WO2011027718A1 - 多様なチトクロムp450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット - Google Patents

多様なチトクロムp450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット Download PDF

Info

Publication number
WO2011027718A1
WO2011027718A1 PCT/JP2010/064567 JP2010064567W WO2011027718A1 WO 2011027718 A1 WO2011027718 A1 WO 2011027718A1 JP 2010064567 W JP2010064567 W JP 2010064567W WO 2011027718 A1 WO2011027718 A1 WO 2011027718A1
Authority
WO
WIPO (PCT)
Prior art keywords
caged
cytochrome
substrate
nadph
enzyme
Prior art date
Application number
PCT/JP2010/064567
Other languages
English (en)
French (fr)
Inventor
浩正 今石
憲一 森垣
達 吉郎
鋼 常
Original Assignee
国立大学法人神戸大学
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 独立行政法人産業技術総合研究所 filed Critical 国立大学法人神戸大学
Priority to US13/393,706 priority Critical patent/US20120288885A1/en
Priority to JP2011529888A priority patent/JP5713318B2/ja
Publication of WO2011027718A1 publication Critical patent/WO2011027718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90209Oxidoreductases (1.) acting on NADH or NADPH (1.6), e.g. those with a heme protein as acceptor (1.6.2) (general), Cytochrome-b5 reductase (1.6.2.2) or NADPH-cytochrome P450 reductase (1.6.2.4)

