WO2011027479A1 - 画像送信装置及び画像受信装置 - Google Patents

画像送信装置及び画像受信装置 Download PDF

Info

Publication number
WO2011027479A1
WO2011027479A1 PCT/JP2009/066832 JP2009066832W WO2011027479A1 WO 2011027479 A1 WO2011027479 A1 WO 2011027479A1 JP 2009066832 W JP2009066832 W JP 2009066832W WO 2011027479 A1 WO2011027479 A1 WO 2011027479A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
information
data
predetermined unit
Prior art date
Application number
PCT/JP2009/066832
Other languages
English (en)
French (fr)
Inventor
古藤 晋一郎
直人 伊達
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2011503294A priority Critical patent/JP5726724B2/ja
Priority to CN200980156580.0A priority patent/CN102318343B/zh
Priority to EP09849008.9A priority patent/EP2475171A4/en
Publication of WO2011027479A1 publication Critical patent/WO2011027479A1/ja
Priority to US13/098,536 priority patent/US20110206130A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to image transmission and reception.
  • the video data processing apparatus described in Patent Document 1 subsamples an image according to a pixel phase, separates it into a plurality of subsample images, and compresses each subsample image. According to this video data processing apparatus, even if some of the plurality of subsample images are lost due to an error, error concealment can be performed based on the remaining normal subsample images.
  • an image is variable-length compressed in units of blocks, and the size of the compressed data is added to the compressed data of each block and transmitted. According to this image communication method, since the position of the compressed data of each block is known to the receiving side, random access is possible. That is, according to this image communication method, the propagation range of transmission errors can be suppressed to the block level.
  • JP-A-6-22288 Japanese Patent Laid-Open No. 11-18086
  • the video data processing apparatus described in Patent Document 1 does not assume wireless transmission of video data.
  • the transmission environment such as the transmission error rate changes every moment.
  • sub-sampling processing reduces the spatial correlation of images, and thus reduces the efficiency of image compression using spatial direction prediction. Therefore, the subsample processing is suitable for a transmission environment with a high transmission error rate, but is not necessarily suitable for a transmission environment with a low transmission error rate. Since this video data processing apparatus performs sub-sample processing even when the transmission error rate is low, it is not suitable for highly efficient image compression. Also, error concealment based on sub-sample processing does not work in a transmission environment where the transmission error rate is extremely high (a plurality of sub-sample images are almost missing).
  • Patent Document 2 stores the compressed data size for each block in transmission data. Therefore, a large amount of information is required to express the compressed data size. In addition, when an error occurs in the area representing the compressed data size, random access to the compressed data of the block may fail, and the error may propagate beyond the block level.
  • an object of the present invention is to provide an image transmission / image reception technique for stably transmitting a high-quality video against changes in the transmission environment.
  • An image transmission apparatus includes: a division unit that divides an input image into predetermined units of images; (a) first video processing that generates the predetermined units of images as video data; and (b). A second video process for generating video data by compressing the predetermined unit image; and (c) performing a sub-sample process for separating the predetermined unit image into a plurality of sub-sample images according to a pixel phase, A third video process for generating each subsample image as video data, and (d) a subsample process for separating the predetermined unit image into a plurality of subsample images according to a pixel phase, and compressing each subsample image Then, any one of the fourth video processes for generating video data is applied to the predetermined unit image, the video processing unit for generating the video data, and the frame of the predetermined unit image.
  • an output unit for outputting transmission data including information for identifying compression / non-compression of the video data, size information of the video data, and the video data.
  • An image receiving apparatus includes a frame number of an image of a predetermined unit, coordinate information of the image of the predetermined unit, information for identifying a subsample / non-subsample of video data, and the video data Transmission data including pixel phase information of the video data, information identifying compression / non-compression of the video data, size information of the video data, and the video data
  • An input unit for inputting the video data, an extraction unit for extracting the video data from the transmission data according to the size information of the video data, and information for identifying compression / non-compression of the video data is compressed into the video data.
  • the video data is shown, the information for identifying the expansion unit for expanding the video data and the subsample / non-subsample of the video data If the data indicates that sub-sampling processing is being performed, a reverse sub-sampling unit that performs reverse sub-sampling processing on the video data according to the pixel phase information and reconstructs the predetermined unit image, and A display area determining unit that determines a display area of the predetermined unit image based on the coordinate information of the predetermined unit image, and a display frame of the predetermined unit image based on the frame number of the predetermined unit image And a display order determination unit.
  • An image transmitting apparatus includes an image input unit that inputs an image of a predetermined unit obtained by dividing an input image, and a format conversion unit that performs horizontal reduction conversion for each signal component of the image of the predetermined unit
  • a pixel separation unit that performs pixel separation in a horizontal direction with respect to the image of the predetermined unit that has been subjected to the reduction conversion, and the image of the predetermined unit that has been subjected to the pixel separation is independent for each separated pixel phase.
  • a compression unit that obtains compressed image data, a packetization unit that packetizes the compressed image data, and a transmission unit that transmits the packetized compressed image data. Compressed data; (2) information on the color space of the input image; (3) information on the reduction ratio in the horizontal direction regarding the compressed image data; (4) information on the pixel separation type; and (5) pixel separation phase.
  • Information and To transmission includes an image input unit that inputs an image of a predetermined unit obtained by dividing an input image, and a format conversion unit that performs horizontal reduction conversion for each
  • An image receiving apparatus includes (1) compressed image data of a predetermined unit image obtained by dividing an input image or an image obtained by pixel separation of the predetermined unit image in the horizontal direction, and (2) the input A plurality of packets including image color space information, (3) horizontal reduction rate information, (4) pixel separation type information, and (5) pixel separation phase information relating to the compressed image data.
  • a receiving unit for receiving, a depacket unit for extracting the information of (1) to (5) from the packet, a decompressing unit for decompressing the compressed image data, information on the pixel separation type, and information on the pixel separation phase And a format for expanding the pixel-combined image in the horizontal direction for each signal component in accordance with the information on the horizontal reduction ratio, and a pixel combination unit that performs pixel combination in the horizontal direction of the expanded image. Comprising a conversion unit, and an image output unit for outputting an image format conversion is performed.
  • An image transmission apparatus includes: a dividing unit that divides an input image frame into slice units; a compression unit that performs compression closed in units of the slices to generate compressed image data; and packetized In order to generate a data signal, (1) the compressed image data, (2) color space information indicating which color space of RGB, YCbCr 422 and YCbCr 444 is the color space of the input image frame, (3) Frame size information of the input image frame, (4) Whether the slice is an image of a predetermined unit of the input image frame, or one of the images obtained by separating the image of the predetermined unit into two partitions (5) Frame number information indicating the frame number to which the slice belongs, (6) Displaying the slice in the frame Display position information indicating a position to be placed; (7) the slice is (A) a pixel separation mode in which the image of the predetermined unit is separated into pixels of even columns and pixels of odd columns; (B) image of the predetermined units Separation mode for separating the first phase pixel and the second
  • An image receiving apparatus includes: a receiving unit that receives a plurality of packet data by performing OFDM demodulation on a signal received through a wireless transmission channel within a frequency range from 57 GHz to 66 GHz; (1) image data compressed in units of slices from the packet data of (2), and (2) color space information indicating which color space of RGB, YCbCr 422 and YCbCr 444 is the color space of the frame of the image data, (3) Frame size information of the frame, (4) Whether the slice is an image of a predetermined unit of the frame, or one of images obtained by separating the image of the predetermined unit into two partitions, (5) Frame number information indicating the number of the frame to which the slice belongs, (6) Display position information indicating a position where the rice should be displayed in the frame; (7) the slice is (A) a pixel separation mode in which the image of the predetermined unit is separated into even-numbered pixels and odd-numbered pixels; (B) a pixel separation mode for separating the image of
  • Pixel separation type information indicating which pixel separation mode the partition is based on, and (8) a partition indicating which of the two partitions is the slice Number information, and (9) horizontal sub-sampling rate information indicating a horizontal sub-sampling rate of each signal component of the predetermined unit image. It includes a depacketizer for, based on the information of (1) to (9), and a reconstruction unit for reconstructing an image of said predetermined unit with decompressing the image data.
  • FIG. 1 is a block diagram illustrating an image transmission apparatus according to a first embodiment.
  • FIG. 2 is a block diagram showing details of a video processing unit 102 in FIG. 1.
  • 1 is a block diagram showing an image receiving apparatus according to a first embodiment.
  • the block diagram which shows the image transmitter which concerns on 2nd Embodiment.
  • the block diagram which shows the image receiver which concerns on 2nd Embodiment.
  • the block diagram which shows the image transmission apparatus which concerns on 3rd Embodiment.
  • Explanatory drawing of the image of the predetermined unit in 1st Embodiment Explanatory drawing of the subsample process which the 3rd video processing part 203 and the 4th video processing part 204 perform.
  • Explanatory drawing of the subsample process which the 3rd video processing part 203 and the 4th video processing part 204 perform The figure which shows an example of the transmission data in 1st Embodiment.
  • the figure which shows the example of the pixel separation which concerns on 5th Embodiment. The figure which shows the example of the pixel separation which concerns on 5th Embodiment.
  • FIG. 10 is a diagram illustrating an example of color space information according to a fifth embodiment.
  • FIG. 14 is a diagram illustrating an example of information indicating validity / invalidity of pixel separation according to the fifth embodiment.
  • FIG. 10 is a diagram illustrating an example of a color space of compressed data according to a fifth embodiment.
  • FIG. 3 is a block diagram illustrating an example of a pixel combination unit 25.
  • FIG. 10 is a diagram for explaining an effect of pixel separation according to a fifth embodiment.
  • FIG. 10 is a diagram for explaining an effect of pixel separation according to a fifth embodiment.
  • FIG. 10 is a diagram for explaining an effect of pixel separation according to a fifth embodiment.
  • image compression / decompression in the present specification may be understood by replacing the term “image encoding / decoding”.
  • the image transmission device 100 As illustrated in FIG. 1, the image transmission device 100 according to the first embodiment of the present invention includes a dividing unit 101, a video processing unit 102, and an output unit 103. The image transmission device 100 generates transmission data 105 from the input image 104.
  • the dividing unit 101 divides the input image 104 into images of a predetermined unit.
  • the input image 104 is, for example, an image for one frame included in a video to be transmitted.
  • the dividing unit 101 divides this input image 104 spatially.
  • the dividing unit 101 divides the input image 104 into a plurality of predetermined unit images.
  • an image of a predetermined unit is a pixel set in an area having a width of half of one frame and a height of 16 pixels.
  • the predetermined unit image is not limited to that shown in FIG.
  • the dividing unit 101 inputs the predetermined unit image, the frame number of the predetermined unit image, and the coordinate information of the predetermined image to the video processing unit 102.
  • the frame number identifies the frame (temporal position) to which the predetermined unit image belongs, and the coordinate information is used to identify the area (spatial position) occupied by the predetermined unit image in the frame.
  • the video processing unit 102 applies any one of first to fourth video processing described later to a predetermined unit of image, and generates video data.
  • the video processing unit 102 selects the first to fourth video processes according to the transmission speed and the transmission error rate, and applies them to an image of a predetermined unit.
  • the selection of the video processing in the video processing unit 102 may be made before application of the first to fourth video processing, or may be made after application of the first to fourth video processing.
  • the transmission rate and transmission error rate can be obtained using any existing method.
  • the video processing unit 102 includes a first video processing unit 201, a second video processing unit 202, a third video processing unit 203, and a fourth video processing unit 204.
  • the first video processing unit 201 performs first video processing on a predetermined unit image 205.
  • the first video processing does not include compression and sub-sampling processing for the predetermined unit image 205. That is, the first video processing unit 201 generates a predetermined unit image 205 as video data 208 as it is.
  • the video data 208 generated by the first video processing has a large data amount and low error resistance. Therefore, the first video processing is suitable in a transmission environment where the transmission speed 206 is high and the transmission error rate 207 is low.
  • the second video processing unit 202 performs the second video processing on the predetermined unit image 205.
  • the second video processing unit 202 performs compression processing on a predetermined unit of the image 205 to generate video data 208.
  • the second video processing does not include sub-sample processing.
  • the compression method, compression rate, etc. in the second video processing are arbitrary.
  • the video data 208 generated by the second video processing has a small data amount and low error resistance. Therefore, the second video processing is suitable in a transmission environment where the transmission speed 206 and the transmission error rate 207 are low.
  • the third video processing unit 203 performs third video processing on a predetermined unit of the image 205.
  • the third video processing includes sub-sample processing for a predetermined unit of image 205. That is, the third video processing unit 203 separates a predetermined unit of the image 205 into a plurality of subsample images according to the pixel phase, and generates each subsample image as video data 208.
  • the third video processing does not include compression processing.
  • the method of subsample processing in the third video processing is arbitrary.
  • the video data 208 generated by the third video processing has a large data amount and high error resistance. Therefore, the third video processing is suitable in a transmission environment where the transmission speed 206 and the transmission error rate 207 are high.
  • the fourth video processing unit 204 performs a fourth video processing on the image 205 in a predetermined unit.
  • the fourth video processing includes sub-sample processing and compression processing for the image 205 in a predetermined unit. That is, the fourth video processing unit 204 separates a predetermined unit of the image 205 into a plurality of subsample images according to the pixel phase, and performs compression processing for each subsample image to generate video data 208.
  • the sub-sample processing method, compression method, compression rate, etc. in the fourth video processing are arbitrary.
  • the video data 208 generated by the fourth video processing has a small data amount and high error resistance. Therefore, the fourth video processing is suitable in a transmission environment where the transmission speed 206 is low and the transmission error rate 207 is high.
  • the video processing unit 102 may apply video processing assuming data retransmission.
  • the video processing unit 102 generates the video data 208 by executing the second or fourth video processing at a higher compression rate than usual, and temporarily stores it in a buffer (not shown) for retransmission. Good.
  • the third video processing unit 203 and the fourth video processing unit 204 may apply any one of the sub-sample processes in a fixed manner, or adaptively select one of the plurality of sub-sample processes. And may be applied. When a plurality of subsample processes can be switched, information for identifying the applied subsample processes may be stored in transmission data 105 described later.
  • four subsample images may be generated by evenly and oddly separating pixels in a predetermined unit of image in the horizontal direction and the vertical direction.
  • the intersection of the sub-sample image composed of pixels and the even-numbered horizontal lines and the odd-numbered vertical lines, and the intersection of the even-numbered horizontal lines and the even-numbered vertical lines A sub-sample image composed of pixels may be generated.
  • FIG. 9A shows an image of a predetermined unit before the sub-sample processing.
  • intersection pixels of odd-numbered horizontal lines and odd-numbered vertical lines are triangular marks, and intersection pixels of odd-numbered horizontal lines and even-numbered vertical lines are rhombus marks, even-numbered horizontal lines.
  • the intersection pixels of the odd-numbered vertical lines are indicated by square marks, and the intersection pixels of the even-numbered horizontal lines and even-numbered vertical lines are indicated by circles.
  • the coordinates of pixel 0 are (0, 0)
  • the coordinates of pixel 31 are (7, 3).
  • FIG. 9A When the predetermined unit image shown in FIG. 9A is subsampled according to the above-described rules, four subsample images shown in FIG. 9B are generated.
  • FIG. 9A and FIG. 9B the same pixels are denoted by the same reference numerals.
  • two sub-sample images may be generated by evenly and oddly separating pixels in an image of a predetermined unit in a horizontal direction, a vertical direction, or an oblique direction (checkerboard type).
  • the video processing unit 102 identifies the frame number of the predetermined unit image, the coordinate information of the predetermined unit image, and the subsample / non-subsample together with the video data 208 obtained by applying the first to fourth video processes.
  • Information, pixel phase information, information for identifying compression / non-compression, and size information of the video data 208 are input to the output unit 103.
  • the information for identifying the subsample / non-subsample indicates whether or not the subsample processing is performed to generate the video data 208. Further, when switching between a plurality of subsample processes, the identification information of each subsample process is included in the information identifying the subsample / non-subsample.
  • the pixel phase information indicates a subsample image represented by the video data 208 when the subsample processing is performed.
  • the information for identifying compression / non-compression indicates whether or not compression processing is being performed in order to generate the video data 208.
  • the size information of the video data 208 indicates the total size of the video data 208, for example.
  • the output unit 103 arranges the data format from the video processing unit 102 to generate and output the transmission data 105.
  • the transmission data 105 is transmitted to the image receiving apparatus via a transmission path (for example, a wireless transmission path) whose transmission speed and transmission error rate change over time.
