JP2013057286A - Electric blower and vacuum cleaner using the same - Google Patents

Electric blower and vacuum cleaner using the same Download PDF

Info

Publication number
JP2013057286A
JP2013057286A JP2011195809A JP2011195809A JP2013057286A JP 2013057286 A JP2013057286 A JP 2013057286A JP 2011195809 A JP2011195809 A JP 2011195809A JP 2011195809 A JP2011195809 A JP 2011195809A JP 2013057286 A JP2013057286 A JP 2013057286A
Authority
JP
Japan
Prior art keywords
shaft
bearing
heat
impeller
electric blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011195809A
Other languages
Japanese (ja)
Inventor
Makoto Murakami
誠 村上
Hiroyuki Kayama
博之 香山
Kazushige Nakamura
一繁 中村
Yukihiro Fujiwara
幸弘 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011195809A priority Critical patent/JP2013057286A/en
Publication of JP2013057286A publication Critical patent/JP2013057286A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric blower which achieves the cooling of the bearing of a brushless motor with a compact and low-loss structure when operating at a high-speed revolution and has high air-sending performance and high reliability and further to provide a vacuum cleaner using the same.SOLUTION: The electric blower includes: a brushless motor 7 made up of a rotor 3 with a rotary shaft 2a, a stator 4 oppositely arranged on the periphery of the rotor 3, and a motor frame 6 for holding the bearing 5 of the rotary shaft 2a and covering the stator 4; an impeller 8 fixed to the rotating shaft 2a; an air guide 9 for forming an airflow path on the periphery of the impeller 8; and a fan case 10 fixed to a foreface of the air guide 9 to cover the impeller 8. The rotary shaft 2a is formed with a double structure including a heat dissipating shaft 11a and a spindle 12a to transfer heat generated in the bearing 5 to the heat dissipating shaft 11a of the rotary shaft 2a, enabling the heat to be continuously dissipated to an air current inflowing from the impeller 8. Therefore, the bearing 5 is efficiently cooled even at the high-speed revolution to prevent a seizure by curbing an excessive temperature rise, thus permitting the electric blower with a compact and high air-sending performance to be achieved.

Description

本発明は、高速回転時のブラシレスモータの軸受冷却を小型でかつ低圧損の構成で実現し、高い送風性能と信頼性を有する電動送風機およびそれを用いた電気掃除機に関するものである。   The present invention relates to an electric blower that realizes cooling of a brushless motor bearing during high-speed rotation with a small and low-pressure loss configuration and has high blowing performance and reliability, and an electric vacuum cleaner using the electric blower.

従来、この種の電動送風機の軸受冷却機構としては、冷却液を軸受に供給して冷却するものや、空気を用いた強制冷却が知られており、軸受の熱を回転軸に伝導させて冷却する機構も多く用いられている。(例えば、特許文献1、2参照)。   Conventionally, as a bearing cooling mechanism of this type of electric blower, cooling by supplying a cooling liquid to a bearing or forced cooling using air is known, and cooling is performed by transferring the heat of the bearing to a rotating shaft. Many mechanisms are also used. (For example, refer to Patent Documents 1 and 2).

家庭用の電気掃除機の入力電力は限られており、より強い吸引力を得るためには電動送風機の送風性能を向上する必要がある。同時に、掃除のしやすさの視点から掃除機本体の小回りが良いことが望まれており、電動送風機を小型化する必要がある。   The input power of household vacuum cleaners is limited, and it is necessary to improve the blowing performance of the electric blower in order to obtain a stronger suction force. At the same time, from the viewpoint of easy cleaning, it is desired that the vacuum cleaner body has a small turn, and it is necessary to reduce the size of the electric blower.

電動送風機を小型化するにはインペラを高速回転させてインペラの径小化をする必要があるが、回転数の増加に伴ない、インペラのアンバランス量の影響が大きくなり、軸受にかかる荷重が増大するとともに、転動体と内輪・外輪との接触回数が増えて摩擦による軸受の温度が上昇して焼付きを起こしてしまう課題がある。   In order to reduce the size of the electric blower, it is necessary to rotate the impeller at high speed to reduce the diameter of the impeller.However, as the number of rotations increases, the effect of the unbalance amount of the impeller increases, and the load on the bearing increases. As the number of contacts increases, the number of times of contact between the rolling elements and the inner and outer rings increases, and the temperature of the bearing due to friction rises, causing seizure.

また、モータ内部にインペラで発生した気流を通して軸受を冷却しようとすると、曲がり損失が増えて電動送風機の性能が低下してしまうため、電動送風機の性能と小型化との両立が困難である。   In addition, when attempting to cool the bearing through the airflow generated by the impeller inside the motor, bending loss increases and the performance of the electric blower decreases, so it is difficult to achieve both the performance of the electric blower and downsizing.

図11は、特許文献1に記載された従来の軸受冷却機構を用いた送風機の断面構成を示す図である。軸受34が外嵌される有底筒状の回転軸35と、回転軸35に挿入されるパイプ36と、回転軸35の内周面とパイプ36の外周面との間に介装される螺旋状の吸排気用フィン37とを有し、回転軸35に随伴して吸排気用フィン37を回転させることにより、パイプ36の内部又はパイプ36の外周面と回転軸35の内周面との間に形成される通気路38のうちいずれか一方側から吸い込んだ冷却用の気体を他方側から排気して回転軸35及び軸受34を冷却するように構成したことを特徴とする高速回転軸35の軸受34の冷却機構を用いた送風機39が開示されている。   FIG. 11 is a diagram illustrating a cross-sectional configuration of a blower using the conventional bearing cooling mechanism described in Patent Document 1. In FIG. A bottomed cylindrical rotating shaft 35 on which the bearing 34 is fitted, a pipe 36 inserted into the rotating shaft 35, and a spiral interposed between the inner peripheral surface of the rotating shaft 35 and the outer peripheral surface of the pipe 36. And by rotating the intake / exhaust fin 37 in association with the rotary shaft 35, the pipe 36 or the outer peripheral surface of the pipe 36 and the inner peripheral surface of the rotary shaft 35 are rotated. A high-speed rotating shaft 35 is configured to cool the rotating shaft 35 and the bearing 34 by exhausting the cooling gas sucked from either one of the air passages 38 formed therebetween to the other side. A blower 39 using a cooling mechanism for the bearing 34 is disclosed.

図12は、特許文献2に記載された従来の軸受冷却機構を用いた高温ガス用ブロワの断面構成を示す図である。固定軸40に回転可能に設けた回転子41と、回転子41に対設された固定子42とからなるモータで固定軸40に装備したインペラ43をブロワケーシング44内で回転自在に備えたブロワ45において、インペラ43をセラミックス焼結体、耐熱合金などの耐熱材料製として回転子41に連結して、モータの回転子41の両端部においてスパイラル溝ラジアル動圧軸受部46を形成して支承すると共に、固定軸40中に冷却用の冷却パイプ47を内装したことを特徴とする高温ガス用ブロワ45が開示されている。   FIG. 12 is a view showing a cross-sectional configuration of a high-temperature gas blower using the conventional bearing cooling mechanism described in Patent Document 2. As shown in FIG. A blower provided with an impeller 43 mounted on the fixed shaft 40 by a motor including a rotor 41 rotatably provided on the fixed shaft 40 and a stator 42 provided on the rotor 41 so as to be rotatable in the blower casing 44. 45, the impeller 43 is made of a heat-resistant material such as a ceramic sintered body or a heat-resistant alloy and connected to the rotor 41, and spiral groove radial dynamic pressure bearing portions 46 are formed and supported at both ends of the rotor 41 of the motor. In addition, a high-temperature gas blower 45 including a cooling pipe 47 for cooling in the fixed shaft 40 is disclosed.

特開2007−192265号公報JP 2007-192265 A 特開平1−249991号公報Japanese Patent Laid-Open No. 1-249991

しかしながら、特許文献1に記載の従来の軸受冷却機構を用いた送風機の構成では、回転軸の内周面とパイプの外周面との間に螺旋状の吸排気用フィンを有しているため、ファンを回すために必要なトルクに加え、吸気用フィンを回すために必要なトルクが必要になり、高速回転時の軸受冷却は可能であるが、回転軸に必要なトルクは一般に回転数の自乗に比例して増加するため、必要とされるトルクが大幅に大きくなり、送風機の性能が落ちてしまうという課題を有していた。   However, in the configuration of the blower using the conventional bearing cooling mechanism described in Patent Document 1, since the helical intake and exhaust fins are provided between the inner peripheral surface of the rotating shaft and the outer peripheral surface of the pipe, In addition to the torque required to rotate the fan, the torque required to rotate the intake fin is required, and bearing cooling during high-speed rotation is possible, but the torque required for the rotating shaft is generally the square of the number of rotations. Therefore, the required torque is significantly increased, and the performance of the blower is degraded.

また、特許文献2に記載の従来の軸受冷却機構を用いた高温ガス用ブロワの構成では、回転軸に内装した冷却パイプの熱を放熱させるために熱交換器が必要であり、サイズが大きくなるため、家庭用の電気掃除機へ収納することが難しく、実質的に適用が困難であるという課題を有していた。   Moreover, in the structure of the high-temperature gas blower using the conventional bearing cooling mechanism described in Patent Document 2, a heat exchanger is required to dissipate heat from the cooling pipe built in the rotating shaft, and the size increases. For this reason, it has been difficult to accommodate in a household vacuum cleaner, and it has been difficult to apply.

つまり、特許文献1、2に記載の従来の軸受冷却機構では、いずれも電動送風機の性能と小型化を実現することができないという課題を有していた。   That is, the conventional bearing cooling mechanisms described in Patent Documents 1 and 2 have a problem that the performance and miniaturization of the electric blower cannot be realized.

本発明は、前記従来の課題を解決するもので、高速回転時のブラシレスモータの軸受冷却を小型でかつ低圧損の構成で実現し、高い送風性能と信頼性を有する電動送風機およびそれを用いた電気掃除機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and realizes cooling of a brushless motor bearing during high-speed rotation with a small and low-pressure loss configuration, and uses an electric blower having high blowing performance and reliability and the same. An object is to provide a vacuum cleaner.

前記従来の課題を解決するために、本発明の電動送風機は、回転軸を有するロータと前記ロータ外周に対向配置されたステータと前記回転軸の軸受を保持し前記ステータを覆うモータフレームとで構成されるブラシレスモータと、前記回転軸に固定されたインペラと、前記インペラの外周に通風路を形成するエアガイドと、前記インペラを覆い前記エアガイド前面に固定されたファンケースとを備え、前記回転軸は材質の異なる放熱軸と主軸との二重構造で形成され、前記放熱軸は前記主軸の中空部に当接した状態で内装され、前記放熱軸の熱伝導率は前記主軸よりも大きく、前記放熱軸の端部は前記主軸の端部よりも突出して前記インペラの内部流路もしくはその上流に位置する構成をしている。   In order to solve the above-described conventional problems, an electric blower of the present invention includes a rotor having a rotating shaft, a stator disposed opposite to the outer periphery of the rotor, and a motor frame that holds a bearing of the rotating shaft and covers the stator. A brushless motor, an impeller fixed to the rotating shaft, an air guide that forms a ventilation path on an outer periphery of the impeller, and a fan case that covers the impeller and is fixed to the front surface of the air guide. The shaft is formed of a double structure of a heat dissipation shaft and a main shaft made of different materials, the heat dissipation shaft is built in a state in contact with the hollow portion of the main shaft, and the heat conductivity of the heat dissipation shaft is larger than the main shaft, The end of the heat dissipating shaft protrudes beyond the end of the main shaft and is located in the internal flow path of the impeller or upstream thereof.

これによって、ブラシレスモータを高速で駆動させた際に、インペラに流入する気流が常に主軸の端部より突出した放熱軸の周囲を通過し、また軸受の熱は内輪と当接している回転軸へと伝導するため、放熱軸の端部と軸受当接部とで温度差が生じて軸受の熱は温度の低い端部へと放熱軸内部を伝導していき、気流と接する端部周辺より放熱することができるようになり、高速回転中の軸受の温度上昇を抑え、小型で高い送風性能を有する電動送風機を実現することができる。   As a result, when the brushless motor is driven at high speed, the airflow flowing into the impeller always passes around the heat dissipating shaft protruding from the end of the main shaft, and the heat of the bearing is directed to the rotating shaft in contact with the inner ring. As a result, a temperature difference occurs between the end of the heat dissipation shaft and the bearing contact portion, and the heat of the bearing is conducted through the heat dissipation shaft to the end of the lower temperature, and the heat is dissipated from the periphery of the end in contact with the airflow. Thus, the temperature rise of the bearing during high-speed rotation can be suppressed, and a small electric blower having high air blowing performance can be realized.

また、本発明の電気掃除機は、軸受の信頼性が高く小型で高い送風性能を有する電動送風機を搭載しているので、強い吸引力を有しゴミ取れ性が良好であり、小回りの利く使い勝手がよい電気掃除機となる。   In addition, since the electric vacuum cleaner of the present invention is equipped with an electric blower having a highly reliable bearing and a small size and high air blowing performance, it has a strong suction force and good dust removal, and is easy to use with a small turn. Is a good vacuum cleaner.

本発明の電動送風機は、回転軸を放熱軸と主軸の二重構造で形成し、軸受で発生した熱を回転軸の放熱軸へと伝え、インペラから流入する気流に連続的に放熱することができるため、高速回転時においても軸受を効率よく冷却して過度な温度上昇を抑えて焼付けを防止し、小型で高い送風性能を有する電動送風機を実現することができる。
また、このような電動送風機を用いた電気掃除機は、強い吸引力を有し、ゴミ取れ性が良好であり、かつ電動送風機が軽量なので、小回りが利いて使い勝手がよい。
In the electric blower of the present invention, the rotating shaft is formed by a double structure of the heat radiating shaft and the main shaft, the heat generated by the bearing is transmitted to the heat radiating shaft of the rotating shaft, and the heat is continuously radiated to the airflow flowing from the impeller. Therefore, even during high-speed rotation, the bearing can be efficiently cooled to suppress excessive temperature rise to prevent seizure, and a small electric blower having high air blowing performance can be realized.
Moreover, the electric vacuum cleaner using such an electric blower has a strong suction force, good dust removal, and a lightweight electric blower.

本発明の第1の実施の形態における電動送風機の一部断面図The partial cross section figure of the electric blower in the 1st Embodiment of this invention 同、電動送風機の回転軸の一部断面斜視図The partial cross-sectional perspective view of the rotating shaft of the electric blower 同、電動送風機の展開図Development of electric blower 同、電動送風機のインペラの一部断面斜視図The partial cross-sectional perspective view of the impeller of the electric blower 同、電動送風機を用いた電気掃除機の構成を表す断面図Sectional drawing showing the structure of the electric vacuum cleaner using an electric blower 本発明の第2の実施の形態における電動送風機の一部断面図Partial sectional drawing of the electric blower in the 2nd Embodiment of this invention 同、電動送風機の回転軸の一部断面斜視図The partial cross-sectional perspective view of the rotating shaft of the electric blower 同、電動送風機の回転軸の一部断面斜視図The partial cross-sectional perspective view of the rotating shaft of the electric blower 本発明の第3の実施の形態における電動送風機の一部断面図Partial sectional drawing of the electric blower in the 3rd Embodiment of this invention 同、電動送風機の回転軸の一部断面斜視図The partial cross-sectional perspective view of the rotating shaft of the electric blower 従来の電動送風機の断面図Cross section of a conventional electric blower 従来の電動送風機の断面図Cross section of a conventional electric blower

第1の発明は、回転軸を有するロータと前記ロータ外周に対向配置されたステータと前記回転軸の軸受を保持し前記ステータを覆うモータフレームとで構成されるブラシレスモータと、前記回転軸に固定されたインペラと、前記インペラの外周に通風路を形成するエアガイドと、前記インペラを覆い前記エアガイド前面に固定されたファンケースとを備え、前記回転軸は材質の異なる放熱軸と主軸との二重構造で形成され、前記放熱軸は前記主軸の中空部に当接した状態で内装され、前記放熱軸の熱伝導率は前記主軸よりも大きく、前記放熱軸の上端部は前記主軸の上端部よりも突出して前記インペラの内部流路もしくはその上流に位置する構成とした電動送風機としたものである。
これによって、ブラシレスモータを高速で駆動させた際に、インペラが回転することによって発生する気流は、常に主軸の上端部より突出している放熱軸の上端部周囲を通過してインペラ内部へと流入するため、放熱軸の上端部の温度は低くなり、放熱軸の上端部と軸受当接部との間で温度差が生じるため、放熱軸内部に温度勾配ができて、軸受の熱は温度の低い放熱軸の上端部へと放熱軸内部を伝導していき、放熱軸の上端部周辺より放熱することができる。
これにより、高速回転中の軸受の過度な温度上昇を抑え、軸受の焼付けを防止することができる。また、軸受の熱を回転軸の放熱軸を通じて気流へ放熱させるというシンプルな軸受冷却構成であるため、熱交換器などを必要とせず、小型で高い送風性能を有する電動送風機を実現することができる。
According to a first aspect of the present invention, there is provided a brushless motor including a rotor having a rotating shaft, a stator disposed opposite to the outer periphery of the rotor, a motor frame holding a bearing of the rotating shaft and covering the stator, and fixed to the rotating shaft And a fan case that covers the impeller and is fixed to the front surface of the air guide, and the rotating shaft includes a heat dissipation shaft and a main shaft that are made of different materials. The heat dissipating shaft is built in a state of being in contact with the hollow portion of the main shaft, the heat conductivity of the heat dissipating shaft is larger than that of the main shaft, and the upper end of the heat dissipating shaft is the upper end of the main shaft. The electric blower is configured to protrude from the portion and to be located in the internal flow path of the impeller or upstream thereof.
As a result, when the brushless motor is driven at high speed, the airflow generated by the rotation of the impeller always flows around the upper end of the heat dissipation shaft protruding from the upper end of the main shaft and flows into the impeller. Therefore, the temperature of the upper end portion of the heat dissipation shaft is lowered, and a temperature difference is generated between the upper end portion of the heat dissipation shaft and the bearing contact portion. Therefore, a temperature gradient is created inside the heat dissipation shaft, and the heat of the bearing is low. The inside of the heat dissipation shaft is conducted to the upper end portion of the heat dissipation shaft, and heat can be radiated from the periphery of the upper end portion of the heat dissipation shaft.
Thereby, excessive temperature rise of the bearing during high-speed rotation can be suppressed, and seizure of the bearing can be prevented. In addition, since it has a simple bearing cooling configuration in which the heat of the bearing is dissipated to the airflow through the heat radiating shaft of the rotating shaft, it is possible to realize a small electric blower that does not require a heat exchanger or the like and has high air blowing performance. .

第2の発明は、特に第1の発明において、主軸は、軸受と当接する面に放射状の複数の孔を有し、主軸よりも熱伝導率の高い放熱体を複数の孔に充填させた構成をしているので、軸受と対向する放熱軸との間の熱抵抗が小さくなり、軸受から放熱軸に伝わる熱流量が大きくなるため、軸受の熱を放熱しやすくなり、軸受冷却をより効率的に行うことができ、軸受の信頼性を向上することができる。   According to a second aspect of the invention, in particular, in the first aspect of the invention, the main shaft has a plurality of radial holes on the surface in contact with the bearing, and a plurality of holes are filled with a heat radiator having a higher thermal conductivity than the main shaft. Therefore, the heat resistance between the bearing and the radiating shaft facing the bearing is reduced, and the heat flow from the bearing to the radiating shaft is increased, so the heat from the bearing is easily radiated and the bearing is cooled more efficiently. The reliability of the bearing can be improved.

第3の発明は、特に第1または第2の発明において、放熱軸は、その両端部が主軸の両端部より突出し、かつその下端部がモータフレーム下端よりも突出する構成をしているので、インペラに流入する気流に接する放熱軸の上端部だけでなく、モータフレーム下端から突出した放熱軸の下端部と軸受当接部との間でも温度差が生じ、放熱軸内部に温度勾配ができて、放熱軸の両端部から放熱することができるようになる。   In the third invention, particularly in the first or second invention, the heat dissipating shaft has a structure in which both end portions protrude from both end portions of the main shaft and the lower end portion protrudes from the lower end of the motor frame. Not only the upper end of the heat dissipation shaft that contacts the airflow flowing into the impeller, but also the temperature difference between the lower end of the heat dissipation shaft protruding from the lower end of the motor frame and the bearing abutment, a temperature gradient is created inside the heat dissipation shaft. The heat can be radiated from both ends of the heat radiating shaft.

第4の発明は、特に第1〜3のいずれか1つの発明において、放熱軸は、その外周面に複数の溝を有し、主軸の内周面に設けた複数の溝と互いに嵌め合う構成をしているので、放熱軸の外周面と主軸の内周面との接触面積が増えて接触熱抵抗が小さくなり、軸受からの熱流量がより大きくなるため、軸受の熱を放熱しやすくなり、軸受冷却をより効率的に行うことができる。   According to a fourth aspect of the present invention, in particular, in any one of the first to third aspects, the heat dissipation shaft has a plurality of grooves on the outer peripheral surface thereof, and fits with the plurality of grooves provided on the inner peripheral surface of the main shaft. Because the contact area between the outer peripheral surface of the heat dissipation shaft and the inner peripheral surface of the main shaft is increased, the contact thermal resistance is reduced, and the heat flow from the bearing is increased, which makes it easier to dissipate the heat of the bearing. The bearing can be cooled more efficiently.

第5の発明は、特に第1〜4のいずれか1つの発明において、主軸は、ロータと当接する面に放射状の複数の孔を有し、主軸よりも熱伝導率の高い放熱体を複数の孔に充填させた構成をしているので、ロータと対向する放熱軸との間の熱抵抗が小さくなり、ロータから放熱軸に伝わる熱流量が大きくなるため、ロータの熱を放熱しやすくなり、軸受だけでなくロータも冷却することが可能になり、ロータの過度な温度上昇による熱減磁を防止することができる。   In a fifth aspect of the invention, in any one of the first to fourth aspects of the invention, the main shaft has a plurality of radial holes on a surface in contact with the rotor, and a plurality of heat dissipating bodies having a higher thermal conductivity than the main shaft are provided. Since the hole is filled, the thermal resistance between the rotor and the heat dissipation shaft facing the rotor is reduced, and the heat flow from the rotor to the heat dissipation shaft is increased, making it easier to dissipate the heat of the rotor. Not only the bearing but also the rotor can be cooled, and thermal demagnetization due to excessive temperature rise of the rotor can be prevented.

第6の発明は、特に第1〜5のいずれか1つの発明の電動送風機を搭載した電気掃除機とすることにより、強い吸引力を有しゴミ取れ性がよく、本体サイズが小さいので小回りの利く使い勝手がよい電気掃除機となる。   The sixth aspect of the invention is a vacuum cleaner equipped with the electric blower of any one of the first to fifth aspects of the invention, so that it has a strong suction force and good dust removal, and the main body size is small so It becomes a vacuum cleaner that is easy to use and convenient.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1〜図5は、本発明の実施の形態1における電動送風機の構成を示すものである。図1は同電動送風機の一部断面図であり、図2は同電動送風機の回転軸の一部断面斜視図であり、図3は同電動送風機の展開図であり、図4は同電動送風機のインペラの一部断面斜視図であり、図5は同電動送風機を用いた電気掃除機の構成を表す断面図である。
(Embodiment 1)
FIGS. 1-5 shows the structure of the electric blower in Embodiment 1 of this invention. 1 is a partial cross-sectional view of the electric blower, FIG. 2 is a partial cross-sectional perspective view of a rotating shaft of the electric blower, FIG. 3 is a development view of the electric blower, and FIG. 4 is the electric blower. FIG. 5 is a cross-sectional view illustrating a configuration of a vacuum cleaner using the electric blower.

図1に示すように、電動送風機1aは、回転軸2aを有するロータ3とロータ3外周に対向配置されたステータ4と回転軸2aの軸受5を保持しステータ4を覆うモータフレーム6とで構成されるブラシレスモータ7と、回転軸2aに固定されたインペラ8と、インペラ8の外周に通風路を形成するエアガイド9と、インペラ8を覆いエアガイド9前面に固定されたファンケース10とを備え、回転軸2aは、図2に示すように、アルミニウム製の放熱軸11aと鋼製の主軸12aとの二重構造で形成され、主軸12aは中空部を有し放熱軸11aは主軸12aに圧入固定され、放熱軸11aの外周面は中空部に当接しており、放熱軸11aの上端部は主軸12aの上端部よりも突出し、さらにインペラ8上部よりも上流側に位置している。   As shown in FIG. 1, the electric blower 1 a includes a rotor 3 having a rotating shaft 2 a, a stator 4 disposed opposite to the outer periphery of the rotor 3, and a motor frame 6 that holds the bearing 5 of the rotating shaft 2 a and covers the stator 4. A brushless motor 7, an impeller 8 fixed to the rotating shaft 2 a, an air guide 9 that forms a ventilation path on the outer periphery of the impeller 8, and a fan case 10 that covers the impeller 8 and is fixed to the front surface of the air guide 9. As shown in FIG. 2, the rotating shaft 2a is formed with a double structure of an aluminum heat dissipating shaft 11a and a steel main shaft 12a. The main shaft 12a has a hollow portion and the heat dissipating shaft 11a is connected to the main shaft 12a. The outer peripheral surface of the heat radiating shaft 11 a is in contact with the hollow portion, and the upper end portion of the heat radiating shaft 11 a protrudes from the upper end portion of the main shaft 12 a and is further upstream than the upper portion of the impeller 8.

また、図3に示すように、エアガイド9は複数の案内翼13を有し、その上面にファンケース10が当接する状態で固定され、各々の案内翼13間に独立風路14が形成されており、各々の独立風路14はインペラ8外周からエアガイド9外周にかけて流路断面積が連続的に大きくなっている。   As shown in FIG. 3, the air guide 9 has a plurality of guide vanes 13 and is fixed in a state where the fan case 10 abuts on the upper surface thereof, and an independent air passage 14 is formed between the guide vanes 13. Each of the independent air passages 14 has a channel cross-sectional area that continuously increases from the outer periphery of the impeller 8 to the outer periphery of the air guide 9.

また、図4に示すように、インペラ8は、板金製の前シュラウド15とこれに対向する後シュラウド16とで3次元翼を有するインデューサ17および複数のブレード18を挟持することで構成されている。また、図1に示すように、軸受5には摩擦トルクが少ない特徴を有するころがり軸受5を使用した。ころがり軸受5は、内輪19と外輪20を有し、その間に転動体21が介在しており、転動体21の転がりによって回転荷重を支えている。インペラ8入口先端部は、インペラ8が回転駆動可能な状態でPTFE樹脂製リング22を接触させて動的にシールされている。   As shown in FIG. 4, the impeller 8 is configured by sandwiching an inducer 17 having a three-dimensional wing and a plurality of blades 18 between a sheet metal front shroud 15 and a rear shroud 16 facing the front shroud 15. Yes. Further, as shown in FIG. 1, a rolling bearing 5 having a feature of low friction torque is used as the bearing 5. The rolling bearing 5 has an inner ring 19 and an outer ring 20, and a rolling element 21 is interposed between the inner ring 19 and the outer ring 20, and a rotational load is supported by the rolling of the rolling element 21. The front end of the inlet of the impeller 8 is dynamically sealed by contacting the PTFE resin ring 22 in a state where the impeller 8 can be driven to rotate.

図5において、電気掃除機23は、本体吸気口24に連通した集塵室25と本体排気口26を備えた送風室27とを有する掃除機本体28と、集塵室25に本体吸気口24と気密に装着された集塵袋29と、送風室27に設置された電動送風機1aと、電動送風機1aを覆う難燃樹脂製の防音カバー30と、送風室27の上下に配置された吸音材31とから構成されている。なお、図示していないが、本体吸気口24には、ホース、延長管(図示せず)が順次接続され、延長管の先端には床面上の塵埃を吸引するノズル(図示せず)
が取りつけられている。
In FIG. 5, the vacuum cleaner 23 includes a vacuum cleaner main body 28 having a dust collection chamber 25 communicating with the main body intake port 24 and a blower chamber 27 having a main body exhaust port 26, and a main body intake port 24 in the dust collection chamber 25. A dust bag 29 that is airtightly installed, an electric blower 1 a installed in the blower chamber 27, a soundproof cover 30 made of a flame-retardant resin that covers the electric blower 1 a, and a sound-absorbing material disposed above and below the blower chamber 27. 31. Although not shown, a hose and an extension pipe (not shown) are sequentially connected to the main body intake port 24, and a nozzle (not shown) for sucking dust on the floor is attached to the tip of the extension pipe.
Is attached.

以上のように構成された電動送風機1aおよびそれを用いた電気掃除機23について、以下その動作、作用を説明する。   About the electric blower 1a comprised as mentioned above and the vacuum cleaner 23 using the same, the operation | movement and an effect | action are demonstrated below.

まず、電動送風機1aの動作について説明する。図1において、巻線32を励磁することで回転磁界が発生し、回転磁界と同期してロータ3が回転し、回転軸2aに固定されたインペラ8が回転する。インペラ8が回転することで、3次元翼と複数のブレード18によってインペラ8内部の空気がインペラ8内部の外周へと押しやられ、インペラ8内部が負圧になり、インペラ8内部へ流れ込む気流が発生する。気流はインペラ8の入口から軸方向に流入し、インデューサ17、複数のブレード18、前シュラウド15、後シュラウド16とで形成された複数の内部流路に沿って流れた後、インペラ8外周へ流出する。   First, the operation of the electric blower 1a will be described. In FIG. 1, a rotating magnetic field is generated by exciting the winding 32, the rotor 3 rotates in synchronization with the rotating magnetic field, and the impeller 8 fixed to the rotating shaft 2a rotates. By rotating the impeller 8, the air inside the impeller 8 is pushed to the outer periphery of the impeller 8 by the three-dimensional blade and the plurality of blades 18, the inside of the impeller 8 becomes negative pressure, and an airflow flowing into the impeller 8 is generated. To do. The airflow flows axially from the inlet of the impeller 8 and flows along a plurality of internal flow paths formed by the inducer 17, the plurality of blades 18, the front shroud 15, and the rear shroud 16, and then to the outer periphery of the impeller 8. leak.

インペラ8から流出した気流は、エアガイド9に複数の案内翼13で形成された各々の独立風路14に流入し、エアガイド9外周へかけて流れる。その際、各々の独立風路14の流路断面積はインペラ8外周からエアガイド9外周にかけて大きくなるため、独立風路14を流れる気流の流速は減速されながら、動圧が静圧へと変換される。   The airflow that has flowed out of the impeller 8 flows into the independent air passages 14 formed by the plurality of guide vanes 13 in the air guide 9 and flows toward the outer periphery of the air guide 9. At that time, since the flow passage cross-sectional area of each independent air passage 14 increases from the outer periphery of the impeller 8 to the outer periphery of the air guide 9, the dynamic pressure is converted to static pressure while the flow velocity of the airflow flowing through the independent air passage 14 is reduced. Is done.

電動送風機1aの送風性能は、インペラ8を回転駆動するために入力した電力と、電動送風機1aが行う仕事(インペラ8が回転することで発生する真空度と流量の積で求まる空気出力)との比であらわされる。そのため、実際に使用する流量において電動送風機1aが発生する真空度(静圧)を大きくすることが、電動送風機1aの送風性能をあげる上で大変重要となる。また、電動送風機1aを小型化するためには、インペラ8を高速回転させて径小化する必要がある。従来の電動送風機1aでは50,000rpm未満で駆動させているが、更なる小型化には50,000rpm以上の高速回転が必要であり、ブラシの摺動損失がないブラシレスモータ7が適している。   The blowing performance of the electric blower 1a is determined by the electric power input to rotationally drive the impeller 8 and the work performed by the electric blower 1a (the air output obtained by the product of the degree of vacuum and the flow rate generated by the rotation of the impeller 8). It is expressed as a ratio. For this reason, increasing the degree of vacuum (static pressure) generated by the electric blower 1a at the actual flow rate is very important for improving the blowing performance of the electric blower 1a. In order to reduce the size of the electric blower 1a, it is necessary to rotate the impeller 8 at a high speed to reduce the diameter. Although the conventional electric blower 1a is driven at less than 50,000 rpm, further reduction in size requires high-speed rotation of 50,000 rpm or more, and the brushless motor 7 having no brush sliding loss is suitable.

一方、回転数が増加することで、インペラ8のアンバランスが回転軸2aへ及ぼす影響が大きくなるため、回転軸2aの振れ回りが起こりやすくなって軸受5にかかる荷重が増大するとともに、転動体21と内輪19・外輪20との接触回数が増えて、摩擦によって軸受5の温度が過度に上昇して軸受5が焼付けを起こしてしまうという課題がある。   On the other hand, since the influence of the unbalance of the impeller 8 on the rotating shaft 2a increases due to the increase in the rotational speed, the rotating shaft 2a easily swings and the load on the bearing 5 increases, and the rolling element There is a problem that the number of times of contact between the inner ring 19 and the outer ring 20 increases and the temperature of the bearing 5 rises excessively due to friction and the bearing 5 is seized.

そのため、高速回転時には、軸受5を効率よく冷却して温度上昇を抑えることが大変重要となる。一方、インペラ8からの気流をブラシレスモータ7内部に流して軸受5を冷却しようとすると、気流が曲がる曲率半径が小さく、曲がり損失が増えて電動送風機1aの性能が大幅に低下してしまうため、電動送風機1aの性能と小型化を両立するためには、軸受5の熱を効率的にブラシレスモータ7外部へ放熱できる構成が必要である。   For this reason, during high-speed rotation, it is very important to efficiently cool the bearing 5 to suppress the temperature rise. On the other hand, when the airflow from the impeller 8 is caused to flow inside the brushless motor 7 to cool the bearing 5, the radius of curvature at which the airflow bends is small, the bending loss increases, and the performance of the electric blower 1a is greatly reduced. In order to achieve both performance and miniaturization of the electric blower 1a, a configuration that can efficiently dissipate the heat of the bearing 5 to the outside of the brushless motor 7 is necessary.

軸受5の温度上昇は、上述した転動体21と内輪19・外輪20との摩擦による熱と、ブラシレスモータ7内部における軸受5周辺の熱が軸受5に伝わることによって起こる。軸受5の熱は、内輪19と当接する主軸12aへと伝導し、次に放熱軸11aへと伝導する。   The temperature rise of the bearing 5 is caused by the heat generated by the friction between the rolling element 21 and the inner ring 19 and the outer ring 20 and the heat around the bearing 5 inside the brushless motor 7 being transmitted to the bearing 5. The heat of the bearing 5 is conducted to the main shaft 12a in contact with the inner ring 19, and then conducted to the heat radiating shaft 11a.

インペラ8が回転することによって発生する気流は、常に主軸12aの上端部より突出している放熱軸11aの上端部周囲を通過してインペラ8内部へと流入するため、放熱軸11aの上端部の温度は低くなり、放熱軸11aの上端部と軸受5当接部との間で温度差が生じるため、放熱軸11a内部に温度勾配ができて、軸受5の熱は温度の低い放熱軸11aの上端部へと放熱軸11a内部を伝導していき、放熱軸11aの上端部周辺より放熱することができる。   Since the airflow generated by the rotation of the impeller 8 always passes around the upper end of the heat dissipation shaft 11a protruding from the upper end of the main shaft 12a and flows into the impeller 8, the temperature of the upper end of the heat dissipation shaft 11a Since a temperature difference is generated between the upper end portion of the heat radiating shaft 11a and the contact portion of the bearing 5, a temperature gradient is created inside the heat radiating shaft 11a, and the heat of the bearing 5 is the upper end of the heat radiating shaft 11a having a low temperature. The inside of the heat radiating shaft 11a is conducted to the part, and heat can be radiated from the vicinity of the upper end portion of the heat radiating shaft 11a.

これにより、高速回転中の軸受5の過度な温度上昇を抑え、軸受5の焼付けを防止することができる。また、軸受5の熱を回転軸2aの放熱軸11aを通じて気流へ放熱させるというシンプルな軸受冷却構成であり、熱交換器などを必要とせず、インペラ8に流入する気流に対して圧損にもならないため、小型で高い送風性能を有する電動送風機1aを実現することができる。
なお、放熱軸11aに使用する材料としては、アルミニウム以外にも、銅、銀、金、黄銅などの金属がある他、ベリリア、珪素、窒化アルミなどの無機材料が考えられる。
Thereby, the excessive temperature rise of the bearing 5 during high-speed rotation can be suppressed and seizure of the bearing 5 can be prevented. The bearing 5 has a simple bearing cooling structure in which the heat of the bearing 5 is radiated to the airflow through the heat radiating shaft 11a of the rotating shaft 2a, and does not require a heat exchanger or the like and does not cause pressure loss with respect to the airflow flowing into the impeller 8. Therefore, the electric blower 1a having a small size and high blowing performance can be realized.
In addition to aluminum, there are metals such as copper, silver, gold, and brass as well as inorganic materials such as beryllia, silicon, and aluminum nitride.

次に、電気掃除機23の動作について説明する。図5において、電動送風機1aのインペラ8が回転すると、集塵室25が負圧状態になり、ノズル(図示せず)から吸引された塵埃を含む気流が本気吸気口を通過して集塵室25へ流入する。集塵袋29で塵埃を濾過分離した清潔な気流は、電動送風機1aのインペラ8へ流入し、通気路に設けられた複数の風路を通過した後、防音カバー30の排気口から流出し、本体排気口26を通じて掃除機本体28外部へと放出される。電気掃除機23は、小型で送風性能の高い電動送風機1aを搭載しているため、強い吸引力を有し、ゴミ取れ性がよく、電動送風機1aの本体サイズが小さくて、小回りが利いて使い勝手がよい。また、掃除機本体28内の吸音面積や排気通路の延長を行うことで、運転音の小さな電気掃除機23にすることも可能である。   Next, the operation of the electric vacuum cleaner 23 will be described. In FIG. 5, when the impeller 8 of the electric blower 1a is rotated, the dust collection chamber 25 is in a negative pressure state, and an air flow including dust sucked from a nozzle (not shown) passes through the main intake port and is collected. 25. The clean airflow filtered and separated by the dust bag 29 flows into the impeller 8 of the electric blower 1a, passes through a plurality of air passages provided in the ventilation passage, and then flows out from the exhaust port of the soundproof cover 30. It is discharged to the outside of the cleaner main body 28 through the main body exhaust port 26. Since the electric vacuum cleaner 23 is equipped with a small and highly efficient electric blower 1a, the vacuum cleaner 23 has a strong suction force, good dust removal, a small body size of the electric blower 1a, and a small turn, which is convenient to use. Is good. Further, by extending the sound absorption area and the exhaust passage in the cleaner main body 28, it is possible to make the electric cleaner 23 with a low operation sound.

以上のように、本実施の形態においては、回転軸2aをアルミニウム製の放熱軸11aと鋼製の主軸12aとの二重構造とし、高速回転時の軸受5の熱を放熱軸11aへ伝導させて、放熱軸11aの上端部周辺からインペラ8に流入する気流へ放熱させる構成とすることで、放熱軸11aの上端部と軸受5当接部との間に温度差を発生させて熱伝導を促進し絶えず軸受5を冷却することができるため、軸受5の過度な温度上昇を抑え、軸受5の焼付けを防止することができる。   As described above, in the present embodiment, the rotary shaft 2a has a double structure of the aluminum heat dissipation shaft 11a and the steel main shaft 12a, and the heat of the bearing 5 during high speed rotation is conducted to the heat dissipation shaft 11a. Thus, heat dissipation is performed by generating a temperature difference between the upper end portion of the heat dissipation shaft 11a and the bearing 5 contact portion by dissipating heat from the vicinity of the upper end portion of the heat dissipation shaft 11a to the airflow flowing into the impeller 8. Since the bearing 5 can be constantly cooled by promoting, excessive temperature rise of the bearing 5 can be suppressed and seizure of the bearing 5 can be prevented.

(実施の形態2)
図6、図7は、本発明の実施の形態2における電動送風機1bの構成を示すものである。図6は同、電動送風機1bの一部断面図であり、図7は同、電動送風機1bの回転軸2bの一部断面斜視図である。なお、実施の形態1と同一要素については、同一符号を付してその説明を省略する。
(Embodiment 2)
6 and 7 show the configuration of the electric blower 1b according to Embodiment 2 of the present invention. 6 is a partial cross-sectional view of the electric blower 1b, and FIG. 7 is a partial cross-sectional perspective view of the rotating shaft 2b of the electric blower 1b. Note that the same elements as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図6、図7において、電動送風機1bの回転軸2bは、軸受5との当接面に放射状に複数の孔を設けた鋼製の主軸12bの中空部内に高温のアルミニウムを流し込み、主軸12bの中空部と全ての放射状の孔にアルミニウムを充填させたダイキャスト成形で作製された二重構造を有している。複数の孔に充填されたアルミニウムの外周面は主軸12bの外周面と略同一面を有し、軸受5の内輪19が当接している。また、放熱軸11bの両端部が主軸12bの両端部より突出し、放熱軸11bの上端部はインペラ8上部より突出した位置にあり、一方、放熱軸11bの下端部はモータフレーム6下端より突出した構成をしている。なお、放射状に設けられた複数の孔に充填されたアルミニウムを簡易的に説明するため、以下では、放熱体33と呼ぶことにする。   6 and 7, the rotating shaft 2b of the electric blower 1b is formed by pouring high-temperature aluminum into a hollow portion of a steel main shaft 12b in which a plurality of holes are provided radially on the contact surface with the bearing 5, It has a double structure made by die casting in which the hollow portion and all radial holes are filled with aluminum. The outer peripheral surface of the aluminum filled in the plurality of holes has substantially the same surface as the outer peripheral surface of the main shaft 12b, and the inner ring 19 of the bearing 5 is in contact therewith. Further, both end portions of the heat radiating shaft 11b protrude from both end portions of the main shaft 12b, and the upper end portion of the heat radiating shaft 11b is in a position protruding from the upper portion of the impeller 8, while the lower end portion of the heat radiating shaft 11b protrudes from the lower end of the motor frame 6. Has a configuration. In addition, in order to simply explain aluminum filled in a plurality of holes provided in a radial manner, the aluminum is hereinafter referred to as a heat radiator 33.

以上のように構成された電動送風機について、以下その動作、作用を説明する。   About the electric blower comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、電動送風機1bの動作について説明する。図6において、巻線32を励磁することで回転磁界が発生し、回転磁界と同期してロータ3が回転し、回転軸2bに固定されたインペラ8が回転する。インペラ8が回転することで、3次元翼と複数のブレード18によってインペラ8内部の空気がインペラ8内部の外周へと押しやられ、インペラ8内部が負圧になり、インペラ8内部へ流れ込む気流が発生する。気流はインペラ8の入口から軸方向に流入し、インペラ8の複数の内部流路に沿って流れた後、インペラ8外周へ流出する。   First, the operation of the electric blower 1b will be described. In FIG. 6, a rotating magnetic field is generated by exciting the winding 32, the rotor 3 rotates in synchronization with the rotating magnetic field, and the impeller 8 fixed to the rotating shaft 2b rotates. By rotating the impeller 8, the air inside the impeller 8 is pushed to the outer periphery of the impeller 8 by the three-dimensional blade and the plurality of blades 18, the inside of the impeller 8 becomes negative pressure, and an airflow flowing into the impeller 8 is generated. To do. The airflow flows in the axial direction from the inlet of the impeller 8, flows along a plurality of internal flow paths of the impeller 8, and then flows out to the outer periphery of the impeller 8.

軸受5の温度上昇は、転動体21と内輪19・外輪20との摩擦による熱と、ブラシレスモータ7内部における軸受5周辺の熱が軸受5に伝わることで起こる。放熱体33はアルミニウムであるため、主軸12bに比べて熱伝導率が大きく、軸受5の熱は軸受5の内輪19と当接している複数の放熱体33を伝導して放熱軸11bへと伝わる。   The temperature rise of the bearing 5 occurs when heat due to friction between the rolling elements 21 and the inner ring 19 and the outer ring 20 and heat around the bearing 5 inside the brushless motor 7 are transmitted to the bearing 5. Since the heat radiating body 33 is made of aluminum, the heat conductivity is larger than that of the main shaft 12b, and the heat of the bearing 5 is transmitted to the heat radiating shaft 11b through the plurality of heat radiating bodies 33 in contact with the inner ring 19 of the bearing 5. .

インペラ8が回転することによって発生する気流は、常にインペラ8上部より突出している放熱軸11bの上端部周辺を通過してインペラ8内部へ流入するため、放熱軸11bの上端部の温度は低くなり、放熱軸11bの上端部と軸受5当接部とで温度差が生じる。また、放熱軸11bの下端部はモータフレーム6下端より突出して常温の空気に触れているため、軸受5当接部よりも温度は低く、放熱軸11bの下端部と間で温度差が生じる。   The air flow generated by the rotation of the impeller 8 always passes around the upper end portion of the heat dissipation shaft 11b protruding from the upper portion of the impeller 8 and flows into the impeller 8, so the temperature of the upper end portion of the heat dissipation shaft 11b becomes lower. A temperature difference occurs between the upper end portion of the heat radiating shaft 11b and the bearing 5 contact portion. Further, since the lower end portion of the heat radiating shaft 11b protrudes from the lower end of the motor frame 6 and is in contact with air at normal temperature, the temperature is lower than the contact portion of the bearing 5, and a temperature difference occurs between the lower end portion of the heat radiating shaft 11b.

これにより、放熱軸11bの内部において、両端部と軸受5当接部との間に温度勾配が生じて、軸受5の熱が放熱軸11b内部を伝導して両端部からインペラ8に流入する気流および空気中へと放熱される。放熱軸11bの上端部の周辺は、インペラ8に流入する気流によって絶えず強制冷却されるため、モータフレーム6下端より突出している放熱軸11bの端部よりも温度が低くなるため、軸受5の熱の大半は、放熱軸11bの端部から気流へと放熱されることになる。軸受5と放熱軸11bとの間には放熱体33が存在するため、軸受5と対向する放熱軸11bとの間の熱抵抗が大幅に小さくなり、軸受5から放熱軸11bに伝わる熱流量が大きくなるので、軸受5の熱を放熱しやすくなる。   As a result, a temperature gradient is generated between the both end portions and the bearing 5 contact portion inside the heat radiating shaft 11b, and the heat of the bearing 5 is conducted through the heat radiating shaft 11b and flows into the impeller 8 from both ends. And is dissipated into the air. Since the periphery of the upper end portion of the heat radiating shaft 11b is constantly forcedly cooled by the airflow flowing into the impeller 8, the temperature is lower than the end portion of the heat radiating shaft 11b protruding from the lower end of the motor frame 6, so that the heat of the bearing 5 Most of the heat is radiated from the end of the heat dissipation shaft 11b to the airflow. Since the heat dissipating body 33 exists between the bearing 5 and the heat radiating shaft 11b, the heat resistance between the heat radiating shaft 11b and the bearing 5 is greatly reduced, and the heat flow transmitted from the bearing 5 to the heat radiating shaft 11b is increased. Since it becomes large, it becomes easy to radiate the heat of the bearing 5.

これにより、高速回転中の軸受5およびロータ3の過度な温度上昇を抑え、高速回転中の軸受5の過度な温度上昇を抑え、軸受5の焼付けを防止して軸受5の信頼性を向上することができる。また、軸受5の熱を回転軸2bの放熱軸11bを通じて放熱させるというシンプルな軸受冷却構成であり、熱交換器などを必要とせず、インペラ8に流入する気流に対して圧損にもならないため、小型で高い送風性能を有する電動送風機1bにすることができる。   Thereby, the excessive temperature rise of the bearing 5 and the rotor 3 during high-speed rotation is suppressed, the excessive temperature rise of the bearing 5 during high-speed rotation is suppressed, the seizure of the bearing 5 is prevented, and the reliability of the bearing 5 is improved. be able to. In addition, the bearing 5 has a simple bearing cooling structure in which the heat of the bearing 5 is radiated through the heat radiating shaft 11b of the rotating shaft 2b, and does not require a heat exchanger or the like, and does not cause pressure loss with respect to the airflow flowing into the impeller 8. It can be set as the electric blower 1b which is small and has high ventilation performance.

以上のように、本実施の形態においては、回転軸2bをアルミニウム製の放熱軸11bと鋼製の主軸12bとの二重構造とし、軸受5と対向する主軸12bに放射状に設けられた複数の孔に熱伝導率の高い放熱体33を充填させたことにより、軸受5と対向する放熱軸11bとの間の熱抵抗を小さくして軸受5から放熱軸11bに伝わる熱流量を大きくして軸受5の温度上昇をさらに抑え、軸受5の信頼性を向上することができる。   As described above, in the present embodiment, the rotary shaft 2b has a double structure of the aluminum heat dissipation shaft 11b and the steel main shaft 12b, and a plurality of radial shafts provided on the main shaft 12b facing the bearing 5 are provided. By filling the hole with the heat radiating body 33 having high thermal conductivity, the heat resistance between the bearing 5 and the heat radiating shaft 11b facing the bearing 5 is reduced, and the heat flow transmitted from the bearing 5 to the heat radiating shaft 11b is increased. 5 can be further suppressed, and the reliability of the bearing 5 can be improved.

なお、本実施の形態では、放熱軸11bと主軸12bの当接面が円筒状である回転軸2bを用いた電動送風機1bの事例で説明したが、図8に示すように、軸方向に溝形状を設けて二重構造にした回転軸2cでもよく、放熱軸11cの外周面と主軸12cの内周面との接触面積が増えて接触熱抵抗が小さくなり、軸受5からの熱流量がより大きくなるため、軸受5の熱を放熱しやすくなり軸受冷却をより効率的に行うことができる。   In the present embodiment, the example of the electric blower 1b using the rotary shaft 2b in which the contact surface between the heat dissipation shaft 11b and the main shaft 12b is cylindrical has been described. However, as shown in FIG. The rotary shaft 2c having a shape and a double structure may be used. The contact area between the outer peripheral surface of the heat radiating shaft 11c and the inner peripheral surface of the main shaft 12c is increased, the contact thermal resistance is reduced, and the heat flow from the bearing 5 is further increased. Since it becomes large, the heat | fever of the bearing 5 can be radiated easily and bearing cooling can be performed more efficiently.

(実施の形態3)
図9、図10は、本発明の実施の形態3における電動送風機1cの構成を示すものである。図9は同、電動送風機1cの一部断面図であり、図10は同、電動送風機1cの回転軸2dの一部断面斜視図である。なお、実施の形態1、2と同一要素については、同一符号を付してその説明を省略する。
(Embodiment 3)
9 and 10 show the configuration of the electric blower 1c according to Embodiment 3 of the present invention. FIG. 9 is a partial sectional view of the electric blower 1c, and FIG. 10 is a partial sectional perspective view of the rotating shaft 2d of the electric blower 1c. In addition, about the same element as Embodiment 1, 2, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図9、図10において、電動送風機1cの回転軸2dは、軸受5およびロータ3との当接面に放射状に複数の孔を設けた鋼製の主軸12dの中空部内に高温加熱したアルミニウムを流し込み、主軸12dの中空部と全ての放射状の孔にアルミニウムを充填させたダイキャスト成形で作製された二重構造を有している。複数の放射状の孔に充填されたアルミ
ニウムの外周面は主軸12dの外周面と略同一面を有し、軸受5の内輪19およびロータ3が当接している。以下では、複数の放射状の孔に充填されているアルミニウムを簡易的に説明するため、放熱体33と呼ぶことにする。
9 and 10, the rotating shaft 2 d of the electric blower 1 c flows high-temperature heated aluminum into the hollow portion of the steel main shaft 12 d in which a plurality of holes are provided radially on the contact surface with the bearing 5 and the rotor 3. The hollow portion of the main shaft 12d and all radial holes have a double structure made by die casting in which aluminum is filled. The outer peripheral surface of aluminum filled in the plurality of radial holes has substantially the same surface as the outer peripheral surface of the main shaft 12d, and the inner ring 19 of the bearing 5 and the rotor 3 are in contact with each other. Hereinafter, the aluminum filled in the plurality of radial holes will be referred to as a heat radiating body 33 for simple explanation.

以上のように構成された電動送風機について、以下その動作、作用を説明する。   About the electric blower comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、電動送風機1cの動作について説明する。図9において、インペラ8が回転することで、3次元翼と複数のブレード18によってインペラ8内部の空気がインペラ8内部の外周へと押しやられ、インペラ8内部が負圧になり、インペラ8内部へ流れ込む気流が発生する。気流はインペラ8の入口から軸方向に流入し、インペラ8の複数の内部流路に沿って流れた後、インペラ8外周へ流出する。   First, the operation of the electric blower 1c will be described. In FIG. 9, by rotating the impeller 8, the air inside the impeller 8 is pushed to the outer periphery inside the impeller 8 by the three-dimensional blade and the plurality of blades 18, and the inside of the impeller 8 becomes negative pressure and enters the impeller 8. A flowing air flow is generated. The airflow flows in the axial direction from the inlet of the impeller 8, flows along a plurality of internal flow paths of the impeller 8, and then flows out to the outer periphery of the impeller 8.

放熱体33はアルミニウムであるため、主軸12dに比べて熱伝導率が大きく、軸受5の熱は軸受5の内輪19と当接している複数の放熱体33を伝導して放熱軸11dへと伝わる。また、高速回転するロータ3においても渦電流による発熱が起こるが、軸受5と同様、ロータ3の熱はロータ3と当接している放熱体33を伝導して放熱軸11dへと伝わる。   Since the heat radiating body 33 is made of aluminum, the heat conductivity is larger than that of the main shaft 12d, and the heat of the bearing 5 is transmitted to the heat radiating shaft 11d through the plurality of heat radiating bodies 33 in contact with the inner ring 19 of the bearing 5. . In addition, although heat is generated by eddy current in the rotor 3 rotating at high speed, the heat of the rotor 3 is conducted through the heat radiating body 33 in contact with the rotor 3 and transmitted to the heat radiating shaft 11d as in the bearing 5.

インペラ8が回転することによって発生する気流は、常にインペラ8上部より突出している放熱軸11dの上端部周辺を通過してインペラ8内部へ流入するため、放熱軸11dの上端部の温度は低くなり、放熱軸11dの上端部と軸受5当接部、ロータ3当接部とで温度差が生じる。また、放熱軸11dの下端部はモータフレーム6下端より突出して常温の空気に触れているため、軸受5当接部、ロータ3当接部よりも温度は低く、放熱軸11dの下端部と間で温度差が生じる。   The air flow generated by the rotation of the impeller 8 always passes around the upper end of the heat dissipation shaft 11d protruding from the upper part of the impeller 8 and flows into the impeller 8, so the temperature of the upper end of the heat dissipation shaft 11d is lowered. A temperature difference occurs between the upper end portion of the heat dissipation shaft 11d, the bearing 5 contact portion, and the rotor 3 contact portion. Further, since the lower end portion of the heat radiating shaft 11d protrudes from the lower end of the motor frame 6 and is in contact with air at room temperature, the temperature is lower than the bearing 5 contact portion and the rotor 3 contact portion, and the lower end portion of the heat radiating shaft 11d A temperature difference occurs.

これにより、放熱軸11dの内部において、両端部と軸受5当接部、ロータ3当接部との間に温度勾配が生じて、軸受5およびロータ3の熱が放熱軸11d内部を伝導して両端部からインペラ8に流入する気流および空気中へと放熱される。放熱軸11dの上端部の周辺はインペラ8に流入する気流によって絶えず強制冷却されるため、モータフレーム6下端より突出している放熱軸11dの端部よりも温度が低くなるため、軸受5およびロータ3の熱の大半は、放熱軸11dの端部から気流へと放熱されることになる。   As a result, a temperature gradient is generated between both ends, the bearing 5 contact portion, and the rotor 3 contact portion inside the heat dissipation shaft 11d, and the heat of the bearing 5 and the rotor 3 is conducted inside the heat dissipation shaft 11d. Heat is dissipated into the airflow and air flowing into the impeller 8 from both ends. Since the periphery of the upper end portion of the heat radiating shaft 11d is constantly forcedly cooled by the airflow flowing into the impeller 8, the temperature is lower than the end portion of the heat radiating shaft 11d protruding from the lower end of the motor frame 6, so that the bearing 5 and the rotor 3 Most of the heat is radiated from the end of the heat dissipation shaft 11d to the airflow.

軸受5およびロータ3と放熱軸11dとの間には放熱体33が存在するため、軸受5およびロータ3と対向する放熱軸11dとの間の熱抵抗が大幅に小さくなり、軸受5およびロータ3から放熱軸11dに伝わる熱流量が大きくなるので、軸受5およびロータ3の熱を放熱しやすくなる。これにより、高速回転中の軸受5およびロータ3の過度な温度上昇を抑え、軸受5の焼付けとロータ3の熱減磁を防止してブラシレスモータ7の信頼性を向上することができる。   Since the heat radiating body 33 exists between the bearing 5 and the rotor 3 and the heat radiating shaft 11d, the thermal resistance between the bearing 5 and the heat radiating shaft 11d facing the rotor 3 is significantly reduced. Since the heat flow transmitted to the heat dissipating shaft 11d increases, the heat of the bearing 5 and the rotor 3 can be easily dissipated. Thereby, the excessive temperature rise of the bearing 5 and the rotor 3 during high-speed rotation can be suppressed, the burning of the bearing 5 and the thermal demagnetization of the rotor 3 can be prevented, and the reliability of the brushless motor 7 can be improved.

また、軸受5およびロータ3の熱を回転軸2dの放熱軸11dを通じて放熱させるというシンプルな冷却構成であり、熱交換器などを必要とせず、インペラ8に流入する気流に対して圧損にもならないため、小型で高い送風性能を有する電動送風機1cにすることができる。   Moreover, it is a simple cooling configuration in which the heat of the bearing 5 and the rotor 3 is dissipated through the heat radiating shaft 11d of the rotating shaft 2d, does not require a heat exchanger, and does not cause pressure loss with respect to the airflow flowing into the impeller 8. Therefore, it can be set as the electric blower 1c which is small and has high ventilation performance.

以上のように、本実施の形態においては、回転軸2dをアルミニウム製の放熱軸11dと鋼製の主軸12dとの二重構造とし、軸受5およびロータ3と対向する主軸12dに放射状に設けられた複数の孔に熱伝導率の高い放熱体33を充填させたことにより、軸受5およびロータ3と放熱軸11dとの間の熱抵抗を小さくして軸受5から放熱軸11dに伝わる熱流量を大きくして軸受5だけでなくロータ3の熱も効率的に放熱しやすくなり、ブラシレスモータ7の信頼性を向上することができる。
なお、上述した各実施の形態1〜3の構成は、これに限定されるものではなく、必要に応じて適宜組み合わせて構成することができる。
As described above, in the present embodiment, the rotary shaft 2d has a double structure of the aluminum heat dissipation shaft 11d and the steel main shaft 12d, and is provided radially on the main shaft 12d facing the bearing 5 and the rotor 3. By filling the plurality of holes with the heat radiating body 33 having high thermal conductivity, the heat flow between the bearing 5 and the rotor 3 and the heat radiating shaft 11d is reduced, and the heat flow transmitted from the bearing 5 to the heat radiating shaft 11d is increased. By increasing the size, not only the bearing 5 but also the heat of the rotor 3 can be efficiently dissipated efficiently, and the reliability of the brushless motor 7 can be improved.
In addition, the structure of each Embodiment 1-3 mentioned above is not limited to this, It can comprise suitably combining as needed.

以上のように、本発明にかかる電動送風機は、回転軸を放熱軸と主軸の二重構造で形成し、軸受で発生した熱を回転軸の放熱軸へと伝え、インペラから流入する気流に連続的に放熱することができ、高速回転時においても軸受を効率よく冷却して過度な温度上昇を抑えて焼付けを防止し、小型で高い送風性能を有する電動送風機を実現することができるため、家庭用は勿論のこと、業務用の電気掃除機に適用することができる。   As described above, in the electric blower according to the present invention, the rotating shaft is formed with a double structure of the heat radiating shaft and the main shaft, heat generated in the bearing is transmitted to the heat radiating shaft of the rotating shaft, and continuous with the airflow flowing from the impeller. Heat can be efficiently dissipated, the bearings can be efficiently cooled even during high-speed rotation, an excessive temperature rise can be prevented, and seizure can be prevented, and a small and highly efficient electric blower can be realized. Of course, it can be applied to a commercial vacuum cleaner.

1a,1b,1c 電動送風機
2a,2b,2c,2d 回転軸
3 ロータ
4 ステータ
5 軸受
6 モータフレーム
7 ブラシレスモータ
8 インペラ
9 エアガイド
10 ファンケース
11a,11b,11c,11d 放熱軸
12a,12b,12c,12d 主軸
13 案内翼
14 独立風路
19 内輪
20 外輪
21 転動体
22 樹脂製リング
23 電気掃除機
32 巻線
33 放熱体
1a, 1b, 1c Electric blower 2a, 2b, 2c, 2d Rotating shaft 3 Rotor 4 Stator 5 Bearing 6 Motor frame 7 Brushless motor 8 Impeller 9 Air guide 10 Fan case 11a, 11b, 11c, 11d Radiating shaft 12a, 12b, 12c , 12d Main shaft 13 Guide vane 14 Independent air passage 19 Inner ring 20 Outer ring 21 Rolling element 22 Resin ring 23 Vacuum cleaner 32 Winding 33 Radiator

Claims (6)

回転軸を有するロータと前記ロータ外周に対向配置されたステータと前記回転軸の軸受を保持し前記ステータを覆うモータフレームとで構成されるブラシレスモータと、
前記回転軸に固定されたインペラと、
前記インペラの外周に通風路を形成するエアガイドと、
前記インペラを覆い前記エアガイド前面に固定されたファンケースとを備え、
前記回転軸は、材質の異なる放熱軸と主軸との二重構造で形成され、
前記放熱軸は、前記主軸の中空部に当接した状態で内装され、
前記放熱軸の熱伝導率は、前記主軸よりも大きく、前記放熱軸の上端部は前記主軸の上端部よりも突出して前記インペラの内部流路もしくはその上流に位置する構成とした電動送風機。
A brushless motor composed of a rotor having a rotating shaft, a stator disposed opposite to the outer periphery of the rotor, and a motor frame that holds a bearing of the rotating shaft and covers the stator;
An impeller fixed to the rotating shaft;
An air guide that forms a ventilation path on the outer periphery of the impeller; and
A fan case that covers the impeller and is fixed to the front surface of the air guide;
The rotating shaft is formed of a double structure of a heat radiating shaft and a main shaft made of different materials,
The heat dissipating shaft is housed in a state in contact with the hollow portion of the main shaft,
The electric blower is configured such that the thermal conductivity of the heat dissipating shaft is greater than that of the main shaft, and the upper end portion of the heat dissipating shaft protrudes from the upper end portion of the main shaft and is located in the internal flow path of the impeller or upstream thereof.
前記主軸は、軸受と当接する面に放射状の複数の孔を有し、前記主軸よりも熱伝導率の高い放熱体を前記複数の孔に充填させた請求項1に記載の電動送風機。 2. The electric blower according to claim 1, wherein the main shaft has a plurality of radial holes on a surface in contact with a bearing, and a heat radiator having a higher thermal conductivity than the main shaft is filled in the plurality of holes. 前記放熱軸は、その両端部が前記主軸の両端部より突出し、かつその下端部がモータフレーム下端よりも突出する構成とした請求項1または2に記載の電動送風機。 3. The electric blower according to claim 1, wherein both ends of the heat dissipation shaft protrude from both ends of the main shaft, and a lower end of the heat dissipation shaft protrudes from a lower end of the motor frame. 前記放熱軸は、その外周面に複数の溝を有し、前記主軸の内周面に設けた複数の溝と互いに嵌め合う構成とした請求項1〜3のいずれか1項に記載の電動送風機。 The electric fan according to any one of claims 1 to 3, wherein the heat dissipating shaft has a plurality of grooves on an outer peripheral surface thereof and fits with a plurality of grooves provided on an inner peripheral surface of the main shaft. . 前記主軸は、ロータと当接する面に放射状の複数の孔を有し、前記主軸よりも熱伝導率の高い放熱体を前記複数の孔に充填させた請求項1〜4のいずれか1項に記載の電動送風機。 The said main axis | shaft has a some radial hole in the surface contact | abutted with a rotor, The heat dissipation body whose heat conductivity is higher than the said main axis | shaft was filled with the said some hole. The electric blower described. 請求項1〜5のいずれか1項に記載の電動送風機を搭載した電気掃除機。 The vacuum cleaner carrying the electric blower of any one of Claims 1-5.
JP2011195809A 2011-09-08 2011-09-08 Electric blower and vacuum cleaner using the same Withdrawn JP2013057286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195809A JP2013057286A (en) 2011-09-08 2011-09-08 Electric blower and vacuum cleaner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195809A JP2013057286A (en) 2011-09-08 2011-09-08 Electric blower and vacuum cleaner using the same

Publications (1)

Publication Number Publication Date
JP2013057286A true JP2013057286A (en) 2013-03-28

Family

ID=48133364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195809A Withdrawn JP2013057286A (en) 2011-09-08 2011-09-08 Electric blower and vacuum cleaner using the same

Country Status (1)

Country Link
JP (1) JP2013057286A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104879315A (en) * 2015-05-08 2015-09-02 江苏大学 Hot water circulating pump shaft cooled by heat pipe
KR101552124B1 (en) 2013-11-28 2015-09-11 포스코에너지 주식회사 Integral Hermetic Pump
CN105534405A (en) * 2014-10-22 2016-05-04 戴森技术有限公司 Vacuum cleaner with motor cooling
CN109173833A (en) * 2018-11-21 2019-01-11 深圳市杰维工业设备有限公司 A kind of high-speed dispersing mechanism
CN109281847A (en) * 2018-10-12 2019-01-29 上海舟水电器有限公司 A kind of novel drip-proof fan structure
CN115995910A (en) * 2023-03-23 2023-04-21 河北乾顺节能科技有限公司 Active ventilation and heat dissipation device of outer rotor motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552124B1 (en) 2013-11-28 2015-09-11 포스코에너지 주식회사 Integral Hermetic Pump
CN105534405A (en) * 2014-10-22 2016-05-04 戴森技术有限公司 Vacuum cleaner with motor cooling
CN105534405B (en) * 2014-10-22 2018-04-24 戴森技术有限公司 Vacuum cleaner with motor cooling
CN104879315A (en) * 2015-05-08 2015-09-02 江苏大学 Hot water circulating pump shaft cooled by heat pipe
CN109281847A (en) * 2018-10-12 2019-01-29 上海舟水电器有限公司 A kind of novel drip-proof fan structure
CN109173833A (en) * 2018-11-21 2019-01-11 深圳市杰维工业设备有限公司 A kind of high-speed dispersing mechanism
CN109173833B (en) * 2018-11-21 2024-06-07 深圳市杰维工业设备有限公司 High-speed dispersion mechanism
CN115995910A (en) * 2023-03-23 2023-04-21 河北乾顺节能科技有限公司 Active ventilation and heat dissipation device of outer rotor motor

Similar Documents

Publication Publication Date Title
JP2013057286A (en) Electric blower and vacuum cleaner using the same
JP2010281232A (en) Electric blower and vacuum cleaner having the same
JP2011080427A (en) Electric blower and vacuum cleaner using the same
JP2013057300A (en) Electric blower and vacuum cleaner using the same
WO2011027519A1 (en) Electric air blower and electric cleaner utilizing same
JP2010151034A (en) Centrifugal compressor
JP2013024133A (en) Motor-driven air blower, and vacuum cleaner employing the same
JP2012255413A (en) Electric blower and vacuum cleaner using the same
JP6178674B2 (en) Blower
JP2002218704A (en) Fully-enclosed fan-cooled electric motor
JP2010281231A (en) Electric blower and vacuum cleaner having the same
JP2013019327A (en) Electric blower, and vacuum cleaner using the same
JP5328322B2 (en) Air-cooled dry vacuum pump
KR101407999B1 (en) Motor cooling apparatus for vehicle
RU2711903C2 (en) Complex system of fan and heat exchanger
JP6674545B2 (en) Motor integrated fluid machine
JP2012255412A (en) Electric blower and vacuum cleaner using the same
JP2012255352A (en) Electric blower and vacuum cleaner using the same
JP2009203837A (en) Centrifugal fan
KR102460715B1 (en) Turbo blower cooling structure
KR100798084B1 (en) Miniature Air Blower apparatus
JP4670285B2 (en) Impeller and blower fan having the same
JP2013029033A (en) Electric blower
CN105179270A (en) Air compression structure suitable for positive and reverse rotation external air-cooled motor
JPH089594A (en) Totally-enclosed fan-cooled motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202