Definitions

  • the present invention relates to a technique for evaluating the metabolic activity of P450 molecular species with respect to various chemical substances with high efficiency, and more particularly, to a laminated substrate having an immobilized cytochrome P450 support layer and an oxygen sensor, and use thereof.
  • the present invention also relates to a method and kit for measuring the enzyme activity of NADPH-dependent enzymes or oxidases reduced by the dependent enzymes, including cytochrome P450 reductase and cytochrome P450, and more specifically, NADPH is supplied by light irradiation.
  • the present invention relates to a method and a kit for controlling the start time of an enzyme reaction and accurately measuring enzyme activity.
  • Cytochrome P450 is involved in the detoxification metabolism and metabolic activation of various compounds including agricultural chemicals, pharmaceuticals, etc., and elucidating the metabolic reaction by P450 is useful for evaluating the toxicity of in vitro foreign substances. This is extremely important (Non-Patent Document 1).
  • Non-Patent Document 1 In recent years, attention has been focused on application to substance production by P450 enzymes and safety evaluation indicators for pharmaceuticals and agricultural chemicals (Non-patent Document 2).
  • the manifestation of toxicity due to the interaction between compounds and P450 enzymes has become a major obstacle to the development of new drugs, and examination of P450 enzyme metabolic activity for new drug candidate substances is an important indicator in the early stages of development. It is said that.
  • Cytochrome P450 has now been confirmed to be 57 molecular species in humans. Each of these molecular species may be involved in the metabolism of various pharmaceutical compounds, organic solvents such as benzene, and low molecular carcinogens in the environment, although there are individual differences in enzyme activity. Has been reported (see Non-Patent Document 4).
  • Oxygen sensors using fluorescent dyes for example, ruthenium complexes
  • fluorescent dyes for example, ruthenium complexes
  • Oxygen sensor layer on the bottom of the multiwell plate products that can evaluate cell culture and enzyme activity in parallel are also commercially available, and are also used for activity evaluation of P450 enzyme suspended in an aqueous solution (Non-Patent Document) 5-7).
  • An object of the present invention is to provide a technique for detecting enzyme activities with respect to substrate molecules of various P450 molecular species with high efficiency.
  • the purpose is to measure the activity of various metabolic substances for human cytochrome P450, especially drug metabolizing enzymes for pharmaceuticals and foods with higher efficiency and precision than conventional assay methods.
  • the present invention is a technique for comprehensively and efficiently evaluating the metabolic activity of various chemical substances of the P450 molecular species. Therefore, enzyme activity measurement is performed by laminating an oxygen sensor layer and immobilized cytochrome P450 and combining them with a fine structure such as a fine flow path and a fine well. In addition, by controlling the supply of coenzyme (NADPH) necessary for the enzyme activity of cytochrome P450 with light, the reaction of the substrate solution enclosed in a large number of microwells is simultaneously started by light irradiation.
  • NADPH coenzyme
  • the present inventor laminated a uniform silica layer (oxygen sensor) containing a ruthenium complex and cytochrome P450 immobilized on a support matrix, and combined with a flow path produced by a microfabrication technique.
  • the present inventors have obtained an idea that enzyme reaction assays of various P450 molecular species can be performed with high efficiency.
  • the present invention pays attention to the fact that the activity of either cytochrome P450 reductase or cytochrome P450 can be controlled by supplying NADPH using the NADPH regeneration system, and photodetachment to NADP and / or G6P required for the NADPH regeneration system. It was clarified that the enzyme activity can be photo-controlled by adding a sex protecting group (FIGS. 12 and 13).
  • the present invention provides the following laminated substrate and its use, and the following method and kit for measuring the enzyme activity of NADPH-dependent enzyme.
  • Item 1 A laminated substrate in which an oxygen sensor layer and a cytochrome P450 support layer are stacked on a substrate, and in the cytochrome P450 support layer, cytochrome P450 is supported on a hydrophilic polymer carrier.
  • Item 2. The laminated substrate according to Item 1, wherein the hydrophilic polymer is an agarose gel.
  • Item 4. Item 4.
  • Item 5. The laminated substrate according to any one of Items 1 to 4, further comprising a flow path for introducing a substrate onto the cytochrome P450 support layer.
  • Item 6. The multilayer substrate according to Item 5, wherein the channel is a microchannel.
  • Item 7. The laminated substrate according to any one of Items 1 to 6, wherein an oxygen sensor layer and a cytochrome P450 support layer are uniformly laminated in the microchannel.
  • the multilayer substrate according to any one of Items 1 to 7, wherein the cytochrome P450-supporting layer has a plurality of cytochrome P450-supporting portions each having cytochrome P450, and the metabolic activity of each cytochrome P450 with respect to a substrate can be analyzed.
  • Item 9. Use of the laminated substrate according to any one of Items 1 to 8 for evaluating the degree of substrate oxidation reaction by cytochrome P450.
  • a method for measuring enzyme activity characterized in that NADPH is produced by irradiating with light and supplying NADP and / or G6P from the caged compound to initiate a reaction between the dependent enzyme or oxidase and a substrate.
  • the caged NADP has the following formula
  • R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, an amino group, a halogen atom, a hydroxyl group or a cyano group, or R 1 , R 2 and Any two of R 3 together represent a methylenedioxy group.
  • R 4 represents a hydrogen atom or a methyl group.
  • the caged G6P has the following formula
  • R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, an amino group, a halogen atom, a hydroxyl group or a cyano group, or R 1 , R 2 and Any two of R 3 together represent a methylenedioxy group.
  • R 4 represents a hydrogen atom or a methyl group.
  • item 11 represented by this.
  • the kit according to Item 17 or 18, wherein the NADPH-dependent enzyme is cytochrome P450 reductase.
  • Item 20. Item 19. The kit according to Item 17 or 18, wherein the kit has a minute well structure and a flow path, and can simultaneously activate various types of NADPH-dependent enzymes by local or whole-surface light irradiation and measure the activity in parallel.
  • Item 21. Item 21. The kit according to Item 20, wherein the NADPH-dependent enzyme is cytochrome P450 reductase.
  • a sample solution containing a compound having a possibility of becoming a cytochrome P450 substrate is introduced into the surface of a laminated substrate on which P450 is immobilized on an oxygen sensor. It is possible to quickly evaluate how much is oxidized by P450. By immobilizing P450 on the surface of the oxygen sensor, the detection sensitivity of enzyme activity is greatly improved. Since the oxidation reaction by P450 always involves oxygen consumption, the activity of all P450 molecular species can be detected by an oxygen sensor (molecular species are not limited as in fluorescent substrates).
  • the immobilized P450 the solution containing the compound can be exchanged, and a plurality of reaction liquids can be circulated and supplied sequentially. Further, by combining with a micro flow channel, it is possible to assay with a small amount of reaction solution, and simultaneous measurement of multiple samples is possible.
  • the substrate can be identified by immobilizing a plurality of P450s and allowing the substrate to act.
  • the reaction of the substrate solution enclosed in a large number of microwells is irradiated with light.
  • NADPH and / or G6P can be supplied into the reaction system by light irradiation to generate NADPH, and the initiation of the enzymatic reaction of the NADPH-dependent enzyme can be controlled in time and space. For example, by controlling the reaction start time with cytochrome P450 and determining the initial reaction rate, it becomes possible to more quantitatively evaluate the metabolic ability of the P450 enzyme for various chemical substances.
  • the enzyme reaction can be simultaneously started by light irradiation for a large number of samples having different enzyme molecular species, compounds, concentrations, etc., high throughput can be realized by mechanization.
  • caged NADP has a slight background reaction due to endogenous NADP
  • caged G6P has a small background reaction. Further, by using the caged NADP and the caged G6P in combination, more powerful light control is possible.
  • P450 metabolic activity can be measured more efficiently and precisely than conventional assay methods.
  • ⁇ Data are responses with NADPH solution without substrate.
  • A Time course of fluorescence response of P450 (h-CYP1A1) -encapsulated agarose gel for different concentrations of chlortoluron.
  • B ⁇ Differential value (displacement speed) of fluorescence intensity increase shown in Fig. 4A.
  • C Correlation curve between the maximum value of fluorescence displacement rate (Max.rate) and chlortoluron concentration.
  • An example of a microchannel design Microwells (50 ⁇ m) are arranged at equal intervals in a 100 ⁇ m channel (4 channels). In each well, an oxygen sensor and an enzyme-immobilized gel are laminated. An example of a microchannel design.
  • Microwells (50 ⁇ m) are arranged at equal intervals in a channel having a width of 100 ⁇ m.
  • an oxygen sensor and an enzyme-immobilized gel are laminated.
  • An oxygen sensor and an enzyme-immobilized gel are laminated at a certain site in a channel having a width of 100 ⁇ m.
  • the metabolism of the chemical substance by P450 proceeds and the fluorescence intensity of the oxygen sensor rises (the reaction progress rate can be assayed by the spatial distribution of the oxygen sensor fluorescence intensity).
  • Schematic of P450-encapsulated agarose gel stacked on an oxygen sensor in a microwell (1) Polymer cover; (2) Substrate solution (e.g.
  • Fluorescence response of oxygen sensor / immobilized P450 to food components and pesticides (chlorotoluron) ((A) CYP1A1, (B) CYP2C8, (C) CYP2E1, (D) CYP3A4), Oxygen sensor fluorescence intensity over time, Fluorescence response to food components and pesticides (chlorotoluron) of oxygen sensor / immobilized P450 ((1) CYP1A1, (2) CYP2C8, (3) CYP2D6, (4) CYP2E1, (5) CYP3A4).
  • Oxygen sensor response maximum value based on P450 molecular species activity for each compound ratio with respect to measured value in the absence of substrate (NADPH) as vertical axis).
  • the pattern of fluorescence response showed the possibility of using this sensor for compound identification.
  • Activity evaluation of various P450 molecular species against capsaicin using oxygen sensor / immobilized P450 standardized by response to background solution without substrate (background oxygen consumption).
  • the pattern of fluorescence response showed the possibility of using this sensor for compound identification.
  • Each peak is CYP2C9, CYP1A2, CYP2D6, CYP2B6, CYP2C19 1A, CYP2C19 1B, CYP2E1, CYP1A1, CYP2C8, CYP2C1, CYP2C1, CYP2C1, CYP2C1, CYP2C1, CYP2C1, CYP2C1, CYP2C , CYP2R1, pcW, CYP2B6, and the peak of CYP3A5 is particularly high.
  • the merit of caged coenzyme includes (i) simplification of mechanical part, (ii) mixing enzyme and substrate in advance, and (iii) superior to initial analysis.
  • cytochrome P450 human CYP1A1
  • Activation of cytochrome P450 by irradiating caged G6P with ultraviolet light: Correlation between enzyme activity of human CYP1A1 on a fluorescent substrate (7-ethoxyresorufin: 7-ER) and irradiation time of ultraviolet light.
  • cytochrome P450 Activation of cytochrome P450 by irradiation with ultraviolet light in the presence of cytochrome P450 (human CYP1A1) alone or in combination with caged NADP and caged G6P: fluorescent substrate of human CYP1A1 (7-ethoxyresorufin: 7- (ER) Correlation between enzyme activity and ultraviolet light irradiation time. The horizontal axis is the UV irradiation time.
  • Caged-G6P (caged-G6P) decaging
  • Caged-NADP uncaging
  • Caged-G6P and caged-NADP uncaging.
  • Activity was normalized by normal G6P and NADP.
  • cytochrome P450 human CYP1A1
  • a reaction solution containing human CYP1A1, 7-ER and caged G6P (NADP is natural) is enclosed in a PDMS microwell, and only in one microwell Ultraviolet light irradiation was performed (light-irradiated microwells are indicated by arrows).
  • Cytochrome P450 had enzyme activity only in the microwells irradiated with light, and fluorescence due to 7-ER metabolism was observed.
  • (Left) Bright field microscope image
  • the microwell size is 100 ⁇ m wide and 30 ⁇ m deep.
  • cytochrome P450 human CYP1A1
  • a reaction solution containing human CYP1A1, 7-ER and caged G6P (NADP is natural) is enclosed in a PDMS microwell, and only in one microwell Irradiation with ultraviolet light was performed.
  • A Fluorescence intensity change with time of light-irradiated microwell ( ⁇ ) and adjacent microwell ( ⁇ )
  • B Microwell fluorescence microscope observation image irradiated with light. Observation at the time indicated in (A). The microwell size is 100 ⁇ m wide and 30 ⁇ m deep.
  • cytochrome P450 human CYP1A1
  • reaction solution containing human CYP1A1, 7-ER and caged G6P NADP is natural
  • Cytochrome P450 acquired enzyme activity in all channels, and fluorescence due to metabolism was observed depending on the concentration of 7-ER.
  • A 0.35 ⁇ M
  • B 0.69 ⁇ M
  • C 1.73 ⁇ M
  • D 3.45 ⁇ M.
  • the size of the microchannel is 60 ⁇ m wide and 30 ⁇ m deep.
  • P450 enzyme reaction for different substrate concentrations The metabolic activity of human CYP1A1 on a fluorescent substrate (7-ER) was measured in a microwell with a fluorescence microscope. When the reaction was initiated by deprotection of caged G6P by UV light irradiation, fluorescence increased according to the substrate concentration. The microwell size is 100 ⁇ m wide and 30 ⁇ m deep. Metabolic activity of human CYP1A1 on fluorescent substrate (7-ER): Michaelis-Menten plot (left) and kinetic constant (right) compared with normal G6P and caged G6P. In the assay using caged G6P, the K m and V max error values were smaller and the measurement with high data accuracy was possible than the assay using ordinary G6P.
  • a reaction solution containing a fluorescent substrate (7-ER), caged G6P, and other necessary reagents is enclosed in a microwell (left figure) in which an oxygen sensor and immobilized P450 (human CYP1A1) / agarose gel are laminated. It was shown that the enzyme reaction can be started by performing ultraviolet light irradiation (right figure).
  • V) Oxygen sensor Oxygen sensor.
  • a multilayer substrate related invention and a caged compound related invention.
  • a multilayer substrate related invention and a caged compound related invention.
  • P450s of all species such as membrane-bound P450s such as mammals, insects and plants, and soluble P450s of microorganisms and bacteria can be used. Mammals include humans, monkeys, cows, horses, pigs, sheep, mice, rats, rabbits, dogs and cats, with human cytochrome P450 being particularly preferred.
  • P450 can be immobilized alone or in combination of two or more. In the case of membrane-bound P450, it is necessary to simultaneously supply cytochrome P450 reductase for supplying electrons.
  • the substrate of the present invention can be a substrate of any material such as glass, plastic, metal, ceramics.
  • An oxygen sensor layer can be formed on the substrate.
  • the oxygen sensor layer includes an oxygen sensor and a matrix.
  • the oxygen sensor include a ruthenium complex and a platinum complex, and preferably a ruthenium complex such as Ru (dpp) 3 Cl 2 .
  • the matrix include ceramics such as silica, alumina, zirconia, and titania, and polymer materials such as polyvinyl alcohol (PVA), preferably silica.
  • An oxygen sensor such as a ruthenium complex can be encapsulated in silica by a sol-gel method.
  • a silica precursor solution containing an oxygen sensor (ruthenium complex) is applied on a substrate by a spin coating method, and then can be produced by a drying process.
  • the method reported in the literature was optimized so that the oxygen sensor layer had uniform fluorescence intensity.
  • the mixing ratio of the silica precursors (TEOS and OclyI-lriEOS) at the time of silica gel production had an important influence on the uniformity of the fluorescence intensity of the oxygen sensor (FIG. 2).
  • the mixing ratio of TEOS: Oclyl-triEOS is most preferably 5: 5.
  • any silica precursor may be used as long as the change in fluorescence can be detected at other ratios.
  • hydrophilic polymers include cellulose derivatives such as polyvinyl alcohol (PVA), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (CMC-Na), hydroxyethylcellulose (HEC), alginic acid, hyaluronic acid, agarose, starch, dextran, pullulan.
  • PVA polyvinyl alcohol
  • HPMC hydroxypropylmethylcellulose
  • CMC-Na sodium carboxymethylcellulose
  • HEC hydroxyethylcellulose
  • alginic acid hyaluronic acid
  • agarose starch
  • starch dextran
  • pullulan pullulan
  • polysaccharides and derivatives thereof Such as polysaccharides and derivatives thereof, carboxyvinyl polymer, polyethylene oxide, poly (meth) acrylamide, homopolymers such as poly (meth) acrylic acid, etc., or copolymers of these with polysaccharides, mixtures and co-polymerization of other monomers
  • examples thereof include a polyion complex membrane of a polyanion such as a coalescence or alginic acid and a polycation such as poly-L-lysine, and preferably an agarose gel.
  • P450 for example, human CYP1A1 supported in an agarose gel has high enzyme activity, and is desirable for detecting oxygen consumption by an immobilized enzyme reaction with an oxygen sensor (FIG. 3).
  • the above oxygen sensor and immobilized P450 are incorporated in a microstructure (a microwell, a microchannel, or a combination thereof) made of silicon elastomer resin (Poly-dimethylsiloxane® (PDMS)), photo-curing resin, quartz glass, etc. Can be used in the form. Desirable forms include the microwell and flow channel designs shown in FIGS.
  • the oxygen sensor-immobilized P450 is combined with a micro flow channel, and as shown in FIGS. 5 to 7, the enzyme activity against various chemical substances of human P450 of multiple molecular species and multiple samples is measured in parallel and rapidly. It is considered possible to do.
  • the features of the present invention are as follows. (1) The activity of all P450 molecular species including genetic polymorphisms can be detected by an oxygen sensor (the molecular species is not limited like a fluorescent substrate) (2) By using immobilized P450, the solution containing the compound can be exchanged, and a plurality of reaction liquids can be circulated and fed sequentially. (3) By combining with a microchannel, a small amount of reaction liquid can be used. Can be assayed (4) Capable of simultaneous measurement of multiple samples
  • the enzyme whose enzyme activity is to be measured is reduced by an NADPH-dependent enzyme or any oxidoreductase involved in a series of redox reactions including NADPH-dependent enzymes, such as NADPH-dependent enzymes. Mention may be made of enzymes, in particular oxidases. As such an oxidase, cytochrome P450 is preferably exemplified. Examples of NADPH-dependent enzymes include cytochrome P450 reductase.
  • CMOS complementary metal-oxide-semiconductor
  • NADPH regeneration system produces NADPH from NADP by using glucose 6-phosphate (G6P) and glucose 6-phosphate dehydrogenase. Therefore, by using caged NADP and caged G6P in which a protecting group is added to NADP or G6P, NADPH supply necessary for the P450 enzyme reaction can be controlled by light.
  • the activity of NADPH-dependent enzymes can be measured using caged NADP and caged G6P.
  • NADPH-dependent enzymes cytochrome P450 reductase, thioredoxin reductase, glutathione reductase, and selection of potential anticancer agents are identified.
  • NADPH-quinone reductase (NADPH QR) and the like are known.
  • cytochrome P450 reductase is coupled to the activity of cytochrome P450, and by controlling the activity of the enzyme, it becomes possible to evaluate the activity of P450 against various pharmaceuticals and chemical substances in foods.
  • P450 CYP1A1, CYP1B1, CYP1A2, CYP2A6, CYP2B6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19 (1A, 1B), CYP2D6, CYP2E1, CYP2J1, CYP2J1, CYP2R CYP27A1, CYP51A1, etc. are known, and according to the present invention, these P450 enzyme activities can be accurately measured.
  • the caged compound of the present invention has a caged group of the following formula (I) or (IA) on NADP or G6P:
  • R 1 , R 2 and R 3 are the same or different and each represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, an amino group, a halogen atom, a hydroxyl group or a cyano group, or R 1 , R 2 and Any two of R 3 together represent a methylenedioxy group.
  • R 4 represents a hydrogen atom or a methyl group.
  • R represents hydrogen or a methoxy group.
  • the lower alkyl group represented by R 1 , R 2 , R 3 includes carbon such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, etc. Examples thereof include an alkyl group having a straight chain or a branch having 1 to 4.
  • Examples of the lower alkoxy group include linear or branched alkoxy groups having 1 to 4 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy and the like. .
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • any one of R 1 , R 2 and R 3 is a hydrogen atom, the remaining one is a hydrogen atom, a lower alkyl group or a lower alkoxy group, and R 4 is a hydrogen atom. Group.
  • the caged group is removed by ultraviolet irradiation.
  • the ultraviolet ray to be irradiated is not particularly limited as long as the photosensitive group can be removed, and a normal ultraviolet lamp such as a Xe-Hg lamp (365 nm) is used.
  • a normal ultraviolet lamp such as a Xe-Hg lamp (365 nm) is used.
  • the conditions for ultraviolet irradiation are not particularly limited, for example, it may be processed for about 1 hour with an ultraviolet hand lamp for detection of TLC (Topcon, PU-2).
  • the kit of the present invention comprises at least one caged compound selected from the group consisting of caged NADP and caged G6P, an NADPH-dependent enzyme, and if necessary, an oxidase that is further reduced by an NADPH-dependent enzyme, and further NADPH-dependent It may contain a sex enzyme buffer, a model substrate, and the like.
  • a sex enzyme buffer When used for evaluating the activity of P450, it contains at least one P450 in addition to one P450 reductase.
  • the activity of P450 can be measured using, for example, the following model substrate
  • the activity can be precisely measured using a model substrate of each enzyme.
  • the caged compound of the present invention is known, or can be easily synthesized by a method described in known literature, a method described in Examples, or a method analogous thereto.
  • Production Example 1A Stable expression of human P450 enzyme protein in E. coli, preparation of P450-containing membrane fraction and activity evaluation Human P450 expression Expression was attempted in Escherichia coli using a P450 expression cassette plasmid in which human major P450 genes (such as CYP1A1) and human NADPH-P450 reductase were inserted in tandem to the P450 expression cassette plasmid, pCWRm1A2N. E. coli was transformed by transforming competent DH5 ⁇ by a conventional method.
  • human major P450 genes such as CYP1A1
  • human NADPH-P450 reductase human NADPH-P450 reductase
  • each plasmid into Escherichia coli was confirmed by evaluating the drug resistance performance of the antibiotic ampicillin added to the LB medium.
  • Recombinant E. coli culture was initiated by inoculating a single E. coli colony on LB agar medium containing antibiotic ampicillin into 2.5 ml TB liquid medium. Pre-culture was performed for 16 hours at 37 ° C. Next, the cells were cultured for about 3 hours in an LB medium containing aminolevulinic acid having a final concentration of 500 ⁇ g / ml and ampicillin having a final concentration of 50 ⁇ g / ml until the OD value reached about 0.3.