  • the format of the transmission data 105 is, for example, as shown in FIG. In the format of FIG. 10, the position of each field may be changed as appropriate, and information not shown may be added.
  • the image transmission apparatus switches application / non-application of video processing such as compression processing and subsample processing based on a transmission rate and a transmission error rate that change with time. Therefore, according to the image transmitting apparatus according to the present embodiment, high-quality video can be stably transmitted with respect to fluctuations in the transmission speed or transmission error rate.
  • the image receiving apparatus 300 includes an input unit 301, a video data extraction unit 302, a decompression unit 303, an inverse subsample unit 304, a display area determination unit 305, and a display order determination unit 306. Have.
  • the image receiving device 300 generates an output video 307 from the transmission data 105.
  • the transmission data 105 is transmitted from, for example, the image transmission device 100 in FIG. 1 via a wireless transmission path.
  • the input unit 301 inputs the transmission data 105 to the video data extraction unit 302. Note that, when an error is detected in the transmission data 105, the input unit 301 may request the transmission side (such as the image transmission device 100) to retransmit part or all of the transmission data 105. In order to detect an error, for example, an existing error correction code may be used.
  • the video data extraction unit 302 extracts the video data 208 from the transmission data 105 according to the size information of the video data included in the transmission data 105. If the information identifying the compression / non-compression in the transmission data 105 indicates that the video data 208 is compressed, the video data 208 is input to the decompression unit 303. Information identifying compression / non-compression in the transmission data 105 indicates that compression processing has not been performed on the video data 208, and information identifying sub-sample / non-sub-sample is sub-sample processing on the video data 208. That the video data 208 is input to the inverse sub-sample unit 304.
  • Information identifying compression / non-compression in the transmission data 105 indicates that compression processing has not been performed on the video data 208, and information identifying sub-sample / non-sub-sample is sub-sample processing on the video data 208. If the video data 208 is not displayed, the video data 208 is input to the display area determination unit 305 as an image of a predetermined unit.
  • the decompression unit 303 decompresses the input video data. Note that the decompression process performed by the decompression unit 303 corresponds to the compression process applied on the transmission side (the image transmission apparatus 100 or the like). If the information identifying the subsample / non-subsample in the transmission data 105 indicates that the subsample processing is being performed on the video data 208, the decompressed video data is input to the reverse subsampler 304, and so on. Otherwise, the expanded video data is input to the display area determining unit 305 as a predetermined unit image.
  • the inverse subsample unit 304 receives video data corresponding to a subsample image obtained by pixel-separating a predetermined unit image.
  • the inverse sub-sampling unit 304 performs inverse sub-sampling processing (pixel integration) on a plurality of video data according to pixel phase information in the transmission data 105 to reconstruct a predetermined unit image. If some subsample images are missing due to an error, the inverse subsampler 304 may interpolate the missing pixels (spatially or temporally) based on neighboring normal pixels. Good. Note that the inverse subsample processing performed by the inverse subsampler 304 corresponds to the subsample processing applied on the transmission side (image transmission apparatus 100 or the like).
  • the inverse sub-sampling unit 304 reconstructs an image of a predetermined unit shown in FIG. 11B from the sub-sample image shown in FIG. 11A. do it.
  • the contents of the reverse subsample process are determined according to the identification information of the subsample process included in the information identifying the subsample / non-subsample.
  • the inverse subsample unit 304 inputs the reconstructed image of a predetermined unit to the display area determination unit 305.
  • the display area determining unit 305 determines the display area (spatial position) of the predetermined unit image according to the coordinate information of the predetermined unit image in the transmission data 105 (see, for example, FIG. 8).
  • the display order determination unit 306 determines the display frame of the predetermined unit image according to the frame number of the predetermined unit image in the transmission data 105, and generates the output video 307.
  • the output video 307 is output to a display device such as a television.
  • the image receiving apparatus according to the present embodiment corresponds to the image transmitting apparatus according to the present embodiment. Therefore, according to the image receiving apparatus according to the present embodiment, it is possible to stably output a high-quality video with respect to fluctuations in transmission speed or transmission error rate.
  • the image transmission device 400 includes a block division unit 401, a compression unit 402, and an output unit 403.
  • the image transmission device 400 performs compression processing on a predetermined unit of the image 404 to generate transmission data 406.
  • the image transmission device 400 may be appropriately incorporated as a part of the second video processing unit 202 or the fourth video processing unit 204 in the image transmission device 100 of FIG.
  • the block dividing unit 401 divides a predetermined unit image 404 to generate a plurality of image blocks.
  • the shape and size of the image block are not limited.
  • the block division unit 401 inputs a plurality of image blocks to the compression unit 402.
  • the compression unit 402 compresses the image block according to the predetermined size 405.
  • the predetermined size 405 is a parameter for designating the data amount after compression of each image block. That is, the compression unit 402 compresses the image block so as not to exceed the predetermined size 405.
  • the predetermined size 405 may be a variable value or a fixed value. If the predetermined size 405 is a variable value, it may be changed so as to follow the fluctuation of the transmission rate.
  • the compression unit 402 inputs compressed data of an image block (hereinafter simply referred to as block compressed data) to the output unit 403.
  • the output unit 403 outputs video data including a group of a plurality of block compressed data corresponding to a predetermined unit image 404 and the predetermined size information, and the total size information of the video data as transmission data 406.
  • the predetermined size information is information indicating the predetermined size 405.
  • the predetermined size information may be handled as a part of the size information of the video data instead of a part of the video data.
  • the total size information is information relating to the total size of the video data.
  • the transmission data 406 is transmitted to the image receiving apparatus via a wireless transmission path, for example.
  • the image receiving apparatus can access (random access) arbitrary block compressed data based on the predetermined size information and the total size information. Specifically, the image receiving apparatus can extract a group of a plurality of block compressed data based on the total size information, and can extract individual block compressed data based on the predetermined size information.
  • the image transmission apparatus compresses a plurality of image blocks obtained by dividing a predetermined unit of image according to a predetermined size, and transmits the compressed image block together with the predetermined size information and the total size information. Therefore, according to the image transmitting apparatus according to the present embodiment, random access to individual block compressed data is possible, so that the error propagation range can be suppressed to the block level. That is, even if the transmission error rate temporarily increases, a high quality image can be stably transmitted.
  • the image receiving device 500 includes an input unit 501, a separation unit 502, and a decompression unit 503.
  • the image receiving device 500 generates an output image 504 from the transmission data 406.
  • the transmission data 406 is transmitted from, for example, the image transmission device 400 in FIG. 4 via a wireless transmission path.
  • the image receiving device 500 may be appropriately incorporated as a part of the decompression unit 303 in the image receiving device 300 of FIG.
  • the input unit 501 inputs the transmission data 406 to the separation unit 502. Note that when an error is detected in the transmission data 406, the input unit 501 may request the transmission side (image transmission apparatus 400) to retransmit part or all of the transmission data 406.
  • the separating unit 502 separates the predetermined size information and the block compressed data group based on the total size information in the transmission data 406.
  • the separation unit 502 inputs the predetermined size information and the block compressed data group to the decompression unit 503.
  • the decompression unit 503 determines the position (for example, start position) of each block compressed data in the block compressed data group based on the predetermined size information. Since each block compressed data is assigned a predetermined size, the decompression unit 503 can uniquely identify the position of each block compressed data.
  • the decompressing unit 503 decompresses individual block compressed data and generates an output image 504. Note that the decompression processing performed by the decompression unit 503 corresponds to the compression processing applied on the transmission side (image transmission apparatus 400 or the like).
  • the decompressing unit 503 discards the block compressed data and determines the corresponding image block (in terms of space or time) based on a normal image block in the vicinity. Interpolation may be performed. If the decompression unit 503 detects an error in a part of the block compressed data, the decompressing unit 503 discards the block compressed data, requests the transmission side to retransmit the block compressed data, and retransmits the block compressed data. May be stretched. These two types of processing may be switched based on the transmission speed, for example. That is, the decompression unit 503 may perform image block interpolation if the transmission rate is low, and may make a retransmission request if the transmission rate is high.
  • the image receiving apparatus corresponds to the image transmitting apparatus according to the present embodiment. Therefore, according to the image receiving apparatus according to the present embodiment, random access to individual block compressed data is possible, so that the error propagation range can be suppressed to the block level. That is, even if the transmission error rate temporarily increases, a high-quality image can be output stably.
  • an image transmission apparatus 600 As illustrated in FIG. 6, an image transmission apparatus 600 according to the third embodiment of the present invention includes a block division unit 601, a compression unit 610, and an output unit 603. The image transmission device 600 performs compression processing on the image 604 in a predetermined unit to generate transmission data 606. The image transmission device 600 may be appropriately incorporated as part of the second video processing unit 202 or the fourth video processing unit 204 in the image transmission device 100 of FIG.
  • the block dividing unit 601 divides a predetermined unit image 604 to generate a plurality of image blocks.
  • the shape and size of the image block are not limited.
  • the block division unit 601 inputs a plurality of image blocks to the compression unit 610.
  • the compression unit 610 compresses the image block according to a predetermined size 605.
  • the predetermined size 605 is a parameter for designating the data amount after compression of each image block. That is, the compression unit 602 compresses the image block so as not to exceed the predetermined size 605.
  • the predetermined size 605 may be a variable value or a fixed value. If the predetermined size 605 is a variable value, it may be changed so as to follow the fluctuation of the transmission rate.
  • the compression unit 610 can select and apply any one of a plurality of compression methods in units of blocks. For example, as illustrated in FIG. 6, the compression unit 610 includes, for example, a first compression unit 611, a second compression unit 612, and a third compression unit 613.
  • the first compression unit 611 applies first compression processing (reversible compression) such as DPCM (Differential Pulse Code Modulation) for compressing the inter-pixel difference to the image block.
  • first compression processing reversible compression
  • DPCM Different Pulse Code Modulation
  • the second compression unit 612 applies a second compression process (irreversible compression) that uses energy concentration in a low-frequency region associated with orthogonal transform such as discrete cosine transform (DCT) to the image block.
  • the third compression unit 613 applies a so-called color palette third compression process (fixed-length pixel unit compression) to the image block.
  • the block compression data generated by the color palette method includes a correspondence table (color palette) of pixel values and index numbers, and an index number given to each pixel in the block.
  • the compression unit 610 may select a compression method according to the properties of the image block. For example, in general, the second compression process is preferable for the natural image compared to the third compression process, and the artificial image (for example, computer graphics) is generally the third compression process compared to the second compression process.
  • the compression process is suitable.
  • the compression unit 610 may apply the first to third compression processes on a trial basis and select a compression process that minimizes the compression distortion. As shown in FIG. 13, the compression unit 610 adds a compression method identifier to compressed data obtained by performing compression processing on an image block, and inputs the compressed data to the output unit 603 as block compressed data.
  • the output unit 603 transmits video data including a group of a plurality of block compressed data corresponding to a predetermined unit image 604 and the predetermined size information, and the total size information of the video data as transmission data 606.
  • the predetermined size information is information indicating the predetermined size 605. Note that the predetermined size information may be understood not as a part of the video data but as a part of the size information of the video data.
  • the total size information is information relating to the total size of the video data.
  • the transmission data 606 is transmitted to the image receiving device via a wireless transmission path, for example.
  • the image receiving apparatus can access (random access) arbitrary block compressed data based on the predetermined size information and the total size information. Specifically, the image receiving apparatus can extract a group of a plurality of block compressed data based on the total size information, and can extract individual block compressed data based on the predetermined size information.
  • the image transmission apparatus compresses a plurality of image blocks obtained by dividing a predetermined unit of image according to a predetermined size, and transmits the compressed image block together with the predetermined size information and the total size information. Therefore, according to the image transmitting apparatus according to the present embodiment, random access to individual block compressed data is possible, so that the error propagation range can be suppressed to the block level. That is, even if the transmission error rate temporarily increases, a high quality image can be stably transmitted. Further, the image transmission apparatus according to the present embodiment can switch a plurality of compression methods in units of blocks. Therefore, according to the image transmission apparatus according to the present embodiment, it is possible to apply compression processing suitable for the properties of individual image blocks.
  • the image receiving apparatus 700 includes an input unit 701, a separation unit 702, and an expansion unit 710.
  • the image receiving device 700 generates an output image 604 from the transmission data 606.
  • the transmission data 606 is transmitted from, for example, the image transmission device 600 in FIG. 6 via a wireless transmission path.
  • the image receiving apparatus 700 may be appropriately incorporated as part of the decompression unit 303 in the image receiving apparatus 300 of FIG.
  • the input unit 701 inputs the transmission data 606 to the separation unit 702.
  • the input unit 701 may request the transmission side (image transmission apparatus 600) to retransmit part or all of the transmission data 606.
  • the separating unit 702 separates the predetermined size information and the block compressed data based on the total size information in the transmission data 606.
  • the separation unit 702 inputs the predetermined size information and the block compressed data group to the decompression unit 710.
  • the decompression unit 710 determines the position (for example, start position) of each block compressed data in the block compressed data group based on the predetermined size information. A predetermined size is assigned to each block compressed data, and the decompression unit 710 can uniquely identify the position of each block compressed data.
  • the decompression unit 710 decompresses individual block compressed data according to the compression method identifier, and generates an output image 704.
  • the decompression process performed by the decompression unit 710 corresponds to the compression process applied on the transmission side (image transmission apparatus 600 or the like).
  • the expansion unit 710 includes a first expansion unit 711, a second expansion unit 712, and a third expansion unit 713.
  • the first decompression unit 711 corresponds to the first compression unit 611 in FIG. That is, the first decompression unit 711 applies the first decompression process corresponding to the first compression process to the block compressed data, and generates an output image 704.
  • the second decompression unit 712 corresponds to the second compression unit 612 in FIG. In other words, the second decompression unit 712 applies the second decompression process corresponding to the second compression process to the block compressed data, and generates an output image 704.
  • the third decompressing unit 713 corresponds to the third compressing unit 613 in FIG. In other words, the third decompression unit 713 applies the third decompression process corresponding to the third compression process to the block compressed data, and generates an output image 704.
  • the decompressing unit 710 When the decompression unit 710 detects an error in a part of the block compressed data, the decompressing unit 710 discards the block compressed data, and determines the corresponding image block (spatially or temporally) based on a normal image block nearby. Interpolation may be performed. If the decompression unit 710 detects an error in a part of the block compressed data, the decompressing unit 710 discards the block compressed data, requests the transmission side to retransmit the block compressed data, and retransmits the block compressed data. May be stretched. These two types of processing may be switched based on the transmission speed, for example. That is, the decompression unit 710 may perform image block interpolation when the transmission rate is low, and may make a retransmission request when the transmission rate is high.
  • the image receiving apparatus corresponds to the image transmitting apparatus according to the present embodiment. Therefore, according to the image receiving apparatus according to the present embodiment, random access to individual block compressed data is possible, so that the error propagation range can be suppressed to the block level. That is, even if the transmission error rate temporarily increases, a high-quality image can be output stably. Further, the image receiving apparatus according to the present embodiment switches and applies a plurality of decompression methods in units of blocks according to the compression method identifier. Therefore, according to the image receiving apparatus according to the present embodiment, it is possible to output a high-quality image suitable for the properties of individual image blocks.
  • the image transmission apparatus 800 corresponds to a configuration in which the compression unit 402 is replaced with another compression unit 810 in the image transmission apparatus 400 of FIG.
  • the description will focus on the differences between the compression unit 810 and the compression unit 402.
  • the image transmission device 800 may be appropriately incorporated as a part of the second video processing unit 202 or the fourth video processing unit 204 in the image transmission device 100 of FIG.
  • the compression unit 810 performs the same compression process as the compression unit 402. That is, the image block is compressed so as not to exceed the predetermined size 405. At this time, the size of the block compressed data does not necessarily match the predetermined size 405, and a remaining area (padding area) may occur. This remaining area is usually filled with meaningless padding bits. As shown in FIG. 14, the compression unit 810 stores a predetermined bit pattern in this remaining area.
  • the predetermined bit pattern is arbitrary, but may be, for example, a list of “0” or a list of “1”, and a feature amount such as a frame number of a predetermined unit image, coordinate information of an image of a predetermined unit, etc. (A higher bit, a lower bit, etc.). However, the predetermined bit pattern is generated according to a common rule between the transmission side (image transmission device) and the reception side (image reception device).
  • the image transmitting apparatus stores a bit pattern generated according to a common rule in the remaining area that is less than a predetermined size in each block compressed data. Therefore, according to the image transmission apparatus according to the present embodiment, an error can be determined by matching / mismatching of bit patterns between transmission and reception. That is, even if the transmission error rate temporarily increases, a high quality image can be stably transmitted.
  • the image receiving apparatus 900 corresponds to a configuration in which the expansion unit 503 is replaced with another expansion unit 910 in the image reception apparatus 500 of FIG.
  • a description will be given focusing on a different part between the expansion unit 910 and the compression unit 503.
  • the expansion unit 910 performs the same expansion process as the expansion unit 503. Further, the decompressing unit 910 generates a bit pattern according to a common rule with the image transmitting apparatus 800 if the decompressed data of the image block does not satisfy the predetermined size. The decompression unit 910 collates the generated bit pattern with the bit pattern stored in the block compressed data. If the two do not match, the decompression unit 910 detects an error in the block compressed data. The decompression unit 910 also detects an error in the block compressed data even when the decompressed data of the image block exceeds a predetermined size. Note that the decompression unit 910 executes interpolation of image blocks, a retransmission request, and the like in the same manner as the decompression unit 503 when detecting an error in the block compressed data.
  • the image receiving apparatus corresponds to the image transmitting apparatus according to the present embodiment. Therefore, according to the image receiving apparatus according to the present embodiment, an error can be determined by matching / mismatching of bit patterns between transmission and reception. That is, even if the transmission error rate temporarily increases, a high-quality image can be output stably.
  • FIG. 15 is a block diagram of an image transmission apparatus according to the fifth embodiment of the present invention.
  • the input image 11 is input to the image input unit 12.
  • the image input unit 11 inputs the input image 11 to the format conversion unit 13 for each predetermined unit image (for example, an image region having a predetermined number of continuous lines).
  • the format conversion unit 13 performs horizontal reduction conversion for each signal component of an image in a predetermined unit.
  • the format conversion unit 13 may further perform color space conversion (for example, conversion from RGB to YCbCr).
  • An image of a predetermined unit that has been subjected to reduction conversion in the horizontal direction is separated into pixels having a plurality of phases in the horizontal direction by the pixel separation unit 14.
  • the compression unit 15 performs compression processing (for example, compression using DCT (discrete cosine transform)) on a predetermined unit of image independently for each separated pixel phase.
  • the compressed data is packetized by the packetizing unit 16.
  • the packetized data is, for example, OFDM-modulated by the transmission unit 17 and transmitted as transmission data 18 by a millimeter-wave radio in the 60 GHz band.
  • the transmission unit 17 transmits the transmission data 18 using a transmission channel within a frequency range from 57 GHz to 66 GHz.
  • the format conversion unit 13, the pixel separation unit 14, and the compression unit 15 each include a plurality of modes including unprocessed (bypass processing), and can change each mode for each predetermined unit of image.
  • the transmission data 18 includes reduction rate information 19 in the format conversion unit 13, pixel separation type and pixel separation phase information 20 in the pixel separation unit 14, and compression mode information in the compression unit 15.
  • FIG. 16 is a block diagram of the image receiving apparatus according to the present embodiment.
  • the image receiving apparatus shown in FIG. 16 receives the transmission data 21 including the compressed image data compressed by the image transmitting apparatus shown in FIG. 15, and decompresses the compressed image data.
  • the transmission data 21 is, for example, a 60 GHz band millimeter-wave radio signal modulated by OFDM.
  • the transmission data 21 is transmitted using a transmission channel within a frequency range from 57 GHz to 66 GHz, for example.
  • the receiving unit 22 receives the transmission data 21.
  • the receiving unit 22 performs demodulation processing on the received transmission data 21.
  • the depacketizer 23 extracts image compression data, reduction rate information 29, pixel separation type and pixel separation phase information 30 from the demodulated transmission data 21.
  • the reduction ratio information 29, the pixel separation type, and the pixel separation phase information 30 are designated for each unit of compressed image data.
  • the decompression unit 24 performs decompression processing of the received image compressed data for each image compressed data in a predetermined unit.
  • the decompression unit 24 stores information on the color space of the input image, which will be described later, information on the width of the image frame, and information indicating the validity / invalidity of pixel separation for each unit of compressed image data.
  • the pixel combination unit 25 performs pixel combination processing of the expanded image using the pixel separation type and pixel separation phase information 30.
  • the format conversion unit 26 uses the reduction ratio information 29 to perform horizontal enlargement processing for each signal component of the pixel-combined image.
  • the format conversion unit 13 may further perform color space conversion (for example, conversion from YCbCr to RGB).
  • the image output unit 27 outputs the format-converted image as a reproduction image 28 in line units.
  • FIG. 17 is a diagram illustrating an example of a transmission data structure according to the fifth embodiment.
  • An image of a predetermined unit is compressed independently for each separated pixel phase.
  • the compressed data compressed independently is called a slice.
  • Each slice is divided into a plurality of blocks having a fixed block size (for example, 8 ⁇ 8 pixels) and compressed in units of blocks.
  • a slice header having a fixed bit length is given to each slice, and a combination of the slice header and the slice is called a compressed slice data unit.
  • the compressed slice data unit is divided into a plurality of data by the packetizing unit 16, and a header is added to each of the divided data and packetized.
  • FIG. 18 is a diagram illustrating an example of a slice header according to the fifth embodiment.
  • the slice header includes a 2-bit partition_type indicating the pixel separation type and a 2-bit h_subsampling data field indicating the horizontal reduction ratio.
  • FIG. 19 is a diagram for explaining pixel separation type information partition_type according to the fifth embodiment.
  • partition_type is always set to 0, meaning that there is no pixel separation.
  • FIG. 21 shows an example of horizontal left and right division. In this horizontal left / right division, eight continuous lines are set as an image of a predetermined unit, and the left half of the image frame is divided into two regions with partition 0 (pixel separation phase 1) and right half as partition 1 (pixel separation phase 2). The compression is performed independently for each separated partition (pixel phase).
  • FIG. 22 shows an example of horizontal even odd pixel separation. In this horizontal even-numbered odd pixel separation, eight consecutive lines are set as an image of a predetermined unit, and even-numbered pixels in the horizontal direction are separated as partition 0 (pixel separation phase 1) and odd-numbered pixels are separated as partition 1 (pixel separation phase 2). Thus, compression is performed independently for each separated partition (pixel phase).
  • FIG. 23 shows an example of checkerboard pixel separation.
  • the number of vertical lines of an image in a predetermined unit before image separation is doubled (here, 16 lines). Line).
  • the compression delay and the amount of image memory are increased.
  • the amount of delay and the amount of image memory for scan-converting an image in a predetermined unit into an output image in a line unit also increase in image expansion.
  • the pixels can be separated into two phases while maintaining the number of lines of the image in a predetermined unit, so that an increase in delay and an increase in image memory associated with compression processing and expansion processing are suppressed. It becomes possible.
  • Partition Enable (to be described later) is 0, that is, when the pixel separation is OFF, overhead such as slice header and packetization can be reduced by composing a slice by compressing continuous 8 lines as a predetermined unit.
  • Partition Enable is 1, that is, when pixel separation is on, horizontal left and right division that separates left and right without separating pixel units for every 8 consecutive lines, horizontal even-numbered odd pixel separation in pixel units, checkerboard pixel separation Any one of the pixel separation types is selected. Compressed transmission with less image quality degradation by selecting the pixel separation type so that the balance between error resilience and coding efficiency is optimal according to the transmission rate and error rate that change from moment to moment in cycles shorter than one frame Can be realized.
  • the packetizing unit 16 and the transmission unit 17 in the subsequent stage are not aware of the pixel separation type (pixel separation). Easy to operate (regardless of type).
  • FIG. 20 is a diagram for explaining h_subsampling indicating the horizontal reduction ratio according to the fifth embodiment.
  • FIG. 24 shows an identifier SliceIndex of the compressed slice.
  • the slice identifier is included in the packet header or slice header in FIG.
  • the partition (pixel phase) number that is, 1 or 0) after pixel separation is included in the lower 1 bit. Therefore, the partition (pixel phase) number of each slice can be extracted as follows.
  • FIG. 25 is a diagram showing an example of transmission image format information according to the fifth embodiment.
  • the transmission image format information includes color space information ColorSpace of the input image, information PartitionEnable indicating the validity / invalidity of pixel separation, and video frame size information VideoFrameInfo.
  • the transmission image format information is transmitted together with the compressed image data, or is transmitted from the transmission side to the reception side when the transmission side and the reception side are connected.
  • FIG. 26 is a diagram illustrating color space information ColorSpace of the input image.
  • ColorSpace 0, 1, and 2 indicate that the input image is an RGB image signal, a YCbCr422 image signal, and a YCbCr444 image signal, respectively.
  • FIG. 27 is a diagram for explaining information PartitionEnable indicating validity / invalidity of pixel separation. 0 and 1 of Partition Enable indicate pixel separation off (invalid) and pixel separation on (valid), respectively.
  • FIG. 28 is a diagram showing a color space of compressed data according to the fifth embodiment.
  • the color space of the compressed data indicates the color space of the image input to the compression unit 15 and the image output from the decompression unit 24.
  • information on the color space of the compressed data is derived using the information on the color space of the input image and the information on the horizontal reduction ratio, and the compressed data is sent to the compression unit 15 of the transmission device and the expansion unit 24 of the reception device.
  • the color space information is set for each slice.
  • the total number of blocks (in this case, 8 ⁇ 8 pixel block) NB of all components constituting the slice is calculated as follows.
  • NBF is a block number coefficient of the compressed data, and is determined by color space information ColorSpace of the input image and h_subsampling indicating the horizontal reduction ratio as shown in FIG. frame_width is the width of the image frame, and can be derived from the information about the image frame size VideoFrameSizeInfo.
  • PartitionEnable 0
  • one slice is composed of continuous 8-line images
  • PartitionEnable 1
  • two continuous 8-line images are used. This corresponds to the construction of a slice.
  • a combination of pixel separation and horizontal reduction in which each component is not a multiple of 8 ⁇ 8 pixels is prohibited.
  • the number of blocks of compressed data for each slice is derived using information on the color space of the input image, the width of the image frame, the presence / absence of pixel separation, and the information on the horizontal reduction ratio.
  • the number of blocks of compressed data in each slice is set for each slice in the compression unit 15 of the transmission device and the expansion unit 24 of the reception device.
  • FIG. 30 shows an example of the pixel combination unit 25.
  • the image combining unit 25 receives the image signal 33 expanded by the expansion unit 24, information 30a regarding the pixel separation type and pixel separation phase from the depacket unit 23, and reception error information 30b regarding the compressed data of each phase.
  • the reception error information 30b is information based on reception error detection results in the reception unit 22 and the depacket unit 23.
  • the selection unit 34 temporarily stores the image signal 33 in the image buffer (phase 1) 35 or the image buffer (phase 2) 38 according to the information 30a.
  • the interpolation unit 36 generates an interpolation image of phase 2 based on the image signal of the buffer (phase 1) 35.
  • the interpolation unit 37 generates a phase 1 interpolation image based on the image signal of the buffer (phase 2) 38.
  • the selection unit 39 selects a pixel to be output to the combining unit 40 according to the reception error information 30b.
  • the selection unit 39 outputs the output of the interpolation unit 36 or the interpolation unit 37 to the combining unit 40 regarding the phase in which the error has occurred.
  • the selection unit 39 outputs the output of the image buffer (phase 1) 35 or the image buffer (phase 2) 38 to the combining unit 40 with respect to the phase where no error has occurred.
  • the combination unit 40 combines the pixels output from the selection unit 39 to generate and output an image 41.
  • the image of the predetermined unit is separated and compressed independently, and the pixel of the phase in which the reception error has occurred is interpolated and generated from the pixel of the phase that has been normally received. It is possible to reproduce without missing, and it is possible to realize image transmission that is robust against transmission errors.
  • FIG. 31 shows the effect of pixel separation according to the present embodiment.
  • Pixel separation generally causes a reduction in compression efficiency with respect to a compression method that uses correlation between adjacent pixels such as DCT.
  • DCT digital coherence tomography
  • horizontal even and odd pixel separation doubles the distance between pixels in the horizontal direction and thus reduces the correlation in the horizontal direction, but maintains the correlation between pixels in the vertical direction.
  • the checkerboard pixel separation maintains the diagonal inter-pixel distance by doubling the vertical and horizontal inter-pixel distances.
  • a natural image signal has high correlation between pixels in the vertical direction and the horizontal direction.
  • the horizontal left / right division the continuity of the pixels is maintained, and although the compression efficiency is expected to be reduced due to the division into two slices in the horizontal direction, the performance is not greatly degraded as compared with the case without pixel separation.
  • the compression efficiency decreases in the order of left / right horizontal division or no pixel separation, horizontal even / odd pixel separation, and checkerboard pixel separation.
  • an interpolation pixel is generated from a pixel having a phase that is normally received.
  • the image signal that has been separated into even-numbered pixels in the horizontal direction maintains only a half band in the horizontal direction, and the interpolated image is blurred in the horizontal direction.
  • the image signal subjected to checkerboard pixel separation can maintain horizontal and vertical bands that are important for subjective image quality.
  • the subjective image quality of the interpolated image is higher in the checkerboard pixel separation than in the horizontal even-odd pixel separation.
  • the diagonal frequency component of the image signal is often small due to the effects of compression, filter processing, etc.
  • PSNR Peak Signal-to-Noise Ratio
  • checkerboard pixel separation is horizontal. Image quality is higher than even and odd pixel separation.
  • the horizontal and horizontal division and no pixel separation when a reception error occurs, the image area of 8 lines constituting the slice is lost, and if the missing pixel is interpolated from the upper and lower slices, either in subjective image quality or PSNR Will also cause a significant drop.
  • the transmission image quality can be improved by selecting an appropriate pixel separation type according to the error rate. Specifically, as shown in FIG. 31, when the error rate is low, the horizontal and horizontal division or no pixel separation gives the highest received image quality, but the error rate (ie, the necessity of error concealment) is high. As the value increases, the received image quality increases in the order of horizontal even odd pixel separation and checkerboard pixel separation. As described above, by appropriately selecting a pixel separation type in a predetermined unit such as a slice according to a transmission error rate that changes every moment with a period faster than one frame, as shown by a dotted line in FIG. The transmission image quality can be improved as compared with the fixed pixel separation type.
  • FIG. 33 shows the effect of reduction conversion according to the present embodiment.
  • the input image is an RGB signal and the transmission rate is sufficiently high
  • image quality deterioration can be avoided by performing compression with the RGB signal in order to avoid a conversion loss due to color space conversion from RGB to YCbCr.
  • the compression efficiency is improved and the compression distortion is reduced by converting to YCbCr and compressing, as compared with the case of compressing RGB as it is.
  • the loss of compression with RGB becomes larger than the conversion loss associated with the color space conversion from RGB to YCbCr, so compression with YCbCr becomes effective.
  • YCbCr 222 in FIG. 33 shows a case where each signal component of YCbCr 444 is compressed by being reduced in half in the vertical direction.
  • YCbCr211 shows a case where each signal component of YCbCr422 is compressed by being reduced to 1/2 in the vertical direction.
  • the color space and the reduction rate of the color difference signal or the luminance signal are adaptively selected according to the transmission rate that changes every moment with a period faster than one frame, and is indicated by the dotted line in FIG. As described above, it is possible to improve the transmission image quality as compared with compression in a fixed color space and the number of samples.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment is also conceivable. Furthermore, you may combine suitably the component described in different embodiment.
  • the storage medium can be a computer-readable storage medium such as a magnetic disk, optical disk (CD-ROM, CD-R, DVD, etc.), magneto-optical disk (MO, etc.), semiconductor memory, etc.
  • the storage format may be any form.
  • the program for realizing the processing of each of the above embodiments may be stored on a computer (server) connected to a network such as the Internet and downloaded to the computer (client) via the network.
  • image buffer (phase 2) DESCRIPTION OF SYMBOLS 39 ... Selection part 40 ... Combining part 41 ... Image 100 ... Image transmission apparatus 101 ... Dividing part 102 ... Video processing part 103 ... Output part 104 ... Input image 105 ... Transmission data 201 ... First video processing unit 202 ... Second video processing unit 203 ... Third video processing unit 204 ... Fourth video processing unit 205 ... Predetermined Unit image 206 ... Transmission speed 207 ... Transmission error rate 208 ... Video data 300 ... Image receiving device 301 ... Input unit 302 ... Video data extraction unit 303 ...
  • Predetermined size 606 ... Transmission data 610 ... Compression unit 611 ... First compression unit 612 ... second compression unit 613 ... third compression unit 700 ... image receiving device 701 ... input unit 702 ... separation unit 704 ... output image 710 ... Expansion unit 711 ... First extension unit 712 ... Second extension unit 713 ... Third extension unit 800 ... Image transmission device 810 ... Compression unit 900 ... Image Receiving device 910.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

 画像送信装置(100)は、複数の映像処理のいずれか1つを所定単位の画像に適用し、映像データを生成する映像処理部(102)と、所定単位の画像のフレーム番号と、所定単位の画像の座標情報と、映像データのサブサンプル/非サブサンプルを識別する情報と、映像データにサブサンプル処理が行われている場合における映像データの画素位相情報と、映像データの圧縮/非圧縮を識別する情報と、映像データのサイズ情報と、映像データとを含む伝送データを出力する出力部(103)とを具備する。

Description

画像送信装置及び画像受信装置
 本発明は、画像の送信及び受信に関する。
 無線などの限られた伝送帯域において高精細な映像データを高品質実時間伝送するためには、伝送速度の変動に対する追随性及び伝送エラーに対する耐性を備える低遅延な画像圧縮/画像伸張技術が必要となる。
 特許文献1記載の映像データ処理装置は、画像を画素位相に従ってサブサンプルして複数のサブサンプル画像に分離し、各サブサンプル画像を圧縮する。この映像データ処理装置によれば、複数のサブサンプル画像のうち一部がエラーにより欠落したとしても、残りの正常なサブサンプル画像に基づいてエラー隠蔽できる。
 特許文献2記載の画像通信方法は、画像をブロック単位で可変長圧縮し、各ブロックの圧縮データに当該圧縮データのサイズを付加して送信する。この画像通信方法によれば、各ブロックの圧縮データの位置が受信側にとって既知となるため、ランダムアクセスが可能となる。即ち、この画像通信方法によれば、伝送エラーの伝播範囲がブロックレベルに抑えられる。
特開平6-22288号公報 特開平11-18086号公報
 特許文献1記載の映像データ処理装置は、映像データの無線伝送を想定していない。映像データを無線伝送する場合に、伝送エラー率などの伝送環境は時々刻々と変化する。一般に、サブサンプル処理は、画像の空間的相関を低下させるため、空間方向予測を利用した画像圧縮の効率を低下させる。故に、サブサンプル処理は、伝送エラー率が高い伝送環境において好適であるが、伝送エラー率が低い伝送環境において必ずしも好適でない。この映像データ処理装置は伝送エラー率が低い場合にもサブサンプル処理を行うため、高効率な画像圧縮に不向きである。また、サブサンプル処理に基づくエラー隠蔽は、伝送エラー率が著しく高い(複数のサブサンプル画像が殆ど欠落するような)伝送環境では機能しない。
 特許文献2記載の画像通信方法は、ブロック毎の圧縮データサイズを送信データに格納する。故に、圧縮データサイズを表現するために大きな情報量が必要となる。また、この圧縮データサイズを表現する領域にエラーが生じると、ブロックの圧縮データへのランダムアクセスが破綻し、エラーがブロックレベルを超えて伝播するおそれがある。
 従って、本発明は、伝送環境の変動に対して安定的に高品質な映像を伝送するための画像送信/画像受信の技術を提供することを目的とする。
 本発明の一態様に係る画像送信装置は、入力画像を所定単位の画像に分割する分割部と、(a)前記所定単位の画像を映像データとして生成する第1の映像処理と、(b)前記所定の単位の画像を圧縮して映像データを生成する第2の映像処理と、(c)前記所定単位の画像を画素位相に従って複数のサブサンプル画像に画素分離するサブサンプル処理を行って、各サブサンプル画像を映像データとして生成する第3の映像処理と、(d)前記所定単位の画像を画素位相に従って複数のサブサンプル画像に分離するサブサンプル処理を行って、各サブサンプル画像を圧縮して映像データを生成する第4の映像処理とのうちいずれか1つを前記所定単位の画像に適用し、前記映像データを生成する映像処理部と、前記所定単位の画像のフレーム番号と、前記所定単位の画像の座標情報と、前記映像データのサブサンプル/非サブサンプルを識別する情報と、前記映像データにサブサンプル処理が行われている場合における当該映像データの画素位相情報と、前記映像データの圧縮/非圧縮を識別する情報と、前記映像データのサイズ情報と、前記映像データとを含む伝送データを出力する出力部とを具備する。
 本発明の他の態様に係る画像受信装置は、所定単位の画像のフレーム番号と、前記所定単位の画像の座標情報と、映像データのサブサンプル/非サブサンプルを識別する情報と、前記映像データにサブサンプル処理が行われている場合における当該映像データの画素位相情報と、前記映像データの圧縮/非圧縮を識別する情報と、前記映像データのサイズ情報と、前記映像データとを含む伝送データを入力する入力部と、前記映像データのサイズ情報に従って、前記伝送データから前記映像データを抽出する抽出部と、前記映像データの圧縮/非圧縮を識別する情報が当該映像データに圧縮処理が行われていることを示すならば当該映像データを伸張する伸張部と前記映像データのサブサンプル/非サブサンプルを識別する情報が当該映像データにサブサンプル処理が行われていることを示すならば、前記画素位相情報に従って前記映像データに逆サブサンプル処理を行って、前記所定単位の画像を再構成する逆サブサンプル部と、前記所定単位の画像の座標情報に基づいて、前記所定単位の画像の表示領域を決定する表示領域決定部と、前記所定単位の画像のフレーム番号に基づいて、前記所定単位の画像の表示フレームを決定する表示順序決定部とを具備する。
 本発明の他の態様に係る画像送信装置は、入力画像を分割した所定単位の画像を入力する画像入力部と、水平方向の縮小変換を前記所定単位の画像の信号コンポーネント毎に行うフォーマット変換部と、前記縮小変換が施された所定単位の画像に対して、水平方向の画素分離を行う画素分離部と、前記画素分離が施された所定単位の画像を、分離された画素位相毎に独立して圧縮し、画像圧縮データを得る圧縮部と、前記画像圧縮データをパケット化するパケット化部と、前記パケット化された画像圧縮データを送信する送信部とを具備し、(1)前記画像圧縮データと、(2)前記入力画像の色空間の情報と、前記画像圧縮データに関する(3)水平方向の縮小率の情報と、(4)画素分離タイプの情報と、(5)画素分離位相の情報とを伝送する。
 本発明の他の態様に係る画像受信装置は、入力画像を分割した所定単位の画像または前記所定単位の画像を水平方向に画素分離した画像の(1)画像圧縮データと、(2)前記入力画像の色空間の情報と、前記画像圧縮データに関する(3)水平方向の縮小率の情報と、(4)画素分離タイプの情報と、(5)画素分離位相の情報とを含む複数のパケットを受信する受信部と、前記パケットから前記(1)乃至(5)の情報を抽出するデパケット部と、前記画像圧縮データを伸張する伸張部と、前記画素分離タイプの情報及び前記画素分離位相の情報に応じて、伸張した画像の水平方向の画素結合を行う画素結合部と、前記水平方向の縮小率の情報に応じて、前記画素結合した画像を信号コンポーネント毎に水平方向に拡大するフォーマット変換部と、フォーマット変換が行われた画像を出力する画像出力部とを具備する。
 本発明の他の態様に係る画像送信装置は、入力画像フレームをスライス単位に分割する分割部と、前記スライス単位に閉じた圧縮を行って圧縮画像データを生成する圧縮部と、パケット化されたデータ信号を生成するために、(1)前記圧縮画像データ、(2)前記入力画像フレームの色空間がRGB、YCbCr422およびYCbCr444のうちのどの色空間であるかを示す色空間情報、(3)前記入力画像フレームのフレームサイズ情報、(4)前記スライスが前記入力画像フレームの所定単位の画像であるか、又は、前記所定単位の画像を2つのパーティションに分離したうちの一方の画像であるか、を示す分離情報、(5)前記スライスが属するフレーム番号を示すフレーム番号情報、(6)前記スライスがフレーム内で表示されるべき位置を示す表示位置情報、(7)前記スライスが、(A)前記所定単位の画像を偶数列の画素と奇数列の画素とに分離する画素分離モード、(B)前記所定単位の画像をチェッカーボードパターンの第1位相の画素と第2位相の画素とに分離する画素分離モード、および、(C)前記所定単位の画像を左半分の画像と右半分の画像とに分離する画素分離モード、のうちの、どの画素分離モードに基づくパーティションであるかを示す画素分離タイプ情報、(8)前記スライスが前記2つのパーティションのうちのどちらであるかを示すパーティション番号情報、および、(9)前記所定単位の画像の各信号コンポーネントの水平サブサンプリング率を示す水平サブサンプリング率情報、をパケット化するパケット化部と、前記パケット化されたデータ信号をOFDM変調して57GHzから66GHzまでの周波数範囲内の無線伝送チャンネルで送信する送信部と、を具備する。
 本発明の他の態様に係る画像受信装置は、57GHzから66GHzまでの周波数範囲内の無線伝送チャンネルで受信された信号をOFDM復調することにより、複数のパケットデータを受信する受信部と、前記複数のパケットデータから(1)スライス単位で圧縮された画像データ、(2)前記画像データのフレームの色空間が、RGB、YCbCr422およびYCbCr444のうちの、どの色空間であるかを示す色空間情報、(3)前記フレームのフレームサイズ情報、(4)前記スライスが前記フレームの所定単位の画像であるか、又は、前記所定単位の画像を2つのパーティションに分離したうちの一方の画像であるか、を示す分離情報、(5)前記スライスが属する前記フレームの番号を示すフレーム番号情報、(6)前記スライスが前記フレーム内で表示されるべき位置を示す表示位置情報、(7)前記スライスが、(A)前記所定単位の画像を偶数列の画素と奇数列の画素とに分離する画素分離モード、(B)前記所定単位の画像をチェッカーボードパターンの第1位相の画素と第2位相の画素とに分離する画素分離モード、および、(C)前記所定単位の画像を左半分の画像と右半分の画像とに分離する画素分離モード、のうちの、どの画素分離モードに基づくパーティションであるかを示す画素分離タイプ情報、(8)前記スライスが前記2つのパーティションのうちのどちらであるか示すパーティション番号情報、および、(9)前記所定単位の画像の各信号コンポーネントの水平サブサンプリング率を示す水平サブサンプリング率情報、をデパケット化するデパケット化部と、前記(1)から(9)の情報に基づいて、前記画像データを伸張するとともに前記所定単位の画像を再構成する再構成部と、を備える。
 本発明によれば、伝送環境の変動に対して安定的に高品質な映像を伝送するための画像送信/画像受信の技術を提供できる。
第1の実施形態に係る画像送信装置を示すブロック図。 図1における映像処理部102の詳細を示すブロック図。 第1の実施形態に係る画像受信装置を示すブロック図。 第2の実施形態に係る画像送信装置を示すブロック図。 第2の実施形態に係る画像受信装置を示すブロック図。 第3の実施形態に係る画像送信装置を示すブロック図。 第3の実施形態に係る画像受信装置を示すブロック図。 第1の実施形態における所定単位の画像の説明図。 第3の映像処理部203及び第4の映像処理部204が行うサブサンプル処理の説明図。 第3の映像処理部203及び第4の映像処理部204が行うサブサンプル処理の説明図。 第1の実施形態における伝送データの一例を示す図。 逆サブサンプル部304が行う逆サブサンプル処理の説明図。 逆サブサンプル部304が行う逆サブサンプル処理の説明図。 第2の実施形態における伝送データの一例を示す図。 第3の実施形態における伝送データの一例を示す図。 第4の実施形態における伝送データの一例を示す図。 第5の実施形態に係る画像送信装置のブロック図。 第5の実施形態に係る画像受信装置のブロック図。 第5の実施形態に係る伝送データ構造の例を示す図。 第5の実施形態に係るスライスヘッダの例を示す図。 第5の実施形態に係る画素分離タイプの情報の例を示す図。 第5の実施形態に係る縮小率の情報の例を示す図。 第5の実施形態に係る画素分離の例を示す図。 第5の実施形態に係る画素分離の例を示す図。 第5の実施形態に係る画素分離の例を示す図。 第5の実施形態に係るスライス識別子の例を示す図。 第5の実施形態に係る伝送画像フォーマットの情報の例を示す図。 第5の実施形態に係る色空間の情報の例を示す図。 第5の実施形態に係る画素分離の有効/無効を示す情報の例を示す図。 第5の実施形態に係る圧縮データの色空間の例を示す図。 第5の実施形態に係る圧縮データのブロック数係数の例を示す図。 画素結合部25の一例を示すブロック図。 第5の実施形態に係る画素分離の効果を説明する図。 第5の実施形態に係る画素分離の効果を説明する図。 第5の実施形態に係る画素分離の効果を説明する図。 第5の実施形態に係る縮小変換の効果を説明する図。
 以下、図面を参照して、本発明の実施形態について説明する。尚、本願明細書における「画像圧縮/画像伸張」という用語は、「画像符号化/画像復号化」という用語に置き換えて理解されてもよい。
 (第1の実施形態) 
 図1に示すように、本発明の第1の実施形態に係る画像送信装置100は、分割部101、映像処理部102及び出力部103を有する。画像送信装置100は、入力画像104から伝送データ105を生成する。
 分割部101は、入力画像104を所定単位の画像に分割する。ここで、入力画像104は、例えば伝送対象となる映像に含まれる1フレーム分の画像である。分割部101は、この入力画像104を空間的に分割する。分割部101は、例えば図8に示すように、入力画像104を複数の所定単位の画像に分割する。図8において、所定単位の画像は、幅が1フレームの半分であって高さが16画素の領域内の画素集合である。尚、所定単位の画像は、図8に示すものに限られない。分割部101は、所定単位の画像と、当該所定単位の画像のフレーム番号と、当該所定の画像の座標情報とを映像処理部102に入力する。フレーム番号は所定単位の画像の属するフレーム(時間的位置)を識別し、座標情報はフレーム内で所定単位の画像が占める領域(空間的位置)を識別するために利用される。
 映像処理部102は、所定単位の画像に対して後述する第1乃至第4の映像処理のいずれかを適用し、映像データを生成する。映像処理部102は、伝送速度及び伝送エラー率に応じて上記第1乃至第4の映像処理を選択し、所定単位の画像に適用する。映像処理部102における映像処理の選択は、第1乃至第4の映像処理の適用前になされてもよいし、第1乃至第4の映像処理の適用後になされてもよい。伝送速度及び伝送エラー率は、任意の既存の手法を利用して取得できる。
 映像処理部102は、図2に示すように、第1の映像処理部201、第2の映像処理部202、第3の映像処理部203及び第4の映像処理部204を有する。 
 第1の映像処理部201は、所定単位の画像205に対して第1の映像処理を行う。第1の映像処理は、所定単位の画像205に対する圧縮及びサブサンプル処理を含まない。即ち、第1の映像処理部201は、所定単位の画像205をそのまま映像データ208として生成する。第1の映像処理によって生成される映像データ208は、データ量が大きくエラー耐性が低い。故に、第1の映像処理は、伝送速度206が高く、伝送エラー率207が低い伝送環境において好適である。
 第2の映像処理部202は、所定単位の画像205に対して第2の映像処理を行う。第2の映像処理部202は、所定単位の画像205に対して圧縮処理を行って、映像データ208を生成する。尚、第2の映像処理は、サブサンプル処理を含まない。第2の映像処理における圧縮方式、圧縮率などは任意である。第2の映像処理によって生成される映像データ208は、データ量が小さくエラー耐性が低い。故に、第2の映像処理は、伝送速度206及び伝送エラー率207が低い伝送環境において好適である。
 第3の映像処理部203は、所定単位の画像205に対して第3の映像処理を行う。第3の映像処理は、所定単位の画像205に対するサブサンプル処理を含む。即ち、第3の映像処理部203は、所定単位の画像205を画素位相に従って複数のサブサンプル画像に画素分離し、各サブサンプル画像を映像データ208として生成する。尚、第3の映像処理は、圧縮処理を含まない。第3の映像処理におけるサブサンプル処理の方式は任意である。第3の映像処理によって生成される映像データ208は、データ量が大きくエラー耐性が高い。故に、第3の映像処理は、伝送速度206及び伝送エラー率207が高い伝送環境において好適である。
 第4の映像処理部204は、所定単位の画像205に対して第4の映像処理を行う。第4の映像処理は、所定単位の画像205に対するサブサンプル処理及び圧縮処理を含む。即ち、第4の映像処理部204は、所定単位の画像205を画素位相に従って複数のサブサンプル画像に画素分離し、サブサンプル画像毎に圧縮処理を行って映像データ208を生成する。第4の映像処理におけるサブサンプル処理の方式、圧縮方式、圧縮率などは任意である。第4の映像処理によって生成される映像データ208は、データ量が小さくエラー耐性が高い。故に、第4の映像処理は、伝送速度206が低く伝送エラー率207が高い伝送環境において好適である。
 尚、伝送エラー率207が高い伝送環境においてサブサンプル処理が好適であると述べたが、伝送エラー率207が著しく高い場合には受信側においてサブサンプル処理に基づくエラー隠蔽が機能しないおそれがある。このような場合には、映像処理部102はデータ再送を想定した映像処理を適用してもよい。例えば、映像処理部102は、第2または第4の映像処理を通常よりも高い圧縮率で実行して映像データ208を生成し、図示しないバッファなどに再送のために一時保存しておいてもよい。
 以下、第3及び第4の映像処理におけるサブサンプル処理の具体例を説明する。尚、第3の映像処理部203及び第4の映像処理部204は、いずれか1つのサブサンプル処理を固定的に適用してもよいし、複数のサブサンプル処理から1つを適応的に選択して適用してもよい。複数のサブサンプル処理を切り替え可能とする場合には、適用されたサブサンプル処理を識別する情報を後述する伝送データ105に格納させてもよい。
 例えば、図9A及び図9Bに示すように、サブサンプル処理において、所定単位の画像内の画素を水平方向及び垂直方向で偶奇的に分離することにより4つのサブサンプル画像が生成されてよい。換言すれば、所定単位の画像内の奇数番目の水平方向ライン及び奇数番目の垂直方向ラインの交点画素で構成されるサブサンプル画像と、奇数番目の水平方向ライン及び偶数番目の垂直方向ラインの交点画素で構成されるサブサンプル画像と、偶数番目の水平方向ライン及び奇数番目の垂直方向ラインの交点画素で構成されるサブサンプル画像と、偶数番目の水平方向ライン及び偶数番目の垂直方向ラインの交点画素で構成されるサブサンプル画像とが生成されてよい。また、このサブサンプル処理は、2×2画素ブロック単位での相対的な位置に応じて画素を分離して、4つのサブサンプル画像を生成しているとみなすこともできる。図9Aは、このサブサンプル処理前の所定単位の画像を示している。図9Aにおいて、奇数番目の水平方向ライン及び奇数番目の垂直方向ラインの交点画素は三角印、奇数番目の水平方向ライン及び偶数番目の垂直方向ラインの交点画素は菱形印、偶数番目の水平方向ライン及び奇数番目の垂直方向ラインの交点画素は正方形印、偶数番目の水平方向ライン及び偶数番目の垂直方向ラインの交点画素は丸印で夫々示されている。尚、図9Aにおいて画素0の座標は(0,0)、画素31の座標は(7,3)であるものとする。図9Aに示す所定単位の画像を、前述の規則に従ってサブサンプルすると、図9Bに示す4つのサブサンプル画像が生成される。尚、図9A及び図9Bにおいて同一画素には同一符号が付されている。
 また、サブサンプル処理において、所定単位の画像内の画素を水平方向、垂直方向または斜め方向(チェッカーボード型)で偶奇的に分離することにより2つのサブサンプル画像が生成されてよい。
 映像処理部102は、第1乃至第4の映像処理の適用によって得られた映像データ208と共に、所定単位の画像のフレーム番号、所定単位の画像の座標情報、サブサンプル/非サブサンプルを識別する情報、画素位相情報、圧縮/非圧縮を識別する情報、映像データ208のサイズ情報を出力部103に入力する。サブサンプル/非サブサンプルを識別する情報は、映像データ208を生成するためにサブサンプル処理が行われているか否かを示す。また、複数のサブサンプル処理の切り替えを行う場合は、サブサンプル/非サブサンプルを識別する情報に各サブサンプル処理の識別情報も含まれる。画素位相情報は、サブサンプル処理が行われている場合に映像データ208が表現するサブサンプル画像を示す。圧縮/非圧縮を識別する情報は、映像データ208を生成するために圧縮処理が行われているか否かを示す。映像データ208のサイズ情報は、例えば映像データ208の総サイズなどを示す。
 出力部103は、映像処理部102からのデータの形式を整えて伝送データ105を生成し、出力する。伝送データ105は、伝送速度及び伝送エラー率が時間変化する伝送路(例えば、無線伝送路)を介して画像受信装置に伝送される。伝送データ105のフォーマットは、例えば図10に示す通りである。尚、図10のフォーマットにおいて、各フィールドの位置は適宜変更されてよいし、図示されていない情報が追加されてもよい。
 以上説明したように、本実施形態に係る画像送信装置は、時間変化する伝送速度及び伝送エラー率に基づいて圧縮処理、サブサンプル処理などの映像処理の適用/非適用を切り替えている。従って、本実施形態に係る画像送信装置によれば、伝送速度または伝送エラー率の変動に対して安定的に高品質な映像を伝送できる。
 図3に示すように、本実施形態に係る画像受信装置300は、入力部301、映像データ抽出部302、伸張部303、逆サブサンプル部304、表示領域決定部305及び表示順序決定部306を有する。画像受信装置300は、伝送データ105から出力映像307を生成する。伝送データ105は、図1の画像送信装置100などから例えば無線伝送路を介して伝送される。
 入力部301は、伝送データ105を映像データ抽出部302に入力する。尚、入力部301は、伝送データ105においてエラーを検出した場合には、当該伝送データ105の一部または全部を再送するように送信側(画像送信装置100など)に要求してもよい。尚、エラーを検出するためには、例えば既存の誤り訂正符号を利用すればよい。
 映像データ抽出部302は、伝送データ105に含まれる映像データのサイズ情報に従って、伝送データ105から映像データ208を抽出する。伝送データ105中の圧縮/非圧縮を識別する情報が映像データ208に圧縮処理が行われていることを示すならば、当該映像データ208は伸張部303に入力される。伝送データ105中の圧縮/非圧縮を識別する情報が映像データ208に圧縮処理が行われていないことを示し、かつ、サブサンプル/非サブサンプルを識別する情報が当該映像データ208にサブサンプル処理が行われていることを示すならば、当該映像データ208は逆サブサンプル部304に入力される。伝送データ105中の圧縮/非圧縮を識別する情報が映像データ208に圧縮処理が行われていないことを示し、かつ、サブサンプル/非サブサンプルを識別する情報が当該映像データ208にサブサンプル処理が行われていないことを示すならば、当該映像データ208は所定単位の画像として表示領域決定部305に入力される。
 伸張部303は、入力された映像データを伸張する。尚、伸張部303が行う伸張処理は、送信側(画像送信装置100など)において適用された圧縮処理に対応する。伝送データ105中のサブサンプル/非サブサンプルを識別する情報が当該映像データ208にサブサンプル処理が行われていることを示すならば伸張された映像データは逆サブサンプル部304に入力され、そうでなければ伸張された映像データは所定単位の画像として表示領域決定部305に入力される。
 逆サブサンプル部304には、所定単位の画像を画素分離したサブサンプル画像に相当する映像データが入力される。逆サブサンプル部304は、伝送データ105中の画素位相情報に従って複数の映像データに逆サブサンプル処理(画素統合)を行って所定単位の画像を再構成する。尚、エラーによって一部のサブサンプル画像が欠落している場合には、逆サブサンプル部304は欠落した画素を(空間的にまたは時間的に)近隣の正常な画素に基づいて補間してもよい。尚、逆サブサンプル部304が行う逆サブサンプル処理は、送信側(画像送信装置100など)において適用されたサブサンプル処理に対応する。例えば、送信側において図9A及び図9Bに示すようなサブサンプル処理が行われているならば、逆サブサンプル部304は図11Aに示すサブサンプル画像から図11Bに示す所定単位の画像を再構成すればよい。また、送信側にて複数のサブサンプル処理の切り替えが行われる場合には、サブサンプル/非サブサンプルを識別する情報に含まれるサブサンプル処理の識別情報に従い逆サブサンプル処理の内容を決定する。逆サブサンプル部304は、再構成した所定単位の画像を表示領域決定部305に入力する。
 表示領域決定部305は、伝送データ105中の所定単位の画像の座標情報に従って、所定単位の画像の表示領域(空間的位置)を決定する(例えば、図8を参照)。表示順序決定部306は、伝送データ105中の所定単位の画像のフレーム番号に従って、所定単位の画像の表示フレームを決定し、出力映像307を生成する。出力映像307は、テレビなどのディスプレイ装置へ出力される。
 以上説明したように、本実施形態に係る画像受信装置は、本実施形態に係る画像送信装置に対応している。従って、本実施形態に係る画像受信装置によれば、伝送速度または伝送エラー率の変動に対して安定的に高品質な映像を出力することが可能となる。
 (第2の実施形態) 
 図4に示すように、本発明の第2の実施形態に係る画像送信装置400は、ブロック分割部401、圧縮部402及び出力部403を有する。画像送信装置400は、所定単位の画像404に圧縮処理を行って、伝送データ406を生成する。尚、画像送信装置400は、図1の画像送信装置100における第2の映像処理部202または第4の映像処理部204の一部として適宜組み込まれてもよい。
 ブロック分割部401は、所定単位の画像404を分割し、複数の画像ブロックを生成する。尚、画像ブロックの形状及びサイズは限定されない。ブロック分割部401は、複数の画像ブロックを圧縮部402に入力する。
 圧縮部402は、所定サイズ405に従って画像ブロックを圧縮する。所定サイズ405は、各画像ブロックの圧縮後のデータ量を指定するパラメータである。即ち、圧縮部402は、所定サイズ405を上回らないように画像ブロックを圧縮する。所定サイズ405は、可変値であってもよいし、固定値であってもよい。所定サイズ405が可変値であるならば、伝送速度の変動に追随するように変化させてもよい。圧縮部402は、画像ブロックの圧縮データ(以下、単にブロック圧縮データと称する)を出力部403に入力する。
 出力部403は、図12に示すように、所定単位の画像404に対応する複数のブロック圧縮データのまとまりと上記所定サイズ情報とを含む映像データと、この映像データの総サイズ情報を伝送データ406として生成する。所定サイズ情報は、所定サイズ405を示す情報である。尚、所定サイズ情報は映像データの一部でなく映像データのサイズ情報の一部として扱われてもよい。総サイズ情報は、映像データの総サイズに関する情報である。伝送データ406は、例えば無線伝送路を介して画像受信装置に伝送される。画像受信装置は、この所定サイズ情報及び総サイズ情報に基づいて、任意のブロック圧縮データにアクセス(ランダムアクセス)できる。具体的には、画像受信装置は、総サイズ情報に基づいて複数のブロック圧縮データのまとまりを抽出し、所定サイズ情報に基づいて個々のブロック圧縮データを抽出できる。
 以上説明したように、本実施形態に係る画像送信装置は、所定単位の画像を分割した複数の画像ブロックを所定サイズに従って圧縮し、所定サイズ情報及び総サイズ情報と共に伝送する。従って、本実施形態に係る画像送信装置によれば、個々のブロック圧縮データへのランダムアクセスが可能となるため、エラーの伝播範囲がブロックレベルに抑えられる。即ち、伝送エラー率が一時的に上昇したとしても安定的に高品質な画像を伝送できる。
 図5に示すように、本実施形態に係る画像受信装置500は、入力部501、分離部502及び伸張部503を有する。画像受信装置500は、伝送データ406から出力画像504を生成する。伝送データ406は、図4の画像送信装置400などから例えば無線伝送路を介して伝送される。尚、画像受信装置500は、図3の画像受信装置300における伸張部303の一部として適宜組み込まれてもよい。
 入力部501は、伝送データ406を分離部502に入力する。尚、入力部501は、伝送データ406においてエラーを検出した場合には、当該伝送データ406の一部または全部を再送するように送信側(画像送信装置400)に要求してもよい。
 分離部502は、伝送データ406中の総サイズ情報に基づいて、所定サイズ情報と、ブロック圧縮データのまとまりとを分離する。分離部502は、所定サイズ情報及びブロック圧縮データのまとまりを伸張部503に入力する。
 伸張部503は、所定サイズ情報に基づいて、ブロック圧縮データのまとまりにおける個々のブロック圧縮データの位置(例えば開始位置)を判定する。各ブロック圧縮データには所定サイズが割り当てられているため、伸張部503は個々のブロック圧縮データの位置を一意に識別できる。伸張部503は、個々のブロック圧縮データを伸張し、出力画像504を生成する。尚、伸張部503が行う伸張処理は、送信側(画像送信装置400など)において適用された圧縮処理に対応する。
 伸張部503は、一部のブロック圧縮データにおいてエラーを検出した場合には、当該ブロック圧縮データを破棄し、対応する画像ブロックを(空間的または時間的に)近隣の正常な画像ブロックに基づいて補間してもよい。また、伸張部503は、一部のブロック圧縮データにおいてエラーを検出した場合には、当該ブロック圧縮データを破棄し、当該ブロック圧縮データの再送を送信側に要求して、再送されたブロック圧縮データを伸張してもよい。これら2種類の処理は、例えば伝送速度に基づいて切り替えられてもよい。即ち、伸張部503は、伝送速度が低ければ画像ブロックの補間を行い、伝送速度が高ければ再送要求を行うようにしてもよい。
 以上説明したように、本実施形態に係る画像受信装置は、本実施形態に係る画像送信装置に対応している。従って、本実施形態に係る画像受信装置によれば、個々のブロック圧縮データへのランダムアクセスが可能となるため、エラーの伝播範囲がブロックレベルに抑えられる。即ち、伝送エラー率が一時的に上昇したとしても安定的に高品質な画像を出力できる。
 (第3の実施形態) 
 図6に示すように、本発明の第3の実施形態に係る画像送信装置600は、ブロック分割部601、圧縮部610及び出力部603を有する。画像送信装置600は、所定単位の画像604に圧縮処理を行って、伝送データ606を生成する。尚、画像送信装置600は、図1の画像送信装置100における第2の映像処理部202または第4の映像処理部204の一部として適宜組み込まれてもよい。
 ブロック分割部601は、所定単位の画像604を分割し、複数の画像ブロックを生成する。尚、画像ブロックの形状及びサイズは限定されない。ブロック分割部601は、複数の画像ブロックを圧縮部610に入力する。
 圧縮部610は、所定サイズ605に従って画像ブロックを圧縮する。所定サイズ605は、各画像ブロックの圧縮後のデータ量を指定するパラメータである。即ち、圧縮部602は、所定サイズ605を上回らないように画像ブロックを圧縮する。所定サイズ605は、可変値であってもよいし、固定値であってもよい。所定サイズ605が可変値であるならば、伝送速度の変動に追随するように変化させてもよい。圧縮部610は、複数の圧縮方式からいずれか1つをブロック単位で選択して適用できる。例えば図6に示すように、圧縮部610は、例えば第1の圧縮部611、第2の圧縮部612及び第3の圧縮部613を有している。
 第1の圧縮部611は、画素間差分を圧縮するDPCM(Differential Pulse Code Modulation)などの第1の圧縮処理(可逆圧縮)を画像ブロックに適用する。第2の圧縮部612は、離散コサイン変換(DCT)などの直交変換に伴う低周波領域へのエネルギー集中を利用する第2の圧縮処理(非可逆圧縮)を画像ブロックに適用する。第3の圧縮部613は、いわゆるカラーパレット方式の第3の圧縮処理(固定長の画素単位圧縮)を画像ブロックに適用する。カラーパレット方式によって生成されるブロック圧縮データは、画素値及びインデックス番号の対応表(カラーパレット)と、ブロック内の各画素に与えられたインデックス番号とを含む。
 圧縮部610は、画像ブロックの性質に応じて圧縮方式を選択してもよい。例えば、一般的に、自然画像には第3の圧縮処理に比べて第2の圧縮処理が好適であるし、人工画像(例えば、コンピュータグラフィックス)には第2の圧縮処理に比べて第3の圧縮処理が好適である。また、圧縮部610は、第1乃至第3の圧縮処理を試験的に適用し、圧縮歪の最も小さくなる圧縮処理を選択してもよい。圧縮部610は、図13に示すように、画像ブロックに圧縮処理を行って得られる圧縮データに圧縮方式の識別子を付加してブロック圧縮データとして出力部603に入力する。
 出力部603は、図13に示すように、所定単位の画像604に対応する複数のブロック圧縮データのまとまりと上記所定サイズ情報とを含む映像データと、この映像データの総サイズ情報を伝送データ606として生成する。所定サイズ情報は、所定サイズ605を示す情報である。尚、所定サイズ情報は映像データの一部でなく映像データのサイズ情報の一部として理解されてもよい。総サイズ情報は、映像データの総サイズに関する情報である。伝送データ606は、例えば無線伝送路を介して画像受信装置に伝送される。画像受信装置は、この所定サイズ情報及び総サイズ情報に基づいて、任意のブロック圧縮データにアクセス(ランダムアクセス)できる。具体的には、画像受信装置は、総サイズ情報に基づいて複数のブロック圧縮データのまとまりを抽出し、所定サイズ情報に基づいて個々のブロック圧縮データを抽出できる。
 以上説明したように、本実施形態に係る画像送信装置は、所定単位の画像を分割した複数の画像ブロックを所定サイズに従って圧縮し、所定サイズ情報及び総サイズ情報と共に伝送する。従って、本実施形態に係る画像送信装置によれば、個々のブロック圧縮データへのランダムアクセスが可能となるため、エラーの伝播範囲がブロックレベルに抑えられる。即ち、伝送エラー率が一時的に上昇したとしても安定的に高品質な画像を伝送できる。また、本実施形態に係る画像送信装置は、複数の圧縮方式をブロック単位で切り替え可能である。従って、本実施形態に係る画像送信装置によれば、個々の画像ブロックの性質に適した圧縮処理を適用できる。
 図7に示すように、本実施形態に係る画像受信装置700は、入力部701、分離部702及び伸張部710を有する。画像受信装置700は、伝送データ606から出力画像604を生成する。伝送データ606は、図6の画像送信装置600などから例えば無線伝送路を介して伝送される。尚、画像受信装置700は、図3の画像受信装置300における伸張部303の一部として適宜組み込まれてもよい。
 入力部701は、伝送データ606を分離部702に入力する。尚、入力部701は、伝送データ606においてエラーを検出した場合には、当該伝送データ606の一部または全部を再送するように送信側(画像送信装置600)に要求してもよい。
 分離部702は、伝送データ606中の総サイズ情報に基づいて、所定サイズ情報と、ブロック圧縮データのまとまりとを分離する。分離部702は、所定サイズ情報及びブロック圧縮データのまとまりを伸張部710に入力する。
 伸張部710は、所定サイズ情報に基づいて、ブロック圧縮データのまとまりにおける個々のブロック圧縮データの位置(例えば開始位置)を判定する。各ブロック圧縮データには所定サイズが割り当てられている、伸張部710は個々のブロック圧縮データの位置を一意に識別できる。伸張部710は、圧縮方式の識別子に従って個々のブロック圧縮データを伸張し、出力画像704を生成する。尚、伸張部710が行う伸張処理は、送信側(画像送信装置600など)において適用された圧縮処理に対応する。例えば図7に示すように、伸張部710は、第1の伸張部711、第2の伸張部712及び第3の伸張部713を有している。
 第1の伸張部711は、図6の第1の圧縮部611に対応する。即ち、第1の伸張部711は、第1の圧縮処理に対応する第1の伸張処理をブロック圧縮データに適用し、出力画像704を生成する。第2の伸張部712は、図6の第2の圧縮部612に対応する。即ち、第2の伸張部712は、第2の圧縮処理に対応する第2の伸張処理をブロック圧縮データに適用し、出力画像704を生成する。第3の伸張部713は、図6の第3の圧縮部613に対応する。即ち、第3の伸張部713は、第3の圧縮処理に対応する第3の伸張処理をブロック圧縮データに適用し、出力画像704を生成する。
 伸張部710は、一部のブロック圧縮データにおいてエラーを検出した場合には、当該ブロック圧縮データを破棄し、対応する画像ブロックを(空間的または時間的に)近隣の正常な画像ブロックに基づいて補間してもよい。また、伸張部710は、一部のブロック圧縮データにおいてエラーを検出した場合には、当該ブロック圧縮データを破棄し、当該ブロック圧縮データの再送を送信側に要求して、再送されたブロック圧縮データを伸張してもよい。これら2種類の処理は、例えば伝送速度に基づいて切り替えられてもよい。即ち、伸張部710は、伝送速度が低ければ画像ブロックの補間を行い、伝送速度が高ければ再送要求を行うようにしてもよい。
 以上説明したように、本実施形態に係る画像受信装置は、本実施形態に係る画像送信装置に対応している。従って、本実施形態に係る画像受信装置によれば、個々のブロック圧縮データへのランダムアクセスが可能となるため、エラーの伝播範囲がブロックレベルに抑えられる。即ち、伝送エラー率が一時的に上昇したとしても安定的に高品質な画像を出力できる。また、本実施形態に係る画像受信装置は、圧縮方式の識別子に従って複数の伸張方式をブロック単位で切り替えて適用する。従って、本実施形態に係る画像受信装置によれば、個々の画像ブロックの性質に適合した高品質な画像を出力できる。
 (第4の実施形態) 
 本発明の第4の実施形態に係る画像送信装置800は、図4の画像送信装置400において圧縮部402を別の圧縮部810に置き換えた構成に相当する。以下の説明では、圧縮部810と圧縮部402との間で異なる部分を中心に説明する。尚、画像送信装置800は、図1の画像送信装置100における第2の映像処理部202または第4の映像処理部204の一部として適宜組み込まれてもよい。
 圧縮部810は、圧縮部402と同じ圧縮処理を行う。即ち、所定サイズ405を上回らないように画像ブロックを圧縮する。このとき、ブロック圧縮データのサイズは必ずしも所定サイズ405に一致せず、残余領域(パディング領域)が生じることがある。この残余領域は、通常、意味の無いパディングビットで満たされる。圧縮部810は、図14に示すように、この残余領域に所定のビットパターンを格納させる。この所定のビットパターンは、任意であるが、例えば「0」の羅列または「1」の羅列であってもよいし、所定単位の画像のフレーム番号、所定単位の画像の座標情報などの特徴量の一部(上位ビット、下位ビットなど)であってもよい。但し、この所定のビットパターンは、送信側(画像送信装置)と受信側(画像受信装置)との間で共通の規則に従って生成されるものとする。
 以上説明したように、本実施形態に係る画像送信装置は、各ブロック圧縮データにおいて所定サイズに満たない残余領域に共通の規則に従って生成したビットパターンを格納させる。従って、本実施形態に係る画像送信装置によれば、送受間でのビットパターンの一致/不一致によりエラーを判定できる。即ち、伝送エラー率が一時的に上昇したとしても安定的に高品質な画像を伝送できる。
 本実施形態に係る画像受信装置900は、図5の画像受信装置500において伸張部503を別の伸張部910に置き換えた構成に相当する。以下の説明では、伸張部910と圧縮部503との間で異なる部分を中心に説明する。
 伸張部910は、伸張部503と同じ伸張処理を行う。更に、伸張部910は、画像ブロックの伸張データが所定サイズに満たなければ、画像送信装置800との共通規則に従ってビットパターンを生成する。伸張部910は、生成したビットパターンと、ブロック圧縮データに格納されているビットパターンとを照合する。伸張部910は、両者が不一致であれば、ブロック圧縮データのエラーを検出する。また、伸張部910は、画像ブロックの伸張データが所定サイズを超える場合にも、ブロック圧縮データのエラーを検出する。尚、伸張部910は、ブロック圧縮データのエラーを検出した場合には、伸張部503と同様に画像ブロックの補間、再送要求などを実行する。
 以上説明したように、本実施形態に係る画像受信装置は、本実施形態に係る画像送信装置に対応している。従って、本実施形態に係る画像受信装置によれば、送受間でのビットパターンの一致/不一致によりエラーを判定できる。即ち、伝送エラー率が一時的に上昇したとしても安定的に高品質な画像を出力できる。
 (第5の実施形態) 
