WO2011027519A1 - Electric air blower and electric cleaner utilizing same - Google Patents

Electric air blower and electric cleaner utilizing same Download PDF

Info

Publication number
WO2011027519A1
WO2011027519A1 PCT/JP2010/005257 JP2010005257W WO2011027519A1 WO 2011027519 A1 WO2011027519 A1 WO 2011027519A1 JP 2010005257 W JP2010005257 W JP 2010005257W WO 2011027519 A1 WO2011027519 A1 WO 2011027519A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric blower
stator
impeller
guide vanes
blower according
Prior art date
Application number
PCT/JP2010/005257
Other languages
French (fr)
Japanese (ja)
Inventor
誠 村上
博之 香山
一繁 中村
健一 渡邉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011027519A1 publication Critical patent/WO2011027519A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/165Axial entry and discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes

Definitions

  • the present invention relates to an electric blower and a vacuum cleaner using the same.
  • FIG. 12 is a cross-sectional view of a conventional electric blower for a vacuum cleaner described in Patent Document 1.
  • the electric blower 35 of Patent Document 1 includes an impeller 29, an air guide 30, an electric motor 32, and a hub 33, and is configured such that an airflow that flows out of the impeller 29 passes through an outer frame 34 of the electric motor 32.
  • the impeller 29 has a mixed flow type blade 28.
  • the air guide 30 is disposed on the downstream side of the impeller 29.
  • an impeller 29 is fixed to the shaft end of the rotating shaft 31.
  • the hub 33 is provided at the shaft end of the rotating shaft 31.
  • FIG. 13 is a cross-sectional view of another conventional electric blower described in Patent Document 2.
  • the electric blower 50 of Patent Document 2 includes a motor including a rotor 37, a stator 38, a bearing 39, and a frame 40, and includes an impeller 42, an air guide 43, and a fan case 45.
  • the rotor 37 has a rotation shaft 36.
  • the stator 38 has a winding.
  • the bearing 39 supports the rotating shaft 36.
  • the frame 40 includes a stator 38 and holds a bearing 39.
  • the impeller 42 has a plurality of blades 41 and is fixed to the rotary shaft 36.
  • the air guide 43 is disposed on the outer periphery of the impeller 42.
  • the fan case 45 has a suction port 44 in the front center portion and includes an impeller 42 and an air guide 43 and is fixed to the frame 40.
  • the air flow path 47 is formed between the flame
  • produced in the impeller 42 is guide
  • a driving semiconductor element 48 is installed outside the outer cylinder 46, and a cooling fin 49 is provided inside the outer cylinder 46, the other end abutting against the frame 40, and the airflow matches the longitudinal direction. ing.
  • the cross-sectional area of the independent passage surrounded by the cooling fin 49, the outer cylinder 46, and the frame 40 is formed such that the frame 40 or the outer cylinder 46 that gradually expands in the downstream direction is inclined.
  • FIG. 14 is a cross-sectional view of still another conventional electric blower described in Patent Document 3.
  • the electric blower 54 of Patent Document 3 includes an electric motor 51, a fan 52, and a rectifying plate 53.
  • the electric blower 54 further includes a switching element 55, the rectifying plate 53 is formed of a material having high heat conductivity, and the switching element 55 is fixed to the rectifying plate 53 in close contact.
  • the fan 52 is rotationally driven by the electric motor 51.
  • the rectifying plate 53 rectifies the airflow from the fan 52 and has a diffuser action.
  • the switching element 55 controls the rotation speed of the electric blower 54.
  • the air guide 30 and the electric motor 32 are configured separately. Therefore, the heat generated inside the electric motor 32 is not sufficiently conducted to the stationary blades of the air guide 30. As a result, the inside of the electric motor 32 has a problem that it is not sufficiently cooled.
  • the rectifying plate 53 is used as a heat radiating plate of the switching element 55 by a material having high thermal conductivity.
  • a cooling means such as flowing cooling air inside the electric motor 51 is required separately. As a result, there is a problem that the size of the electric blower 54 is increased.
  • the present invention relates to a rotor having a rotating shaft, a stator disposed on the outer periphery of the rotor, a motor configured to hold a bearing of the rotating shaft and cover the stator, an impeller fixed to the rotating shaft, and an outer peripheral surface of the stator And a fan case that covers the impeller and is fixed to the motor case.
  • the stator is formed by molding a core and a winding with resin.
  • a plurality of guide vanes that are configured and project from the mold portion and extend into the air passage and the stator are integrally formed, and the plurality of guide vanes are electric blowers that form a plurality of air passages in the air passage.
  • the impeller is rotationally driven by the motor, the motor itself can reduce heat generation, enable high-speed rotation by driving with large electric power, and realize a small and high-performance electric blower.
  • FIG. 1 is a partial cross-sectional view of the electric blower according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial cross-sectional perspective view of the electric blower.
  • FIG. 3 is a partial cross-sectional perspective view of the impeller of the electric blower.
  • FIG. 4 is a partial cross-sectional perspective view of the brushless motor of the electric blower.
  • FIG. 5 is a partial cross-sectional perspective view of a stator of the electric blower.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a vacuum cleaner using the electric blower.
  • FIG. 7 is a partial cross-sectional perspective view of the electric blower.
  • FIG. 8 is a partial cross-sectional view of the electric blower according to Embodiment 2 of the present invention.
  • FIG. 9 is a partial sectional perspective view of the electric blower.
  • FIG. 10 is a partial cross-sectional perspective view of the brushless motor of the electric blower.
  • FIG. 11 is a partial cross-sectional perspective view of a stator of the electric blower.
  • FIG. 12 is a cross-sectional view of a conventional electric blower.
  • FIG. 13 is a cross-sectional view of another conventional electric blower.
  • FIG. 14 is a cross-sectional view of still another conventional electric blower.
  • FIG. 1 is a partial cross-sectional view of the electric blower according to Embodiment 1 of the present invention
  • FIG. 2 is a partial cross-sectional perspective view of the electric blower
  • FIG. 3 is a partial cross-sectional perspective view of the impeller of the electric blower
  • FIG. 5 is a partial sectional perspective view of a brushless motor of the electric blower
  • FIG. 5 is a partial sectional perspective view of a stator of the electric blower.
  • the electric blower 1a includes a brushless motor 7a, an impeller 8, a motor case 10a, and a fan case 11.
  • the brushless motor 7a includes a rotor 3 having a rotating shaft 2, a stator 4a disposed on the outer periphery of the rotor 3, and a frame 6 that holds the bearing 5 of the rotating shaft 2 and covers the stator 4a.
  • the impeller 8 is fixed to the rotating shaft 2.
  • the impeller 8 has six mixed flow type blades 8 a formed by a three-dimensional curved surface fixed to the rotary shaft 2.
  • the motor case 10a is disposed with a space serving as the air passage 9 between the outer periphery of the stator 4a.
  • the fan case 11 covers the impeller 8 and is fixed to the upstream side of the air passage 9, that is, the motor case 10 a.
  • the stator 4a is comprised by the mold part 13a which shape-molded the core 12a and the coil
  • the upstream side of the air passage 9 means the impeller 8 side, and the downstream side of the air passage 9 means the bearing 5 side.
  • the stator 4a is formed with a plurality of guide vanes 14a extending from the mold portion 13a and extending into the air passage 9.
  • the plurality of guide vanes 14a are arranged on the outer periphery of the stator 4a so that the longitudinal direction is inclined from the axial direction and becomes spiral.
  • a plurality of independent passages 15 a are formed in the air passage 9 by the guide blades 14 a coming into contact with the inner wall of the motor case 10 a. That is, the plurality of guide vanes 14 a form a plurality of air passages (independent passages 15 a) in the air passage 9.
  • the heat radiation area of the guide vanes 14a is expanded and the cooling effect of the brushless motor 7a of FIG. 1 is improved.
  • the airflow from the impeller 8 is smoothly guided and the dynamic pressure of the airflow can be converted into static pressure in the air passage 9, a small and high-performance electric blower can be realized.
  • the plurality of guide vanes 14 a from the upstream side to the downstream side of the air passage 9 have a spiral shape with the rotary shaft 2 as the center.
  • the motor case 10a has a conical shape that expands at a predetermined angle from the upstream side to the downstream side of the air passage 9. Accordingly, the sectional area of the independent passage 15a is continuously increased. As a result, the air passage 9 between the outer peripheral surface of the stator 4a and the motor case 10a can be continuously increased.
  • the cross-sectional area of the air passage 9 can be easily adjusted according to the outer shape of the motor case 10a, and at the same time, the heat radiation area of the guide vanes 14a can be adjusted, so that the cooling configuration necessary for the brushless motor 7a can be easily realized. .
  • the resin of the mold part 13a is filled with a filler in polyphenylene sulfide (PPS) to improve thermal conductivity.
  • PPS polyphenylene sulfide
  • stator 4a is manufactured by injection molding of resin.
  • the core 12a and the outer peripheral surface of the mold part 13a have substantially the same surface.
  • the frame 6 covering the front and rear surfaces of the mold part 13a holds the stator 4a on the outer peripheral surface of the stator 4a via three columns 6a.
  • the inlet tip of the impeller 8 and the suction port 11a of the fan case 11 are sealed via a ring 16 made of PTFE (Polytetrafluoroethylene) resin in a state where the impeller 8 is rotatable.
  • PTFE Polytetrafluoroethylene
  • FIG. 1 a rotating magnetic field is generated by exciting the windings of the stator 4a, the rotor 3 rotates in synchronization with the rotating magnetic field, and the impeller 8 fixed to the rotating shaft 2 rotates.
  • the centrifugal force generated by the rotation of the impeller 8 pushes the air in the impeller 8 to the outer periphery in the impeller 8 and to the rear.
  • the inside of the impeller 8 becomes negative pressure, and the airflow A flowing into the impeller 8 from the front of the suction port 11a of the fan case 11 is generated.
  • the airflow A flows in the axial direction of the rotary shaft 2 from the inlet tip of the impeller 8, flows along the six diagonal flow blades 8a, and then at an intermediate angle between the axial direction and the radial direction of the rotary shaft 2. It flows out of the impeller 8.
  • the airflow flowing out from the impeller 8 flows into the plurality of independent passages 15a formed in the guide blades 14a, flows along the outer peripheral surface of the stator 4a through the independent passages 15a, and flows out to the outer periphery of the electric blower 1a. Since the cross-sectional area of the independent passage 15a gradually increases from the upstream side to the downstream side of the air flow A, the dynamic pressure is converted into static pressure while the air flow A is decelerated.
  • the blowing performance of the electric blower 1a is expressed by the ratio between the electric power input to drive the electric blower 1a and the work amount (the product of the degree of vacuum generated by the rotation of the impeller 8 and the flow rate) performed by the electric blower 1a. . For this reason, increasing the degree of vacuum (static pressure) generated by the electric blower 1a at the actual flow rate is important for improving the blowing performance of the electric blower 1a.
  • the outer diameter can be made smaller than that of the centrifugal impeller 8.
  • the air passage on the diffuser side can be configured as a linear air passage with little pressure loss, and it is not necessary to provide a curved portion in the air passage, so that an air passage with little pressure loss can be formed.
  • this type of brushless motor 7a does not need to supply power by mechanically contacting the commutator and the armature unlike an AC commutator motor, it generates less heat than an AC commutator motor.
  • Heat generation of the stator 4a occurs in both the winding and the core 12a, and Joule heat generated by current flowing through the winding is transmitted to the plurality of integrally formed guide vanes 14a by heat conduction through the mold portion 13a.
  • an eddy current is generated due to a change in the magnetic flux density of the core 12a due to a change in the magnetic field and a change in the magnetic flux passing through the core 12a, and the core 12a also generates heat.
  • the airflow generated in the impeller 8 flows along the outer peripheral surfaces of the plurality of guide vanes 14a and the stator 4a, heat is transferred from the guide vanes 14a and the outer peripheral surface of the stator 4a to the airflow.
  • the heat generated in the stator 4a is transported outside the electric blower 1a, and the stator 4a is efficiently cooled.
  • the guide vane 14a has both a function of a diffuser that performs pressure recovery and a function as a heat radiating fin.
  • the guide vanes 14a are formed in a spiral shape around the rotating shaft 2 on the outer periphery of the stator 4a. Therefore, even in the limited length of the air passage 9, it is possible to increase the length of the independent passage 15a and expand the heat radiation area. Further, by integrally molding the mold portion 13a constituting the stator 4a and the guide blade 14a, the heat generated from the stator 4a is efficiently radiated, and the cooling effect of the electric blower 1a is greatly improved. Furthermore, since the independent passage 15a that can be used as a diffuser also becomes longer, the air blowing performance can be improved, and the sound insulation effect can be improved against noise propagating through the air passage 9, thereby realizing a small and low-noise electric blower 1a.
  • the rotational noise of the electric blower 1a which is a problem as annoying noise, is caused by harmonics including a frequency determined by the product of the number of blades of the impeller 8 and the rotational speed, and harmonics of the frequency.
  • the harmonic is a noise in a high frequency range in the audible frequency range, and has straightness when the noise propagates. Therefore, the spiral guide vane 14a also functions as a sound insulation wall.
  • FIG. 6 is a cross-sectional view showing the configuration of the electric vacuum cleaner using the electric blower of Embodiment 1 of the present invention. If the sound absorbing materials 25a and 25b in which the frequency range for absorbing sound is matched with the frequency range of rotational noise are arranged in the cleaner body 22, the noise reduction effect can be further enhanced.
  • the Joule heat generated in the windings can easily conduct heat to the plurality of guide blades 14a in the mold part 13a having improved thermal conductivity, and can be efficiently cooled by the airflow generated in the impeller 8.
  • the resin of the mold part 13a is filled with a highly heat conductive powder or a filler such as a fiber, the heat conductivity is improved.
  • nylon or liquid crystal polymer (LCP: Liquid Crystal Polymer) or the like may be filled in polyphenylene sulfide resin (PPS) as a filler.
  • the conductive filler metal powder, graphite, carbon black or the like can be used, and as the insulating filler, a sintered ceramic such as aluminum nitride, boron nitride or alumina can be used. Depending on the necessity of insulation of each part, you may use a filler properly. In the present embodiment, since the mold part 13a around the windings needs to be insulated, an insulating filler is used and the guide blades 14a are integrally molded.
  • the electric vacuum cleaner 17 includes a vacuum cleaner body 22, a dust bag 23, an electric blower 1a, a soundproof cover 24, and sound absorbing materials 25a and 25b.
  • the vacuum cleaner main body 22 has a dust collection chamber 19 communicating with the main body intake port 18 and a blower chamber 21 provided with a main body exhaust port 20.
  • the dust bag 23 is attached to the dust collection chamber 19 with the main body inlet 18.
  • the electric blower 1 a is installed in the blower chamber 21.
  • the soundproof cover 24 covers the electric blower 1a and is made of flame retardant resin.
  • the sound absorbing materials 25 a and 25 b are arranged above and below the blower chamber 21.
  • a hose and an extension pipe are sequentially connected to the main body inlet 18, and a nozzle for sucking dust on the floor surface is attached to the tip of the extension pipe.
  • the dust collection chamber 19 is in a negative pressure state, and an air flow including dust sucked from a nozzle (not shown) passes through the main body intake port 18 to collect the dust. It flows into the chamber 19.
  • the clean airflow obtained by filtering and separating dust in the dust bag 23 flows into the impeller 8 of the electric blower 1a and passes through the air guide formed in the plurality of guide blades 14a. Thereafter, a clean airflow obtained by separating and filtering out dust flows out from the main body exhaust port 20 of the soundproof cover and is released to the outside of the cleaner main body 22.
  • the electric blower 1a mounted on the vacuum cleaner 17 has good heat dissipation as described above, and reduces the heat generation of the brushless motor 7a itself by rotationally driving the impeller 8 by the brushless motor 7a. As a result, the brushless motor 7a can be rotated at a high speed by being driven with large electric power. Moreover, the vacuum cleaner 17 has a strong suction force, and has a small size and a high blowing performance.
  • the vacuum cleaner 17 is good at sucking dust with a strong suction force by mounting a small electric blower 1a having high blowing performance. Since the small electric blower 1a is light in weight, the vacuum cleaner 17 is easy to use because of its small turning.
  • the space in which the sound absorbing materials 25a and 25b can be arranged can be expanded.
  • the sound absorbing effect can be expanded and the operation sound of the vacuum cleaner 17 can be reduced.
  • the sound absorbing materials 25a and 25b in which the sound absorption frequency range is matched with the frequency range of the rotational noise are arranged in the cleaner body 22, the noise reduction effect can be further enhanced.
  • the resonance-type noise reduction structure that exhibits a significant noise reduction effect for the sound of a specific frequency is used in combination with the sound absorbing materials 25a and 25b, so that the noise reduction effect against rotational noise can be greatly improved.
  • the stator 4a and the core 12a and the windings are molded with a resin having high thermal conductivity.
  • the stator 4a is formed with a plurality of spiral guide vanes 14a extending from the mold portion 13a to the air passage 9 by integral molding.
  • a plurality of guide vanes 14a are arranged on the outer periphery of the stator 4a so that the longitudinal direction thereof is the axial direction of the rotary shaft 2, and the guide vanes 14a are brought into contact with the inner wall of the motor case 10a so that a plurality of independent passages are formed in the air passage 9. 15a is formed.
  • the airflow generated from the impeller 8 is smoothly guided to the independent passage 15a.
  • the heat generated in the winding and the core 12a is conducted to the plurality of guide vanes 14a. Therefore, the heat can be transferred from the guide blade 14a and the outer peripheral surface of the stator 4a to the air flow and released to the outside of the electric blower 1a, and the brushless motor 7a is efficiently cooled.
  • the plurality of independent passages 15a formed in the air passage 9 also has a diffuser action, it is possible to recover the static pressure of the airflow.
  • the guide blade 14a functions as a sound insulation wall with respect to the rotational noise which generate
  • the case where the independent passage 15a is formed by bringing the plurality of guide blades 14a into contact with the inner wall of the motor case 10a has been described.
  • the case where the outer diameter of the motor case 10a is expanded from the upstream side to the downstream side of the air passage 9 by a predetermined angle and the sectional area of the independent passage 15a is gradually increased has been described.
  • the torsion pitch in the axial direction of the rotating shaft 2 of the guide blade 14a having a spiral shape may be gradually increased toward the downstream side to increase the cross-sectional area of the independent passage 15a.
  • the fan case 11 is fixed to the motor case 10a to describe the outer case of the electric blower 1a.
  • FIG. 7 which is a partial cross-sectional perspective view of the electric blower according to Embodiment 1 of the present invention, an outer case 26 in which a fan case and a motor case are integrally molded is used, and the outer periphery of the brushless motor 7a is surrounded by an outer case.
  • the case 26 may cover the case.
  • FIG. 8 is a partial sectional view of the electric blower according to Embodiment 2 of the present invention
  • FIG. 9 is a partial sectional perspective view of the electric blower
  • FIG. 10 is a partial sectional perspective view of a brushless motor of the electric blower
  • FIG. FIG. 2 is a partial cross-sectional perspective view of a stator of the electric blower.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the electric blower 1b includes a stator 4b, a motor case 10b, and an air passage 9, and integrally forms a plurality of guide vanes 14b and a mold portion 13b.
  • the plurality of guide vanes 14 b are arranged on the outer periphery of the stator 4 b so that the longitudinal direction is inclined with respect to the axial direction of the rotating shaft 2.
  • the plurality of guide vanes 14b abut on the inner wall of the motor case 10b to form a plurality of independent passages 15b in the air passage 9.
  • the stator 4b is configured by a molded portion 13b in which a core 12b and a winding are molded with resin.
  • the motor case 10 b has substantially the same diameter from the upstream side to the downstream side of the air passage 9.
  • the air passage 9 is between the outer peripheral surface of the stator 4b and the motor case 10b.
  • the plurality of guide blades 14b protrude from the mold part 13b, extend to the ventilation path 9, and have a plate shape.
  • the thickness of the guide vane 14b decreases continuously from the upstream side to the downstream side of the air passage 9.
  • the cross-sectional area of the independent passage 15b can be continuously increased without changing the outer shape of the motor case 10b. Therefore, it is possible to easily configure a small diffuser that also serves to cool the brushless motor 7b.
  • the guide vanes 14b are configured such that the cross-sectional area of the independent passage 15b is gradually increased by shortening the length of every other guide vane 14b arranged on the outer periphery of the stator 4b.
  • the frame 27 that holds the front and rear surfaces of the mold part 13b forms substantially the same surface as the stator 4b, and holds the stator 4b via the four support columns 27a.
  • FIG. 8 a rotating magnetic field is generated by exciting the winding, the rotor 3 rotates in synchronization with the rotating magnetic field, and the impeller 8 fixed to the rotating shaft 2 rotates. Due to the centrifugal force generated by the rotation of the impeller 8, the air in the impeller 8 is pushed to the outer periphery of the impeller 8 and rearward, and the inside of the impeller 8 becomes negative pressure, and an air flow A flowing into the impeller 8 from the front is generated. To do.
  • the airflow A flows in the axial direction of the rotary shaft 2 from the inlet of the impeller 8, flows along the six diagonal flow blades, and then from the impeller 8 at an intermediate angle between the axial direction and the radial direction of the rotary shaft 2. leak.
  • the airflow that has flowed out of the impeller 8 flows into a plurality of independent passages 15b formed by the guide vanes 14b, flows along the outer peripheral surface of the stator 4b through the independent passages 15b, and flows out of the electric blower 1b. Since the cross-sectional area of the independent passage 15b increases from the upstream side to the downstream side of the airflow A, the dynamic pressure is converted into static pressure while the airflow is decelerated.
  • Heat generation of the stator 4b occurs in both the winding and the core 12b.
  • the airflow generated by the impeller 8 flows along the outer peripheral surfaces of the plurality of guide vanes 14b and the stator 4b, heat is transferred from the outer surfaces of the guide vanes 14b and the stator 4b to the airflow.
  • the heat generated in the stator 4b is transported to the outside of the electric blower 1b, and the stator 4b is efficiently cooled. That is, since the guide vane 14b functions as a diffuser that performs pressure recovery and a function as a heat radiating fin, it is possible to reduce the size of the electric blower 1b.
  • the guide blade 14b since the guide blade 14b has a plate shape, it is easier to mold compared to the guide blade 14b having a curved surface like a spiral. Therefore, the number of blades that can be removed from the mold during injection molding can be increased. Moreover, since the guide blade 14b is plate-shaped, the heat radiation area of the guide blade 14b that functions as a heat radiation fin can be expanded. In addition, the cost can be reduced by simplifying the structure of the mold. In addition, since the core 12b only has a plurality of straight grooves, the core 12b can be manufactured by laminating the pressed electromagnetic steel sheets, and it is not necessary to have a complicated divided structure, and it is easy to manufacture.
  • the thickness of the guide blades 14b and the number of blades are the cross-sectional area required for the diffuser and the rate of change of the cross-sectional area for the plurality of independent passages 15b formed in the air passage 9, and the heat radiation area required for cooling the stator 4b. It is necessary to determine the optimum value experimentally.
  • the airflow generated from the impeller 8 is smoothly guided to the independent passage 15b. Further, the heat generated in the winding and the core 12b is conducted to the plurality of guide blades 14b, and the heat is transmitted from the outer surfaces of the guide blades 14b and the stator 4b to the air current, and can be released to the outside of the electric blower 1b. As a result, the brushless motor 7b can be efficiently cooled, and the guide blades 14b are plate-shaped, so that the mold configuration can be simplified, and the cooling performance can be improved by increasing the number of blades.
  • the electric blower of the present invention improves heat dissipation from the stator, enables driving with large electric power, and obtains a small and high blowing performance. Applicable to vacuum cleaners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Disclosed is an electric air blower comprised of a motor, an impeller, a motor case, and a fan case, wherein a stator is comprised of a molded portion obtained by molding a core and a coiled wire using a resin; a plurality of guide vanes which are projected from the molded portion and which extend into an air passage, and the stator are integrally molded; and the plurality of guide vanes form a plurality of airways in the air passage.

Description

電動送風機およびそれを用いた電気掃除機Electric blower and electric vacuum cleaner using the same
 本発明は、電動送風機およびそれを用いた電気掃除機に関する。 The present invention relates to an electric blower and a vacuum cleaner using the same.
 従来、モータの冷却を小型かつ低圧力損失とした電動送風機は、家庭用の電気掃除機に多く利用されている(例えば、特許文献1~3参照)。電気掃除機の入力電力は限られ、より強い吸引力を得るためには電動送風機の送風性能を向上する必要がある。同時に、掃除のしやすさの視点から掃除機本体の小回りが良いことが望まれ、電動送風機を小型化する必要がある。 Conventionally, electric blowers that have a small motor cooling and low pressure loss are widely used in household vacuum cleaners (see, for example, Patent Documents 1 to 3). The input power of the vacuum cleaner is limited, and it is necessary to improve the blowing performance of the electric blower in order to obtain a stronger suction force. At the same time, from the viewpoint of ease of cleaning, it is desirable that the vacuum cleaner body is small, and it is necessary to reduce the size of the electric blower.
 図12は、特許文献1に記載された電気掃除機用の従来の電動送風機の断面図である。特許文献1の電動送風機35は、インペラ29と、エアガイド30と、電動機32と、ハブ33とを備え、インペラ29から流出した気流が電動機32のフレーム外部34を通過するように構成されている。ここでインペラ29は、斜流型ブレード28を有している。エアガイド30は、インペラ29の下流側に配置されている。電動機32は、回転軸31の軸端にインペラ29が固着されている。ハブ33は、回転軸31の軸端に設けられている。 FIG. 12 is a cross-sectional view of a conventional electric blower for a vacuum cleaner described in Patent Document 1. The electric blower 35 of Patent Document 1 includes an impeller 29, an air guide 30, an electric motor 32, and a hub 33, and is configured such that an airflow that flows out of the impeller 29 passes through an outer frame 34 of the electric motor 32. . Here, the impeller 29 has a mixed flow type blade 28. The air guide 30 is disposed on the downstream side of the impeller 29. In the motor 32, an impeller 29 is fixed to the shaft end of the rotating shaft 31. The hub 33 is provided at the shaft end of the rotating shaft 31.
 図13は、特許文献2に記載された従来の他の電動送風機の断面図である。特許文献2の電動送風機50は、回転子37と、固定子38と、軸受39と、フレーム40とにより構成されたモータを備えるとともに、インペラ42と、エアガイド43と、ファンケース45とを備えている。ここで回転子37は、回転軸36を有している。固定子38は、巻線を有している。軸受39は、回転軸36を支持する。フレーム40は、固定子38を内包し軸受39を保持している。インペラ42は、複数枚のブレード41を有し回転軸36に固定されている。エアガイド43は、インペラ42の外周に配置されている。ファンケース45は、前方中央部に吸引口44を有しインペラ42、およびエアガイド43を内包してフレーム40に固定されている。 FIG. 13 is a cross-sectional view of another conventional electric blower described in Patent Document 2. The electric blower 50 of Patent Document 2 includes a motor including a rotor 37, a stator 38, a bearing 39, and a frame 40, and includes an impeller 42, an air guide 43, and a fan case 45. ing. Here, the rotor 37 has a rotation shaft 36. The stator 38 has a winding. The bearing 39 supports the rotating shaft 36. The frame 40 includes a stator 38 and holds a bearing 39. The impeller 42 has a plurality of blades 41 and is fixed to the rotary shaft 36. The air guide 43 is disposed on the outer periphery of the impeller 42. The fan case 45 has a suction port 44 in the front center portion and includes an impeller 42 and an air guide 43 and is fixed to the frame 40.
 そして特許文献2では、フレーム40と、その外側に設けた外筒46との間に通気路47を形成し、インペラ42において発生した空気流を、エアガイド43に導いてフレーム40外周に沿って流すようにしている。また特許文献2では、外筒46の外側に駆動用半導体素子48を設置し、外筒46の内部には他端がフレーム40に当接し、気流と長手方向とが一致する冷却フィン49を設けている。そして冷却フィン49と外筒46、およびフレーム40によって囲まれた独立通路の断面積が、下流方向に徐々に拡大するフレーム40、又は外筒46が傾斜して形成されている。 And in patent document 2, the air flow path 47 is formed between the flame | frame 40 and the outer cylinder 46 provided in the outer side, The air flow which generate | occur | produced in the impeller 42 is guide | induced to the air guide 43 along the outer periphery of the flame | frame 40. I try to make it flow. Further, in Patent Document 2, a driving semiconductor element 48 is installed outside the outer cylinder 46, and a cooling fin 49 is provided inside the outer cylinder 46, the other end abutting against the frame 40, and the airflow matches the longitudinal direction. ing. The cross-sectional area of the independent passage surrounded by the cooling fin 49, the outer cylinder 46, and the frame 40 is formed such that the frame 40 or the outer cylinder 46 that gradually expands in the downstream direction is inclined.
 図14は、特許文献3に記載された従来のさらに他の電動送風機の断面図である。特許文献3の電動送風機54は、電動機51と、ファン52と、整流板53とを備える。また電動送風機54は、さらにスイッチング素子55を備え、整流板53を熱伝導性の高い材料によって形成し、整流板53にスイッチング素子55が密着して固定されている。ファン52は、電動機51により回転駆動される。整流板53は、ファン52からの気流を整流するとともに、ディフューザ作用を有する。スイッチング素子55は、電動送風機54の回転数を制御する。 FIG. 14 is a cross-sectional view of still another conventional electric blower described in Patent Document 3. The electric blower 54 of Patent Document 3 includes an electric motor 51, a fan 52, and a rectifying plate 53. The electric blower 54 further includes a switching element 55, the rectifying plate 53 is formed of a material having high heat conductivity, and the switching element 55 is fixed to the rectifying plate 53 in close contact. The fan 52 is rotationally driven by the electric motor 51. The rectifying plate 53 rectifies the airflow from the fan 52 and has a diffuser action. The switching element 55 controls the rotation speed of the electric blower 54.
 しかしながら、特許文献1の電動送風機35の構成では、エアガイド30と電動機32とが別体にて構成されている。そのため、電動機32内部において発生した熱は、エアガイド30の静翼に十分に伝導されない。その結果、電動機32内部は十分に冷却されないという課題を有していた。 However, in the configuration of the electric blower 35 of Patent Document 1, the air guide 30 and the electric motor 32 are configured separately. Therefore, the heat generated inside the electric motor 32 is not sufficiently conducted to the stationary blades of the air guide 30. As a result, the inside of the electric motor 32 has a problem that it is not sufficiently cooled.
 また、特許文献2の電動送風機50の構成では、インペラ42において発生した空気流が冷却フィン49の熱を奪うことによって、駆動用半導体素子48を冷却している。しかし、電動機のフレーム40の一部と、冷却フィン49の一部とが部分的に当接するだけなので、熱的な接触抵抗が大きい。電動機内部において発生した熱は、冷却フィン49に伝導しにくいことから、特許文献1と同様に電動機内部を十分に冷却できないという課題を有していた。 Further, in the configuration of the electric blower 50 of Patent Document 2, the air flow generated in the impeller 42 takes the heat of the cooling fins 49 to cool the driving semiconductor element 48. However, since a part of the frame 40 of the motor and a part of the cooling fin 49 are only partially in contact with each other, the thermal contact resistance is large. Since the heat generated inside the electric motor is difficult to conduct to the cooling fins 49, there is a problem that the inside of the electric motor cannot be sufficiently cooled as in Patent Document 1.
 さらに、特許文献3の電動送風機54の構成では、熱伝導性の高い材料により整流板53をスイッチング素子55の放熱板として利用している。しかし、電動機51の冷却については記述がなく、電動機51内部に冷却風を流す等の冷却手段が別途必要であり、結果として電動送風機54のサイズが大きくなってしまうという課題を有していた。 Furthermore, in the configuration of the electric blower 54 of Patent Document 3, the rectifying plate 53 is used as a heat radiating plate of the switching element 55 by a material having high thermal conductivity. However, there is no description about the cooling of the electric motor 51, and a cooling means such as flowing cooling air inside the electric motor 51 is required separately. As a result, there is a problem that the size of the electric blower 54 is increased.
特開2005-307985号公報(図11)Japanese Patent Laying-Open No. 2005-307985 (FIG. 11) 特開平11-336696号公報(図4)Japanese Patent Laid-Open No. 11-336696 (FIG. 4) 特開昭63-97130号公報(第2図)JP 63-97130 A (Fig. 2)
 本発明は回転軸を有するロータ、ロータの外周に配置されたステータ、および回転軸の軸受を保持しステータを覆うフレームから構成されるモータと、回転軸に固定されたインペラと、ステータの外周面との間に通気路となる空間を設けて配置したモータケースと、インペラを覆ってモータケースに固定されるファンケースとを備え、ステータはコアと巻線とを樹脂によってモールド成型したモールド部により構成され、モールド部より突出して通気路内に延設する複数の案内翼とステータとを一体成型し、複数の案内翼は通気路内において複数の風路を形成している電動送風機である。 The present invention relates to a rotor having a rotating shaft, a stator disposed on the outer periphery of the rotor, a motor configured to hold a bearing of the rotating shaft and cover the stator, an impeller fixed to the rotating shaft, and an outer peripheral surface of the stator And a fan case that covers the impeller and is fixed to the motor case. The stator is formed by molding a core and a winding with resin. A plurality of guide vanes that are configured and project from the mold portion and extend into the air passage and the stator are integrally formed, and the plurality of guide vanes are electric blowers that form a plurality of air passages in the air passage.
 モータを駆動した際、ステータの巻線およびコアにおいて発生した熱が、モールド部と一体成型した複数の案内翼に伝導しやすくなる。インペラにおいて発生した気流は、通気路にスムーズに導かれ案内翼を強制冷却し、熱を効率的にモータ外部へ逃がすことができる。そして、複数の案内翼がディフューザとして作用するため、モータを冷却すると共に、気流の動圧を静圧に変換できる。 When the motor is driven, heat generated in the stator windings and the core is easily conducted to a plurality of guide blades integrally formed with the mold part. The airflow generated in the impeller is smoothly guided to the air passage, forcibly cooling the guide blades, and heat can be efficiently released to the outside of the motor. And since a some guide blade acts as a diffuser, while cooling a motor, the dynamic pressure of airflow can be converted into a static pressure.
 また、モータによってインペラが回転駆動されることにより、モータ自身の発熱を少なくして、大きな電力での駆動による高速回転を可能にし、小型かつ高い送風性能を有する電動送風機を実現できる。 In addition, since the impeller is rotationally driven by the motor, the motor itself can reduce heat generation, enable high-speed rotation by driving with large electric power, and realize a small and high-performance electric blower.
図1は、本発明の実施の形態1の電動送風機の一部断面図である。FIG. 1 is a partial cross-sectional view of the electric blower according to Embodiment 1 of the present invention. 図2は、同電動送風機の一部断面斜視図である。FIG. 2 is a partial cross-sectional perspective view of the electric blower. 図3は、同電動送風機のインペラの一部断面斜視図である。FIG. 3 is a partial cross-sectional perspective view of the impeller of the electric blower. 図4は、同電動送風機のブラシレスモータの一部断面斜視図である。FIG. 4 is a partial cross-sectional perspective view of the brushless motor of the electric blower. 図5は、同電動送風機のステータの一部断面斜視図である。FIG. 5 is a partial cross-sectional perspective view of a stator of the electric blower. 図6は、同電動送風機を用いた電気掃除機の構成を表す断面図である。FIG. 6 is a cross-sectional view illustrating a configuration of a vacuum cleaner using the electric blower. 図7は、同電動送風機の一部断面斜視図である。FIG. 7 is a partial cross-sectional perspective view of the electric blower. 図8は、本発明の実施の形態2の電動送風機の一部断面図である。FIG. 8 is a partial cross-sectional view of the electric blower according to Embodiment 2 of the present invention. 図9は、同電動送風機の一部断面斜視図である。FIG. 9 is a partial sectional perspective view of the electric blower. 図10は、同電動送風機のブラシレスモータの一部断面斜視図である。FIG. 10 is a partial cross-sectional perspective view of the brushless motor of the electric blower. 図11は、同電動送風機のステータの一部断面斜視図である。FIG. 11 is a partial cross-sectional perspective view of a stator of the electric blower. 図12は、従来の電動送風機の断面図である。FIG. 12 is a cross-sectional view of a conventional electric blower. 図13は、従来の他の電動送風機の断面図である。FIG. 13 is a cross-sectional view of another conventional electric blower. 図14は、従来のさらに他の電動送風機の断面図である。FIG. 14 is a cross-sectional view of still another conventional electric blower.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
 (実施の形態1)
 図1は本発明の実施の形態1の電動送風機の一部断面図、図2は同電動送風機の一部断面斜視図、図3は同電動送風機のインペラの一部断面斜視図、図4は同電動送風機のブラシレスモータの一部断面斜視図、図5は同電動送風機のステータの一部断面斜視図である。
(Embodiment 1)
1 is a partial cross-sectional view of the electric blower according to Embodiment 1 of the present invention, FIG. 2 is a partial cross-sectional perspective view of the electric blower, FIG. 3 is a partial cross-sectional perspective view of the impeller of the electric blower, and FIG. FIG. 5 is a partial sectional perspective view of a brushless motor of the electric blower, and FIG. 5 is a partial sectional perspective view of a stator of the electric blower.
 図1~図4に示すように、電動送風機1aは、ブラシレスモータ7aと、インペラ8と、モータケース10aと、ファンケース11とを備えている。ここでブラシレスモータ7aは、回転軸2を有するロータ3、ロータ3の外周に配置されたステータ4a、および回転軸2の軸受5を保持しステータ4aを覆うフレーム6から構成されている。インペラ8は、回転軸2に固定されている。またインペラ8は、回転軸2に固定された3次元曲面により形成された6枚の斜流型ブレード8aを有する。モータケース10aは、ステータ4aの外周面との間に、通気路9となる空間を設けて配置されている。ファンケース11は、インペラ8を覆って通気路9上流側、すなわちモータケース10aに固定されている。そして、ステータ4aはコア12aと、コア12aに巻かれた巻線とを樹脂によってモールド成型したモールド部13aにより構成されている。なお通気路9の上流側とはインペラ8側を意味し、通気路9の下流側とは軸受5側を意味する。 As shown in FIGS. 1 to 4, the electric blower 1a includes a brushless motor 7a, an impeller 8, a motor case 10a, and a fan case 11. Here, the brushless motor 7a includes a rotor 3 having a rotating shaft 2, a stator 4a disposed on the outer periphery of the rotor 3, and a frame 6 that holds the bearing 5 of the rotating shaft 2 and covers the stator 4a. The impeller 8 is fixed to the rotating shaft 2. The impeller 8 has six mixed flow type blades 8 a formed by a three-dimensional curved surface fixed to the rotary shaft 2. The motor case 10a is disposed with a space serving as the air passage 9 between the outer periphery of the stator 4a. The fan case 11 covers the impeller 8 and is fixed to the upstream side of the air passage 9, that is, the motor case 10 a. And the stator 4a is comprised by the mold part 13a which shape-molded the core 12a and the coil | winding wound around the core 12a with resin. The upstream side of the air passage 9 means the impeller 8 side, and the downstream side of the air passage 9 means the bearing 5 side.
 図5に示すように、ステータ4aには、モールド部13aより突出して通気路9内に延設された複数の案内翼14aが形成されている。複数の案内翼14aは、長手方向が軸方向から傾斜して螺旋状になるようにステータ4aの外周に配列されている。図2に示すようにモータケース10a内壁に、案内翼14aが当接されることにより、通気路9内に複数の独立通路15aが形成されている。すなわち複数の案内翼14aは、通気路9内において複数の風路(独立通路15a)を形成している。その結果、案内翼14aの放熱面積を拡げて図1のブラシレスモータ7aの冷却効果が向上される。またインペラ8からの気流がスムーズに導かれ、通気路9内において気流の動圧を静圧に変換することができるため、小型かつ高い送風性能を有する電動送風機を実現できる。 As shown in FIG. 5, the stator 4a is formed with a plurality of guide vanes 14a extending from the mold portion 13a and extending into the air passage 9. The plurality of guide vanes 14a are arranged on the outer periphery of the stator 4a so that the longitudinal direction is inclined from the axial direction and becomes spiral. As shown in FIG. 2, a plurality of independent passages 15 a are formed in the air passage 9 by the guide blades 14 a coming into contact with the inner wall of the motor case 10 a. That is, the plurality of guide vanes 14 a form a plurality of air passages (independent passages 15 a) in the air passage 9. As a result, the heat radiation area of the guide vanes 14a is expanded and the cooling effect of the brushless motor 7a of FIG. 1 is improved. Moreover, since the airflow from the impeller 8 is smoothly guided and the dynamic pressure of the airflow can be converted into static pressure in the air passage 9, a small and high-performance electric blower can be realized.
 また、通気路9上流から下流にかけて複数の案内翼14aは、回転軸2を中心とした螺旋状を成している。 Further, the plurality of guide vanes 14 a from the upstream side to the downstream side of the air passage 9 have a spiral shape with the rotary shaft 2 as the center.
 またモータケース10aは、通気路9の上流から下流にかけて所定の角度にて拡がる円錐形状である。それに伴い、独立通路15aの断面積は、連続的に大きくなるようにしている。その結果、ステータ4aの外周面と、モータケース10aとの間の通気路9を連続的に大きくすることができる。通気路9の断面積が、モータケース10aの外形に応じて調整されやすく、同時に案内翼14aの放熱面積の調整も可能なため、ブラシレスモータ7aに必要な冷却構成を容易に実現することができる。 The motor case 10a has a conical shape that expands at a predetermined angle from the upstream side to the downstream side of the air passage 9. Accordingly, the sectional area of the independent passage 15a is continuously increased. As a result, the air passage 9 between the outer peripheral surface of the stator 4a and the motor case 10a can be continuously increased. The cross-sectional area of the air passage 9 can be easily adjusted according to the outer shape of the motor case 10a, and at the same time, the heat radiation area of the guide vanes 14a can be adjusted, so that the cooling configuration necessary for the brushless motor 7a can be easily realized. .
 またモールド部13aの樹脂には、ポニフェニレンサルファイド(PPS:Polyphenylene Sulfide)にフィラーを充填して熱伝導性を向上させている。樹脂にフィラーが充填されると、樹脂の内部に熱の通り道となる熱伝導路が形成され、樹脂の熱伝導性を容易に高めることができる。 Further, the resin of the mold part 13a is filled with a filler in polyphenylene sulfide (PPS) to improve thermal conductivity. When the filler is filled in the resin, a heat conduction path serving as a heat path is formed inside the resin, and the thermal conductivity of the resin can be easily increased.
 また樹脂を射出成形することにより、ステータ4aは製作される。コア12aと、モールド部13aの外周面とは略同一面を有している。図4に示すように、モールド部13aの前後面を覆うフレーム6は、ステータ4aの外周面に3本の支柱6aを介してステータ4aを保持している。また図1に示すように、インペラ8の入口先端部とファンケース11の吸引口11aとは、インペラ8が回転可能な状態においてPTFE(Polytetrafluoroethylene)樹脂製のリング16を介してシールされている。 Further, the stator 4a is manufactured by injection molding of resin. The core 12a and the outer peripheral surface of the mold part 13a have substantially the same surface. As shown in FIG. 4, the frame 6 covering the front and rear surfaces of the mold part 13a holds the stator 4a on the outer peripheral surface of the stator 4a via three columns 6a. As shown in FIG. 1, the inlet tip of the impeller 8 and the suction port 11a of the fan case 11 are sealed via a ring 16 made of PTFE (Polytetrafluoroethylene) resin in a state where the impeller 8 is rotatable.
 以上のように構成された電動送風機1aについて、以下その動作、作用を説明する。図1において、ステータ4aの巻線を励磁することにより回転磁界が発生し、回転磁界に同期してロータ3が回転し、回転軸2に固定されたインペラ8が回転する。インペラ8の回転によって生じる遠心力により、インペラ8内の空気がインペラ8内の外周へ、且つ後方へと押しやられる。そしてインペラ8内が負圧になり、ファンケース11の吸引口11a前方からインペラ8内へ流れ込む気流Aが発生する。気流Aはインペラ8の入口先端部から回転軸2の軸方向に流入し、6枚の斜流型ブレード8aに沿って流れた後、回転軸2の軸方向と径方向との中間の角度においてインペラ8から流出する。 About the electric blower 1a comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In FIG. 1, a rotating magnetic field is generated by exciting the windings of the stator 4a, the rotor 3 rotates in synchronization with the rotating magnetic field, and the impeller 8 fixed to the rotating shaft 2 rotates. The centrifugal force generated by the rotation of the impeller 8 pushes the air in the impeller 8 to the outer periphery in the impeller 8 and to the rear. And the inside of the impeller 8 becomes negative pressure, and the airflow A flowing into the impeller 8 from the front of the suction port 11a of the fan case 11 is generated. The airflow A flows in the axial direction of the rotary shaft 2 from the inlet tip of the impeller 8, flows along the six diagonal flow blades 8a, and then at an intermediate angle between the axial direction and the radial direction of the rotary shaft 2. It flows out of the impeller 8.
 インペラ8から流出した気流は、案内翼14aにおいて形成された複数の独立通路15aに流入し、独立通路15aをステータ4aの外周面に沿って流れて電動送風機1a外周へと流出する。独立通路15aの断面積は気流Aの上流から下流にかけて徐々に大きくなるため、気流Aは減速されながら、動圧が静圧へと変換される。電動送風機1aの送風性能は、電動送風機1aを駆動するために入力した電力と、電動送風機1aが行う仕事量(インペラ8の回転により発生する真空度と流量との積)との比によりあらわされる。そのため、実際に使用する流量において電動送風機1aが発生する真空度(静圧)を大きくすることが、電動送風機1aの送風性能をあげる上において重要となる。 The airflow flowing out from the impeller 8 flows into the plurality of independent passages 15a formed in the guide blades 14a, flows along the outer peripheral surface of the stator 4a through the independent passages 15a, and flows out to the outer periphery of the electric blower 1a. Since the cross-sectional area of the independent passage 15a gradually increases from the upstream side to the downstream side of the air flow A, the dynamic pressure is converted into static pressure while the air flow A is decelerated. The blowing performance of the electric blower 1a is expressed by the ratio between the electric power input to drive the electric blower 1a and the work amount (the product of the degree of vacuum generated by the rotation of the impeller 8 and the flow rate) performed by the electric blower 1a. . For this reason, increasing the degree of vacuum (static pressure) generated by the electric blower 1a at the actual flow rate is important for improving the blowing performance of the electric blower 1a.
 斜流型のインペラ8は、気流Aを軸方向と径方向との中間の角度においてインペラ8から流出させるため、遠心型のインペラ8と比べて外径を小さくできる。また、ディフューザ側の風路は、圧損の少ない直線的な風路として構成可能であり、風路に湾曲部を設ける必要がないため、圧力損失の少ない風路を構成することが可能である。 Since the mixed flow type impeller 8 causes the air flow A to flow out of the impeller 8 at an intermediate angle between the axial direction and the radial direction, the outer diameter can be made smaller than that of the centrifugal impeller 8. Further, the air passage on the diffuser side can be configured as a linear air passage with little pressure loss, and it is not necessary to provide a curved portion in the air passage, so that an air passage with little pressure loss can be formed.
 この種のブラシレスモータ7aは、交流整流子モータのように整流子と電機子とを機械的に接触させて給電する必要がないため、交流整流子モータに比べて発熱量が小さくなる。ステータ4aの発熱は巻線とコア12aの両方において発生し、巻線を流れる電流によって生じるジュール熱は、モールド部13aを熱伝導により、その後一体成型された複数の案内翼14aへと伝わる。 Since this type of brushless motor 7a does not need to supply power by mechanically contacting the commutator and the armature unlike an AC commutator motor, it generates less heat than an AC commutator motor. Heat generation of the stator 4a occurs in both the winding and the core 12a, and Joule heat generated by current flowing through the winding is transmitted to the plurality of integrally formed guide vanes 14a by heat conduction through the mold portion 13a.
 一方、磁界の変化によるコア12aの磁束密度の変化、およびコア12aを通る磁束変動によって渦電流が発生してコア12aでも発熱する。しかし、インペラ8において発生した気流が複数の案内翼14a、およびステータ4aの外周面に沿って流れる際、案内翼14a、およびステータ4a外周面から熱が気流へ伝達する。その結果、ステータ4aにおいて発生した熱は、電動送風機1a外部へ輸送され、ステータ4aが効率よく冷却される。 On the other hand, an eddy current is generated due to a change in the magnetic flux density of the core 12a due to a change in the magnetic field and a change in the magnetic flux passing through the core 12a, and the core 12a also generates heat. However, when the airflow generated in the impeller 8 flows along the outer peripheral surfaces of the plurality of guide vanes 14a and the stator 4a, heat is transferred from the guide vanes 14a and the outer peripheral surface of the stator 4a to the airflow. As a result, the heat generated in the stator 4a is transported outside the electric blower 1a, and the stator 4a is efficiently cooled.
 つまり、案内翼14aは圧力回復を行うディフューザの作用と、放熱フィンとしての機能を兼ねている。このような構成にすることにより、放熱効率を改善するだけでなく、ブラシレスモータ7aによって回転駆動することにより、ブラシレスモータ7aの発熱量を減少させて、電動送風機1aの小型化を図ることができる。 In other words, the guide vane 14a has both a function of a diffuser that performs pressure recovery and a function as a heat radiating fin. With this configuration, not only the heat dissipation efficiency is improved, but also the brushless motor 7a is rotationally driven to reduce the amount of heat generated by the brushless motor 7a, thereby reducing the size of the electric blower 1a. .
 また、案内翼14aは、ステータ4aの外周に回転軸2を中心とし、螺旋状に構成している。そのため、限られた通気路9の長さにおいても、独立通路15aの長さを長くして放熱面積を拡げることが可能になる。また、ステータ4aを構成するモールド部13aと、案内翼14aとを一体成型することにより、ステータ4aから発した熱を効率的に放熱して、電動送風機1aの冷却効果を大幅に向上させる。さらに、ディフューザとして使用できる独立通路15aも長くなるため、送風性能を向上させると共に、通気路9を空気伝播する騒音に対して遮音効果を向上させ、小型かつ低騒音の電動送風機1aを実現できる。 Further, the guide vanes 14a are formed in a spiral shape around the rotating shaft 2 on the outer periphery of the stator 4a. Therefore, even in the limited length of the air passage 9, it is possible to increase the length of the independent passage 15a and expand the heat radiation area. Further, by integrally molding the mold portion 13a constituting the stator 4a and the guide blade 14a, the heat generated from the stator 4a is efficiently radiated, and the cooling effect of the electric blower 1a is greatly improved. Furthermore, since the independent passage 15a that can be used as a diffuser also becomes longer, the air blowing performance can be improved, and the sound insulation effect can be improved against noise propagating through the air passage 9, thereby realizing a small and low-noise electric blower 1a.
 特に、耳障りな騒音として問題となる電動送風機1aの回転騒音は、インペラ8の翼枚数と、回転数の積とにより決まる周波数、およびその周波数の倍音を含む高調波が原因である。高調波は、可聴周波数域の中でも、高い周波数域の騒音であり、騒音が伝播するときに直進性を有している。そのため、螺旋状をした案内翼14aは遮音壁としても機能する。 Particularly, the rotational noise of the electric blower 1a, which is a problem as annoying noise, is caused by harmonics including a frequency determined by the product of the number of blades of the impeller 8 and the rotational speed, and harmonics of the frequency. The harmonic is a noise in a high frequency range in the audible frequency range, and has straightness when the noise propagates. Therefore, the spiral guide vane 14a also functions as a sound insulation wall.
 図6は、本発明の実施の形態1の電動送風機を用いた電気掃除機の構成を示す断面図である。吸音する周波数域を回転騒音の周波数域に合わせた吸音材25a、25bが掃除機本体22内に配されると、消音効果を更に高めることができる。 FIG. 6 is a cross-sectional view showing the configuration of the electric vacuum cleaner using the electric blower of Embodiment 1 of the present invention. If the sound absorbing materials 25a and 25b in which the frequency range for absorbing sound is matched with the frequency range of rotational noise are arranged in the cleaner body 22, the noise reduction effect can be further enhanced.
 モールド部13aには、熱伝導性の高い樹脂を用いるのが望ましい。巻線において発生したジュール熱は、熱伝導性を良くしたモールド部13a内を、複数の案内翼14aへと熱伝導し易くなり、インペラ8において発生した気流により効率よく冷却することができる。モールド部13aの樹脂中に熱伝導性の高い粉末、または繊維などのフィラーが充填されると、熱伝導性が向上する。具体的にはフィラーとして、ナイロン、または液晶ポリマー(LCP: Liquid Crystal Polymer)等を、ポリフェニレンサルファイド樹脂(PPS)に充填させても良い。 It is desirable to use a resin with high thermal conductivity for the mold part 13a. The Joule heat generated in the windings can easily conduct heat to the plurality of guide blades 14a in the mold part 13a having improved thermal conductivity, and can be efficiently cooled by the airflow generated in the impeller 8. When the resin of the mold part 13a is filled with a highly heat conductive powder or a filler such as a fiber, the heat conductivity is improved. Specifically, nylon or liquid crystal polymer (LCP: Liquid Crystal Polymer) or the like may be filled in polyphenylene sulfide resin (PPS) as a filler.
 導電性のフィラーとしては金属粉末、グラファイト、カーボンブラック等を用いることができ、絶縁性のフィラーとしては窒化アルミニウム、窒化ホウ素、アルミナ等の焼結セラミックを用いることができる。各部位の絶縁の必要性に応じ、フィラーを使い分けても良い。本実施の形態においては、巻線周辺部のモールド部13aには絶縁性が必要であるため、絶縁性フィラーを用い、案内翼14a含めて一体に射出成形している。 As the conductive filler, metal powder, graphite, carbon black or the like can be used, and as the insulating filler, a sintered ceramic such as aluminum nitride, boron nitride or alumina can be used. Depending on the necessity of insulation of each part, you may use a filler properly. In the present embodiment, since the mold part 13a around the windings needs to be insulated, an insulating filler is used and the guide blades 14a are integrally molded.
 但し、放熱フィンとして機能する複数の案内翼14aには、導電性フィラーを配合した樹脂を用いる方が望ましく、絶縁性フィラーを配合した樹脂に比べて熱伝導性を大きくできる。そのため、巻線周辺部と、案内翼14aとを、それぞれ絶縁性フィラーと、導電性フィラーとを配合した樹脂により別々に形成した後、結合させる方法を採用しても良い。また、フィラーの配合比率については、実験的に最適値を求めれば良い。 However, it is desirable to use a resin blended with a conductive filler for the plurality of guide blades 14a functioning as heat radiation fins, and the thermal conductivity can be increased as compared with a resin blended with an insulating filler. For this reason, a method may be employed in which the winding peripheral part and the guide vane 14a are separately formed with a resin in which an insulating filler and a conductive filler are blended, and then combined. Moreover, what is necessary is just to obtain | require an optimal value experimentally about the mixture ratio of a filler.
 次に、上述した電動送風機を用いた電気掃除機について図6を用いて説明する。 Next, a vacuum cleaner using the above-described electric blower will be described with reference to FIG.
 電気掃除機17は、掃除機本体22と、集塵袋23と、電動送風機1aと、防音カバー24と、吸音材25a、25bとから構成されている。ここで掃除機本体22は、本体吸気口18に連通した集塵室19と、本体排気口20を備えた送風室21とを有している。集塵袋23は、集塵室19に本体吸気口18と装着されている。電動送風機1aは、送風室21に設置されている。防音カバー24は、電動送風機1aを覆い、難燃樹脂製である。吸音材25a、25bは、送風室21の上下に配置されている。なお、図示していないが、本体吸気口18には、ホース、延長管が順次接続され、延長管の先端には床面上の塵埃を吸引するノズルが取りつけられている。 The electric vacuum cleaner 17 includes a vacuum cleaner body 22, a dust bag 23, an electric blower 1a, a soundproof cover 24, and sound absorbing materials 25a and 25b. Here, the vacuum cleaner main body 22 has a dust collection chamber 19 communicating with the main body intake port 18 and a blower chamber 21 provided with a main body exhaust port 20. The dust bag 23 is attached to the dust collection chamber 19 with the main body inlet 18. The electric blower 1 a is installed in the blower chamber 21. The soundproof cover 24 covers the electric blower 1a and is made of flame retardant resin. The sound absorbing materials 25 a and 25 b are arranged above and below the blower chamber 21. Although not shown, a hose and an extension pipe are sequentially connected to the main body inlet 18, and a nozzle for sucking dust on the floor surface is attached to the tip of the extension pipe.
 この構成により、電動送風機1aのインペラ8が回転すると、集塵室19が負圧状態になり、ノズル(図示せず)から吸引された塵埃を含む気流が本体吸気口18を通過して集塵室19へ流入する。集塵袋23において塵埃を濾過分離した清潔な気流は、電動送風機1aのインペラ8へ流入し、複数の案内翼14aにおいて形成されたエアガイドを通過する。その後、塵埃を濾過分離した清潔な気流は、防音カバーの本体排気口20から流出し、掃除機本体22外部へと放出される。 With this configuration, when the impeller 8 of the electric blower 1a is rotated, the dust collection chamber 19 is in a negative pressure state, and an air flow including dust sucked from a nozzle (not shown) passes through the main body intake port 18 to collect the dust. It flows into the chamber 19. The clean airflow obtained by filtering and separating dust in the dust bag 23 flows into the impeller 8 of the electric blower 1a and passes through the air guide formed in the plurality of guide blades 14a. Thereafter, a clean airflow obtained by separating and filtering out dust flows out from the main body exhaust port 20 of the soundproof cover and is released to the outside of the cleaner main body 22.
 電気掃除機17に搭載した電動送風機1aは、上述したように放熱性が良く、ブラシレスモータ7aによってインペラ8を回転駆動することにより、ブラシレスモータ7a自身の発熱を少なくする。その結果、大きな電力での駆動によりブラシレスモータ7aの高速回転が可能になる。また電気掃除機17は、強い吸引力を有し、小型かつ高い送風性能を有する。 The electric blower 1a mounted on the vacuum cleaner 17 has good heat dissipation as described above, and reduces the heat generation of the brushless motor 7a itself by rotationally driving the impeller 8 by the brushless motor 7a. As a result, the brushless motor 7a can be rotated at a high speed by being driven with large electric power. Moreover, the vacuum cleaner 17 has a strong suction force, and has a small size and a high blowing performance.
 従って、電気掃除機17は、小型かつ送風性能の高い電動送風機1aを搭載することにより、強い吸引力によりゴミの吸引がよい。小型の電動送風機1aは重量が軽いので、電気掃除機17は小回りが利いて使い勝手がよい。 Therefore, the vacuum cleaner 17 is good at sucking dust with a strong suction force by mounting a small electric blower 1a having high blowing performance. Since the small electric blower 1a is light in weight, the vacuum cleaner 17 is easy to use because of its small turning.
 また、図6に示すように、小型の電動送風機1aを掃除機本体22内に搭載することにより、吸音材25a、25bの配置可能な空間の拡大が図れる。掃除機本体22内に設ける吸音材25a、25bの設置面積を大きくすることにより、吸音効果を拡大し、電気掃除機17の運転音を小さくできる。また、吸音する周波数域を回転騒音の周波数域に合わせた吸音材25a、25bが掃除機本体22内に配されると、消音効果を更に高めることができる。さらに、特定周波数の音に対し、大幅な消音効果を発揮する共鳴型の消音構成が吸音材25a、25bと併用されることにより、回転騒音に対する消音効果を大幅に向上できる。 Moreover, as shown in FIG. 6, by mounting the small electric blower 1a in the cleaner body 22, the space in which the sound absorbing materials 25a and 25b can be arranged can be expanded. By increasing the installation area of the sound absorbing materials 25a and 25b provided in the cleaner main body 22, the sound absorbing effect can be expanded and the operation sound of the vacuum cleaner 17 can be reduced. In addition, if the sound absorbing materials 25a and 25b in which the sound absorption frequency range is matched with the frequency range of the rotational noise are arranged in the cleaner body 22, the noise reduction effect can be further enhanced. Furthermore, the resonance-type noise reduction structure that exhibits a significant noise reduction effect for the sound of a specific frequency is used in combination with the sound absorbing materials 25a and 25b, so that the noise reduction effect against rotational noise can be greatly improved.
 以上のように、本実施の形態1においては、ステータ4aをコア12aと、巻線とを熱伝導性の高い樹脂によりモールド成型する。ステータ4aに、モールド部13aより一体成型にて通気路9に延設された複数の螺旋状を有する案内翼14aが形成される。複数の案内翼14aを長手方向が、回転軸2の軸方向になるようにステータ4aの外周に配列し、モータケース10a内壁に案内翼14aを当接させて通気路9内に複数の独立通路15aを形成する。このことにより、インペラ8から発生した気流は、独立通路15aへスムーズに導いて流される。また、巻線およびコア12aにおいて発生した熱は、複数の案内翼14aへ伝導される。そのため案内翼14a、およびステータ4a外周面から、その熱を気流へ伝達させ電動送風機1a外部へ逃がすことができるようになり、ブラシレスモータ7aは効率よく冷却される。 As described above, in the first embodiment, the stator 4a and the core 12a and the windings are molded with a resin having high thermal conductivity. The stator 4a is formed with a plurality of spiral guide vanes 14a extending from the mold portion 13a to the air passage 9 by integral molding. A plurality of guide vanes 14a are arranged on the outer periphery of the stator 4a so that the longitudinal direction thereof is the axial direction of the rotary shaft 2, and the guide vanes 14a are brought into contact with the inner wall of the motor case 10a so that a plurality of independent passages are formed in the air passage 9. 15a is formed. Thus, the airflow generated from the impeller 8 is smoothly guided to the independent passage 15a. Further, the heat generated in the winding and the core 12a is conducted to the plurality of guide vanes 14a. Therefore, the heat can be transferred from the guide blade 14a and the outer peripheral surface of the stator 4a to the air flow and released to the outside of the electric blower 1a, and the brushless motor 7a is efficiently cooled.
 また、通気路9に形成された複数の独立通路15aは、ディフューザの作用も有しているため、気流の静圧回復を図ることができる。そしてインペラ8において発生した回転騒音に対し、案内翼14aが遮音壁として機能するため、低騒音かつ送風性能を向上させることができる。 Further, since the plurality of independent passages 15a formed in the air passage 9 also has a diffuser action, it is possible to recover the static pressure of the airflow. And since the guide blade 14a functions as a sound insulation wall with respect to the rotational noise which generate | occur | produced in the impeller 8, it can reduce noise and can improve ventilation performance.
 なお、本実施の形態1では、複数の案内翼14aをモータケース10a内壁に当接させて独立通路15aを形成した事例により説明した。しかし、案内翼14aと、モータケース10a内壁とを接着させて隙間なく構成することが望ましく、独立通路15a間の隙間における流れを抑えて気流をスムーズに流してもよい。 In the first embodiment, the case where the independent passage 15a is formed by bringing the plurality of guide blades 14a into contact with the inner wall of the motor case 10a has been described. However, it is desirable that the guide vanes 14a and the inner wall of the motor case 10a are bonded to each other without gaps, and the flow in the gaps between the independent passages 15a may be suppressed to smoothly flow the airflow.
 また本実施の形態1では、モータケース10aの外径を、所定角度により通気路9上流から下流へかけて拡げ、独立通路15aの断面積を徐々に大きくした事例により説明した。しかし、螺旋状を有した案内翼14aの回転軸2の軸方向のねじりピッチを、下流にかけて徐々に大きくし、独立通路15aの断面積を大きくしてもよい。 Further, in the first embodiment, the case where the outer diameter of the motor case 10a is expanded from the upstream side to the downstream side of the air passage 9 by a predetermined angle and the sectional area of the independent passage 15a is gradually increased has been described. However, the torsion pitch in the axial direction of the rotating shaft 2 of the guide blade 14a having a spiral shape may be gradually increased toward the downstream side to increase the cross-sectional area of the independent passage 15a.
 また、本実施の形態1では、ファンケース11をモータケース10aに固定することにより、電動送風機1aの外郭を形成した事例により説明した。しかし、本発明の実施の形態1の電動送風機の一部断面斜視図である図7に示すように、ファンケースとモータケースとを一体成型した外郭ケース26を用い、ブラシレスモータ7aの外周を外郭ケース26により覆ってもよい。 In the first embodiment, the fan case 11 is fixed to the motor case 10a to describe the outer case of the electric blower 1a. However, as shown in FIG. 7 which is a partial cross-sectional perspective view of the electric blower according to Embodiment 1 of the present invention, an outer case 26 in which a fan case and a motor case are integrally molded is used, and the outer periphery of the brushless motor 7a is surrounded by an outer case. The case 26 may cover the case.
 (実施の形態2)
 図8は本発明の実施の形態2の電動送風機の一部断面図、図9は同電動送風機の一部断面斜視図、図10は同電動送風機のブラシレスモータの一部断面斜視図、図11は同電動送風機のステータの一部断面斜視図である。本発明の実施の形態2では、実施の形態1と同一の構成要素については、同一符号を付し、その説明を省略する。
(Embodiment 2)
8 is a partial sectional view of the electric blower according to Embodiment 2 of the present invention, FIG. 9 is a partial sectional perspective view of the electric blower, FIG. 10 is a partial sectional perspective view of a brushless motor of the electric blower, and FIG. FIG. 2 is a partial cross-sectional perspective view of a stator of the electric blower. In the second embodiment of the present invention, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図8~図10において、電動送風機1bは、ステータ4bと、モータケース10bと、通気路9とを備え、複数の案内翼14bおよびモールド部13bを一体成型している。そして複数の案内翼14bは、長手方向が回転軸2の軸方向に対して斜めになるように、ステータ4bの外周に配列されている。また複数の案内翼14bは、モータケース10b内壁に当接することにより通気路9内に複数の独立通路15bを形成している。ここでステータ4bは、コア12bと巻線とを樹脂によってモールド成型したモールド部13bにより構成される。モータケース10bは、通気路9の上流から下流にかけて略同一径を有する。通気路9は、ステータ4bの外周面と、モータケース10bとの間である。複数の案内翼14bは、モールド部13bより突出し、通気路9に延設され、板状である。 8 to 10, the electric blower 1b includes a stator 4b, a motor case 10b, and an air passage 9, and integrally forms a plurality of guide vanes 14b and a mold portion 13b. The plurality of guide vanes 14 b are arranged on the outer periphery of the stator 4 b so that the longitudinal direction is inclined with respect to the axial direction of the rotating shaft 2. The plurality of guide vanes 14b abut on the inner wall of the motor case 10b to form a plurality of independent passages 15b in the air passage 9. Here, the stator 4b is configured by a molded portion 13b in which a core 12b and a winding are molded with resin. The motor case 10 b has substantially the same diameter from the upstream side to the downstream side of the air passage 9. The air passage 9 is between the outer peripheral surface of the stator 4b and the motor case 10b. The plurality of guide blades 14b protrude from the mold part 13b, extend to the ventilation path 9, and have a plate shape.
 そして、図9、図10に示すように、案内翼14bは、通気路9上流から下流にかけて厚みが連続的に薄くなる。その結果、モータケース10bの外形を変化させることなく、独立通路15bの断面積を連続的に大きくすることができる。そのため、ブラシレスモータ7bの冷却を兼ねた小型のディフューザを容易に構成することができる。 And as shown in FIG. 9, FIG. 10, the thickness of the guide vane 14b decreases continuously from the upstream side to the downstream side of the air passage 9. As a result, the cross-sectional area of the independent passage 15b can be continuously increased without changing the outer shape of the motor case 10b. Therefore, it is possible to easily configure a small diffuser that also serves to cool the brushless motor 7b.
 また案内翼14bは、ステータ4bの外周に配置した案内翼14bの長さを1枚おきに短くすることにより、独立通路15bの断面積を徐々に大きくなるようにしている。モールド部13bの前後面を保持するフレーム27は、ステータ4bと略同一面を形成し、4本の支柱27aを介してステータ4bを保持している。 Further, the guide vanes 14b are configured such that the cross-sectional area of the independent passage 15b is gradually increased by shortening the length of every other guide vane 14b arranged on the outer periphery of the stator 4b. The frame 27 that holds the front and rear surfaces of the mold part 13b forms substantially the same surface as the stator 4b, and holds the stator 4b via the four support columns 27a.
 以上のように構成された電動送風機1bについて、以下その動作、作用を説明する。 About the electric blower 1b comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 まず、電動送風機の動作について説明する。図8において、巻線を励磁することにより回転磁界が発生し、回転磁界と同期してロータ3が回転し、回転軸2に固定されたインペラ8が回転する。インペラ8の回転により生じる遠心力により、インペラ8内の空気がインペラ8内の外周へ、且つ後方へと押しやられ、インペラ8内が負圧になり、前方からインペラ8内へ流れ込む気流Aが発生する。気流Aはインペラ8の入口から回転軸2の軸方向に流入し、6枚の斜流型ブレードに沿って流れた後、回転軸2の軸方向と径方向との中間の角度においてインペラ8から流出する。 First, the operation of the electric blower will be described. In FIG. 8, a rotating magnetic field is generated by exciting the winding, the rotor 3 rotates in synchronization with the rotating magnetic field, and the impeller 8 fixed to the rotating shaft 2 rotates. Due to the centrifugal force generated by the rotation of the impeller 8, the air in the impeller 8 is pushed to the outer periphery of the impeller 8 and rearward, and the inside of the impeller 8 becomes negative pressure, and an air flow A flowing into the impeller 8 from the front is generated. To do. The airflow A flows in the axial direction of the rotary shaft 2 from the inlet of the impeller 8, flows along the six diagonal flow blades, and then from the impeller 8 at an intermediate angle between the axial direction and the radial direction of the rotary shaft 2. leak.
 インペラ8から流出した気流は、案内翼14bにより形成された複数の独立通路15bに流入し、独立通路15bをステータ4bの外周面に沿って流れて電動送風機1b外部へと流出する。独立通路15bの断面積は気流Aの上流から下流にかけて大きくなるため、気流は減速されながら、動圧が静圧へと変換される。 The airflow that has flowed out of the impeller 8 flows into a plurality of independent passages 15b formed by the guide vanes 14b, flows along the outer peripheral surface of the stator 4b through the independent passages 15b, and flows out of the electric blower 1b. Since the cross-sectional area of the independent passage 15b increases from the upstream side to the downstream side of the airflow A, the dynamic pressure is converted into static pressure while the airflow is decelerated.
 ステータ4bの発熱は巻線とコア12bとの両方において発生する。インペラ8により発生した気流が複数の案内翼14b、およびステータ4bの外周面に沿って流れる際、案内翼14bおよびステータ4b外周面から熱が気流へ伝達する。その結果、ステータ4bにおいて発生した熱は、電動送風機1b外部へ輸送され、効率よくステータ4bが冷却される。つまり、案内翼14bは圧力回復を行うディフューザの作用と、放熱フィンとしての機能を兼ねているため、電動送風機1bの小型化を図ることが可能になる。 Heat generation of the stator 4b occurs in both the winding and the core 12b. When the airflow generated by the impeller 8 flows along the outer peripheral surfaces of the plurality of guide vanes 14b and the stator 4b, heat is transferred from the outer surfaces of the guide vanes 14b and the stator 4b to the airflow. As a result, the heat generated in the stator 4b is transported to the outside of the electric blower 1b, and the stator 4b is efficiently cooled. That is, since the guide vane 14b functions as a diffuser that performs pressure recovery and a function as a heat radiating fin, it is possible to reduce the size of the electric blower 1b.
 本実施の形態2では、案内翼14bを板状にしているため、螺旋状のような曲面を有する案内翼14bに比べて成型が容易である。そのため射出成形の際、金型から成型物を抜くことが可能な翼枚数を増やすことができる。また案内翼14bを板状にしているため、放熱フィンとして機能する案内翼14bの放熱面積を拡げることができる。また、金型の構成をシンプルにしてコストを抑えることもできる。また、コア12bには直線の溝が複数存在するだけであるため、プレス加工した電磁鋼板を積層することによりコア12bを製造でき、複雑な分割構造にする必要がなく、製造しやすい。 In the second embodiment, since the guide blade 14b has a plate shape, it is easier to mold compared to the guide blade 14b having a curved surface like a spiral. Therefore, the number of blades that can be removed from the mold during injection molding can be increased. Moreover, since the guide blade 14b is plate-shaped, the heat radiation area of the guide blade 14b that functions as a heat radiation fin can be expanded. In addition, the cost can be reduced by simplifying the structure of the mold. In addition, since the core 12b only has a plurality of straight grooves, the core 12b can be manufactured by laminating the pressed electromagnetic steel sheets, and it is not necessary to have a complicated divided structure, and it is easy to manufacture.
 案内翼14bの厚みと翼枚数とは、通気路9に形成される複数の独立通路15bに対し、ディフューザとして必要な断面積および断面積の変化率と、ステータ4bの冷却に必要な放熱面積とから決める必要があるが、実験的に最適値を求めればよい。 The thickness of the guide blades 14b and the number of blades are the cross-sectional area required for the diffuser and the rate of change of the cross-sectional area for the plurality of independent passages 15b formed in the air passage 9, and the heat radiation area required for cooling the stator 4b. It is necessary to determine the optimum value experimentally.
 以上のように、本実施の形態2においては、インペラ8から発生した気流を独立通路15bへスムーズに導いて流す。また、巻線およびコア12bにおいて発生した熱は、複数の案内翼14bへ伝導されて、案内翼14bおよびステータ4b外周面からその熱を気流へ伝達させ、電動送風機1b外部へ逃がすことができる。その結果、効率よくブラシレスモータ7bの冷却が行えると共に、案内翼14bが板状であるため、金型の構成をシンプルにすることができ、翼枚数を増やして冷却性能を向上することができる。 As described above, in the second embodiment, the airflow generated from the impeller 8 is smoothly guided to the independent passage 15b. Further, the heat generated in the winding and the core 12b is conducted to the plurality of guide blades 14b, and the heat is transmitted from the outer surfaces of the guide blades 14b and the stator 4b to the air current, and can be released to the outside of the electric blower 1b. As a result, the brushless motor 7b can be efficiently cooled, and the guide blades 14b are plate-shaped, so that the mold configuration can be simplified, and the cooling performance can be improved by increasing the number of blades.
 なお、上述した実施の形態1と実施の形態2との構成は、これに限定されるものではなく、必要に応じて適宜組み合わせることができる。 The configurations of the first embodiment and the second embodiment described above are not limited to this, and can be combined as appropriate.
 以上のように、本発明の電動送風機は、ステータからの放熱を改善し、大きな電力での駆動を可能にして、小型かつ高い送風性能が得られるため、家庭用は勿論のこと、業務用の電気掃除機に適用できる。 As described above, the electric blower of the present invention improves heat dissipation from the stator, enables driving with large electric power, and obtains a small and high blowing performance. Applicable to vacuum cleaners.
1a,1b  電動送風機
2  回転軸
3  ロータ
4a,4b  ステータ
5  軸受
6,27  フレーム
6a,27a  支柱
7a,7b  ブラシレスモータ
8  インペラ
8a  斜流型ブレード
9  通気路
10a,10b  モータケース
11  ファンケース
11a  吸引口
12a,12b  コア
13a,13b  モールド部
14a,14b  案内翼
15a,15b  独立通路
16  リング
17  電気掃除機
18  本体吸気口
19  集塵室
20  本体排気口
21  送風室
22  掃除機本体
23  集塵袋
24  防音カバー
25a,25b  吸音材
26  外郭ケース
DESCRIPTION OF SYMBOLS 1a, 1b Electric blower 2 Rotating shaft 3 Rotor 4a, 4b Stator 5 Bearing 6, 27 Frame 6a, 27a Post 7a, 7b Brushless motor 8 Impeller 8a Diagonal blade 9 Air passage 10a, 10b Motor case 11 Fan case 11a Suction port 12a, 12b Cores 13a, 13b Mold parts 14a, 14b Guide vanes 15a, 15b Independent passage 16 Ring 17 Vacuum cleaner 18 Main body intake port 19 Dust collection chamber 20 Main unit exhaust port 21 Blower chamber 22 Vacuum cleaner main unit 23 Dust collection bag 24 Soundproofing Cover 25a, 25b Sound absorbing material 26 Outer case

Claims (9)

  1. 回転軸を有するロータ、前記ロータの外周に配置されたステータ、および前記回転軸の軸受を保持し前記ステータを覆うフレームから構成されるモータと、
    前記回転軸に固定されたインペラと、
    前記ステータの外周面との間に通気路となる空間を設けて配置したモータケースと、
    前記インペラを覆って前記モータケースに固定されるファンケースとを備え、
    前記ステータはコアと巻線とを樹脂によってモールド成型したモールド部により構成され、前記モールド部より突出して前記通気路内に延設する複数の案内翼と前記ステータとを一体成型し、複数の前記案内翼は前記通気路内において複数の風路を形成していることを特徴とする電動送風機。
    A motor including a rotor having a rotating shaft, a stator disposed on an outer periphery of the rotor, and a frame that holds a bearing of the rotating shaft and covers the stator;
    An impeller fixed to the rotating shaft;
    A motor case arranged by providing a space to be a ventilation path between the outer peripheral surface of the stator;
    A fan case that covers the impeller and is fixed to the motor case;
    The stator is configured by a mold part in which a core and a winding are molded by resin, and a plurality of guide vanes protruding from the mold part and extending into the air passage and the stator are integrally molded, and a plurality of the stators are formed. An electric blower characterized in that the guide vanes form a plurality of air passages in the air passage.
  2. 前記インペラは、入口から流入した気流を前記回転軸の軸方向と径方向との中間の角度において流出させる斜流型ブレードを有することを特徴とする請求項1に記載の電動送風機。 2. The electric blower according to claim 1, wherein the impeller includes a mixed flow type blade that causes an airflow flowing in from an inlet to flow out at an intermediate angle between an axial direction and a radial direction of the rotating shaft.
  3. 前記モールド部は、ポリフェニレンサルファイド樹脂により成型されたことを特徴とする請求項1または請求項2のどちらか一項に記載の電動送風機。 The electric blower according to any one of claims 1 and 2, wherein the mold part is formed of a polyphenylene sulfide resin.
  4. 前記樹脂は、フィラーを充填していることを特徴とする請求項3に記載の電動送風機。 The electric blower according to claim 3, wherein the resin is filled with a filler.
  5. 複数の前記案内翼は、前記モータケースの内壁に当接することにより前記通気路内に独立通路を形成し、複数の前記案内翼の回転によって生じた気流の上流から下流にかけて前記独立通路の断面積を大きくしたことを特徴とする請求項1に記載の電動送風機。 The plurality of guide vanes form an independent passage in the air passage by abutting against the inner wall of the motor case, and a cross-sectional area of the independent passage from upstream to downstream of the airflow generated by the rotation of the plurality of guide blades. The electric blower according to claim 1, wherein:
  6. 複数の前記案内翼は、前記ステータの外周に螺旋状に形成されていることを特徴とする請求項1に記載の電動送風機。 The electric blower according to claim 1, wherein the plurality of guide vanes are formed in a spiral shape on an outer periphery of the stator.
  7. 複数の前記案内翼は、前記気流の上流から下流にかけて連続的に厚みを薄くしたことを特徴とする請求項5に記載の電動送風機。 The electric blower according to claim 5, wherein the plurality of guide vanes are continuously reduced in thickness from upstream to downstream of the airflow.
  8. 前記モータケースの外径を前記気流の上流から下流にかけて連続的に大きくしたことを特徴とする請求項5に記載の電動送風機。 The electric blower according to claim 5, wherein an outer diameter of the motor case is continuously increased from an upstream side to a downstream side of the air flow.
  9. 請求項1に記載の電動送風機を搭載したことを特徴とする電気掃除機。 An electric vacuum cleaner equipped with the electric blower according to claim 1.
PCT/JP2010/005257 2009-09-02 2010-08-26 Electric air blower and electric cleaner utilizing same WO2011027519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-202209 2009-09-02
JP2009202209A JP2011052591A (en) 2009-09-02 2009-09-02 Electric blower and vacuum cleaner using the same

Publications (1)

Publication Number Publication Date
WO2011027519A1 true WO2011027519A1 (en) 2011-03-10

Family

ID=43649076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005257 WO2011027519A1 (en) 2009-09-02 2010-08-26 Electric air blower and electric cleaner utilizing same

Country Status (2)

Country Link
JP (1) JP2011052591A (en)
WO (1) WO2011027519A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971968B2 (en) * 2017-02-03 2021-04-06 Alstom Transport Technologies Noiseless self-ventilated motor, in particular for a railway vehicle
US11454246B2 (en) * 2017-06-22 2022-09-27 Mitsubishi Electric Corporation Electric blower, vacuum cleaner, and hand drying device
US11473594B2 (en) 2018-05-18 2022-10-18 Dyson Technology Limited Compressor
GB2626583A (en) * 2023-01-27 2024-07-31 Dyson Technology Ltd An electric motor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101331731B1 (en) * 2011-12-29 2013-11-20 삼성전기주식회사 Motor assembly for vacuum cleaner
EP3015713A1 (en) 2014-10-30 2016-05-04 Nidec Corporation Blower apparatus
KR102310339B1 (en) * 2018-03-21 2021-10-07 엘지전자 주식회사 Housing assembly of fan motor
KR102027143B1 (en) * 2018-03-21 2019-10-01 엘지전자 주식회사 Housing assembly of fan motor
JP2020112144A (en) * 2019-01-17 2020-07-27 日立グローバルライフソリューションズ株式会社 Electric blower and vacuum cleaner loaded with it
DE112021003513T5 (en) 2020-08-31 2023-05-11 Koki Holdings Co., Ltd. blower

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288801A (en) * 2005-04-12 2006-10-26 Toshiba Tec Corp Radiator and electric appliance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288801A (en) * 2005-04-12 2006-10-26 Toshiba Tec Corp Radiator and electric appliance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971968B2 (en) * 2017-02-03 2021-04-06 Alstom Transport Technologies Noiseless self-ventilated motor, in particular for a railway vehicle
US11454246B2 (en) * 2017-06-22 2022-09-27 Mitsubishi Electric Corporation Electric blower, vacuum cleaner, and hand drying device
US11473594B2 (en) 2018-05-18 2022-10-18 Dyson Technology Limited Compressor
GB2626583A (en) * 2023-01-27 2024-07-31 Dyson Technology Ltd An electric motor

Also Published As

Publication number Publication date
JP2011052591A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
WO2011027519A1 (en) Electric air blower and electric cleaner utilizing same
JP2010281232A (en) Electric blower and vacuum cleaner having the same
JP2012255413A (en) Electric blower and vacuum cleaner using the same
JP2011080427A (en) Electric blower and vacuum cleaner using the same
US11268532B2 (en) Electric blower, electric vacuum cleaner, and hand dryer
JP4706092B2 (en) Electric blower and electric vacuum cleaner using the same
JP2010281231A (en) Electric blower and vacuum cleaner having the same
WO2010090006A1 (en) Electric blower and electric vacuum cleaner utilizing the same
JP2013024133A (en) Motor-driven air blower, and vacuum cleaner employing the same
JP5048701B2 (en) Electric blower and electric vacuum cleaner
JP2013057286A (en) Electric blower and vacuum cleaner using the same
TW201016979A (en) Electric blower and vacuum cleaner equipped with the same
JP2013057300A (en) Electric blower and vacuum cleaner using the same
JP2012255412A (en) Electric blower and vacuum cleaner using the same
JP2012255352A (en) Electric blower and vacuum cleaner using the same
JP2006132369A (en) Electric blower
JP2013019327A (en) Electric blower, and vacuum cleaner using the same
JP2006250016A (en) Electric blower and vacuum cleaner using it
JP2016003563A (en) Electric blower for vacuum cleaner, and vacuum cleaner equipped therewith
JP2009203837A (en) Centrifugal fan
JP2013029033A (en) Electric blower
CN205622447U (en) Adopt axial flux brushless motor's dust collector fan
JP2010249036A (en) Electric blower and vacuum cleaner using the same
CN105406634B (en) Micro digital air suction motor
KR100808205B1 (en) Motor assembly for vacuum cleaner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813474

Country of ref document: EP

Kind code of ref document: A1