  • the E. coli membrane fraction (microsome) was purified by the following method. The cells were collected by centrifugation of 200 ml of the TB culture solution at 3000 g for 10 minutes, and then subjected to ultrasonic crushing treatment 6 times in total for 30 seconds to disrupt the cells. Next, the E. coli residue was centrifuged by centrifuging the cell disruption solution at 10,000 rpm for 10 minutes. The supernatant obtained after centrifugation is subjected to ultracentrifugation at 40 ° C. and 40,000 rpm (100,000 g) to recover the membrane fraction containing the P450 enzyme protein, and then this E. coli membrane fraction is added to 3 ml of P450 storage buffer. It was dispersed in (100 mM potassium phosphate buffer (pH 7.5) containing 20% glycerol).
  • Example 1A Materials Tetraethylorthosilicate (TEOS), triethoxy (octyl) silane (octyl-triEOS), Ludox HS-40 colloidal silica, agarose (Type VII) and sodium silicate solution were purchased from SIGMA-ALDRICH.
  • TEOS Tetraethylorthosilicate
  • octyl-triEOS triethoxy silane
  • Ludox HS-40 colloidal silica agarose
  • sodium silicate solution were purchased from SIGMA-ALDRICH.
  • Tri (4,7-diphenyl-1,10-phenanthroline) ruthenium dichloride (Ru (dpp) 3 Cl 2 ), ethanol, methanol and concentrated hydrochloric acid were obtained from Wako Pure Chemical Industries, potassium dihydrogen phosphate, ⁇ -nicotinamide adenine dinucleotide tetrasodium phosphate (NADPH) and dipotassium hydrogen phosphate were purchased from Nacalai Tesque. Chlortorulone was obtained from Riedel-de Haen. Glucose-6-phosphate (G6P) was purchased from Tokyo Chemical Industry Co., Ltd. Glucose-6-phosphate dehydrogenase (G6PD) was purchased from Toyobo Co., Ltd. 96 microwell plates were purchased from NUNC. Milli-Q water with a resistivity of 18 M ⁇ .cm or higher was used to prepare the aqueous solution. All chemicals and solvents were analytical reagent grade and were used without further purification.
  • Ru (dpp) 3 Cl 2 doped sol 100 ⁇ L of 2 mM Ru (dpp) 3 Cl 2 in ethanol was mixed with 300 ⁇ L of the sol solution. These mixed solutions were capped and stirred for 30 minutes, and 10 ⁇ L was pipetted into each well of the microplate. The microplate was stored in the dark at room temperature to gel and then aged for 6 days. In order to improve the hydrophilicity of the oxygen sensor surface and increase its adhesion to the hydrogel, the surface of the microarray was modified using poly (vinyl acetate) (PVAC).
  • PVAC poly (vinyl acetate)
  • the TEOS sol was prepared by mixing 0.5 mL TEOS, 0.25 mL pure water and 12.5 L 0.1LM HCl and stirring for 3 hours to form a homogeneous sol.
  • the sol was diluted 4 times with pure water.
  • 300 ⁇ L of diluted TEOS sol was mixed with 100 ⁇ L of P450 microsome suspension, and 60 ⁇ L of the sol was pipetted onto the surface of the oxygen sensor layer in each well of the microplate.
  • the microplate was also stored in a refrigerator at 4 ° C.
  • Ludox sols were prepared as described in the literature (Anal. Chem. 77 (2005) 7080-7083 and J Mater. Chem. 13 (2003) 203-208). Specifically, 0.5 mL of 8.5 M Ludox colloidal silica was mixed with 0.5 0.1mL of 0.16 M sodium silicate solution while stirring. 4.0 M HCl was used to neutralize the pH value to about 7. Then 100 ⁇ L of P450 microsome suspension was mixed with 300 ⁇ L of the above Ludox silica sol. 60 ⁇ L of P450 doped sol was added drop by drop to each well of the microplate. The microplate was stored in a refrigerator at 4 ° C. until use.
  • the final concentrations of chlortolulone were 0.01, 0.05, 0.1, 0.25 and 0.5 mM.
  • 250 ⁇ L of each solution having a different substrate concentration was added. Clear polymer tape was used to seal each well of the plate to prevent oxygen in the air from entering the solution during the enzymatic reaction.
  • the microplate was quickly placed on the microplate reader platform for fluorescence measurements. The fluorescence intensity was recorded every 5 minutes for 3 hours.
  • FIG. 3A shows time-dependent changes in the fluorescence intensity of the oxygen sensor layer when a chlortolulone solution (0.5 mM) and a solution not containing chlorotoluron (both containing NADPH regeneration system) were introduced into a P450-encapsulated agarose gel. Even when no substrate was added, a slight increase in fluorescence intensity was shown ( ⁇ ).
  • FIGS. 3B and 3C show fluorescence responses in the presence and absence of a substrate (0.5 mM chlortolulone) of a substrate in which P450-encapsulated Ludox silica gel and TEOS silica gel are laminated on an oxygen sensor.
  • a substrate 0.5 mM chlortolulone
  • FIG. 3B a higher background oxygen consumption from NADPH was observed in FIG. 3B ( ⁇ ) compared to the results for the P450 encapsulated agarose gel.
  • the increase in fluorescence did not increase significantly. This may be because P450 metabolic activity is suppressed in Ludox silica gel, which is an inorganic material, or diffusion of the substrate is restricted.
  • the P450 metabolic microarray was maintained for 10 days and 21 days, and the activity of P450 microsomes was evaluated using the same experimental method as the chlortolulone test.
  • P450 microarrays show similar catalytic behavior even after 3 weeks of maintenance. This means that P450 activity is preserved for a long time by inclusion of agarose gel.
  • FIG. 4A shows the time change of fluorescence intensity in the presence of different concentrations of chlortolulone solution.
  • P450-encapsulated agarose gel was sensitive to changes in substrate concentration, and showed different changes in fluorescence intensity at different concentrations (FIG. 4A). It was found that the change in fluorescence intensity over time can fit a sigmoidal curve and has a high correlation coefficient of 0.99.
  • FIG. 4B shows a differential value (displacement speed) of the fluorescence intensity increase shown in FIG. 4A.
  • the rate of fluorescence intensity displacement continues to increase for the first hour, corresponding to the oxygen consumption caused by the substrate being metabolized to P450.
  • the rate of mutation decreases with time, reflecting oxygen or substrate depletion.
  • FIG. 4C is a plot of the maximum fluorescence displacement rate against the substrate (chlortoluron) concentration. Error bars indicate standard deviation.
  • the red curve is the fitting of the data using the Michaelis-Menten equation. It was shown that the maximum value of the fluorescence displacement rate obtained by the DTM method can be evaluated by the Michaelis-Menten velocity model although it is approximate.
  • Example 2A Detection and comparison of P450 enzyme activity in a laminated structure and solution Using CYP1A1 as P450 and chlorotoluron as a substrate, respectively, and producing a laminated substrate in which CYP1A1 is immobilized on an agarose gel in the same manner as in Example 1A The enzyme activity of CYP1A1 was measured by the change in fluorescence intensity. In addition, CYP1A1 was suspended in the same concentration (15 ⁇ L of the membrane fraction sample) was suspended in the solution, chlorotolulone was present at a concentration of 0.2 mM, and the enzyme activity of CYP1A1 was measured by the change in fluorescence intensity. The results are shown in FIG.
  • Example 3A Metabolic activity of P450 molecular species against different compounds Using a 96-well microplate, human P450 of different molecular species on the oxygen sensor surface ((A) CYP1A1, (B) CYP2C8, (C) CYP2E1, (D) CYP3A4) was immobilized, and fluorescence responses to food ingredients (capsaicin, safrole, estragole, 7-coumarin, 5-MOP, 8-MOP) and pesticides (chlorotoluron) were determined. The results are shown in FIGS. 10-1 and 10-2.
  • FIG. 10-1 shows the change over time in the fluorescence intensity of the oxygen sensor
  • FIG. 10-2 shows the maximum oxygen sensor response value for each compound.
  • the vertical axis of FIG. 10-2 is a value normalized by dividing the response in the presence of the substrate by the response in the absence of the substrate (NADPH) (background oxygen consumption). It can be seen that different molecular species show activity for each compound. This result shows the possibility that this sensor can be used for the identification of compounds by acquiring and patterning the fluorescence response of the oxygen sensor for various types of molecular species. It also shows the possibility that the activity of human P450 against compounds such as pharmaceuticals can be detected in parallel.
  • NADPH background oxygen consumption
  • Example 4A Metabolic Activity of Various P450 Molecular Species on Compounds Using 96 well microplates, activity evaluation of various human P450 molecular species on capsaicin with oxygen sensor / immobilized P450 was performed. The responses to solutions with and without substrate were compared to normalize the activity of each molecular species.
  • CYP2C9, CYP1A2, CYP2D6, CYP3A4, CYP2B6, CYP2C19 (1A, 1B), CYP2E1, CYP1A1, CYP2C8, CYP2W1, CYP4X1, CYP17A1, CYP27A1, CYP51A1, CYP51A1, CYP51A1, CYP51A CYP2B6 was used.
  • a membrane fraction (pCW) derived from E. coli was used as a negative control not containing human P450. The results are shown in FIG. The vertical axis in FIG.
  • 11 is a normalized value obtained by dividing the response in the presence of the substrate by the response in the absence of the substrate (background oxygen consumption). It can be seen that different molecular species show activity for each compound. This result shows the possibility that this sensor can be used for the identification of compounds by acquiring and patterning the fluorescence response of the oxygen sensor for various types of molecular species. It also shows the possibility that the activity of human P450 against compounds such as pharmaceuticals can be detected in parallel.
  • Production Example 1B Synthesis of caged NADP 2-Nitrophenyl-acetophenone hydrazone (26.9 mg 0.15 mmol) was dissolved in dichloromethane (0.3 ml), manganese oxide (65.2 mg, 0.75 mmol) was added, and the mixture was stirred for 5 minutes. Thereafter, the mixture was centrifuged, the supernatant was filtered through a PTFE filter (Millipore, pore size: 0.75 ⁇ m), an NADP aqueous solution (a solution of 77 mg (0.1 mmol) dissolved in 0.3 ml of water) was added, and the mixture was stirred for 2 hours.
  • a PTFE filter Micropore, pore size: 0.75 ⁇ m
  • an NADP aqueous solution a solution of 77 mg (0.1 mmol) dissolved in 0.3 ml of water
  • Production Example 5B Stable expression of human P450 enzyme and P450 reductase in E. coli and preparation of membrane fraction Expression of human P450 and P450 reductase Expression in E. coli was attempted using a P450 expression cassette plasmid in which human major P450 (CYP1A1) and human NADPH-P450 reductase were inserted in tandem with respect to the P450 expression cassette plasmid, pCWRm1A2N.
  • E. coli was transformed by transforming competent DH5 ⁇ by a conventional method.
  • the introduction of each plasmid into Escherichia coli was confirmed by evaluating the drug resistance performance of the antibiotic ampicillin added to the LB medium. Recombinant E.
  • coli culture was initiated by inoculating a single E. coli colony on LB agar medium containing antibiotic ampicillin into 2.5 ml TB liquid medium. Pre-culture was performed for 16 hours at 37 ° C. Next, the cells were cultured for about 3 hours in an LB medium containing aminolevulinic acid having a final concentration of 500 ⁇ g / ml and ampicillin having a final concentration of 50 ⁇ g / ml until the OD value reached about 0.3. Next, after culturing at 37 ° C., the culture temperature was lowered to 28 ° C., and at the same time IPTG having a final concentration of 1 mM was added, followed by culturing for 24 hours. The recombinant E.
  • the E. coli membrane fraction was purified by the following method. After collecting 200 ml of the TB culture solution by centrifugation at 3000 g for 10 minutes, the cells were subjected to ultrasonic disruption treatment 6 times in total for 30 seconds to disrupt the cells. Next, the E. coli residue was centrifuged by centrifuging the cell disruption solution at 10,000 rpm for 10 minutes. The supernatant obtained after centrifugation is subjected to ultracentrifugation at 40 ° C. and 40,000 rpm (100,000 g) to recover the membrane fraction containing the P450 enzyme protein, and then this E. coli membrane fraction is added to 3 ml of P450 storage buffer. It was dispersed in (100 mM potassium phosphate buffer (pH 7.5) containing 20% glycerol).
  • Test Example 1B Drug metabolic activity by human CYP1A1 in recombinant Escherichia coli after activity measurement preparation was evaluated by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • 7-ethoxycoumarin (7EC) which is a P450 model fluorescent substrate
  • the enzymatic reaction was purified using a method of adding a substrate directly to the previously cultured recombinant Escherichia coli strain expressing the P450 enzyme protein and ultracentrifugation from the recombinant Escherichia coli strain expressing the P450 enzyme protein. Two methods using the E. coli membrane fraction were examined. When P450-expressing E.
  • Test Example 2B Measurement of enzyme activity of cytochrome P450 using caged NADP Cytochrome P450 enzyme activity was measured using caged NADP.
  • the reaction mixture was 50 ⁇ L of 1M potassium phosphate buffer, 6.25 ⁇ L of 40 mM 7-ethoxyresorufin (7ER), 30 ⁇ L of 50 mM G6P, 6.93 U / mL 2.89 ⁇ L of glucose 6-phosphate reductase, 15 ⁇ L of 100 mM magnesium chloride, 1 ⁇ L of 5 mM caged NADP aqueous solution
  • Test Example 3B Measurement of cytochrome P450 enzyme activity using caged G6P Cytochrome P450 enzyme activity was measured using caged G6P.
  • the reaction mixture was 1 M potassium phosphate buffer 50 ⁇ L, 40 mM 7-ethoxyresorufin (7ER) 6.25 ⁇ L, 5 mM caged G6P 30 ⁇ L, 69.3 U / mL glucose 6-phosphate reductase 2.89 ⁇ L, 100 mM magnesium chloride 15 ⁇ L, 5 mM NADP aqueous solution 1 ⁇ L P450 membrane fraction (human CYP1A1) 10.25 ⁇ L, 0.1 M dithiothreitol 5 ⁇ L, ultrapure water 379.61 ⁇ L mixed aqueous solution was used.
  • the P450 enzyme reaction was carried out by incubation for 30 minutes. Thereafter, 25 ⁇ L of 30% trichloroacetic acid was added to stop the enzyme reaction.
  • 7-hydroxycoumarin (7HR) produced by the reaction was extracted into chloroform.
  • 250 ⁇ L of the lower chloroform layer was collected, 500 ⁇ L of 0.01M NaOH / 0.1M NaCl was added, and the mixture was stirred for 1 minute to re-extract 7HR into an aqueous solution.
  • caged NADP is an endogenous NADP contained in the P450 sample, and therefore some reaction proceeds as a background even in a protected state.
  • the background reaction in the protected state is Almost negligible. Therefore, it can be said that the caged G6P can perform more precise optical control when used alone.
  • Test Example 4B Measurement of enzyme activity of cytochrome P450 using both caged NADP and caged G6P From the results of Test Example 2B-3B, both caged NADP and caged G6P can control P450 enzyme activity by light irradiation for a relatively short time. I understood.
  • caged NADP is endogenous NADP contained in the P450 sample, so that some reaction proceeds as a background even in a protected state.
  • the combined use of caged NADP and caged G6P makes it possible to more strongly suppress the activity of P450 and to measure the enzyme activity more precisely.
  • Cytochrome P450 enzyme activity was measured using caged NADP and caged G6P simultaneously.
  • the reaction solution was 1M potassium phosphate buffer 50 ⁇ L, 40 mM 7-ethoxyresorufin (7ER) 6.25 ⁇ L, 5 mM caged G6P 30 ⁇ L, 69.3 U / mL glucose 6-phosphate reductase 2.89 ⁇ L, 100 mM magnesium chloride 15 ⁇ L, 5 mM caged NADP
  • An aqueous solution in which 1 ⁇ L of aqueous solution 1450 ⁇ L of P450 membrane fraction (human CYP1A1), 5 ⁇ L of 0.1 M dithiothreitol and 379.61 ⁇ L of ultrapure water was used was used.
  • Caged NADP and caged G6P were converted to NADP and G6P by irradiating with ultraviolet light for different times, and then incubated for 30 minutes to perform P450 enzyme reaction. Thereafter, 25 ⁇ L of 30% trichloroacetic acid was added to stop the enzyme reaction.
  • 25 ⁇ L of 30% trichloroacetic acid was added to stop the enzyme reaction.
  • 7-hydroxycoumarin (7HR) produced by the reaction was extracted into chloroform.
  • 250 ⁇ L of the lower chloroform layer was collected, 500 ⁇ L of 0.01M NaOH / 0.1 M NaCl was added, and the mixture was stirred for 1 minute to re-extract 7HR into an aqueous solution.
  • FIG. 17 shows a summary of results when caged NADP or caged G6P is used alone and when both are used together.
  • P450 activity was normalized with reference to the activity when normal NADP and G6P were used. It was found that when caged G6P was used alone, the activity was maximized by irradiation with the ultraviolet light for the shortest time, and the maximum value of activity was larger than other conditions. On the other hand, when both were used together, the ultraviolet light irradiation time required for activation was long, and the activity at the maximum was the lowest. From the above results, the combined use of two kinds of caged compounds has the advantage of strong activity suppression in the protected state, but for the purpose of activation by light, it is most effective to use caged G6P alone. it is conceivable that.
  • Test Example 5B Measurement of enzyme activity of cytochrome P450 using a microwell
  • the enzyme activity can be spatially controlled by local ultraviolet light irradiation.
  • a microwell having a width of 100 ⁇ m and a depth of 30 ⁇ m was made of silicon elastomer (polydimethylsiloxane: PDMS), and a cytochrome P450 enzyme activity measurement reaction solution was introduced into the microwell.
  • PDMS silicon elastomer
  • An experiment was conducted to activate the P450 enzyme only in the microwells irradiated with light by locally irradiating with ultraviolet light underneath.
  • the reaction mixture was 1 M potassium phosphate buffer 50 ⁇ L, 40 mM 7-ethoxyresorufin (7ER) 6.25 ⁇ L, 5 mM caged G6P 30 ⁇ L, 69.3 U / mL glucose 6-phosphate reductase 2.89 ⁇ L, 100 mM magnesium chloride 15 ⁇ L, 5 mM NADP aqueous solution 1 ⁇ L P450 membrane fraction (human CYP1A1) 10.25 ⁇ L, 0.1 M dithiothreitol 5 ⁇ L, ultrapure water 379.61 ⁇ L mixed aqueous solution was used.
  • the reaction solution was dropped onto the PDMS microwell, and a slide glass was placed over the reaction solution, so that the solution was sealed in each well.
  • a fluorescence microscope (Olympus BX51WI) (excitation: 545-580 nm, fluorescence: 610 nm or more)
  • switch the wavelength of the excitation light filter to 330-385 nm and irradiate for 8 seconds.
  • the caged G6P in the well was deprotected.
  • the ultraviolet light irradiation region was limited to one microwell using a pinhole. Thereafter, the excitation light wavelength region was changed again and observation was continued for 10 seconds.
  • FIG. 18 is a plot of the fluorescence intensity in the microwell before and after irradiation with ultraviolet light. In the wells irradiated with ultraviolet light, the fluorescence intensity increased significantly after irradiation, but no increase in fluorescence intensity was observed in another microwell adjacent to each other at an interval of about 100 ⁇ m. From this experiment, it was found that the activity of P450 can be controlled in a minute space by using caged G6P.
  • Test Example 6B Measurement of enzyme activity of cytochrome P450 using microwells
  • cytochromes were introduced by introducing different concentrations of substrate (7ER) into cytochrome P450 enzyme (human CYP1A1) and caged G6P in a microchannel with a width of 60 ⁇ m and a depth of 30 ⁇ m and simultaneously irradiating with ultraviolet light. Studies were made to activate the P450 enzyme.
  • the reaction solution was 1M potassium phosphate buffer 50 ⁇ L, 5 mM caged G6P 30 ⁇ L, 69.3 U / mL glucose 6-phosphate reductase 2.89 ⁇ L, 100 mM magnesium chloride 15 ⁇ L, 5 mM NADP aqueous solution 1 ⁇ L P450 membrane fraction (human CYP1A1) 10.25 ⁇ L, An aqueous solution in which 5 ⁇ L of 0.1M dithiothreitol and 379.61 ⁇ L of ultrapure water were mixed with 7ER having different concentrations was used.
  • the entire area of the flow path chip was irradiated with ultraviolet light using Ushio spot cure.
  • cytochrome P450 had enzyme activity in all the channels, and fluorescence due to metabolism was observed depending on the concentration of 7-ER (FIG. 20). From this result, it was shown that solutions having different P450 molecular species, compound species, and concentrations can be arranged in parallel in a microarray or a microchannel, and the enzyme reaction can be started simultaneously with light. The analysis of the synchronized initial reaction process is expected to be able to more quantitatively evaluate the metabolic activity of various compounds of P450.
  • Test Example 7B Response to different substrate concentrations (1) Using human CYP1A1 as P450 and 7ER as a substrate, P450 enzyme reactions were determined for different substrate concentrations (0 ⁇ M, 0.1 ⁇ M, 0.2 ⁇ M, 0.5 ⁇ M, 1.0 ⁇ M, 1.5 ⁇ M). Specifically, an aqueous solution containing P450, a substrate, a coenzyme regeneration system (including caged G6P), etc. can be obtained by attaching a PDMS substrate having many microwells with a width of 100 ⁇ m and a depth of 30 ⁇ m to a slide glass. Sealed in.
  • Test Example 8B Response to different substrate concentrations (2) The results of measuring metabolic activity for different substrate (7-ER) concentrations were analyzed by Michaelis-Menten plot to determine enzymological kinetic constants (K m , V max ) (FIG. 22). The Michaelis-Menten plot (left) and kinetic constants (right) were compared between normal G6P and caged G6P. In an assay using normal G6P, examination was performed using a 2 mL sample tube. On the other hand, in the assay using caged G6P, two types of assays using 2 mL sample tubes and PDMS microwells were performed.
  • a solution containing an enzyme and a substrate can be enclosed in a microwell, and the reaction can be started at any timing.
  • the solution In an assay using ordinary G6P, the solution is mixed and enclosed in a microwell. Since the reaction has already started in the process, it is difficult to perform the assay.
  • the error value of K m and V max is smaller than the assay using ordinary G6P, and the data accuracy High measurement is now possible. According to the present invention, K m and V max of each enzyme can be measured very accurately. Moreover, since an enzyme reaction can be performed in a microspace such as a microwell, valuable enzyme and substrate samples can be saved.
  • Test Example 9B Competitive assay using fluorescent substrate
  • a competitive assay of fluorescent substrate (7-ER) and non-fluorescent substrate (benzopyrene) was performed using caged G6P.
  • the reaction solution was 1M potassium phosphate buffer 50 ⁇ L, 5 mM caged G6P 30 ⁇ L, 69.3 U / mL glucose 6-phosphate reductase 2.89 ⁇ L, 100 mM magnesium chloride 15 ⁇ L, 5 mM NADP aqueous solution 1 ⁇ L P450 membrane fraction (human CYP1A1) 10.25 ⁇ L, An aqueous solution in which 5 ⁇ L of 0.1M dithiothreitol and 379.61 ⁇ L of ultrapure water were mixed was used.
  • the 7-ER concentration was varied between 0.1 ⁇ M and 1.5 ⁇ M.
  • the concentration of benzopyrene was 0.1 ⁇ M and 1 ⁇ M.
  • the P450 enzyme reaction was carried out by incubation for 30 minutes. Thereafter, 25 ⁇ L of 30% trichloroacetic acid was added to stop the enzyme reaction. By adding 500 ⁇ L of chloroform to the reaction solution and stirring for 1 minute, 7-hydroxycoumarin (7HR) produced by the reaction was extracted into chloroform.
  • Test Example 10B Detection of enzyme activity using an oxygen sensor Oxygen sensor (ruthenium complex) and immobilized P450 (human CYP1A1) / Agarose gel layered in a microwell with fluorescent substrate (7-ER), caged G6P, and other necessary It was shown that an enzyme reaction can be started by enclosing a reaction solution containing a reagent and performing ultraviolet light irradiation (FIG. 24). As a microwell, many well structures with a width of 2 mm and a depth of 1.5 mm were prepared on a polymethyl methacrylate (PMMA) plate, and an oxygen sensor layer and an immobilized P450 (human CYP1A1) / agarose gel layer were laminated in it. (Figure 24 left).
  • Oxygen sensor ruthenium complex
  • immobilized P450 human CYP1A1A1 / Agarose gel layered in a microwell with fluorescent substrate (7-ER), caged G6P, and other necessary
  • the laminated substrate of immobilized cytochrome P450 and oxygen sensor according to the present invention can detect metabolic reactions of compounds by various P450 molecular species with high sensitivity and speed.
  • the technology for optically controlling the enzyme activity of P450 using the caged compound according to the present invention is to precisely measure the enzyme activity of P450 by measuring the initial rate of activity of cytochrome P450 enzyme enclosed in a number of minute spaces. In addition, it can be evaluated with high efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、基板上に酸素センサー層とチトクロムP450担持層を積層してなり、チトクロムP450が親水性ポリマー担体に担持されている、積層基板、ケージドNADPおよびケージドG6Pからなる群から選ばれる少なくとも1種のケージド化合物、NADPHを補酵素とする酵素(チトクロムP450還元酵素)ならびにその基質の共存下に光照射して、前記ケージド化合物からNADPおよび/またはG6Pを供給することによりNADPHを産生させ、該酵素と基質の反応を開始することを特徴とする、P450酵素活性の網羅的かつ、高効率・精密な測定方法。及び測定用キットに関する。

Description

多様なチトクロムP450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット
 本願は、2009年9月1日に出願された特願2009-201187と特願2009-201190の優先権を主張し、それら全体が参考により本明細書に援用される。
 本発明は、P450分子種の多様な化学物質に対する代謝活性を高効率で評価する技術に関し、詳しくは、固定化チトクロムP450担持層と酸素センサーを有する積層基板、およびその使用に関する。
 また、本発明は、チトクロムP450リダクターゼやチトクロムP450を含む、NADPH依存性酵素又は該依存性酵素により還元される酸化酵素の酵素活性を測定する方法及びキットに関し、詳しくは光照射によりNADPHを供給することで酵素反応の開始時間をコントロールし、酵素活性を正確に測定する方法及びキットに関する。
チトクロムP450は、農薬、医薬品などを含む種々の化合物の解毒的代謝や代謝的活性化などに関与しており、P450による代謝反応を明らかにすることは、生体外異物の毒性を評価する上で極めて重要である(非特許文献1)。近年、P450酵素による物質生産や医薬・農薬などの安全性評価の指標などへの応用が注目されている(非特許文献2)。特に医薬品の開発においては、化合物とP450酵素との相互作用による毒性の顕在化が新薬開発の大きな障害となっており、新薬候補物質に対するP450酵素代謝活性の検討は、開発初期段階における重要な指標とされている。また、遺伝子多型によるP450酵素活性の個人差により薬効、副作用などが異なっていることが近年分かってきており、遺伝子多型を含めた多様なP450分子種の化合物に対する代謝活性を高効率で検討する技術が、個別医療などにおいて必要とされている(非特許文献3)。
 チトクロムP450は、現在、ヒトでは57種の分子種が確認されている。これらの各分子種は、その酵素活性に個体差はあるものの、分子種毎にそれぞれ、種々の医薬品化合物、ベンゼンなどの有機溶剤、環境中の低分子発癌性物質などの代謝に関与することが報告されている(非特許文献4参照)。
 酸素濃度により蛍光強度が変化する蛍光色素(例:ルテニウム錯体)を用いた酸素センサーがバイオセンサーやバイオアッセイに用いられている。マルチウェルプレート底面に酸素センサー層を作製することで、細胞培養や酵素活性を並列で評価できる製品も市販され、水溶液中に懸濁したP450酵素の活性評価にも用いられている(非特許文献5~7)。
 一方、石英やシリコン高分子(PDMS)に微細加工技術で凹凸を作製し、微小な流路やウェルを形成してマイクロリアクターやバイオセンサーとして用いる研究開発が近年盛んに行われている(非特許文献8)。
 微小なマイクロウェルや流路を用いて酵素活性を測定する場合、微小空間における溶液の混合が一般的に難しく、酵素反応の開始時間をどのように制御するかが問題となる。この問題を解決できる手法として、光を用いた反応開始の制御技術がある。生理活性を持つ分子に光脱離性保護基を付加して活性を抑制し、光照射による脱保護によって生理活性を回復できるよう分子設計された分子は、ケージド化合物とよばれ、これまで生体分子の機能を解析するツールとして多用されてきた。ケージド化合物は、それ自身は不活性であり、光照射により保護基が脱離して活性化合物が遊離するものであり、NADP、G6Pについて、ケージド化合物が知られている(特許文献1、非特許文献9)。
US Patent 6,020,480
Chem Res Toxicol., 21, 70-83 (2008) K.R. Korzekwa, and J.P. Jones, Pharmacogenetics 1993, 3, 1-18 J. van der Weid, L.S. Steijns, Ann Clin Biochem. 1999,36, 722-9 Cancer Res., 47, 3378-3383(1987) S.M.Borisov and O.S. Wolfbeis, Chem.Rev. 2008, 108, 423-461 Z. Rosenzweig and R. Kopelman, Anal. Chem. 1996, 68, 1408-1413 X. Wu, M.M.F. Choi, D.Xiao, Analyst 2000, 125, 157-162 B.H. Weigl, R.L. Bardell, C. R. Cabrera, Adv. Drug Delivery Rev. 2003, 55, 349-377 R.R.Swezey, D.Epel, Exp. Cell Res. 1992, 201, 366-372
 本発明は、多様なP450分子種の基質分子に対する酵素活性を高効率で検出する技術を提供することを目的とする。特にヒトチトクロムP450に対する各種化学物質、特に医薬品や食品に対する薬物代謝酵素活性を、従来のアッセイ法よりも高効率・精密に測定することを目的とする。
 本発明は、P450分子種の多様な化学物質に対する代謝活性を網羅的かつ高効率で評価する技術である。そのため、酸素センサー層と固定化チトクロムP450を積層化し、微小流路、微小ウェルなどの微細構造と組み合わせることによって酵素活性測定を行う。また、チトクロムP450の酵素活性に必要な補酵素(NADPH)の供給を光で制御することにより、多数の微小ウェルに封入された基質溶液の反応を光照射で同時に開始する。これらの技術により、多種類のP450分子種の化学物質への代謝反応初期速度の同時測定を可能にし、P450代謝活性を従来のアッセイ法よりも高効率・精密に測定することを可能にする。
 本発明者は、図1に示すようにルテニウム錯体を含んだ均一なシリカ層(酸素センサー)と担持マトリックスに固定化されたチトクロムP450を積層化し、微細加工技術で作製した流路と組み合わせることで、多様なP450分子種の酵素反応アッセイを高効率で行うことが可能であるというアイデアを得た。
 さらに本発明は、チトクロムP450還元酵素またはチトクロムP450のいずれかの活性をNADPH再生系を用いたNADPHの供給により制御出来ることに着目し、NADPH再生系に必要なNADPおよび/またはG6Pに光脱離性保護基を付加することで、該酵素活性を光制御することが可能になることを明らかにした(図12、図13)。
 本発明は、以下の積層基板及びその使用、NADPH依存性酵素の酵素活性を測定する以下の方法及びキットを提供するものである。
項1. 基板上に酸素センサー層とチトクロムP450担持層が積層され、前記チトクロムP450担持層においてチトクロムP450が親水性ポリマー担体に担持されている、積層基板。
項2. 前記親水性ポリマーがアガロースゲルである項1に記載の積層基板。
項3. 酸素センサー層が、シリカマトリクス中にルテニウム錯体を含むものである、項1に記載の積層基板。
項4. 酸素センサー層とチトクロムP450担持層が微小孔(マイクロウェル)内にて積層されている、項1~3のいずれかに記載の積層基板。
項5. 前記チトクロムP450担持層の上に基質を導入する流路をさらに有する、項1~4のいずれかに記載の積層基板。
項6. 前記流路が微小流路である、項5に記載の積層基板。
項7. 酸素センサー層とチトクロムP450担持層が前記微小流路内に均一に積層された、項1~6のいずれかに記載の積層基板。
項8. 前記チトクロムP450担持層が各チトクロムP450を有する複数のチトクロムP450担持部を有し、基質に対する各チトクロムP450の代謝活性を分析可能である項1~7のいずれかに記載の積層基板。
項9. 項1~8のいずれかに記載の積層基板の、チトクロムP450による基質の酸化反応の程度を評価するための使用。
項10. 項8に記載の積層基板に基質を作用させ、複数のチトクロムP450と基質との代謝パターンに基づき化合物を同定する方法。
項11. ケージドNADPおよびケージドグルコース6リン酸(G6P)からなる群から選ばれる少なくとも1種のケージド化合物、NADPH依存性酵素、必要に応じてNADPH依存性酵素により還元される酸化酵素ならびにその基質の共存下に光照射して、前記ケージド化合物からNADPおよび/またはG6Pを供給することによりNADPHを産生させ、前記依存性酵素もしくは酸化酵素と基質の反応を開始することを特徴とする酵素活性測定方法。
項12. 前記ケージドNADPが下記式
Figure JPOXMLDOC01-appb-C000003
〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキシ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチル基を示す。〕で表される項11に記載の方法。
項13. 前記ケージドG6Pが下記式
Figure JPOXMLDOC01-appb-C000004
〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキシ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチル基を示す。〕で表される項11に記載の方法。
項14. NADPH依存性酵素がチトクロムP450還元酵素である、項11に記載の方法。
項15. ケージドNADPとケージドG6Pの両方をNADPH依存性酵素、及びその基質と共存させる、項11に記載の方法。
項16. NADPH依存性酵素がチトクロムP450還元酵素である、項15に記載の方法。
項17. ケージドNADPおよびケージドG6Pからなる群から選ばれる少なくとも1種のケージド化合物、NADPH依存性酵素、NADPH依存性酵素により還元される酸化酵素を含む、前記酸化酵素の基質化合物に対する酵素活性を測定するためのキット。
項18. ケージドNADPとケージドG6Pの両方を含む、項17に記載のキット。
項19. NADPH依存性酵素がチトクロムP450還元酵素である、項17もしくは18に記載のキット。
項20. 微小なウェル構造や流路を持ち、局所的もしくは全面光照射によって多種類のNADPH依存性酵素を同時に活性化し、並列で活性計測することが出来る、項17もしくは18に記載のキット。
項21. NADPH依存性酵素がチトクロムP450還元酵素である、項20に記載のキット。
 本発明の1つの実施形態によれば、チトクロムP450の基質となる可能性を有する化合物を含んだサンプル溶液を、P450を酸素センサー上に固定化した積層基板表面に導入することで、この基質がP450によりどの程度酸化されるかを迅速に評価することができる。P450を酸素センサー表面に固定化することで、酵素活性の検出感度が大幅に向上する。P450による酸化反応は常に酸素消費を伴うので、全てのP450分子種の活性を酸素センサーによって検出できる(蛍光基質のように分子種が限定されない)。固定化P450を用いることにより、化合物を含んだ溶液の交換が可能であり、複数の反応液を逐次的に循環供給できる。また、微小流路と組み合わせることにより、微量の反応液でアッセイでき、多検体同時計測も可能となる。複数のP450を固定化して基質を作用させることで、基質の同定も可能になる。
 本発明のもう1つの実施形態によれば、チトクロムP450の酵素活性に必要な補酵素(NADPH)の供給を光で制御することにより、多数の微小ウェルに封入された基質溶液の反応を光照射で同時に開始し、多種類のP450分子種の化学物質への代謝反応初期速度を同時に測定することが可能になる (図13)。微小なマイクロウェルや流路を用いて酵素活性を測定する場合、微小空間における溶液の混合が一般的に難しく、酵素反応の開始時間をどのように制御するかが問題となる。本発明によれば、光照射によりNADPおよび/またはG6Pを反応系内に供給してNADPHを生成し、NADPH依存性酵素の酵素反応開始を時空間的に制御するができる。例えば、チトクロムP450による反応開始時間を制御し、初期反応速度を決定することで、多様な化学物質に対するP450酵素の代謝能をより定量的に評価することが可能になる。また、酵素分子種、化合物、濃度などの異なる多数のサンプルに対して、光照射により同時に酵素反応を開始できるので、機械化によるハイスループット化を実現できる。ケージドNADPは内在性NADPのためにバックグランド反応が若干あるが、ケージドG6Pはバックグランド反応が小さい。また、ケージドNADPとケージドG6Pを併用することで、より強力な光制御が可能になる。
 以上の効果により、P450代謝活性を従来のアッセイ法よりも高効率・精密に測定することが可能となる。
本発明の積層基板、該積層基板と流路との組み合わせの例を示す。 ルテニウムをドープしたシリカゲル層の調製。TEOS:Octyl-triEOS=5:5付近で蛍光均一性が最も優れていることが明らかになった。 異なる担持マトリックスに封入したP450(ヒトCYP1A1)含有膜画分のクロルトルロン代謝に伴う酸素センサーの蛍光応答:(A) P450封入アガロースゲル、(B) P450封入Ludoxゲル、(C) P450封入シリカゲル。●データは、基質(0.5mMクロルトルロン)存在下での応答。■データは、基質のないNADPH溶液での応答。 (A) 異なる濃度のクロルトルロンに対する、P450(h-CYP1A1)封入アガロースゲルの蛍光応答経時変化(time course)。(B) 図4Aに示される蛍光強度増加の微分値(変位速度)。(C) 蛍光変位速度の最大値(Max.rate)とクロルトルロン濃度の間の相関曲線。 微小流路のデザイン例。100μmの流路(4チャンネル)の中にマイクロウェル(50μm)が等間隔で並んでいる。各ウェル内には、酸素センサーと酵素固定化ゲルが積層されている。 微小流路のデザイン例。幅100μmの流路の中にマイクロウェル(50μm)が等間隔で並んでいる。各ウェル内には、酸素センサーと酵素固定化ゲルが積層されている。 微小流路のデザイン例。幅100μmの流路中の一定部位に酸素センサーと酵素固定化ゲルが積層されている。溶液が流路内を進むに従って化学物質のP450による代謝が進行し、酸素センサーの蛍光強度が上昇(酸素センサー蛍光強度の空間分布により、反応の進行速度をアッセイできる)。 マイクロウェル内で酸素センサーに積層されたP450封入アガロースゲルの概略図。(1) Polymer cover; (2) Substrate solution (e.g. 7-EC, BP); (3) Agarose gel doped P450 microsome; (4) Oxygen-sensing layer ( Ru complex)。 CYP1A1の農薬(クロロトルロン)代謝による酸素センサーの応答比較:(■)アガロースゲルに封入されたP450(積層構造)、(●)溶液中に懸濁したP450。アガロースゲルへとP450を封入することにより、約10倍と検出感度が上昇した。 酸素センサー/固定化P450 の食品内成分および農薬(クロロトルロン)に対する蛍光応答((A) CYP1A1, (B) CYP2C8, (C) CYP2E1, (D) CYP3A4)、酸素センサー蛍光強度の経時変化、 酸素センサー/固定化P450 の食品内成分および農薬(クロロトルロン)に対する蛍光応答((1)CYP1A1, (2) CYP2C8, (3) CYP2D6, (4) CYP2E1, (5) CYP3A4)。各化合物に対するP450分子種活性に基づいた酸素センサー応答最大値(基質がない場合(NADPH)の測定値に対する比を縦軸とした)。蛍光応答のパターン化により化合物の同定に本センサーが利用できる可能性を示した。 酸素センサー/固定化P450を用いたカプサイシンに対する多様なP450分子種の活性評価: 基質のない溶液に対する応答(バックグランド酸素消費)で標準化。蛍光応答のパターン化により化合物の同定に本センサーが利用できる可能性を示した。各ピークは、左から順にCYP2C9, CYP1A2, CYP2D6, CYP3A4, CYP2B6, CYP2C19 1A, CYP2C19 1B, CYP2E1, CYP1A1, CYP2C8, CYP2W1, CYP4X1, CYP17A1, CYP27A1, CYP51A1, CYP2A6, CYP2A13, CYP1B1, CYP2C18, CYP2J2, CYP3A5, CYP2R1, pcW, CYP2B6であり、CYP3A5のピークが特に高い。 ケージド補酵素を用いた酵素活性制御の概念図。予め反応系に加えられたケージド補酵素(不活性)は光照射により活性な化合物に変換されるため、特定のタイミング、部位で「瞬時」に反応が開始する。ケージド補酵素のメリットとして、(i)機械部の簡略化、(ii)事前に酵素と基質を混合、(iii)初期の解析に優位の3つが挙げられる。 NADPH再生系のケージ化による酵素活性制御の概念図。 ケージドNADPに紫外光を照射することによる、チトクロムP450の活性化:ヒトCYP1A1の蛍光基質(7-エトキシレゾルフイン:7-ER)に対する酵素活性と紫外光照射時間との相関。(A)ケージドNADPのみに光照射、(B)P450に光照射(通常のNADPを使用)、(C)P450(h-CYP1A1)存在下でケージドNADPに光照射。 ケージドG6Pに紫外光を照射することによる、チトクロムP450(ヒトCYP1A1)の活性化:ヒトCYP1A1の蛍光基質(7-エトキシレゾルフイン:7-ER)に対する酵素活性と紫外光照射時間との相関。(A)ケージドG6Pのみに光照射、(B)P450に光照射(通常のG6Pを使用)、(C)P450存在下でケージドG6Pに光照射。 チトクロムP450(ヒトCYP1A1)存在下でケージドNADP/ケージドG6Pに紫外光を照射することによる、チトクロムP450の活性化:ヒトCYP1A1の蛍光基質(7-エトキシレゾルフイン:7-ER)に対する酵素活性と紫外光照射時間との相関。 チトクロムP450(ヒトCYP1A1)存在下において、ケージドNADP、ケージドG6Pを単体もしくは併用して紫外光を照射することによる、チトクロムP450の活性化:ヒトCYP1A1の蛍光基質(7-エトキシレゾルフイン:7-ER)に対する酵素活性と紫外光照射時間との相関。横軸はUV照射時間。■:ケージド-G6P(caged-G6P)の脱ケージ化(decaging)、●:ケージド-NADPの脱ケージ化、▲:ケージド-G6Pとケージド-NADPの脱ケージ化。活性は、通常のG6PとNADPにより標準化した。 局所的紫外光照射によるチトクロムP450(ヒトCYP1A1)酵素活性化:ヒトCYP1A1、7-ER、ケージドG6Pを含む反応液(NADPは天然のもの)をPDMSマイクロウェルに封入し、ひとつのマイクロウェルのみに紫外光照射を行った(光照射したマイクロウェルを矢印で示す)。光照射されたマイクロウェルのみでチトクロムP450が酵素活性を持ち7-ERの代謝による蛍光が観察された。(左)明視野顕微鏡観察像、(右)蛍光顕微鏡観察像。マイクロウェルのサイズは、幅100μm、深さ30μm。 局所的紫外光照射によるチトクロムP450(ヒトCYP1A1)酵素活性化:ヒトCYP1A1、7-ER、ケージドG6Pを含む反応液(NADPは天然のもの)をPDMSマイクロウェルに封入し、ひとつのマイクロウェルのみに紫外光照射を行った。(A)光照射されたマイクロウェル(■)および隣接するマイクロウェル(●)の蛍光強度経時変化、(B)光照射されたマイクロウェル蛍光顕微鏡観察像。(A)に示された時点での観察。マイクロウェルのサイズは、幅100μm、深さ30μm。 微小流路内に異なる濃度の基質を導入し、同時に紫外光照射を行いチトクロムP450(ヒトCYP1A1)酵素を活性化:ヒトCYP1A1、7-ER、ケージドG6Pを含む反応液(NADPは天然のもの)をPDMS微小流路に導入し、全流路に同時に紫外光照射を行った。全ての流路でチトクロムP450が酵素活性を獲得し、7-ERの濃度に応じて代謝による蛍光が観察された。 (a) 0.35μM, (b) 0.69μM, (c) 1.73μM, (d) 3.45μM。微小流路のサイズは、幅60μm、深さ30μm。 異なる基質濃度に対するP450酵素反応:ヒトCYP1A1の蛍光基質(7-ER)に対する代謝活性をマイクロウェルにおいて蛍光顕微鏡で測定。紫外光照射でケージドG6Pを脱保護して反応を開始すると基質濃度に応じた蛍光増加が見られた。マイクロウェルのサイズは、幅100μm、深さ30μm。 ヒトCYP1A1の蛍光基質(7-ER)に対する代謝活性:ミカエリスメンテンプロット(左)および速度論定数(右)を通常のG6PとケージドG6Pで比較。ケージドG6Pを用いたアッセイにおいて、通常のG6Pを用いたアッセイよりもKm, Vmaxのエラー値が小さくデータ精度の高い測定が可能になった。 蛍光基質(7-ER)と非蛍光基質(ベンゾピレン)の競合アッセイ:ベンゾピレン濃度を変化させて7-ERの反応初期速度への影響を調べることで、ベンゾピレンが7-ERに対して非競合阻害剤として作用していることが示された。実線:7ERのみ、破線:ベンゾピレン(0.1uM)、点線:ベンゾピレン(1uM)。 酸素センサーを用いた酵素活性検出。酵素反応は、酸素センサーと固定化P450(ヒトCYP1A1)/アガロースゲルを積層化したマイクロウェル(左図)に蛍光基質(7-ER)、ケージドG6P、その他必要な試薬を含む反応溶液を封入し、紫外光照射を行うことで酵素反応を開始できることが示された(右図)。(I)シールテープ;(II)封入された基質溶液;(III)プラスチック材料(PMMA);(IV)P450/ゲル);(V)酸素センサー。
 以下、本発明を積層基板関連発明とケージド化合物関連発明の2つに分けて説明する。
(I)第1発明(積層基板関連発明)
 本明細書において、P450は、哺乳動物、昆虫、植物などの膜結合型P450および微生物、細菌の可溶性P450などの総ての生物種のP450を使用できる。哺乳動物としては、ヒト、サル、ウシ、ウマ、ブタ、ヒツジ、マウス、ラット、ウサギ、イヌ、ネコが挙げられ、特にヒトのチトクロムP450が好ましい。ヒトのP450は現在57種が知られており、例えば以下のものが例示される:
CYP1A1、CYP1B1、CYP1A2、CYP2A6、CYP2B6、CYP2A13、CYP2B6、CYP2C8、CYP2C9、CYP2C18、CYP2C19(1A,1B)、CYP2D6、CYP2E1、CYP2J2、CYP2R1、CYP2W1、CYP3A4、CYP3A5、CYP3A7、CYP4X1、CYP17A1、CYP27A1、CYP51A1。本発明はP450を単独でもしくは2種以上を組み合わせて固定化することができる。膜結合型のP450の場合、電子供給のためのチトクロムP450還元酵素を同時に供給する必要がある。
 本発明の基板は、ガラス、プラスチック、金属、セラミクスなどの任意の素材の基板が使用できる。
 基板上には、酸素センサー層を形成することができる。
 酸素センサー層は、酸素センサーとマトリクスから構成される。酸素センサーとしては、ルテニウム錯体、白金錯体などが挙げられ、好ましくはルテニウム錯体、例えばRu(dpp)3Cl2が挙げられる。マトリクスとしては、シリカ、アルミナ、ジルコニア、チタニアなどのセラミクス、およびポリビニルアルコール(PVA)などの高分子材料が挙げられ、好ましくはシリカが挙げられる。
 ルテニウム錯体などの酸素センサーは、シリカ中にゾルゲル法で封入することができる。この場合、酸素センサー(ルテニウム錯体)を含むシリカ前駆体溶液をスピンコート法で基板上に塗布し、その後乾燥工程を経ることで作製することができる。
 ゾルゲル法は、酸素センサー層が均一な蛍光強度を持つよう、文献に報告されている手法を最適化した。中でもシリカゲル作製時におけるシリカ前駆体(TEOSおよびOclyI-lriEOS)の混合比が酸素センサー蛍光強度の均一性に重要な影響を持つことが分かった(図2)。TEOS:Oclyl-triEOSの混合比は、5:5が最も好ましいが、これ以外の比率でも蛍光の変化が検出できるものであればよく、どのようなシリカ前駆体を用いてもよい。
 次に、P450は、親水性ポリマーのマトリクスに担持するのが好ましい。親水性ポリマーとしては、ポリビニルアルコール(PVA)、ハイドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロースナトリウム(CMC-Na)、ハイドロキシエチルセルロース(HEC)などのセルロース誘導体、アルギン酸、ヒアルロン酸、アガロース、デンプン、デキストラン、プルランなどの多糖及びその誘導体、カルボキシビニルポリマー、ポリエチレンオキサイド、ポリ(メタ)アクリルアミド、ポリ(メタ)アクリル酸等のホモポリマー、或いはこれらと多糖などとの共重合体、混合物及び他のモノマーの共重合体、アルギン酸などのポリアニオンとポリ-L-リジンなどのポリカチオンとのポリイオンコンプレックス膜が挙げられ、好ましくはアガロースゲルが挙げられる。アガロースゲル中に担持されたP450(例えばヒトCYP1A1)は高い酵素活性を持ち、固定化酵素反応による酸素消費を酸素センサーで検出するのに望ましい(図3)。一方、シリカゲルに担持したP450は、バックグランド酸素消費量に対して.基質存在下においてもごくわずかな酸素消費量増加しか認められなかった。アガロースゲルに担持されたヒトCYP1A1では、モデル化合物(クロロトルロン:除草剤)濃度を変化させることによって、酸素消費量の変化を観測した(図4)。蛍光増加速度の最大値を基質濃度に対してプロットした結果、ミカエリス・メンテン速度論で近似的にフィットできる濃度依存性を示した。
 上記の酸素センサーおよび固定化P450は、シリコンエラストマー樹脂(Poly-dimethylsiloxane (PDMS))、光硬化性樹脂、石英ガラスなどからなる微細構造(微小ウェル、微小流路、あるいはそれらの組み合わせ)に組み込んだ形で使用することが出来る。望ましい形態としては、図5~図7に示される微小ウェル、流路デザインが挙げられる。
 以上の結果より、酸素センサー固定化P450を微小流路の組み合わせることで、図5~図7に示すよう多分子種、多検体のヒトP450の多様な化学物質に対する酵素活性を並列・迅速に計測することが可能であると考えられる。
本発明の特徴は、以下のものである。
(1)酸素センサーによって、遺伝子多型も含め全てのP450分子種の活性を検出できる(蛍光基質のように分子種が限定されない)
(2)固定化P450を用いることにより、化合物を含んだ溶液の交換が可能であり、複数の反応液を逐次的に循環供給できる
(3)微小流路と組み合わせることにより、微量の反応液でアッセイできる
(4)多検体同時計測が可能である
(II)第2発明(ケージド化合物関連発明)
本発明において、酵素活性を測定する対象となる酵素は、NADPH依存性酵素、或いはNADPH依存性酵素を含む一連の酸化還元反応に関与する任意の酸化還元酵素、例えばNADPH依存性酵素により還元される酵素、特に酸化酵素が挙げられる。このような酸化酵素としては、チトクロムP450が好ましく例示される。NADPH依存性酵素としては、チトクロムP450還元酵素が挙げられる。
生理活性を持つ分子に光脱離性保護基を付加して活性を抑制し、光照射による脱保護によって生理活性を回復できるよう分子設計された分子は、ケージド化合物とよばれ、これまで生体分子の機能を解析するツールとして多用されてきた。本発明者は、ケージド化合物の対象として、NADPHをNADPから産生するNADPH再生系に着目した。NADPH再生系はグルコース6リン酸(G6P)とグルコース6リン酸脱水素酵素を用いることでNADPからNADPHを産生するものである。従って、NADPもしくはG6Pに保護基を付加したケージドNADPとケージドG6Pを用いることで、P450酵素反応に必要なNADPH供給を光により制御することが出来る。
 なお、本発明では、ケージドNADPおよびケージドG6Pを用いてNADPH依存性酵素の活性を測定できるが、NADPH依存性酵素としては、チトクロムP450還元酵素、チオレドキシンレダクターゼ、グルタチオンレダクターゼ、潜在的抗癌剤の選択及び同定のためのNADPH-キノンレダクターゼ(NADPH QR)などが知られている。
 中でもチトクロムP450還元酵素は、チトクロムP450の活性に共役しており、同酵素の活性を制御することで、多様な医薬品、食品中の化学物質に対するP450の活性を評価することが可能になる。P450としては、CYP1A1、CYP1B1、CYP1A2、CYP2A6、CYP2B6、CYP2A13、CYP2B6、CYP2C8、CYP2C9、CYP2C18、CYP2C19(1A,1B)、CYP2D6、CYP2E1、CYP2J2、CYP2R1、CYP2W1、CYP3A4、CYP3A5、CYP3A7、CYP4X1、CYP17A1、CYP27A1、CYP51A1などが知られており、本発明によればこれらのP450酵素活性を正確に測定することができる。
本発明のケージド化合物は、NADPもしくはG6Pに下記式(I)または(IA)のケージド基:
Figure JPOXMLDOC01-appb-C000005
〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキシ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチル基を示す。Rは水素又はメトキシ基を示す。〕を導入する。ケージド基(Caged group)を導入する位置は、以下に示す。
Figure JPOXMLDOC01-appb-C000006
式(I)において、R1、R2、R3で表される低級アルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチルなどの炭素数1~4の直鎖又は分枝を有するアルキル基が挙げられる。
 低級アルコキシ基としては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシなどの炭素数1~4の直鎖又は分枝を有するアルコキシ基が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 好ましい式(I)の基は、R1、R2、R3は、いずれか2つが水素原子で、残りの1つが水素原子、低級アルキル基または低級アルコキシ基で、Rが水素原子で表される基である。
ケージド基は、紫外線照射により除去される。照射される紫外線としては、光感受性基を除去できる限り特に限定されず、通常の紫外線ランプ、例えばXe-Hgランプ(365nm)などが用いられる。紫外線照射の条件は特に限定されないが、例えばTLC検出用の紫外線ハンドランプ(トプコン製、PU-2)で1時間程度処理すればよい。
本発明のキットは、ケージドNADPおよびケージドG6Pからなる群から選ばれる少なくとも1種のケージド化合物、NADPH依存性酵素、必要に応じてさらにNADPH依存性酵素により還元される酸化酵素を含み、さらにNADPH依存性酵素の緩衝液、モデル基質などを含んでいてもよい。また、P450の活性評価に用いる場合には、P450還元酵素1種の他、少なくとも1種のP450を含んでいる。
P450の活性は、例えば以下のようなモデル基質を用いて測定することができる
Figure JPOXMLDOC01-appb-T000007
上記以外のP450あるいは、P450以外のNADPH依存性酵素においても、活性は各酵素のモデル基質を用いて精密に測定することができる。
 本発明のケージド化合物は、公知であるか、公知文献に記載の方法もしくは実施例に記載の方法、またはそれに準じた方法により容易に合成することができる。
 以下、本発明の好ましい実施形態を、図面を参照しながらより詳細に説明する。
製造例1A:ヒトP450酵素タンパク質の大腸菌内における安定発現とP450含有膜画分の調製および活性評価
1.ヒトP450発現
 P450発現用カセットプラスミド、pCWRm1A2Nに対し、ヒト主要P450遺伝子(CYP1A1など)およびヒトNADPH-P450還元酵素をタンデムに挿入したP450発現用カセットプラスミドを用いて大腸菌での発現を試みた。大腸菌の形質転換は、定法によりコンピテントDH5αを形質転換する事により行った。また、各プラスミドの大腸菌への導入確認は、LB培地に添加した抗生物質アンピシリンによる薬剤耐性能を評価することにより行った。抗生物質アンピシリンを含むLB寒天培地上の単一大腸菌コロニーを、2.5mlのTB液体培地へと植菌することにより組換え大腸菌の培養を開始した。前培養は、16時間、37℃の条件下で行った。次に、終濃度500μg/mlのアミノレブリン酸および終濃度50μg /mlのアンピシリンを含むLB培地中でOD値が0.3前後になるまで約3時間培養した。次に、37℃の培養後培養温度を28℃まで下げると同時に終濃度1mMのIPTGを添加し、引き続き24時間培養を行った。組換え大腸菌株は、遠心分離操作により大腸菌培養液から回収した。各P450酵素タンパク質の大腸菌内における発現量については、還元型CO差スペクトルを測定する事により評価した。還元型CO差スペクトルは、定法に従い還元条件下でCOを通気することにより測定した。P450のモル数は、佐藤・大村らの定数を用いて算出した(T. Omura, and R. Sato, J. Biol. Chem. 1964, 239, 2370-2378.)。
2.膜画分精製
 大腸菌膜画分(ミクロソーム)の精製は以下の方法により行った。200mlのTB培養液を3000gで10分間遠心して集菌した後、30秒ずつ計6回の超音波破砕処理を行い菌体を破砕した。次に、この菌体破砕液を10,000rpmで10分間遠心する事により大腸菌残渣を遠心分離した。遠心操作後に得られた上清を4℃、40,000rpm(100,000g)で超遠心分離操作を行い、P450酵素タンパク質を含む膜画分を回収した後にこの大腸菌膜画分を3mlのP450保存緩衝液(20%グリセロールを含む100mMリン酸カリウム緩衝液(pH7.5))に分散させた。
3.活性計測
 調製後の組換え大腸菌におけるヒトCYP1A1による薬物代謝活性については、高速液体クロマトグラフィー(HPLC)法により評価した。酵素基質としては、P450モデル蛍光基質である7-エトキシクマリンを用いた。酵素反応は、先に培養したP450酵素タンパク質を発現させた組換え大腸菌株に対して直接基質を添加する方法と、P450酵素タンパク質を発現させた組換え大腸菌株から超遠心法を用いて精製した大腸菌膜画分を用いる2種類の方法を検討した。P450による酸化反応は、P450発現大腸菌株を用いた際には終濃度0.1mMの各種酵素基質を添加した後に、50時間、28℃でインキュベーションする事により反応させた。一方、P450を発現させた大腸菌膜画分を用いた代謝実験の際には、補酵素として終濃度0.2mMのNADPHを反応液に添加した。HPLC解析は、HITACHI製D7000HPLCシステムにナカライテスク製のC18逆相カラム, COSMOCIL (5C18-AR)を用い、溶離液としてMeOH/H2O(0.85%リン酸含む)35対65から100対0への直線的グラジエント法を用いた。
実施例1A
1 材料
 テトラエチルオルトシリケート(TEOS), トリエトキシ(オクチル)シラン (オクチル-トリEOS), Ludox HS-40 コロイダルシリカ, アガロース(Type VII) 及び珪酸ナトリウム溶液をSIGMA-ALDRICHから購入した。 トリ(4,7-ジフェニル-1,10-フェナンスロリン) ルテニウムジクロリド(Ru(dpp)3Cl2), エタノール, メタノール及び濃塩酸は、和光純薬工業から入手した、リン酸ニ水素カリウム、β-ニコチンアミドアデニンジヌクレオチドリン酸四ナトリウム塩(NADPH)及びリン酸水素二カリウムは、ナカライテスクから購入した。クロルトルロンは、Riedel-de Haenから入手した。グルコース-6-リン酸(G6P)は東京化成工業(株)から購入した。グルコース-6-リン酸デヒドロゲナーゼ (G6PD)は東洋紡績株式会社から購入した。96マイクロウェルプレートはNUNCから購入した。18 MΩ.cm以上の抵抗率を有するミリQ水は、水溶液を調製するのに使用した。全ての化学薬品、溶媒は分析試薬グレードであり、さらに精製することなく使用した。
2 装置 
 全ての発光測定は、励起波長と発光波長が各々400 nmと620 nmであるソフトウェアAscent software version 2.4により制御されたマイクロプレートリーダーFluoroskan Ascent CF (Labsystem)で行った。アガロースゲルの透明性のため、測定にはプレート上部からの観察(トップモード)を使用した。
3 マイクロプレート上での酸素センサー層の調製
 ルテニウム錯体(Ru(dpp)3Cl2)をドープしたゾル溶液を文献(Anal. Chem. 75 (2003) 2407-2413.)に記載の方法を改良し、以下のように調製した。0.29 ml TEOSを0.612 ml オクチル-トリEOS, 0.625 mLエタノール及び0.2 mLの0.1 M HClと撹拌しながら室温で1時間混合した。次いで最終的に形成される酸素センサーフィルムの品質を改良するために、1.725 mLのエタノールを該溶液に加えてゾルを希釈した。溶液を1時間撹拌し続けた。Ru(dpp)3Cl2ドープしたゾルを調製するために、100 μLの2 mM Ru(dpp)3Cl2 のエタノール溶液を300 μL の上記ゾル溶液と混合した。これらの混合溶液にキャップをして30分間撹拌し、10 μLをマイクロプレートの各ウェルにピペットで加えた。マイクロプレートを暗所・室温で保存してゲル化させ、さらに6日間エージングした。酸素センサー表面の親水性を向上しハイドロゲルとの接着性を増大するために、ポリ (ビニルアセテート) (PVAC)を使用してマイクロアレイの表面を修飾した。
4 アガロースゲル、TEOSゲル及びLudoxゲルへのP450膜画分封入 
   アガロースを純水に溶解し、60℃で1.3%(w/w)溶液を調製した。この溶液を約38 ℃に冷却した。100 μL のP450 懸濁液を300 μLの1.3%アガロースゾルと混合し、次いで60 μLのP450/アガロースゾルをマイクロプレートの各ウェルの酸素センサー層表面にピペットで加えた。マイクロプレートを使用するまで冷蔵庫に4℃で保存した。酸素センサーマイクロアレイにおけるP450封入アガロースゲルの概略図を図8に示す。
 TEOS ゾルは、0.5 mL TEOS, 0.25 mL純水及び12.5 μLの0.1 M HClを混合し、3時間撹拌して均質ゾルを形成することにより調製した。該ゾルを純水で4倍希釈した。300 μLの希釈したTEOSゾルを100 μLのP450ミクロソーム懸濁液と混合し、60 μLの該ゾルをピペットでマイクロプレートの各ウェルの酸素センサー層表面に加えた。マイクロプレートはまた、冷蔵庫中に4 ℃で保存した。
 Ludoxゾルを文献(Anal. Chem. 77 (2005) 7080-7083及びJ. Mater. Chem. 13 (2003) 203-208)に記載のように調製した。具体的には、0.5 mLの8.5 M Ludox コロイダルシリカを0.5 mLの0.16 M 珪酸ナトリウム溶液と撹拌しながら混合した。4.0 M HClをpH値を約 7に中和するために使用した。次いで、100 μLのP450ミクロソーム懸濁液を300 μLの上記Ludoxシリカゾルと混合した。60 μLのP450ドープされたゾルをマイクロプレートの各ウェルに1滴ずつ加えた。マイクロプレートを使用するまで4℃の冷蔵庫で保存した。
5 固定化P450・酸素センサー積層基板による基質代謝活性の測定
 固定化P450・酸素センサー積層基板による基質代謝活性を測定するため、P450としてヒトCYP1A1を固定化し、基質としてクロルトルロン(除草剤)用いて、検討を行った。クロロトルロンの濃度を変えた標準基質溶液は、以下のように調製した。様々な濃度 (0.8, 4, 8, 20, 40 mM)の25 μLのクロルトルロン/エタノール溶液を、NADPH再生系(0.1 mM NADPH、3 mM MgCl2、3 mM G6P及び0.4 U/mL G6PD)を含む1975 μLの0.1 M KPB溶液に加えた。クロルトルロンの最終濃度は0.01, 0.05, 0.1, 0.25及び0.5 mMであった。固定化P450・酸素センサー積層基板を含有するマイクロプレートの各ウェルに、基質濃度の異なる各溶液250 μLを加えた。透明ポリマーテープを使用してプレートの各ウェルをシールし、酵素反応中に空気中の酸素が該溶液に混入するのを防止した。マイクロアレイへの基質溶液の添加後、蛍光測定のためにマイクロプレートをマイクロプレートリーダーのプラットフォーム上に速やかに置いた。蛍光強度は3時間、5分ごとに記録した。
結果
1 アガロースゲル, Ludoxシリカゲル及びTEOSシリカゲルに封入したP450によるクロルトルロン代謝応答
 P450を封入するマトリックスとして、アガロースゲル, Ludoxシリカゲル及びTEOSシリカゲルを用い、代謝活性の検討を行った。図3Aは、クロルトルロン溶液 (0.5 mM)およびクロロトルロンを含まない溶液(両者ともNADPH再生系を含有)がP450 封入アガロースゲルに導入された際の酸素センサー層の蛍光強度の計時変化を示す。基質を添加しない場合でも、わずかな蛍光強度の増加が示された(■)。これはP450酵素存在下のNADPH 酸化による副反応が寄与しているものと考えられる。基質 (0.5 mM クロルトルロン)の存在下では、蛍光強度が有意に増加し(●)、時間とともに定常状態に達することが観察された。蛍光の増大は、アガロースゲル中に封入されたP450ミクロソームが水溶液中と同様にP450酵素活性を維持し、クロルトルロンに代謝反応を通じた酸素消費を行うことを反映している。蛍光の変化は、溶液相系における遊離形態のP450の代謝反応において見られる類似の速度論的挙動を示す。これは、アガロースゲルの微細孔構造がNADPHと基質の早い拡散による供給を可能にするためであると考えられる。
 図3B及び3Cは、P450封入Ludoxシリカゲル及びTEOSシリカゲルを酸素センサーに積層した基板の基質(0.5 mM クロルトルロン)の存在下及び非存在下における蛍光応答を示す。Ludoxシリカゲルでは、P450封入アガロースゲルの結果と比較して、NADPHからのより高いバックグラウンドの酸素消費が図3B(■)で観察された。一方、基質を添加した場合においても、蛍光増加は顕著に増大しなかった。これは、P450代謝活性が無機材料であるLudoxシリカゲル内では抑制されている、基質の拡散が制限されている、などの原因が考えられる。TEOSシリカゲルに封入されたP450においては、基質不在下におけるバックグラウンド酸素消費は低いが、基質存在下においてもに明確な蛍光増加は起こらなかった(図3C)。これは、TEOS の加水分解により生じるエタノールがP450酵素活性を低下させるためであると考えられる。
 アガロースゲル中でのP450ミクロソームの安定性を評価するために、P450代謝マイクロアレイを10日間及び21日間維持し、クロルトルロン試験と同じ実験方法を用いてP450ミクロソームの活性を評価した。P450マイクロアレイは、3週間維持した後でさえも類似の触媒挙動を示す。このことは、P450 活性がアガロースゲル封入により長期間保存されることを意味する。 
2  異なる基質濃度に対するP450封入アガロースゲルの応答
    異なる濃度のクロルトルロン溶液をP450封入アガロースゲルに導入し、酸素センサーの蛍光応答を評価した。図4Aは、異なる濃度のクロルトルロン溶液存在下における蛍光強度の時間変化を示す。P450封入アガロースゲルは基質の濃度変化に敏感であり、異なる濃度では異なる蛍光強度変化を示した(図4A)。経時的な蛍光強度変化は、シグモイダル曲線にフィットすることが可能であり、0.99という高い相関係数を有することが分かった。これは微生物の生化学的酸素要求(BOD)バイオセンサーと類似する挙動であり、蛍光強度の微分値を用いたdynamic transient method (DTM) を使用してデータを解析することが可能である。図4Bは、図4Aに示される蛍光強度増加の微分値(変位速度)を示す。蛍光強度の変位速度は、基質がP450に代謝されることにより生じる酸素消費に対応して、最初の1時間増加を続ける。次に、酸素もしくは基質の消耗を反映して、変異速度が時間とともに減少する。図4Cは、蛍光変位速度の最大値を基質(クロルトルロン)濃度に対してプロットしたものである。エラーバーは、標準偏差を示す。また、赤い曲線は、データをミカエリス・メンテンの式でフィッティングしたものである。DTM法により得られる蛍光変位速度の最大値は、近似的ではあるがミカエリス・メンテンの速度モデルで評価できることが示された。
実施例2A:積層構造及び溶液中のP450酵素活性検出比較
P450としてCYP1A1を、基質としてクロロトルロンを各々使用し、実施例1Aと同様にして、CYP1A1をアガロースゲルに固定化した積層基板を作製し、CYP1A1の酵素活性を蛍光強度の変化により測定した。また、CYP1A1を溶液中に同一濃度(膜画分サンプルを15μL添加)懸濁し、クロロトルロンを0.2mMの濃度で存在させ、CYP1A1の酵素活性を蛍光強度の変化により測定した。結果を図9に示す。
実施例3A:異なる化合物に対するP450分子種の代謝活性
96ウェルマイクロプレートを用いて、酸素センサー表面に異なる分子種のヒトP450 ((A) CYP1A1, (B) CYP2C8, (C) CYP2E1, (D) CYP3A4)を固定化し、食品内成分(カプサイシン、サフロール、エストラゴール、7-クマリン、5-MOP、8-MOP)および農薬(クロロトルロン)に対する蛍光応答を求めた。結果を図10-1、図10-2に示す。図10-1は、酸素センサー蛍光強度の経時変化を示し、図10-2は各化合物に対する酸素センサー応答最大値を示す。図10-2の縦軸は、基質がある場合の応答を基質がない場合(NADPH)の応答(バックグランド酸素消費)で割って規格化した値である。各化合物に対して、異なる分子種が活性を示すことが分かる。この結果は、酸素センサーの蛍光応答を多種類の分子種に対して取得しパターン化することにより、化合物の同定に本センサーが利用できる可能性を示すものである。また、医薬品などの化合物に対するヒトP450の活性を並列で検出できる可能性も示している。
実施例4A:化合物に対する多様なP450分子種の代謝活性
96ウェルマイクロプレートを用いて、酸素センサー/固定化P450のカプサイシンに対する多様なヒトP450分子種の活性評価を行った。基質のある溶液と基質のない溶液に対する応答を比較し、各分子種の活性を標準化した。P450としては、CYP2C9、CYP1A2、CYP2D6、CYP3A4、CYP2B6、CYP2C19(1A,1B)、CYP2E1、CYP1A1、CYP2C8、CYP2W1、CYP4X1、CYP17A1、CYP27A1、CYP51A1、CYP2A6、CYP2A13、CYP1B1、CYP2C18、CYP2J2、CYP3A5、CYP2R1、CYP2B6を用いた。また、ヒトP450を含まないネガティブコントロールとして、大腸菌由来の膜画分(pCW)を用いた。結果を図11に示す。図11の縦軸は、基質がある場合の応答を基質がない場合の応答(バックグランド酸素消費)で割って規格化した値である。各化合物に対して、異なる分子種が活性を示すことが分かる。この結果は、酸素センサーの蛍光応答を多種類の分子種に対して取得しパターン化することにより、化合物の同定に本センサーが利用できる可能性を示すものである。また、医薬品などの化合物に対するヒトP450の活性を並列で検出できる可能性も示している。
製造例1B:ケージドNADPの合成
2-Nitrophenyl-acetophenone hydrazone(26.9mg 0.15mmol)をジクロロメタン (0.3ml)に溶かし、酸化マンガン(65.2mg、0.75mmol)を 加え、5分間攪拌した。その後、遠心し、上清をPTFEフィルター(ミリポア製、孔径0.75μm)でろ過し、NADP水溶液(77mg(0.1mmol) を0.3mlの水に溶かした溶液)を加え、2時間攪拌した。水層をジクロロメタンで2回洗浄した後、凍結乾燥し、116mgの白色粉末を得た。これをアセトニトリルとトリフルオロ酢酸を含む溶離液を用いたC-18逆相HPLCで精製し、凍結乾燥し、白色粉末の目的物(ケージド基が式I(R1、R2、R3=H、R=CH3)のケージドNADP)を得た。質量分析(ESI):計算値 892.4、観測値 893.1 for [M+H+]
製造例2B:ケージドG6Pの合成
2-Nitrophenyl-acetophenone hydrazone(1.26mmol、225mg)をジクロロメタン (1ml)に溶かし、酸化マンガン(369.9mg)を 加え、30分間攪拌した。その後、遠心し、上清をPTFEフィルター(ミリポア製、孔径0.75μm)でろ過し、グルコース6リン酸Na塩水溶液(87.3mg(0.31mmol) を1mlの水に溶かした溶液)を加え、1晩攪拌した。水層をジクロロメタンで2回洗浄した後、凍結乾燥し、116mgの白色粉末を得た。これをアセトニトリルと10mM炭酸水素アンモニウムを含む溶離液を用いたC-18逆相HPLCで精製し、凍結乾燥を2回行い、白色粉末の目的物(ケージド基が式I(R1、R2、R3=H、R=CH3)のケージドG6P)を得た(97.8mg、収率77%)。質量分析(ESI):計算値 409.07、観測値 432.3 for [M+Na+]
製造例3B:ケージドNADPの合成2
3,4-dimethoxy-2-Nitrophenyl-acetophenone hydrazoneを用い、製造例1Bと同様な操作により、白色粉末の目的物(ケージド基が式I(R1=4-methoxy、R2=5-methoxy、R3=H、R=CH3)であるケージドNADP)を得た。質量分析(ESI):m/z 計算値 953.15 for [M+]、観測値 953.2 for [M+]
製造例4B:ケージドG6Pの合成2
3,4-dimethoxy-2-Nitrophenyl-acetophenone hydrazoneを用い、製造例2Bと同様な操作により、白色粉末の目的物(ケージド基が式I(R1=4-methoxy、R2=5-methoxy、R3=H、R=CH3)であるケージドG6P)を得た。質量分析(ESI):m/z 計算値 469.099 for [M]、観測値 470.2 for [M+H+], 492.3 for [M+Na+], 508.1 for [M+K+], 482.3 for [2M+Na++H+]
参考実験1B:ケージドNADPの光分解
製造例1Bの凍結乾燥前のケージドNADPの水溶液25μlをエッペンドルフチューブにとり、紫外線ランプ(150W 水銀キセノンランプ、浜松ホトニクス製)の光を5分照射したところ、ケージドNADPに相当するm/e=893.1のピークが減少し、NADPに相当するm/e=744.1([M+H+])のピークの出現が観察された。このことから、ケージドNADPのケージド基を紫外光照射により脱保護し、NADPを与えることが確認された。
製造例5B:ヒトP450酵素およびP450還元酵素の大腸菌内安定発現と膜画分の調製
1.ヒトP450およびP450還元酵素の発現     
P450発現用カセットプラスミド、pCWRm1A2Nに対し、ヒト主要P450(CYP1A1)およびヒトNADPH-P450還元酵素をタンデムに挿入したP450発現用カセットプラスミドを用いて大腸菌での発現を試みた。大腸菌の形質転換は、定法によりコンピテントDH5αを形質転換する事により行った。また、各プラスミドの大腸菌への導入確認は、LB培地に添加した抗生物質アンピシリンによる薬剤耐性能を評価することにより行った。抗生物質アンピシリンを含むLB寒天培地上の単一大腸菌コロニーを、2.5mlのTB液体培地へと植菌することにより組換え大腸菌の培養を開始した。前培養は、16時間、37℃の条件下で行った。次に、終濃度500μg/mlのアミノレブリン酸および終濃度50μg /mlのアンピシリンを含むLB培地中でOD値が0.3前後になるまで約3時間培養した。次に、37℃の培養後培養温度を28℃まで下げると同時に終濃度1mMのIPTGを添加し、引き続き24時間培養を行った。組換え大腸菌株は、遠心分離操作により大腸菌培養液から回収した。各P450酵素タンパク質の大腸菌内における発現量については、還元型CO差スペクトルを測定する事により評価した。還元型CO差スペクトルは、定法に従い還元条件下でCOを通気することにより測定した。P450のモル数は、佐藤・大村らの定数を用いて算出した。
2.膜画分精製
大腸菌膜画分の精製は以下の方法により行った。200mlのTB培養液を3000gで10分間遠心して集菌した後、30秒ずつ計6回の超音波破砕処理を行い、菌体を破砕した。次に、この菌体破砕液を10,000rpmで10分間遠心する事により大腸菌残渣を遠心分離した。遠心操作後に得られた上清を4℃、40,000rpm(100,000g)で超遠心分離操作を行い、P450酵素タンパク質を含む膜画分を回収した後にこの大腸菌膜画分を3mlのP450保存緩衝液(20%グリセロールを含む100mMリン酸カリウム緩衝液(pH7.5))に分散させた。
試験例1B:活性計測
調製後の組換え大腸菌におけるヒトCYP1A1による薬物代謝活性については、高速液体クロマトグラフィー(HPLC)法により評価した。酵素基質としては、P450モデル蛍光基質である7-エトキシクマリン(7EC)を用いた。酵素反応は、先に培養したP450酵素タンパク質を発現させた組換え大腸菌株に対して直接基質を添加する方法と、P450酵素タンパク質を発現させた組換え大腸菌株から超遠心法を用いて精製した大腸菌膜画分を用いる2種類の方法を検討した。P450による酸化反応は、P450発現大腸菌株を用いた際には終濃度0.1mMの各種酵素基質を添加した後に、50時間、28℃でインキュベーションする事により反応させた。一方、P450を発現させた大腸菌膜画分を用いた代謝実験の際には、補酵素として終濃度0.2mMのNADPHを反応液に添加した。HPLC解析は、HITACHI製D7000HPLCシステムにナカライテスク製のC18逆相カラム, COSMOCIL (5C18-AR)を用い、溶離液としてMeOH/H2O(0.85%リン酸含む)35対65から100対0への直線的グラジエント法を用いた。
試験例2B ケージドNADPを用いたチトクロムP450の酵素活性計測
ケージドNADPを用いてチトクロムP450酵素活性を測定した。反応液は、1M カリウムリン酸緩衝液 50μL、40mM  7-エトキシレゾルフィン(7ER)6.25μL、50mM G6P30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mMケージドNADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。(ウシオスポットキュア:光強度14~15mW/cm2 (365nm))紫外光を異なる時間照射してケージドNADPをNADPに変換した後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7-ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した(日立F-4500)。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。また、光照射によるケージドNADPの脱保護およびチトクロムP450の失活の影響を個別に検討するため、以下の条件でも検討を行った。(A)ケージドNADPのみに紫外光を照射して反応液に加える。(B)P450を含む反応液に光照射を行い通常のNADPを加える。結果は、図14に示される。ケージドNADPのみに紫外光照射してP450活性アッセイに用いた場合(A)では、紫外光照射量とともに活性が上昇し、約8秒で一定値に達していることが分かった。一方、(B)に示されるように、紫外光照射によりP450酵素の活性が徐々に低下するという副作用が存在することも分かった。これは、P450が色素を持つヘムタンパク質であるためであると考えられる。従って、P450酵素存在下でケージドNADPに紫外光照射を行うと、紫外光照射時間に対するP450活性化の依存性は、ケージドNADP脱保護とP450の失活の両方の効果を足しあわせた挙動となることが分かった(C)。酵素活性化のために至適な照射時間は、約8秒であることが分かった。なお、ケージドNADPは、P450試料内に含まれる内在性NADPのために、保護された状態でも若干の反応がバックグランドとして進行することが確認された。
試験例3B:ケージドG6Pを用いたチトクロムP450の酵素活性計測
ケージドG6Pを用いてチトクロムP450酵素活性を測定した。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7-エトキシレゾルフィン(7ER)6.25μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。紫外光を異なる時間照射してケージドG6PをG6Pに変換した後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7-ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。また、光照射によるケージドG6Pの脱保護およびチトクロムP450の失活の影響を個別に検討するため、以下の条件でも検討を行った。(A)ケージドG6Pのみに紫外光を照射して反応液に加える。(B)P450を含む反応液に光照射を行い通常のG6Pを加える。結果は、図15に示される。ケージドG6Pのみに紫外光照射してP450活性アッセイに用いた場合(A)では、紫外光照射量とともに活性が上昇し、約4秒で一定値に達していることが分かった。一方、紫外光照射によりP450酵素の活性が徐々に低下するという副作用が存在することも分かった(B)。従って、P450酵素存在下でケージドG6Pに紫外光照射を行うと、紫外光照射時間に対するP450活性化の依存性は、ケージドG6P脱保護とP450の失活の両方の効果を足しあわせた挙動となることが分かった(C)。酵素活性化のために至適な照射時間は、約4秒であった。なお、ケージドNADPは、P450試料内に含まれる内在性NADPのために、保護された状態でも若干の反応がバックグランドとして進行するが、ケージドG6Pの場合は、保護された状態におけるバックグランド反応はほぼ無視できる。従って、単体で用いる場合には、ケージドG6Pの方がより精密な光制御を行えると言える。
試験例4B:ケージドNADPとケージドG6Pを併用したチトクロムP450の酵素活性計測
試験例2B-3Bの結果から、ケージドNADPとケージドG6Pはいずれも、比較的短時間の光照射によってP450酵素活性を制御できることが分かった。また、ケージドNADPは、P450試料内に含まれる内在性NADPのために、保護された状態でも若干の反応がバックグランドとして進行する。ケージドNADPとケージドG6Pを併用することでより強固なP450の活性抑制が可能になり、より精密な酵素活性計測が可能になるものと考えられる。
 ケージドNADPおよびケージドG6Pを同時に用いてチトクロムP450酵素活性を測定した。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7-エトキシレゾルフィン(7ER)6.25μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM ケージドNADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。紫外光を異なる時間照射してケージドNADPおよびケージドG6PをNADP、G6Pに変換した後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7-ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。結果は、図16に示される。ケージドNADPもしくはケージドG6Pを単体で使用した場合と較べて、より長い紫外光照射が必要であり、至適な照射時間は約15秒であった。一方、紫外光を照射しない条件(ケージドNADPとケージドG6Pを用いた反応)のP450酵素反応は、ケージドG6P単体を用いた場合よりもさらに小さく、より強固なP450の活性抑制が可能であることが分かった。図17にケージドNADPもしくはケージドG6Pを単体で使用した場合、および両者を併用した場合の結果のまとめを示す。P450活性は、通常のNADPとG6Pを用いた場合の活性を基準値として規格化した。ケージドG6Pを単体で使用した場合に最も短時間の紫外光照射で活性が極大となり、他の条件に較べて活性の最大値も大きいことが分かった。一方、両者を併用した場合には、活性化するために要する紫外光照射時間が長く、極大における活性が最も低かった。以上の結果から、2種類のケージド化合物の併用は、保護状態での強固な活性抑制というメリットはあるが、光による活性化という目的からは、ケージドG6Pを単体で用いるのが最も効果的であると考えられる。
試験例5B:マイクロウェルを使用したチトクロムP450の酵素活性計測
ケージド化合物を用いることにより、局所的紫外光照射で酵素活性を空間的に制御することが可能である。このことを示すために、幅100μm、深さ30μmのサイズを持つマイクロウェルをシリコンエラストマー(ポリジメチルシロキサン:PDMS)で作製し、その中にチトクロムP450酵素活性測定反応液を導入して、光学顕微鏡下で局所的に紫外光を照射することにより、光を照射したマイクロウェル内でのみP450酵素を活性化する実験を行った。反応液は、1M カリウムリン酸緩衝液 50μL、40mM 7-エトキシレゾルフィン(7ER)6.25μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。反応液をPDMSマイクロウェルの上に滴下し、スライドガラスをその上からかぶせることで、溶液を各ウェル内に封入した。蛍光顕微鏡(オリンパスBX51WI)によってマイクロウェル内の蛍光を5分間観察(励起:545-580nm、蛍光:610nm以上)した後、励起光フィルターの波長を330-385nmに切り替え8秒間照射することで、マイクロウェル内のケージドG6Pの脱保護を行った。紫外光照射領域は、ピンホールを用いてひとつのマイクロウェル内に限定した。その後励起光波長域を再度変更し10秒間観察を続けた。その結果、光照射されたマイクロウェルのみでチトクロムP450が酵素活性を持ち7ERの代謝による蛍光が観察された(図18)。明視野顕微鏡観察ではマイクロウェルが約100μmの間隔で並んでいるが、蛍光顕微鏡観察ではその中のひとつのマイクロウェルだけで7HRの蛍光が観察されることが分かる。図19は、紫外光照射前後のマイクロウェル内の蛍光強度をプロットしたものである。紫外光を照射したウェルでは照射後蛍光強度が顕著に増大しているが、約100μmの間隔で隣接している別のマイクロウェルにおいては蛍光強度の増大は観察されなかった。この実験より、ケージドG6Pを用いることでP450の活性を微小空間内で制御することが可能であることが分かった。
試験例6B:マイクロウェルを使用したチトクロムP450の酵素活性計測
ケージド化合物をマイクロアレイや微小流路と組み合わせることで、図12に示すように多分子種、多検体の酵素の代謝反応を同時に開始することが可能である。このことを示すために、幅60μm、深さ30μmの微小流路内に異なる濃度の基質(7ER)をチトクロムP450酵素(ヒトCYP1A1)、ケージドG6Pとともに導入し同時に紫外光照射を行うことで、チトクロムP450酵素を活性化する検討を行った。反応液は、1M カリウムリン酸緩衝液 50μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLに異なる濃度の7ERを混合した水溶液を用いた。ケージドG6Pを脱保護するため、ウシオスポットキュアを用いて流路チップ全域に紫外光照射を行った。その結果、全ての流路でチトクロムP450が酵素活性を持ち、7-ERの濃度に応じて代謝による蛍光が観察された(図20)。この結果より、P450分子種、化合物種、濃度の異なる溶液をマイクロアレイや微小流路で並列に配置して、酵素反応を光で同時に開始することが可能であることが示された。同期した反応初期過程の解析は、P450の多様な化合物に対する代謝活性をより定量的に評価することが出来るものと期待される。
 試験例7B:異なる基質濃度に対する応答(1)
 P450としてヒトCYP1A1を用い、7ERを基質として、異なる基質濃度(0μM、0.1μM、0.2μM、0.5μM、1.0μM、1.5μM)に対するP450酵素反応を求めた。具体的には、幅100μm、深さ30μmのマイクロウェルを多数持つPDMS基板とスライドガラスを貼り合わせることで、P450、基質、補酵素再生系(ケージドG6Pを含む)などを含んだ水溶液をマイクロウェルに封入した。蛍光顕微鏡観察下で紫外光照射によりケージドG6Pを脱保護すると、P450酵素活性に必要な補酵素(NADPH)が生成され、酵素反応が開始して基質濃度に応じた蛍光増加が見られた(図21)。
試験例8B:異なる基質濃度に対する応答(2)
 異なる基質(7-ER)濃度に対する代謝活性を測定した結果を、ミカエリスメンテンプロットにより解析し、酵素学的速度論定数(Km, Vmax)を決定した(図22)。ミカエリスメンテンプロット(左)および速度論定数(右)を通常のG6PとケージドG6Pで比較した。通常のG6Pを用いたアッセイでは、2mLのサンプルチューブを用いて検討を行った。一方、ケージドG6Pを用いたアッセイでは、2mLのサンプルチューブおよびPDMSマイクロウェルを用いた2通りのアッセイを行った。(ケージドG6Pを用いたアッセイではマイクロウェル内に酵素と基質を含む溶液を封入して任意のタイミングで反応を開始できるが、通常のG6Pを用いたアッセイでは溶液を混合してマイクロウェルに封入する過程において反応が既に開始してしまうため、アッセイを行うことが困難である。)ケージドG6Pを用いたアッセイにおいて、通常のG6Pを用いたアッセイよりもKm, Vmaxのエラー値が小さくデータ精度の高い測定が可能になった。本発明によれば各酵素のKm, Vmaxを非常に正確に測定することができる。また、マイクロウェルなどの微小空間における酵素反応も可能になるため、貴重な酵素、基質サンプルを節約することが出来る。
試験例9B:蛍光基質を用いた競合アッセイ
蛍光基質(7-ER)と非蛍光基質(ベンゾピレン)の競合アッセイを、ケージドG6Pを用いて行った。反応液は、1M カリウムリン酸緩衝液 50μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合した水溶液を用いた。7-ER濃度は、0.1μMから1.5μMの間で変化させた。一方、ベンゾピレンの濃度は、0.1μMと1μMを用いた。紫外光照射後、30分間インキュベーションしてP450酵素反応を行った。その後、30% トリクロロ酢酸を25μL添加し、酵素反応を停止した。反応液にクロロホルムを500μL添加し、1分間撹拌することで、反応で生成した7-ハイドロキシクマリン(7HR)をクロロホルムに抽出した。1分間遠心分離後、下層のクロロホルム層を250μL回収し、0.01M NaOH/ 0.1M NaClを500μL添加して1分間撹拌することで、7HRを水溶液に再抽出した。1分間遠心分離後、上層をキュベットに移し取り、蛍光スペクトルを以下の条件で測定した。励起波長:366nm、蛍光波長:380nm-600nm。蛍光極大値を用いて、7HRを定量した。結果を図23に示す。図23より蛍光基質を用いた競合アッセイが可能であることが示された。ベンゾピレン濃度を変化させて7-ERの反応初期速度への影響を調べることで、ベンゾピレンが7-ERに対して非競合阻害剤として作用していることがわかる。
試験例10B:酸素センサーを用いた酵素活性検出
 酸素センサー(ルテニウム錯体)と固定化P450(ヒトCYP1A1)/アガロースゲルを積層化したマイクロウェルに蛍光基質(7-ER)、ケージドG6P、その他必要な試薬を含む反応溶液を封入し、紫外光照射を行うことで、酵素反応を開始できることが示された(図24)。マイクロウェルとしては、ポリメチルメタクリレート(PMMA)板に幅2mm、深さ1.5mmのウェル構造を多数作製し、その中に酸素センサー層、固定化P450(ヒトCYP1A1)/アガロースゲル層を積層化した(図24左)。その上に基質(カプサイシン0.2mM)を含んだ水溶液(1M カリウムリン酸緩衝液 50μL、5mM ケージドG6P 30μL、69.3U/mL グルコース6リン酸還元酵素2.89μL、100mM 塩化マグネシウム15μL、5mM NADP水溶液1μL P450膜画分(ヒトCYP1A1)10.25μL、0.1M ジチオトレイトール5μL、超純水379.61μLを混合)を加え、マイクロプレート用シールテープで溶液を封入した(図24左)。蛍光顕微鏡を用い酸素センサー層の蛍光を観察しつつ、顕微鏡光源を用いてケージドG6Pの光脱保護を行ったところ、P450酵素活性による酸素消費を蛍光強度増強として観察することが出来た(図24右)。
 本発明による固定化チトクロムP450と酸素センサーの積層基板は、多様なP450分子種による化合物の代謝反応を高感度、迅速に検出することができる。一方、本発明によるケージド化合物を用いてP450の酵素活性を光制御する技術は、多数の微小な空間に封入されたチトクロムP450酵素の活性初期速度を計測することで、P450の酵素活性を精密、かつ高効率で評価することが出来る。これらの技術を用いれば、ある化合物がどのP450によってどの程度の速度で代謝されるかを網羅的、高効率、正確に予測することができるので、P450酸化反応を用いた生物変換システム、創薬のための化合物変換能の評価システム、創薬における化合物の生物内代謝予測システム、食品検査、ヒト遺伝子多系を再現した医薬品および食品成分の安全性評価などに応用することができる。また、P450酵素活性の網羅的検出は、検査診断、バイオアナリシス(生体試料中の薬物濃度分析)、食品衛生検査用の培地・試薬の分野においても有用である。
 

Claims (21)

  1. 基板上に酸素センサー層とチトクロムP450担持層が積層され、前記チトクロムP450担持層においてチトクロムP450が親水性ポリマー担体に担持されている、積層基板。
  2. 前記親水性ポリマーがアガロースゲルである請求項1に記載の積層基板。
  3. 酸素センサー層が、シリカマトリクス中にルテニウム錯体を含むものである、請求項1に記載の積層基板。
  4. 酸素センサー層とチトクロムP450担持層が微小孔(マイクロウェル)内にて積層されている、請求項1~3のいずれかに記載の積層基板。
  5. 前記チトクロムP450担持層の上に基質を導入する流路をさらに有する、請求項1~4のいずれかに記載の積層基板。
  6. 前記流路が微小流路である、請求項5に記載の積層基板。
  7. 酸素センサー層とチトクロムP450担持層が前記微小流路内に均一に積層された、請求項1~6のいずれかに記載の積層基板。
  8. 前記チトクロムP450担持層が各チトクロムP450を有する複数のチトクロムP450担持部を有し、基質に対する各チトクロムP450の代謝活性を分析可能である請求項1~7のいずれかに記載の積層基板。
  9. 請求項1~8のいずれかに記載の積層基板の、チトクロムP450による基質の酸化反応の程度を評価するための使用。
  10. 請求項8に記載の積層基板に基質を作用させ、複数のチトクロムP450と基質との代謝パターンに基づき化合物を同定する方法。
  11. ケージドNADPおよびケージドグルコース6リン酸(G6P)からなる群から選ばれる少なくとも1種のケージド化合物、NADPH依存性酵素、必要に応じてNADPH依存性酵素により還元される酸化酵素ならびにその基質の共存下に光照射して、前記ケージド化合物からNADPおよび/またはG6Pを供給することによりNADPHを産生させ、前記依存性酵素もしくは酸化酵素と基質の反応を開始することを特徴とする酵素活性測定方法。
  12. 前記ケージドNADPが下記式
    Figure JPOXMLDOC01-appb-C000001
    〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキシ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチル基を示す。〕で表される請求項11に記載の方法。
  13. 前記ケージドG6Pが下記式
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R1、R2、R3は、同一又は異なって水素原子、低級アルキル基、低級アルコキシ基、アミノ基、ハロゲン原子、水酸基またはシアノ基を示すか、あるいはR1、R2及びR3のいずれか2つが一緒になってメチレンジオキシ基を示す。Rは、水素原子又はメチル基を示す。〕で表される請求項11に記載の方法。
  14. NADPH依存性酵素がチトクロムP450還元酵素である、請求項11に記載の方法。
  15. ケージドNADPとケージドG6Pの両方をNADPH依存性酵素、及びその基質と共存させる、請求項11に記載の方法。
  16. NADPH依存性酵素がチトクロムP450還元酵素である、請求項15に記載の方法。
  17. ケージドNADPおよびケージドG6Pからなる群から選ばれる少なくとも1種のケージド化合物、NADPH依存性酵素、NADPH依存性酵素により還元される酸化酵素を含む、前記酸化酵素の基質化合物に対する酵素活性を測定するためのキット。
  18. ケージドNADPとケージドG6Pの両方を含む、請求項17に記載のキット。
  19. NADPH依存性酵素がチトクロムP450還元酵素である、請求項17もしくは18に記載のキット。
  20. 微小なウェル構造や流路を持ち、局所的もしくは全面光照射によって多種類のNADPH依存性酵素を同時に活性化し、並列で活性計測することが出来る、請求項17もしくは18に記載のキット。
  21. NADPH依存性酵素がチトクロムP450還元酵素である、請求項20に記載のキット。
PCT/JP2010/064567 2009-09-01 2010-08-27 多様なチトクロムp450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット WO2011027718A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/393,706 US20120288885A1 (en) 2009-09-01 2010-08-27 Method and kit for measuring enzymatic activities of various cytochrome p450 molecule species comprehensively and with high efficiency
JP2011529888A JP5713318B2 (ja) 2009-09-01 2010-08-27 多様なチトクロムp450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009201190 2009-09-01
JP2009201187 2009-09-01
JP2009-201190 2009-09-01
JP2009-201187 2009-09-01

Publications (1)

Publication Number Publication Date
WO2011027718A1 true WO2011027718A1 (ja) 2011-03-10

Family

ID=43649256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064567 WO2011027718A1 (ja) 2009-09-01 2010-08-27 多様なチトクロムp450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット

Country Status (3)

Country Link
US (1) US20120288885A1 (ja)
JP (1) JP5713318B2 (ja)
WO (1) WO2011027718A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158307A (ja) * 2012-02-06 2013-08-19 National Institute Of Advanced Industrial Science & Technology シトクロムp450酵素代謝活性パターンによる化合物の毒性予測法
KR101570698B1 (ko) 2013-12-02 2015-11-23 한국과학기술원 에오신 와이를 이용한 시토크롬 p450의 활성방법
JP2016125946A (ja) * 2015-01-06 2016-07-11 国立大学法人神戸大学 ナノギャップ構造型基板
WO2018135271A1 (ja) * 2017-01-23 2018-07-26 公益財団法人川崎市産業振興財団 酵素反応の測定方法、スクリーニング方法及び測定装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385657B1 (ko) * 2017-11-23 2022-04-14 한국전자통신연구원 진단 장치 및 그를 이용한 분석 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020480A (en) * 1997-11-20 2000-02-01 The Regents Of The University Of California Caged NADP and NAD
JP2006517397A (ja) * 2002-09-16 2006-07-27 センス プロテオミック リミテッド タンパク質アレイ、及びその使用方法
WO2006101963A1 (en) * 2005-03-16 2006-09-28 University Of Florida Research Foundation, Inc. Hydrogen sensor using enzyme-catalyzed reaction
US20070072256A1 (en) * 1998-12-14 2007-03-29 Invitrogen Corporation Optical molecular sensors for cytochrome p450 activity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493805B2 (en) * 2001-06-01 2016-11-15 Colorado State University Research Foundation Enzymatic biosensors with enhanced activity retention for detection of organic compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020480A (en) * 1997-11-20 2000-02-01 The Regents Of The University Of California Caged NADP and NAD
US20070072256A1 (en) * 1998-12-14 2007-03-29 Invitrogen Corporation Optical molecular sensors for cytochrome p450 activity
JP2006517397A (ja) * 2002-09-16 2006-07-27 センス プロテオミック リミテッド タンパク質アレイ、及びその使用方法
WO2006101963A1 (en) * 2005-03-16 2006-09-28 University Of Florida Research Foundation, Inc. Hydrogen sensor using enzyme-catalyzed reaction

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HARA M. ET AL: "A novel ISFET-type biosensor based on P450 monooxygenases", BIOSENSORS & BIOELECTRONICS, vol. 17, 2002, pages 173 - 179 *
KAZUYUKI MIZUTANI ET AL: "Caged Kagobutsu o Mochiita P450 Koso Kassei no Hikari Seigyo, 4T15p-13", 82ND THE JAPANESE BIOCHEMICAL SOCIETY TAIKAI KOEN YOSHISHU, 25 September 2009 (2009-09-25) *
KRISHNAN S. ET AL: "Synergistic metabolic toxicity screening using microsome/DNA electrochemiluminescent arrays and nanoreactors", ANAL. CHEM., vol. 80, 2008, pages 5279 - 5285 *
MASAYASU SUZUKI ET AL: "Integration of Optical Chemical- and Biosensor Array by Microcontact Double Printing", CHEMICAL SENSORS, vol. 25, no. SUPP.A, 29 March 2009 (2009-03-29), pages 64 - 66 *
SWEZEY R.R. ET AL: "The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs", EXP. CELL RES., vol. 201, 1992, pages 366 - 372 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158307A (ja) * 2012-02-06 2013-08-19 National Institute Of Advanced Industrial Science & Technology シトクロムp450酵素代謝活性パターンによる化合物の毒性予測法
KR101570698B1 (ko) 2013-12-02 2015-11-23 한국과학기술원 에오신 와이를 이용한 시토크롬 p450의 활성방법
JP2016125946A (ja) * 2015-01-06 2016-07-11 国立大学法人神戸大学 ナノギャップ構造型基板
WO2018135271A1 (ja) * 2017-01-23 2018-07-26 公益財団法人川崎市産業振興財団 酵素反応の測定方法、スクリーニング方法及び測定装置

Also Published As

Publication number Publication date
US20120288885A1 (en) 2012-11-15
JP5713318B2 (ja) 2015-05-07
JPWO2011027718A1 (ja) 2013-02-04

Similar Documents

Publication Publication Date Title
JP4365216B2 (ja) 生体触媒ゾルゲルマイクロアレイ
Wang et al. Microarray-based detection of protein binding and functionality by gold nanoparticle probes
Marquette et al. Electro-chemiluminescent biosensing
Soto et al. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles
Chen et al. Recent advances in electrochemiluminescent enzyme biosensors
Goddard et al. Recent advances in enzyme assays
Chen et al. Why does enzyme not leach from metal–organic frameworks (MOFs)? Unveiling the interactions between an enzyme molecule and a MOF
Rogers Recent advances in biosensor techniques for environmental monitoring
Ferguson et al. High-density fiber-optic DNA random microsphere array
Sun et al. A highly sensitive chemiluminescent probe for detecting nitroreductase and imaging in living animals
Castelino et al. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces
Monk et al. Optical fiber-based biosensors
JP5713318B2 (ja) 多様なチトクロムp450分子種の酵素活性を網羅的かつ高効率で測定する方法及びキット
Mallin et al. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology
US20080176241A1 (en) Mitigation of photodamage in analytical reactions
Sun et al. Microarray-based kinase inhibition assay by gold nanoparticle probes
JP2012070756A (ja) 平板導波管を用いる酵素活性の定量
US8530178B2 (en) Hydrolase detection system with caged substrates
Jusková et al. Real-time respiration changes as a viability indicator for rapid antibiotic susceptibility testing in a microfluidic chamber array
Delehanty et al. Transfected cell microarrays for the expression of membrane-displayed single-chain antibodies
Chang et al. Vertically integrated human P450 and oxygen sensing film for the assays of P450 metabolic activities
Lu et al. Dual-Signal Imaging Mode Based on Fluorescence and Electrochemiluminescence for Ultrasensitive Visualization of SARS-CoV-2 Spike Protein
Fesenko et al. Biosensing and monitoring of cell populations using the hydrogel bacterial microchip
Liu et al. 2D strategy for the construction of an enzyme-activated NIR fluorophore suitable for the visual sensing and profiling of homologous nitroreductases from various bacterial species
Bhadoria et al. Recent advances of biosensors in biomedical sciences

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813667

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011529888

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13393706

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10813667

Country of ref document: EP

Kind code of ref document: A1