 図15は、本発明の第5の実施形態に係る画像送信装置のブロック図である。入力画像11は、画像入力部12に入力される。画像入力部11は、入力画像11を所定単位の画像(例えば、連続する所定ライン数の画像領域)毎に、フォーマット変換部13に入力する。フォーマット変換部13は、水平方向の縮小変換を所定単位の画像の信号コンポーネント毎に行う。尚、フォーマット変換部13は、色空間の変換(例えば、RGBからYCbCrへの変換)を更に行ってもよい。水平方向の縮小変換が施された所定単位の画像は、画素分離部14により水平方向の複数の位相の画素に分離される。圧縮部15は、分離された画素位相毎に独立して所定単位の画像に対する圧縮処理(例えば、DCT(離散コサイン変換)を用いた圧縮)を行う。圧縮されたデータは、パケット化部16によりパケット化される。パケット化されたデータは、送信部17により例えばOFDM変調されて伝送データ18として60GHz帯のミリ波の無線で伝送される。送信部17は、例えば、57GHzから66GHzまでの周波数範囲内の伝送チャンネルを用いて伝送データ18を送信する。フォーマット変換部13、画素分離部14及び圧縮部15は、それぞれ未処理(バイパスの処理)を含む複数のモードを備え、所定単位の画像毎にそれぞれのモードを変更できる。伝送データ18は、フォーマット変換部13における縮小率の情報19、画素分離部14における画素分離タイプ及び画素分離位相の情報20、および、圧縮部15の圧縮モードの情報を含む。
 図16は、本実施形態に係る画像受信装置のブロック図である。図16に示す画像受信装置は、図15の画像送信装置によって圧縮された画像圧縮データを含む伝送データ21を受信して、画像圧縮データの伸張を行う。伝送データ21は、例えばOFDM変調された60GHz帯のミリ波の無線信号である。伝送データ21は、例えば、57GHzから66GHzまでの周波数範囲内の伝送チャンネルを用いて送信される。受信部22は伝送データ21を受信する。受信部22は、受信された伝送データ21に対して復調処理を行う。デパケット化部23は、復調された伝送データ21から、画像圧縮データ、縮小率の情報29、画素分離タイプ及び画素分離位相の情報30を抽出する。縮小率の情報29、画素分離タイプ及び画素分離位相情報30は、所定単位の画像圧縮データ毎に指定されている。伸張部24は、受信した画像圧縮データの伸張処理を所定単位の画像圧縮データ毎に行う。伸張部24は、上記縮小率の情報29に加えて、後述する入力画像の色空間の情報、画像フレームの横幅の情報及び画素分離の有効/無効を示す情報を、所定単位の画像圧縮データ毎に用いて伸張処理を行う。画素結合部25は、画素分離タイプ及び画素分離位相の情報30を用いて、伸張された画像の画素結合処理を行う。フォーマット変換部26は、縮小率の情報29を用いて、水平方向の拡大処理を画素結合された画像の信号コンポーネント毎に行う。尚、フォーマット変換部13は、色空間の変換(例えば、YCbCrからRGBへの変換)を更に行ってもよい。画像出力部27は、フォーマット変換された画像を、ライン単位の再生画像28として出力する。
 図17は、第5の実施形態に係る伝送データ構造の例を示す図である。所定単位の画像は、分離された画素位相毎に独立して圧縮される。ここでは、独立して圧縮された圧縮データをスライスと呼ぶ。各スライスは、固定のブロックサイズ(例えば8x8画素)の複数のブロックに分割されてブロック単位で圧縮される。各スライスには、固定ビット長のスライスヘッダが付与され、スライスヘッダとスライスとの組を、圧縮スライスデータユニットと呼ぶ。圧縮スライスデータユニットは、パケット化部16によって、複数のデータに分割され、分割されたデータごとにヘッダが付与されてパケット化される。
 図18は、第5の実施形態に係るスライスヘッダの例を示す図である。スライスヘッダには、画素分離タイプを示す2ビットのpartition_typeと水平縮小率を示す2ビットのh_subsamplingのデータフィールドが含まれる。
 図19は、第5の実施形態に係る画素分離タイプの情報partition_typeを説明する図である。partition_type=0は、水平方向に画像ラインを左右2分割する画素分離タイプを示す。また、後述するPartitionEnableが0(画素分離オフ)の場合には、partition_typeは必ず0がセットされ画素分離無しを意味する。図21に、水平左右分割の例を示す。この水平左右分割では、連続する8ラインを所定単位の画像とし、画像フレームの左半分をパーティション0(画素分離位相1)、右半分をパーティション1(画素分離位相2)として2つの領域に分割し、分離されたパーティション(画素位相)毎に独立して圧縮が行われる。partition_type=1は、水平方向に偶数画素と奇数画素で画素を分離する画素分離タイプを示す。図22に、水平偶数奇数画素分離の例を示す。この水平偶数奇数画素分離では、連続する8ラインを所定単位の画像とし、水平方向偶数番目の画素をパーティション0(画素分離位相1)、奇数番目の画素をパーティション1(画素分離位相2)として分離して、分離されたパーティション(画素位相)毎に独立して圧縮が行われる。partition_type=2は、チェッカーボード状に画素を分離するケースを示す。図23に、チェッカーボード画素分離の例を示す。このチェッカーボード画素分離では、連続する8ラインを所定単位の画像とし、偶数ラインの偶数番目の画素及び奇数ラインの奇数番目の画素をパーティション0(画素分離位相1)、偶数ラインの奇数番目の画素及び奇数ラインの偶数番目の画素をパーティション1(画素分離位相2)として水平方向に分離して、分離されたパーティション(画素位相)毎に独立して圧縮が行われる。
 所定のライン数単位(ここでは8ライン)での画像圧縮において、画素分離をライン方向(垂直方向)で行うためには、画像分離前の所定単位の画像の垂直ライン数を倍増(ここでは16ライン)させる必要がある。垂直ライン数を倍増させることは、圧縮に係る遅延及び画像メモリ量の増加を招く。また、垂直ライン数が倍増すると、画像伸張においても、所定単位の画像をライン単位の出力画像にスキャン変換するための遅延量及び画像メモリ量が増大する。一方、画素分離を水平方向に限定すれば、所定単位の画像のライン数を維持したまま画素を2つの位相に分離できるので、圧縮処理及び伸張処理に係る遅延の増加や画像メモリの増加を抑えることが可能となる。
 また、後述するPartitionEnableが0、すなわち画素分離オフの場合には、連続する8ラインを所定単位として圧縮してスライスを構成することにより、スライスヘッダやパケット化などのオーバーヘッドを削減できる。また、PartitionEnableが1、すなわち画素分離オンの場合には、連続する8ライン毎に、画素単位の分離は行わず左右で分離する水平左右分割、画素単位の水平偶数奇数画素分離、チェッカーボード画素分離のいずれかの画素分離タイプが選択される。1フレームよりも短い周期で時々刻々変化する伝送レートやエラーレートに応じて、エラー耐性と符号化効率とのバランスが最適となるように画素分離タイプを選択することにより、画質劣化の少ない圧縮伝送を実現することが可能となる。また、いずれの画素分離タイプが選択されても、連続する8ラインが2つのスライスとして圧縮されるため、後段のパケット化部16や送信部17は、画素分離タイプを意識せずに(画素分離タイプに関係なく)容易に動作できる。
 図20は、第5の実施形態に係る水平縮小率を示すh_subsamplingを説明する図である。h_subsampling=0は、水平方向の縮小を行わずに圧縮が行われたことを示す。h_subsampling=1は、色差信号のみ水平方向に1/2縮小して圧縮が行われたこと示す。h_subsampling=2は、全ての画像信号コンポーネント(例えば、R,G,BまたはY,Cb,Crなど)に対して水平方向に1/2縮小を施して圧縮が行われたことを示す。受信側では、伸張処理及び画素結合が行われた画像に対して、h_subsampling=1の場合、色差信号の水平2倍の拡大処理が行われる。また、h_subsampling=2の場合、全ての画像信号コンポーネントに対して水平2倍の拡大処理が行われる。
 所定単位の画像毎に、1フレームよりも短い周期で時々刻々変化する伝送レートや所定単位毎の画像の性質(圧縮困難度)に応じて、水平縮小無し、色差のみ縮小、全コンポーネント縮小を切り替えることにより、圧縮による歪と縮小による解像度低下のバランスを最適化させた高画質伝送が可能となる。
 図24は圧縮されたスライスの識別子SliceIndexである。スライス識別子は、図17におけるパケットヘッダ又はスライスヘッダに含まれる。スライス識別子には、後述するPartitionEnableが1(画素分離オン)の場合は、上記画素分離されたパーティション(画素位相)番号(即ち、1または0)が、下位1ビットに含まれている。従って、下記の通り、各スライスのパーティション(画素位相)番号が抽出可能である。
Figure JPOXMLDOC01-appb-M000001
 図25は、第5の実施形態に係る伝送画像フォーマット情報の例を示す図である。伝送画像フォーマット情報には、入力画像の色空間の情報ColorSpace、画素分離の有効/無効を示す情報PartitionEnable、画像フレームサイズの情報VideoFrameSizeInfoが含まれる。伝送画像フォーマット情報は画像圧縮データと共に伝送されるか、或いは、送信側と受信側の接続時に送信側から受信側へ伝送される。
 図26は、入力画像の色空間の情報ColorSpaceを説明する図である。ColorSpaceの0、1、2は、それぞれ入力画像がRGB画像信号、YCbCr422画像信号、YCbCr444画像信号であることを示す。
 図27は、画素分離の有効/無効を示す情報PartitionEnableを説明する図である。PartitionEnableの0、1は、それぞれ画素分離オフ(無効)、画素分離オン(有効)を示す。
 図28は、第5の実施形態に係る圧縮データの色空間を示す図である。圧縮データの色空間は、圧縮部15に入力される画像及び伸張部24から出力される画像の色空間を示しており、(画像送信装置の)入力画像の色空間の情報ColorSpaceと水平縮小率を示すh_subsamplingによって決定される。水平縮小処理がオフ(h_subsampling=0)又は全コンポーネント1/2(h_subsampling=2)の場合、圧縮データの色空間と入力画像の色空間は一致する。一方、色差信号水平1/2(h_subsampling=1)は、入力画像の色空間がYCbCr444の場合にのみ適用可能であり、圧縮データの色空間はYCbCr422となる。図28に従って、入力画像の色空間の情報と水平縮小率の情報を用いて、圧縮データの色空間の情報が導出され、送信装置の圧縮部15、受信装置の伸張部24に対して圧縮データの色空間の情報が、スライス毎に設定される。
 スライスを構成する全コンポーネントのブロック総数(ここでは8x8画素ブロック)NBは、以下のように計算される。
Figure JPOXMLDOC01-appb-M000002
 ここで、NBFは圧縮データのブロック数係数であり、図29に示すように、入力画像の色空間の情報ColorSpaceと水平縮小率を示すh_subsamplingによって決定される。frame_widthは、画像フレームの横幅であり、画像フレームサイズの情報VideoFrameSizeInfoから導出できる。上式は、画素分割がされない場合(PartitionEnable=0)には連続する8ラインの画像で1スライスが構成され、画素分割が用いられる場合(PartitionEnable=1)には連続する8ラインの画像で2スライスが構成されることに対応している。ただし、各コンポーネントが8×8画素の倍数とならない画素分離及び水平縮小の組み合わせは禁止される。すなわち、圧縮データの色空間がRGBまたはYCbCr444の場合、NBは3の倍数でなければならない。また、圧縮データの色空間がYCbCr422の場合、NBは4の倍数でなければならない。上式に従って、入力画像の色空間の情報、画像フレームの横幅、画素分離の有無及び水平縮小率の情報を用いて、各スライスの圧縮データのブロック数が導出される。各スライスの圧縮データのブロック数は、送信装置の圧縮部15、受信装置の伸張部24に対してスライス毎に設定される。
 図30は、画素結合部25の一例を示す。画像結合部25には、伸張部24により伸張された画像信号33と、デパケット部23からの画素分離タイプおよび画素分離位相に関する情報30aと、各位相の圧縮データに関する受信エラー情報30bとが入力される。受信エラー情報30bは、受信部22及びデパケット部23における受信エラーの検出結果に基づく情報である。選択部34は、情報30aに従って、画像信号33を画像バッファ(位相1)35または画像バッファ(位相2)38に一時保存する。補間部36は、バッファ(位相1)35の画像信号に基づいて、位相2の補間画像を生成する。補間部37は、バッファ(位相2)38の画像信号に基づいて、位相1の補間画像を生成する。選択部39は受信エラー情報30bに従って、結合部40に出力する画素を選択する。選択部39は、エラーの発生した位相に関して、補間部36または補間部37の出力を結合部40に出力する。一方、選択部39は、エラーの発生していない位相に関して、画像バッファ(位相1)35または画像バッファ(位相2)38の出力を結合部40に出力する。結合部40は、選択部39から出力された画素を結合して画像41を生成し、出力する。このように、所定単位の画像を画素分離して独立して圧縮し、受信エラーの発生した位相の画素を正常に受信された位相の画素から補間生成することにより、所定単位の画像がまとめて欠落することなく再生可能となり、伝送エラーに対して頑健な画像伝送を実現できる。
 図31は、本実施形態に係る画素分離の効果を示している。画素分離は、DCTなどの隣接画素間相関を利用した圧縮方式に関して、一般に圧縮効率の低下を引き起こす。例えば、水平偶数奇数画素分離は、水平方向の画素間距離を2倍にするので水平方向の相関を低下させるものの、垂直方向の画素間相関を維持できる。一方、チェッカーボード画素分離は、垂直方向及び水平方向の画素間距離を夫々2倍にして、斜め方向の画素間距離を維持する。一般に、自然画像信号は、垂直方向及び水平方向の画素間相関が高い。水平左右分割では、画素の連続性は維持され、水平方向に2つのスライスに分割されることによる圧縮効率の低下が見込まれるものの、画素分離無しと比べて大きな性能劣化とはならない。
 故に、圧縮効率は、左右水平分割又は画素分離無し、水平偶数奇数画素分離、チェッカーボード画素分離の順で低下する。また、2つの分離された位相のうち一方で受信エラーが発生した場合に、正常に受信された位相の画素から補間画素を生成することになる。水平偶数奇数画素分離された画像信号は、図32Aに示すように水平方向に1/2の帯域しか維持されていないので、補間画像は水平方向にボケてしまう。一方、チェッカーボード画素分離された画像信号は、図32Bに示すように、主観画質上重要となる水平及び垂直方向の帯域を維持できる。故に、補間画像の主観画質は、チェッカーボード画素分離の方が水平偶数奇数画素分離よりも高くなる。また、自然画像信号では、圧縮やフィルタ処理などの影響で、画像信号の斜め周波数成分が小さい場合が多いので、PSNR(Peak Signal-to-Noise Ratio)の観点からも、チェッカーボード画素分離は水平偶数奇数画素分離よりも画質が高くなる。一方、水平左右分割及び画素分離無しは、受信エラー発生時にスライスを構成する8ラインの画像領域が欠落することになり、欠落した画素が上下スライスから補間されると、主観画質およびPSNRのいずれにおいても大幅な低下を招く。即ち、画素分離タイプによる圧縮効率の低下と当該画素分離タイプのエラー耐性との間にはトレードオフの関係が成立する。従って、エラーレートに応じて適切な画素分離タイプを選択することにより、伝送画質を向上させることが可能となる。具体的には、図31に示すように、エラーレートが低い場合であれば、水平左右分割又は画素分離無しが受信画質を最も高くさせるものの、エラーレート(即ち、エラーコンシールメントの必要性)が高くなるに従って、水平偶数奇数画素分離、チェッカーボード画素分離の順で受信画質が高くなる。以上説明したように、1フレームよりも速い周期で時々刻々変化する伝送エラーレートに応じて、画素分離タイプをスライスなどの所定単位で適切に選択することにより、図31の点線で示すように、固定の画素分離タイプに比べて伝送画質を向上させることが可能となる。
 図33は、本実施形態に係る縮小変換の効果を示している。入力画像がRGB信号であって、伝送レートが十分高い場合には、RGBからYCbCrへの色空間変換に伴う変換ロスを避けるため、RGB信号のまま圧縮を行うことにより、画質劣化を回避できる。一方、RGBの信号コンポーネント間には一般に強い相関があるため、YCbCrに変換して圧縮することで、RGBのまま圧縮するのに比べて、圧縮効率が向上し、圧縮歪は少なくなる。伝送レートが低下するに従って、RGBからYCbCrへの色空間変換に伴う変換ロスよりもRGBのまま圧縮を行うことのロスの方が大きくなるので、YCbCrでの圧縮が有効となる。また、伝送レートが更に低下した場合には、解像度と圧縮歪との間のトレードオフが発生するため、伝送レートが低下するに従って、色差信号、輝度信号の順でサンプル数を削減して圧縮することが有効となる。図33におけるYCbCr222は、YCbCr444の各信号コンポーネントを垂直方向に1/2に縮小して圧縮した場合を示している。また、YCbCr211は、YCbCr422の各信号コンポーネントを垂直方向に1/2に縮小して圧縮した場合を示している。以上説明したように、1フレームよりも速い周期で時々刻々変化する伝送レートに応じて、色空間や、色差信号または輝度信号の縮小率を適応的に選択することにより、図33の点線で示すように、固定の色空間、サンプル数での圧縮よりも伝送画質を向上させることが可能となる。
 尚、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。
 例えば、上記した各実施形態の処理を実現するプログラムを、コンピュータで読み取り可能な記憶媒体に格納して提供することも可能である。記憶媒体としては、磁気ディスク、光ディスク(CD-ROM、CD-R、DVD等)、光磁気ディスク(MO等)、半導体メモリなど、プログラムを記憶でき、かつ、コンピュータが読み取り可能な記憶媒体であれば、その記憶形式は何れの形態であってもよい。
 また、上記した各実施形態の処理を実現するプログラムを、インターネットなどのネットワークに接続されたコンピュータ(サーバ)上に格納し、ネットワーク経由でコンピュータ(クライアント)にダウンロードさせてもよい。
 11・・・入力画像
 12・・・画像入力部
 13・・・フォーマット変換部
 14・・・画素分離部
 15・・・圧縮部
 16・・・パケット化部
 17・・・送信部
 18,21・・・伝送データ
 22・・・受信部
 23・・・デパケット化部
 24・・・伸張部
 25・・・画素結合部
 26・・・フォーマット変換部
 27・・・画像出力部
 28・・・再生画像
 19、29・・・縮小率の情報
 20,30・・・画素分離の情報
 30a・・・画素分離タイプおよび画素分離位相に関する情報
 30b・・・受信エラー情報
 33・・・伸張された画像信号
 34・・・選択部
 35・・・画像バッファ(位相1)
 36,37・・・補間部
 38・・・画像バッファ(位相2)
 39・・・選択部
 40・・・結合部
 41・・・画像
 100・・・画像送信装置
 101・・・分割部
 102・・・映像処理部
 103・・・出力部
 104・・・入力画像
 105・・・伝送データ
 201・・・第1の映像処理部
 202・・・第2の映像処理部
 203・・・第3の映像処理部
 204・・・第4の映像処理部
 205・・・所定単位の画像
 206・・・伝送速度
 207・・・伝送エラー率
 208・・・映像データ
 300・・・画像受信装置
 301・・・入力部
 302・・・映像データ抽出部
 303・・・伸張部
 304・・・逆サブサンプル部
 305・・・表示領域決定部
 306・・・表示順序決定部
 307・・・出力映像
 400・・・画像送信装置
 401・・・ブロック分割部
 402・・・圧縮部
 403・・・出力部
 404・・・所定単位の画像
 405・・・所定サイズ
 406・・・伝送データ
 500・・・画像受信装置
 501・・・入力部
 502・・・分離部
 503・・・伸張部
 504・・・出力画像
 600・・・画像送信装置
 601・・・ブロック分割部
 603・・・出力部
 604・・・所定単位の画像
 605・・・所定サイズ
 606・・・伝送データ
 610・・・圧縮部
 611・・・第1の圧縮部
 612・・・第2の圧縮部
 613・・・第3の圧縮部
 700・・・画像受信装置
 701・・・入力部
 702・・・分離部
 704・・・出力画像
 710・・・伸張部
 711・・・第1の伸張部
 712・・・第2の伸張部
 713・・・第3の伸張部
 800・・・画像送信装置
 810・・・圧縮部
 900・・・画像受信装置
 910・・・伸張部

Claims (12)

  1.  入力画像を所定単位の画像に分割する分割部と、
     (a)前記所定単位の画像を映像データとして生成する第1の映像処理と、(b)前記所定の単位の画像を圧縮して映像データを生成する第2の映像処理と、(c)前記所定単位の画像を画素位相に従って複数のサブサンプル画像に画素分離するサブサンプル処理を行って、各サブサンプル画像を映像データとして生成する第3の映像処理と、(d)前記所定単位の画像を画素位相に従って複数のサブサンプル画像に分離するサブサンプル処理を行って、各サブサンプル画像を圧縮して映像データを生成する第4の映像処理とのうちいずれか1つを前記所定単位の画像に適用し、前記映像データを生成する映像処理部と、
     前記所定単位の画像のフレーム番号と、前記所定単位の画像の座標情報と、前記映像データのサブサンプル/非サブサンプルを識別する情報と、前記映像データにサブサンプル処理が行われている場合における当該映像データの画素位相情報と、前記映像データの圧縮/非圧縮を識別する情報と、前記映像データのサイズ情報と、前記映像データとを含む伝送データを出力する出力部と
     を具備する画像送信装置。
  2.  前記伝送データは、前記サブサンプル処理の内容を識別するサブサンプル処理識別情報を含む
     請求項1記載の画像送信装置。
  3.  前記サブサンプル処理は、前記所定単位の画像内の画素を(1)偶数列と奇数列、または、(2)チェッカーボードパターンの第1の位相と第2の位相、に分離することにより2つのサブサンプル画像を生成する処理である請求項2記載の画像送信装置。
  4.  前記映像データは、前記第2の映像処理または前記第4の映像処理が行われた場合には、当該映像データの圧縮方式を識別する情報を更に含む請求項3記載の画像送信装置。
  5.  所定単位の画像のフレーム番号と、前記所定単位の画像の座標情報と、映像データのサブサンプル/非サブサンプルを識別する情報と、前記映像データにサブサンプル処理が行われている場合における当該映像データの画素位相情報と、前記映像データの圧縮/非圧縮を識別する情報と、前記映像データのサイズ情報と、前記映像データとを含む伝送データを入力する入力部と、
     前記映像データのサイズ情報に従って、前記伝送データから前記映像データを抽出する抽出部と、
     前記映像データの圧縮/非圧縮を識別する情報が当該映像データに圧縮処理が行われていることを示すならば当該映像データを伸張する伸張部と
     前記映像データのサブサンプル/非サブサンプルを識別する情報が当該映像データにサブサンプル処理が行われていることを示すならば、前記画素位相情報に従って前記映像データに逆サブサンプル処理を行って、前記所定単位の画像を再構成する逆サブサンプル部と、
     前記所定単位の画像の座標情報に基づいて、前記所定単位の画像の表示領域を決定する表示領域決定部と、
     前記所定単位の画像のフレーム番号に基づいて、前記所定単位の画像の表示フレームを決定する表示順序決定部と
     を具備する画像受信装置。
  6.  前記画像ブロックの圧縮データは、圧縮方式の識別子を含み、
     前記伸張部は、前記圧縮方式の識別子に従って伸張方式を選択して前記画像ブロックの圧縮データを伸張する
     請求項5記載の画像受信装置。
  7.  入力画像を分割した所定単位の画像を入力する画像入力部と、
     水平方向の縮小変換を前記所定単位の画像の信号コンポーネント毎に行うフォーマット変換部と、
     前記縮小変換が施された所定単位の画像に対して、水平方向の画素分離を行う画素分離部と、
     前記画素分離が施された所定単位の画像を、分離された画素位相毎に独立して圧縮し、画像圧縮データを得る圧縮部と、
     前記画像圧縮データをパケット化するパケット化部と、
     前記パケット化された画像圧縮データを送信する送信部と
     を具備し、
     (1)前記画像圧縮データと、(2)前記入力画像の色空間の情報と、前記画像圧縮データに関する(3)水平方向の縮小率の情報と、(4)画素分離タイプの情報と、(5)画素分離位相の情報とを伝送する画像送信装置。
  8.  前記画素分離タイプの情報が、(1)偶数画素/奇数画素への画素分離、(2)チェッカーボードパターンの第1位相/第2位相への画素分離、(3)前記所定単位の画像の左半分/右半分への分離、のいずれかであることを示す請求項7記載の画像送信装置。
  9.  入力画像を分割した所定単位の画像または前記所定単位の画像を水平方向に画素分離した画像の(1)画像圧縮データと、(2)前記入力画像の色空間の情報と、前記画像圧縮データに関する(3)水平方向の縮小率の情報と、(4)画素分離タイプの情報と、(5)画素分離位相の情報とを含む複数のパケットを受信する受信部と、
     前記パケットから前記(1)乃至(5)の情報を抽出するデパケット部と、
     前記画像圧縮データを伸張する伸張部と、
     前記画素分離タイプの情報及び前記画素分離位相の情報に応じて、伸張した画像の水平方向の画素結合を行う画素結合部と、
     前記水平方向の縮小率の情報に応じて、前記画素結合した画像を信号コンポーネント毎に水平方向に拡大するフォーマット変換部と、
     フォーマット変換が行われた画像を出力する画像出力部と
     を具備する画像受信装置。
  10.  前記画素分離タイプの情報が、(1)偶数画素/奇数画素への画素分離、(2)チェッカーボードパターンの第1位相/第2位相への画素分離、(3)前記所定単位の画像の左半分/右半分への分離、のいずれかであることを示す請求項9記載の画像受信装置。
  11.  入力画像フレームをスライス単位に分割する分割部と、
     前記スライス単位に閉じた圧縮を行って圧縮画像データを生成する圧縮部と、
     パケット化されたデータ信号を生成するために、
      (1)前記圧縮画像データ、
      (2)前記入力画像フレームの色空間がRGB、YCbCr422およびYCbCr444のうちのどの色空間であるかを示す色空間情報、
      (3)前記入力画像フレームのフレームサイズ情報、
      (4)前記スライスが前記入力画像フレームの所定単位の画像であるか、又は、前記所定単位の画像を2つのパーティションに分離したうちの一方の画像であるか、を示す分離情報、
      (5)前記スライスが属するフレーム番号を示すフレーム番号情報、
      (6)前記スライスがフレーム内で表示されるべき位置を示す表示位置情報、
      (7)前記スライスが、
       (A)前記所定単位の画像を偶数列の画素と奇数列の画素とに分離する画素分離モード、
       (B)前記所定単位の画像をチェッカーボードパターンの第1位相の画素と第2位相の画素とに分離する画素分離モード、および、
       (C)前記所定単位の画像を左半分の画像と右半分の画像とに分離する画素分離モード、
    のうちの、どの画素分離モードに基づくパーティションであるかを示す画素分離タイプ情報、
      (8)前記スライスが前記2つのパーティションのうちのどちらであるかを示すパーティション番号情報、および、
      (9)前記所定単位の画像の各信号コンポーネントの水平サブサンプリング率を示す水平サブサンプリング率情報、
    をパケット化するパケット化部と、
     前記パケット化されたデータ信号をOFDM変調して57GHzから66GHzまでの周波数範囲内の無線伝送チャンネルで送信する送信部と、
    を具備する画像送信装置。
  12.  57GHzから66GHzまでの周波数範囲内の無線伝送チャンネルで受信された信号をOFDM復調することにより、複数のパケットデータを受信する受信部と、
     前記複数のパケットデータから
      (1)スライス単位で圧縮された画像データ、
      (2)前記画像データのフレームの色空間が、RGB、YCbCr422およびYCbCr444のうちの、どの色空間であるかを示す色空間情報、
      (3)前記フレームのフレームサイズ情報、
      (4)前記スライスが前記フレームの所定単位の画像であるか、又は、前記所定単位の画像を2つのパーティションに分離したうちの一方の画像であるか、を示す分離情報、
      (5)前記スライスが属する前記フレームの番号を示すフレーム番号情報、
      (6)前記スライスが前記フレーム内で表示されるべき位置を示す表示位置情報、
      (7)前記スライスが、
       (A)前記所定単位の画像を偶数列の画素と奇数列の画素とに分離する画素分離モード、
       (B)前記所定単位の画像をチェッカーボードパターンの第1位相の画素と第2位相の画素とに分離する画素分離モード、および、
       (C)前記所定単位の画像を左半分の画像と右半分の画像とに分離する画素分離モード、
    のうちの、どの画素分離モードに基づくパーティションであるかを示す画素分離タイプ情報、
      (8)前記スライスが前記2つのパーティションのうちのどちらであるか示すパーティション番号情報、および、
      (9)前記所定単位の画像の各信号コンポーネントの水平サブサンプリング率を示す水平サブサンプリング率情報、
    をデパケット化するデパケット化部と、
     前記(1)から(9)の情報に基づいて、前記画像データを伸張するとともに前記所定単位の画像を再構成する再構成部と、
    を備える画像受信装置。
PCT/JP2009/066832 2009-09-02 2009-09-28 画像送信装置及び画像受信装置 WO2011027479A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011503294A JP5726724B2 (ja) 2009-09-02 2009-09-28 画像送信装置及び画像受信装置
CN200980156580.0A CN102318343B (zh) 2009-09-02 2009-09-28 图像发送装置以及图像接收装置
EP09849008.9A EP2475171A4 (en) 2009-09-02 2009-09-28 IMAGE TRANSMISSION DEVICE AND IMAGE RECEIVING DEVICE
US13/098,536 US20110206130A1 (en) 2009-09-02 2011-05-02 Image transmission apparatus and image reception apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2009/065356 2009-09-02
PCT/JP2009/065356 WO2011027440A1 (ja) 2009-09-02 2009-09-02 画像圧縮装置及び画像伸張装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/098,536 Continuation US20110206130A1 (en) 2009-09-02 2011-05-02 Image transmission apparatus and image reception apparatus

Publications (1)

Publication Number Publication Date
WO2011027479A1 true WO2011027479A1 (ja) 2011-03-10

Family

ID=43649002

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/065356 WO2011027440A1 (ja) 2009-09-02 2009-09-02 画像圧縮装置及び画像伸張装置
PCT/JP2009/066832 WO2011027479A1 (ja) 2009-09-02 2009-09-28 画像送信装置及び画像受信装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065356 WO2011027440A1 (ja) 2009-09-02 2009-09-02 画像圧縮装置及び画像伸張装置

Country Status (4)

Country Link
US (1) US20110206130A1 (ja)
EP (1) EP2475171A4 (ja)
CN (1) CN102318343B (ja)
WO (2) WO2011027440A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058954A (ja) * 2011-09-09 2013-03-28 Hitachi Consumer Electronics Co Ltd 映像送信装置
JP2014131136A (ja) * 2012-12-28 2014-07-10 Nikon Corp 動画像圧縮装置、動画像復号装置およびプログラム
JP2018148578A (ja) * 2012-08-24 2018-09-20 アイキューブド研究所株式会社 送信装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116650B2 (ja) * 2008-12-10 2013-01-09 キヤノン株式会社 画像符号化装置及びその制御方法
KR101449692B1 (ko) * 2010-02-26 2014-10-13 에스케이 텔레콤주식회사 영상 부호화 장치 및 그 방법, 및 영상 복호화 장치 및 그 방법
US20120207207A1 (en) * 2011-02-10 2012-08-16 Ofer Peer Method, system and associated modules for transmission of complimenting frames
US8660119B2 (en) * 2011-04-11 2014-02-25 Mediawave Intelligent Communication Limited Communication system capable of transmitting packet having sub-packets
US8878990B2 (en) * 2011-05-25 2014-11-04 Sharp Kabushiki Kaisha Image signal processing apparatus and liquid crystal display
US20140092301A1 (en) * 2011-05-25 2014-04-03 Sharp Kabushiki Kaisha Data structure, image transmitting apparatus, image receiving apparatus, display apparatus, image transmitting method, and recording medium
JP5978574B2 (ja) * 2011-09-12 2016-08-24 ソニー株式会社 送信装置、送信方法、受信装置、受信方法および送受信システム
TW201349869A (zh) * 2012-05-31 2013-12-01 Novatek Microelectronics Corp 資料傳送系統及方法
CN103475675A (zh) * 2012-06-06 2013-12-25 联咏科技股份有限公司 数据传送系统及方法
JP6083973B2 (ja) * 2012-08-08 2017-02-22 株式会社メガチップス データ記憶制御装置およびデータ記憶方法
JP6195444B2 (ja) * 2013-01-18 2017-09-13 サターン ライセンシング エルエルシーSaturn Licensing LLC ソース機器、通信システム、ソース機器の制御方法およびシンク機器の制御方法
US9497357B2 (en) * 2013-11-20 2016-11-15 Kyocera Document Solutions Inc. Image compressing/decompressing apparatus and image forming apparatus
JPWO2018003008A1 (ja) * 2016-06-28 2018-07-05 三菱電機株式会社 画像符号化装置及び画像復号装置
JP6821418B2 (ja) * 2016-12-16 2021-01-27 キヤノン株式会社 画像処理装置、画像処理方法、及びプログラム
CN107105185A (zh) * 2017-04-18 2017-08-29 深圳创维-Rgb电子有限公司 视频信号的传输方法及装置
JP7509038B2 (ja) 2019-01-22 2024-07-02 ソニーグループ株式会社 情報処理装置および方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312476A (ja) * 1989-05-29 1990-12-27 Mitsubishi Electric Corp 画像符号化伝送方式
JPH0622288A (ja) 1992-04-07 1994-01-28 Sony Broadcast & Commun Ltd 映像データ処理装置及び方法
JPH07123132A (ja) * 1993-08-31 1995-05-12 Canon Inc 通信方法及び装置
JPH08307699A (ja) * 1995-05-12 1996-11-22 Kokusai Electric Co Ltd 画像処理方法
JPH0937241A (ja) * 1995-07-14 1997-02-07 Nec Eng Ltd 高能率画像符号化伝送システムとそのエンコーダ装置及びデコーダ装置
JPH09233467A (ja) * 1996-02-21 1997-09-05 Fujitsu Ltd 画像データ通信装置及び画像データ通信システムにおける通信データ量調整方法
JPH1118086A (ja) 1997-06-20 1999-01-22 Nippon Telegr & Teleph Corp <Ntt> 画像通信方法および装置
JP2001160969A (ja) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd 動画像符号化装置、動画像伝送装置、および動画像記録装置
JP2001224044A (ja) * 2000-02-14 2001-08-17 Sony Corp 情報処理装置および方法
JP2004040517A (ja) * 2002-07-04 2004-02-05 Hitachi Ltd 携帯端末および画像配信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130797A (en) * 1989-02-27 1992-07-14 Mitsubishi Denki Kabushiki Kaisha Digital signal processing system for parallel processing of subsampled data
US5761438A (en) * 1993-08-31 1998-06-02 Canon Kabushiki Kaisha Apparatus for measuring the amount of traffic of a network at a predetermined timing and compressing data in the packet without changing the size of the packet
US6252906B1 (en) * 1998-07-31 2001-06-26 Thomson Licensing S.A. Decimation of a high definition video signal
US6215526B1 (en) * 1998-11-06 2001-04-10 Tivo, Inc. Analog video tagging and encoding system
US20030185301A1 (en) * 2002-04-02 2003-10-02 Abrams Thomas Algie Video appliance
EP1638337A1 (en) * 2004-09-16 2006-03-22 STMicroelectronics S.r.l. Method and system for multiple description coding and computer program product therefor
KR100727970B1 (ko) * 2005-08-30 2007-06-13 삼성전자주식회사 영상의 부호화 및 복호화 장치와, 그 방법, 및 이를수행하기 위한 프로그램이 기록된 기록 매체
US20080074289A1 (en) * 2006-09-21 2008-03-27 Adc Telecommunications, Inc. Wireless internet-protocol-based traffic signal light management

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02312476A (ja) * 1989-05-29 1990-12-27 Mitsubishi Electric Corp 画像符号化伝送方式
JPH0622288A (ja) 1992-04-07 1994-01-28 Sony Broadcast & Commun Ltd 映像データ処理装置及び方法
JPH07123132A (ja) * 1993-08-31 1995-05-12 Canon Inc 通信方法及び装置
JPH08307699A (ja) * 1995-05-12 1996-11-22 Kokusai Electric Co Ltd 画像処理方法
JPH0937241A (ja) * 1995-07-14 1997-02-07 Nec Eng Ltd 高能率画像符号化伝送システムとそのエンコーダ装置及びデコーダ装置
JPH09233467A (ja) * 1996-02-21 1997-09-05 Fujitsu Ltd 画像データ通信装置及び画像データ通信システムにおける通信データ量調整方法
JPH1118086A (ja) 1997-06-20 1999-01-22 Nippon Telegr & Teleph Corp <Ntt> 画像通信方法および装置
JP2001160969A (ja) * 1999-12-01 2001-06-12 Matsushita Electric Ind Co Ltd 動画像符号化装置、動画像伝送装置、および動画像記録装置
JP2001224044A (ja) * 2000-02-14 2001-08-17 Sony Corp 情報処理装置および方法
JP2004040517A (ja) * 2002-07-04 2004-02-05 Hitachi Ltd 携帯端末および画像配信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2475171A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058954A (ja) * 2011-09-09 2013-03-28 Hitachi Consumer Electronics Co Ltd 映像送信装置
JP2018148578A (ja) * 2012-08-24 2018-09-20 アイキューブド研究所株式会社 送信装置
JP2014131136A (ja) * 2012-12-28 2014-07-10 Nikon Corp 動画像圧縮装置、動画像復号装置およびプログラム

Also Published As

Publication number Publication date
US20110206130A1 (en) 2011-08-25
WO2011027440A1 (ja) 2011-03-10
CN102318343B (zh) 2015-02-11
EP2475171A1 (en) 2012-07-11
CN102318343A (zh) 2012-01-11
EP2475171A4 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2011027479A1 (ja) 画像送信装置及び画像受信装置
JP4154569B2 (ja) 画像圧縮伸長装置
JP5735181B2 (ja) デュアルレイヤフレームコンパチブルフル解像度立体3dビデオ配信
US5410354A (en) Method and apparatus for providing compressed non-interlaced scanned video signal
CN102439971B (zh) 用于无线系统中的无压缩视频通信的累进速率适配的方法和系统
JP5969597B2 (ja) データ送信方法、データ受信方法、無線送信機及び無線受信機
US20160142737A1 (en) Method and apparatus for packaging image data for transmission over a network
WO2010004726A1 (ja) 画像符号化方法、画像復号方法、画像符号化装置、画像復号装置、プログラム、及び集積回路
US8660345B1 (en) Colorization-based image compression using selected color samples
JP2012510737A (ja) デジタル画像ストリームのフレームの符号化と復号化の方法およびシステム
JP5722349B2 (ja) ブロックに基づくインターリーブ
JP2014171097A (ja) 符号化装置、符号化方法、復号装置、および、復号方法
JP5133317B2 (ja) 記憶容量の低減と色回転と複合信号と境界フィルタ処理とをともなったビデオ圧縮の方法及びそのための集積回路
TW201351961A (zh) 基於閉塞映像之使用而產生及重建一三維視訊串流之方法以及相應之產生及重建裝置
JP4558190B2 (ja) データ回復方法及び装置並びに記録媒体
JP5726724B2 (ja) 画像送信装置及び画像受信装置
US20060008154A1 (en) Video compression and decompression to virtually quadruple image resolution
JP4355914B2 (ja) 多視点画像伝送システムと方法、多視点画像圧縮装置と方法、多視点画像伸長装置と方法およびプログラム
JP3111028B2 (ja) 画像信号処理装置及び画像信号処理方法
US9049448B2 (en) Bidimensional bit-rate reduction processing
JP4558194B2 (ja) 原始コーディング方法、デジタル信号処理装置及び分散装置並びに記録媒体
JP4243095B2 (ja) 立体画像処理方法及びプログラム及び記録媒体
JP6460691B2 (ja) 映像圧縮装置、映像圧縮方法及び映像圧縮プログラム
JP4747074B2 (ja) 画像データ伝送システム及び画像データ伝送方法
KR102430216B1 (ko) 영상 처리 장치 및 영상 수신 단말의 동작 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156580.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011503294

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009849008

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE