定
 Caco-2細胞を6ウェルプレート中で7~12日間培養した。細胞をO157に感染させ (moi 10)、37℃、5% CO2環境下で8時間インキュベートした後に、アポトーシス細胞を0.5% トリパンブルーで染色し、位相差顕微鏡下で計数した。
結果
 ヒト結腸上皮Caco-2細胞を用いたインビトロの実験では、酢酸がApoe、C3及びPla2g2aの発現を直接誘導し(図8a)、O157感染による細胞死に起因する経上皮電気抵抗 (TER) の低下を防げることが明らかとなった (図8b及びc)。これらの所見は、酢酸量の増加が、抗炎症反応及び/又は抗アポトーシス作用を誘導することによって結腸上皮のバリア機能を増強し、血液中へのStx2の浸潤を予防することを示している。
実施例8 酢酸産生機序の解明
 BL及びBFが、BT及びBAより多くの酢酸を産生し得る機序を明らかにするために、以下の方法にしたがって、BL、BF及びBTのゲノムを完全に配列決定し、また、公的に入手可能なBA及びBNを含む他のビフィズス菌のゲノム配列並びにヒト腸内細菌叢由来のゲノム配列とも比較した。
ゲノム配列決定
 BF、BT及びBLのゲノム配列を、全ゲノムショットガン法により決定した。3つのゲノムについて、それぞれ小さい挿入断片 (2 kb) 及び大きい挿入断片 (10 kb) を有するゲノムライブラリーを構築し、ABI 3730xlシーケンサー(Applied Biosystems)を用いて、それぞれゲノムクローン全体の7.8、6.3及び7.6倍をカバーする26880 (BF)、30720 (BT) 及び28416 (BL) の配列を読み取った。読み取った配列をPhred-Phrap-Consed program (Genome Res., 11, 614-25 (2001)) を用いて繋ぎ合わせ、ギャップは、ギャップをまたぐクローン又は隣接するコンティグの各末端にアニールするように設計されたオリゴヌクレオチドプライマーを用いて増幅されたPCR産物の配列を直接シークエンスすることによりうめた。完成した配列の全体的な精度は、10000塩基に1つ未満のエラー率と推定された(≧40のPhrapスコア)。配列決定したビフィズス菌ゲノムの一般的特徴を表7に示す。
Figure JPOXMLDOC01-appb-T000007
予防性ビフィズス菌特異的遺伝子群のマウス腸管内発現
 BLマウスまたはBFマウスの腸管内容物から細菌RNAを抽出し、実施例3に記載の方法にしたがって、定量的RT-PCRにより予防性ビフィズス菌特異的遺伝子群の腸管内発現を調べた。試料間の転写レベルは16S RNAの発現レベルに対して正規化した。使用したプライマーを表8に示す。
Figure JPOXMLDOC01-appb-T000008
結果
 種々のビフィズス菌ゲノムにおける糖代謝に関与する遺伝子を比較した結果、BL、BF及びBNゲノム中には存在するが、BA及びBTゲノム中では完全に欠失している2つの遺伝子座を同定した。これら2つの遺伝子座は、NCBIのCOGデータベースにCOG1879、COG1172、及びCOG1129として登録されているABC型糖トランスポーターの遺伝子をコードしていた (図9a及び表9)。BNにおけるこれらのオルソログによりコードされたトランスポーターの基質は、リボース、フルクトース、マンノース等であると予想される。
Figure JPOXMLDOC01-appb-T000009
 これら2つの遺伝子座に存在するABC型糖トランスポーターの遺伝子について、本実施例にて配列決定したものを含め、ゲノム配列が公知の種々のビフィズス菌株において、オルソログの存在およびアミノ酸の配列類似性を調べたところ、BN、BLおよびBF以外に、ビフィドバクテリウム・ロンガム・サブスピーシーズ・ロンガム (Bifidobacterium longum subsp. longum) DJO10A株でもオルソログの存在が確認され、これら4菌株では、すべての遺伝子についてオルソログ間で互いにきわめて高い配列類似性が認められた(表10)。さらに、13人のヒト腸内細菌叢由来の全ゲノム配列データ (Kurokawa, K. et al., DNA Res., 14, 169-181 (2007)) との比較の結果、8人の腸内細菌叢からこれらのABCトランスポーター遺伝子と配列類似性の高い遺伝子が検出された (表10)。
Figure JPOXMLDOC01-appb-T000010
 これらのオルソログ及び転写調節因子等の隣接遺伝子は、BLマウス及びBFマウスの遠位結腸において発現していることが確認された (図10a)。一方、ビフィズス菌における異化経路内のフルクトース代謝に関わる酵素をコードするフルクトキナーゼ遺伝子は、O157感染死に対して予防性であるか非予防性であるかにかかわらず、いずれのビフィズス菌株でも、マウス遠位結腸において高発現していた (図10b)。
実施例9 インビトロでのビフィズス菌のフルクトース消費率及び酢酸の生成
 13C標識したグルコース及びフルクトースを含有する培地 (Silantes, Co. Ltd., Munchen,  Germany) を用い、O157感染死予防性のBL及びBF株、並びに非予防性のBA及びBT株をインビトロで培養し、1H, 13C NMR測定によるメタボローム解析を行い、PLS-DA法を用いてO157感染死予防性ビフィズス菌の糖質の代謝能を解析した。
結果
 BL及びBFにおけるフルクトースの消費率及び酢酸の生成量は、BA及びBTよりも、有意に高いことが明らかになった(図9b及びc)。13C標識培地を用いてビフィズス菌株をインビトロで12時間培養した時のメタボローム解析データをPLS-DAにより評価した結果を表11に示す。これらのデータは、フルクトース及びビフィズス菌のABC型糖トランスポーターが、宿主結腸上皮における抗炎症及び/抗アポトーシスを惹起する酢酸の生成に大きく寄与し、それによってマウスをO157感染死から予防することを強く示唆している。
Figure JPOXMLDOC01-appb-T000011
実施例10 O157感染死予防性および非予防性ビフィズス菌株の糖資化性
 種々の糖質を添加した培地を用い、O157感染死予防性のBN、BL及びBF株、並びに非予防性のBT及びBA株を液体培養し、増殖速度と酢酸の生成量を測定した。増殖速度はビフィズス菌株を接種後、培養液のOD値が1.0になるまでの時間を測定し、5段階でスコア化した。
結果
 いずれのO157感染死予防性株も、非予防性株に比べて顕著に増殖が速かった。また、予防性株は、増殖速度は速くないもののマンノース資化性であるのに対し、非予防性株はマンノースを炭素源として利用できなかった。酢酸の生成量は、いずれの菌株においても増殖速度と相関していた (表12)。
Figure JPOXMLDOC01-appb-T000012
 本発明の腸管バリア機能改善剤は、腸管、特に結腸上皮における酢酸塩濃度を上昇させることにより、上皮細胞における抗炎症作用および抗アポトーシス作用に関与する遺伝子群の発現を誘導し、腸管バリア機能低下の原因となる上皮細胞の炎症やアポトーシスを抑制することができるので、O157感染死を予防し得るのみならず、種々の病原性微生物および/またはそれらが産生する毒素、あるいはアレルゲン物質などのバリア透過を阻止することができ、それら異物の侵入により引き起こされる多様な疾患の予防および/または治療にも有用である。また、本発明のスクリーニング方法は、微生物ゲノム中における特定の遺伝子クラスターの有無を調べることにより、迅速かつ簡便に腸管バリア機能改善に有効な微生物を選択することができるので、新規かつ有用なプロバイオティクスの探索ツールとして有用である。
 本出願は、2009年9月3日付で日本国に出願された特願2009-204157を基礎としており、その内容はすべて本明細書に包含される。

Claims (8)

  1.  以下の(a)および/または(b)の遺伝子クラスター:
    (a)配列番号1、3、5および7に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログを含んでなる遺伝子クラスター
    (b)配列番号9、11、13、15、17および19に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログを含んでなる遺伝子クラスター
    をゲノム中に有し、かつ該ABCトランスポーターにより細胞内に輸送される糖類から酢酸塩を生成する能力を有する、哺乳動物の腸内に常在し得る微生物の生細胞を有効成分とする、腸管バリア機能改善剤。
  2.  前記微生物が、ビフィドバクテリウム (Bifidobacterium) 属またはラクトバチルス(Lactobacillus) 属に属する細菌である、請求項1記載の剤。
  3.  前記糖類がフルクトースである、請求項1または2記載の剤。
  4.  フルクトースもしくはそれを構成糖とするオリゴ糖を組み合わせてなる、請求項1~3のいずれか1項に記載の剤。
  5.  機能性食品である、請求項1~4のいずれか1項に記載の剤。
  6.  腸管バリア機能の低下が関与する疾患の予防および/または治療用である、、請求項1~4のいずれか1項に記載の剤。
  7.  前記疾患が病原性微生物、毒素もしくはアレルゲンの腸管バリア透過に起因するものである、請求項6記載の剤。
  8.  以下の(1)および(2)の工程を含む、腸管バリア機能改善作用を有する微生物のスクリーニング方法。
    (1)哺乳動物の腸内に常在し得る微生物を含有する被験試料において、配列番号1、3、5、7、9、11、13、15、17および19に示される各ヌクレオチド配列からなる、ABCトランスポーターを構成する蛋白質をコードする遺伝子、または該遺伝子の各オルソログからなる群より選択される1以上の遺伝子、あるいはその発現産物を検出する工程
    (2)該遺伝子またはその発現産物が検出された場合に、該被験試料は腸管バリア機能改善作用を有する微生物を含有すると判定する工程
PCT/JP2010/065180 2009-09-03 2010-09-03 腸管バリア機能改善剤 WO2011027875A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529963A JPWO2011027875A1 (ja) 2009-09-03 2010-09-03 腸管バリア機能改善剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-204157 2009-09-03
JP2009204157 2009-09-03

Publications (1)

Publication Number Publication Date
WO2011027875A1 true WO2011027875A1 (ja) 2011-03-10

Family

ID=43649410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065180 WO2011027875A1 (ja) 2009-09-03 2010-09-03 腸管バリア機能改善剤

Country Status (2)

Country Link
JP (1) JPWO2011027875A1 (ja)
WO (1) WO2011027875A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207883A (ja) * 2013-03-27 2014-11-06 国立大学法人岡山大学 がん幹細胞及びその用途
US9663829B2 (en) 2011-09-08 2017-05-30 Gen-Probe Incorporated Compositions and methods for detecting BV-associated bacterial nucleic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531245A (ja) * 2001-01-30 2004-10-14 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Ncc2705−ビフィドバクテリウムのゲノム
WO2005000882A2 (en) * 2003-06-27 2005-01-06 University College Cork - National University Of Ireland, Cork Dna fragments and proteins encoded by said dna isolated from bifidobacteria
JP2006238706A (ja) * 2005-02-28 2006-09-14 Kanehide Bio Kk ビフィズス菌の培地、この培地を用いたビフィズス菌の培養方法、及びこの培養方法により培養したビフィズス菌を添加した食品
WO2008071930A1 (en) * 2006-12-11 2008-06-19 Danisco A/S Composition
JP2010180146A (ja) * 2009-02-04 2010-08-19 Univ Of Tokyo 腸管出血性大腸菌による感染死を抑制するための組成物及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531245A (ja) * 2001-01-30 2004-10-14 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Ncc2705−ビフィドバクテリウムのゲノム
WO2005000882A2 (en) * 2003-06-27 2005-01-06 University College Cork - National University Of Ireland, Cork Dna fragments and proteins encoded by said dna isolated from bifidobacteria
JP2006238706A (ja) * 2005-02-28 2006-09-14 Kanehide Bio Kk ビフィズス菌の培地、この培地を用いたビフィズス菌の培養方法、及びこの培養方法により培養したビフィズス菌を添加した食品
WO2008071930A1 (en) * 2006-12-11 2008-06-19 Danisco A/S Composition
JP2010180146A (ja) * 2009-02-04 2010-08-19 Univ Of Tokyo 腸管出血性大腸菌による感染死を抑制するための組成物及び方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Abstracts of Japanese Carbohydrate Symposium, 10 July 1997", vol. 19TH, 10 July 1997, article MASATO TASHIRO: "Physiological functions of indigestible oligosaccharides and their application", pages: 8 *
ASAHARA T ET AL.: "Probiotic Bifidobacteria Protect Mice from Lethal Infection with Shiga Toxin-Producing Escherichia coli 0157:H7", INFECTION AND IMMUNITY, vol. 72, no. 4, April 2004 (2004-04-01), pages 2240 - 2247 *
KAZUTOSHI YOSHIMURA ET AL.: "Bifidus-kin no Kinshu, Kinkabu ni yoru Mouse no Escherichia coli 0157: H7 Kansenshi Yokusei Koka no Hikaku", JAPANESE JOURNAL OF BACTERIOLOGY, vol. 64, no. 1, 20 February 2009 (2009-02-20), pages 226 *
SHINJI FUKUDA ET AL.: "Analysis of Host- Bacterial Cross-talk Using 0157 Infection Murine Model", JOURNAL OF INTESTINAL MICROBIOLOGY, vol. 22, no. 2, April 2008 (2008-04-01), pages 54 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663829B2 (en) 2011-09-08 2017-05-30 Gen-Probe Incorporated Compositions and methods for detecting BV-associated bacterial nucleic acid
JP2014207883A (ja) * 2013-03-27 2014-11-06 国立大学法人岡山大学 がん幹細胞及びその用途

Also Published As

Publication number Publication date
JPWO2011027875A1 (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
US11266698B2 (en) Bacterium for use as a probiotic for nutritional and medical applications
Tamanai-Shacoori et al. Roseburia spp.: a marker of health?
US10987387B2 (en) Compositions comprising bacterial strain
KR102569754B1 (ko) 대사장애를 치료하기 위한 살균된 아커만시아의 용도
TWI572354B (zh) 抑制發炎之組成物
JP6587614B2 (ja) プロバイオティクスとしてのラクトバチルス属の菌株
EP3801578B1 (en) B. amyloliquefaciens strain and therapeutic use
Bao et al. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157: H7‐induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota
TWI337079B (en) Compositions comprising oligosaccharides
JP2021508462A (ja) セルピン産生
CN116709924A (zh) 用于治疗移植物抗宿主病的设计的细菌组合物
CA3147739A1 (en) Clostridia consortia compositions and methods of treating obesity, metabolic syndrome and irritable bowel disease
Piotrowski et al. The prebiotic effect of human milk oligosaccharides 3′-and 6′-sialyllactose on adhesion and biofilm formation by Clostridioides difficile–pilot study
KR20230131850A (ko) 아동의 성장 및 사회 기능을 향상시키기 위한 프로바이오틱스조성물 및 이의 사용 방법
Grover et al. A discussion of the gut microbiome’s development, determinants, and dysbiosis in cancers of the esophagus and stomach
Gupta et al. Rise of the guardians: Gut microbial maneuvers in bacterial infections
US20220378855A1 (en) Compositions for modulating gut microflora populations, enhancing drug potency and treating cancer, and methods for making and using same
WO2011027875A1 (ja) 腸管バリア機能改善剤
US11666611B2 (en) Defined therapeutic microbiota and methods of use thereof
Mikelsaar et al. Human lactic acid microflora and its role in the welfare of the host
JP2024518084A (ja) 疾患を治療するための組成物及び方法
Deng et al. Effects of orally administered Escherichia coli Nissle 1917 on growth performance and jejunal mucosal membrane integrity, morphology, immune parameters and antioxidant capacity in early weaned piglets
US20240226191A1 (en) Compositions and methods for treating disease
Heiss Interactions between the human milk oligosaccharide 2’-fucosyllactose and Bifidobacterium species influence colonization in complex gut communities
Zheng et al. Ginseng polysaccharides promote gut microbiota mediated deoxycholic acid to alleviate LPS-induced mastitis by regulating TGR5-cAMP-PKA-NF-κB/NLRP3 pathway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529963

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813822

Country of ref document: EP

Kind code of ref document: A1