WO2011027816A1 - 電源回路および発光装置 - Google Patents

電源回路および発光装置 Download PDF

Info

Publication number
WO2011027816A1
WO2011027816A1 PCT/JP2010/065011 JP2010065011W WO2011027816A1 WO 2011027816 A1 WO2011027816 A1 WO 2011027816A1 JP 2010065011 W JP2010065011 W JP 2010065011W WO 2011027816 A1 WO2011027816 A1 WO 2011027816A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output
capacitor
power
voltage
Prior art date
Application number
PCT/JP2010/065011
Other languages
English (en)
French (fr)
Inventor
保 宇佐見
勉 松村
義雄 田村
幸久 加藤
Original Assignee
加賀コンポーネント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加賀コンポーネント株式会社 filed Critical 加賀コンポーネント株式会社
Publication of WO2011027816A1 publication Critical patent/WO2011027816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix

Definitions

  • the present invention relates to a power supply circuit that rectifies AC power and supplies it to a load, and a light emitting device that emits light from a light emitting diode (LED).
  • a power supply circuit that rectifies AC power and supplies it to a load
  • a light emitting device that emits light from a light emitting diode (LED).
  • a rectifier circuit that converts the AC power into power suitable for supplying the LED is required.
  • a large-capacity capacitor is required to convert it into clean DC power.
  • An electrolytic capacitor exists as a large-capacity capacitor. However, when this electrolytic capacitor is used, the power factor is reduced and current harmonics are generated.
  • ESR increases, the electrolyte is dried up, loss increases, and smoke may be generated. In order to avoid this, it is possible to eliminate the electrolytic capacitor and cause the LED to emit light with the pulsating current output from the rectifier circuit.
  • the power to be supplied to the LED is interrupted at a constant cycle, and the LED repeats blinking. Even if it is not so conspicuous when viewed directly by human eyes, for example, lighting with such a blinking LED is performed. When attempting to take a picture of the screen, it may cause another problem such as a picture with a stripe pattern due to the relationship between the blinking cycle of the LED and the sweep speed of the light receiving element of the camera.
  • the present invention uses a power supply circuit that avoids the interruption of power supply to a load while avoiding the use of a capacitor having a large capacity that requires the use of an electrolytic capacitor, and uses the power supply circuit
  • An object of the present invention is to provide a light emitting device.
  • the power supply circuit of the present invention further includes a constant current circuit for making the power supplied to the load connected to the power supply circuit constant.
  • the synthesis circuit is connected between the output side of the rectifier circuit and the capacitor, and is turned on and off between the output side of the rectifier circuit and the capacitor under control. And the input or output of the rectifier circuit is monitored, the first switch element is controlled to be in the OFF state during the period when the output voltage of the rectifier circuit is equal to or higher than the first threshold voltage, and the output voltage of the rectifier circuit is the first threshold voltage. It is preferable to have a discharge control circuit that controls the first switch element to an ON state for a period less than the period.
  • the first switch element is a semiconductor switch element
  • the charging circuit is equivalent to the semiconductor switch element
  • the output side of the rectifier circuit is an anode and the capacitor side is a cathode diode.
  • the charging circuit may be a diode having an anode connected to the output side of the rectifier circuit and a cathode connected to the capacitor side.
  • the charging circuit is connected between the output side of the rectifier circuit and the capacitor, and is turned on and off between the output side of the rectifier circuit and the capacitor under control. And the input or output of the rectifier circuit is monitored, the second switch element is controlled to be in an ON state during a period when the output voltage of the rectifier circuit is equal to or higher than the second threshold voltage, and the output voltage of the rectifier circuit is set to the second threshold voltage.
  • the charge control circuit that controls the second switch element to an off state may be included for a period less than the period.
  • the power supply circuit of the present invention is, for example, A pair of input terminals for receiving AC power; A pair of output terminals connected to the load, The rectifier circuit is connected to the pair of input terminals and the pair of output terminals, converts AC power received at the pair of input terminals into a pulse wave current, and supplies the pulse wave current to the pair of output terminals, One end of the capacitor is connected to the first output terminal of the pair of output terminals, A first circuit that is connected between the other end of the capacitor and a second output terminal of the pair of output terminals and that is controlled to turn on and off between the other end and the second output terminal; The switch element and the AC power are monitored, and the switch element is controlled to be in an OFF state during a period in which the voltage as the absolute value of the AC power is not less than the first threshold voltage, and the voltage as the absolute value of the AC power is the first voltage. A period less than the threshold voltage has a discharge control circuit for controlling the first switch element to an ON state;
  • the charging circuit may be a circuit that charges
  • the light emitting device of the present invention that achieves the above object is The power supply circuit according to any one of the aspects of the present invention, and a light-emitting diode that emits light when power is supplied from the power supply circuit.
  • the light emitting diode preferably has a plurality of light emitting diode elements sequentially connected in series.
  • the present invention includes a synthesis circuit that discharges the power charged in the capacitor when the pulse wave power output from the rectifier circuit is less than the first threshold voltage and combines it with the pulse wave power. is there. Therefore, according to the present invention, it is sufficient to use a capacitor having a capacity that does not require the use of an electrolytic capacitor, and a long-life capacitor such as a ceramic capacitor can be used. Moreover, according to this invention, it can avoid that the electric power supplied to load is interrupted periodically.
  • FIG. 1 is a circuit block diagram showing a power supply circuit as a first embodiment of the present invention. It is a circuit diagram of the light-emitting device as 2nd Embodiment of this invention. It is a circuit diagram of the light-emitting device as 3rd Embodiment of this invention. It is a schematic diagram which shows a high voltage light emitting diode. It is the figure which showed the waveform of each part of the power supply circuit shown in FIG. It is a circuit diagram of the light-emitting device as 4th Embodiment of this invention. It is a circuit diagram of the light-emitting device of 5th Embodiment of this invention. It is a circuit diagram of the light-emitting device of 6th Embodiment of this invention.
  • FIG. 7 is a perspective view of the power package shown in FIG. 12. It is the figure which showed the example of a specification of the characteristic value. It is the figure which showed the item in the case of 3rd Embodiment shown in FIG. 3 on the conditions shown in FIG.
  • FIG. 1 is a circuit block diagram showing a power supply circuit as a first embodiment of the present invention.
  • the power supply circuit 10 has a pair of input terminals 11a and 11b and a pair of output terminals 12a and 12b.
  • commercial AC power 20 having an effective value of 100 V and 50 Hz is input to the pair of input terminals 11a and 11b.
  • a load 30 is connected to the pair of output terminals 12a and 12b.
  • the power supply circuit 10 includes a rectifier circuit 13 connected to a pair of input terminals 11a and 11b and a pair of output terminals 12a and 12b.
  • This rectifier circuit 13 is constituted by a combination of diodes 17 and converts the AC power received at the input terminals 11a and 11b into full-wave rectified DC power to supply it to the output terminals 12a and 12b. .
  • the electric power supplied to the output terminals 12a and 12b is supplied to the load 30 via the output terminals 12a and 12b.
  • the first output terminal 12a is connected to the ground line
  • the second output terminal 12a is connected to the ground line.
  • the output terminal 12b is supplied with positive voltage power compared to the ground line.
  • the power supply circuit 10 also has a synthesis circuit composed of a switch element 15 and a control circuit 16.
  • the power supply circuit 10 further includes a capacitor 14 having one end connected to the first output terminal 12a.
  • the switch element 15 is connected between the other end of the capacitor 14 and the second output terminal 12b. Under the control of the control circuit 16, the switch element 15 is turned on / off between the capacitor 14 and the second output terminal 12b. To do.
  • control circuit 16 monitors the AC power input to the rectifier circuit 13, and controls the switch element 15 to be in an OFF state during a period in which the voltage of the AC power is an absolute value or more than a threshold voltage (for example, 30V). During a period in which the voltage (absolute value) of AC power is less than the threshold voltage, the switch element 15 is controlled to be on.
  • a threshold voltage for example, 30V
  • the power supply circuit 10 includes a diode 17 having an anode connected to the second output terminal 12 b and a cathode connected to a connection node between the capacitor 14 and the switch element 15.
  • the diode 17 is an example of a charging circuit according to the present invention, and charges the capacitor 14 with the output power of the rectifier circuit 13 while the switch element 15 is in the OFF state.
  • the switch element 15 when the input voltage of the rectifier circuit 13 is less than a threshold value (for example, 30 V), the switch element 15 is turned on, and the electric power accumulated in the capacitor 14 is supplied to the output terminal 12b via the switch element 15. Therefore, the load 30 is always supplied with power having a voltage equal to or higher than the threshold voltage, and it is avoided that the power supply is interrupted. Further, the capacitor 14 only needs to discharge power when it is lower than a threshold voltage (for example, 30 V), and may be a capacitor having a small capacity of, for example, several ⁇ F.
  • a threshold voltage for example, 30 V
  • FIG. 2 is a circuit diagram of a light-emitting device as a second embodiment of the present invention.
  • the light emitting device 1A is roughly divided into a power supply circuit 100A and an LED light emitting circuit 300. Among these, a detailed circuit diagram is shown for the power supply circuit 100A which is a characteristic part of the present embodiment, and the LED light emitting circuit 300 is shown in one block.
  • the power supply circuit 100A constituting the light emitting device 1A has a pair of input terminals 111a and 111b and a pair of output terminals 121a and 121b.
  • commercial AC power 200 having an effective value of 100 V and 50 Hz is input to the pair of input terminals 111a and 111b.
  • an LED light emitting circuit 300 as a load is connected to the pair of output terminals 121a and 121b.
  • the LED light-emitting circuit 300 includes a light-emitting diode (LED) 301 and causes the LED 301 to emit light with power supplied from the power supply circuit 100A.
  • LED light-emitting diode
  • the power supply circuit 100A includes a rectifier circuit 130 connected to the pair of input terminals 111a and 111b and the pair of output terminals 121a and 121b.
  • the rectifier circuit 130 includes four diodes 131a, 131b, 131c, and 131d that are bridge-connected.
  • the rectifier circuit 130 converts AC power received at the input terminals 111a and 111b into DC pulsating power, and outputs the output via the output terminals 121a and 121b.
  • the LED light emitting circuit 300 is supplied.
  • the first output terminal 121a of the pair of output terminals 121a and 121b is connected to the ground line, and the second output terminal 121b includes When the ground line (first output terminal 121a) is used as a reference, positive voltage power is supplied.
  • a small-capacitance (for example, 100 nF) capacitor 180 is connected to the output side of the rectifier circuit 130. This is for removing high-frequency noise and is not a capacitor that contributes to smoothing the pulsating flow.
  • the power supply circuit 100A includes a capacitor 140 having one end connected to the first output terminal 121a.
  • a MOSFET 150 is disposed between the other end of the capacitor 140 and the second output terminal 121b.
  • the MOSFET 150 serves as both a semiconductor switch element and a charging circuit according to the present invention. That is, MOSFET 150 is turned on when an L level voltage is supplied to its gate, and is turned off when an H level voltage is supplied to its gate. As a result, the MOSFET 150 operates as a switching element according to the present invention.
  • the MOSFET 150 has an equivalent diode 170 having an anode on the second output terminal 121b side and a cathode on the capacitor 140 side. The equivalent diode 170 serves as a charging circuit according to the present invention.
  • the power supply circuit 100A has a control circuit 160.
  • the control circuit 160 is a circuit that forms an example of the synthesis circuit according to the present invention together with the MOSFET 150.
  • the control circuit 160 includes a diode 161a having an anode connected to the first input terminal 111a, and another diode 161b having an anode connected to the second input terminal 111b and a cathode connected to the cathode of the diode 161a.
  • a Zener diode 162 whose cathode is connected to the cathodes of the two diodes 161a and 161b
  • a resistor 163a connecting between the anode of the Zener diode 162 and the base of the NPN transistor 164a, and the base of the NPN transistor 164a
  • the resistor 163b is connected to the second output terminal 121a (ground line).
  • the emitter of the NPN transistor 164a is connected to the second output terminal 121a (ground line), the collector is connected to the base of another NPN transistor 164b, and the second output terminal 121b is connected via the resistor 163e. It is connected to the.
  • the emitter of the other NPN transistor 164b is connected to the first output terminal 121a (ground line), and the collector is connected to the gate of the MOSFET 150 via the resistor 163d.
  • the gate of the MOSFET 150 is connected to a connection node between the capacitor 140 and the MOSFET 150 via the resistor 163c.
  • the H level voltage is applied to the base of the NPN transistor 164a. Is applied to make the NPN transistor 164a conductive, whereby the base of the other NPN transistor 164b becomes L level, the gate of the MOSFET 150 becomes H level, and the MOSFET 150 is turned off. Then, the output power of the rectifier circuit 130 is output as it is to the output terminal 121b and supplied to the LED light emitting circuit 300A, and the LED 301 emits light.
  • the threshold voltage determined by the Zener voltage of the Zener diode 162 for example, ⁇ 30 V
  • the voltage of the AC power 200 is less than the threshold voltage (for example, 30 V)
  • the voltage cannot pass through the Zener diode 162
  • the base of the NPN transistor 164a is supplied via the resistor 163b.
  • L level ground potential
  • the NPN transistor 164a is turned off, and a voltage of H level is applied to the base of the other NPN transistor 164b via the resistor 163e, so that the NPN transistor 164b is turned on.
  • the MOSFET also becomes conductive (ON state).
  • the power charged in the capacitor 140 is supplied to the second output terminal 121b via the MOSFET 150.
  • the voltage of the second output terminal 121b remains at a voltage of about the threshold voltage (for example, 30V) and does not decrease below that, and the light emission of the LED 301 is continued by the power.
  • the capacitor 140 discharges power only when it is lower than a threshold voltage (for example, 30 V), and may be a capacitor having a small capacity of about 4.7 microfarads, for example. Therefore, a long-life ceramic capacitor or the like can be used.
  • the LED light emitting circuit 300 can be sufficiently devised such as adding a current limiting element (such as a constant current diode) or stabilizing the brightness by combining a temperature detection sensor or an illuminance detection sensor.
  • a current limiting element such as a constant current diode
  • FIG. 3 is a circuit diagram of a light emitting device as a third embodiment of the present invention.
  • the light emitting device 1B is roughly divided into a power supply circuit 100B and a high voltage light emitting diode 500.
  • the power supply circuit 100B is shown in a detailed circuit diagram
  • the high voltage light emitting diode 500 is shown in a simplified manner in FIG. The structure of the high voltage light emitting diode 500 will be described later.
  • the power supply circuit 100B includes a fuse 401, a rectifier circuit 410, a high voltage hold circuit 420, a waveform synthesis circuit 430, a switching power supply 440, a constant current circuit 470, and a smoothing capacitor 481.
  • the rectifier circuit 410 corresponds to an example of a rectifier circuit according to the present invention
  • the high voltage hold circuit 420 corresponds to an example of both a capacitor and a charging circuit according to the present invention.
  • the waveform synthesis circuit 430 corresponds to a part of the synthesis circuit referred to in the present invention.
  • the remaining part of the synthesis circuit according to the present invention is included in the switching power supply 440. Details will be described later.
  • the switching power supply 440 includes a current adjusting switching circuit for adjusting the current flowing through the LED light emitting circuit 300B, and an internal power supply circuit, in addition to the components of the combining circuit, as well as the constant current circuit 470.
  • the smoothing capacitor 481 is a capacitor that is responsible for smoothing the output voltage of the switching power supply 440. Since the driving current of the high voltage light emitting diode 300 can be small, a film capacitor or a ceramic capacitor can be used as the smoothing capacitor 481.
  • the rectifier circuit 410 is composed of four diodes 411 to 414 connected in a bridge, and converts commercial AC power having an effective value of 100 V into DC pulse wave power.
  • the high-voltage hold circuit 420 includes a capacitor 421 whose one end is grounded, and a diode whose anode is connected to the output of the rectifier circuit 410 for charging the capacitor 421 and whose cathode is connected to the other end of the capacitor 421. 422.
  • the diode 422 is an example of a charging circuit according to the present invention.
  • a film capacitor or a ceramic capacitor can be used for the capacitor 421.
  • the waveform synthesis circuit 430 also includes a diode 431 having an anode connected to the output of the rectifier circuit 410 and a cathode connected to the switching power supply 440, a P-channel MOS transistor 432 connecting the capacitor 421 and the cathode of the diode 431, A resistor 433 having one end connected to the gate of the P-channel MOS transistor 432 and the other end connected to the switching power supply 440, and a resistor connecting the connection node between the capacitor 421 and the diode 422 and the gate of the P-channel MOS transistor 432 434.
  • the switching power supply 440 includes a resistor 441, a P-channel MOS transistor 442 that connects the output of the waveform synthesis circuit 430 (that is, a connection node between the diode 431 and the P-channel MOS transistor 432) and the resistor 441, and its P-channel MOS.
  • a resistor 443 connecting between the gate of the transistor 442 and the output of the waveform synthesis circuit 430, another resistor 444 having one end connected to the gate of the P-channel MOS transistor 442, and the resistor 444 and the ground line N-channel MOS transistor 445 connecting between the two.
  • the gate of this N channel MOS transistor 445 is connected to the output of a comparator 446 described later.
  • the P-channel MOS transistor 442, the N-channel MOS transistor 445, and the two resistors 443 and 444 transmit the output power of the waveform synthesis circuit 430 to the LED light-emitting circuit 300B while switching in accordance with the change in the output of the comparator 446.
  • a switching circuit is configured. This switching circuit, together with the comparator 446 and the like, constitutes a current adjustment circuit that adjusts the supply current to the high voltage light emitting diode 500.
  • the zener diode 447, the capacitor 448, and the resistor 449 constitute an internal power supply circuit that generates constant voltage ⁇ power used in the switching power supply 440 and the constant current circuit 470.
  • electric power of an internal power supply Vcc 5.0 volts is generated and supplied to the comparator 446, another comparator 450, and the constant current circuit 470.
  • the positive power source of the comparator 450 is connected to the internal power source Vcc, and the negative power source is grounded.
  • Two resistors 451 and 452 connected in series with each other are arranged between the internal power supply Vcc and the ground line, and the first reference voltage Vref1 is generated by these two resistors 451 and 452. .
  • the connection node of these two resistors 451 and 452 is connected to the negative input terminal of the comparator 450, and supplies the first reference voltage Vref1 to this negative input terminal.
  • two resistors 453 and 454 connected in series with each other are arranged between the output of the rectifier circuit 410 and the ground line, and the positive input terminal of the comparator 450 is connected to the two resistors 453 and 454.
  • the output of the comparator 450 becomes L level and the P channel MOS transistor 432 is made conductive.
  • the output of the comparator 450 is H level when the voltage of the pulse wave power, which is the output of the rectifier circuit 410, is 100 volts or higher, and the resistors 451 to 454 so as to be L level when the voltage is 100 volts or lower. The resistance value is adjusted.
  • the capacitor 421 of the high voltage hold circuit 420 is charged via the diode 422 when the voltage of the pulse wave power that is the output of the rectifier circuit 410 is 100 volts or more in this embodiment, and the voltage of the pulse wave power is When it becomes 100 volts or less, it is discharged through the P-channel MOS transistor 432.
  • the constant current circuit 470 includes a resistor 471 having one end connected to the internal power supply Vcc, a first N-channel MOS transistor 472 connecting the other end of the resistor 471 and the ground line, and a high voltage light emitting diode.
  • 500 has a second N-channel MOS transistor 471 disposed between the cathode side of 500 and the ground line.
  • the gates and connection nodes of the resistor 471 and the first N-channel MOS transistor 472 are connected to each other.
  • the positive power source of the comparator 446 constituting the switching power source 440 is connected to the internal power source Vcc, and the negative power source is grounded. Further, two resistors 455 and 456 connected in series with each other are arranged between the internal power supply Vcc and the ground line to generate the second reference voltage Vref2. A connection note between these two resistors 455 and 456 is connected to the plus input terminal of the comparator 446 and supplies the second reference voltage Vref2 to the plus input terminal.
  • the negative input terminal of the comparator 446 is connected to the connection node between the cathode side of the high-voltage light emitting diode 500 and the second N-channel MOS transistor 473 constituting the constant current circuit 470, and the voltage Vi of the connection node is supplied. Has been. Further, the output terminal and the positive input terminal of the comparator 446 are connected via another resistor 457.
  • the description of the power supply circuit 100B shown in FIG. 3 is temporarily interrupted, and FIGS. 4 and 5 are described first.
  • FIG. 4 is a schematic diagram showing a high voltage light emitting diode.
  • the high voltage light emitting diode 500 corresponds to an example of the light emitting diode according to the present invention.
  • the high voltage light emitting diode 500 is composed of 20 optical microcells 510 connected in series between the P-type terminal 520 and the N-type terminal 530.
  • These optical microcells 510 are an example of a light emitting diode element according to the present invention.
  • the drive current a drive current for driving one light emitting element is sufficient. Therefore, the drive current can be reduced to 1/20 compared to the case where these light emitting elements are connected in parallel.
  • FIG. 3 a high voltage light emitting diode 500 having the structure of FIG. 4A is shown in FIG.
  • FIG. 5 is a diagram showing waveforms of respective parts of the power supply circuit 100B shown in FIG.
  • 5A shows the signal waveform of the input voltage signal of the rectifier circuit 410 shown in FIG. 3, that is, the A waveform (solid line) that is the waveform of the commercial AC power supply 200, and the B waveform (broken line) that is the waveform of the opposite phase. Is shown.
  • FIG. 5B shows an output voltage waveform of the rectifier circuit 410. This output voltage waveform is the higher voltage on the positive voltage side of both the A waveform and the B waveform shown in FIG.
  • FIG. 5C is a diagram showing an output voltage waveform of the waveform synthesis circuit 430.
  • the output of the high voltage hold circuit 420 is a charge in a peak period (herein, abbreviated as “peak voltage”) of, for example, 100 volts or more of the output voltage of the rectifier circuit 410, and the peak
  • peak voltage a peak period
  • the discharge through the P-channel MOS transistor 432 in the voltage period other than the voltage is repeated.
  • the timing at which the P-channel MOS transistor 432 is turned on / off is set by the ratio of the resistance values of the resistors 451 and 452 of the comparator 450 and the ratio of the resistance values of the resistors 453 and 454. Here, it is set to 100 volts as described above.
  • the output voltage of the waveform synthesis circuit 430 shown in FIG. 5C is the higher voltage of the output voltage of the rectifier circuit 410 and the charging voltage of the capacitor 421 of the high voltage hold circuit 420.
  • This voltage waveform pulsates between Vmax and Vmin according to a trigonometric function and a constant current discharge function. It is a known fact that Vmax is 141 volts when the commercial power source is 100 volts AC. Vmin is determined by the on-timing of the MOS switch, and in this case is 100 volts.
  • the output of the waveform synthesizing circuit 430 shown in FIG. 5C is applied to the high voltage light emitting diode 500 and the constant current circuit 470 connected in series via the switching power supply 440.
  • the voltage applied to the high voltage light emitting diode 500 and the constant current circuit 470 is divided into the drive voltage Vd (90 V) of the high voltage light emitting diode 300 and the Vf of the N channel MOS transistors 472 and 473 constituting the constant current circuit 470 (about. 5V), that is, Vd + Vf or higher, the high voltage light emitting diode 500 can emit light stably.
  • Vmin when Vmin is always larger than Vd + Vf, the light emitting diode is always lit.
  • Vmin is smaller than Vd + Vf, the light emitting diode blinks at a frequency twice the AC frequency of the commercial power supply. This is not a problem in terms of illumination, but is generally undesirable because it causes flickering in synchronism with the driving cycle of an electronic camera or the like, resulting in many disadvantages in practical use.
  • the switching power supply 440 is operated so that the drive voltage of the constant current circuit 470 becomes the minimum voltage necessary for constant current operation.
  • the constant voltage drive voltage that is, the voltage Vi at the connection node between the second N-channel MOS transistor 473 and the high voltage light emitting diode 500 constituting the constant current circuit 470 is 1.5 ⁇ 0.5 volts. It is set to work.
  • the Vref2 voltage of the comparator 446 is configured to have a hysteresis of 1 volt centered on 1.5 volts.
  • the N-channel MOS transistor 445 When Vi is higher or higher than 2 volts, the N-channel MOS transistor 445 is turned off to turn off the P-channel MOS transistor 442 for power supply, and the power supply to the high voltage light emitting diode 500 is stopped. As a result, the high voltage light emitting diode 500 is supplied with electric power due to the discharge of the accumulated charge in the smoothing capacitor 481. As the smoothing capacitor 481 is discharged, the voltage Vo of the smoothing capacitor 481 and the voltage Vi of the constant current circuit 470 are reduced, and when the voltage Vi drops below 1 volt, the N-channel MOS transistor 445 is turned on. The P-channel MOS transistor 442 is turned on, and the power supply to the high voltage light emitting diode 500 and the charging to the smoothing capacitor 481 are started via the current limiting resistor 441.
  • Toff be the period during which the P-channel MOS transistor 442 is off.
  • Vo and Vi rise, and when Vi becomes 2 volts, P channel MOS transistor 442 is turned off again.
  • a period during which the P-channel MOS transistor 442 is on is assumed to be Ton.
  • the factor that determines Ton is the voltage difference between the source voltage of the P-channel MOS transistor 442, that is, the output voltage of the waveform synthesis circuit 430, and the voltage Vo of the smoothing capacitor 481, and the current limiting resistor 441 in series with the P-channel MOS transistor 442. It depends on the resistance value and the drive current.
  • the source voltage, that is, the output voltage of the waveform synthesis circuit 430 is a smoothed voltage output as shown in FIG. 5C, and when the commercial AC power supply 200 is AC 100 volts, the maximum is 141 volts and the minimum is 100. It is a bolt. Therefore, Ton varies periodically according to the AC cycle. A 50 Hz alternating current has an irregular period of 200 Hz.
  • the Ton time changes from about 0.5 microseconds to about 5 microseconds.
  • the cycle Toff + Ton of the switching power supply 440 is not constant and varies greatly depending on Ton.
  • This change is a function of the switching power supply.
  • the period is changed from 1.5 microseconds to 15 microseconds
  • the frequency is changed from about 100 KHz to about 60 KHz
  • the voltage oscillation width of Vi is set to about 1 volt.
  • Vi is controlled with an amplitude of about 1 volt at the center of 1.5 volts, and heat loss in the constant current circuit can be minimized.
  • the heat loss is very small at 75 milliwatts at 50 milliamperes ⁇ 1.5 volts, and the heat loss is negligible compared to the power consumption in the light emitting diode.
  • the smoothing capacitor 481 may be 0.5 microfarad or less, so that a film capacitor or a ceramic capacitor with no limit in the life can be used. It is an extremely efficient switching power supply circuit.
  • the constant current circuit 470 can easily determine its characteristics by the ratio of the sizes of the N-channel MOS transistors 472 and 473 constituting the current mirror circuit and the resistance value of the resistor 471.
  • the internal power supply Vcc that determines the power supply of the comparator 446 and the reference voltage Vref2 is 5 volts with a simple power supply circuit.
  • the diodes 411 to 414 of the rectifier circuit 410, the diode 422 of the high voltage hold circuit 420, the diode 431 of the waveform synthesis circuit 430, the P-channel MOS transistor 432, and the constant current circuit 470 need only have a low current. Therefore, a one-chip integrated circuit can be easily obtained. Thereby, the miniaturization of the drive module can be realized, and the drive module can be accommodated within the diameters of the bulb caps E26 and E17. Such a circuit can be made into one chip in any case and other circuits can be easily made into a single chip by the insulated power semiconductor technology because the drive current is small.
  • FIG. 3 a constant current circuit using a MOS transistor as an example and a switching power supply using a capacitor are shown as examples.
  • a circuit that employs an efficient switching circuit using an inductance can also be easily configured. In any circuit configuration, since the drive current is small, the circuit can be simplified and downsized.
  • FIG. 6 is a circuit diagram of a light-emitting device as a fourth embodiment of the present invention.
  • the power supply circuit 100C of the light emitting device 1C according to the fourth embodiment shown in FIG. 6 includes a high voltage hold circuit that replaces the high voltage hold circuit 420, the waveform synthesis circuit 430, and the switching power supply 440 in the third embodiment shown in FIG.
  • a circuit 480, a waveform synthesis circuit 490, and a switching power supply 700 are provided.
  • the high voltage hold circuit 480 of the fourth embodiment shown in FIG. 6 has a P-channel MOS transistor 481 instead of the diode 422 in the third embodiment shown in FIG.
  • the P-channel MOS transistor 481 connects the output of the rectifier circuit 410 and the capacitor 421, and the gate is connected to the output of another comparator 701 incorporated in the switching power supply 700.
  • the waveform synthesis circuit 490 of the fourth embodiment shown in FIG. 6 has a P-channel MOS transistor 491 and an inverter 492 instead of the diode 431 in the third embodiment shown in FIG.
  • the P channel MOS transistor 491 connects the output of the rectifier circuit 410 and the source of the P channel MOS transistor 442 constituting the switching power supply 700.
  • the inverter 492 has an input connected to the output of the comparator 450 and an output connected to the gate of the P-channel MOS transistor 491.
  • the switching power supply 700 has a structure in which a comparator 701 and four resistors 702 to 705 are added to the switching power supply 440 in the third embodiment shown in FIG. Two of the four resistors 702 to 705 are connected in series, the resistor 702 is connected to the internal power supply Vcc, the resistor 703 is grounded, and the third reference voltage Vref3 is generated. A node where the two resistors 702 and 703 are connected to each other is connected to the plus input terminal of the comparator 701, and the third reference voltage Vref3 is supplied to the plus input terminal.
  • the remaining two resistors 704 and 705 are also connected to each other and connect the output of the rectifier circuit 410 and the ground line.
  • a node where the two resistors 704 and 705 are connected to each other is connected to the negative input terminal of the comparator 701.
  • the timing of transition between the H level and the L level of T1 and T2 can be set independently, so that the timing of charging and discharging of the capacitor 421 can be adjusted to more optimal timing. It becomes possible.
  • FIG. 7 is a circuit diagram of a light emitting device according to a fifth embodiment of the present invention.
  • the switching power supply 440 is omitted and the output of the waveform synthesis circuit 430 is directly applied to the high voltage light emitting diode 500. It has the structure connected to.
  • the resistor 433 connects the gate of the P-channel MOS transistor 432 and the output of the rectifier circuit 410.
  • FIG. 8 is a circuit diagram of the light emitting device according to the sixth embodiment of the present invention.
  • the power supply circuit 100E constituting the light emitting device 1E of the sixth embodiment shown in FIG. 8 has a waveform including the P-channel MOS transistor 432 of the fifth embodiment of FIG. 7 when compared with the fifth embodiment of FIG. Instead of the synthesis circuit 430, a waveform synthesis circuit 590 including a PNP transistor is provided.
  • the emitter of the PNP transistor 511 is connected to the capacitor 421, and the collector is connected to the cathode of the diode 431.
  • the base of the PNP transistor 451 is connected to a connection node between the two resistors 433 and 434.
  • the resistor 433 connects the base of the PNP transistor 511 and the output of the rectifier circuit 410.
  • FIG. 9 is a diagram showing an example of a constant current element used in the fifth and sixth embodiments shown in FIGS.
  • a driving current of 1 ampere is required.
  • the drive voltage Vd is 90 volts, and the drive current is as small as 50 mA of 1/20.
  • FIG. 9 shows a circuit diagram of the junction FET. It is known that a constant current can be obtained between the drain and the source by connecting the gate of the FET having a negative threshold voltage to the source. A constant current characteristic is obtained at an applied voltage Vf or higher which becomes a constant current (see Patent Document 2 and Non-Patent Document 1). Vf is usually a small value of about 1 volt or less.
  • FIG. 10 shows the voltage-current characteristics. The direction in which the applied voltage is positive is determined by the threshold voltage, electron mobility, and element size.
  • the diode For the direction in which the applied voltage is negative, the diode has a forward current characteristic due to the parasitic diode inside the element.
  • the device size of this junction FET is a small silicon element of about 0.5mm x 0.5mm, and it is common to take the drain from the front and the source and gate from the back, and this is sealed in a general-purpose mold package. Has been.
  • the junction FET type constant current circuit is sealed in a small general-purpose diode package, and has a practical driving capacity of about 10 milliamperes.
  • the light emitting diode used for illumination requires about 5 watts, and the drive current needs about 50 milliamperes. For this reason, it is necessary to use a plurality of general-purpose package products.
  • the constant current value of the junction FET has two problems, that is, the constant current value usually varies by about 10% due to the variation in the manufacturing process and the constant current value changes due to heat generation due to the large temperature coefficient. When using a plurality, it is possible to reduce the total tolerance by selecting current values and combining them. However, it is complicated to select and use them in the finished CRD.
  • FIG. 11 shows the structure of the junction FET used in this embodiment in which the poorness of this characteristic is improved.
  • FIG. 11 shows a circuit diagram in which a plurality of general-purpose junction FETs are used in parallel.
  • the junction FET shown in FIG. 11 has a configuration in which four elements are arranged in each of the drain 1 and the drain 2.
  • FIG. 12 shows the structure of the power package 900 used in the embodiment of FIGS. 12A is a plan view and FIG. 12B is a side view.
  • Reference numerals 901 and 906 denote a drain 1 terminal
  • reference numerals 903 and 904 denote a drain 2 terminal.
  • the drain 1 and the drain 2 are connected and used at the time of mounting.
  • Reference numerals 902 and 905 denote source / gate electrodes.
  • This power package 900 has a heat sink 907 and has a low thermal resistance of 20 ° C./W.
  • Fig. 13 is a perspective view showing a state in which the junction FET 908 has eight elements, that is, eight elements a, b, c, (1, e, f, g, h) are mounted. In order to obtain this, a constant current value of 6.25 mA is used for each element, which is a drain electrode with a bonding pad formed on the front surface, and a back electrode which is a common electrode for the source and drain and is connected to the substrate.
  • All elements are die-bonded to the source / gate electrodes 902 and 905, and the source / gate of all elements are connected to the source / gate electrodes 902 and 905 through the substrate of each element.
  • the drains of the elements a, b, c, and d are connected to the drain 1 terminals 901 and 906 by wire bonds, and the drains of the elements e, f, g, and h are drained.
  • the two terminals 903 and 904 are connected by wire bonding, and the drain 1 terminals 901 and 906 and the drain 2 terminals 903 and 904 are connected on the mounting substrate, thereby a, b, c, d, e, f, g,
  • the drains of 8 elements of h are connected to one, these elements are small silicon elements of 0.3 mm ⁇ 0.3 mm meter, and when the elements are die-bonded from the wafer, the constant current values of the individual elements are preset. It is possible to mount a combination of elements so that the required total constant current value is obtained by measuring, and by combining elements whose characteristics are known on the wafer in this way, the tolerance between elements is 10%. Even if there is a variation of 8%, it is possible to easily make a tolerance of 1% with the combination of 8. At the stage of use, it is as if a high-precision junction FE. T can be realized.
  • the heat transfer from the element to the lead frame can be dispersed, the thermal resistance to the heat sink can be divided, and the temperature rise of the element is suppressed. be able to.
  • a multi-chip mounting system as a constant current element, many merits such as a reduction in tolerance and a reduction in thermal resistance can be created.
  • the junction FET type constant current element used in the present embodiment simultaneously compensates for the weak point that the characteristic tolerance is large and the weak point that the temperature dependency is large.
  • the characteristics of the junction FET type constant current device used in FIGS. 7 and 8 as in this example are 50 mA current drive, 1.5 watt heat generation with an average voltage drop of 30 volts, and a 20 ° C./watt package.
  • the temperature rise at can be suppressed to about 30 ° C. If it is this level, the temperature coefficient of a constant current will not become a big problem practically.
  • FIG. 7 and 8 are examples of using a simple constant current element without using a switching power supply, and the operation will be described below by taking FIG. 7 as an example.
  • the P-channel MOS transistor 432 falls below the threshold voltage Vt in the waveform synthesis circuit 430 of FIG. 7, the P-channel MOS transistor 432 is turned on. That is, when the output voltage of the rectifier circuit 410 decreases by a certain value or more from the charging voltage of the capacitor 421, it is turned on and current is supplied from the high voltage hold circuit 420.
  • the P-channel MOS transistor 432 when the output voltage of the rectifier circuit is low, the P-channel MOS transistor 432 is turned on, current is supplied from the high-voltage hold circuit 420 to the high-voltage light emitting diode 500, and when the output voltage of the rectifier circuit 410 increases, the P-channel MOS transistor The transistor 432 is turned off and starts to charge the capacitor 421 with a high voltage, and current supply from the waveform synthesis circuit 430 is performed through the diode 431. In this manner, the light emitting diode drive voltage has a waveform output as shown in FIG.
  • FIG. 8 shows an example in which a PNP transistor 511 is used instead of the P-channel MOS transistor 432 in FIG. Since the operation is the same, the description is omitted.
  • FIG. 14 shows a specification example of the characteristic value.
  • the commercial power supply is 100 VAC
  • the frequency of the power supply is 50 Hz
  • the applied voltage of the light emitting diode is 90 volts
  • the light emitting diode is formed by 20 stages of 4.5 volt driving elements in series.
  • the driving constant current value is 50 milliamperes
  • the power consumption is 4.5 watts.
  • FIG. 15 shows specifications in the case of the third embodiment shown in FIG. 3 under the conditions shown in FIG.
  • Light emitting diode heat generation is 4.5 watts, and constant current element heat generation is about 1 watt.
  • the thermal resistance of the light emitting diode package is 5 ° C./W
  • the device temperature is as low as 22.5 ° C. with respect to the ambient temperature
  • the thermal resistance of the constant current device is 20 ° C./W
  • the device temperature is the ambient temperature.
  • the temperature rise is as low as 30 ° C., and it can be stably used as a light emitting system using a commercial power source.
  • the heat loss of the constant current portion is as extremely small as 75 milliwatts. Therefore, the overall efficiency of the light emitting device 1B can be improved. Whether the configuration shown in FIGS. 3 and 6 or the configuration shown in FIGS. 7 and 8 is adopted depends on the purpose in terms of cost, size, and efficiency.
  • 100 volts is used as the commercial power supply, but the same configuration can be used for commercial power supplies of other voltages.
  • a light-emitting diode having a 180-volt specification can be realized by changing the number of optical microcells of the light-emitting diode from 20 to 40, and a similar effect can be created by using this.
  • the fact that the driving circuit can be simplified and miniaturized by using a high-voltage driven light emitting diode further promotes the popularization of the light emitting diode for energy saving of the lighting fixture in the future.
  • the practical use of low-power consumption, small-sized and long-life light-emitting sources is extremely important in applications where light bulbs are used in closed spaces where importance is placed on the replacement of small-sized light bulbs that support E17 caps and the design of lighting equipment. It is what you have.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

 本発明は、交流電力を整流して負荷に供給する電源回路、および発光ダイオードを発光させる発光装置に関し、大容量のコンデンサの使用を避けつつ、負荷への電力の供給が途絶えるのを回避する。交流電力を脈波電力に変換する整流回路と、コンデンサと、そのコンデンサを充電する充電回路と、そのコンデンサに充電された電力を、整流回路が出力された脈波電力が第1の閾値電圧以下のときに放電させて、その脈波電力と合成する合成回路とを有する。

Description

電源回路および発光装置
 本発明は、交流電力を整流して負荷に供給する電源回路、および発光ダイオード(LED)を発光させる発光装置に関する。
 商用交流電力から電力を得てLEDを発光させるためには、その交流電力をLEDに供給するのに適した電力に変換する整流回路が必要である。このような整流回路においてきれいな直流電力に変換するためには大容量コンデンサが必要となる。大容量コンデンサとしては電解コンデンサが存在するが、この電解コンデンサを使用すると力率の低下および電流高調波が発生する。また、電解コンデンサは長時間使用するとESRが増大して電解液がドライアップし、損失が増え、発煙に至ることもある。これを避けるために電解コンデンサを排除し整流回路から出力された脈流電力のままLEDを発光させることも考えられる。しかしながら、この場合LEDに供給されるべき電力が一定周期で途絶えてLEDが点滅を繰り返すこととなり、人間の目で直接に見た場合はさほど目立たなくても、例えばそのような点滅するLEDで照明された画面を写真撮影しようとしたとき、LEDの点滅の周期とカメラの受光素子のスイープ速度等との関係で縞模様が入った写真となるなど、別の問題を引き起こす原因となる。
特開2007-12808号公報 特開2008-72141号公報 特開2010-21433号公報 特許第4353667号公報
 本発明は、上記事情に鑑み、電解コンデンサを使用しなければならないほどの大容量のコンデンサの使用を避けつつ、負荷への電力の供給が途絶えるのを回避した電源回路、およびその電源回路を使用した発光装置を提供することを目的とする。
 上記目的を達成する本発明の電源回路は、
 交流電力を脈波電力に変換する整流回路と、
 コンデンサと、
 上記コンデンサを充電する充電回路と、
 上記コンデンサに充電された電力を、上記脈波電力が第1の閾値電圧以下のときに放電させて整流回路から出力された脈波電力と合成する合成回路とを有することを特徴とする。
 ここで、本発明の電源回路において、その電源回路に接続された負荷への供給電力を定電流化する定電流回路をさらに有することが好ましい。
 また、本発明の電源回路において、上記合成回路が、整流回路の出力側とコンデンサとの間に接続され、制御を受けて整流回路の出力側とコンデンサとの間をオンオフする第1のスイッチ素子と、整流回路の入力又は出力をモニタし、整流回路の出力電圧が第1の閾値電圧以上の期間は第1のスイッチ素子をオフ状態に制御し、整流回路の出力電圧が第1の閾値電圧未満の期間は第1のスイッチ素子をオン状態に制御する放電制御回路とを有することが好ましい。
 この場合に、第1のスイッチ素子が半導体スイッチ素子であって、充電回路がその半導体スイッチ素子に等価的に形成された、整流回路の出力側がアノード、コンデンサ側がカソードのダイオードであることが好ましい。
 また、本発明の電源回路において、上記充電回路が、整流回路の出力側にアノードが接続され、コンデンサ側にカソードが接続されたダイオードであってもよい。
 あるいは、本発明の電源回路において、上記充電回路が、整流回路の出力側とコンデンサとの間に接続され、制御を受けて整流回路の出力側とコンデンサとの間をオンオフする第2のスイッチ素子と、整流回路の入力又は出力をモニタし、整流回路の出力電圧が第2の閾値電圧以上の期間は第2のスイッチ素子をオン状態に制御し、整流回路の出力電圧が第2の閾値電圧未満の期間は第2のスイッチ素子をオフ状態に制御する充電制御回路とを有していてもよい。
 本発明の電源回路は、具体的には、例えば、
 交流電力の入力を受ける一対の入力端子と、
 負荷に接続される一対の出力端子とを有し、
 上記整流回路が、上記一対の入力端子と上記一対の出力端子に接続され、一対の入力端子で受けた交流電力を脈波電流に変換して一対の出力端子に供給するものであり、
 上記コンデンサが、一対の出力端子のうちの第1の出力端子に一端が接続され、
 上記合成回路が、コンデンサの他端と一対の出力端子のうちの第2の出力端子との間に接続され、制御を受けて他端と第2の出力端子との間をオンオフする第1のスイッチ素子と、交流電力をモニタし、交流電力の絶対値としての電圧が前記第1の閾値電圧以上の期間はスイッチ素子をオフ状態に制御し、交流電力の絶対値としての電圧が第1の閾値電圧未満の期間は第1のスイッチ素子をオン状態に制御する放電制御回路とを有するものであって、
 上記充電回路が、第1のスイッチ素子がオフ状態にある間、整流回路の出力電力でコンデンサを充電する回路であってもよい。
 また、上記目的を達成する本発明の発光装置は、
 本発明のいずれかの態様の電源回路と、その電源回路から電力の供給を受けて発光する発光ダイオードとを有することを特徴とする。
 ここで、本発明の電源回路において、上記発光ダイオードが、順次直列に接続された複数の発光ダイオード素子を有することが好ましい。
 本発明は、コンデンサに充電された電力を、整流回路から出力された脈波電力が第1の閾値電圧未満の電圧のときに放電させてその脈波電力と合成する合成回路を備えたものである。したがって本発明によれば電解コンデンサを使わなくても済む程度の容量のコンデンサを使うことで十分であり、セラミックコンデンサ等の長寿命のコンデンサを使用することができる。また、本発明によれば、負荷に供給される電力が周期的に途絶えるのを避けることができる。
本発明の第1実施形態としての電源回路を示す回路ブロック図である。 本発明の第2実施形態としての発光装置の回路図である。 本発明の第3実施形態としての発光装置の回路図である。 高電圧発光ダイオードを示す模式図である。 図3に示す電源回路の各部の波形を示した図である。 本発明の第4実施形態としての発光装置の回路図である。 本発明の第5実施形態の発光装置の回路図である。 本発明の第6実施形態の発光装置の回路図である。 図7,図8に示す第5,第6実施形態で用いられる定電流素子の一例を示した図である。 汎用のジャンクションFETを複数個並列に用いる回路図を示した図である。 本実施形態で用いるジャンクションFETの構成を示した図である。 図7,図8の実施形態で用いるパワーパッケージの構造を示した図である。 図12に示したパワーパッケージの透視図である。 特性値の仕様例を示した図である。 図14に示した条件における、図3に示す第3実施形態の場合の諸元を示した図である。
 以下図面を参照して本発明の実施の形態を説明する。
 以下、本発明の実施形態について説明する。
 図1は、本発明の第1実施形態としての電源回路を示す回路ブロック図である。
 この電源回路10は一対の入力端子11a,11bと一対の出力端子12a,12bとを有する。
 一対の入力端子11a,11bには、一例として、実効値100V、50Hzの商用交流電力20が入力される。また一対の出力端子12a,12bには、負荷30が接続される。
 また、この電源回路10は、一対の入力端子11a,11bと一対の出力端子12a,12bとに接続された整流回路13を有する。この整流回路13は、ダイオード17の組合せで構成されており、入力端子11a,11bで受けた交流電力を全波整流することにより脈流の直流電力に変換して出力端子12a,12bに供給する。出力端子12a,12bに供給された電力は出力端子12a,12bを経由して負荷30に供給される。
 ここで、本実施形態では、一対の出力端子12a,12bを構成する第1の出力端子12aおよび第2の出力端子12bのうち、第1の出力端子12aは接地ラインに接続され、第2の出力端子12bには、接地ラインと比べプラス電圧の電力が供給される。
 またこの電源回路10は、スイッチ素子15と制御回路16とからなる合成回路を有する。さらにこの電源回路10は、第1の出力端子12aに一端が接続されたコンデンサ14を備えている。スイッチ素子15は、このコンデンサ14の他端と第2の出力端子12bとの間に接続され、制御回路16による制御を受けて、コンデンサ14と第2の出力端子12bとの間をオン、オフする。
 また、制御回路16は、整流回路13に入力される交流電力をモニタし、その交流電力の電圧が絶対値で閾値電圧(例えば30V)以上の期間はスイッチ素子15をオフ状態に制御し、その交流電力の電圧(絶対値)が閾値電圧未満の期間はスイッチ素子15をオン状態に制御する。
 さらに、この電源回路10は、第2の出力端子12bにアノードが接続され、コンデンサ14とスイッチ素子15との接続ノードにカソードが接続されたダイオード17を有する。このダイオード17は、本発明にいう充電回路の一例であり、スイッチ素子15がオフ状態にある間、整流回路13の出力電力でコンデンサ14を充電する。
 この電源回路10によれば、整流回路13の入力電圧が閾値(例えば30V)以上のときは、スイッチ素子15がオフ状態となり、出力端子12bには、整流回路13の出力電力がそのまま供給されて負荷30に供給されるとともにダイオード17を介してコンデンサ14が充電される。
 一方、整流回路13の入力電圧が閾値(例えば30V)未満のときはスイッチ素子15がオン状態となり、コンデンサ14に蓄積された電力がスイッチ素子15を経由して出力端子12bに供給される。したがって負荷30には、常に閾値電圧以上の電圧の電力が供給され続けることになり、電力供給が途絶えることが回避される。また、コンデンサ14は閾値電圧(例えば30V)未満のときのみ電力を放出すればよく、例えば数μF程度の小容量のコンデンサで済む。
 図2は、本発明の第2実施形態としての発光装置の回路図である。
 この発光装置1Aは、大別して電源回路100AとLED発光回路300とを有する。このうち、本実施形態の特徴部分である電源回路100Aについては詳細回路図を示し、LED発光回路300は1つのブロックで示してある。
 この発光装置1Aを構成する電源回路100Aは、一対の入力端子111a,111bと、一対の出力端子121a,121bを有する。一対の入力端子111a,111bには、図1に示す実施形態の場合と同様、一例として、実効値100V、50Hzの商用交流電力200が入力される。また一対の出力端子121a,121bには、負荷としてのLED発光回路300が接続されている。このLED発光回路300は、発光ダイオード(LED)301を有し、電源回路100Aからの供給電力でLED301を発光させる回路である。
 また、この電源回路100Aには、一対の入力端子111a,111bと一対の出力端子121a,121bとに接続された整流回路130を有する。この整流回路130は、ブリッジ接続された4つのダイオード131a,131b,131c,131dからなり、入力端子111a,111bで受けた交流電力を直流の脈流電力に変換し出力端子121a,121bを介してLED発光回路300に供給する。
 ここで、本実施形態においても、図1に示す実施形態と同様、一対の出力端子121a,121bのうちの第1の出力端子121aは接地ラインに接続され、第2の出力端子121bには、接地ライン(第1の出力端子121a)を基準にしたとき、プラス電圧の電力が供給される。
 また整流回路130の出力側には、小容量(例えば100nF)のコンデンサ180が接続されている。これは、高周波ノイズの除去用であり、脈流の平滑化に寄与するコンデンサではない。
 また、この電源回路100Aは第1の出力端子121aに一端が接続されたコンデンサ140を備えている。また、このコンデンサ140の他端と第2の出力端子121bとの間には、MOSFET150が配置されている。このMOSFET150は、本発明にいう半導体スイッチ素子と充電回路とを兼ねたものである。すなわち、このMOSFET150は、そのゲートにLレベルの電圧が供給されるとオン状態となり、そのゲートにHレベルの電圧が供給されるとオフ状態となる。これにより、このMOSFET150は、本発明にいうスイッチ素子として動作する。また、このMOSFET150は、第2の出力端子121b側がアノード、コンデンサ140側がカソードの等価的なダイオード170を有し、この等価ダイオード170が本発明にいう充電回路の役割りを成している。
 さらに、この電源回路100Aは、制御回路160を有する。この制御回路160は、MOSFET150とともに本発明にいう合成回路の一例を成す回路である。
 この制御回路160は、第1の入力端子111aにアノードが接続されたダイオード161aと、第2の入力端子111bにアノードが接続され、カソードがダイオード161aのカソードに接続されたもう1つのダイオード161bとを有する。さらに、それら2つのダイオード161a,161bのカソードにカソードが接続されたツェナーダイオード162と、そのツェナーダイオード162のアノードとNPNトランジスタ164aのベースとの間をつなぐ抵抗体163aと、NPNトランジスタ164aのベースと第2の出力端子121a(接地ライン)とをつなぐ抵抗体163bを有する。さらに、NPNトランジスタ164aのエミッタは第2の出力端子121a(接地ライン)に接続され、コレクタはもう1つのNPNトランジスタ164bのベースに接続されるとともに、抵抗体163eを介して第2の出力端子121bに接続されている。もう一方のNPNトランジスタ164bのエミッタは第1の出力端子121a(接地ライン)に接続され、コレクタは、抵抗体163dを介してMOSFET150のゲートに接続されている。そのMOSFET150のゲートは、抵抗体163cを介して、コンデンサ140とMOSFET150との接続ノードに接続されている。
 ここで、交流電力200の瞬時電圧がプラス側、マイナス側のいずれにあっても、ツェナーダイオード162のツェナー電圧で決まる閾値電圧(例えば±30V)を超えるとNPNトランジスタ164aのベースにHレベルの電圧が印加されてNPNトランジスタ164aが導通し、これによりもう一方のNPNトランジスタ164bのベースがLレベルとなってMOSFET150のゲートがHレベルとなり、MOSFET150がオフ状態となる。すると、出力端子121bには、整流回路130の出力電力がそのまま出力され、LED発光回路300Aに供給され、LED301が発光する。
 またこのとき、コンデンサ140には、等価的なダイオード170を介して電力が蓄積される。
 一方、交流電力200の電圧が閾値電圧(例えば30V)未満のときは、その電圧がツェナーダイオード162を通過することができず、NPNトランジスタ164aのベースは、抵抗体163bを経由して供給される接地電位(Lレベル)となる。このため、そのNPNトランジスタ164aは非導通状態となり、もう一方のNPNトランジスタ164bのベースには抵抗体163eを経由してHレベルの電圧が印加されてそのNPNトランジスタ164bが導通状態となり、MOSFET150のゲートがLレベルとなってMOSFETも導通状態(オン状態)となる。
 するとコンデンサ140に充電されていた電力は、MOSFET150を経由して第2の出力端子121bに供給される。これにより、第2の出力端子121bの電圧は、閾値電圧(例えば30V)程度の電圧にとどまってそれ以下には低下せず、その電力によりLED301の発光が継続される。コンデンサ140は、閾値電圧(例えば30V)未満のときのみ電力が放出され、例えば4.7マイクロファラッド程度の小容量のコンデンサでよい。したがって長寿命のセラミックコンデンサ等を使用することができる。
 ここで、LED発光回路300には、電流制限素子(定電流ダイオードなど)を追加したり、温度検出センサや照度検出センサを組み合わせて明るさの安定化を図るなどの工夫は充分可能である。
 図3は、本発明の第3実施形態としての発光装置の回路図である。
 この発光装置1Bは、大別して電源回路100Bと高電圧発光ダイオード500とを有する。このうち電源回路100Bについては詳細回路図を示し、高電圧発光ダイオード500については、この図3では簡略化して示してある。高電圧発光ダイオード500の構造については後述する。
 電源回路100Bは、ヒューズ401、整流回路410、高電圧ホールド回路420、波形合成回路430、スイッチング電源440、定電流回路470、および平滑コンデンサ481を有する。
 整流回路410は、本発明にいう整流回路の一例に相当し、高電圧ホールド回路420は、本発明にいうコンデンサと充電回路の双方の一例に相当する。また、波形合成回路430は、本発明にいう合成回路の一部分に相当する。本発明にいう合成回路の残りの一部分は、スイッチング電源440に含まれている。詳細は後述する。また、スイッチング電源440には、合成回路の構成部分のほか、定電流回路470とともに、LED発光回路300Bに流れる電流の調整を行なう電流調整スイッチング回路と、内部電源回路とが含まれている。
 また、平滑コンデンサ481は、スイッチング電源440の出力電圧の平滑化を担っているコンデンサである。高電圧発光ダイオード300の駆動電流が小さくて済むことから、平滑コンデンサ481としては、フイルムコンデンサやセラミックコンデンサを使用することができる。
 整流回路410は、ブリッジ接続された4つのダイオード411~414で構成されており、実効値100Vの商用交流電力を直流の脈波電力に変換する。
 また、高電圧ホールド回路420は、一端が接地されたコンデンサ421と、そのコンデンサ421を充電するための、整流回路410の出力にアノードが接続され、コンデンサ421の他端にカソードが接続されたダイオード422とを有する。このダイオード422は、本発明にいう充電回路の一例である。平滑コンデンサ481と同様、このコンデンサ421にも、フイルムコンデンサやセラミックコンデンサを使うことができる。
 また、波形合成回路430は、整流回路410の出力にアノードが接続され、カソードがスイッチング電源440に接続されたダイオード431と、コンデンサ421とダイオード431のカソードとを繋ぐPチャネルMOSトランジスタ432と、そのPチャネルMOSトランジスタ432のゲートに一端が接続され、スイッチング電源440に他端が接続された抵抗体433と、コンデンサ421とダイオード422との接続ノードとPチャネルMOSトランジスタ432のゲートとを繋ぐ抵抗体434とを有する。
 さらに、スイッチング電源440は、抵抗体441、波形合成回路430の出力(すなわち、ダイオード431とPチャネルMOSトランジスタ432との接続ノード)と抵抗体441とを繋ぐPチャネルMOSトランジスタ442、そのPチャネルMOSトランジスタ442のゲートと波形合成回路430の出力との間を繋ぐ抵抗体443、そのPチャネルMOSトランジスタ442のゲートに一端が接続されたもう1つの抵抗体444、および、その抵抗体444と接地ラインとの間を繋ぐNチャネルMOSトランジスタ445を有する。このNチャネルMOSトランジスタ445のゲートは、後述するコンパレータ446の出力に接続されている。これら、PチャネルMOSトランジスタ442、NチャネルMOSトランジスタ445、および2つの抵抗体443,444は、波形合成回路430の出力電力をコンパレータ446の出力の変化に応じてスイッチングしながらLED発光回路300Bに伝達するスイッチング回路を構成している。このスイッチング回路は、コンパレータ446などとともに、高電圧発光ダイオード500への供給電流を調整する電流調整回路を構成している。
 また、このスイッチング電源440には、アノードが接地されたツェナーダイオード447と、そのツェナーダイオード447と並列に、そのツェナーダイオード447のアノードとカソードとを繋ぐコンデンサ448と、波形合成回路430の出力とそのツェナーダイオード447のカソードとを繋ぐ抵抗体449とを有する。
 これらツェナーダイオード447、コンデンサ448、および抵抗体449は、このスイッチング電源440の内部および定電流回路470で使われる定電圧→電力を生成する内部電源回路を構成している。ここでは、一例として内部電源Vcc=5.0ボルトの電力が生成され、コンパレータ446、もう1つのコンパレータ450、および定電流回路470に供給されている。
 コンパレータ450のプラス電源は、内部電源Vccに接続され、マイナス電源は接地されている。また、互いに直列に接続された2つの抵抗体451,452が内部電源Vccと接地ラインとの間に配置され、これら2つの抵抗体451,452により、第1の基準電圧Vref1が生成されている。これら2つの抵抗体451,452の接続ノードはコンパレータ450のマイナス入力端子に接続され、このマイナス入力端子に第1の基準電圧Vref1を供給している。また、整流回路410の出力と接地ラインとの間には、互いに直列に接続された2つの抵抗体453,454が配置され、コンパレータ450のプラス入力端子はそれら2つの抵抗体453,454の接続ノードに接続されている。すなわち、そのプラス入力端子には、整流回路410で生成された脈流の電圧が分圧されて入力される。さらに、このコンパレータ450の出力端子は、波形合成回路430を構成する抵抗体433に接続されている。ここでは、100ボルトの商用交流電源200が接続されているため、整流回路410では、ピークが141ボルトの脈波電圧を持つ脈波電力が生成される。コンパレータ450のプラス入力端子には、その脈波電圧が分圧されて入力され、その分圧された脈波電圧が基準電圧Vref1よりも高い電圧のときは、コンパレータ450の出力電圧がHレベルとなり、波形合成回路430のPチャネルMOSトランジスタ432を遮断させる。一方、コンパレータ450のプラス入力端子に入力されている分圧された脈流電圧が基準電圧Vref1よりも低い電圧のときは、コンパレータ450の出力がLレベルとなってPチャネルMOSトランジスタ432を導通させる。本実施形態では、コンパレータ450の出力は、整流回路410の出力である脈波電力の電圧が100ボルト以上のときにHレベルとなり、100ボルト以下になるとLレベルとなるように抵抗体451~454の抵抗値が調整されている。こうして、高電圧ホールド回路420のコンデンサ421は、整流回路410の出力である脈波電力の電圧が本実施形態では100ボルト以上のときにダイオード422を介して充電され、その脈波電力の電圧が100ボルト以下になるとPチャネルMOSトランジスタ432を通って放電される。
 次に、スイッチング電源440の内部構成の説明を一旦中断し、定電流回路470の構成を先に説明する。
 この定電流回路470は、内部電源Vccに一端が接続された抵抗体471と、その抵抗体471の他端と接地ラインとの間を繋ぐ第1のNチャネルMOSトランジスタ472と、高電圧発光ダイオード500のカソード側と接地ラインとの間に配置された第2のNチャネルMOSトランジスタ471とを有する。
 これら2つのNチャネルMOSトランジスタ472,473のゲートは互いに接続されている。
 また、それらのゲートと、抵抗体471と第1のNチャネルMOSトランジスタ472との接続ノードが互いに接続されている。
 ここで再び、スイッチング電源440の説明に戻る。
 スイッチング電源440を構成するコンパレータ446のプラス電源は内部電源Vccに接続され、マイナス電源は接地されている。また、それら内部電源Vccと接地ラインとの間には、互いに直列に接続された2つの抵抗体455,456が配置され、第2の基準電圧Vref2を生成している。これら2つの抵抗体455,456どうしの接続ノートは、コンパレータ446のプラス入力端子に接続され、そのプラス入力端子に第2の基準電圧Vref2を供給している。
 またこのコンパレータ446のマイナス入力端子は、高電圧発光ダイオード500のカソード側と定電流回路470を構成する第2のNチャネルMOSトランジスタ473との接続ノードに接続され、その接続ノードの電圧Viが供給されている。さらに、このコンパレータ446の出力端子とプラス入力端子との間が、もう1つの抵抗体457を介して接続されている。
 この図3に示す電源回路100Bの説明を一旦中断して、図4,図5について先に説明する。
 図4は、高電圧発光ダイオードを示す模式図である。
 この高電圧発光ダイオード500は、本発明にいう発光ダイオードの一例に相当する。この高電圧発光ダイオード500は、ここではP型端子520とN型端子530との間は順次直列に接続された20個の光マイクロセル510で構成されている。これらの光マイクロセル510は、本発明にいう発光ダイオード素子の一例である。これらの光マイクロセル510は、その1つ1つが発光素子であり、この事例では駆動電圧が4.5ボルトである。したがってこの高電圧発光ダイオード500の駆動電圧Vdは、発光素子20個の直列である90ボルト(4.5ボルト×20=90ボルト)である。駆動電流は、1つの発光素子を駆動する駆動電流で足りる。したがって、それらの発光素子を互いに並列に接続した場合と比べ駆動電流は1/20で済む。
 図3および後述する各図においては、図4(A)の構造の高電圧発光ダイオード500を表記の簡略化のために、図4(B)のように示している。
 図5は、図3に示す電源回路100Bの各部の波形を示した図である。
 図5(A)は、図3に示す整流回路410の入力電圧信号の信号波形、すなわち商用交流電源200の波形であるA波形(実線)と、その逆相の波形であるB波形(破線)を示している。
 図5(B)は、整流回路410の出力電圧波形を示している。この出力電圧波形は、図5(A)に示すA波形とB波形との両方の波形の正電圧側の高い方の電圧、すなわち稜線電圧である。
 図5(C)は、波形合成回路430の出力電圧波形を示す図である。ここで、高電圧ホールド回路420の出力は整流回路410の出力電圧のうちの例えば100ボルト以上のピーク側の電圧(ここでは、これを略して「ピーク電圧」と称する)期間における充電と、ピーク電圧以外の電圧期間におけるPチャネルMOSトランジスタ432経由での放電とを繰り返す。このPチャネルMOSトランジスタ432がオン・オフするタイミングは、コンパレータ450の抵抗体451,452の抵抗値の比、および抵抗体453,454の抵抗値の比により設定される。ここでは、上記の通り100ボルトに設定してある。図5(C)に示す波形合成回路430の出力電圧は、整流回路410の出力電圧と高電圧ホールド回路420のコンデンサ421の充電電圧とのうちの高い方の電圧である。この電圧波形は、VmaxとVminの間で三角関数と定電流の放電関数に従って脈動する。商用電源が交流の100ボルトの揚合にはVmaxは141ボルトが公知の事実である。VminはMOSスイッチのオンタイミングで決まり、この事例では100ボルトとなる。
 この図5(C)に示す波形合成回路430の出力が、スイッチング電源440を経て、互いに直列接続された高電圧発光ダイオード500と定電流回路470に印加される。この高電圧発光ダイオード500と定電流回路470に印加される電圧を高電圧発光ダイオード300の駆動電圧Vd(90V)と定電流回路470を構成するNチャネルMOSトランジスタ472,473のVf(約0.5V)を加えた電圧、すなわちVd+Vf以上に設定することにより、高電圧発光ダイオード500を安定的に発光させることができる。
 このように、Vminが常にVd+Vfよりも大きいことにより発光ダイオードは常時点灯となる。VminがVd+Vfよりも小さい場合には発光ダイオードは商用電源の交流周波数の2倍の周波数で点滅する。これは照明の上では間題ないが電子カメラなどの駆動周期と同期してちらつきを生じて実用上不利な点が多く発生するものになる為に一般的には好ましくない。
 図5(C)に示すように、交流の50Hzの場合には一周期が20ミリsecであり、出力波形はその1/4の周期、200Hzで脈動するが、発光ダイオードは安定して静的に発光する。減光が必要な揚合にはこの脈動周波数より高い周波数で、なおかつ他の機器の影響を与えない高い周波数でデューティ比を変えて高電圧発光ダイオード全体を駆動することにより容易に光量を調整することができる。
 図3に示す電源回路100Bの場合、定電流回路470の駆動電圧が定電流動作に必要な最低電圧になるようにスイッチング電源440を作動させる構成となっている。この事例においては、定電流の駆動電圧、すなわち定電流回路470を構成する第2のNチャネルMOSトランジスタ473と高電圧発光ダイオード500との接続ノードの電圧Viが1.5±0.5ボルトで動作するように設定している。この目的のためにコンパレータ446のVref2電圧が1.5ボルトを中心に1ボルトのヒステリシスを持つように構成してある。Viが2ボルトより高いとき、或いは高くなる時にはNチャネルMOSトランジスタ445をオフすることにより電源供給用のPチャネルMOSトランジスタ442をオフし、高電圧発光ダイオード500への電力供給を止める。これにより高電圧発光ダイオード500へは、平滑コンデンサ481の蓄積電荷の放電による電力が供給される。平滑コンデンサ481の放電に伴い、平滑コンデンサ481の電圧Voおよび定電流回路470の電圧Viが低下して、電圧Viが1ボルトより下がるときにNチャネルMOSトランジスタ445がオンし、これにより電源供給用のPチャネルMOSトランジスタ442がオンし、電流制限用の抵抗体441を経由して高電圧発光ダイオード500への電力供給と平滑コンデンサ481への充電が開始される。
 ここで、PチャネルMOSトランジスタ442がオフしている期間をToffとする。PチャネルMOSトランジスタ442がオンして、Vo,Viが上昇し、Viが2ボルトになるとPチャネルMOSトランジスタ442が再びオフとなる。このPチャネルMOSトランジスタ442がオンしている期間をTonとする。
 Toff+Tonの期間が1周期となる。Toffを決める主要因がVi電圧の振幅と平滑コンデンサ481の容量と駆動電流値である。この事例では10マイクロ秒と設定してある。Vi電圧の振幅はコンパレータ446の基準電圧Vref2のヒステリシス電圧で決まる。この事例では1.5ボルトを中心に±1ボルト、ヒステリシス電圧幅で1ボルトである。Vref2の電圧は抵抗体455,456,457の抵抗値の比で容易に決まる。Tonを決める要因はPチャネルMOSトランジスタ442のソース電圧すなわち波形合成回路430の出力電圧と、平滑コンデンサ481の電圧Voとの電圧差、及びそのPチャネルMOSトランジスタ442と直列にある電流制限抵抗体441の抵抗値と駆動電流によって決まる。ソース電圧、すなわち波形合成回路430の出力電圧は、図5(C)に示すように平滑化された電圧の出力であり、商用交流電源200が交流100ボルトの場合には最大141ボルト、最低100ボルトである。従って、Tonは交流の周期に合わせて周期的に変動する。50Hzの交流では変則的な200Hzの周期となる。Ton時問はこの様にして0.5マイクロ秒から5マイクロ秒程度変化する。スイッチング電源440の周期Toff+Tonはこの様にして、一定ではなくTonにより大きく変化する。この変化分がスイッチング電源の機能となっている。この事例では周期1.5マイクロ秒から15マイクロ秒、周波数では約100KHzから約60KHzの間で変化し、Viの電圧振動幅約1ボルトになるように設定してある。Vo電圧はVd(高電圧発光ダイオードの駆動電圧)+1.5±1ボルトで電圧振動する。
 この様に、Viは1.5ボルトを中心約1ボルト程度の振幅で制御されて定電流回路での熱損失を最小限に抑えることができるのである。熱損失は50ミリアンペア×1.5ボルトで75ミリワットと極めて少なく、熱損失は発光ダイオードでの消費電力と比べて無視できる。また、この様な高速のスイッチングを行えば平滑コンデンサ481は0.5マイクロファラッド以下で良いため、寿命に制限のないフィルムコンデンサやセラミックコンデンサを使用することできる。極めて効率のよいスイッチング電源回路である。
 図3における定電流回路470の動作とコンパレータ446の部分の補足説明を行う。定電流回路470は、電流ミラー回路を構成するNチャネルMOSトランジスタ472,473の大きさの比と抵抗体471の抵抗値によりその特性を容易に決めることができる。コンパレータ446の電源と基準電圧Vref2を決める内部電源Vccは簡易電源回路で5ボルトを形成している。
 この図3の回路構成において整流回路410のダイオード411~414、高電圧ホールド回路420のダイオード422、波形合成回路430のダイオード431やPチャネルMOSトランジスタ432、定電流回路470は、低電流で済むことから容易に1チップの集積回路とすることができる。これにより、駆動モジュールの超小型化が実現でき、E26、E17の電球口金の直径内に収納できるようになる。この様な回路の1チップ化は、いずれの事例においても、また他の回路においても駆動電流が小さくて済むことにより絶縁分離パワー半導体技術により1チップ化が容易である。
 図3ではMOSトランジスタを事例にした定電流回路とコンデンサを用いたスイッチング電源を事例として示したが、このほかインダクタンスを用いた効率の良いスイッチング回路を採用する回路でも構成は容易に可能である。いずれの回路構成においても駆動電流が小さくて済むことにより、回路の簡素化と小型化が可能である。
 図6は、本発明の第4実施形態としての発光装置の回路図である。
 ここでは、図3に示す第3実施形態の発光装置の構成要素と同じ構成要素により、図3に付した符号と同一の符号を付して示し、相違点のみ説明する。
 図6に示す第4実施形態の発光装置1Cの電源回路100Cには、図3に示す第3実施形態における高電圧ホールド回路420、波形合成回路430、およびスイッチング電源440にそれぞれ代わる、高電圧ホールド回路480、波形合成回路490、およびスイッチング電源700を備えている。
 図6に示す第4実施形態の高電圧ホールド回路480には、図3に示す第3実施形態におけるダイオード422に代わり、PチャネルMOSトランジスタ481を有する。このPチャネルMOSトランジスタ481は、整流回路410の出力とコンデンサ421とを繋いでおり、ゲートは、スイッチング電源700に組み込まれているもう1つのコンパレータ701の出力に接続されている。
 また図6に示す第4実施形態の波形合成回路490には、図3に示す第3実施形態におけるダイオード431に代わり、PチャネルMOSトランジスタ491とインバータ492を有する。PチャネルMOSトランジスタ491は、整流回路410の出力とスイッチング電源700を構成するPチャネルMOSトランジスタ442のソースとを繋いでいる。また、インバータ492は、入力がコンパレータ450の出力、出力がPチャネルMOSトランジスタ491のゲートに接続されている。
 また、スイッチング電源700には、図3に示す第3実施形態におけるスイッチング電源440に、コンパレータ701と4つの抵抗体702~705が追加された構造を有する。それら4つの抵抗体702~705のうちの2つの抵抗体702,703は互いに直列に接続され、抵抗体702が内部電源Vccに接続され、抵抗体703が接地されていて、第3の基準電圧Vref3が生成されている。それら2つの抵抗体702,703が互いに接続されたノードはコンパレータ701のプラス入力端子に接続され、プラス入力端子に第3の基準電圧Vref3を供給している。
 また、残りの2つの抵抗体704,705も互いに接続され、整流回路410の出力と接地ラインとを繋いでいる。それら2つの抵抗体704,705が互いに接続されたノードは、このコンパレータ701のマイナス入力端子に接続されている。
 これにより、整流回路410の出力電圧が高いときは、コンパレータ701の出力T2がLレベルとなってPチャネルMOSトランジスタ482が導通し、整流回路410の出力とコンデンサ421とが接続されてコンデンサ421が充電される。また、整流回路410の出力電圧が低いときはコンパレータT2がHレベルとなってPチャネルMOSトランジスタ482がオフ状態となり、整流回路410の出力とコンデンサ421との間が遮断される。
 また、整流回路410の出力電圧が高いときは、コンパレータ450の出力T1がHレベルとなってPチャネルMOSトランジスタ432がオフ状態となってコンデンサ421の放電が禁止されるとともに、PチャネルMOSトランジスタ491がオンとなって整流回路410の出力がスイッチング電源700を経由して高電圧発光ダイオード500に伝えられる。一方、整流回路410の出力電圧が低いときは、コンパレータ450の出力がLレベルとなってPチャネルMOSトランジスタ432がオンとなり、コンデンサ421の放電が行なわれるとともに、PチャネルMOSトランジスタ491がオフとなって整流回路410の出力が遮断される。
 ここで、この第4実施形態の場合、T1,T2のHレベル、Lレベルの遷移のタイミングを独立に設定できるため、コンデンサ421の充電、放電それぞれのタイミングをより最適なタイミングに調整することが可能となる。
 図7は、本発明の第5実施形態の発光装置の回路図である。
 この第5実施形態の発光装置1Dを構成する電源回路100Dは、図3の第3実施形態と比べた場合、スイッチング電源440が省かれて波形合成回路430の出力が直接に高電圧発光ダイオード500につながっている構成を有する。
 また、この図7の第5実施形態の場合、図3に定電流回路470に代わる簡易的な定電流素子601が配置されている。
 さらに、この図7の第5実施形態の場合、抵抗体433は、PチャネルMOSトランジスタ432のゲートと整流回路410の出力とを繋いでいる。
 また、図8は、本発明の第6実施形態の発光装置の回路図である。
 この図8に示す第6実施形態の発光装置1Eを構成する電源回路100Eは、図7の第5実施形態と比べた場合、図7の第5実施形態のPチャネルMOSトランジスタ432を備えた波形合成回路430に代わり、PNPトランジスタを備えた波形合成回路590を有する。このPNPトランジスタ511のエミッタはコンデンサ421に接続され、コレクタは、ダイオード431のカソードに接続されている。また、PNPトランジスタ451のベースは2つの抵抗体433,434の接続ノードに接続されている。
 また抵抗体433は、PNPトランジスタ511のベースと整流回路410の出力とを繋いでいる。
 図9は、図7,図8に示す第5,第6実施形態で用いられる定電流素子の一例を示した図である。
 4.5ワットの発光ダイオードの場合、駆動電圧の4.5ボルトの発光ダイオード素子を互いに並列に接続すると1アンペアの駆動電流が必要であるが、図4に示す20段直列接続した高電圧発光ダイオード500の場合は駆動電圧Vdは90ボルトであり、駆動電流は1/20の50ミリアンペアと少ないのが特徴である。
 このように駆動電流が小さいと、定電流回路の代わりに定電流素子を使うことが可能になる。図9に、ジャンクションFETの回路図を示す。負のスレッシュホールド電圧を持つFETのゲートをソースと接続することによりドレイン・ソース間に定電流が得られることは公知である。一定電流になる印加電圧Vf以上において定電流特性となる(特許文献2、非特許文献1参照)。Vfは通常1ボルト程度以下と小さい値である。図10においてその電圧電流特性を示す。印加電圧が正の方向に対してはスレッショールド電圧や電子移動度、素子の大きさにより決まる。印加電圧が負の方向に対しては素子内部の寄生ダイオードのためにダイオードの順方向電流特性を示す。また、このジャンクションFETの素子サイズは0.5mm×0.5mm程度の小さなシリコン素子であり、表面からドレイン、裏面からソース・ゲートを取り出す構造が一般的であり、これが汎用のモールドパッケージに封止されている。
 ジャンクションFET型定電流回路は小型汎用ダイオードのパッケージに封止されており10ミリアンペア程度の駆動能力のものが実用化されている。しかし、照明に用いる発光ダイオードは5ワット程度必要であり、駆動電流は50ミリアンペア程度必要であり、この為に汎用パッケージ品を複数個のものを使う必要がある。またジャンクションFETの定電流値は製造工程のばらつきにより通常は10%程度のばらつきがある点と温度係数が大きいために発熱により定電流値が変化するという点の二つの問題を有する。複数個使用する時に、電流値を選別して組み合わせにより合計の公差を小さくすることができるが、CRDの完成品でその選択使用することは煩雑である。
 図11には、この特性の悪さを改善した本実施形態で用いるジャンクションFETの構成が示されている。図11に、汎用のジャンクションFETを複数個並列に用いる回路図を示す。この図11に示すジャンクションFETは、ドレイン1、ドレイン2にそれぞれ4個ずつの素子を配置した構成である。図12に、図7,図8の実施形態で用いるパワーパッケージ900の構造を示す。図12(A)は平面図、図12(B)は側面図である。901,906がドレイン1端子、903,904がドレイン2端子であり、ドレイン1、ドレイン2を実装時に接続して使用する構成である。902,905がソース・ゲート電極である。このパワーパッケージ900はヒートシンク907を持ち、熱抵抗は20℃/Wと低いパッケージである。図13はその透視図であり、ジャンクションFET908が8素子、すなわちa、b、c、(1、e、f、g、hの8個素子が実装されている様子を示す。50mAを定電流で得るために個々の素子の定電流値は6.25mAのものを使用する。素子は表面にボンディングパットが形成されておりドレイン電極である。裏面がソース、ドレインの共通電極であり基板に接続されやすいように金メッキがほどこしてある。全ての素子がソース・ゲート電極902,905にダイボンドされており全ての素子のソース・ゲートがソース・ゲート電極902、905に各素子の基板を通じて接続されている。素子a、b、c、dのドレインがドレイン1端子901、906にワイアボンドで接続されており、素子e、f、g、hのドレインがドレイン2端子903、904にワイアボンドで接続されている。ドレイン1端子901,906とドレイン2端子903、904は実装基板上で接続されることによりa、b、c、d、e、f、g、hの8素子のドレインが一つに接続される。これらの素子は0.3mm×0.3mmメートルの小さなシリコン素子であり、ウエーハ上から素子をダイボンドする時に個々の素子の定電流値を予め計測しておくことにより必要な合計定電流値にするように素子を組み合わせて実装することができる。この様にウエーハ上で特性がわかっている素子を組み合わせることにより、素子間では公差が10%のばらつきがあるものでも、8個の組み合わせで1%の公差のものを容易に作ることができる。使用する段階ではあたかも高精度のジャンクションFETが実現できることになる。
 図12のように熱抵抗の低いパッケージを用いること及びFET素子を分割することにより、素子からリードフレームヘの熱の伝達が分散でき、ヒートシンクヘの熱抵抗が分割でき、素子の温度上昇を抑えることができる。この様に定電流素子としてマルチチップの実装方式とすることにより、公差の低減や熱抵抗の低減など、多くのメリットを創出することができる。この様にして本実施形態で用いるジャンクションFET型定電流素子は特性の公差が大きいという弱点と温度依存性が大きいという弱点を同時に補うものである。
 本事例のように図7,図8で用いるジャンクションFET型定電流素子の特性は50ミリアンペアの電流駆動、30ボルト平均の電圧ドロップで1.5ワットの発熱に対して、20℃/ワットのパッケージでの温度上昇は30℃程度に抑制することができる。この程度であれば定電流の温度係数も実用上大きな問題にはならない。
 図7,図8は、スイッチング電源を用いず、簡素な定電流素子を用いる事例であるが、図7を例に挙げてその動作を以下に説明する。図7の波形合成回路430の中においてPチャネルMOSトランジスタ432のゲート電圧がスレッショールド電圧Vt以下に下がるとそのPチャネルMOSトランジスタ432がオンする。すなわち、コンデンサ421の充電電圧より整流回路410の出力電圧が一定値以上低下するとオンして高電圧ホールド回路420から電流が供給される。つまり整流回路の出力電圧が低い時にはPチャネルMOSトランジスタ432がオンして高電圧ホールド回路420から電流が高電圧発光ダイオード500に供給され、整流回路410の出力電圧が上昇してくるとPチャネルMOSトランジスタ432はオフして高電圧をコンデンサ421に充電し始め、波形合成回路430からの電流供給はダイオード431を通じて行われる。この様にして、発光ダイオード駆動電圧は図5(C)のような波形出力となる。
 図8は、図7においてPチャネルMOSトランジスタ432の代わりにPNPトランジスタ511を用いる例である。動作は同様であるので説明は省略する。
 次に、本発明の適用事例の設計値の一例を示す。図14にその特性値の仕様例を示す。商用電源はAC100ボルト、電源の周波数は50Hz、発光ダイオードの印加電圧は90ボルト、発光ダイオードは4.5ボルト駆動の素子を20段直列にして形成している。駆動定電流値は50ミリアンペア、消費電力は4.5ワットである。
 図15に、図14に示す条件における、図3に示す第3実施形態の場合の諸元を示す。発光ダイオード発熱4.5ワット、定電流素子の発熱約1ワットである。発光ダイオードパッケージの熱抵抗は5℃/Wであり素子温度は周囲温度に対して22.5℃の温度上昇と低く、定電流素子の熱抵抗は20℃/Wであり素子温度は周囲温度に対して30℃の温度上昇と低く、安定的に商用電源使用の発光システムとして利用できる。
 スイッチング電源を用いる第3実施形態(図3参照)の場合には定電流部の熱損失は75ミリワットと極めて小さい。従って、発光装置1Bの全体としての効率を向上できる。図3や図6の構成を採用するのか図7や図8の構成を採用するのかは、コスト、大きさ、効率に関して目的に合わせて使い分けるものである。
 尚、本事例においては商用電源として100ボルトを事例にしたが、それ以外の電圧の商用電源向けにも同様な構成をとることができる。例えば、200ボルト向けには発光ダイオードの光マイクロセルの段数を20段から40段にすることにより180ボルト仕様の発光ダイオードが実現でき、これを用いることにより同様な効果を創出できる。
 発光ダイオードの用途は省エネルギーに向けてその用途が拡大している。本発明により、高電圧駆動の発光ダイオードを用いて、駆動回路を簡素化し小型化を実現できることは、今後、照明器具の省エネルギーのために発光ダイオードの普及を一層促すものである。特にE17口金に対応するような小型の電球の代替や照明機器のデザイン性を重視する閉空間において電球を使う用途においては低消費電力、小型かつ長寿命の発光源の実用化は極めて大きな意味を持つものである。
 1B,1C,1D,1E  発光装置
 10,100A,100B,100C,100D,100E  電源回路
 11a,11b,111a,111b  入力端子
 12a,12b,121a,121b  出力端子
 13,130,410  整流回路
 14,140,180,421,448,481  コンデンサ
 15  スイッチ素子
 16,160  制御回路
 131a,131b,131c,131d,17,161a,161b,411~414,422,431  ダイオード
 30  負荷
 150  MOSFET
 162,447  ツェナーダイオード
 163a,163b,163c,163d,433,434,443,444,449,451,452,453,454,455,456,457,471  抵抗体
 164a,164b  NPNトランジスタ
 170  等価ダイオード
 200  商用交流電源
 300  LED発光回路
 301  発光ダイオード(LED)
 401  ヒューズ
 420,480  高電圧ホールド回路
 430,490,590  波形合成回路
 432,442,482,491  PチャネルMOSトランジスタ
 440,700  スイッチング電源
 441  電流制限抵抗体
 445,472,473  NチャネルMOSトランジスタ
 446,450,701  コンパレータ
 470  定電流回路
 481  平滑コンデンサ
 500  高電圧発光ダイオード
 510  光マイクロセル
 511  PNPトランジスタ
 520  P型端子
 530  N型端子
 900  パワーパッケージ
 901,906  ドレイン1端子
 902,905  ソース・ゲート電極
 903,904  ドレイン2端子
 907  ヒートシンク
 908  ジャンクションFET

Claims (9)

  1.  交流電力を脈波電力に変換する整流回路と、
     コンデンサと、
     前記コンデンサを充電する充電回路と、
     前記コンデンサに充電された電力を、前記脈波電力が第1の閾値電圧以下のときに放電させて前記整流回路から出力された脈波電力と合成する合成回路とを有することを特徴とする電源回路。
  2.  当該電源回路に接続された負荷への供給電力を定電流化する定電流回路をさらに有することを特徴とする請求項1記載の電源回路。
  3.  前記合成回路が、
     前記整流回路の出力側と前記コンデンサとの間に接続され、制御を受けて該整流回路の出力側と該コンデンサとの間をオンオフする第1のスイッチ素子と、
     前記整流回路の入力又は出力をモニタし、該整流回路の出力電圧が前記第1の閾値電圧以上の期間は前記第1のスイッチ素子をオフ状態に制御し、該整流回路の出力電圧が該第1の閾値電圧未満の期間は該第1のスイッチ素子をオン状態に制御する放電制御回路とを有することを特徴とする請求項1又は2記載の電源回路。
  4.  前記第1のスイッチ素子が半導体スイッチ素子であって、前記充電回路が該半導体スイッチ素子に等価的に形成された、前記整流回路の出力側がアノード、前記コンデンサ側がカソードのダイオードであることを特徴とする請求項3記載の電源回路。
  5.  前記充電回路が、前記整流回路の出力側にアノードが接続され、前記コンデンサ側にカソードが接続されたダイオードであることを特徴とする請求項1から4のうちいずれか1項記載の電源回路。
  6.  前記充電回路が、
     前記整流回路の出力側と前記コンデンサとの間に接続され、制御を受けて該整流回路の出力側と該コンデンサとの間をオンオフする第2のスイッチ素子と、
     前記整流回路の入力又は出力をモニタし、該整流回路の出力電圧が第2の閾値電圧以上の期間は前記第2のスイッチ素子をオン状態に制御し、該整流回路の出力電圧が該第2の閾値電圧未満の期間は該第2のスイッチ素子をオフ状態に制御する充電制御回路とを有することを特徴とする請求項1から4のうちいずれか1項記載の電源回路。
  7.  交流電力の入力を受ける一対の入力端子と、
     負荷に接続される一対の出力端子とを有し、
     前記整流回路が、前記一対の入力端子と前記一対の出力端子に接続され、該一対の入力端子で受けた交流電力を脈波電流に変換して該一対の出力端子に供給するものであり、
     前記コンデンサが、前記一対の出力端子のうちの第1の出力端子に一端が接続され、
     前記合成回路が、前記コンデンサの他端と前記一対の出力端子のうちの第2の出力端子との間に接続され、制御を受けて該他端と該第2の出力端子との間をオンオフする第1のスイッチ素子と、前記交流電力をモニタし、該交流電力の絶対値としての電圧が前記第1の閾値電圧以上の期間は前記スイッチ素子をオフ状態に制御し、該交流電力の絶対値としての電圧が該第1の閾値電圧未満の期間は該第1のスイッチ素子をオン状態に制御する放電制御回路とを有するものであって、
     前記充電回路が、前記第1のスイッチ素子がオフ状態にある間、前記整流回路の出力電力で前記コンデンサを充電する回路であることを特徴とする請求項1又は2記載の電源回路。
  8.  請求項1から7のうちいずれか1項記載の電源回路と、
     前記電源回路から電力の供給を受けて発光する発光ダイオードとを有することを特徴とする発光装置。
  9.  前記発光ダイオードが、順次直列に接続された複数の発光ダイオード素子を有することを特徴とする請求項8記載の発光装置。
PCT/JP2010/065011 2009-09-05 2010-09-02 電源回路および発光装置 WO2011027816A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-228500 2009-09-05
JP2009228500 2009-09-05
JP2010042905 2010-02-26
JP2010-042905 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011027816A1 true WO2011027816A1 (ja) 2011-03-10

Family

ID=43649350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065011 WO2011027816A1 (ja) 2009-09-05 2010-09-02 電源回路および発光装置

Country Status (1)

Country Link
WO (1) WO2011027816A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219356A (ja) * 2012-04-11 2013-10-24 Xin Qiao Technology Co Ltd 発光ダイオード駆動回路
JP2014532261A (ja) * 2011-09-30 2014-12-04 コーニンクレッカ フィリップス エヌ ヴェ 能動コンデンサ回路
US20160181931A1 (en) * 2014-12-18 2016-06-23 Delta Electronics, Inc. Switching power supply and method for controlling voltage of bulk capacitor in the same
US10177678B2 (en) 2014-01-13 2019-01-08 Philips Lighting Holding B.V. Buffering capacitor for diode bridge rectifier with controlled decharging current
CN111585427A (zh) * 2019-02-19 2020-08-25 夏普株式会社 整流电路以及电源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189547A (ja) * 1992-12-16 1994-07-08 Nitsushiyoo:Kk 交直変換装置
JPH07241078A (ja) * 1994-02-24 1995-09-12 Ricoh Co Ltd 電源高調波電流の抑制手段
JPH08168256A (ja) * 1994-12-12 1996-06-25 Murata Mfg Co Ltd 交流−直流変換回路
JPH1141930A (ja) * 1997-07-16 1999-02-12 Murata Mfg Co Ltd 平滑回路
JP2007080771A (ja) * 2005-09-16 2007-03-29 Nec Lighting Ltd 照明用低圧電源回路、照明装置および照明用低圧電源出力方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06189547A (ja) * 1992-12-16 1994-07-08 Nitsushiyoo:Kk 交直変換装置
JPH07241078A (ja) * 1994-02-24 1995-09-12 Ricoh Co Ltd 電源高調波電流の抑制手段
JPH08168256A (ja) * 1994-12-12 1996-06-25 Murata Mfg Co Ltd 交流−直流変換回路
JPH1141930A (ja) * 1997-07-16 1999-02-12 Murata Mfg Co Ltd 平滑回路
JP2007080771A (ja) * 2005-09-16 2007-03-29 Nec Lighting Ltd 照明用低圧電源回路、照明装置および照明用低圧電源出力方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532261A (ja) * 2011-09-30 2014-12-04 コーニンクレッカ フィリップス エヌ ヴェ 能動コンデンサ回路
JP2013219356A (ja) * 2012-04-11 2013-10-24 Xin Qiao Technology Co Ltd 発光ダイオード駆動回路
US10177678B2 (en) 2014-01-13 2019-01-08 Philips Lighting Holding B.V. Buffering capacitor for diode bridge rectifier with controlled decharging current
RU2689304C2 (ru) * 2014-01-13 2019-05-27 Филипс Лайтинг Холдинг Б.В. Буферизующий конденсатор для выпрямителя с диодным мостом с управляемым током разрядки
US20160181931A1 (en) * 2014-12-18 2016-06-23 Delta Electronics, Inc. Switching power supply and method for controlling voltage of bulk capacitor in the same
EP3035513A3 (en) * 2014-12-18 2016-07-06 Delta Electronics, Inc. Switching power supply and method for controlling voltage of bulk capacitor in the same
CN105763078A (zh) * 2014-12-18 2016-07-13 台达电子工业股份有限公司 开关电源及用于开关电源的母线电容电压控制方法
US9787193B2 (en) 2014-12-18 2017-10-10 Delta Electronics, Inc. Switching power supply and method for controlling voltage of bulk capacitor in the switching power supply
CN105763078B (zh) * 2014-12-18 2019-07-05 台达电子工业股份有限公司 开关电源及用于开关电源的母线电容电压控制方法
CN111585427A (zh) * 2019-02-19 2020-08-25 夏普株式会社 整流电路以及电源装置
CN111585427B (zh) * 2019-02-19 2023-05-23 夏普株式会社 整流电路以及电源装置

Similar Documents

Publication Publication Date Title
US9970640B2 (en) LED fluorescent lamp driving power source and LED fluorescent lamp
US6577072B2 (en) Power supply and LED lamp device
US9603207B2 (en) Driving circuit, illumination light source, and illumination device
KR102077129B1 (ko) 발광 다이오드의 구동 시스템 및 방법
WO2014087581A1 (ja) 駆動回路、照明用光源、及び、照明装置
US20080303456A1 (en) High Efficiency Power Controller for Solid State Lighting
EP2579689B1 (en) Led turn-on circuit, lamp, and illumination apparatus
EP2496056B1 (en) Constant-current-drive led module device
JP2012231175A (ja) 高効率acled駆動回路
JP2008166192A (ja) Led駆動電源回路
WO2011027816A1 (ja) 電源回路および発光装置
KR20150145290A (ko) Led 구동 장치 및 이를 포함하는 조명 장치
JPH11307815A (ja) 交流電源用led集合ランプ
US10082251B1 (en) Light emitting diode driver circuit compatible with ballast
CA2899390C (en) Alternating current rectifying circuit and alternating current rectifying method for driving led module
US8947007B2 (en) High efficiency inductor-less off-line LED driver
TWI445438B (zh) 照明裝置及其控制方法
TWI656809B (zh) 發光二極體驅動電路及其照明裝置
KR20100002474A (ko) 발광 장치
JP2011044678A (ja) 商用電源用の発光ダイオード照明装置
CN210781469U (zh) 一种用于抑制发光二极管低频纹波电流的电路
US9510425B1 (en) Driving circuit for light emitting diode apparatus and method of operation
KR20110005559A (ko) 플리커 제거회로가 구비된 발광 다이오드용 파워공급장치
KR20180071293A (ko) 발광 다이오드 조명 장치
KR101162512B1 (ko) Led 구동 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP