WO2011027470A1 - Exhaust purification device for internal combustion engine - Google Patents

Exhaust purification device for internal combustion engine Download PDF

Info

Publication number
WO2011027470A1
WO2011027470A1 PCT/JP2009/065555 JP2009065555W WO2011027470A1 WO 2011027470 A1 WO2011027470 A1 WO 2011027470A1 JP 2009065555 W JP2009065555 W JP 2009065555W WO 2011027470 A1 WO2011027470 A1 WO 2011027470A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
catalyst carrier
desorbed
particles
Prior art date
Application number
PCT/JP2009/065555
Other languages
French (fr)
Japanese (ja)
Inventor
大月寛
祖父江優一
浅沼孝充
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/065555 priority Critical patent/WO2011027470A1/en
Publication of WO2011027470A1 publication Critical patent/WO2011027470A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/949Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/24Hydrogen sulfide (H2S)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • Examples of exhaust gases of internal combustion engines such as diesel engines and gasoline engines include carbon monoxide (CO), unburned fuel (HC), nitrogen oxides (NO x ), and particulate matter (PM). Contains ingredients.
  • An exhaust gas purification device is attached to the internal combustion engine to purify these components.
  • a NO X storage reduction catalyst be disposed in the engine exhaust passage. The NO X storage reduction catalyst holds NO X when the air-fuel ratio of the exhaust gas is lean. When the holding amount of the NO X reaches the allowable value, by the air-fuel ratio of the exhaust gas rich or the stoichiometric air-fuel ratio, the held NO X is released.
  • the released NO X is reduced to N 2 by a reducing agent such as carbon monoxide contained in the exhaust gas.
  • a reducing agent such as carbon monoxide contained in the exhaust gas.
  • JP 2002-21538 discloses, was added potassium as the NO X storage agent of the NO X occluding and reducing catalyst, the catalyst system is disclosed in which a three-way catalyst downstream of the NO X occluding and reducing catalyst.
  • an alkali metal capturing means carrying phosphorus is provided between the NO X storage reduction catalyst and the three-way catalyst. It is disclosed that potassium evaporated from the NO X storage reduction catalyst is captured by an alkali metal trapping means to prevent potassium from reaching the downstream three-way catalyst.
  • Patent In 2006-346525 discloses a three-way catalyst is arranged downstream of the NO X occluding and reducing catalyst, adding a storage agent and alkaline stabilizer to the catalyst layer of the NO X occluding and reducing catalyst, the catalyst layer of the three-way catalyst Discloses an exhaust emission control device for an internal combustion engine in which palladium and an alkali trapping agent are added to the lower layer, and platinum and rhodium are added to the upper layer. This exhaust purification device is disclosed as being able to prevent the exhaust purification performance of the three-way catalyst from being reduced by the storage agent.
  • the exhaust gas of the internal combustion engine may contain sulfur oxide (SO x ).
  • SO x sulfur oxide
  • the NO X storage reduction catalyst holds SO X simultaneously with holding NO X.
  • SO X the amount of NO X that can be held decreases.
  • so-called sulfur poisoning occurs in the NO X storage reduction catalyst.
  • the NO X occluding and reducing catalyst in order to prevent the SO X is held, on the upstream side of the NO X occluding and reducing catalyst, it is possible to arrange the stored SO X material that holds the SO X.
  • For SO X is removed from the exhaust gas by stored SO X material, it is possible to avoid sulfur poisoning of the NO X occluding and reducing catalyst.
  • An object of the present invention is to provide an exhaust purification device for an internal combustion engine that suppresses the outflow of SO X from the SO X holding material.
  • An exhaust gas purification apparatus for an internal combustion engine is disposed in an engine exhaust passage, retains NO X contained in exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and the air-fuel ratio is disposed in the stoichiometric air-fuel ratio or the the NO X storage reduction catalyst to release the NO X held and becomes rich, the upstream side of the engine exhaust passage of the NO X occluding and reducing catalyst, SO X holding material for holding the SO X With.
  • the SO X holding material includes a particulate catalyst carrier that supports a catalyst metal, and a binder that is formed of a material different from that of the catalyst carrier and bonds the catalyst carriers together.
  • At least one of the catalyst carrier and the binding material absorbs SO X contained in the exhaust gas and is reformed to sulfate, whereby the volume expands and the bond between the catalyst carrier and the binding material is released.
  • the catalyst carrier is detached in the form of particles. With this configuration, the outflow of SO X from the SO X holding material can be suppressed.
  • the catalyst carrier is formed of a material that expands in volume when SO X is occluded and reformed to sulfate
  • the binder is made of a material that does not change when SO X flows. It is preferable that the material is formed of a material whose volume is not changed when X is occluded and modified into a sulfate.
  • the exhaust gas purification apparatus for an internal combustion engine is disposed in the engine exhaust passage, holds NO X contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and controls the inflowing exhaust gas.
  • air-fuel ratio is arranged to the stoichiometric air-fuel ratio or the the NO X storage reduction catalyst to release the NO X held and becomes rich, the upstream side of the engine exhaust passage of the NO X occluding and reducing catalyst, SO X holding material for holding the SO X With.
  • the SO X holding material is formed of a particulate catalyst carrier supporting a catalyst metal, a material different from the catalyst carrier, an auxiliary particle having an average particle size smaller than that of the catalyst carrier, and a material substantially the same as the auxiliary particle, And a catalyst carrier that is supported by the auxiliary particles.
  • the catalyst carrier occludes SO X contained in the exhaust gas and is reformed to sulfate, whereby the volume expands, the support of the catalyst carrier by the auxiliary particles is released, and the catalyst carrier is detached in the form of particles. With this configuration, the outflow of SO X from the SO X holding material can be suppressed.
  • the binder and the auxiliary particles have a decomposition temperature at which the sulfate decomposes when SO X is occluded to become a sulfate, and the desorption that raises the temperature of the SO X holding material above the decomposition temperature.
  • the sulfate is decomposed to reduce the volume of the binder and the auxiliary particles, and the support of the catalyst carrier by the auxiliary particles is released. With this configuration, the catalyst carrier that occludes SO X can be more reliably desorbed.
  • the collection filter is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material.
  • the SO X holding material has a catalyst carrier arranged in layers on the surface of the substrate, estimates the thickness of the catalyst carrier layer, and uses the thickness of the catalyst carrier layer to calculate the integrated SO of the SO X holding material. It is preferable to calculate the X retention amount. With this configuration, the SO X holding material can be managed.
  • the collection filter is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material. After releasing SO X from the collected desorbed particles, NO X contained in the exhaust gas is preferably held by the desorbed particles. With this configuration, the desorbed particles can be used as a NO X storage reduction catalyst. In the above invention, based on the amount of desorbed particles collected by the collection filter, an allowable value by which the desorbed particles can hold NO X is estimated, and the NO X retention amount of the desorbed particles exceeds the allowable value.
  • NO X release control for releasing the NO X held in the desorbed particles by making the air-fuel ratio of the exhaust gas flowing into the collection filter the stoichiometric air-fuel ratio or rich.
  • SO X contained in the exhaust gas is held in the NO X storage reduction catalyst.
  • the temperature of the NO X storage reduction catalyst is raised to a temperature at which SO X can be released and SO X release control is performed to make the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst the stoichiometric air-fuel ratio or rich , based on the amount of desorbed particles trapped in the trapping filter, it is preferable to determine at least one of the air-fuel ratio of the exhaust gas flowing into the temperature and the NO X storage reduction catalyst of the NO X occluding and reducing catalyst. With this configuration, the sulfur poisoning recovery process of the NO X storage reduction catalyst can be performed efficiently.
  • FIG. 1 is a schematic overall view of an internal combustion engine in a first embodiment. It is a schematic cross-sectional view of the NO X occluding and reducing catalyst. It is a schematic sectional drawing of a SO X trap catalyst. It is an expansion schematic sectional drawing explaining the coupling
  • FIG. 3 is a first enlarged schematic cross-sectional view illustrating desorption of the catalyst carrier of the SO X trap catalyst. It is a 2nd expansion schematic sectional drawing explaining detachment
  • FIG. 6 is a third enlarged schematic cross-sectional view illustrating desorption of the catalyst carrier of the SO X trap catalyst.
  • FIG. 2 is an enlarged schematic cross-sectional view of a SO X trap catalyst of a first comparative example in Embodiment 1.
  • FIG. 6 is a graph illustrating the relationship between the SO X retention amount and the SO X release amount of the SO X trap catalyst of the first comparative example in the first embodiment. 6 is an enlarged schematic cross-sectional view when the catalyst carrier of the SO X trap catalyst of the second comparative example in Embodiment 1 is desorbed.
  • FIG. FIG. 3 is an explanatory diagram of a first step of the method for producing the SO X trap catalyst in the first embodiment.
  • FIG. 5 is an explanatory diagram of a second step of the method for producing the SO X trap catalyst in the first embodiment.
  • FIG. 2 is a schematic view of an apparatus for detecting the thickness of a SO X trap catalyst coating layer in Embodiment 1.
  • FIG. 6 is a graph for explaining a relationship between an accumulated SO X retention amount and a thickness of a coat layer in an SO X trap catalyst. It is a graph explaining the relationship between the accumulated usage amount of fuel and the accumulated SO X retention amount in the SO X trap catalyst.
  • FIG. 3 is a first enlarged schematic cross-sectional view of a SO X trap catalyst in a second embodiment.
  • FIG. 5 is a second enlarged schematic cross-sectional view of a SO X trap catalyst in a second embodiment.
  • 10 is a flowchart for determining whether or not to perform desorption promotion control in the second embodiment.
  • FIG. 5 is a schematic diagram of an internal combustion engine in a third embodiment.
  • 10 is a time chart of first operational control in the third embodiment.
  • 10 is a time chart of second operational control in the third embodiment. Is a map of the NO X amount per unit discharged time from the engine body. It is explanatory drawing of the injection pattern when reducing the air fuel ratio of the exhaust gas discharged
  • 12 is a time chart of third operational control in the third embodiment. It is a graph illustrating the operation range of the operating region and the SO X release control in the NO X storage reduction catalyst.
  • Embodiment 1 With reference to FIG. 1 to FIG. 15, the exhaust gas purification apparatus for an internal combustion engine in the first embodiment will be described.
  • the internal combustion engine in the present embodiment is arranged in a vehicle.
  • a compression ignition type diesel engine attached to an automobile will be described as an example.
  • FIG. 1 shows an overall view of an internal combustion engine in the present embodiment.
  • the internal combustion engine includes an engine body 1.
  • the internal combustion engine also includes an exhaust purification device that purifies the exhaust gas.
  • the engine body 1 includes a combustion chamber 2 as each cylinder, an electronically controlled fuel injection valve 3 for injecting fuel into each combustion chamber 2, an intake manifold 4, and an exhaust manifold 5.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 through the intake duct 6.
  • An inlet of the compressor 7 a is connected to an air cleaner 9 via an intake air amount detector 8.
  • a throttle valve 10 driven by a step motor is disposed in the intake duct 6.
  • a cooling device 11 for cooling the intake air flowing through the intake duct 6 is disposed in the middle of the intake duct 6.
  • engine cooling water is guided to the cooling device 11.
  • the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the turbine 7b of the exhaust turbocharger 7.
  • the exhaust gas purification apparatus in the present embodiment is NO X
  • An occlusion reduction catalyst (NSR) 17 is provided.
  • the exhaust emission control device in the present embodiment is provided with SO contained in the exhaust gas.
  • a trap catalyst 14 is provided.
  • SO X The trap catalyst 14 is NO X It is disposed in the engine exhaust passage upstream of the storage reduction catalyst 17.
  • SO X The trap catalyst 14 is connected to the outlet of the turbine 7b through the exhaust pipe 12.
  • NO X In the engine exhaust passage downstream of the storage reduction catalyst 17, a particulate filter 16 is disposed as a collection filter that collects particulate matter in the exhaust gas.
  • An oxidation catalyst 13 is disposed in the engine exhaust passage downstream of the particulate filter 16.
  • An EGR passage 18 is disposed between the exhaust manifold 5 and the intake manifold 4 in order to perform exhaust gas recirculation (EGR).
  • An electronically controlled EGR control valve 19 is disposed in the EGR passage 18.
  • a cooling device 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed in the middle of the EGR passage 18.
  • engine cooling water is introduced into the cooling device 20.
  • the EGR gas is cooled by the engine cooling water.
  • Each fuel injection valve 3 is connected to a common rail 22 via a fuel supply pipe 21.
  • the common rail 22 is connected to a fuel tank 24 via an electronically controlled variable discharge amount fuel pump 23.
  • the fuel stored in the fuel tank 24 is supplied into the common rail 22 by the fuel pump 23.
  • the fuel supplied into the common rail 22 is supplied to the fuel injection valve 3 through each fuel supply pipe 21.
  • the electronic control unit 30 is composed of a digital computer.
  • the electronic control unit 30 in the present embodiment functions as a control device for the exhaust purification device.
  • the electronic control unit 30 includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36 that are connected to each other by a bidirectional bus 31.
  • ROM 32 is a read-only storage device.
  • the ROM 32 stores in advance information such as a map necessary for control.
  • the CPU 34 can perform arbitrary calculations and determinations.
  • the RAM 33 is a readable / writable storage device.
  • the RAM 33 can store information such as an operation history and can temporarily store calculation results.
  • NO X Downstream of the occlusion reduction catalyst 17 is NO.
  • a temperature sensor 26 for detecting the temperature of the storage reduction catalyst 17 is disposed.
  • a temperature sensor 27 for detecting the temperature of the oxidation catalyst 13 or the particulate filter 16 is disposed downstream of the oxidation catalyst 13.
  • a differential pressure sensor 28 for detecting the differential pressure across the particulate filter 16 is attached to the particulate filter 16.
  • the output signals of the temperature sensors 26 and 27, the differential pressure sensor 28, and the intake air amount detector 8 are input to the input port 35 via the corresponding AD converters 37, respectively.
  • a load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40.
  • the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37.
  • the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °.
  • the oxidation catalyst 13 is a catalyst having oxidation ability.
  • the oxidation catalyst 13 includes, for example, a base having a partition extending in the exhaust gas flow direction.
  • the substrate is formed in a honeycomb structure, for example.
  • the base is accommodated in, for example, a cylindrical case.
  • a coat layer as a catalyst support layer is formed of, for example, porous oxide powder.
  • the coat layer carries a catalyst metal formed of a noble metal such as platinum (Pt), rhodium (Rd), or palladium (Pd). Carbon monoxide or unburned hydrocarbons contained in the exhaust gas are oxidized by an oxidation catalyst and converted into water, carbon dioxide, or the like.
  • the particulate filter 16 is a filter that removes particulate matter (particulates) such as carbon fine particles and sulfate contained in the exhaust gas.
  • the particulate filter has, for example, a honeycomb structure and a plurality of flow paths extending in the gas flow direction. In the plurality of channels, the channels whose downstream ends are sealed and the channels whose upstream ends are sealed are alternately formed.
  • the partition walls of the flow path are formed of a porous material such as cordierite. Particulate matter is trapped when the exhaust gas passes through the partition wall. The particulate matter is collected on the particulate filter 16 and oxidized. The particulate matter gradually deposited on the particulate filter 16 is oxidized and removed by raising the temperature to, for example, about 600 ° C. in an atmosphere containing excess air.
  • Figure 2 shows NO X The expansion schematic sectional drawing of an occlusion reduction catalyst is shown. NO X The storage reduction catalyst 17 is NO contained in the exhaust gas discharged from the engine body 1.
  • the storage reduction catalyst 17 has a catalyst carrier 45 made of, for example, aluminum oxide supported on a base.
  • a catalyst metal 46 formed of a noble metal is dispersed and supported on the surface of the catalyst carrier 45. NO on the surface of the catalyst carrier 45 X
  • a layer of absorbent 47 is formed.
  • the catalyst metal 46 for example, platinum Pt is used.
  • the components constituting the absorbent 47 were selected from, for example, alkali metals such as potassium K, sodium Na and cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y. At least one is used. In this embodiment, NO X Barium Ba is used as a component constituting the absorbent 47.
  • the ratio of the exhaust gas air and fuel (hydrocarbon) supplied to the engine intake passage, combustion chamber, or engine exhaust passage is referred to as the air-fuel ratio (A / F) of the exhaust gas.
  • NO X NO from the storage reduction catalyst X NO to release X Release control can be performed.
  • NO X NO NO from the storage reduction catalyst X NO to release X Release control
  • NO X NO from the storage reduction catalyst X NO to release X Release control
  • NO X NO from the storage reduction catalyst X NO to release X Release control
  • NO X NO from the storage reduction catalyst X NO to release X Release control
  • NO X NO from the storage reduction catalyst
  • X NO to release X Release control can be performed.
  • NO X NO in any form.
  • X It does not matter if it holds.
  • NO on the catalyst carrier X May be adsorbed.
  • Figure 3 shows the SO in this embodiment.
  • X The enlarged schematic sectional drawing of a trap catalyst is shown. SO X SO as holding material X
  • the trap catalyst 14 is SO contained in the exhaust gas discharged from the engine body 1.
  • the trap catalyst 14 is NO X
  • the structure is similar to that of the storage reduction catalyst 17.
  • SO X The trap catalyst 14 has a catalyst carrier 48 supported on a substrate.
  • a catalyst metal 49 is dispersed and supported on the surface of the catalyst carrier 48.
  • the surface of the catalyst carrier 48 is SO.
  • An absorbent 50 is disposed.
  • the catalyst metal 49 in the present embodiment is made of noble metal platinum Pt.
  • a base metal such as iron Fe may be used in addition to a noble metal such as platinum or silver.
  • the components constituting the absorbent 50 were selected from, for example, alkali metals such as potassium K, sodium Na, cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y. At least one is used.
  • SO X Barium Ba is used as a component constituting the absorbent 50.
  • SO contained in exhaust gas 2 Is SO X
  • This SO 3 Is SO X Absorbed in the absorbent 50, for example sulfate BaSO 4 Is generated.
  • SO X The trap catalyst 14 contains SO contained in the exhaust gas.
  • the absorbent 50 can be occluded. SO X
  • the holding material is not limited to this form. X If it can hold. SO in this embodiment X
  • the trap catalyst 14 is SO X Besides NO X Hold. SO X NO stored in absorbent 50 X Is NO X NO of storage reduction catalyst 17 X It is released at the same time as the release control. That is, by making the air-fuel ratio of exhaust gas the stoichiometric air-fuel ratio or rich, SO X NO from trap catalyst X Is released. NO released X Is N 2 Reduced to However, sulfate BaSO 4 Is stable, NO X Even with controlled release, SO X Is SO X It remains on the trap catalyst.
  • the trap catalyst is the SO gas from the exhaust gas. X Can be removed. SO X If the use of the trap catalyst is continued, the SO X The holding amount increases. On the other hand, NO X SO for storage reduction catalyst X NO flows, NO X SO as absorbent X Is retained. SO X Is retained as sulfate. SO X Because of its stable sulfate, NO X Even with controlled release, SO X Accumulates without being released. For this reason, NO X SO for storage reduction catalyst X NO flows, NO X This results in sulfur poisoning that reduces the amount of carbon that can be retained. SO in the engine exhaust passage X By arranging the holding material, SO contained in the exhaust gas X Can be removed.
  • FIG. 4 shows the SO in this embodiment.
  • X The enlarged schematic sectional drawing of a trap catalyst is shown.
  • the coat layer 53 includes a catalyst carrier 48.
  • the catalyst carrier 48 in the present embodiment is formed in a particle shape.
  • Catalytic metal 49 and SO X The absorbent 50 is disposed on the surface of the catalyst carrier 48.
  • the catalyst carriers 48 are connected to each other by a binding material 51. Further, the catalyst carrier 48 is bonded to the substrate 52 by a bonding material 51.
  • SO in this embodiment X In the trap catalyst, the catalyst carrier 48 and the binding material 51 are formed of different materials.
  • the catalyst carrier 48 is SO X It is made of a substance that occludes and becomes sulfate.
  • the binder 51 is made of SO. X It is formed of a substance that is difficult to chemically change when compared with the catalyst carrier 48.
  • the catalyst carrier 48 is made of magnesium oxide MgO.
  • the binder 51 is made of silicon dioxide SiO. 2 It is formed by.
  • FIG. 5 shows SO X
  • carrier of a trap catalyst is shown.
  • X It is held in the absorbent 50.
  • the catalyst carrier 48 itself is SO.
  • Catalyst carrier 48 is SO X By maintaining the MgO as the oxide to the MgSO as the sulfate. 4 To be modified. The volume is expanded by the oxide catalyst carrier 48 becoming the sulfate catalyst carrier 48a.
  • the volume of the sulfate catalyst carrier 48 a is larger than the volume of the oxide catalyst carrier 48.
  • the binder 51 is made of silicon dioxide SiO. 2 Therefore, it is not in the form of sulfate, but is in an oxide state. That is, the binder 51 is made of SO. X It does not change even if it touches. For this reason, distortion occurs at the interface between the catalyst carrier 48 and the binder 51.
  • Figure 6 shows SO X The 2nd expansion schematic sectional drawing explaining detachment
  • the catalyst carrier 48 becomes a sulfate in order from the surface of the coat layer 53.
  • the catalyst carrier 48 a that has become a sulfate is released from the bond with the binder 51 due to distortion at the interface with the binder 51.
  • the catalyst carrier 48 a that has become sulfate is detached from the coat layer 53 and scattered as indicated by an arrow 201.
  • the catalyst carrier 48a is detached in the form of particles. In the present embodiment, each of the catalyst carriers 48a is detached individually.
  • the absorbent 50 includes SO. X Is held. As described above, the catalyst carrier 48a is made of SO.
  • SO X Particles desorbed from the coating layer of the trap catalyst are called desorbed particles.
  • the desorbed particles in the present embodiment are catalyst carrier 48a, SO X An absorbent 50 and catalytic metal 49 are included.
  • SO X The desorbed particles including the catalyst carrier 48a flowing out from the trap catalyst 14 are NO. X It flows into the storage reduction catalyst 17.
  • the SO retained on the desorbed particles X Is in a stable state because it is already in the sulfate form. For this reason, the desorbed particles are NO X NO does not react with the NOx storage reduction catalyst 17 X It passes through the storage reduction catalyst 17.
  • NO X NO of storage reduction catalyst 17 X The absorbent 47 can pass through without reacting. The desorbed particles are collected by the particulate filter 16. Like this, NO X The storage reduction catalyst 17 has SO X Can be avoided.
  • Figure 7 shows SO X The 3rd expansion schematic sectional drawing explaining detachment
  • FIG. 8 shows the SO of the first comparative example in the present embodiment. X The enlarged schematic sectional drawing of a trap catalyst is shown.
  • the catalyst carrier 48 and the binding material 51 are formed of the same material.
  • the binder 51 and the catalyst carrier 48 are made of silicon dioxide SiO. 2 It is formed with.
  • SO of the first comparative example X For trap catalysts, SO X Even if the catalyst flows in, the catalyst carrier 48 and the binding material 51 remain oxides instead of sulfates. SO X Is supported on the catalyst carrier 48. X Occluded by absorbent.
  • the catalyst carrier 48 and the binder 51 are made of SO. X Does not expand even if it flows in. For this reason, the coupling
  • SO of the first comparative example X Continue to use the trap catalyst, SO X SO of trap catalyst X If the holding amount increases, SO X The basicity of the trap catalyst is weakened. SO X SO in trap catalyst X The holding power is reduced. For this reason, in a predetermined operation state, as indicated by an arrow 202, the SO X A sulfur component may flow out of the trap catalyst. For example, SO X When the exhaust gas flowing into the trap catalyst is in a high temperature state or the exhaust gas has a low air-fuel ratio, the SO X The sulfur component held in the trap catalyst may flow out.
  • Fig. 9 shows the SO of the first comparative example.
  • FIG. 9 shows SO in a state where the temperature of the exhaust gas is high and the air-fuel ratio of the exhaust gas is low.
  • X Indicates the amount released.
  • SO X Immediately after the start of use of the trap catalyst, SO X SO is low due to low holding amount X Is not released. SO X If the holding amount is small, SO X SO released from the trap catalyst X SO rather than quantity X SO retained in the trap catalyst X Because of the large amount, SO X SO from trap catalyst X Will not leak.
  • SO X SO released from the trap catalyst X The amount is SO X SO retained in the trap catalyst X More than the amount. For this reason, SO X SO from trap catalyst X Leaks. Like this, SO X SO in trap catalyst X As the holding amount increases, SO X The amount of release increases. Referring to Fig. 8, SO X The sulfur component stored in the absorbent is H which is a sulfide. 2 SO which is S or oxide 2 SO in the form X Released from the trap catalyst. H 2 The sulfur component released in the form of S is a stable SO in a short time. X To change.
  • the SO in the present embodiment X The trap catalyst is SO X The catalyst carrier 48a holding the air scatters on the exhaust gas flow as desorbed particles. SO X The catalyst carrier 48a holding the X Excluded from the trap catalyst. SO X On the surface of the trap catalyst coating layer 53, SO X A catalyst carrier 48 having a small holding amount is arranged. Or SO X The basicity of the entire trap catalyst can be maintained high. For this purpose, SO X SO from trap catalyst X Can be suppressed.
  • the SO in the present embodiment X The trap catalyst is used until the catalyst carrier is completely scattered, that is, SO X Integrated SO of trap catalyst X High SO until the holding amount reaches saturation X The removal rate can be maintained.
  • the desorbed particles including the catalyst carrier desorbed from the coat layer are collected by the particulate filter 16.
  • the differential pressure across the particulate filter 16 increases.
  • the particulate filter 16 is a SO X Even when all the catalyst carriers 48 included in the trap catalyst 14 flow in, it is preferable that the front-rear differential pressure is less than a predetermined allowable value.
  • the SO X The amount of the catalyst carrier 48 of the trap catalyst 14 or the capacity of the particulate filter 16 is preferably set. Also, in this embodiment, SO X The desorbed particles desorbed from the trap catalyst are collected by the particulate filter.
  • the present invention is not limited to this configuration, and the particulate filter may not be disposed in the engine exhaust passage.
  • the catalyst carrier 48 and the binding material 51 are formed of different materials.
  • the binder 51 is made of SO.
  • the catalyst carrier 48 is formed of a material that does not change even if the catalyst flows in. X It is made of a material that becomes sulfate by flowing in and expands in volume. With this configuration, SO X The catalyst carrier 48 that holds can be removed. When the catalyst carrier 48 and the binding material 51 are formed of the same material, SO X Even if the catalyst carrier 48 expands by occlusion of the catalyst, the catalyst carrier 48 and the binding material 51 expand to the same extent, so that the catalyst carrier 48 is hardly detached. Since the catalyst carrier 48 and the binder 51 are formed of different materials, the catalyst carrier 48 can be easily detached. In the present embodiment, the catalyst carrier 48 becomes a sulfate and the binding material 51 remains an oxide and remains unchanged.
  • the present invention is not limited to this, and at least one of the catalyst carrier 48 and the binding material 51 is exhausted. SO contained in gas X It is only necessary that the volume of the catalyst carrier 48 and the binding material 51 is released by occlusion and reforming to sulfate to release the volume.
  • both the catalyst carrier 48 and the binding material 51 are sulfates, and the catalyst carrier 48 is formed so that the interface between the catalyst carrier 48 and the binding material 51 is distorted due to the difference in volume between them. It does not matter.
  • Table 1 shows physical property values of aluminum oxide, magnesium oxide, and silicon dioxide that can be used as the material of the catalyst carrier or the binder.
  • the volume per mole of can be calculated. Comparing the calculated volumes, it can be seen that the volume increases approximately five times by changing from aluminum oxide to aluminum sulfate. Magnesium oxide MgO to magnesium sulfate MgSO 4 It can be seen that the volume is increased approximately four times. Thus, the volume expands greatly.
  • the catalyst carrier can be easily detached by combining a material having a large volume such as magnesium oxide and a material that is not modified such as silicon dioxide. That is, one of the catalyst carrier and the binder is SO X Is formed of a material whose volume is changed by inflow, and the other is SO.
  • the material is made of a material that does not change in volume even when inflow, or has a small volume change and a volume that is substantially unchanged.
  • SO X It is possible to more reliably desorb the catalyst carrier holding the.
  • a material whose volume changes a material having strong basicity can be exemplified.
  • Material with strong basicity is SO X It is easily modified into a sulfate by contacting with and changes its volume. Examples of such substances that can be easily modified to sulfate include magnesium oxide MgO and lanthanum oxide La. 2 O 3 Or Cerium dioxide CeO 2 Can be illustrated.
  • Aluminum oxide Al 2 O 3 Is relatively easily modified to sulfate and changes in volume.
  • a material close to neutrality can be exemplified.
  • a material close to neutrality is not easily modified to sulfate.
  • Zirconium dioxide ZrO is a material that is difficult to be modified to sulfate.
  • titanium dioxide TiO 2 Can be illustrated. Titanium dioxide TiO 2 Is sulfided to titanium sulfate Ti (SO 4 ) 2 However, since it easily returns to an oxide, it is substantially difficult to be modified into a sulfate.
  • silicon dioxide SiO 2 Can be illustrated.
  • the volume of the catalyst carrier is larger than the volume of the binder.
  • the catalyst support By forming the catalyst support from a material that is easily modified to sulfate and forming the binder from a material that is difficult to be modified to sulfate or an invariable material, a large amount of SO X Can be held. As a result, SO X Saturated SO of trap catalyst X The holding amount can be increased.
  • SO X May enter through the gap between the catalyst carriers and be preferentially occluded by the binder inside the coat layer. Since the volume of the binder is small, a small amount of SO is required compared to the catalyst support. X The volume expands.
  • the catalyst carrier may be detached from the inside of the coat layer.
  • Catalyst carrier and SO X SO as absorbent X The catalyst carrier may be desorbed in a state where the catalyst is not sufficiently occluded.
  • the catalyst carrier is formed from a material that is easily modified into a sulfate, and the binder is formed from a material that is difficult to be modified into a sulfate or an invariable material, thereby desorbing the catalyst carrier in order from the surface be able to.
  • the SO supported on the catalyst support X SO for absorbent X Is occluded.
  • SO X SO as absorbent X Can be desorbed in order from the catalyst carrier on which is retained.
  • the material used for the catalyst carrier and the binder is not limited to an oxide containing a single component, and may be a complex oxide (an oxide containing two or more kinds of metal elements). Furthermore, as a material used for the catalyst carrier and the binder, a plurality of oxides may be mixed and used.
  • SO in this embodiment X The trap catalyst preferably has a smaller particle size of the catalyst carrier 48.
  • the average particle size of the catalyst support is preferably less than 5 ⁇ m.
  • FIG. 10 shows the SO of the second comparative example in this embodiment. X The enlarged schematic sectional drawing of a trap catalyst is shown.
  • a catalyst carrier 48 having a large average particle diameter is employed.
  • the average particle diameter of the catalyst carrier 48 is larger than 5 ⁇ m, for example.
  • the SO X Becomes easy to invade.
  • the catalyst carrier 48 or the binding material 51 disposed in the coat layer 53 has no SO. X Is retained.
  • the catalyst carrier 48 becomes a lump and is detached.
  • SO X The catalyst carrier 48 that is not sufficiently occluded is detached at the same time.
  • SO X It is possible to preferentially desorb the catalyst carrier 48a having sufficiently occluded.
  • the SO in this embodiment X A method for producing the trap catalyst will be described.
  • catalytic metal and SO X A method for supporting the catalyst carrier holding the absorbent will be described.
  • Fig. 11 shows the SO in this embodiment.
  • X It is explanatory drawing of the 1st process of the manufacturing method of a trap catalyst.
  • the particulate catalyst carrier 48 constituting the coat layer is prepared.
  • a catalyst carrier 48 having an average particle size of less than 5 ⁇ m is prepared.
  • a catalyst metal is supported on the catalyst carrier 48 in advance.
  • platinum Pt is supported.
  • platinum can be supported on the surface of the catalyst carrier 48 by immersing the catalyst carrier 48 in a platinum solution.
  • Catalyst support 48 supporting platinum and aluminum nitrate Al (NO 3 ) 3 The solution 70 is put into the solvent 71.
  • the solvent 71 for example, water can be used.
  • a slurry in which the catalyst carrier 48 is uniformly dispersed in the solvent 71 can be formed.
  • Fig. 12 shows the SO in this embodiment.
  • X Explanatory drawing of the 2nd process of the manufacturing method of a trap catalyst is shown.
  • a slurry 71 a including the catalyst carrier 48 flows into the base 52.
  • the slurry 71 a is disposed on the surface of the base 52.
  • the base 52 is cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ).
  • the substrate 52 in the present embodiment is formed in a honeycomb shape.
  • the substrate 52 on which the slurry 71a is arranged on the surface of each cell is sintered.
  • the aluminum nitrate aqueous solution 70 changes to the binder 51.
  • the catalyst carriers 48 can be fixed to each other by the binder 51. Further, the catalyst carrier 48 can be fixed to the base 52.
  • SO is applied to the catalyst carrier 48.
  • the absorbent 50 is supported. In the present embodiment, SO X Barium is used as a component constituting the absorbent.
  • the substrate 52 is immersed in an aqueous solution containing barium.
  • aqueous solution enters between the catalyst carriers 48 due to a capillary phenomenon or the like. Thereafter, SO is contained in the surface of the catalyst carrier 48 by evaporating water.
  • An absorbent 50 can be formed.
  • the coat layer 53 can be formed on the surface of the substrate.
  • a catalyst metal is supported on the catalyst carrier before the catalyst carrier is fixed to the substrate.
  • the catalyst metal can be supported on the surface of the catalyst carrier after the catalyst carrier is fixed to the substrate. For example, after disposing the catalyst carrier on the surface of the substrate, the catalyst metal can be supported on the surface of the catalyst carrier by immersing the substrate in a platinum solution.
  • SO in this embodiment X
  • the SO X Although the absorbent is disposed, the present invention is not limited to this form, and the saturated SO of at least one of the catalyst support and the binder is used. X If the holding amount is sufficient, SO X The absorbent may not be arranged.
  • SO X SO of trap catalyst X The estimation of the holdable amount will be described. In the present embodiment, SO thickness is estimated by estimating the thickness of the coat layer 53. X Calculate the holdable amount.
  • the exhaust gas purification apparatus for an internal combustion engine in the present embodiment is an SO X A detection device for detecting the thickness of the coating layer of the trap catalyst is provided. Using the thickness of the coat layer, SO X SO of trap catalyst X Estimate the amount that can be held.
  • the amount that can be held is the SO at an arbitrary time. X Is equivalent to the total amount that can be held. SO X Integrated SO of trap catalyst X When the retention amount reaches the saturation amount, SO X The holdable amount becomes zero.
  • Fig. 13 shows the SO in this embodiment.
  • the schematic of the detection apparatus of the thickness of the coating layer of a trap catalyst is shown.
  • the coat layer thickness detection device includes an electrode 61 arranged on the coat layer 53.
  • the electrode 61 is formed in a plate shape.
  • the electrode 61 is erected on the surface of the base 52 and penetrates the coat layer 53. In the example shown in FIG. 13, two electrodes 61 are arranged apart from each other.
  • the two electrodes 61 are arranged such that the maximum area surfaces with the maximum area are parallel to each other. Each electrode 61 is connected to each other via an ammeter 64, a resistor 63, and an AC power supply 62.
  • the two plate-like electrodes 61 function as a capacitor.
  • the constant ⁇ is a dielectric constant depending on the substance between the electrodes
  • the variable S is the area of the maximum area of the electrode 61
  • the variable d is the distance between the electrodes 61.
  • the dielectric constant when the catalyst carrier 48 is filled between the electrodes 61 is larger than the dielectric constant when air is present between the electrodes 61.
  • a current flows according to the capacitance C of the capacitor.
  • the reactance of the capacitor can be calculated, and further, the capacitance C of the capacitor can be calculated.
  • SO X By continuing to use the trap catalyst, the thickness of the coat layer 53 gradually decreases.
  • the dielectric constant ⁇ of the capacitor gradually decreases. For this reason, the capacitance C of the capacitor gradually decreases.
  • the thickness tc of the coat layer is estimated from the calculated capacitance C.
  • the thickness tc of the coat layer with respect to the capacitance C of the capacitor is stored in the ROM 32 of the electronic control unit 30, for example.
  • the detection method of an electrostatic capacitance is not restricted to said form, It can detect with arbitrary methods and arbitrary electric circuits.
  • the capacitance may be calculated by connecting a DC power source to a capacitor and measuring the charging time of the capacitor.
  • Figure 14 shows total SO X The graph explaining the relationship between a holding amount and the thickness of a coat layer is shown.
  • SO X The amount retained is the SO contained in the exhaust gas from the start of use to an arbitrary time.
  • X SO with X It is the total amount.
  • SO X The trap catalyst is integrated SO X Retention amount is saturated SO X SO until the holding amount is reached X Can be maintained.
  • Saturated SO X Accumulated SO at an arbitrary time from the holding amount X By subtracting the holding amount, SO X The holdable amount can be calculated. Accumulated SO for coat layer thickness shown in FIG. X
  • the relationship of the holding amount is stored in the ROM 32 of the electronic control unit 30, for example. Using the estimated coat layer thickness, X The holding amount can be estimated. In addition, SO X The holdable amount can be calculated.
  • SO X Integrated SO of trap catalyst X
  • the trap catalyst can be managed. For example, total SO X Retention amount is saturated SO X SO when the holding amount is reached X When replacing the trap catalyst, SO X The replacement time of the trap catalyst can be estimated. Or integrated SO X Retention amount is saturated SO X When the holding amount is reached, NO arranged downstream X A sulfur poisoning recovery process for the storage reduction catalyst is required. Even in this case, the start time of the sulfur poisoning recovery process can be determined.
  • Fig. 15 shows the accumulated fuel consumption and accumulated SO X The graph explaining the relationship with the holding
  • the accumulated fuel consumption is an accumulation of the amount of fuel used up to an arbitrary time.
  • the accumulated fuel usage can be calculated, for example, by integrating the amount of fuel injected from the fuel injection valve. As the accumulated fuel consumption increases, the accumulated SO X Increased retention.
  • the content of the sulfur component contained in the fuel can be calculated from the slope of this graph.
  • the present invention is not limited to this configuration, and even if a coating layer thickness detecting device is arranged at a plurality of places. I do not care.
  • SO X In the flow direction of the exhaust gas of the trap catalyst, a coating layer thickness detection device may be arranged at the upstream end and the downstream end. Exhaust gas is SO X Since the gas flows from the upstream end of the trap catalyst, the catalyst carrier is preferentially detached from the upstream end rather than the downstream end.
  • the coating layer thickness detection device is not limited to the above-described form, and the coating layer thickness can be detected by an arbitrary device.
  • SO X A differential pressure sensor for detecting the differential pressure between the inlet and outlet of the trap catalyst is disposed. As the coat layer becomes thinner, SO X The opening ratio of the trap catalyst increases and SO X The pressure loss in the trap catalyst is reduced.
  • the thickness of the coat layer can be estimated.
  • the thickness of the coat layer may be estimated by disposing a distance sensor or the like inside the trap catalyst cell and detecting the distance between the surfaces of the facing coat layers.
  • the thickness of the coat layer can be estimated at any time. For example, the thickness of the coat layer can be estimated for each predetermined travel distance. Alternatively, the thickness of the coat layer may be estimated continuously.
  • Embodiment 2 With reference to FIGS. 16 to 22, an exhaust gas purification apparatus for an internal combustion engine according to Embodiment 2 will be described.
  • Fig. 16 shows the SO in this embodiment.
  • X The enlarged schematic sectional drawing of a trap catalyst is shown.
  • the catalyst carrier 48 is SO X It is made of a material that expands when it is held.
  • the catalyst carrier 48 in the present embodiment is made of MgO. SO in this embodiment X
  • the trap catalyst includes auxiliary particles 55 interposed between the catalyst carriers 48. The auxiliary particles 55 are formed so that the average particle size is smaller than the average particle size of the catalyst carrier 48.
  • catalyst metal 49 and SO are provided on the surfaces of the auxiliary particles 55.
  • An absorbent 50 is supported.
  • the binding material 51 binds the auxiliary particles 55 to each other.
  • the binding material 51 binds the auxiliary particles 55 to the base body 52.
  • the auxiliary particles 55 and the binding material 51 in the present embodiment are formed of a material different from that of the catalyst carrier 48.
  • the auxiliary particles 55 in the present embodiment are made of aluminum oxide Al 2 O 3 It is formed by.
  • the binding material 51 in the present embodiment is formed of the same material as the auxiliary particles 55. That is, the binder 51 is made of aluminum oxide Al. 2 O 3 It is formed by. SO in this embodiment
  • the trap catalyst is the SO described in the first embodiment.
  • auxiliary particles 55 supporting catalyst metal are prepared in addition to the catalyst carrier 48 previously supporting the catalyst metal.
  • the catalyst carrier 48 and the auxiliary particles 55 are combined with aluminum nitrate Al (NO 3 ) 3 Mix with solution 70. It can manufacture by arrange
  • the binding material 51 is preferentially bound to the auxiliary particles 55 over the catalyst carrier 48.
  • the catalyst carrier 48 is supported by contacting the auxiliary particles 55.
  • the catalyst carrier 48 is mechanically supported on the auxiliary particles 55.
  • FIG. 17 shows the SO in this embodiment.
  • X Trap catalyst is SO X The expanded schematic sectional view when holding is shown. SO in this embodiment X
  • the trap catalyst has a SO X Absorbent 50 with SO X Is occluded.
  • the catalyst carrier 48 itself has SO. X Is occluded.
  • the oxide catalyst carrier 48 is SO X Is occluded to the sulfate catalyst carrier 48a.
  • the volume of the oxide catalyst carrier 48 expands when it becomes the sulfate catalyst carrier 48a.
  • the auxiliary particles 55 are pressed against the catalyst carrier 48.
  • the position of the auxiliary particle 55 moves.
  • distortion occurs between the auxiliary particles 55 and the binder 51.
  • the restriction of the catalyst carrier 48 a that has become sulfate is released, and the catalyst carrier 48 a is detached from the coat layer 53.
  • auxiliary particles 55 smaller than the catalyst carrier 48 are interposed between the catalyst carriers 48. For this reason, SO contained in the exhaust gas X Can be prevented from entering the coat layer 53 through the gap between the catalyst carriers 48.
  • SO X The catalyst carrier 48 disposed on the surface of the coat layer 53 and the SO supported on the catalyst carrier 48 X
  • the absorbent 50 is preferentially occluded. For this reason, the catalyst carrier 48 arranged on the surface of the coat layer 53 can be desorbed preferentially. It is placed inside the coat layer 53 and fully SO. X It is possible to prevent the catalyst carrier 48 that does not hold the catalyst from being detached. Alternatively, it is possible to suppress the plurality of catalyst carriers 48 from being separated in a lump.
  • the binder 51 can be preferentially bound to the auxiliary particles 55 over the catalyst carrier 48.
  • the binding material 51 is bound to the auxiliary particles 55, but the present invention is not limited to this configuration, and the binding material 51 may be bound to the catalyst carrier 48 together with the auxiliary particles 55.
  • the auxiliary particles 55 in the present embodiment have catalytic metal 49 and SO on the surface.
  • the absorbent 50 is supported, the present invention is not limited to this form. X The absorbent may not be arranged. Or catalytic metal 49 and SO X One of the absorbents 50 may be carried.
  • the catalyst carrier, auxiliary particles, and binder are SO X
  • the present invention is not limited to this configuration, and at least one member of the catalyst carrier, auxiliary particles, and binder is formed of a material that expands, and the other members are SO.
  • X It may be formed of an invariable material even if it is in contact with.
  • SO X Desorption promotion control is performed to increase the temperature of the trap catalyst. By increasing the temperature, desorption of the catalyst support is promoted.
  • the binder and auxiliary particles in the present embodiment are SO X It has a decomposition temperature at which the sulfate produced by occlusion of is decomposed.
  • Table 2 shows decomposition temperatures of substances used for the catalyst carrier, auxiliary particles, and binder in the present embodiment.
  • Table 2 shows the decomposition temperatures of oxides and sulfates. From Table 2, aluminum oxide Al, which is the material of the binder and auxiliary particles 2 O 3 Sulfate Al produced from 2 (SO 4 ) 3 The decomposition temperature of is approximately 770 ° C. In contrast, sulfate MgSO produced from MgO which is the material of the catalyst support 4 The decomposition temperature of is approximately 1100 ° C. In desorption promotion control, SO X Control is performed so that the temperature of the trap catalyst becomes equal to or higher than the decomposition temperature of the sulfate of the material of the binder and auxiliary particles.
  • the temperature of the trap catalyst is lower than the decomposition temperature of the sulfate of the catalyst carrier material.
  • SO X The temperature of the trap catalyst is about 770 ° C. or higher and lower than about 1100 ° C. X
  • the temperature of the exhaust gas flowing into the trap catalyst is raised.
  • the catalyst carrier is not decomposed and the sulfate form is maintained.
  • the binder and the sulfate of the auxiliary particles are decomposed into oxides. The binder and auxiliary particles shrink. That is, while the volume of the catalyst support is unchanged, the volume of the binder and auxiliary particles is reduced.
  • FIG. 18 shows a flowchart of operation control in the present embodiment.
  • the operation control shown in FIG. 18 can be repeatedly performed at predetermined time intervals.
  • SO X SO in trap catalyst X Estimate the amount retained.
  • the exhaust purification apparatus in the present embodiment is configured to perform SO at an arbitrary time.
  • X SO of trap catalyst X A detection device capable of estimating the holding amount is provided. In this embodiment, SO X The calculation of the holding amount is continuously performed during the operation of the internal combustion engine.
  • the holding amount is stored in the RAM 33, for example.
  • the holding amount detection device is not limited to this form, and the SO X Any device that can detect the holding amount can be employed.
  • the calculated SO X SO in trap catalyst X It is determined whether or not the holding amount is larger than a determination value for performing desorption promotion control. This determination value is predetermined. In the present embodiment, SO X SO retained in the trap catalyst X Desorption promotion control is performed when the holding amount exceeds a predetermined determination value.
  • the determination value includes a catalyst carrier disposed on the surface of the coat layer and an SO supported on the catalyst carrier disposed on the surface of the coat layer.
  • X Almost all of the absorbent is SO X SO when the state is maintained X It is preferable to employ a holding amount. SO X When the holding amount is equal to or smaller than the determination value, this control is terminated. SO X When the holding amount is larger than the determination value, the process proceeds to step 103. Next, it is determined whether or not the amount of desorbed particles collected by the particulate filter 16 is larger than the determination value. SO X The desorbed particles including the catalyst carrier desorbed from the trap catalyst 14 are collected by the particulate filter 16.
  • control for prohibiting desorption promotion control is performed when the amount of desorbed particles collected by the particulate filter becomes larger than a predetermined allowable value.
  • the differential pressure across the particulate filter 16 is read.
  • regeneration control for increasing the temperature of the particulate filter 16 and burning the particulate matter is performed.
  • the differential pressure before and after the end of the regeneration control of the particulate filter 16 is stored in the electronic control unit 30. Referring to FIG. 1, the differential pressure sensor 28 can detect the differential pressure across the particulate filter 16.
  • the deposition amount of the desorbed particles is estimated based on the differential pressure across the particulate filter 16.
  • the differential pressure across the particulate filter 16 also depends on the amount of particulate matter other than the desorbed particles collected by the particulate filter 16. For this reason, in the present embodiment, the front-rear differential pressure is detected immediately after the regeneration control is performed.
  • step 103 the differential pressure before and after the end of the nearest regeneration control is read.
  • step 104 it is determined whether or not the differential pressure across the particulate filter 16 is greater than a predetermined determination value. When the differential pressure across the particulate filter 16 is greater than the determination value, it can be determined that the amount of desorbed particles collected by the particulate filter is greater than the allowable value.
  • the differential pressure across the particulate filter 16 is greater than the determination value, this control is terminated. That is, desorption promotion control is prohibited. By performing this control, it is possible to prevent the purification performance of the particulate filter from significantly decreasing. Alternatively, it can be avoided that the differential pressure across the particulate filter exceeds the operable range and the internal combustion engine cannot be used.
  • the estimation of the amount of desorbed particles collected by the particulate filter is not limited to this form, and the amount of desorbed particles collected by the particulate filter can be estimated by any method. For example, as the amount of desorbed particles collected by the particulate filter, SO X Accumulate the amount of desorbed particles desorbed from the trap catalyst. X It can be estimated from the holding amount.
  • step 104 if the differential pressure across the particulate filter 16 is less than or equal to the determination value, the process proceeds to step 105.
  • step 105 desorption promotion control is performed.
  • FIG. 20 shows a time chart of the desorption promotion control in the present embodiment. Time t 1 Until then, normal operation is performed. Time t 1 To time t 2 Up to this point, desorption promotion control is performed. Time t 2 Thereafter, normal operation is performed.
  • SO X The temperature of the trap catalyst is raised. In the present embodiment, the SO pattern is changed by changing the injection pattern in the combustion chamber. X The temperature of the exhaust gas flowing into the trap catalyst is raised. Here, an injection pattern for increasing the temperature of the exhaust gas discharged from the engine body will be described.
  • the injection pattern A is a fuel injection pattern during normal operation.
  • the main injection FM is performed at a compression top dead center TDC.
  • Main injection FM is performed at a crank angle of approximately 0 °.
  • the pilot injection FP is performed before the main injection FM.
  • the pilot injection FP is performed, for example, in a range where the crank angle is approximately 10 ° to approximately 40 ° before the compression top dead center TDC.
  • the pilot injection FP may not be performed and only the main injection FM may be performed.
  • an injection pattern in which pilot injection FP is performed will be described as an example.
  • FIG. 22 shows an injection pattern when the temperature of the exhaust gas discharged from the engine body is increased.
  • the injection pattern C after the main injection FM, after injection FA as auxiliary injection is performed.
  • the after injection FA is performed at a combustible time after the main injection.
  • the after injection FA is performed, for example, in a range where the crank angle after compression top dead center is approximately 40 °.
  • the injection timing of the main injection FM is delayed from the compression top dead center TDC.
  • the injection timing of the main injection FM is retarded.
  • the injection timing of the pilot injection FP is also retarded.
  • the temperature of the exhaust gas can be raised.
  • the SO disposed in the engine exhaust passage X The temperature of the trap catalyst can also be increased. Referring to FIG. 20, time t 1 By raising the temperature of the exhaust gas from X Increase trap catalyst bed temperature. SO X The SO is set so that the maximum temperature of the trap catalyst bed temperature is not less than the lower limit temperature and less than the upper limit temperature. X Increase the temperature of the trap catalyst.
  • the temperature is raised so that the maximum bed temperature of the trap catalyst is 770 ° C. or higher and lower than 1100 ° C.
  • the catalyst carrier 48a when the desorption promotion control is performed, the catalyst carrier 48a is not decomposed but MgSO 4 The sulfate form of is maintained.
  • the auxiliary particles 55 and the binder 51 are made of sulfate Al. 2 (SO 4 ) 3 Decomposes into oxide Al 2 O 3 Return to. At this time, the auxiliary particles 55 and the binding material 51 contract, and the detachment of the catalyst carrier 48a is promoted. As the catalyst carrier 48a is detached, the SO X The amount of catalyst support in the trap catalyst is reduced.
  • the holding amount decreases.
  • SO in this embodiment X In the trap catalyst, the catalyst carrier, the auxiliary particles, and the binder are produced in the form of an oxide.
  • the catalyst support, auxiliary particles and binder are SO X Occludes and becomes sulfate and expands.
  • the form is substantially the same as the form in which only the catalyst support is sulfated and expanded from the initial state.
  • the auxiliary particles are pressed by the catalyst carrier, and the distortion increases between the auxiliary particles and the binder. The bond between the auxiliary particles and the binding material is released, and the detachment of the catalyst support can be promoted.
  • the desorption promotion control in this embodiment increases the temperature of the exhaust gas by increasing the amount of fuel combusted in the combustion chamber. By performing this control, the temperature of the exhaust gas can be rapidly increased, and desorption promotion control can be performed in a short time.
  • the desorption promotion control is not limited to this form, but SO X Any device that raises the temperature of the trap catalyst can be employed. Also, in the desorption promotion control, SO X You may raise the temperature of a trap catalyst. For example, SO X When an oxidation catalyst is disposed upstream of the trap catalyst, when unburned fuel is supplied to the oxidation catalyst, reaction heat is generated during the oxidation reaction of the unburned fuel. This reaction heat can raise the temperature of the exhaust gas.
  • the temperature of the trap catalyst can be raised.
  • MgO catalyst carrier and Al 2 O 3 Auxiliary particles and binders are selected.
  • the material of the catalyst carrier, auxiliary particles, and binder when performing desorption promotion control is not limited to this form.
  • X When the temperature of the trap catalyst rises, it is possible to select a material in which the temperature range in which the sulfate of the auxiliary carrier and the binder is decomposed without the decomposition of the sulfate of the catalyst carrier is determined.
  • titanium dioxide TiO as a material for auxiliary particles and binder 2 Can be selected.
  • Titanium sulfate Ti (SO 4 ) 2 Is decomposed at about 600 ° C., the desorption of the catalyst carrier can be promoted by setting the temperature of the desorbed particles to 600 ° C. or higher in the desorption promotion control.
  • the decomposition temperature of sulfate depends on the air-fuel ratio of the exhaust gas. For example, in a reducing atmosphere, the decomposition temperature of sulfate decreases. Therefore, the decomposition temperature of sulfate is estimated according to the state of the exhaust gas, and SO is calculated based on this decomposition temperature.
  • X It is preferable to define the temperature range of the maximum temperature reached by the trap catalyst.
  • the desorption promotion control in this embodiment is performed by SO X SO retained in the trap catalyst X This is done each time the amount reaches the judgment value.
  • the desorption promotion control is not limited to this mode.
  • the desorption promotion control may be performed for each predetermined travel distance or for each predetermined fuel injection amount.
  • Other configurations, operations, and effects are the same as those in the exhaust gas purification apparatus for an internal combustion engine in the first embodiment, and thus description thereof will not be repeated here.
  • Embodiment 3 With reference to FIGS. 23 to 29, an exhaust gas purification apparatus for an internal combustion engine according to Embodiment 3 will be described.
  • FIG. 23 is a schematic view of the internal combustion engine in the present embodiment.
  • SO X SO as holding material X Trap catalyst 14 and NO X The storage reduction catalyst 17 is arranged in this order. NO X A particulate filter 16 and an oxidation catalyst 13 are disposed in the engine exhaust passage downstream of the storage reduction catalyst 17.
  • SO in this embodiment X The trap catalyst consists of catalytic metal and SO X It includes a catalyst carrier on which an absorbent is supported. SO in this embodiment X
  • the catalyst metal of the trap catalyst includes a noble metal.
  • the catalyst metal in the present embodiment contains platinum Pt.
  • the exhaust gas purification apparatus for an internal combustion engine in the present embodiment includes a fuel addition valve 60 serving as a reducing agent supply device disposed on the upstream side of the particulate filter 16.
  • the fuel addition valve 60 is formed so as to supply fuel as a reducing agent into the engine exhaust passage.
  • the fuel addition valve 60 in the present embodiment is formed so as to inject the same fuel as that of the engine body 1.
  • the fuel addition valve 60 is NO X A fuel is injected between the storage reduction catalyst 17 and the particulate filter 16.
  • SO in this embodiment X As in the first or second embodiment, the trap catalyst 14 is made of SO. X By storing the catalyst, the catalyst carrier is formed to be detached. SO X The desorbed particles desorbed from the trap catalyst 14 are collected by the particulate filter 16. At this time, the catalyst carrier and the like contained in the desorbed particles are SO X Holding.
  • the exhaust gas purification apparatus for an internal combustion engine in the present embodiment is an SO that the desorbed particles collected by the particulate filter 16 hold.
  • X SO to release X Release control is performed.
  • the desorbed particles collected by the particulate filter 16 become SO X NO by releasing X Can be retained.
  • the desorbed particles collected by the particulate filter 16 are NO.
  • FIG. 24 shows a time chart of the first operation control in the present embodiment.
  • the first operation control is to perform SO on the desorbed particles collected by the particulate filter.
  • X Release control is performed. SO retained by desorbed particles X SO to release X When performing release control, the temperature of the desorbed particles is previously set to SO.
  • the temperature of the exhaust gas is raised by performing after injection as auxiliary injection in the combustion chamber. Further, the temperature of the exhaust gas is raised by retarding the main injection (see FIG. 22).
  • Time t 1 The temperature of the particulate filter is SO X The target temperature has been reached for release. SO X The target temperature for releasing X The temperature is set to be higher than the temperature at which it can be released.
  • the bed temperature of the particulate filter is maintained above the target temperature by maintaining the exhaust gas in a heated state.
  • the temperature of the desorbed particles collected in the particulate filter is set to SO. X It can be maintained above the releasable temperature.
  • SO X In the discharge control, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made the stoichiometric air-fuel ratio or rich. In the present embodiment, by supplying fuel from the fuel addition valve 60, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made rich. SO X For the release control, it is preferable to select an operation condition in accordance with the amount of desorbed particles collected in the particulate filter.
  • the SO X For all desorbed particles contained in the trap catalyst, SO X Controlled release.
  • SO X The amount of all desorbed particles contained in the trap catalyst is known. For this reason, under predetermined operating conditions, SO X Controlled release. That is, SO is determined under conditions such as a predetermined air-fuel ratio, time and temperature.
  • SO for desorbed particles X By performing release control, SO particles are removed from the desorbed particles collected in the particulate filter. X Can be released. That is, the SO retained on the catalyst carrier contained in the desorbed particles. X Can be released. SO of the desorbed particles X Retention amount decreases.
  • the SO of the desorbed particles X Until the holding amount becomes almost zero, SO X Controlled release. SO from desorbed particles X Is released, so that the desorbed particles are NO. X Can be retained. NO X It can be used as an occlusion reduction catalyst. That is, the desorbed particles are NO when the air-fuel ratio of the exhaust gas is lean. X And the retained NO when the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio or rich X And N 2 Can be reduced.
  • SO in this embodiment X SO of trap catalyst X The absorbent contains potassium K. Also, SO X In addition to potassium K, the absorbent contains lithium Li and magnesium Mg.
  • Potassium is SO X SO X It is suitable for occlusion in the absorbent. However, potassium has a strong basicity and cancels the oxidizing action of platinum. For this reason, NO X NO that needs to be oxidized X In the storage reduction catalyst, NO X In some cases, the oxidation ability of the is insufficient.
  • the SO of the desorbed particles X Perform potassium release control to release potassium from the absorbent. In potassium release control, the temperature of the particulate filter in which the desorbed particles are collected is raised to a temperature higher than the temperature at which potassium is scattered. Potassium can be scattered by raising the temperature of the desorbed particles above the boiling point of potassium.
  • the target temperature for releasing potassium can be set higher than the temperature at which potassium can be released.
  • the target temperature for releasing potassium can be set to about 800 ° C.
  • potassium may be included in the form of nitrate (potassium nitrate). Since the boiling point of potassium nitrate is about 400 ° C., it is possible to release potassium nitrate at the same time by raising the temperature above the temperature at which potassium is released. Referring to FIG. 24, in the present embodiment, SO X Following release control, potassium release control is performed. Time t 2 To time t 3 Until then, temperature rise control is performed. In the present embodiment, the amount of fuel burned in the combustion chamber is increased.
  • the amount of after-injection is increased.
  • Time t 3 The bed temperature of the particulate filter has reached the target temperature for releasing potassium.
  • the temperature of the desorbed particles has reached a temperature at which potassium can be released.
  • Time t 3 To time t 4
  • SO X Potassium contained in the absorbent can be scattered.
  • SO X The potassium content of the absorbent decreases.
  • the potassium release control is performed until the potassium content becomes substantially zero.
  • the SO in this embodiment X SO of trap catalyst X The absorbent contains barium, lithium and magnesium in addition to potassium. These components other than potassium are SO. X High NO when removing potassium from absorbent X A composition that can exhibit purification performance is preferred.
  • SO X Each component in the absorbent preferably has a barium content higher than the lithium content and a barium content higher than the magnesium content. That is, SO X SO in trap catalyst X
  • the components contained in the absorbent preferably have the relationship of the following formula.
  • the boiling point of barium is 1870 ° C.
  • the boiling point of lithium is 1340 ° C.
  • the boiling point of magnesium is 1090 ° C. Since the boiling point of these bariums and the like is higher than the maximum temperature at which a normal internal combustion engine can be operated, only potassium can be released in the potassium release control.
  • SO X Although all potassium contained in the absorbent is removed, the present invention is not limited to this form, and control for removing part of potassium may be performed. Or, even if potassium release control is not performed, the desorbed particles collected in the particulate filter are changed to NO. X It can be used as an occlusion reduction catalyst. Time t 4 At the time t 4 Thereafter, normal operation is performed.
  • the SO X After all of the catalyst carrier contained in the trap catalyst is desorbed, the SO particles are removed from the desorbed particles collected in the particulate filter. X Although release control is performed, the present invention is not limited to this form. X When a part of the catalyst carrier contained in the trap catalyst is desorbed, the SO is removed from the desorbed particles collected in the particulate filter. X Release control may be performed. In this case, depending on the amount of desorbed particles collected in the particulate filter, SO X It is preferable to select operating conditions for the release control. The amount of desorbed particles collected on the particulate filter is SO X It can be estimated from the thickness of the coat layer in the trap catalyst.
  • SO X Accumulated SO in trap catalyst X It can be estimated from the holding amount. For example, coat layer thickness or integrated SO X The amount of desorbed particles as a function of the amount retained can be stored in the electronic control unit. Estimated coat layer thickness or total SO X Based on the amount retained, the amount of desorbed particles can be estimated. Based on the estimated amount of desorbed particles, SO X Release control operating conditions can be selected. For example, as the amount of desorbed particles increases, SO X It is possible to perform control to increase the time for performing the release control. By this control, SO X The amount of fuel consumed in the emission control can be optimized. For example, excessive fuel consumption can be suppressed.
  • SO of desorbed particles X Release control and potassium release control can be performed continuously with regeneration control of the particulate filter.
  • the bed temperature of the particulate filter is raised to, for example, 600 ° C. or higher in order to burn particulate matter.
  • the particulate matter can be burned by maintaining the air-fuel ratio of the exhaust gas lean.
  • SO X Release control can be performed.
  • the temperature of the particulate filter is maintained at 600 ° C. or higher. In this state, by making the air-fuel ratio of the exhaust gas flowing into the particulate filter rich, the SO X Can be released.
  • potassium release control can be performed by raising the temperature of the particulate filter.
  • SO X Although the release control and the potassium release control are performed separately, the present invention is not limited to this form.
  • X Release control and potassium release control may be performed simultaneously.
  • the temperature of the particulate filter is raised to a temperature higher than the temperature at which potassium can be released.
  • the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio or rich
  • potassium is removed and SO X Can be released.
  • SO X Operation control after performing release control will be described.
  • the desorbed particles collected by the particulate filter are NO X Since it has a function of an occlusion reduction catalyst, the exhaust purification device in the present embodiment is NO X This is equivalent to an exhaust purification device in which two storage reduction catalysts are connected in series.
  • FIG. 25 is a time chart of the second operation control in the present embodiment. The second operation control is to perform SO on the desorbed particles collected by the particulate filter. X This is the operation control after performing the release control. When the engine body is driven, NO from the combustion chamber X Is released and the upstream NO X NO is absorbed into the occlusion reduction catalyst 17 and the desorbed particles collected in the particulate filter 16. X Is retained. For this reason, NO X Control the release.
  • time t 1 Until upstream NO X NO in the occlusion reduction catalyst 17 X Is retained.
  • Time t 1 NO X The occlusion reduction catalyst 17 is saturated. Ie NO X NO of storage reduction catalyst 17 X The holdable amount is almost zero.
  • Time t 1 Thereafter, NO discharged from the engine body 1 X Is NO X It passes through the storage reduction catalyst 17 and flows into the particulate filter 16. NO contained in exhaust gas X Is held by the desorbed particles collected by the particulate filter 16. Thus, time t 1 To time t 2 Up to this point, NO is released by the desorbed particles collected in the particulate filter 16. X Is being removed.
  • the holding amount has reached the allowable value.
  • NO of the desorbed particles collected in the particulate filter 16 X The allowable value of the retention amount is preferably determined based on the amount of desorbed particles. The more desorbed particles, the more NO X The allowable value of the holding amount can be increased. For example, NO as a function of the amount of desorbed particles X
  • the allowable value of the holding amount is stored in the electronic control unit.
  • Estimated SO X Integrated SO of trap catalyst X
  • the amount of desorbed particles is estimated from the retained amount. Based on the estimated amount of desorbed particles, NO X An allowable value of the holding amount can be determined.
  • the NO of the desorbed particles X The allowable amount of retention is the saturation NO of desorbed particles X It is preferable to set it smaller than the holding amount.
  • NO X Occlusion reduction catalyst and NO of desorbed particles X An example of a method for calculating the holding amount will be described.
  • Fig. 26 shows the NO discharged from the engine body per unit time in the present embodiment.
  • X Shows a map of quantities. NO per unit time as a function of the engine speed N and the injection amount TAQ of the fuel injected into the combustion chamber 2 X
  • a map of NOxA emissions is prepared in advance. This map is stored in the ROM 32 of the electronic control unit 30, for example. ⁇ NO emitted from the engine body per unit time according to the map shown in Fig.
  • FIG. 27 shows an injection pattern when the air-fuel ratio of the exhaust gas discharged from the engine body is made the stoichiometric air-fuel ratio or rich.
  • post injection FPO is performed after the main injection FM.
  • the post-injection FPO is performed after the fuel is burned in the combustion chamber 2.
  • the post injection FPO is an injection in which fuel does not burn in the combustion chamber.
  • the post injection FPO is an auxiliary injection as with the after injection.
  • the post injection FPO is performed, for example, when the crank angle after compression top dead center is in the range of approximately 90 ° to approximately 120 °.
  • NO X The air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst can be made the stoichiometric air-fuel ratio or rich.
  • NO for desorbed particles X In the discharge control, by supplying fuel from the fuel addition valve 60, the air-fuel ratio of the exhaust gas flowing into the particulate filter 16 is made the stoichiometric air-fuel ratio or rich. In the example shown in FIG. 25, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made rich. NO against desorbed particles X In controlled release, the amount of desorbed particles or NO of desorbed particles X Depending on the allowable value of the holding amount, NO X It is preferable to select operating conditions for the release control. By this control, NO X The fuel consumption in the emission control can be optimized.
  • NO X NO with respect to the storage reduction catalyst 17 X By controlling the release, NO X NO retained in the storage reduction catalyst X Can be released. NO for the desorbed particles collected in the particulate filter X By controlling the release, NO retained in the desorbed particles X Can be released. NO released X N 2 Can be reduced. Referring to FIG. 25, time t 3 Thereafter, the same operation is repeated. Time t 3 To time t 4 Until NO X NO with occlusion reduction catalyst X Holding. Time t 4 To time t 5 Up to NO by the desorbed particles collected in the particulate filter. X Holding.
  • the air-fuel ratio of the exhaust gas flowing into the particulate filter is made the stoichiometric air-fuel ratio or rich by supplying the fuel from the fuel addition valve.
  • the air-fuel ratio of the exhaust gas flowing into the particulate filter can be made the stoichiometric air-fuel ratio or rich. For example, without using the fuel addition valve, by changing the combustion injection pattern in the combustion chamber, the air-fuel ratio of the exhaust gas flowing out from the engine body is kept in the stoichiometric or rich state.
  • Upstream NO X NO of storage reduction catalyst X After release control, NO of the desorbed particles collected in the particulate filter X Release control can be performed.
  • desorbed particles are NO X Used as an occlusion reduction catalyst.
  • SO X As the catalyst metal supported on the catalyst carrier of the trap catalyst, a metal having a strong oxidizing power is preferably disposed.
  • SO X As the catalyst metal of the trap catalyst, a noble metal is preferably supported.
  • the second operation control is SO X
  • SO X In addition to when all of the catalyst support contained in the trap catalyst is desorbed, SO X This can be performed when a part of the catalyst carrier contained in the trap catalyst is detached.
  • FIG. 28 shows a time chart of the third operation control in the present embodiment.
  • time t X In SO X All the catalyst carriers of the trap catalyst are detached.
  • Time t 1 , Time t 2 , Time t 3 And time t 4 The particulate matter accumulation amount in the particulate filter reaches an allowable value, and the particulate filter is regenerated.
  • the regeneration time of the particulate filter can be determined by the differential pressure across the front and back.
  • the air-fuel ratio of the exhaust gas flowing into the particulate filter is further made the stoichiometric air-fuel ratio or rich so that the desorbed particles collected in the particulate filter are SO.
  • X Release control is performed. Time t 1 Until, the SO of the desorbed particles collected in the particulate filter X Increased retention. Time t 1 SO X By controlling the release, SO X The holding amount becomes almost zero. As described above, in this embodiment, every time the particulate filter regeneration control is performed, the SO with respect to the desorbed particles is controlled. X Release control is performed. Time t 2 , Time t 3 And time t 4 The same control is performed in FIG.
  • Particulate filter regeneration control and desorbed particle SO X By continuously performing the release control, it is possible to suppress the amount of fuel consumed for raising the temperature of the particulate filter.
  • SO in the atmosphere X In the case of release of SO. X Is preferably discharged at a low concentration.
  • the SO retained on the desorbed particles is controlled. X The amount is small. For this reason, SO at a low concentration X Can be released into the atmosphere. Time t X In SO X Almost all of the catalyst support of the trap catalyst is detached. Time t X In SO X SO of trap catalyst X The holdable amount is almost zero.
  • SO X Integrated SO of trap catalyst X Retention amount is saturated SO X Retention amount has been reached.
  • SO X Time t after the trap catalyst is saturated 5
  • the regeneration control of the particulate filter and the SO of the desorbed particles X Release control is performed.
  • Time t 5 SO X By performing release control, the SO of the desorbed particles collected by the particulate filter X The holding amount is almost zero. SO of desorbed particles collected by the particulate filter X The holdable amount is the time t 5 Increase to.
  • time t X In the following, SO contained in the exhaust gas X That is, SO 2 Is NO X It flows into the storage reduction catalyst 17.
  • SO X Release control NO X Set the temperature of the storage reduction catalyst to SO X Raise to a temperature where release is possible. NO in this state X The air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is made rich or stoichiometric.
  • SO X By controlling the release, NO X From storage reduction catalyst to SO X Can be released. Time t X In the following, NO X The storage reduction catalyst 17 has SO X Is retained, so NO X SO of storage reduction catalyst X Increased retention. Time t 6 NO X SO of storage reduction catalyst 17 X The holding amount has reached a predetermined allowable value.
  • NO X The higher the bed temperature of the storage reduction catalyst, the higher the concentration of SO X Is released. By the way, SO X When is released into the atmosphere, it is preferably released at a low concentration. NO in conventional technology X SO of storage reduction catalyst X In controlled release, SO at low concentrations X SO to release X was kept released gradually. For example, the air-fuel ratio of the exhaust gas is controlled so as not to become too low. NO X The bed temperature of the storage reduction catalyst was controlled so as not to become too high.
  • NO X SO released from the storage reduction catalyst X Can be held by the desorbed particles collected by the particulate filter. For this reason, NO X High concentration of SO from the storage reduction catalyst X Can be released.
  • the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is, for example, in the range of 14 to 14.5.
  • the air-fuel ratio of the exhaust gas can be made less than 14.
  • NO X The temperature of the exhaust gas flowing into the storage reduction catalyst can be increased within a range in which the components of the exhaust purification device are not damaged.
  • NO X SO of storage reduction catalyst X In controlled release, high concentration of SO X By efficiently releasing SO X Can be released. SO X Release control can be performed in a short time. Or many SO X Can be released. As a result, SO X The amount of fuel consumed to perform release control can be reduced. NO X SO for storage reduction catalyst X Exhaust gas air-fuel ratio and NO when performing emission control X The temperature of the storage reduction catalyst is preferably determined based on the amount of desorbed particles collected in the particulate filter. The greater the amount of desorbed particles, the higher the concentration of SO X NO X It can be discharged from the storage reduction catalyst. By this control, SO X Can be released.
  • NO X SO of storage reduction catalyst 17 X At the time of release control, the desorbed particles collected in the particulate filter X Is preferably captured. That is, SO X It is preferable that no is released. For this reason, SO X NO to release X When the temperature of the storage reduction catalyst 17 is raised, the temperature of the desorbed particles is SO. X It is preferred to maintain below the temperature at which release is possible.
  • the particulate filter is NO X It is preferable to arrange it sufficiently away from the storage reduction catalyst.
  • NO X When the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is the stoichiometric air-fuel ratio or rich, it is preferable that the air-fuel ratio of the exhaust gas flowing into the particulate is lean.
  • NO X It is preferable that an air-fuel ratio adjustment valve for introducing air is disposed between the storage reduction catalyst and the particulate filter. NO X SO of storage reduction catalyst X At the time of release control, the air-fuel ratio of the exhaust gas flowing into the particulate filter can be made lean by introducing air into the engine exhaust passage upstream of the particulate filter. Referring to FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An exhaust purification device for an internal combustion engine, which comprises an NOx storage reduction catalyst arranged within an engine exhaust passage and an SOx holding member arranged in the upstream of the NOx storage reduction catalyst within the engine exhaust passage.  The SOx holding member is composed of a particulate catalyst carrier (48) supporting a catalyst metal, and a binder which is composed of a material different from that of the catalyst carrier (48) and binds catalyst carriers (48) together.  The volume of at least either of the catalyst carrier (48) or the binder is expanded by being modified into a sulfate by adsorbing SOx contained in the exhaust gas, so that the bond between a sulfatized catalyst carrier (48a) and the binder is released.  As a result, the sulfatized catalyst carrier (48a) is detached as a separate particle.

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust purification device for an internal combustion engine.
 ディーゼルエンジンやガソリンエンジンなどの内燃機関の排気ガスには、例えば、一酸化炭素(CO)、未燃燃料(HC)、窒素酸化物(NO)または粒子状物質(PM:Particulate Matter)などの成分が含まれている。内燃機関には、これらの成分を浄化するために排気浄化装置が取り付けられる。
 窒素酸化物を除去する方法の一つとして、機関排気通路にNO吸蔵還元触媒が配置されることが提案されている。NO吸蔵還元触媒は、排気ガスの空燃比がリーンの時にはNOを保持する。NOの保持量が許容値に達した時に、排気ガスの空燃比をリッチまたは理論空燃比にすることにより、保持したNOが放出される。放出されたNOは、排気ガスに含まれる一酸化炭素等の還元剤によりNに還元される。
 特開2002−21538号公報においては、NO吸蔵還元触媒のNO吸蔵剤としてカリウムを添加し、NO吸蔵還元触媒の下流側に三元触媒を設けた触媒装置が開示されている。この触媒装置は、NO吸蔵還元触媒と三元触媒との間にリンを担持したアルカリ金属捕捉手段が設けられている。NO吸蔵還元触媒から蒸発するカリウムをアルカリ金属捕捉手段で捕捉し、下流側の三元触媒へのカリウムの到達を防止することが開示されている。
 特開2006−346525号公報においては、NO吸蔵還元触媒の下流に三元触媒を配置し、NO吸蔵還元触媒の触媒層に吸蔵剤とアルカリ安定剤を添加し、三元触媒の触媒層には、下層にパラジウムとアルカリトラップ剤を添加し、上層に白金とロジウムを添加した内燃機関の排気浄化装置が開示されている。この排気浄化装置は、吸蔵剤による三元触媒の排気浄化性能の低下を防止できると開示されている。
Examples of exhaust gases of internal combustion engines such as diesel engines and gasoline engines include carbon monoxide (CO), unburned fuel (HC), nitrogen oxides (NO x ), and particulate matter (PM). Contains ingredients. An exhaust gas purification device is attached to the internal combustion engine to purify these components.
As one of the methods for removing nitrogen oxides, it has been proposed that a NO X storage reduction catalyst be disposed in the engine exhaust passage. The NO X storage reduction catalyst holds NO X when the air-fuel ratio of the exhaust gas is lean. When the holding amount of the NO X reaches the allowable value, by the air-fuel ratio of the exhaust gas rich or the stoichiometric air-fuel ratio, the held NO X is released. The released NO X is reduced to N 2 by a reducing agent such as carbon monoxide contained in the exhaust gas.
In JP 2002-21538 discloses, was added potassium as the NO X storage agent of the NO X occluding and reducing catalyst, the catalyst system is disclosed in which a three-way catalyst downstream of the NO X occluding and reducing catalyst. In this catalyst device, an alkali metal capturing means carrying phosphorus is provided between the NO X storage reduction catalyst and the three-way catalyst. It is disclosed that potassium evaporated from the NO X storage reduction catalyst is captured by an alkali metal trapping means to prevent potassium from reaching the downstream three-way catalyst.
Patent In 2006-346525 discloses a three-way catalyst is arranged downstream of the NO X occluding and reducing catalyst, adding a storage agent and alkaline stabilizer to the catalyst layer of the NO X occluding and reducing catalyst, the catalyst layer of the three-way catalyst Discloses an exhaust emission control device for an internal combustion engine in which palladium and an alkali trapping agent are added to the lower layer, and platinum and rhodium are added to the upper layer. This exhaust purification device is disclosed as being able to prevent the exhaust purification performance of the three-way catalyst from being reduced by the storage agent.
特開2002−21538号公報JP 2002-21538 A 特開2006−346525号公報JP 2006-346525 A
 内燃機関の排気ガスには、硫黄酸化物(SO)が含まれる場合がある。NO吸蔵還元触媒は、NOの保持と同時にSOを保持する。SOが保持されると、NOの保持可能量が低下する。このように、NO吸蔵還元触媒には、いわゆる硫黄被毒が生じる。NO吸蔵還元触媒にSOが保持されることを回避するために、NO吸蔵還元触媒の上流側に、SOを保持するSO保持材を配置することができる。SO保持材により排気ガス中からSOが除去されるために、NO吸蔵還元触媒の硫黄被毒を回避することができる。
 ところが、SO保持材のSOを保持できる残量が少なくなったり、SO保持材が高温になったりした場合には、SO保持材からSOが流出する場合があった。SO保持材から流出したSOは、NO吸蔵還元触媒に流入し、NO吸蔵還元触媒に保持される。このように、SO保持材を機関排気通路に配置していてもNO吸蔵還元触媒の硫黄被毒が生じる場合があるという問題があった。
 本発明は、SO保持材からのSOの流出を抑制する内燃機関の排気浄化装置を提供することを目的とする。
The exhaust gas of the internal combustion engine may contain sulfur oxide (SO x ). The NO X storage reduction catalyst holds SO X simultaneously with holding NO X. When SO X is held, the amount of NO X that can be held decreases. Thus, so-called sulfur poisoning occurs in the NO X storage reduction catalyst. The NO X occluding and reducing catalyst in order to prevent the SO X is held, on the upstream side of the NO X occluding and reducing catalyst, it is possible to arrange the stored SO X material that holds the SO X. For SO X is removed from the exhaust gas by stored SO X material, it is possible to avoid sulfur poisoning of the NO X occluding and reducing catalyst.
However, or the remaining amount is less capable of holding SO X of stored SO X material, if the stored SO X material is or hot, there is a case where SO X flows out from the stored SO X material. SO X flowing out from the stored SO X material flows into the NO X storage reduction catalyst is held in the NO X occluding and reducing catalyst. As described above, there is a problem that sulfur poisoning of the NO X storage reduction catalyst may occur even when the SO X holding material is arranged in the engine exhaust passage.
An object of the present invention is to provide an exhaust purification device for an internal combustion engine that suppresses the outflow of SO X from the SO X holding material.
 本発明の第1の内燃機関の排気浄化装置は、機関排気通路内に配置され、流入する排気ガスの空燃比がリーンの時には排気ガス中に含まれるNOを保持し、流入する排気ガスの空燃比が理論空燃比又はリッチになると保持したNOを放出するNO吸蔵還元触媒と、NO吸蔵還元触媒の上流側の機関排気通路内に配置され、SOを保持するSO保持材とを備える。SO保持材は、触媒金属を担持する粒子状の触媒担体と、触媒担体と異なる材質で形成され、触媒担体同士を結合する結合材とを含む。触媒担体および結合材のうち少なくとも一方が、排気ガスに含まれるSOを吸蔵して硫酸塩に改質されることにより体積が膨張し、触媒担体と結合材との間の結合が解除されて触媒担体が粒子状に脱離する。この構成により、SO保持材からのSOの流出を抑制することができる。
 上記発明において、触媒担体は、SOを吸蔵して硫酸塩に改質されることにより体積が膨張する材質で形成されており、結合材は、SOが流入したときに不変の材質またはSOを吸蔵して硫酸塩に改質されたときに体積がほぼ不変の材質で形成されていることが好ましい。この構成により、SOを吸蔵した触媒担体をより確実に脱離させることができる。
 本発明の第2の内燃機関の排気浄化装置は、機関排気通路内に配置され、流入する排気ガスの空燃比がリーンの時には排気ガス中に含まれるNOを保持し、流入する排気ガスの空燃比が理論空燃比又はリッチになると保持したNOを放出するNO吸蔵還元触媒と、NO吸蔵還元触媒の上流側の機関排気通路内に配置され、SOを保持するSO保持材とを備える。SO保持材は、触媒金属を担持する粒子状の触媒担体と、触媒担体と異なる材質で形成され、平均粒径が触媒担体よりも小さな補助粒子と、補助粒子とほぼ同じ材質で形成され、補助粒子同士を結合する結合材とを含み、触媒担体は、補助粒子により支持されている。触媒担体が排気ガスに含まれるSOを吸蔵して硫酸塩に改質されることにより体積が膨張し、補助粒子による触媒担体の支持が解除されて触媒担体が粒子状に脱離する。この構成により、SO保持材からのSOの流出を抑制することができる。
 上記発明において、結合材および補助粒子は、SOを吸蔵して硫酸塩になった場合に硫酸塩が分解する分解温度を有し、SO保持材の温度を分解温度以上に上昇させる脱離促進制御を行うことにより、硫酸塩が分解して結合材および補助粒子の体積が小さくなり、補助粒子による触媒担体の支持が解除されることが好ましい。この構成により、SOを吸蔵した触媒担体をより確実に脱離させることができる。
 上記発明において、NO吸蔵還元触媒の下流の機関排気通路内に配置され、SO保持材から脱離した触媒担体を含む脱離粒子を捕集する捕集フィルタを備え、捕集フィルタに捕集された脱離粒子の量が予め定められた許容値よりも大きくなった場合には、脱離促進制御を禁止することが好ましい。この構成により、捕集フィルタの能力が著しく低下したり、捕集フィルタが使用不可能になったりすることを回避できる。
 上記発明において、SO保持材は、触媒担体が基体の表面に層状に配置され、触媒担体の層の厚さを推定し、触媒担体の層の厚さを用いてSO保持材の積算SO保持量を算出することが好ましい。この構成により、SO保持材の管理を行うことができる。
 上記発明において、NO吸蔵還元触媒の下流の機関排気通路内に配置され、SO保持材から脱離した触媒担体を含む脱離粒子を捕集する捕集フィルタを備え、捕集フィルタに捕集された脱離粒子からSOを放出させた後に、排気ガスに含まれるNOを脱離粒子にて保持することが好ましい。この構成により、脱離粒子をNO吸蔵還元触媒として用いることができる。
 上記発明において、捕集フィルタに捕集された脱離粒子の量に基づいて、脱離粒子がNOを保持できる許容値を推定し、脱離粒子のNO保持量が許容値を超えた場合に、捕集フィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにし、脱離粒子に保持されたNOを放出させるNO放出制御を行うことが好ましい。
 上記発明において、SO保持材に含まれる粒子状の触媒担体の略全てが脱離した場合には、排気ガスに含まれるSOがNO吸蔵還元触媒に保持される。NO吸蔵還元触媒の温度をSOの放出が可能な温度まで昇温するとともに、NO吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比またはリッチにするSO放出制御を行う時に、捕集フィルタに捕集されている脱離粒子の量に基づいて、NO吸蔵還元触媒の温度およびNO吸蔵還元触媒に流入する排気ガスの空燃比のうち少なくとも一方を定めることが好ましい。この構成により、NO吸蔵還元触媒の硫黄被毒回復処理を効率的に行なうことができる。
An exhaust gas purification apparatus for an internal combustion engine according to a first aspect of the present invention is disposed in an engine exhaust passage, retains NO X contained in exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and the air-fuel ratio is disposed in the stoichiometric air-fuel ratio or the the NO X storage reduction catalyst to release the NO X held and becomes rich, the upstream side of the engine exhaust passage of the NO X occluding and reducing catalyst, SO X holding material for holding the SO X With. The SO X holding material includes a particulate catalyst carrier that supports a catalyst metal, and a binder that is formed of a material different from that of the catalyst carrier and bonds the catalyst carriers together. At least one of the catalyst carrier and the binding material absorbs SO X contained in the exhaust gas and is reformed to sulfate, whereby the volume expands and the bond between the catalyst carrier and the binding material is released. The catalyst carrier is detached in the form of particles. With this configuration, the outflow of SO X from the SO X holding material can be suppressed.
In the above invention, the catalyst carrier is formed of a material that expands in volume when SO X is occluded and reformed to sulfate, and the binder is made of a material that does not change when SO X flows. It is preferable that the material is formed of a material whose volume is not changed when X is occluded and modified into a sulfate. With this configuration, the catalyst carrier that occludes SO X can be more reliably desorbed.
The exhaust gas purification apparatus for an internal combustion engine according to the second aspect of the present invention is disposed in the engine exhaust passage, holds NO X contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and controls the inflowing exhaust gas. air-fuel ratio is arranged to the stoichiometric air-fuel ratio or the the NO X storage reduction catalyst to release the NO X held and becomes rich, the upstream side of the engine exhaust passage of the NO X occluding and reducing catalyst, SO X holding material for holding the SO X With. The SO X holding material is formed of a particulate catalyst carrier supporting a catalyst metal, a material different from the catalyst carrier, an auxiliary particle having an average particle size smaller than that of the catalyst carrier, and a material substantially the same as the auxiliary particle, And a catalyst carrier that is supported by the auxiliary particles. The catalyst carrier occludes SO X contained in the exhaust gas and is reformed to sulfate, whereby the volume expands, the support of the catalyst carrier by the auxiliary particles is released, and the catalyst carrier is detached in the form of particles. With this configuration, the outflow of SO X from the SO X holding material can be suppressed.
In the above invention, the binder and the auxiliary particles have a decomposition temperature at which the sulfate decomposes when SO X is occluded to become a sulfate, and the desorption that raises the temperature of the SO X holding material above the decomposition temperature. By performing the promotion control, it is preferable that the sulfate is decomposed to reduce the volume of the binder and the auxiliary particles, and the support of the catalyst carrier by the auxiliary particles is released. With this configuration, the catalyst carrier that occludes SO X can be more reliably desorbed.
In the above invention, the collection filter is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material. When the amount of collected desorbed particles becomes larger than a predetermined allowable value, it is preferable to prohibit desorption promotion control. With this configuration, it is possible to avoid the ability of the collection filter to be remarkably reduced or the collection filter to be unusable.
In the above invention, the SO X holding material has a catalyst carrier arranged in layers on the surface of the substrate, estimates the thickness of the catalyst carrier layer, and uses the thickness of the catalyst carrier layer to calculate the integrated SO of the SO X holding material. It is preferable to calculate the X retention amount. With this configuration, the SO X holding material can be managed.
In the above invention, the collection filter is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material. After releasing SO X from the collected desorbed particles, NO X contained in the exhaust gas is preferably held by the desorbed particles. With this configuration, the desorbed particles can be used as a NO X storage reduction catalyst.
In the above invention, based on the amount of desorbed particles collected by the collection filter, an allowable value by which the desorbed particles can hold NO X is estimated, and the NO X retention amount of the desorbed particles exceeds the allowable value. In this case, it is preferable to perform NO X release control for releasing the NO X held in the desorbed particles by making the air-fuel ratio of the exhaust gas flowing into the collection filter the stoichiometric air-fuel ratio or rich.
In the above invention, when almost all of the particulate catalyst carrier contained in the SO X holding material is desorbed, SO X contained in the exhaust gas is held in the NO X storage reduction catalyst. When the temperature of the NO X storage reduction catalyst is raised to a temperature at which SO X can be released and SO X release control is performed to make the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst the stoichiometric air-fuel ratio or rich , based on the amount of desorbed particles trapped in the trapping filter, it is preferable to determine at least one of the air-fuel ratio of the exhaust gas flowing into the temperature and the NO X storage reduction catalyst of the NO X occluding and reducing catalyst. With this configuration, the sulfur poisoning recovery process of the NO X storage reduction catalyst can be performed efficiently.
 本発明によれば、SO保持材からのSOの流出を抑制する内燃機関の排気浄化装置を提供することができる。 According to the present invention, it is possible to provide an exhaust purifying apparatus for suppressing internal combustion engine the flow of SO X from the stored SO X material.
実施の形態1における内燃機関の概略全体図である。1 is a schematic overall view of an internal combustion engine in a first embodiment. NO吸蔵還元触媒の概略断面図である。It is a schematic cross-sectional view of the NO X occluding and reducing catalyst. SOトラップ触媒の概略断面図である。It is a schematic sectional drawing of a SO X trap catalyst. SOトラップ触媒の触媒担体の結合状態を説明する拡大概略断面図である。It is an expansion schematic sectional drawing explaining the coupling | bonding state of the catalyst support | carrier of a SO X trap catalyst. SOトラップ触媒の触媒担体の脱離を説明する第1の拡大概略断面図である。FIG. 3 is a first enlarged schematic cross-sectional view illustrating desorption of the catalyst carrier of the SO X trap catalyst. SOトラップ触媒の触媒担体の脱離を説明する第2の拡大概略断面図である。It is a 2nd expansion schematic sectional drawing explaining detachment | desorption of the catalyst support | carrier of a SO X trap catalyst. SOトラップ触媒の触媒担体の脱離を説明する第3の拡大概略断面図である。FIG. 6 is a third enlarged schematic cross-sectional view illustrating desorption of the catalyst carrier of the SO X trap catalyst. 実施の形態1における第1の比較例のSOトラップ触媒の拡大概略断面図である。2 is an enlarged schematic cross-sectional view of a SO X trap catalyst of a first comparative example in Embodiment 1. FIG. 実施の形態1における第1の比較例のSOトラップ触媒のSO保持量とSO放出量との関係を説明するグラフである。6 is a graph illustrating the relationship between the SO X retention amount and the SO X release amount of the SO X trap catalyst of the first comparative example in the first embodiment. 実施の形態1における第2の比較例のSOトラップ触媒の触媒担体が脱離するときの拡大概略断面図である。6 is an enlarged schematic cross-sectional view when the catalyst carrier of the SO X trap catalyst of the second comparative example in Embodiment 1 is desorbed. FIG. 実施の形態1におけるSOトラップ触媒の製造方法の第1工程の説明図である。FIG. 3 is an explanatory diagram of a first step of the method for producing the SO X trap catalyst in the first embodiment. 実施の形態1におけるSOトラップ触媒の製造方法の第2工程の説明図である。FIG. 5 is an explanatory diagram of a second step of the method for producing the SO X trap catalyst in the first embodiment. 実施の形態1におけるSOトラップ触媒のコート層の厚さを検出する装置の概略図である。2 is a schematic view of an apparatus for detecting the thickness of a SO X trap catalyst coating layer in Embodiment 1. FIG. SOトラップ触媒において、積算SO保持量とコート層の厚さとの関係を説明するグラフである。6 is a graph for explaining a relationship between an accumulated SO X retention amount and a thickness of a coat layer in an SO X trap catalyst. 燃料の積算使用量と、SOトラップ触媒における積算SO保持量との関係を説明するグラフである。It is a graph explaining the relationship between the accumulated usage amount of fuel and the accumulated SO X retention amount in the SO X trap catalyst. 実施の形態2におけるSOトラップ触媒の第1の拡大概略断面図である。FIG. 3 is a first enlarged schematic cross-sectional view of a SO X trap catalyst in a second embodiment. 実施の形態2におけるSOトラップ触媒の第2の拡大概略断面図である。FIG. 5 is a second enlarged schematic cross-sectional view of a SO X trap catalyst in a second embodiment. 実施の形態2における脱離促進制御を行なうか否かを判別するためのフローチャートである。10 is a flowchart for determining whether or not to perform desorption promotion control in the second embodiment. 機関本体から排出される単位時間当たりのSO量のマップである。It is a map of SO X amount per unit time discharged from the engine body. 実施の形態2における脱離促進制御を説明するタイムチャートである。10 is a time chart for explaining desorption promotion control in the second embodiment. 通常運転時における燃料の噴射パターンの説明図である。It is explanatory drawing of the injection pattern of the fuel at the time of normal driving | operation. 機関本体から排出される排気ガスの温度を上昇させるときの噴射パターンの説明図である。It is explanatory drawing of the injection pattern when raising the temperature of the exhaust gas discharged | emitted from an engine main body. 実施の形態3における内燃機関の概略図である。FIG. 5 is a schematic diagram of an internal combustion engine in a third embodiment. 実施の形態3における第1の運転制御のタイムチャートである。10 is a time chart of first operational control in the third embodiment. 実施の形態3における第2の運転制御のタイムチャートである。10 is a time chart of second operational control in the third embodiment. 機関本体から排出される単位時間当たりのNO量のマップである。Is a map of the NO X amount per unit discharged time from the engine body. 機関本体から排出される排気ガスの空燃比を低下させるときの噴射パターンの説明図である。It is explanatory drawing of the injection pattern when reducing the air fuel ratio of the exhaust gas discharged | emitted from an engine main body. 実施の形態3における第3の運転制御のタイムチャートである。12 is a time chart of third operational control in the third embodiment. NO吸蔵還元触媒における運転可能領域とSO放出制御の運転領域とを説明するグラフである。It is a graph illustrating the operation range of the operating region and the SO X release control in the NO X storage reduction catalyst.
 実施の形態1
 図1から図15を参照して、実施の形態1における内燃機関の排気浄化装置について説明する。本実施の形態における内燃機関は、車両に配置されている。本実施の形態においては、自動車に取り付けられている圧縮着火式のディーゼルエンジンを例に取り上げて説明する。
 図1に、本実施の形態における内燃機関の全体図を示す。内燃機関は、機関本体1を備える。また、内燃機関は、排気ガスを浄化する排気浄化装置を備える。機関本体1は、各気筒としての燃焼室2と、それぞれの燃焼室2に燃料を噴射するための電子制御式の燃料噴射弁3と、吸気マニホールド4と、排気マニホールド5とを含む。
 吸気マニホールド4は、吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結されている。コンプレッサ7aの入口は、吸入空気量検出器8を介してエアクリーナ9に連結されている。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置されている。更に、吸気ダクト6の途中には、吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置されている。図1に示される実施例では、機関冷却水が冷却装置11に導かれている。機関冷却水によって吸入空気が冷却される。
 排気マニホールド5は、排気ターボチャージャ7のタービン7bの入口に連結されている。本実施の形態における排気浄化装置は、NO吸蔵還元触媒(NSR)17を備える。また、本実施の形態における排気浄化装置は、排気ガスに含まれるSOを除去するためのSO保持材としてのSOトラップ触媒14を備える。SOトラップ触媒14は、NO吸蔵還元触媒17の上流の機関排気通路内に配置されている。SOトラップ触媒14は、タービン7bの出口に排気管12を介して連結されている。NO吸蔵還元触媒17の下流の機関排気通路内には、排気ガス中の粒子状物質を捕集する捕集フィルタとしてのパティキュレートフィルタ16が配置されている。また、パティキュレートフィルタ16の下流の機関排気通路内には、酸化触媒13が配置されている。
 排気マニホールド5と吸気マニホールド4との間には、排気ガス再循環(EGR)を行うためにEGR通路18が配置されている。EGR通路18には電子制御式のEGR制御弁19が配置されている。また、EGR通路18の途中にはEGR通路18内を流れるEGRガスを冷却するための冷却装置20が配置されている。図1に示される実施例では機関冷却水が冷却装置20内に導かれている。機関冷却水によってEGRガスが冷却される。
 それぞれの燃料噴射弁3は、燃料供給管21を介してコモンレール22に連結されている。コモンレール22は、電子制御式の吐出量可変な燃料ポンプ23を介して燃料タンク24に連結されている。燃料タンク24に貯蔵される燃料は、燃料ポンプ23によってコモンレール22内に供給される。コモンレール22内に供給された燃料は、それぞれの燃料供給管21を介して燃料噴射弁3に供給される。
 電子制御ユニット30は、デジタルコンピュータからなる。本実施の形態における電子制御ユニット30は、排気浄化装置の制御装置として機能する。電子制御ユニット30は、双方性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を含む。
 ROM32は、読み込み専用の記憶装置である。ROM32には、制御を行なうための必要なマップ等の情報が予め記憶されている。CPU34は、任意の演算や判別を行なうことができる。RAM33は、読み書きが可能な記憶装置である。RAM33は、運転履歴などの情報を保存したり、演算結果を一時的に保存したりすることができる。
 NO吸蔵還元触媒17の下流には、NO吸蔵還元触媒17の温度を検出するための温度センサ26が配置されている。酸化触媒13の下流には、酸化触媒13またはパティキュレートフィルタ16の温度を検出するための温度センサ27が配置されている。パティキュレートフィルタ16には、パティキュレートフィルタ16の前後差圧を検出するための差圧センサ28が取付けられている。これらの温度センサ26,27、差圧センサ28および吸入空気量検出器8の出力信号は、それぞれ対応するAD変換器37を介して入力ポート35に入力される。
 アクセルペダル40には、アクセルペダル40の踏込み量に比例した出力電圧を発生する負荷センサ41が接続されている。負荷センサ41の出力電圧は、対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35には、クランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続されている。クランク角センサ42の出力により、機関本体1の回転数を検出することができる。
 一方、出力ポート36は、対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、EGR制御弁19および燃料ポンプ23に接続されている。この様に、燃料噴射弁3およびスロットル弁10等は、電子制御ユニット30により制御されている。
 酸化触媒13は、酸化能力を有する触媒である。酸化触媒13は、例えば、排気ガスの流れ方向に延びる隔壁を有する基体を備える。基体は、例えばハニカム構造に形成されている。基体は、たとえば円筒形状のケースに収容される。基体の表面には、例えば多孔質酸化物粉末により、触媒担持層としてのコート層が形成されている。コート層には、白金(Pt)、ロジウム(Rd)、パラジウム(Pd)のような貴金属で形成された触媒金属が担持されている。排気ガスに含まれる一酸化炭素または未燃炭化水素は、酸化触媒で酸化されて水や二酸化炭素等に変換される。
 パティキュレートフィルタ16は、排気ガス中に含まれる炭素微粒子、サルフェート等の粒子状物質(パティキュレート)を除去するフィルタである。パティキュレートフィルタは、例えば、ハニカム構造を有し、ガスの流れ方向に延びる複数の流路を有する。複数の流路において、下流端が封止された流路と上流端が封止された流路とが交互に形成されている。流路の隔壁は、コージライトのような多孔質材料で形成されている。この隔壁を排気ガスが通過するときに粒子状物質が捕捉される。
 粒子状物質は、パティキュレートフィルタ16上に捕集されて酸化される。パティキュレートフィルタ16に次第に堆積する粒子状物質は、空気過剰の雰囲気中で温度を例えば600℃程度まで上昇することにより酸化されて除去される。
 図2に、NO吸蔵還元触媒の拡大概略断面図を示す。NO吸蔵還元触媒17は、機関本体1から排出される排気ガスに含まれるNOを一時的に保持して、保持したNOを放出するときにNに変換する触媒である。本発明における「保持」の用語は、「吸着」、「吸収」および「吸蔵」の意味を含む。
 NO吸蔵還元触媒17は、基体上に例えば酸化アルミニウムからなる触媒担体45が担持されている。触媒担体45の表面上には貴金属で形成された触媒金属46が分散して担持されている。触媒担体45の表面上にはNO吸収剤47の層が形成されている。触媒金属46としては、例えば白金Ptが用いられる。NO吸収剤47を構成する成分としては、例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。本実施の形態においては、NO吸収剤47を構成する成分としてバリウムBaが用いられている。
 本発明においては、機関吸気通路、燃焼室、または機関排気通路に供給された排気ガスの空気および燃料(炭化水素)の比を排気ガスの空燃比(A/F)と称する。排気ガスの空燃比がリーンのとき(理論空燃比より大きなとき)には、排気ガス中に含まれるNOが触媒金属46上において酸化されてNOになる。NOは、硝酸イオンNO の形態でNO吸収剤47内に吸蔵される。これに対して、排気ガスの空燃比がリッチのとき、または理論空燃比になると、NO吸収剤47に吸蔵されている硝酸イオンNO がNOの形でNO吸収剤47から放出される。放出されたNOは、排気ガスに含まれる未燃炭化水素や一酸化炭素等によってNに還元される。
 運転を継続してNO吸蔵還元触媒にNOが蓄積した場合には、NO吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比またはリッチにして、NO吸蔵還元触媒からNOを放出させるNO放出制御を行うことができる。
 上記の例については、NOの吸蔵を取り上げて説明したが、この形態に限られず、NO吸蔵還元触媒は、任意の形態でNOを保持すれば構わない。たとえば触媒担体にNOを吸着しても構わない。
 図3に、本実施の形態におけるSOトラップ触媒の拡大概略断面図を示す。SO保持材としてのSOトラップ触媒14は、機関本体1から排出される排気ガスに含まれるSOを保持するように形成されている。本実施の形態におけるSOトラップ触媒14は、NO吸蔵還元触媒17と類似した構成を有する。
 SOトラップ触媒14は、基体上に触媒担体48が担持されている。触媒担体48の表面上には触媒金属49が分散して担持されている。触媒担体48の表面にはSO吸収剤50が配置されている。本実施の形態における触媒金属49は、貴金属の白金Ptが用いられている。触媒金属49としては、白金や銀等の貴金属の他に、鉄Fe等の卑金属が用いられていても構わない。SO吸収剤50を構成する成分としては、例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。本実施の形態においては、SO吸収剤50を構成する成分としてバリウムBaが用いられている。
 排気ガスに含まれるSOは、SOトラップ触媒14に流入すると、触媒金属49において酸化されてSOになる。このSOはSO吸収剤50に吸収されて、たとえば硫酸塩BaSOを生成する。このように、SOトラップ触媒14は、排気ガスに含まれるSOを捕獲することができ、捕獲したSOをSO吸収剤50に吸蔵することができる。SO保持材は、この形態に限られず、SOを保持できれば構わない。
 本実施の形態におけるSOトラップ触媒14は、SOの他にNOを保持する。SO吸収剤50に吸蔵されるNOは、NO吸蔵還元触媒17のNO放出制御のときに同時に放出される。すなわち、排気ガスの空燃比を理論空燃比またはリッチにすることにより、SOトラップ触媒からNOが放出される。放出されたNOは、Nに還元される。ところが、硫酸塩BaSOは安定であるために、NO放出制御を行ってもSOはSOトラップ触媒に残留する。このように、SOトラップ触媒は、排気ガス中からSOを除去することができる。SOトラップ触媒の使用を継続すると、徐々にSO保持量は増加する。
 一方で、NO吸蔵還元触媒にSOが流入すると、NO吸収剤にSOが保持される。SOは、硫酸塩になって保持される。SOの硫酸塩は安定であるために、NO放出制御をおこなってもSOは放出されずに蓄積が継続される。このため、NO吸蔵還元触媒にSOが流入すると、NOの保持可能量が減少する硫黄被毒が生じる。
 機関排気通路にSO保持材を配置することにより、排気ガスに含まれるSOを除去することができる。NO吸蔵還元触媒の上流側にSO保持材を配置することにより、NO吸蔵還元触媒にSOが流入することを抑制することができる。すなわち、NO吸蔵還元触媒の硫黄被毒を抑制することができる。NO吸蔵還元触媒の高いNO浄化率を維持することができる。
 図4に、本実施の形態におけるSOトラップ触媒の拡大概略断面図を示す。コージライト等で形成された基体52の表面には、触媒担持層としてのコート層53が形成されている。コート層53は、触媒担体48を含む。本実施の形態における触媒担体48は、粒子状に形成されている。触媒金属49およびSO吸収剤50は、触媒担体48の表面に配置されている。それぞれの触媒担体48同士は、結合材51により互いに結合されている。また、触媒担体48は、結合材51により基体52に結合されている。
 本実施の形態におけるSOトラップ触媒は、触媒担体48と結合材51とが、互いに異なる物質で形成されている。触媒担体48は、SOを吸蔵して硫酸塩になる物質で形成されている。結合材51は、SOに接触したときに、触媒担体48に比べて化学変化しづらい物質で形成されている。本実施の形態においては、触媒担体48が酸化マグネシウムMgOにより形成されている。結合材51は、二酸化シリコンSiOにより形成されている。
 図5に、SOトラップ触媒の触媒担体の脱離を説明する第1の拡大概略断面図を示す。排気ガスに含まれるSOがSOトラップ触媒14に流入すると、SOは触媒担体48に担持されているSO吸収剤50に保持される。さらに、本実施の形態におけるSOトラップ触媒は、触媒担体48自体がSOを保持する。触媒担体48がSOを保持することにより、酸化物であるMgOから硫酸塩であるMgSOに改質される。酸化物の触媒担体48が硫酸塩の触媒担体48aになることにより体積が膨張する。すなわち、硫酸塩の触媒担体48aの体積は、酸化物の触媒担体48の体積よりも大きくなる。一方で、結合材51は、二酸化シリコンSiOにより形成されているために、硫酸塩にはならずに酸化物の状態である。すなわち、結合材51は、SOと接触しても不変である。このため、触媒担体48と結合材51との界面で歪みが生じる。
 図6に、SOトラップ触媒の触媒担体の脱離を説明する第2の拡大概略断面図を示す。触媒担体48は、コート層53の表面から順に硫酸塩になる。硫酸塩になった触媒担体48aは、結合材51との界面に歪みが生じることにより、結合材51との結合が解除される。硫酸塩になった触媒担体48aは、矢印201に示すようにコート層53から脱離して飛散する。触媒担体48aは、粒子状に脱離する。本実施の形態においては、触媒担体48aのそれぞれが個別に脱離する。硫酸塩になった触媒担体48aおよびSO吸収剤50には、SOが保持されている。このように、触媒担体48aは、SOを保持した状態でコート層53から脱離する。
 本発明においては、少なくとも触媒担体を含み、SOトラップ触媒のコート層から脱離する粒子を脱離粒子という。本実施の形態における脱離粒子は、触媒担体48a、SO吸収剤50および触媒金属49を含む。
 図1を参照して、SOトラップ触媒14から流出した触媒担体48aを含む脱離粒子は、NO吸蔵還元触媒17に流入する。ところが、脱離粒子に保持されているSOは、既に硫酸塩の形態になっているために安定な状態である。このために、脱離粒子は、NO吸蔵還元触媒17にて反応せずに、NO吸蔵還元触媒17を通過する。特に、NO吸蔵還元触媒17のNO吸収剤47に反応せずに通過させることができる。脱離粒子は、パティキュレートフィルタ16により捕集される。このように、NO吸蔵還元触媒17にSOが保持されることを回避できる。
 図7に、SOトラップ触媒の触媒担体の脱離を説明する第3の拡大概略断面図を示す。本実施の形態のSOトラップ触媒は、SOを保持した触媒担体48aが脱離するために、徐々に触媒担体48の量が減少する。排気ガスに含まれるSOの除去は、全ての触媒担体48が脱離粒子として飛散するまで継続される。
 図8に、本実施の形態における第1の比較例のSOトラップ触媒の拡大概略断面図を示す。第1の比較例のSOトラップ触媒においては、触媒担体48と結合材51とは、互いに同じ物質で形成されている。例えば、結合材51および触媒担体48は、二酸化シリコンSiOで形成されている。第1の比較例のSOトラップ触媒においては、SOが流入しても、触媒担体48および結合材51は、硫酸塩にならずに酸化物のままである。SOは、触媒担体48に担持されているSO吸収剤に吸蔵される。触媒担体48および結合材51は、SOが流入しても膨張しない。このために、触媒担体48と結合材51との結合が維持される。
 第1の比較例のSOトラップ触媒の使用を継続して、SOトラップ触媒のSO保持量が多くなってきた場合には、SOトラップ触媒の塩基性が弱くなる。SOトラップ触媒におけるSOの保持力が低下する。このため、所定の運転状態では、矢印202に示すように、SOトラップ触媒から硫黄成分が流出する場合がある。たとえば、SOトラップ触媒に流入する排気ガスが高温の状態や、排気ガスの空燃比が低い状態では、SOトラップ触媒に保持されている硫黄成分が流出する場合がある。
 図9に、第1の比較例のSOトラップ触媒におけるSO保持量と、SOトラップ触媒から放出されるSO量との関係を説明するグラフを示す。図9は、排気ガスの温度が高温で、排気ガスの空燃比が低くなった状態におけるSO放出量を示す。
 SOトラップ触媒の使用開始直後においては、SO保持量が少ないためにSOは放出されない。SO保持量が少ない場合には、SOトラップ触媒から放出されるSO量よりもSOトラップ触媒に保持されるSO量が多いために、SOトラップ触媒からSOは流出しない。ところが、使用を継続してSO保持量が多くなると、SOトラップ触媒から放出されるSO量が、SOトラップ触媒に保持されるSO量よりも多くなる。このため、SOトラップ触媒からSOが流出する。この様に、SOトラップ触媒におけるSO保持量が大きくなると、SOの放出量が多くなる。
 図8を参照して、SO吸収剤に吸蔵されていた硫黄成分は、硫化物であるHSまたは酸化物であるSOの形態でSOトラップ触媒から放出される。HSの形態で放出された硫黄成分は、短時間の間に安定なSOに変化する。SOトラップ触媒から排出されたSOは、NO吸蔵還元触媒17に保持される。このため、NO吸蔵還元触媒17に硫黄被毒が発現する。
 図6を参照して、本実施の形態におけるSOトラップ触媒は、SOを保持した触媒担体48aが脱離粒子として排気ガスの流れにのって飛散する。SOを保持した触媒担体48aは、SOトラップ触媒から排除される。SOトラップ触媒のコート層53の表面には、SO保持量の少ない触媒担体48が配置される。または、SOトラップ触媒の全体の塩基性を高く維持することができる。
 このために、SOトラップ触媒からのSOの排出を抑制することができる。または、高いSO除去効率を維持しながら排気ガスからSOを除去することができる。このように、本実施の形態におけるSOトラップ触媒は、触媒担体が全て飛散するまで、すなわち、SOトラップ触媒の積算SO保持量が飽和量に達するまで、高いSO除去率を維持することができる。
 本実施の形態においては、コート層から脱離した触媒担体を含む脱離粒子が、パティキュレートフィルタ16に捕集される。パティキュレートフィルタ16の前後差圧が増加する。パティキュレートフィルタ16は、SOトラップ触媒14に含まれる全ての触媒担体48が流入した場合においても、前後差圧が予め定められた許容値未満であることが好ましい。パティキュレートフィルタ16は、前後差圧が許容値を超えると、性能が著しく低下したり、使用不可能になったりする場合がある。このため、パティキュレートフィルタ16の前後差圧が許容値を超えないように、SOトラップ触媒14の触媒担体48の量またはパティキュレートフィルタ16の容量が設定されていることが好ましい。
 また、本実施の形態においては、SOトラップ触媒から脱離した脱離粒子をパティキュレートフィルタで捕集しているが、この形態に限られず、機関排気通路にパティキュレートフィルタが配置されてなくても構わない。
 本実施の形態においては、触媒担体48と結合材51とが互いに異なる材質で形成されている。結合材51は、SOが流入しても不変の材質で形成し、触媒担体48は、SOが流入することにより硫酸塩になるともに、体積が膨張する材質で形成されている。この構成により、SOを保持した触媒担体48を脱離させることができる。
 触媒担体48と結合材51とが同一の材質で形成されている場合には、SOを吸蔵することにより膨張しても、触媒担体48および結合材51とが同程度で膨張するために、触媒担体48の脱離は生じにくい。触媒担体48と結合材51とが互いに異なる材質で形成されていることにより、触媒担体48の脱離を容易にすることができる。
 本実施の形態においては、触媒担体48が硫酸塩になり、結合材51が酸化物のままで不変であるが、この形態に限られず、触媒担体48および結合材51のうち少なくとも一方が、排気ガスに含まれるSOを吸蔵して硫酸塩に改質されることにより体積が膨張し、触媒担体48と結合材51との間の結合が解除されれば構わない。たとえば、触媒担体48および結合材51の両方が硫酸塩になり、それぞれの体積変化の差により触媒担体48と結合材51との界面に歪みが生じて触媒担体48が脱離するように形成されていても構わない。
 表1に、触媒担体または結合材の材質として用いることができる酸化アルミニウム、酸化マグネシウムおよび二酸化シリコンの物性値を示す。
Figure JPOXMLDOC01-appb-T000001
 上記の表1に記載の分子量および密度から、酸化アルミニウムAlおよび硫酸アルミニウムAl(SOの1モル当たりの体積を算出することができる。算出された体積を比較すると、酸化アルミニウムから硫酸アルミニウムに変化することにより体積が略5倍になることが分かる。また、酸化マグネシウムMgOから硫酸マグネシウムMgSOに変化することにより、体積が略4倍になることが分かる。このように体積が大きく膨張する。
 酸化マグネシウム等のような体積が大きく膨張する物質と、二酸化シリコンのような改質されない物質を組み合わせることにより、容易に触媒担体を脱離させることができる。すなわち、触媒担体と結合材とのうち一方は、SOが流入することにより体積が変化する材質で形成し、他方はSOが流入しても体積の変化がないか、または体積変化が小さく、体積がほぼ不変の材質で形成することが好ましい。この構成により、SOを保持した触媒担体を、より確実に脱離させることができる。
 体積が変化する材質としては、塩基性が強い材質を例示することができる。塩基性が強い材質は、SOと接触することにより容易に硫酸塩に改質されて体積が変化する。このような、硫酸塩に改質され易い物質としては、酸化マグネシウムMgO、酸化ランタンLa、または二酸化セリウムCeOを例示することができる。また、酸化アルミニウムAlは、比較的容易に硫酸塩に改質され、体積が変化する。
 体積変化が小さい材質としては、中性に近い材質を例示することができる。中性に近い材質は硫酸塩に改質されにくい。硫酸塩に改質されにくい物質としては、二酸化ジルコニウムZrO、または二酸化チタンTiOを例示することができる。二酸化チタンTiOは、硫化して硫酸チタンTi(SOに改質され易いが容易に酸化物に戻るため、実質的に硫酸塩に改質されにくい。また、体積変化がない材質としては、二酸化シリコンSiOを例示することができる。
 ところで、触媒担体の体積は結合材の体積に比べて大きい。触媒担体を硫酸塩に改質され易い物質から形成し、結合材を硫酸塩に改質されにくい物質または不変の物質から形成することにより、触媒担体自体に多くのSOを保持することができる。この結果、SOトラップ触媒の飽和SO保持量を大きくすることができる。
 触媒担体を硫酸塩に改質されにくい物質から形成し、結合材を硫酸塩に改質され易い物質から形成した場合には、SOが触媒担体同士の隙間から侵入して、コート層の内部の結合材に優先的に吸蔵される場合がある。結合材は体積が小さいために、触媒担体と比較すると少量のSOで体積が膨張する。このために、コート層の内部から触媒担体が脱離する場合がある。また、触媒担体およびSO吸収剤にSOが十分に吸蔵されていない状態で、触媒担体が脱離する場合がある。
 これに対して、触媒担体を硫酸塩に改質され易い物質から形成し、結合材を硫酸塩に改質されにくい物質または不変の物質から形成することにより、表面から順に触媒担体を脱離させることができる。また、触媒担体が硫酸塩になっているときには、触媒担体に担持されているSO吸収剤にもSOが吸蔵されている。このために、SO吸収剤にSOが保持された触媒担体から順に脱離させることができる。
 触媒担体および結合材に用いられる材質としては、単一の成分を含む酸化物に限られず、複合酸化物(2種類以上の金属元素を含む酸化物)でも構わない。更に、触媒担体および結合材に用いられる材質としては、複数の酸化物が混合されて用いられていても構わない。
 ところで、本実施の形態におけるSOトラップ触媒は、触媒担体48の粒径が小さい方が好ましい。例えば、触媒担体の平均粒径は、5μm未満であることが好ましい。
 図10に、本実施の形態における第2の比較例のSOトラップ触媒の拡大概略断面図を示す。第2の比較例においては、大きな平均粒径を有する触媒担体48が採用されている。触媒担体48の平均粒径は、例えば5μmよりも大きい。触媒担体48の粒径が大きくなると、触媒担体48同士の間にSOが侵入し易くなる。このため、コート層53の内部に配置されている触媒担体48または結合材51にSOが保持される。コート層53の内部において、触媒担体48と結合材51との結合が解除され易くなる。この結果、矢印203に示すように、触媒担体48が塊状になって脱離する。このときに、SOが十分に吸蔵されていない触媒担体48が同時に脱離する。または、SO吸収剤に十分にSOが吸蔵されていない触媒担体48が脱離する。この結果、SOトラップ触媒のSO保持可能量が減少する。
 図6および図7を参照して、これに対して、触媒担体48の粒径を小さくすることにより、触媒担体48同士の間隔が小さくなる。触媒担体48同士の間の隙間を通って、排気ガスが侵入し、コート層53の内部を拡散することが抑制される。この結果、SOは、コート層53の表面に配置されている触媒担体48に優先的に保持される。コート層53の表面から順に硫酸塩になった触媒担体48aを脱離させることができる。また、SOを十分に吸蔵した触媒担体48aを優先的に脱離させることができる。
 次に、本実施の形態におけるSOトラップ触媒の製造方法について説明する。特に、基体の表面に、触媒金属とSO吸収剤とを保持した触媒担体を担持させる方法について説明する。
 図11は、本実施の形態におけるSOトラップ触媒の製造方法の第1工程の説明図である。はじめに、コート層を構成する粒子状の触媒担体48を準備する。本実施の形態においては、平均粒径が5μm未満の触媒担体48を準備する。触媒担体48には、予め触媒金属を担持させる。本実施の形態においては、白金Ptを担持させる。例えば、触媒担体48を、白金溶液に浸すことにより、触媒担体48の表面に白金を担持させることができる。
 白金を担持した触媒担体48と、結合材の材料となる硝酸アルミニウムAl(NO溶液70を溶媒71に投入する。溶媒71としては、例えば水を用いることができる。溶媒71を攪拌することにより、触媒担体48が溶媒71中に均一に分散したスラリーを形成することができる。
 図12に、本実施の形態におけるSOトラップ触媒の製造方法の第2工程の説明図を示す。触媒担体48を含むスラリー71aを、基体52の中に流入する。基体52の表面にスラリー71aを配置する。本実施の形態における基体52は、コージェライト(2MgO・2Al・5SiO)で形成されている。本実施の形態における基体52は、ハニカム状に形成されている。
 次に、それぞれのセルの表面にスラリー71aが配置された基体52を焼結する。硝酸アルミニウム水溶液70が結合材51に変化する。結合材51により触媒担体48同士を互いに固定することができる。また、触媒担体48を基体52に固定することができる。
 次に、触媒担体48にSO吸収剤50を担持させる。本実施の形態においては、SO吸収剤を構成する成分としてバリウムを用いる。バリウムを含む水溶液に基体52を浸す。毛細管現象等で触媒担体48同士の間に水溶液が侵入する。この後に、水分を蒸発させることにより、触媒担体48の表面にバリウムを含むSO吸収剤50を形成することができる。このように、基体の表面にコート層53を形成することができる。
 本実施の形態におけるSOトラップ触媒の製造方法においては、触媒担体を基体に固定する前に、触媒担体に触媒金属を担持させている。触媒金属の担持方法としては、触媒担体を基体に固定した後に、触媒担体の表面に触媒金属を担持させることもできる。たとえば、基体の表面に触媒担体を配置した後に、基体を白金溶液に浸すにより、触媒金属を触媒担体の表面に担持させることができる。
 本実施の形態のSOトラップ触媒は、運転期間中に触媒担体が脱離するために、コート層の内部においても触媒担体の表面に均一に触媒金属が担持されていることが好ましい。特に、触媒担体の粒径を小さくした場合においては、触媒担体同士の隙間が小さくなる。触媒担体を基体に固定した後に触媒金属を担持させる製造方法では、コート層の内部に配置されている触媒担体に対して、十分に触媒金属を担持させることができない虞がある。しかしながら、触媒担体に触媒金属を担持させた後に、触媒担体を基体に固定することにより、コート層の内部においても十分に触媒金属が配置される。この結果、SOトラップ触媒の使用開始から、全ての触媒担体が脱離するまで好適なSOの保持を継続することができる。
 本実施の形態におけるSOトラップ触媒においては、触媒担体の表面にSO吸収剤が配置されているが、この形態に限られず、触媒担体および結合材のうち少なくとも一方の飽和SO保持量が十分である場合には、SO吸収剤が配置されていなくても構わない。
 次に、SOトラップ触媒のSO保持可能量の推定について説明する。本実施の形態においては、コート層53の厚さを推定することによりSO保持可能量を算出する。本実施の形態における内燃機関の排気浄化装置は、SOトラップ触媒のコート層の厚さを検出する検出装置を備える。コート層の厚さを用いてSOトラップ触媒のSO保持可能量を推定する。SO保持可能量は、任意の時刻におけるSOを保持することができる総量に相当する。SOトラップ触媒の積算SO保持量が飽和量に達した場合には、SO保持可能量は零になる。
 図13に、本実施の形態におけるSOトラップ触媒のコート層の厚さの検出装置の概略図を示す。コート層の厚さの検出装置は、コート層53に配置されている電極61を備える。電極61は、板状に形成されている。電極61は、基体52の表面に立設され、コート層53を貫通している。図13に示す例においては、2枚の電極61が互いに離れて配置されている。2枚の電極61は、面積が最大になる面積最大面が互いに平行に配置されている。それぞれの電極61は、電流計64、抵抗63および交流電源62を介して、互いに接続されている。
 2枚の板状の電極61は、コンデンサとして機能する。コンデンサの静電容量Cは、以下の式で表すことができる。
 C=ε・S/d …(1)
 ここで、定数εは、電極同士の間の物質に依存する誘電率であり、変数Sは電極61の面積最大面の面積であり、変数dは電極61同士の間の距離である。例えば、酸化アルミニウムAlの触媒担体48が電極61同士の間全体に充填されている場合の誘電率は、空気が電極61同士の間全体に存在する場合の誘電率よりも大きくなる。
 交流電源62から、所定の周波数の交流電圧を印加することにより、コンデンサの静電容量Cに応じて電流が流れる。回路に流れる電流を電流計64で検出することにより、コンデンサのリアクタンスを算出し、更に、コンデンサの静電容量Cを算出することができる。
 SOトラップ触媒の使用を継続することにより、コート層53の厚さが徐々に減少する。コンデンサの誘電率εは、徐々に下降する。このため、コンデンサの静電容量Cは、徐々に下降する。本実施の形態においては、算出された静電容量Cから、コート層の厚さtcを推定する。コンデンサの静電容量Cに対するコート層の厚さtcを、例えば電子制御ユニット30のROM32に記憶させておく。静電容量Cを算出することにより、コート層の厚さtcを推定することができる。
 なお、静電容量の検出方法は、上記の形態に限られず、任意の方法や任意の電気回路により検出することができる。たとえば、直流電源をコンデンサに接続して、コンデンサの充電時間等を測定することにより静電容量を算出しても構わない。
 図14に、積算SO保持量とコート層の厚さとの関係を説明するグラフを示す。積算SO保持量は、使用の開始から任意の時刻までに排気ガスに含まれるSOを保持したSO量の積算である。SOトラップ触媒は、積算SO保持量が、飽和SO保持量に達するまでSOの保持を継続することができる。飽和SO保持量から、任意の時刻における積算SO保持量を減算することにより、SO保持可能量を算出することができる。
 図14に示すコート層の厚さに対する積算SO保持量の関係を、例えば電子制御ユニット30のROM32に記憶させておく。推定されるコート層の厚さを用いて、積算SO保持量を推定することができる。更に、SO保持可能量を算出することができる。このように、SOトラップ触媒の積算SO保持量を推定することにより、SOトラップ触媒の管理が行なえる。たとえば、積算SO保持量が飽和SO保持量に達したときにSOトラップ触媒を交換する場合には、SOトラップ触媒の交換時期を推定することができる。または、積算SO保持量が飽和SO保持量に達した場合には、下流に配置されているNO吸蔵還元触媒の硫黄被毒回復処理が必要になる。この場合においても、硫黄被毒回復処理の開始時期を判別することができる。
 図15に、積算燃料使用量と積算SO保持量との関係を説明するグラフを示す。SOトラップ触媒の積算SO保持量を推定することにより、燃料に含まれる硫黄成分の含有率を推定することができる。積算燃料使用量は、任意の時刻までに使用した燃料の量の積算である。積算燃料使用量は、例えば、燃料噴射弁から噴射される燃料の量を積算することにより、算出することができる。積算燃料使用量が増加することにより、積算SO保持量が増加する。このグラフの傾きにより、燃料に含まれる硫黄成分の含有率を算出することができる。
 燃料に含まれる硫黄成分の含有率を算出することにより、例えば、燃料の性状や燃料の種類などを判別することができる。判別された燃料の性状や燃料の種類に応じて、燃焼室における燃焼パターンを最適化することができる。また、燃料の硫黄成分の含有率が、予め電子制御ユニット30等に記憶されている場合には、既に記憶されている硫黄成分の含有率を補正することができる。
 図13に示す例においては、基体の1箇所にコンデンサとなる2枚の電極が配置されているが、この形態に限られず、複数箇所にコート層の厚さの検出装置が配置されていても構わない。例えば、SOトラップ触媒の排気ガスの流れ方向において、上流側の端部と下流側の端部に、コート層の厚さの検出装置が配置されていても構わない。排気ガスは、SOトラップ触媒の上流の端部から流入するために、下流側の端部よりも上流側の端部の方が、優先的に触媒担体の脱離が生じる。すなわち、触媒担体の脱離が生じると、排気ガスの流れ方向においてコート層の厚さが下流側に向かって徐々に厚くなる勾配が形成される。このような勾配が形成される場合においても、排気ガスの流れ方向において複数箇所のコート層の厚さを計測することにより、勾配を推定することができる。より正確に積算SO保持量等を推定することができる。
 コート層の厚さの検出装置としては、上記の形態に限られず、任意の装置によりコート層の厚さを検出することができる。例えば、SOトラップ触媒の入口と出口の差圧を検出する差圧センサを配置する。コート層が薄くなることにより、SOトラップ触媒の開口率が増加して、SOトラップ触媒における圧損が小さくなる。排気ガスの流速が高い場合などにおいて、SOトラップ触媒の上流側と下流側の差圧を計測することにより、コート層の厚さを推定することができる。または、SOトラップ触媒のセルの内部に、距離センサ等を配置して、対面するコート層の表面同士の距離を検出することにより、コート層の厚さを推定しても構わない。
 コート層の厚さの推定は、任意の時期に行なうことができる。たとえば、所定の走行距離毎にコート層の厚さを推定することができる。または、連続的にコート層の厚さを推定しても構わない。
 実施の形態2
 図16から図22を参照して、実施の形態2における内燃機関の排気浄化装置について説明する。
 図16に、本実施の形態におけるSOトラップ触媒の拡大概略断面図を示す。SO保持材としてのSOトラップ触媒が排気ガスに含まれるSOを保持し、触媒担体がコート層から脱離することは実施の形態1と同様である。
 触媒担体48の表面には、触媒金属49およびSO吸収剤50が担持されている。触媒担体48は、SOを保持したときに膨張する材質で形成されている。本実施の形態における触媒担体48は、MgOにより形成されている。
 本実施の形態におけるSOトラップ触媒は、触媒担体48同士の間に介在する補助粒子55を備える。補助粒子55は、平均粒径が触媒担体48の平均粒径よりも小さくなるように形成されている。本実施の形態においては、補助粒子55の表面には、触媒金属49およびSO吸収剤50が担持されている。結合材51は、補助粒子55同士を互いに結合している。結合材51は、補助粒子55を基体52に結合している。
 本実施の形態における補助粒子55および結合材51は、触媒担体48と異なる材質で形成されている。本実施の形態における補助粒子55は、酸化アルミニウムAlにより形成されている。本実施の形態における結合材51は、補助粒子55と同一の材質で形成されている。すなわち結合材51は、酸化アルミニウムAlにより形成されている。
 本実施の形態におけるSOトラップ触媒は、実施の形態1にて説明したSOトラップ触媒の製造方法において、予め触媒金属を担持した触媒担体48に加えて、触媒金属を担持した補助粒子55を準備する。触媒担体48および補助粒子55を、結合材の材料となる硝酸アルミニウムAl(NO溶液70と共に混合する。生成されたスラリーを基体の表面に配置した後に、焼結することにより製造できる(図11参照)。
 本実施の形態におけるSOトラップ触媒では、結合材51が触媒担体48よりも優先的に補助粒子55に結合されている。触媒担体48は、補助粒子55に接触することにより支持されている。触媒担体48は、機械的に補助粒子55に支持されている。
 図17に、本実施の形態におけるSOトラップ触媒がSOを保持したときの拡大概略断面図を示す。本実施の形態におけるSOトラップ触媒は、排気ガスが流入することにより、SO吸収剤50にSOが吸蔵される。また、触媒担体48自体にSOが吸蔵される。酸化物の触媒担体48は、SOを吸蔵することにより硫酸塩の触媒担体48aに改質される。酸化物の触媒担体48は、硫酸塩の触媒担体48aになるときに体積が膨張する。補助粒子55は、触媒担体48に押圧される。補助粒子55の位置が移動する。この時に、補助粒子55と結合材51との間に歪みが生じる。この結果、補助粒子55と結合材51との結合が解除される。硫酸塩になった触媒担体48aの拘束が解除されて、コート層53から触媒担体48aが脱離する。
 本実施の形態におけるSOトラップ触媒は、触媒担体48同士の間に、触媒担体48よりも小さい補助粒子55が介在している。このために、排気ガスに含まれるSOが触媒担体48同士の隙間を通って、コート層53の内部に侵入することを抑制できる。SOは、コート層53の表面に配置されている触媒担体48およびこの触媒担体48に担持されているSO吸収剤50に優先的に吸蔵される。このため、コート層53の表面に配置されている触媒担体48を優先的に脱離させることができる。コート層53の内部に配置され、十分にSOを保持していない触媒担体48が脱離することを抑制できる。または、複数の触媒担体48が塊状になって脱離することを抑制できる。
 補助粒子55と結合材51とがほぼ同じ材質で形成されていることにより、結合材51を、触媒担体48よりも優先的に補助粒子55に結合させることができる。また、本実施の形態においては、結合材51が補助粒子55に結合されているが、この形態に限られず、結合材51は補助粒子55と共に触媒担体48に結合されていても構わない。
 本実施の形態における補助粒子55は、表面に触媒金属49およびSO吸収剤50が担持されているが、この形態に限られず、補助粒子55の表面に触媒金属およびSO吸収剤が配置されていなくても構わない。または、触媒金属49およびSO吸収剤50のうち、一方が担持されていても構わない。
 また、本実施の形態においては、触媒担体、補助粒子および結合材は、SOを吸蔵することより膨張する材質で形成されているが、この形態に限られず、触媒担体、補助粒子および結合材のうち少なくとも一つの部材が膨張する材質で形成され、その他の部材がSOと接触しても不変の材質で形成されていても構わない。
 本実施の形態においては、排気ガスの浄化を行っているときにSOトラップ触媒の温度を上昇させる脱離促進制御を行なう。温度を上昇することにより、触媒担体の脱離が促進される。本実施の形態における結合材および補助粒子は、SOの吸蔵により生成された硫酸塩が分解される分解温度を有する。表2に、本実施の形態における触媒担体、補助粒子および結合材に用いられる物質の分解温度を示す。表2には、酸化物および硫酸塩の分解温度が示されている。
Figure JPOXMLDOC01-appb-T000002
 表2より、結合材および補助粒子の材質である酸化アルミニウムAlから生成された硫酸塩Al(SOの分解温度は、略770℃である。これに対して、触媒担体の材質であるMgOから生成された硫酸塩MgSOの分解温度は、略1100℃である。脱離促進制御では、SOトラップ触媒の温度が、結合材および補助粒子の材質の硫酸塩の分解温度以上になるように制御を行う。この時には、SOトラップ触媒の温度が触媒担体の材質の硫酸塩の分解温度未満になるように制御を行うことが好ましい。本実施の形態においては、SOトラップ触媒の温度が、略770℃以上略1100℃未満になるように、SOトラップ触媒に流入する排気ガスの温度を上昇させる。
 脱離促進制御を行なうことにより、触媒担体は分解せずに硫酸塩の形態が維持される。一方で、結合材および補助粒子の硫酸塩は、分解して酸化物になる。結合材および補助粒子は収縮する。すなわち、触媒担体の体積が不変である一方で、結合材および補助粒子の体積は小さくなる。このときに、補助粒子に対して応力が作用し、補助粒子と結合材との間の歪みが大きくなる。この結果、補助粒子と結合材との結合の解除を促進し、触媒担体の脱離を促進することができる。
 図18に、本実施の形態における運転制御のフローチャートを示す。図18に示す運転制御は所定の時間間隔ごとに繰り返し行なうことができる。
 ステップ101においては、SOトラップ触媒におけるSO保持量を推定する。本実施の形態における排気浄化装置は、任意の時刻におけるSOトラップ触媒のSO保持量を推定できる検出装置を備える。本実施の形態において、SO保持量の算出は、内燃機関の運転中に継続的に行なわれている。なお、本実施の形態においては、脱離促進制御が行われる毎に、SOトラップ触媒のSO保持量が零にされる。
 図19に、機関回転数と要求トルクとを関数にするSOトラップ触媒に単位時間に保持されるSO量のマップを示す。機関回転数Nと要求トルクTQを検出することにより、単位時間にSOトラップ触媒に保持されるSO量SOXZを求めることができる。このマップは、例えば電子制御ユニット30のROM32に記憶されている。運転を継続するとともに、所定の時間毎に、このマップから単位時間当りに保持されるSO量を求める。単位時間当たりに保持されるSO量に所定の時間を乗じることにより、SO保持量を算出することができる。算出されたSO保持量を積算することにより、任意の時刻におけるSO保持量を検出することができる。SO保持量は、例えばRAM33に保存される。SOトラップ触媒に吸蔵されているSO保持量の検出装置は、この形態に限られず、SO保持量を検出できる任意の装置を採用することができる。
 図18を参照して、ステップ102においては、算出されたSOトラップ触媒におけるSO保持量が脱離促進制御を行うための判定値よりも大きいか否かを判別する。この判定値は予め定められている。本実施の形態においては、SOトラップ触媒に保持されているSO保持量が、予め定められた判定値を超えた場合に脱離促進制御を行っている。判定値としては、コート層の表面に配置されている触媒担体およびコート層の表面に配置されている触媒担体に担持されているSO吸収剤のほぼ全てが、SOを保持した状態になるときのSO保持量を採用することが好ましい。SO保持量が判定値以下の場合には、この制御を終了する。SO保持量が判定値よりも大きい場合には、ステップ103に移行する。
 次に、パティキュレートフィルタ16に捕集された脱離粒子の量が判定値よりも大きいか否かを判別する。SOトラップ触媒14から脱離した触媒担体を含む脱離粒子は、パティキュレートフィルタ16に捕集される。パティキュレートフィルタ16に堆積する脱離粒子の量が増加すると、パティキュレートフィルタ16の前後差圧が大きくなって、性能が著しく低下したり、運転が不可能になったりする場合がある。本実施の形態においては、パティキュレートフィルタに捕集された脱離粒子の量が予め定められた許容値よりも大きくなった場合に、脱離促進制御を禁止する制御を行っている。
 ステップ103においてパティキュレートフィルタ16の前後差圧を読み込む。本実施の形態においては、パティキュレートフィルタ16の温度を上昇させて粒子状物質を燃焼させる再生制御を行っている。パティキュレートフィルタ16の再生制御が終了した直後の前後差圧を電子制御ユニット30に記憶させておく。図1を参照して、差圧センサ28によりパティキュレートフィルタ16の前後差圧を検出することができる。
 本実施の形態においては、パティキュレートフィルタ16の前後差圧に基づいて、脱離粒子の堆積量を推定している。しかし、パティキュレートフィルタ16の前後差圧は、パティキュレートフィルタ16に捕集されている脱離粒子以外の粒子状物質の量にも依存する。このために、本実施の形態においては、再生制御を行った直後に前後差圧を検出している。ステップ103においては、至近の再生制御が終了した直後の前後差圧を読み込む。
 次に、ステップ104において、パティキュレートフィルタ16の前後差圧が予め定められた判定値よりも大きいか否かを判別する。パティキュレートフィルタ16の前後差圧が判定値よりも大きい場合には、パティキュレートフィルタに捕集された脱離粒子の量が許容値よりも大きくなっていると判別することができる。パティキュレートフィルタ16の前後差圧が判定値よりも大きい場合には、この制御を終了している。すなわち、脱離促進制御を禁止している。この制御を行うことにより、パティキュレートフィルタの浄化性能が著しく低下することを抑制できる。または、パティキュレートフィルタの前後差圧が運転可能な範囲を超えてしまい、内燃機関が使用不可能になることを回避できる。
 パティキュレートフィルタに捕集された脱離粒子の量の推定については、この形態に限られず、任意の方法によりパティキュレートフィルタに捕集された脱離粒子の量を推定することができる。たとえば、パティキュレートフィルタに捕集された脱離粒子の量として、SOトラップ触媒から脱離した脱離粒子の量を積算SO保持量から推定することができる。
 ステップ104において、パティキュレートフィルタ16の前後差圧が判定値以下の場合にはステップ105に移行する。ステップ105においては、脱離促進制御を実施する。
 図20に、本実施の形態における脱離促進制御のタイムチャートを示す。時刻tまでは、通常運転を行なっている。時刻tから時刻tまでは、脱離促進制御を行なっている。時刻t以降では通常運転を行なっている。脱離促進制御においては、SOトラップ触媒の温度を上昇させている。本実施の形態においては、燃焼室における噴射パターンを変更することにより、SOトラップ触媒に流入する排気ガスの温度を上昇させている。ここで、機関本体から排出される排気ガスの温度を上昇させる噴射パターンについて説明する。
 図21に、本実施の形態における内燃機関の通常運転時における燃料の噴射パターンを示す。噴射パターンAは、通常運転時における燃料の噴射パターンである。通常運転時においては、略圧縮上死点TDCで主噴射FMが行なわれる。クランク角が略0°において主噴射FMが行なわれる。また、主噴射FMの燃焼を安定化させるために、主噴射FMの前にパイロット噴射FPが行なわれる。パイロット噴射FPは、例えば、クランク角が圧縮上死点TDCの前の略10°から略40°の範囲において行なわれる。
 通常運転時においては、噴射パターンBに示すように、パイロット噴射FPが行なわれずに主噴射FMのみが行なわれていても構わない。本実施の形態においては、パイロット噴射FPが行なわれる噴射パターンを例に取り上げて説明する。通常運転において噴射パターンAまたは噴射パターンBで運転されているときには、機関本体から排出される排気ガスの空燃比はリーンである。
 図22に、機関本体から排出される排気ガスの温度を上昇させるときの噴射パターンを示す。噴射パターンCでは、主噴射FMの後に、補助噴射としてのアフター噴射FAを行っている。アフター噴射FAは、主噴射の後の燃焼可能な時期に行なわれる。アフター噴射FAは、例えば圧縮上死点後のクランク角が略40°までの範囲で行なわれる。アフター噴射FAを行なうことにより、後燃え期間が長くなるために、機関本体から排出される排気ガスの温度を上昇させることができる。
 さらに、噴射パターンCにおいては、主噴射FMの噴射時期が圧縮上死点TDCから遅れている。すなわち、主噴射FMの噴射時期を遅角させている。主噴射FMの噴射時期の遅角に伴って、パイロット噴射FPの噴射時期も遅角させている。主噴射FMの噴射時期を遅角させることにより、排気ガスの温度を上昇させることができる。排気ガスの温度を上昇させることにより、機関排気通路に配置されているSOトラップ触媒の温度も上昇させることができる。
 図20を参照して、時刻tから排気ガスの温度を上昇させることによりSOトラップ触媒の床温を上昇させる。SOトラップ触媒の床温の最高温度が下限温度以上で上限温度未満の範囲内になるように、SOトラップ触媒の温度を上昇させる。前述のとおり、本実施の形態においては、SOトラップ触媒の床温の最高温度が770℃以上1100℃未満になるように昇温を行なう。
 本実施の形態においては脱離促進制御を行なったときに、触媒担体48aは、分解せずにMgSOの硫酸塩の形態が維持される。一方で、補助粒子55および結合材51は、硫酸塩のAl(SOが分解して酸化物のAlに戻る。このときに補助粒子55および結合材51は収縮し、触媒担体48aの脱離が促進される。触媒担体48aが脱離することにより、SOトラップ触媒における触媒担体の量が減少する。SOトラップ触媒のSO保持量は減少する。
 本実施の形態におけるSOトラップ触媒は、触媒担体、補助粒子および結合材が酸化物の形態で生成されている。触媒担体、補助粒子および結合材は、SOを吸蔵することにより硫酸塩になって膨張する。脱離促進制御を行って補助粒子および結合材が、元の酸化物の形態に戻ることにより、実質的に初期の状態から触媒担体のみが硫酸塩になって膨張する形態と同等になる。この結果、補助粒子が触媒担体により押圧された状態になり、補助粒子と結合材との間で歪みが大きくなる。補助粒子と結合材との間の結合が解除されて、触媒担体の脱離を促進することができる。
 本実施の形態における脱離促進制御は、燃焼室において燃焼する燃料の量を増加させることにより、排気ガスの温度を上昇させている。この制御を行なうことにより、排気ガスの温度を急激に上昇させることができ、短時間に脱離促進制御を行うことができる。脱離促進制御は、この形態に限られず、SOトラップ触媒の温度を上昇させる任意の装置を採用することができる。
 また、脱離促進制御においては緩やかにSOトラップ触媒の温度を上昇させても構わない。例えば、SOトラップ触媒の上流側に、酸化触媒が配置されている場合には、酸化触媒に未燃燃料を供給すると、未燃燃料の酸化反応のときに反応熱が生じる。この反応熱により排気ガスの温度を昇温させることができる。排気ガスの昇温によりSOトラップ触媒を昇温することができる。
 本実施の形態においては、MgOの触媒担体と、Alの補助粒子および結合材とを選定している。脱離促進制御を行うときの触媒担体、補助粒子および結合材の材質は、この形態に限られず、SOトラップ触媒の温度が上昇したときに、触媒担体の硫酸塩が分解せずに、補助粒子および結合材の硫酸塩が分解する温度範囲が確定される材質を選定することができる。
 たとえば、補助粒子および結合材の材質として、二酸化チタンTiOを選定することができる。二酸化チタンが硫化した硫酸チタンTi(SOは、600℃程度で分解するために、脱離促進制御において脱離粒子の温度を600℃以上にすることにより、触媒担体の脱離を促進することができる。
 また、硫酸塩の分解温度は、排気ガスの空燃比等に依存する。たとえば、還元雰囲気中では、硫酸塩の分解温度が低下する。したがって、排気ガスの状態に応じて硫酸塩の分解温度を推定し、この分解温度に基づいてSOトラップ触媒が到達する最高温度の温度範囲を定めることが好ましい。
 本実施の形態における脱離促進制御は、SOトラップ触媒に保持されているSO量が判定値に達するごとに行っている。脱離促進制御は、この形態に限られず、例えば、予め定められた走行距離や予め定められた燃料の噴射量ごとに行なっても構わない。
 その他の構成、作用および効果については、実施の形態1における内燃機関の排気浄化装置と同様であるので、ここでは説明を繰り返さない。
 実施の形態3
 図23から図29を参照して、実施の形態3における内燃機関の排気浄化装置について説明する。
 図23は、本実施の形態における内燃機関の概略図である。機関排気通路に、SO保持材としてのSOトラップ触媒14とNO吸蔵還元触媒17とが、この順に配置されている。また、NO吸蔵還元触媒17の下流の機関排気通路内には、パティキュレートフィルタ16および酸化触媒13が配置されている。本実施の形態におけるSOトラップ触媒は、触媒金属およびSO吸収剤が担持されている触媒担体を含む。本実施の形態におけるSOトラップ触媒の触媒金属は、貴金属を含む。本実施の形態における触媒金属は、白金Ptを含む。
 本実施の形態における内燃機関の排気浄化装置は、パティキュレートフィルタ16の上流側に配置されている還元剤供給装置としての燃料添加弁60を備える。燃料添加弁60は、機関排気通路内に還元剤としての燃料を供給するように形成されている。本実施の形態における燃料添加弁60は、機関本体1の燃料と同じ燃料を噴射するように形成されている。燃料添加弁60は、NO吸蔵還元触媒17とパティキュレートフィルタ16との間に燃料を噴射するように配置されている。
 本実施の形態におけるSOトラップ触媒14は、実施の形態1または実施の形態2と同様に、SOを吸蔵することにより、触媒担体が脱離するように形成されている。SOトラップ触媒14から脱離した脱離粒子は、パティキュレートフィルタ16に捕集される。このときに、脱離粒子に含まれる触媒担体等は、SOを保持している。
 本実施の形態における内燃機関の排気浄化装置は、パティキュレートフィルタ16に捕集された脱離粒子が保持するSOを放出させるSO放出制御を行なう。パティキュレートフィルタ16に捕集された脱離粒子が、SOを放出することによりNOの保持が可能になる。このように、本実施の形態においては、パティキュレートフィルタ16に捕集された脱離粒子をNOの保持に用いる。
 図24に、本実施の形態における第1の運転制御のタイムチャートを示す。第1の運転制御は、パティキュレートフィルタに捕集された脱離粒子に対してSO放出制御を行なっている。脱離粒子が保持するSOを放出させるSO放出制御を行う場合には、予め脱離粒子の温度がSOの放出が可能な温度以上になるまで昇温する。脱離粒子の温度をSO放出が可能な温度以上に維持しながら、パティキュレートフィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにする。この制御により、脱離粒子からSOを放出させることができる。
 本実施の形態の第1の運転制御においては、SOトラップ触媒に含まれる触媒担体の全てが脱離した後に、パティキュレートフィルタに捕集されている脱離粒子に対してSO放出制御を行っている。時刻tにおいて、SOトラップ触媒に含まれる全ての触媒担体が脱離して、パティキュレートフィルタに捕集されている。時刻tから時刻tまでは、脱離粒子の温度を上昇させる昇温制御を行っている。
 本実施の形態の昇温制御においては、燃焼室にて補助噴射としてのアフター噴射を行なうことにより、排気ガスの温度を上昇させている。また、主噴射を遅角させることにより、排気ガスの温度を上昇させている(図22参照)。時刻tにおいてパティキュレートフィルタの温度がSOを放出させるための目標温度に到達している。SOを放出させるための目標温度は、SOの放出が可能な温度以上に設定されている。
 時刻tから時刻tまでは、パティキュレートフィルタに捕集されている脱離粒子に対してSO放出制御を行なう。時刻tから時刻tまでの期間においても、排気ガスを昇温した状態を維持することにより、パティキュレートフィルタの床温を目標温度以上に維持する。パティキュレートフィルタに捕集されている脱離粒子の温度をSO放出可能な温度以上に維持することができる。
 SO放出制御においては、パティキュレートフィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにする。本実施の形態においては、燃料添加弁60から燃料を供給することにより、パティキュレートフィルタに流入する排気ガスの空燃比をリッチにしている。SO放出制御は、パティキュレートフィルタに捕集されている脱離粒子の量に応じて運転条件を選定することが好ましい。
 本実施の形態の第1の運転制御においては、SOトラップ触媒に含まれていた全ての脱離粒子に対して、SO放出制御を行っている。SOトラップ触媒に含まれていた全ての脱離粒子の量は既知である。このため、予め定められた運転条件で、SO放出制御を行っている。すなわち、予め定められた空燃比、時間および温度等の条件にてSO放出制御を行っている。
 脱離粒子に対するSO放出制御を行うことにより、パティキュレートフィルタに捕集されている脱離粒子からSOを放出させることができる。すなわち、脱離粒子に含まれている触媒担体等に保持されているSOを放出させることができる。脱離粒子のSO保持量が減少する。本実施の形態においては、脱離粒子のSO保持量がほぼ零になるまで、SO放出制御を行っている。
 脱離粒子からSOを放出させることにより、脱離粒子はNOの保持が可能になる。脱離粒子をNO吸蔵還元触媒として用いることができる。すなわち、脱離粒子は、排気ガスの空燃比がリーンのときにはNOを保持し、排気ガスの空燃比が理論空燃比またはリッチのときには保持したNOを放出させると共にNに還元することができる。
 ところで、本実施の形態におけるSOトラップ触媒のSO吸収剤には、カリウムKが含まれている。また、SO吸収剤には、カリウムKの他に、リチウムLiおよびマグネシウムMgが含まれている。カリウムは、SOをSO吸収剤に吸蔵するには好適である。しかしながら、カリウムは、塩基性が強いために白金の酸化作用を相殺してしまう。このため、NOの酸化が必要なNO吸蔵還元触媒においては、NOの酸化能力が不十分になる場合がある。
 本実施の形態においては、脱離粒子のSO吸収剤からカリウムを放出させるカリウム放出制御を行う。カリウム放出制御においては、脱離粒子が捕集されているパティキュレートフィルタの温度をカリウムが飛散する温度以上に昇温する。脱離粒子の温度を、カリウムの沸点以上に昇温することによりカリウムを飛散させることができる。カリウムを放出するための目標温度は、カリウムの放出が可能な温度以上に設定することができる。ここで、カリウムの沸点は774℃であるため、たとえば、カリウムを放出させる目標温度を略800℃に設定することができる。
 なお、カリウムが硝酸塩の形態(硝酸カリウム)で含まれる場合がある。硝酸カリウムの沸点が400℃程度であるため、カリウムを放出させる温度以上に昇温することにより、同時に硝酸カリウムを放出させることができる。
 図24を参照して、本実施の形態においては、SO放出制御に続いてカリウム放出制御を行なう。時刻tから時刻tまでは、昇温制御を行なっている。本実施の形態においては、燃焼室にて燃焼させる燃料の量を増加させている。アフター噴射の噴射量を増加させている。時刻tにおいて、パティキュレートフィルタの床温が、カリウムを放出するための目標温度に到達している。脱離粒子の温度は、カリウムの放出が可能な温度に達している。
 時刻tから時刻tまで、カリウムが放出する温度以上にパティキュレートフィルタの温度を維持することにより、SO吸収剤に含まれているカリウムを飛散させることができる。SO吸収剤のカリウムの含有率は低下する。カリウム放出制御を行うときには、脱離粒子の量に基づいて運転条件を選定することが好ましい。たとえば、脱離粒子の量に基づいて、カリウム放出制御の時間を定めることが好ましい。本実施の形態におけるカリウム放出制御は、予め定められた時間で行なわれている。また、本実施の形態においては、カリウムの含有率がほぼ零になるまでカリウム放出制御を行っている。
 ここで、本実施の形態におけるSOトラップ触媒のSO吸収剤は、カリウムの他にも、バリウム、リチウムおよびマグネシウムを含んでいる。これらのカリウム以外の成分は、脱離粒子に担持されているSO吸収剤からカリウムを除去した際に、高いNO浄化性能を発揮できる組成であることが好ましい。例えば、SO吸収剤におけるそれぞれの成分は、リチウムの含有率よりもバリウムの含有率が高く、マグネシウムの含有率よりもバリウムの含有率が高いことが好ましい。すなわち、SOトラップ触媒におけるSO吸収剤に含まれる成分は、次式の関係を有することが好ましい。
 K>Ba>Li,Mg …(2)
 上記の式(2)の組成を有するSO吸収剤を採用することにより、カリウムを除去した後において、パティキュレートフィルタに捕集されている脱離粒子をNO吸蔵還元触媒として用いる場合に、高いNO浄化率を発揮することができる。更に、バリウム、リチウムおよびマグネシウムの組成は、高いNO浄化率を発揮する様に調整されていることが好ましい。
 カリウム放出制御においては、バリウム、リチウムおよびマグネシウム等のカリウム以外の成分が飛散しないように、粒子状物質の温度をカリウム以外の成分の沸点未満に保つことが好ましい。ここで、バリウムの沸点は、1870℃であり、リチウムの沸点は、1340℃であり、マグネシウムの沸点は、1090℃である。これらのバリウム等の沸点は、通常の内燃機関の運転を行なえる最高温度よりも高いために、カリウム放出制御においてカリウムのみを放出させることができる。
 本実施の形態においては、SO吸収剤に含まれる全てのカリウムを除去しているが、この形態に限られず、カリウムの一部を除去する制御を行なっても構わない。または、カリウム放出制御を行なわなくても、パティキュレートフィルタに捕集されている脱離粒子をNO吸蔵還元触媒として用いることができる。時刻tにおいてカリウム放出制御を終了し、時刻t以降は、通常の運転を行なっている。
 本実施の形態の第1の運転制御においては、SOトラップ触媒に含まれる触媒担体の全部が脱離した後に、パティキュレートフィルタに捕集されている脱離粒子に対してSO放出制御を行なっているが、この形態に限られず、SOトラップ触媒に含まれる触媒担体の一部が脱離したときに、パティキュレートフィルタに捕集されている脱離粒子に対してSO放出制御を行なっても構わない。この場合には、パティキュレートフィルタに捕集されている脱離粒子の量に応じて、SO放出制御の運転条件を選定することが好ましい。
 パティキュレートフィルタに捕集されている脱離粒子の量は、SOトラップ触媒におけるコート層の厚さから推定することができる。または、SOトラップ触媒における積算SO保持量から推定することができる。たとえば、コート層の厚さまたは積算SO保持量を関数にした脱離粒子の量を、電子制御ユニットに記憶させておくことができる。推定されたコート層の厚さまたは積算SO保持量に基づいて、脱離粒子の量を推定することができる。推定された脱離粒子の量に基づいて、SO放出制御の運転条件を選定することができる。たとえば、脱離粒子の量が多くなるほど、SO放出制御を行う時間を長くする制御を行うことができる。この制御により、SO放出制御で消費する燃料の量を最適化することができる。たとえば、過剰な燃料消費を抑制することができる。
 また、脱離粒子のSO放出制御やカリウム放出制御は、パティキュレートフィルタの再生制御と連続して行なうことができる。パティキュレートフィルタの再生制御においては粒子状物質を燃焼させるために、パティキュレートフィルタの床温を例えば600℃以上に上昇させる。排気ガスの空燃比をリーンに維持することにより、粒子状物質を燃焼させることができる。このパティキュレートフィルタの再生制御に続けてSO放出制御を行なうことができる。例えば、パティキュレートフィルタの温度を600℃以上に維持する。この状態でパティキュレートフィルタに流入する排気ガスの空燃比をリッチにすることにより、SOを放出させることができる。さらに、パティキュレートフィルタの温度を上昇させることにより、カリウム放出制御を行うことができる。
 本実施の形態においては、SO放出制御とカリウム放出制御とを分離して行なっているが、この形態に限られず、SO放出制御とカリウム放出制御とを同時に行なっても構わない。例えば、パティキュレートフィルタの床温をカリウムの放出が可能な温度以上に昇温する。この状態で、排気ガスの空燃比を理論空燃比またはリッチにすることにより、カリウムを除去すると共にSOを放出させることができる。
 次に、パティキュレートフィルタに捕集された脱離粒子に対してSO放出制御を行った後の運転制御について説明する。パティキュレートフィルタに捕集された脱離粒子は、NO吸蔵還元触媒の機能を有するため、本実施の形態における排気浄化装置は、NO吸蔵還元触媒が2個直列に接続されている排気浄化装置と同等になる。
 図25は、本実施の形態における第2の運転制御のタイムチャートである。第2の運転制御は、パティキュレートフィルタに捕集された脱離粒子に対してSO放出制御を行った後の運転制御である。機関本体が駆動することにより燃焼室からNOが放出され、上流側のNO吸蔵還元触媒17とパティキュレートフィルタ16に捕集されている脱離粒子とにNOが保持される。このため、所定の時期にNO放出制御を行う。
 本実施の形態においては、時刻tまでは上流側のNO吸蔵還元触媒17においてNOが保持される。時刻tにおいて、NO吸蔵還元触媒17が飽和している。すなわちNO吸蔵還元触媒17のNO保持可能量がほぼ零になっている。時刻t以降では、機関本体1から排出されるNOは、NO吸蔵還元触媒17を通過して、パティキュレートフィルタ16に流入する。排気ガスに含まれるNOは、パティキュレートフィルタ16に捕集されている脱離粒子に保持される。このように、時刻tから時刻tまでは、パティキュレートフィルタ16に捕集されている脱離粒子によりNOの除去を行なっている。時刻tにおいて、脱離粒子のNO保持量が許容値に達している。
 パティキュレートフィルタ16に捕集されている脱離粒子のNO保持量の許容値は、脱離粒子の量に基づいて定めることが好ましい。脱離粒子の量が多いほど、NO保持量の許容値を大きくすることができる。たとえば、脱離粒子の量を関数にするNO保持量の許容値を電子制御ユニットに記憶させておく。推定されるSOトラップ触媒の積算SO保持量等から脱離粒子の量を推定する。推定された脱離粒子の量に基づいて、NO保持量の許容値を定めることができる。なお、脱離粒子のNO保持量の許容値は、脱離粒子の飽和NO保持量よりも小さく設定されることが好ましい。
 ここで、NO吸蔵還元触媒および脱離粒子のNO保持量の算出方法について例示する。
 図26に、本実施の形態における単位時間当たりに機関本体から排出されるNO量のマップを示す。機関回転数Nと燃焼室2に噴射する燃料の噴射量TAQとを関数にする単位時間あたりのNOの排出量NOXAのマップを予め作成する。このマップを、たとえば、電子制御ユニット30のROM32に記憶させておく。
 図26に示すマップにより、単位時間当りに機関本体から排出されるNO量、すなわち、NO吸蔵還元触媒17に流入するNO量を算出することができる。単位時間当りの流入するNO量を積算することにより、任意の時刻におけるNO吸蔵還元触媒17に流入したNO量を算出することができる。
 図25を参照して、本実施の形態においてはNO吸蔵還元触媒17が飽和し、更に、パティキュレートフィルタに捕集されている脱離粒子のNO保持量が許容値に達するまで、NOの保持を継続する。NO吸蔵還元触媒17に流入するNOの積算量が、NO吸蔵還元触媒17の飽和量と脱離粒子の許容値とを加算した量に達するまで、NOの保持を継続する。パティキュレートフィルタに捕集されている脱離粒子のNO保持量が、許容値に達する時刻tを検出することができる。
 次に、時刻tから時刻tまでの期間においては、NO吸蔵還元触媒17およびパティキュレートフィルタに捕集されている脱離粒子に対してNO放出制御を行なう。本実施の形態においては、NO吸蔵還元触媒17と脱離粒子とに対して同時にNO放出制御を行なっている。
 本実施の形態のNO吸蔵還元触媒17に対するNO放出制御においては、燃焼室2にて補助噴射としてのポスト噴射を行なうことにより、機関本体から排出される排気ガスの空燃比をリッチにしている。NO吸蔵還元触媒17に流入する排気ガスの空燃比をリッチにしている。
 図27に、機関本体から排出される排気ガスの空燃比を理論空燃比またはリッチにするときの噴射パターンを示す。噴射パターンDは、主噴射FMの後にポスト噴射FPOを行なっている。ポスト噴射FPOは、燃焼室2において燃料が燃焼する時期の後に行われる。ポスト噴射FPOは、燃焼室において燃料が燃焼しない噴射である。ポスト噴射FPOは、アフター噴射と同様に補助噴射である。ポスト噴射FPOは、例えば、圧縮上死点後のクランク角が略90°から略120°の範囲内において行われる。燃焼室において、ポスト噴射FPOを行うことによりNO吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比またはリッチにすることができる。
 図23を参照して、脱離粒子に対するNO放出制御においては、燃料添加弁60から燃料を供給することにより、パティキュレートフィルタ16に流入する排気ガスの空燃比を理論空燃比またはリッチにしている。図25に示す例では、パティキュレートフィルタに流入する排気ガスの空燃比をリッチにしている。脱離粒子に対するNO放出制御においては、脱離粒子の量、または脱離粒子のNO保持量の許容値に応じて、NO放出制御の運転条件を選定することが好ましい。この制御により、NO放出制御における燃料消費量を最適化することができる。たとえば、脱離粒子の量が多いほど、燃料添加弁から供給する燃料の総量を多くすることができる。
 NO吸蔵還元触媒17に対してNO放出制御を行なうことにより、NO吸蔵還元触媒に保持されているNOを放出させることができる。パティキュレートフィルタに捕集されている脱離粒子に対してNO放出制御を行うことにより、脱離粒子に保持されているNOを放出させることができる。放出されたNOをNに還元することができる。
 図25を参照して、時刻t以降では、同様の運転を繰り返している。時刻tから時刻tまでは、NO吸蔵還元触媒によりNOを保持している。時刻tから時刻tまでは、パティキュレートフィルタに捕集されている脱離粒子によりNOを保持している。時刻tから時刻tまでは、NO放出制御を行なっている。時刻t以降においては、同様の運転制御を繰り返している。
 本実施の形態においては、上流側のNO吸蔵還元触媒17に対するNO放出制御と、下流側のパティキュレートフィルタに捕集されている脱離粒子に対するNO放出制御とを同時に行なっている。この制御を行なうことにより、NO吸蔵還元触媒から流出する排気ガスに含まれる未燃燃料または一酸化炭素などの還元剤を用いて、さらに、脱離粒子のNOの放出を行なうことができる。この結果、NO放出制御のために消費される燃料の量を少なくすることができる。
 NO放出制御においては、上流側のNO吸蔵還元触媒17に対するNO放出制御と、下流のパティキュレートフィルタに捕集されている脱離粒子に対するNO放出制御とを個別に行なっても構わない。
 本実施の形態においては、燃料添加弁から燃料を供給することにより、パティキュレートフィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにしているが、この形態に限られず、任意の装置によりパティキュレートフィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにすることができる。たとえば、燃料添加弁を用いずに、燃焼室における燃焼噴射パターンの変更により、機関本体から流出する排気ガスの空燃比を理論空燃比またはリッチした状態を継続する。上流側のNO吸蔵還元触媒のNO放出制御の後に、パティキュレートフィルタに捕集されている脱離粒子のNO放出制御を行うことができる。
 本実施の形態においては、脱離粒子をNO吸蔵還元触媒として用いている。このため、SOトラップ触媒の触媒担体に担持されている触媒金属としては、酸化力の強い金属が配置されていることが好ましい。例えば、SOトラップ触媒の触媒金属としては、貴金属が担持されていることが好ましい。この構成により、パティキュレートフィルタに捕集された脱離粒子が、NOの酸化をより確実に行なうことができる。パティキュレートフィルタに捕集された脱離粒子が高いNO浄化率を達成することができる。
 また、第2の運転制御は、SOトラップ触媒に含まれる触媒担体の全部が脱離したときの他に、SOトラップ触媒に含まれる触媒担体の一部が脱離したときに行なうことができる。
 図28に、本実施の形態における第3の運転制御のタイムチャートを示す。第3の運転制御では、時刻tにおいて、SOトラップ触媒の全ての触媒担体が脱離している。時刻t、時刻t、時刻tおよび時刻tにおいては、パティキュレートフィルタにおける粒子状物質の堆積量が許容値に到達して、パティキュレートフィルタの再生を行なっている。パティキュレートフィルタの再生時期については、前後差圧により定めることができる。パティキュレートフィルタの再生制御に続けて、さらにパティキュレートフィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにし、パティキュレートフィルタに捕集されている脱離粒子に対してSO放出制御を行なっている。
 時刻tまでは、パティキュレートフィルタに捕集されている脱離粒子のSO保持量が増加する。時刻tにおいてSO放出制御を行なうことにより、SO保持量がほぼ零になる。この様に本実施の形態においては、パティキュレートフィルタの再生制御を行なうごとに、脱離粒子に対するSO放出制御を行なっている。時刻t、時刻tおよび時刻tにおいても、同様の制御を行なっている。
 パティキュレートフィルタの再生制御と、脱離粒子のSO放出制御とを連続して行なうことにより、パティキュレートフィルタを昇温するための燃料の消費量を抑制することができる。また、大気中にSOを放出する場合には、臭い等の問題のために、SOが低濃度で排出されることが好ましい。本実施の形態においては、パティキュレートフィルタの再生制御を行うときには、脱離粒子に保持されているSO量は少量である。このために、薄い濃度でSOを大気中に放出することができる。
 時刻tにおいて、SOトラップ触媒の触媒担体のほぼ全てが脱離している。時刻tにおいて、SOトラップ触媒のSO保持可能量が、ほぼ零になっている。すなわち、SOトラップ触媒の積算SO保持量が飽和SO保持量に達している。
 本実施の形態においては、SOトラップ触媒が飽和した後の時刻tにおいても、パティキュレートフィルタの再生制御と共に脱離粒子のSO放出制御を行なっている。時刻tにおいてSO放出制御を行うことにより、パティキュレートフィルタに捕集された脱離粒子のSO保持量は、ほぼ零になっている。パティキュレートフィルタに捕集された脱離粒子のSO保持可能量は、時刻tまで増加する。
 ところで、時刻t以降においては、排気ガスに含まれるSO、即ちSOは、NO吸蔵還元触媒17に流入する。NO吸蔵還元触媒17に硫黄被毒が発現する。硫黄被毒を回復するためには、脱離粒子と同様のSO放出制御を行なう。SO放出制御においては、NO吸蔵還元触媒の温度をSO放出が可能な温度まで上昇させる。この状態でNO吸蔵還元触媒に流入する排気ガスの空燃比をリッチまたは理論空燃比にする。SO放出制御を行なうことにより、NO吸蔵還元触媒からSOを放出させることができる。
 時刻t以降では、NO吸蔵還元触媒17にSOが保持されるため、NO吸蔵還元触媒のSO保持量が増加する。時刻tにおいて、NO吸蔵還元触媒17のSO保持量が予め定められた許容値に到達している。時刻tにおいてNO吸蔵還元触媒17に対するSO放出制御を行っている。NO吸蔵還元触媒17からSOが放出される。放出されたSOは、NO吸蔵還元触媒17の下流に配置されているパティキュレートフィルタ16に捕集された脱離粒子に保持される。脱離粒子は、SO保持量が増加し、SO保持可能量が減少する。
 図29に、NO吸蔵還元触媒の運転領域を説明するグラフを示す。横軸がNO吸蔵還元触媒の床温であり、縦軸がNO吸蔵還元触媒に流入する排気ガスの空燃比である。運転可能領域の中にSO放出領域が画定されている。矢印205に示すように、排気ガスの空燃比が小さくなるほど、すなわち、深いリッチになるほどSOが高濃度で放出される。また、NO吸蔵還元触媒の床温が高いほど高濃度でSOが放出される。
 ところで、SOが大気中に放出される場合には、低濃度で放出されることが好ましい。従来の技術におけるNO吸蔵還元触媒のSO放出制御では、低濃度でSOを放出するためにSOが徐々に放出される状態を維持していた。たとえば、排気ガスの空燃比が低くなり過ぎないように制御されていた。また、NO吸蔵還元触媒の床温が高くなりすぎないように制御されていた。これに対して、本実施の形態においては、NO吸蔵還元触媒から放出されるSOを、パティキュレートフィルタに捕集されている脱離粒子にて保持することができる。このため、NO吸蔵還元触媒から高濃度でSOを放出することができる。
 従来の技術のSO放出制御においては、NO吸蔵還元触媒に流入する排気ガスの空燃比は、たとえば、14以上14.5以下の範囲内であった。これに対して、本実施の形態においては、排気ガスの空燃比を14未満にすることができる。さらに、本実施の形態においては、NO吸蔵還元触媒に流入する排気ガスの温度を、排気浄化装置の構成部品が損傷しない範囲内で高くすることができる。
 このように、NO吸蔵還元触媒のSO放出制御において、高濃度のSOを放出させることにより、効率よくSOを放出させることができる。SO放出制御を短時間で行なうことができる。または、多くのSOを放出させることができる。この結果、SO放出制御を行なうために消費される燃料の量を少なくすることができる。
 NO吸蔵還元触媒に対するSO放出制御を行なうときの排気ガスの空燃比およびNO吸蔵還元触媒の温度は、パティキュレートフィルタに捕集されている脱離粒子の量に基づいて定めることが好ましい。脱離粒子の量が多いほど、高濃度のSOをNO吸蔵還元触媒から排出することができる。この制御により、効率よくSOを放出させることができる。たとえば、パティキュレートフィルタに捕集されている脱離粒子の量が多いほど、NO吸蔵還元触媒に流入する排気ガスの空燃比を小さくすることができる。また、パティキュレートフィルタに捕集されている脱離粒子の量が多いほど、NO吸蔵還元触媒の温度を高くすることができる。
 本実施の形態における第3の運転制御においては、NO吸蔵還元触媒17のSO放出制御の時に、パティキュレートフィルタに捕集されている脱離粒子にSOが捕獲されることが好ましい。すなわち、脱離粒子からSOが放出されない状態であることが好ましい。このため、SOを放出させるためにNO吸蔵還元触媒17を昇温したときに、脱離粒子の温度がSOの放出が可能な温度未満に維持されることが好ましい。たとえば、パティキュレートフィルタは、NO吸蔵還元触媒から十分に離して配置されることが好ましい。
 または、NO吸蔵還元触媒に流入する排気ガスの空燃比が理論空燃比またはリッチのときに、パティキュレートに流入する排気ガスの空燃比がリーンであることが好ましい。たとえば、NO吸蔵還元触媒とパティキュレートフィルタとの間に、空気を導入するための空燃比調整弁が配置されていることが好ましい。NO吸蔵還元触媒のSO放出制御のときに、パティキュレートフィルタの上流側の機関排気通路に空気を導入することにより、パティキュレートフィルタに流入する排気ガスの空燃比をリーンにすることができる。
 図28を参照して、時刻t以降においても、NO吸蔵還元触媒のSO保持量が予め定められた許容値に達するごとに、同様のSO放出制御を行なうことができる。図28に示す例では、時刻tにおいて、SO放出制御を行っている。放出されたSOは、パティキュレートフィルタに捕集された脱離粒子に保持される。脱離粒子のSO保持量が予め定められた許容値に達するまで、この制御が継続される。脱離粒子のSO保持量が予め定められた許容値に達した場合には、パティキュレートフィルタを取り換える。
 時刻t以降において、パティキュレートフィルタに捕集された粒子状物質を燃焼させる再生制御については継続している。一方で、時刻t以降においては、パティキュレートフィルタに捕集されている脱離粒子に対するSO放出制御を行っていない。しかしながら、時刻t以降において、パティキュレートフィルタに捕集されている脱離粒子に対するSO放出制御を行っても構わない。この場合には、脱離粒子から放出されるSO濃度が小さくなるように、パティキュレートフィルタに流入する排気ガスの空燃比およびパティキュレートフィルタの温度を調整することが好ましい。
 その他の構成、作用および効果については、実施の形態1または2に記載の内燃機関の排気浄化装置と同様であるので、ここでは説明を繰り返さない。
 上記の実施の形態は、適宜組み合わせることができる。上述のそれぞれの図において、同一または相当する部分には同一の符号を付している。なお、上記の実施の形態は例示であり発明を限定するものではない。また、実施の形態においては、請求の範囲に含まれる変更が意図されている。
Embodiment 1
With reference to FIG. 1 to FIG. 15, the exhaust gas purification apparatus for an internal combustion engine in the first embodiment will be described. The internal combustion engine in the present embodiment is arranged in a vehicle. In the present embodiment, a compression ignition type diesel engine attached to an automobile will be described as an example.
FIG. 1 shows an overall view of an internal combustion engine in the present embodiment. The internal combustion engine includes an engine body 1. The internal combustion engine also includes an exhaust purification device that purifies the exhaust gas. The engine body 1 includes a combustion chamber 2 as each cylinder, an electronically controlled fuel injection valve 3 for injecting fuel into each combustion chamber 2, an intake manifold 4, and an exhaust manifold 5.
The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 through the intake duct 6. An inlet of the compressor 7 a is connected to an air cleaner 9 via an intake air amount detector 8. A throttle valve 10 driven by a step motor is disposed in the intake duct 6. Further, a cooling device 11 for cooling the intake air flowing through the intake duct 6 is disposed in the middle of the intake duct 6. In the embodiment shown in FIG. 1, engine cooling water is guided to the cooling device 11. The intake air is cooled by the engine cooling water.
The exhaust manifold 5 is connected to the inlet of the turbine 7b of the exhaust turbocharger 7. The exhaust gas purification apparatus in the present embodiment is NOXAn occlusion reduction catalyst (NSR) 17 is provided. In addition, the exhaust emission control device in the present embodiment is provided with SO contained in the exhaust gas.XSO to removeXSO as holding materialX A trap catalyst 14 is provided. SOXThe trap catalyst 14 is NOXIt is disposed in the engine exhaust passage upstream of the storage reduction catalyst 17. SOXThe trap catalyst 14 is connected to the outlet of the turbine 7b through the exhaust pipe 12. NOXIn the engine exhaust passage downstream of the storage reduction catalyst 17, a particulate filter 16 is disposed as a collection filter that collects particulate matter in the exhaust gas. An oxidation catalyst 13 is disposed in the engine exhaust passage downstream of the particulate filter 16.
An EGR passage 18 is disposed between the exhaust manifold 5 and the intake manifold 4 in order to perform exhaust gas recirculation (EGR). An electronically controlled EGR control valve 19 is disposed in the EGR passage 18. A cooling device 20 for cooling the EGR gas flowing in the EGR passage 18 is disposed in the middle of the EGR passage 18. In the embodiment shown in FIG. 1, engine cooling water is introduced into the cooling device 20. The EGR gas is cooled by the engine cooling water.
Each fuel injection valve 3 is connected to a common rail 22 via a fuel supply pipe 21. The common rail 22 is connected to a fuel tank 24 via an electronically controlled variable discharge amount fuel pump 23. The fuel stored in the fuel tank 24 is supplied into the common rail 22 by the fuel pump 23. The fuel supplied into the common rail 22 is supplied to the fuel injection valve 3 through each fuel supply pipe 21.
The electronic control unit 30 is composed of a digital computer. The electronic control unit 30 in the present embodiment functions as a control device for the exhaust purification device. The electronic control unit 30 includes a ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36 that are connected to each other by a bidirectional bus 31.
ROM 32 is a read-only storage device. The ROM 32 stores in advance information such as a map necessary for control. The CPU 34 can perform arbitrary calculations and determinations. The RAM 33 is a readable / writable storage device. The RAM 33 can store information such as an operation history and can temporarily store calculation results.
NOXDownstream of the occlusion reduction catalyst 17 is NO.X A temperature sensor 26 for detecting the temperature of the storage reduction catalyst 17 is disposed. A temperature sensor 27 for detecting the temperature of the oxidation catalyst 13 or the particulate filter 16 is disposed downstream of the oxidation catalyst 13. A differential pressure sensor 28 for detecting the differential pressure across the particulate filter 16 is attached to the particulate filter 16. The output signals of the temperature sensors 26 and 27, the differential pressure sensor 28, and the intake air amount detector 8 are input to the input port 35 via the corresponding AD converters 37, respectively.
A load sensor 41 that generates an output voltage proportional to the amount of depression of the accelerator pedal 40 is connected to the accelerator pedal 40. The output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. From the output of the crank angle sensor 42, the rotational speed of the engine body 1 can be detected.
On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the EGR control valve 19, and the fuel pump 23 through corresponding drive circuits 38. Thus, the fuel injection valve 3 and the throttle valve 10 are controlled by the electronic control unit 30.
The oxidation catalyst 13 is a catalyst having oxidation ability. The oxidation catalyst 13 includes, for example, a base having a partition extending in the exhaust gas flow direction. The substrate is formed in a honeycomb structure, for example. The base is accommodated in, for example, a cylindrical case. On the surface of the substrate, a coat layer as a catalyst support layer is formed of, for example, porous oxide powder. The coat layer carries a catalyst metal formed of a noble metal such as platinum (Pt), rhodium (Rd), or palladium (Pd). Carbon monoxide or unburned hydrocarbons contained in the exhaust gas are oxidized by an oxidation catalyst and converted into water, carbon dioxide, or the like.
The particulate filter 16 is a filter that removes particulate matter (particulates) such as carbon fine particles and sulfate contained in the exhaust gas. The particulate filter has, for example, a honeycomb structure and a plurality of flow paths extending in the gas flow direction. In the plurality of channels, the channels whose downstream ends are sealed and the channels whose upstream ends are sealed are alternately formed. The partition walls of the flow path are formed of a porous material such as cordierite. Particulate matter is trapped when the exhaust gas passes through the partition wall.
The particulate matter is collected on the particulate filter 16 and oxidized. The particulate matter gradually deposited on the particulate filter 16 is oxidized and removed by raising the temperature to, for example, about 600 ° C. in an atmosphere containing excess air.
Figure 2 shows NOXThe expansion schematic sectional drawing of an occlusion reduction catalyst is shown. NOXThe storage reduction catalyst 17 is NO contained in the exhaust gas discharged from the engine body 1.XIs temporarily held and held NOXN when releasing2It is a catalyst that converts to The term “retention” in the present invention includes the meanings of “adsorption”, “absorption” and “occlusion”.
NOXThe storage reduction catalyst 17 has a catalyst carrier 45 made of, for example, aluminum oxide supported on a base. A catalyst metal 46 formed of a noble metal is dispersed and supported on the surface of the catalyst carrier 45. NO on the surface of the catalyst carrier 45XA layer of absorbent 47 is formed. As the catalyst metal 46, for example, platinum Pt is used. NOXThe components constituting the absorbent 47 were selected from, for example, alkali metals such as potassium K, sodium Na and cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y. At least one is used. In this embodiment, NOXBarium Ba is used as a component constituting the absorbent 47.
In the present invention, the ratio of the exhaust gas air and fuel (hydrocarbon) supplied to the engine intake passage, combustion chamber, or engine exhaust passage is referred to as the air-fuel ratio (A / F) of the exhaust gas. When the air-fuel ratio of the exhaust gas is lean (when larger than the stoichiometric air-fuel ratio), NO contained in the exhaust gas is oxidized on the catalyst metal 46 and NO.2become. NO2Is nitrate ion NO3 NO in the form ofXThe absorbent 47 is occluded. On the other hand, when the air-fuel ratio of the exhaust gas is rich or when it becomes the stoichiometric air-fuel ratio, NOXNitrate ion NO stored in absorbent 473 Is NO2NO in the form ofXReleased from the absorbent 47. NO releasedXN is due to unburned hydrocarbons or carbon monoxide contained in the exhaust gas.2Reduced to
Continue driving and NOXNO for storage reduction catalystXIs accumulated, NOXThe stoichiometric or rich air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is made NO.XNO from the storage reduction catalystXNO to releaseXRelease control can be performed.
For the above example, NOXHowever, it is not limited to this form.XThe storage reduction catalyst can be NO in any form.XIt does not matter if it holds. For example, NO on the catalyst carrierXMay be adsorbed.
Figure 3 shows the SO in this embodiment.XThe enlarged schematic sectional drawing of a trap catalyst is shown. SOXSO as holding materialXThe trap catalyst 14 is SO contained in the exhaust gas discharged from the engine body 1.XIt is formed to hold. SO in this embodimentXThe trap catalyst 14 is NOXThe structure is similar to that of the storage reduction catalyst 17.
SOXThe trap catalyst 14 has a catalyst carrier 48 supported on a substrate. A catalyst metal 49 is dispersed and supported on the surface of the catalyst carrier 48. The surface of the catalyst carrier 48 is SO.XAn absorbent 50 is disposed. The catalyst metal 49 in the present embodiment is made of noble metal platinum Pt. As the catalyst metal 49, a base metal such as iron Fe may be used in addition to a noble metal such as platinum or silver. SOXThe components constituting the absorbent 50 were selected from, for example, alkali metals such as potassium K, sodium Na, cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y. At least one is used. In the present embodiment, SOXBarium Ba is used as a component constituting the absorbent 50.
SO contained in exhaust gas2Is SOXWhen it flows into the trap catalyst 14, it is oxidized at the catalyst metal 49 and SO.3become. This SO3Is SOXAbsorbed in the absorbent 50, for example sulfate BaSO4Is generated. Thus, SOXThe trap catalyst 14 contains SO contained in the exhaust gas.XCan be captured and captured SOXSOXThe absorbent 50 can be occluded. SOXThe holding material is not limited to this form.XIf it can hold.
SO in this embodimentXThe trap catalyst 14 is SOXBesides NOXHold. SOXNO stored in absorbent 50XIs NOXNO of storage reduction catalyst 17XIt is released at the same time as the release control. That is, by making the air-fuel ratio of exhaust gas the stoichiometric air-fuel ratio or rich, SOXNO from trap catalystXIs released. NO releasedXIs N2Reduced to However, sulfate BaSO4Is stable, NOXEven with controlled release, SOXIs SOXIt remains on the trap catalyst. Thus, SOXThe trap catalyst is the SO gas from the exhaust gas.XCan be removed. SOXIf the use of the trap catalyst is continued, the SOXThe holding amount increases.
On the other hand, NOXSO for storage reduction catalystXNO flows, NOXSO as absorbentXIs retained. SOXIs retained as sulfate. SOXBecause of its stable sulfate, NOXEven with controlled release, SOXAccumulates without being released. For this reason, NOXSO for storage reduction catalystXNO flows, NOXThis results in sulfur poisoning that reduces the amount of carbon that can be retained.
SO in the engine exhaust passageXBy arranging the holding material, SO contained in the exhaust gasXCan be removed. NOXSO upstream of the storage reduction catalystXBy placing the holding material, NOXSO for storage reduction catalystXCan be prevented from flowing in. That is, NOXSulfur poisoning of the storage reduction catalyst can be suppressed. NOXNO with high storage reduction catalystXThe purification rate can be maintained.
Figure 4 shows the SO in this embodiment.XThe enlarged schematic sectional drawing of a trap catalyst is shown. On the surface of the substrate 52 formed of cordierite or the like, a coat layer 53 as a catalyst support layer is formed. The coat layer 53 includes a catalyst carrier 48. The catalyst carrier 48 in the present embodiment is formed in a particle shape. Catalytic metal 49 and SOXThe absorbent 50 is disposed on the surface of the catalyst carrier 48. The catalyst carriers 48 are connected to each other by a binding material 51. Further, the catalyst carrier 48 is bonded to the substrate 52 by a bonding material 51.
SO in this embodimentXIn the trap catalyst, the catalyst carrier 48 and the binding material 51 are formed of different materials. The catalyst carrier 48 is SOXIt is made of a substance that occludes and becomes sulfate. The binder 51 is made of SO.XIt is formed of a substance that is difficult to chemically change when compared with the catalyst carrier 48. In the present embodiment, the catalyst carrier 48 is made of magnesium oxide MgO. The binder 51 is made of silicon dioxide SiO.2It is formed by.
Figure 5 shows SOXThe 1st expansion schematic sectional drawing explaining detachment | desorption of the catalyst support | carrier of a trap catalyst is shown. SO contained in exhaust gasXIs SOXWhen flowing into the trap catalyst 14, the SOXIs SO supported on the catalyst carrier 48.XIt is held in the absorbent 50. Further, the SO in the present embodimentXIn the trap catalyst, the catalyst carrier 48 itself is SO.XHold. Catalyst carrier 48 is SOXBy maintaining the MgO as the oxide to the MgSO as the sulfate.4To be modified. The volume is expanded by the oxide catalyst carrier 48 becoming the sulfate catalyst carrier 48a. That is, the volume of the sulfate catalyst carrier 48 a is larger than the volume of the oxide catalyst carrier 48. On the other hand, the binder 51 is made of silicon dioxide SiO.2Therefore, it is not in the form of sulfate, but is in an oxide state. That is, the binder 51 is made of SO.XIt does not change even if it touches. For this reason, distortion occurs at the interface between the catalyst carrier 48 and the binder 51.
Figure 6 shows SOXThe 2nd expansion schematic sectional drawing explaining detachment | desorption of the catalyst support | carrier of a trap catalyst is shown. The catalyst carrier 48 becomes a sulfate in order from the surface of the coat layer 53. The catalyst carrier 48 a that has become a sulfate is released from the bond with the binder 51 due to distortion at the interface with the binder 51. The catalyst carrier 48 a that has become sulfate is detached from the coat layer 53 and scattered as indicated by an arrow 201. The catalyst carrier 48a is detached in the form of particles. In the present embodiment, each of the catalyst carriers 48a is detached individually. Catalyst support 48a in the form of sulfate and SOXThe absorbent 50 includes SO.XIs held. As described above, the catalyst carrier 48a is made of SO.XIs detached from the coat layer 53 while maintaining
In the present invention, at least a catalyst carrier is included, and SOXParticles desorbed from the coating layer of the trap catalyst are called desorbed particles. The desorbed particles in the present embodiment are catalyst carrier 48a, SOXAn absorbent 50 and catalytic metal 49 are included.
Referring to Fig. 1, SOXThe desorbed particles including the catalyst carrier 48a flowing out from the trap catalyst 14 are NO.XIt flows into the storage reduction catalyst 17. However, the SO retained on the desorbed particlesXIs in a stable state because it is already in the sulfate form. For this reason, the desorbed particles are NOXNO does not react with the NOx storage reduction catalyst 17XIt passes through the storage reduction catalyst 17. In particular, NOXNO of storage reduction catalyst 17XThe absorbent 47 can pass through without reacting. The desorbed particles are collected by the particulate filter 16. Like this, NOXThe storage reduction catalyst 17 has SOXCan be avoided.
Figure 7 shows SOXThe 3rd expansion schematic sectional drawing explaining detachment | desorption of the catalyst support | carrier of a trap catalyst is shown. SO of this embodimentXThe trap catalyst is SOXThe amount of the catalyst carrier 48 gradually decreases because the catalyst carrier 48a holding the catalyst is desorbed. SO contained in exhaust gasXThe removal of is continued until all the catalyst carriers 48 are scattered as desorbed particles.
FIG. 8 shows the SO of the first comparative example in the present embodiment.XThe enlarged schematic sectional drawing of a trap catalyst is shown. SO of the first comparative exampleXIn the trap catalyst, the catalyst carrier 48 and the binding material 51 are formed of the same material. For example, the binder 51 and the catalyst carrier 48 are made of silicon dioxide SiO.2It is formed with. SO of the first comparative exampleXFor trap catalysts, SOXEven if the catalyst flows in, the catalyst carrier 48 and the binding material 51 remain oxides instead of sulfates. SOXIs supported on the catalyst carrier 48.XOccluded by absorbent. The catalyst carrier 48 and the binder 51 are made of SO.XDoes not expand even if it flows in. For this reason, the coupling | bonding of the catalyst support 48 and the binder 51 is maintained.
SO of the first comparative exampleXContinue to use the trap catalyst, SOXSO of trap catalystXIf the holding amount increases, SOXThe basicity of the trap catalyst is weakened. SOXSO in trap catalystXThe holding power is reduced. For this reason, in a predetermined operation state, as indicated by an arrow 202, the SOXA sulfur component may flow out of the trap catalyst. For example, SOXWhen the exhaust gas flowing into the trap catalyst is in a high temperature state or the exhaust gas has a low air-fuel ratio, the SOXThe sulfur component held in the trap catalyst may flow out.
Fig. 9 shows the SO of the first comparative example.XSO in trap catalystXHolding amount and SOXSO released from the trap catalystXThe graph explaining the relationship with quantity is shown. FIG. 9 shows SO in a state where the temperature of the exhaust gas is high and the air-fuel ratio of the exhaust gas is low.XIndicates the amount released.
SOXImmediately after the start of use of the trap catalyst, SOXSO is low due to low holding amountXIs not released. SOXIf the holding amount is small, SOXSO released from the trap catalystXSO rather than quantityXSO retained in the trap catalystXBecause of the large amount, SOXSO from trap catalystXWill not leak. However, the use continues and SOXWhen the holding amount increases, SOXSO released from the trap catalystXThe amount is SOXSO retained in the trap catalystXMore than the amount. For this reason, SOXSO from trap catalystXLeaks. Like this, SOXSO in trap catalystXAs the holding amount increases, SOXThe amount of release increases.
Referring to Fig. 8, SOXThe sulfur component stored in the absorbent is H which is a sulfide.2SO which is S or oxide2SO in the formXReleased from the trap catalyst. H2The sulfur component released in the form of S is a stable SO in a short time.XTo change. SOXSO discharged from the trap catalystXIs NOXIt is held in the occlusion reduction catalyst 17. For this reason, NOXSulfur poisoning appears in the occlusion reduction catalyst 17.
Referring to FIG. 6, the SO in the present embodimentXThe trap catalyst is SOXThe catalyst carrier 48a holding the air scatters on the exhaust gas flow as desorbed particles. SOXThe catalyst carrier 48a holding theXExcluded from the trap catalyst. SOXOn the surface of the trap catalyst coating layer 53, SOXA catalyst carrier 48 having a small holding amount is arranged. Or SOXThe basicity of the entire trap catalyst can be maintained high.
For this purpose, SOXSO from trap catalystXCan be suppressed. Or high SOXSO2 from exhaust gas while maintaining removal efficiencyXCan be removed. Thus, the SO in the present embodimentXThe trap catalyst is used until the catalyst carrier is completely scattered, that is, SOXIntegrated SO of trap catalystXHigh SO until the holding amount reaches saturationXThe removal rate can be maintained.
In the present embodiment, the desorbed particles including the catalyst carrier desorbed from the coat layer are collected by the particulate filter 16. The differential pressure across the particulate filter 16 increases. The particulate filter 16 is a SOXEven when all the catalyst carriers 48 included in the trap catalyst 14 flow in, it is preferable that the front-rear differential pressure is less than a predetermined allowable value. When the differential pressure across the particulate filter 16 exceeds an allowable value, the performance may be significantly degraded or may not be usable. Therefore, in order to prevent the differential pressure across the particulate filter 16 from exceeding the allowable value, the SOXThe amount of the catalyst carrier 48 of the trap catalyst 14 or the capacity of the particulate filter 16 is preferably set.
Also, in this embodiment, SOXThe desorbed particles desorbed from the trap catalyst are collected by the particulate filter. However, the present invention is not limited to this configuration, and the particulate filter may not be disposed in the engine exhaust passage.
In the present embodiment, the catalyst carrier 48 and the binding material 51 are formed of different materials. The binder 51 is made of SO.XThe catalyst carrier 48 is formed of a material that does not change even if the catalyst flows in.XIt is made of a material that becomes sulfate by flowing in and expands in volume. With this configuration, SOXThe catalyst carrier 48 that holds can be removed.
When the catalyst carrier 48 and the binding material 51 are formed of the same material, SOXEven if the catalyst carrier 48 expands by occlusion of the catalyst, the catalyst carrier 48 and the binding material 51 expand to the same extent, so that the catalyst carrier 48 is hardly detached. Since the catalyst carrier 48 and the binder 51 are formed of different materials, the catalyst carrier 48 can be easily detached.
In the present embodiment, the catalyst carrier 48 becomes a sulfate and the binding material 51 remains an oxide and remains unchanged. However, the present invention is not limited to this, and at least one of the catalyst carrier 48 and the binding material 51 is exhausted. SO contained in gasXIt is only necessary that the volume of the catalyst carrier 48 and the binding material 51 is released by occlusion and reforming to sulfate to release the volume. For example, both the catalyst carrier 48 and the binding material 51 are sulfates, and the catalyst carrier 48 is formed so that the interface between the catalyst carrier 48 and the binding material 51 is distorted due to the difference in volume between them. It does not matter.
Table 1 shows physical property values of aluminum oxide, magnesium oxide, and silicon dioxide that can be used as the material of the catalyst carrier or the binder.
Figure JPOXMLDOC01-appb-T000001
From the molecular weight and density listed in Table 1 above, aluminum oxide Al2O3And aluminum sulfate Al2(SO4)3The volume per mole of can be calculated. Comparing the calculated volumes, it can be seen that the volume increases approximately five times by changing from aluminum oxide to aluminum sulfate. Magnesium oxide MgO to magnesium sulfate MgSO4It can be seen that the volume is increased approximately four times. Thus, the volume expands greatly.
The catalyst carrier can be easily detached by combining a material having a large volume such as magnesium oxide and a material that is not modified such as silicon dioxide. That is, one of the catalyst carrier and the binder is SOXIs formed of a material whose volume is changed by inflow, and the other is SO.XIt is preferable that the material is made of a material that does not change in volume even when inflow, or has a small volume change and a volume that is substantially unchanged. With this configuration, SOXIt is possible to more reliably desorb the catalyst carrier holding the.
As a material whose volume changes, a material having strong basicity can be exemplified. Material with strong basicity is SOXIt is easily modified into a sulfate by contacting with and changes its volume. Examples of such substances that can be easily modified to sulfate include magnesium oxide MgO and lanthanum oxide La.2O3Or Cerium dioxide CeO2Can be illustrated. Aluminum oxide Al2O3Is relatively easily modified to sulfate and changes in volume.
As a material having a small volume change, a material close to neutrality can be exemplified. A material close to neutrality is not easily modified to sulfate. Zirconium dioxide ZrO is a material that is difficult to be modified to sulfate.2Or titanium dioxide TiO2Can be illustrated. Titanium dioxide TiO2Is sulfided to titanium sulfate Ti (SO4)2However, since it easily returns to an oxide, it is substantially difficult to be modified into a sulfate. In addition, as a material having no volume change, silicon dioxide SiO2Can be illustrated.
By the way, the volume of the catalyst carrier is larger than the volume of the binder. By forming the catalyst support from a material that is easily modified to sulfate and forming the binder from a material that is difficult to be modified to sulfate or an invariable material, a large amount of SOXCan be held. As a result, SOXSaturated SO of trap catalystXThe holding amount can be increased.
When the catalyst carrier is formed from a material that is not easily modified to sulfate and the binder is formed from a material that is easily modified to sulfate, SOXMay enter through the gap between the catalyst carriers and be preferentially occluded by the binder inside the coat layer. Since the volume of the binder is small, a small amount of SO is required compared to the catalyst support.XThe volume expands. For this reason, the catalyst carrier may be detached from the inside of the coat layer. Catalyst carrier and SOXSO as absorbentXThe catalyst carrier may be desorbed in a state where the catalyst is not sufficiently occluded.
On the other hand, the catalyst carrier is formed from a material that is easily modified into a sulfate, and the binder is formed from a material that is difficult to be modified into a sulfate or an invariable material, thereby desorbing the catalyst carrier in order from the surface be able to. In addition, when the catalyst support is sulfate, the SO supported on the catalyst supportXSO for absorbentXIs occluded. For this purpose, SOXSO as absorbentXCan be desorbed in order from the catalyst carrier on which is retained.
The material used for the catalyst carrier and the binder is not limited to an oxide containing a single component, and may be a complex oxide (an oxide containing two or more kinds of metal elements). Furthermore, as a material used for the catalyst carrier and the binder, a plurality of oxides may be mixed and used.
By the way, SO in this embodimentXThe trap catalyst preferably has a smaller particle size of the catalyst carrier 48. For example, the average particle size of the catalyst support is preferably less than 5 μm.
FIG. 10 shows the SO of the second comparative example in this embodiment.XThe enlarged schematic sectional drawing of a trap catalyst is shown. In the second comparative example, a catalyst carrier 48 having a large average particle diameter is employed. The average particle diameter of the catalyst carrier 48 is larger than 5 μm, for example. When the particle size of the catalyst carrier 48 increases, the SOXBecomes easy to invade. For this reason, the catalyst carrier 48 or the binding material 51 disposed in the coat layer 53 has no SO.XIs retained. In the coat layer 53, the bond between the catalyst carrier 48 and the binder 51 is easily released. As a result, as shown by the arrow 203, the catalyst carrier 48 becomes a lump and is detached. At this time, SOXThe catalyst carrier 48 that is not sufficiently occluded is detached at the same time. Or SOXSO enough for absorbentXThe catalyst carrier 48 that is not occluded is desorbed. As a result, SOXSO of trap catalystXThe amount that can be held decreases.
Referring to FIGS. 6 and 7, on the other hand, by reducing the particle size of the catalyst carrier 48, the interval between the catalyst carriers 48 is reduced. Exhaust gas is prevented from entering through the gap between the catalyst carriers 48 and diffusing inside the coat layer 53. As a result, SOXIs preferentially held on the catalyst carrier 48 disposed on the surface of the coat layer 53. From the surface of the coat layer 53, the catalyst carrier 48a that has become sulfate in order can be detached. Also, SOXIt is possible to preferentially desorb the catalyst carrier 48a having sufficiently occluded.
Next, the SO in this embodimentXA method for producing the trap catalyst will be described. In particular, catalytic metal and SOXA method for supporting the catalyst carrier holding the absorbent will be described.
Fig. 11 shows the SO in this embodiment.XIt is explanatory drawing of the 1st process of the manufacturing method of a trap catalyst. First, the particulate catalyst carrier 48 constituting the coat layer is prepared. In the present embodiment, a catalyst carrier 48 having an average particle size of less than 5 μm is prepared. A catalyst metal is supported on the catalyst carrier 48 in advance. In the present embodiment, platinum Pt is supported. For example, platinum can be supported on the surface of the catalyst carrier 48 by immersing the catalyst carrier 48 in a platinum solution.
Catalyst support 48 supporting platinum and aluminum nitrate Al (NO3)3The solution 70 is put into the solvent 71. As the solvent 71, for example, water can be used. By stirring the solvent 71, a slurry in which the catalyst carrier 48 is uniformly dispersed in the solvent 71 can be formed.
Fig. 12 shows the SO in this embodiment.XExplanatory drawing of the 2nd process of the manufacturing method of a trap catalyst is shown. A slurry 71 a including the catalyst carrier 48 flows into the base 52. The slurry 71 a is disposed on the surface of the base 52. In the present embodiment, the base 52 is cordierite (2MgO · 2Al2O3・ 5SiO2). The substrate 52 in the present embodiment is formed in a honeycomb shape.
Next, the substrate 52 on which the slurry 71a is arranged on the surface of each cell is sintered. The aluminum nitrate aqueous solution 70 changes to the binder 51. The catalyst carriers 48 can be fixed to each other by the binder 51. Further, the catalyst carrier 48 can be fixed to the base 52.
Next, SO is applied to the catalyst carrier 48.XThe absorbent 50 is supported. In the present embodiment, SOXBarium is used as a component constituting the absorbent. The substrate 52 is immersed in an aqueous solution containing barium. The aqueous solution enters between the catalyst carriers 48 due to a capillary phenomenon or the like. Thereafter, SO is contained in the surface of the catalyst carrier 48 by evaporating water.XAn absorbent 50 can be formed. Thus, the coat layer 53 can be formed on the surface of the substrate.
SO in this embodimentXIn the method for producing a trap catalyst, a catalyst metal is supported on the catalyst carrier before the catalyst carrier is fixed to the substrate. As a method for supporting the catalyst metal, the catalyst metal can be supported on the surface of the catalyst carrier after the catalyst carrier is fixed to the substrate. For example, after disposing the catalyst carrier on the surface of the substrate, the catalyst metal can be supported on the surface of the catalyst carrier by immersing the substrate in a platinum solution.
[SO of this embodiment]XIn the trap catalyst, since the catalyst carrier is detached during the operation period, it is preferable that the catalyst metal is uniformly supported on the surface of the catalyst carrier even inside the coat layer. In particular, when the particle size of the catalyst carrier is reduced, the gap between the catalyst carriers is reduced. In the production method in which the catalyst metal is supported after the catalyst carrier is fixed to the substrate, the catalyst metal may not be sufficiently supported on the catalyst carrier disposed inside the coat layer. However, after the catalyst metal is supported on the catalyst support, the catalyst support is fixed to the substrate, so that the catalyst metal is sufficiently disposed even inside the coat layer. As a result, SOXSuitable SO from the start of use of the trap catalyst until all catalyst carriers are desorbedXCan be maintained.
SO in this embodimentXIn the trap catalyst, the SOXAlthough the absorbent is disposed, the present invention is not limited to this form, and the saturated SO of at least one of the catalyst support and the binder is used.XIf the holding amount is sufficient, SOXThe absorbent may not be arranged.
Next, SOXSO of trap catalystXThe estimation of the holdable amount will be described. In the present embodiment, SO thickness is estimated by estimating the thickness of the coat layer 53.XCalculate the holdable amount. The exhaust gas purification apparatus for an internal combustion engine in the present embodiment is an SOXA detection device for detecting the thickness of the coating layer of the trap catalyst is provided. Using the thickness of the coat layer, SOXSO of trap catalystXEstimate the amount that can be held. SOXThe amount that can be held is the SO at an arbitrary time.XIs equivalent to the total amount that can be held. SOXIntegrated SO of trap catalystXWhen the retention amount reaches the saturation amount, SOXThe holdable amount becomes zero.
Fig. 13 shows the SO in this embodiment.XThe schematic of the detection apparatus of the thickness of the coating layer of a trap catalyst is shown. The coat layer thickness detection device includes an electrode 61 arranged on the coat layer 53. The electrode 61 is formed in a plate shape. The electrode 61 is erected on the surface of the base 52 and penetrates the coat layer 53. In the example shown in FIG. 13, two electrodes 61 are arranged apart from each other. The two electrodes 61 are arranged such that the maximum area surfaces with the maximum area are parallel to each other. Each electrode 61 is connected to each other via an ammeter 64, a resistor 63, and an AC power supply 62.
The two plate-like electrodes 61 function as a capacitor. The capacitance C of the capacitor can be expressed by the following formula.
C = ε · S / d (1)
Here, the constant ε is a dielectric constant depending on the substance between the electrodes, the variable S is the area of the maximum area of the electrode 61, and the variable d is the distance between the electrodes 61. For example, aluminum oxide Al2O3The dielectric constant when the catalyst carrier 48 is filled between the electrodes 61 is larger than the dielectric constant when air is present between the electrodes 61.
When an AC voltage having a predetermined frequency is applied from the AC power supply 62, a current flows according to the capacitance C of the capacitor. By detecting the current flowing through the circuit by the ammeter 64, the reactance of the capacitor can be calculated, and further, the capacitance C of the capacitor can be calculated.
SOXBy continuing to use the trap catalyst, the thickness of the coat layer 53 gradually decreases. The dielectric constant ε of the capacitor gradually decreases. For this reason, the capacitance C of the capacitor gradually decreases. In the present embodiment, the thickness tc of the coat layer is estimated from the calculated capacitance C. The thickness tc of the coat layer with respect to the capacitance C of the capacitor is stored in the ROM 32 of the electronic control unit 30, for example. By calculating the capacitance C, the thickness tc of the coat layer can be estimated.
In addition, the detection method of an electrostatic capacitance is not restricted to said form, It can detect with arbitrary methods and arbitrary electric circuits. For example, the capacitance may be calculated by connecting a DC power source to a capacitor and measuring the charging time of the capacitor.
Figure 14 shows total SOXThe graph explaining the relationship between a holding amount and the thickness of a coat layer is shown. Integration SOXThe amount retained is the SO contained in the exhaust gas from the start of use to an arbitrary time.XSO withXIt is the total amount. SOXThe trap catalyst is integrated SOXRetention amount is saturated SOXSO until the holding amount is reachedXCan be maintained. Saturated SOXAccumulated SO at an arbitrary time from the holding amountXBy subtracting the holding amount, SOXThe holdable amount can be calculated.
Accumulated SO for coat layer thickness shown in FIG.XThe relationship of the holding amount is stored in the ROM 32 of the electronic control unit 30, for example. Using the estimated coat layer thickness,XThe holding amount can be estimated. In addition, SOXThe holdable amount can be calculated. Thus, SOXIntegrated SO of trap catalystXBy estimating the holding amount, SOXThe trap catalyst can be managed. For example, total SOXRetention amount is saturated SOXSO when the holding amount is reachedXWhen replacing the trap catalyst, SOXThe replacement time of the trap catalyst can be estimated. Or integrated SOXRetention amount is saturated SOXWhen the holding amount is reached, NO arranged downstreamXA sulfur poisoning recovery process for the storage reduction catalyst is required. Even in this case, the start time of the sulfur poisoning recovery process can be determined.
Fig. 15 shows the accumulated fuel consumption and accumulated SOXThe graph explaining the relationship with the holding | maintenance amount is shown. SOXIntegrated SO of trap catalystXBy estimating the retention amount, the content of the sulfur component contained in the fuel can be estimated. The accumulated fuel consumption is an accumulation of the amount of fuel used up to an arbitrary time. The accumulated fuel usage can be calculated, for example, by integrating the amount of fuel injected from the fuel injection valve. As the accumulated fuel consumption increases, the accumulated SOXIncreased retention. The content of the sulfur component contained in the fuel can be calculated from the slope of this graph.
By calculating the content of the sulfur component contained in the fuel, for example, the properties of the fuel, the type of fuel, and the like can be determined. The combustion pattern in the combustion chamber can be optimized according to the determined fuel properties and fuel type. Moreover, when the content rate of the sulfur component of the fuel is stored in advance in the electronic control unit 30 or the like, the content rate of the already stored sulfur component can be corrected.
In the example shown in FIG. 13, two electrodes serving as capacitors are arranged at one place on the substrate. However, the present invention is not limited to this configuration, and even if a coating layer thickness detecting device is arranged at a plurality of places. I do not care. For example, SOXIn the flow direction of the exhaust gas of the trap catalyst, a coating layer thickness detection device may be arranged at the upstream end and the downstream end. Exhaust gas is SOXSince the gas flows from the upstream end of the trap catalyst, the catalyst carrier is preferentially detached from the upstream end rather than the downstream end. That is, when the catalyst carrier is desorbed, a gradient is formed in which the thickness of the coat layer gradually increases toward the downstream side in the exhaust gas flow direction. Even in the case where such a gradient is formed, the gradient can be estimated by measuring the thicknesses of a plurality of coat layers in the flow direction of the exhaust gas. Accumulated SO more accuratelyXA holding amount or the like can be estimated.
The coating layer thickness detection device is not limited to the above-described form, and the coating layer thickness can be detected by an arbitrary device. For example, SOXA differential pressure sensor for detecting the differential pressure between the inlet and outlet of the trap catalyst is disposed. As the coat layer becomes thinner, SOXThe opening ratio of the trap catalyst increases and SOXThe pressure loss in the trap catalyst is reduced. When exhaust gas flow rate is high, SOXBy measuring the differential pressure between the upstream side and the downstream side of the trap catalyst, the thickness of the coat layer can be estimated. Or SOXThe thickness of the coat layer may be estimated by disposing a distance sensor or the like inside the trap catalyst cell and detecting the distance between the surfaces of the facing coat layers.
The thickness of the coat layer can be estimated at any time. For example, the thickness of the coat layer can be estimated for each predetermined travel distance. Alternatively, the thickness of the coat layer may be estimated continuously.
Embodiment 2
With reference to FIGS. 16 to 22, an exhaust gas purification apparatus for an internal combustion engine according to Embodiment 2 will be described.
Fig. 16 shows the SO in this embodiment.XThe enlarged schematic sectional drawing of a trap catalyst is shown. SOXSO as holding materialXSO containing trap catalyst in exhaust gasXAnd the catalyst carrier is detached from the coating layer in the same manner as in the first embodiment.
On the surface of the catalyst carrier 48, catalyst metal 49 and SOXAn absorbent 50 is supported. The catalyst carrier 48 is SOXIt is made of a material that expands when it is held. The catalyst carrier 48 in the present embodiment is made of MgO.
SO in this embodimentXThe trap catalyst includes auxiliary particles 55 interposed between the catalyst carriers 48. The auxiliary particles 55 are formed so that the average particle size is smaller than the average particle size of the catalyst carrier 48. In the present embodiment, catalyst metal 49 and SO are provided on the surfaces of the auxiliary particles 55.XAn absorbent 50 is supported. The binding material 51 binds the auxiliary particles 55 to each other. The binding material 51 binds the auxiliary particles 55 to the base body 52.
The auxiliary particles 55 and the binding material 51 in the present embodiment are formed of a material different from that of the catalyst carrier 48. The auxiliary particles 55 in the present embodiment are made of aluminum oxide Al2O3It is formed by. The binding material 51 in the present embodiment is formed of the same material as the auxiliary particles 55. That is, the binder 51 is made of aluminum oxide Al.2O3It is formed by.
SO in this embodimentXThe trap catalyst is the SO described in the first embodiment.XIn the trap catalyst manufacturing method, auxiliary particles 55 supporting catalyst metal are prepared in addition to the catalyst carrier 48 previously supporting the catalyst metal. The catalyst carrier 48 and the auxiliary particles 55 are combined with aluminum nitrate Al (NO3)3Mix with solution 70. It can manufacture by arrange | positioning the produced | generated slurry on the surface of a base | substrate, and then sintering (refer FIG. 11).
SO in this embodimentXIn the trap catalyst, the binding material 51 is preferentially bound to the auxiliary particles 55 over the catalyst carrier 48. The catalyst carrier 48 is supported by contacting the auxiliary particles 55. The catalyst carrier 48 is mechanically supported on the auxiliary particles 55.
FIG. 17 shows the SO in this embodiment.XTrap catalyst is SOXThe expanded schematic sectional view when holding is shown. SO in this embodimentXThe trap catalyst has a SOXAbsorbent 50 with SOXIs occluded. Further, the catalyst carrier 48 itself has SO.XIs occluded. The oxide catalyst carrier 48 is SOXIs occluded to the sulfate catalyst carrier 48a. The volume of the oxide catalyst carrier 48 expands when it becomes the sulfate catalyst carrier 48a. The auxiliary particles 55 are pressed against the catalyst carrier 48. The position of the auxiliary particle 55 moves. At this time, distortion occurs between the auxiliary particles 55 and the binder 51. As a result, the binding between the auxiliary particles 55 and the binding material 51 is released. The restriction of the catalyst carrier 48 a that has become sulfate is released, and the catalyst carrier 48 a is detached from the coat layer 53.
SO in this embodimentXIn the trap catalyst, auxiliary particles 55 smaller than the catalyst carrier 48 are interposed between the catalyst carriers 48. For this reason, SO contained in the exhaust gasXCan be prevented from entering the coat layer 53 through the gap between the catalyst carriers 48. SOXThe catalyst carrier 48 disposed on the surface of the coat layer 53 and the SO supported on the catalyst carrier 48XThe absorbent 50 is preferentially occluded. For this reason, the catalyst carrier 48 arranged on the surface of the coat layer 53 can be desorbed preferentially. It is placed inside the coat layer 53 and fully SO.XIt is possible to prevent the catalyst carrier 48 that does not hold the catalyst from being detached. Alternatively, it is possible to suppress the plurality of catalyst carriers 48 from being separated in a lump.
Since the auxiliary particles 55 and the binder 51 are formed of substantially the same material, the binder 51 can be preferentially bound to the auxiliary particles 55 over the catalyst carrier 48. Further, in the present embodiment, the binding material 51 is bound to the auxiliary particles 55, but the present invention is not limited to this configuration, and the binding material 51 may be bound to the catalyst carrier 48 together with the auxiliary particles 55.
The auxiliary particles 55 in the present embodiment have catalytic metal 49 and SO on the surface.XAlthough the absorbent 50 is supported, the present invention is not limited to this form.XThe absorbent may not be arranged. Or catalytic metal 49 and SOXOne of the absorbents 50 may be carried.
In this embodiment, the catalyst carrier, auxiliary particles, and binder are SOXHowever, the present invention is not limited to this configuration, and at least one member of the catalyst carrier, auxiliary particles, and binder is formed of a material that expands, and the other members are SO.XIt may be formed of an invariable material even if it is in contact with.
In this embodiment, when exhaust gas is being purified, SOXDesorption promotion control is performed to increase the temperature of the trap catalyst. By increasing the temperature, desorption of the catalyst support is promoted. The binder and auxiliary particles in the present embodiment are SOXIt has a decomposition temperature at which the sulfate produced by occlusion of is decomposed. Table 2 shows decomposition temperatures of substances used for the catalyst carrier, auxiliary particles, and binder in the present embodiment. Table 2 shows the decomposition temperatures of oxides and sulfates.
Figure JPOXMLDOC01-appb-T000002
From Table 2, aluminum oxide Al, which is the material of the binder and auxiliary particles2O3Sulfate Al produced from2(SO4)3The decomposition temperature of is approximately 770 ° C. In contrast, sulfate MgSO produced from MgO which is the material of the catalyst support4The decomposition temperature of is approximately 1100 ° C. In desorption promotion control, SOXControl is performed so that the temperature of the trap catalyst becomes equal to or higher than the decomposition temperature of the sulfate of the material of the binder and auxiliary particles. At this time, SOXIt is preferable to control so that the temperature of the trap catalyst is lower than the decomposition temperature of the sulfate of the catalyst carrier material. In the present embodiment, SOXThe temperature of the trap catalyst is about 770 ° C. or higher and lower than about 1100 ° C.XThe temperature of the exhaust gas flowing into the trap catalyst is raised.
By performing desorption promotion control, the catalyst carrier is not decomposed and the sulfate form is maintained. On the other hand, the binder and the sulfate of the auxiliary particles are decomposed into oxides. The binder and auxiliary particles shrink. That is, while the volume of the catalyst support is unchanged, the volume of the binder and auxiliary particles is reduced. At this time, stress acts on the auxiliary particles, and the strain between the auxiliary particles and the binder increases. As a result, it is possible to promote the release of the bond between the auxiliary particles and the binder, and to promote the desorption of the catalyst carrier.
FIG. 18 shows a flowchart of operation control in the present embodiment. The operation control shown in FIG. 18 can be repeatedly performed at predetermined time intervals.
In step 101, SOXSO in trap catalystXEstimate the amount retained. The exhaust purification apparatus in the present embodiment is configured to perform SO at an arbitrary time.XSO of trap catalystXA detection device capable of estimating the holding amount is provided. In this embodiment, SOXThe calculation of the holding amount is continuously performed during the operation of the internal combustion engine. In this embodiment, every time desorption promotion control is performed, SOXSO of trap catalystXThe holding amount is made zero.
Fig. 19 shows SO with engine speed and required torque as functions.XSO retained in the trap catalyst per unit timeXShows a map of quantities. By detecting the engine speed N and the required torque TQ, SOXSO retained in the trap catalystXThe quantity SOXZ can be determined. This map is stored in the ROM 32 of the electronic control unit 30, for example. The SO is maintained per unit time from this map at predetermined time intervals while continuing operation.XFind the amount. SO held per unit timeXBy multiplying the amount by a predetermined time, SOXThe holding amount can be calculated. Calculated SOXBy integrating the holding amount, SO at any timeXThe holding amount can be detected. SOXThe holding amount is stored in the RAM 33, for example. SOXSO stored in the trap catalystXThe holding amount detection device is not limited to this form, and the SOXAny device that can detect the holding amount can be employed.
Referring to FIG. 18, in step 102, the calculated SOXSO in trap catalystXIt is determined whether or not the holding amount is larger than a determination value for performing desorption promotion control. This determination value is predetermined. In the present embodiment, SOXSO retained in the trap catalystXDesorption promotion control is performed when the holding amount exceeds a predetermined determination value. The determination value includes a catalyst carrier disposed on the surface of the coat layer and an SO supported on the catalyst carrier disposed on the surface of the coat layer.XAlmost all of the absorbent is SOXSO when the state is maintainedXIt is preferable to employ a holding amount. SOXWhen the holding amount is equal to or smaller than the determination value, this control is terminated. SOXWhen the holding amount is larger than the determination value, the process proceeds to step 103.
Next, it is determined whether or not the amount of desorbed particles collected by the particulate filter 16 is larger than the determination value. SOXThe desorbed particles including the catalyst carrier desorbed from the trap catalyst 14 are collected by the particulate filter 16. When the amount of desorbed particles deposited on the particulate filter 16 increases, the differential pressure across the particulate filter 16 increases, and the performance may be significantly degraded or operation may become impossible. In the present embodiment, control for prohibiting desorption promotion control is performed when the amount of desorbed particles collected by the particulate filter becomes larger than a predetermined allowable value.
In step 103, the differential pressure across the particulate filter 16 is read. In the present embodiment, regeneration control for increasing the temperature of the particulate filter 16 and burning the particulate matter is performed. The differential pressure before and after the end of the regeneration control of the particulate filter 16 is stored in the electronic control unit 30. Referring to FIG. 1, the differential pressure sensor 28 can detect the differential pressure across the particulate filter 16.
In the present embodiment, the deposition amount of the desorbed particles is estimated based on the differential pressure across the particulate filter 16. However, the differential pressure across the particulate filter 16 also depends on the amount of particulate matter other than the desorbed particles collected by the particulate filter 16. For this reason, in the present embodiment, the front-rear differential pressure is detected immediately after the regeneration control is performed. In step 103, the differential pressure before and after the end of the nearest regeneration control is read.
Next, in step 104, it is determined whether or not the differential pressure across the particulate filter 16 is greater than a predetermined determination value. When the differential pressure across the particulate filter 16 is greater than the determination value, it can be determined that the amount of desorbed particles collected by the particulate filter is greater than the allowable value. If the differential pressure across the particulate filter 16 is greater than the determination value, this control is terminated. That is, desorption promotion control is prohibited. By performing this control, it is possible to prevent the purification performance of the particulate filter from significantly decreasing. Alternatively, it can be avoided that the differential pressure across the particulate filter exceeds the operable range and the internal combustion engine cannot be used.
The estimation of the amount of desorbed particles collected by the particulate filter is not limited to this form, and the amount of desorbed particles collected by the particulate filter can be estimated by any method. For example, as the amount of desorbed particles collected by the particulate filter, SOXAccumulate the amount of desorbed particles desorbed from the trap catalyst.XIt can be estimated from the holding amount.
In step 104, if the differential pressure across the particulate filter 16 is less than or equal to the determination value, the process proceeds to step 105. In step 105, desorption promotion control is performed.
FIG. 20 shows a time chart of the desorption promotion control in the present embodiment. Time t1Until then, normal operation is performed. Time t1To time t2Up to this point, desorption promotion control is performed. Time t2Thereafter, normal operation is performed. In the desorption promotion control, SOXThe temperature of the trap catalyst is raised. In the present embodiment, the SO pattern is changed by changing the injection pattern in the combustion chamber.XThe temperature of the exhaust gas flowing into the trap catalyst is raised. Here, an injection pattern for increasing the temperature of the exhaust gas discharged from the engine body will be described.
FIG. 21 shows a fuel injection pattern during normal operation of the internal combustion engine in the present embodiment. The injection pattern A is a fuel injection pattern during normal operation. During normal operation, the main injection FM is performed at a compression top dead center TDC. Main injection FM is performed at a crank angle of approximately 0 °. Further, in order to stabilize the combustion of the main injection FM, the pilot injection FP is performed before the main injection FM. The pilot injection FP is performed, for example, in a range where the crank angle is approximately 10 ° to approximately 40 ° before the compression top dead center TDC.
During normal operation, as shown in the injection pattern B, the pilot injection FP may not be performed and only the main injection FM may be performed. In this embodiment, an injection pattern in which pilot injection FP is performed will be described as an example. When operating with the injection pattern A or the injection pattern B in normal operation, the air-fuel ratio of the exhaust gas discharged from the engine body is lean.
FIG. 22 shows an injection pattern when the temperature of the exhaust gas discharged from the engine body is increased. In the injection pattern C, after the main injection FM, after injection FA as auxiliary injection is performed. The after injection FA is performed at a combustible time after the main injection. The after injection FA is performed, for example, in a range where the crank angle after compression top dead center is approximately 40 °. By performing after-injection FA, the afterburning period becomes longer, so the temperature of the exhaust gas discharged from the engine body can be raised.
Furthermore, in the injection pattern C, the injection timing of the main injection FM is delayed from the compression top dead center TDC. That is, the injection timing of the main injection FM is retarded. As the injection timing of the main injection FM is retarded, the injection timing of the pilot injection FP is also retarded. By delaying the injection timing of the main injection FM, the temperature of the exhaust gas can be raised. By increasing the temperature of the exhaust gas, the SO disposed in the engine exhaust passageXThe temperature of the trap catalyst can also be increased.
Referring to FIG. 20, time t1By raising the temperature of the exhaust gas fromXIncrease trap catalyst bed temperature. SOXThe SO is set so that the maximum temperature of the trap catalyst bed temperature is not less than the lower limit temperature and less than the upper limit temperature.XIncrease the temperature of the trap catalyst. As described above, in the present embodiment, SOXThe temperature is raised so that the maximum bed temperature of the trap catalyst is 770 ° C. or higher and lower than 1100 ° C.
In the present embodiment, when the desorption promotion control is performed, the catalyst carrier 48a is not decomposed but MgSO4The sulfate form of is maintained. On the other hand, the auxiliary particles 55 and the binder 51 are made of sulfate Al.2(SO4)3Decomposes into oxide Al2O3Return to. At this time, the auxiliary particles 55 and the binding material 51 contract, and the detachment of the catalyst carrier 48a is promoted. As the catalyst carrier 48a is detached, the SOXThe amount of catalyst support in the trap catalyst is reduced. SOXSO of trap catalystXThe holding amount decreases.
SO in this embodimentXIn the trap catalyst, the catalyst carrier, the auxiliary particles, and the binder are produced in the form of an oxide. The catalyst support, auxiliary particles and binder are SOXOccludes and becomes sulfate and expands. By performing the desorption promotion control and the auxiliary particles and the binder return to the original oxide form, the form is substantially the same as the form in which only the catalyst support is sulfated and expanded from the initial state. As a result, the auxiliary particles are pressed by the catalyst carrier, and the distortion increases between the auxiliary particles and the binder. The bond between the auxiliary particles and the binding material is released, and the detachment of the catalyst support can be promoted.
The desorption promotion control in this embodiment increases the temperature of the exhaust gas by increasing the amount of fuel combusted in the combustion chamber. By performing this control, the temperature of the exhaust gas can be rapidly increased, and desorption promotion control can be performed in a short time. The desorption promotion control is not limited to this form, but SOXAny device that raises the temperature of the trap catalyst can be employed.
Also, in the desorption promotion control, SOXYou may raise the temperature of a trap catalyst. For example, SOXWhen an oxidation catalyst is disposed upstream of the trap catalyst, when unburned fuel is supplied to the oxidation catalyst, reaction heat is generated during the oxidation reaction of the unburned fuel. This reaction heat can raise the temperature of the exhaust gas. SO by increasing the temperature of exhaust gasXThe temperature of the trap catalyst can be raised.
In this embodiment, MgO catalyst carrier and Al2O3Auxiliary particles and binders are selected. The material of the catalyst carrier, auxiliary particles, and binder when performing desorption promotion control is not limited to this form.XWhen the temperature of the trap catalyst rises, it is possible to select a material in which the temperature range in which the sulfate of the auxiliary carrier and the binder is decomposed without the decomposition of the sulfate of the catalyst carrier is determined.
For example, titanium dioxide TiO as a material for auxiliary particles and binder2Can be selected. Titanium sulfate Ti (SO4)2Is decomposed at about 600 ° C., the desorption of the catalyst carrier can be promoted by setting the temperature of the desorbed particles to 600 ° C. or higher in the desorption promotion control.
In addition, the decomposition temperature of sulfate depends on the air-fuel ratio of the exhaust gas. For example, in a reducing atmosphere, the decomposition temperature of sulfate decreases. Therefore, the decomposition temperature of sulfate is estimated according to the state of the exhaust gas, and SO is calculated based on this decomposition temperature.XIt is preferable to define the temperature range of the maximum temperature reached by the trap catalyst.
The desorption promotion control in this embodiment is performed by SOXSO retained in the trap catalystXThis is done each time the amount reaches the judgment value. The desorption promotion control is not limited to this mode. For example, the desorption promotion control may be performed for each predetermined travel distance or for each predetermined fuel injection amount.
Other configurations, operations, and effects are the same as those in the exhaust gas purification apparatus for an internal combustion engine in the first embodiment, and thus description thereof will not be repeated here.
Embodiment 3
With reference to FIGS. 23 to 29, an exhaust gas purification apparatus for an internal combustion engine according to Embodiment 3 will be described.
FIG. 23 is a schematic view of the internal combustion engine in the present embodiment. In the engine exhaust passage, SOXSO as holding materialXTrap catalyst 14 and NOXThe storage reduction catalyst 17 is arranged in this order. NOXA particulate filter 16 and an oxidation catalyst 13 are disposed in the engine exhaust passage downstream of the storage reduction catalyst 17. SO in this embodimentXThe trap catalyst consists of catalytic metal and SOXIt includes a catalyst carrier on which an absorbent is supported. SO in this embodimentXThe catalyst metal of the trap catalyst includes a noble metal. The catalyst metal in the present embodiment contains platinum Pt.
The exhaust gas purification apparatus for an internal combustion engine in the present embodiment includes a fuel addition valve 60 serving as a reducing agent supply device disposed on the upstream side of the particulate filter 16. The fuel addition valve 60 is formed so as to supply fuel as a reducing agent into the engine exhaust passage. The fuel addition valve 60 in the present embodiment is formed so as to inject the same fuel as that of the engine body 1. The fuel addition valve 60 is NOXA fuel is injected between the storage reduction catalyst 17 and the particulate filter 16.
SO in this embodimentXAs in the first or second embodiment, the trap catalyst 14 is made of SO.XBy storing the catalyst, the catalyst carrier is formed to be detached. SOXThe desorbed particles desorbed from the trap catalyst 14 are collected by the particulate filter 16. At this time, the catalyst carrier and the like contained in the desorbed particles are SOXHolding.
The exhaust gas purification apparatus for an internal combustion engine in the present embodiment is an SO that the desorbed particles collected by the particulate filter 16 hold.XSO to releaseXRelease control is performed. The desorbed particles collected by the particulate filter 16 become SOXNO by releasingXCan be retained. Thus, in the present embodiment, the desorbed particles collected by the particulate filter 16 are NO.XUsed for holding.
FIG. 24 shows a time chart of the first operation control in the present embodiment. The first operation control is to perform SO on the desorbed particles collected by the particulate filter.XRelease control is performed. SO retained by desorbed particlesXSO to releaseXWhen performing release control, the temperature of the desorbed particles is previously set to SO.XThe temperature is raised until the temperature is higher than the temperature at which the release of oxygen is possible. Set the temperature of the desorbed particles to SOXThe air-fuel ratio of the exhaust gas flowing into the particulate filter is made the stoichiometric air-fuel ratio or rich while maintaining the temperature above the temperature at which discharge is possible. By this control, SOXCan be released.
In the first operation control of the present embodiment, the SOXAfter all of the catalyst carrier contained in the trap catalyst has been desorbed, the SO is removed from the desorbed particles collected in the particulate filter.XControlled release. Time t0In SOXAll the catalyst carriers contained in the trap catalyst are desorbed and collected by the particulate filter. Time t0To time t1Up to this point, the temperature rise control for increasing the temperature of the desorbed particles is performed.
In the temperature increase control of the present embodiment, the temperature of the exhaust gas is raised by performing after injection as auxiliary injection in the combustion chamber. Further, the temperature of the exhaust gas is raised by retarding the main injection (see FIG. 22). Time t1The temperature of the particulate filter is SOXThe target temperature has been reached for release. SOXThe target temperature for releasingXThe temperature is set to be higher than the temperature at which it can be released.
Time t1To time t2Up to this point, SO is removed from the desorbed particles collected in the particulate filter.XRelease control is performed. Time t1To time t2Even during the period up to, the bed temperature of the particulate filter is maintained above the target temperature by maintaining the exhaust gas in a heated state. The temperature of the desorbed particles collected in the particulate filter is set to SO.XIt can be maintained above the releasable temperature.
SOXIn the discharge control, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made the stoichiometric air-fuel ratio or rich. In the present embodiment, by supplying fuel from the fuel addition valve 60, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made rich. SOXFor the release control, it is preferable to select an operation condition in accordance with the amount of desorbed particles collected in the particulate filter.
In the first operation control of the present embodiment, the SOXFor all desorbed particles contained in the trap catalyst, SOXControlled release. SOXThe amount of all desorbed particles contained in the trap catalyst is known. For this reason, under predetermined operating conditions, SOXControlled release. That is, SO is determined under conditions such as a predetermined air-fuel ratio, time and temperature.XControlled release.
SO for desorbed particlesXBy performing release control, SO particles are removed from the desorbed particles collected in the particulate filter.XCan be released. That is, the SO retained on the catalyst carrier contained in the desorbed particles.XCan be released. SO of the desorbed particlesXRetention amount decreases. In the present embodiment, the SO of the desorbed particlesXUntil the holding amount becomes almost zero, SOXControlled release.
SO from desorbed particlesXIs released, so that the desorbed particles are NO.XCan be retained. NOXIt can be used as an occlusion reduction catalyst. That is, the desorbed particles are NO when the air-fuel ratio of the exhaust gas is lean.XAnd the retained NO when the air-fuel ratio of the exhaust gas is the stoichiometric air-fuel ratio or richXAnd N2Can be reduced.
By the way, SO in this embodimentXSO of trap catalystXThe absorbent contains potassium K. Also, SOXIn addition to potassium K, the absorbent contains lithium Li and magnesium Mg. Potassium is SOXSOXIt is suitable for occlusion in the absorbent. However, potassium has a strong basicity and cancels the oxidizing action of platinum. For this reason, NOXNO that needs to be oxidizedXIn the storage reduction catalyst, NOXIn some cases, the oxidation ability of the is insufficient.
In the present embodiment, the SO of the desorbed particlesXPerform potassium release control to release potassium from the absorbent. In potassium release control, the temperature of the particulate filter in which the desorbed particles are collected is raised to a temperature higher than the temperature at which potassium is scattered. Potassium can be scattered by raising the temperature of the desorbed particles above the boiling point of potassium. The target temperature for releasing potassium can be set higher than the temperature at which potassium can be released. Here, since the boiling point of potassium is 774 ° C., for example, the target temperature for releasing potassium can be set to about 800 ° C.
Note that potassium may be included in the form of nitrate (potassium nitrate). Since the boiling point of potassium nitrate is about 400 ° C., it is possible to release potassium nitrate at the same time by raising the temperature above the temperature at which potassium is released.
Referring to FIG. 24, in the present embodiment, SOXFollowing release control, potassium release control is performed. Time t2To time t3Until then, temperature rise control is performed. In the present embodiment, the amount of fuel burned in the combustion chamber is increased. The amount of after-injection is increased. Time t3, The bed temperature of the particulate filter has reached the target temperature for releasing potassium. The temperature of the desorbed particles has reached a temperature at which potassium can be released.
Time t3To time t4By maintaining the temperature of the particulate filter above the temperature at which potassium is released, SOXPotassium contained in the absorbent can be scattered. SOXThe potassium content of the absorbent decreases. When performing potassium release control, it is preferable to select operating conditions based on the amount of desorbed particles. For example, it is preferable to determine the time for controlling potassium release based on the amount of desorbed particles. The potassium release control in the present embodiment is performed at a predetermined time. In the present embodiment, the potassium release control is performed until the potassium content becomes substantially zero.
Here, the SO in this embodimentXSO of trap catalystXThe absorbent contains barium, lithium and magnesium in addition to potassium. These components other than potassium are SO.XHigh NO when removing potassium from absorbentXA composition that can exhibit purification performance is preferred. For example, SOXEach component in the absorbent preferably has a barium content higher than the lithium content and a barium content higher than the magnesium content. That is, SOXSO in trap catalystXThe components contained in the absorbent preferably have the relationship of the following formula.
K> Ba> Li, Mg (2)
SO having the composition of the above formula (2)XBy adopting the absorbent, after removing potassium, the desorbed particles collected in the particulate filter are changed to NO.XHigh NO when used as a storage reduction catalystXA purification rate can be exhibited. Furthermore, the composition of barium, lithium and magnesium is high NO.XIt is preferable to adjust so that a purification rate may be exhibited.
In controlling the release of potassium, it is preferable to keep the temperature of the particulate matter below the boiling point of components other than potassium so that components other than potassium such as barium, lithium and magnesium do not scatter. Here, the boiling point of barium is 1870 ° C., the boiling point of lithium is 1340 ° C., and the boiling point of magnesium is 1090 ° C. Since the boiling point of these bariums and the like is higher than the maximum temperature at which a normal internal combustion engine can be operated, only potassium can be released in the potassium release control.
In this embodiment, SOXAlthough all potassium contained in the absorbent is removed, the present invention is not limited to this form, and control for removing part of potassium may be performed. Or, even if potassium release control is not performed, the desorbed particles collected in the particulate filter are changed to NO.XIt can be used as an occlusion reduction catalyst. Time t4At the time t4Thereafter, normal operation is performed.
In the first operation control of the present embodiment, the SOXAfter all of the catalyst carrier contained in the trap catalyst is desorbed, the SO particles are removed from the desorbed particles collected in the particulate filter.XAlthough release control is performed, the present invention is not limited to this form.XWhen a part of the catalyst carrier contained in the trap catalyst is desorbed, the SO is removed from the desorbed particles collected in the particulate filter.XRelease control may be performed. In this case, depending on the amount of desorbed particles collected in the particulate filter, SOXIt is preferable to select operating conditions for the release control.
The amount of desorbed particles collected on the particulate filter is SOXIt can be estimated from the thickness of the coat layer in the trap catalyst. Or SOXAccumulated SO in trap catalystXIt can be estimated from the holding amount. For example, coat layer thickness or integrated SOXThe amount of desorbed particles as a function of the amount retained can be stored in the electronic control unit. Estimated coat layer thickness or total SOXBased on the amount retained, the amount of desorbed particles can be estimated. Based on the estimated amount of desorbed particles, SOXRelease control operating conditions can be selected. For example, as the amount of desorbed particles increases, SOXIt is possible to perform control to increase the time for performing the release control. By this control, SOXThe amount of fuel consumed in the emission control can be optimized. For example, excessive fuel consumption can be suppressed.
Also, SO of desorbed particlesXRelease control and potassium release control can be performed continuously with regeneration control of the particulate filter. In the regeneration control of the particulate filter, the bed temperature of the particulate filter is raised to, for example, 600 ° C. or higher in order to burn particulate matter. The particulate matter can be burned by maintaining the air-fuel ratio of the exhaust gas lean. Following the regeneration control of this particulate filter, SOXRelease control can be performed. For example, the temperature of the particulate filter is maintained at 600 ° C. or higher. In this state, by making the air-fuel ratio of the exhaust gas flowing into the particulate filter rich, the SOXCan be released. Furthermore, potassium release control can be performed by raising the temperature of the particulate filter.
In this embodiment, SOXAlthough the release control and the potassium release control are performed separately, the present invention is not limited to this form.XRelease control and potassium release control may be performed simultaneously. For example, the temperature of the particulate filter is raised to a temperature higher than the temperature at which potassium can be released. In this state, by making the air-fuel ratio of the exhaust gas the stoichiometric air-fuel ratio or rich, potassium is removed and SOXCan be released.
Next, for the desorbed particles collected by the particulate filter, SOXOperation control after performing release control will be described. The desorbed particles collected by the particulate filter are NOXSince it has a function of an occlusion reduction catalyst, the exhaust purification device in the present embodiment is NOXThis is equivalent to an exhaust purification device in which two storage reduction catalysts are connected in series.
FIG. 25 is a time chart of the second operation control in the present embodiment. The second operation control is to perform SO on the desorbed particles collected by the particulate filter.XThis is the operation control after performing the release control. When the engine body is driven, NO from the combustion chamberXIs released and the upstream NOXNO is absorbed into the occlusion reduction catalyst 17 and the desorbed particles collected in the particulate filter 16.XIs retained. For this reason, NOXControl the release.
In this embodiment, time t1Until upstream NOXNO in the occlusion reduction catalyst 17XIs retained. Time t1NOXThe occlusion reduction catalyst 17 is saturated. Ie NOXNO of storage reduction catalyst 17XThe holdable amount is almost zero. Time t1Thereafter, NO discharged from the engine body 1XIs NOXIt passes through the storage reduction catalyst 17 and flows into the particulate filter 16. NO contained in exhaust gasXIs held by the desorbed particles collected by the particulate filter 16. Thus, time t1To time t2Up to this point, NO is released by the desorbed particles collected in the particulate filter 16.XIs being removed. Time t2NO of the desorbed particlesXThe holding amount has reached the allowable value.
NO of the desorbed particles collected in the particulate filter 16XThe allowable value of the retention amount is preferably determined based on the amount of desorbed particles. The more desorbed particles, the more NOXThe allowable value of the holding amount can be increased. For example, NO as a function of the amount of desorbed particlesXThe allowable value of the holding amount is stored in the electronic control unit. Estimated SOXIntegrated SO of trap catalystXThe amount of desorbed particles is estimated from the retained amount. Based on the estimated amount of desorbed particles, NOXAn allowable value of the holding amount can be determined. The NO of the desorbed particlesXThe allowable amount of retention is the saturation NO of desorbed particlesXIt is preferable to set it smaller than the holding amount.
Here, NOXOcclusion reduction catalyst and NO of desorbed particlesXAn example of a method for calculating the holding amount will be described.
Fig. 26 shows the NO discharged from the engine body per unit time in the present embodiment.XShows a map of quantities. NO per unit time as a function of the engine speed N and the injection amount TAQ of the fuel injected into the combustion chamber 2XA map of NOxA emissions is prepared in advance. This map is stored in the ROM 32 of the electronic control unit 30, for example.
¡NO emitted from the engine body per unit time according to the map shown in Fig. 26XQuantity, ie NOXNO flowing into the storage reduction catalyst 17XThe amount can be calculated. Inflowing NO per unit timeXBy integrating the amount, NO at any timeXNO flowing into the storage reduction catalyst 17XThe amount can be calculated.
Referring to FIG. 25, in this embodiment, NOXThe occlusion reduction catalyst 17 is saturated, and NO of the desorbed particles collected in the particulate filter.XUntil the holding amount reaches the allowable value, NOXContinue holding. NOXNO flowing into the storage reduction catalyst 17XThe accumulated amount is NOXUntil reaching the sum of the saturation amount of the storage reduction catalyst 17 and the allowable value of the desorbed particles, NO is reached.XContinue holding. NO of desorbed particles collected in the particulate filterXTime t when the holding amount reaches the allowable value2Can be detected.
Next, time t2To time t3In the period up toXNO with respect to the desorbed particles collected in the storage reduction catalyst 17 and the particulate filter.XRelease control is performed. In this embodiment, NOXNO for the storage reduction catalyst 17 and the desorbed particles simultaneouslyXRelease control is performed.
NO in this embodimentXNO for the storage reduction catalyst 17XIn the release control, post-injection as auxiliary injection is performed in the combustion chamber 2 to enrich the air-fuel ratio of the exhaust gas discharged from the engine body. NOXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst 17 is made rich.
FIG. 27 shows an injection pattern when the air-fuel ratio of the exhaust gas discharged from the engine body is made the stoichiometric air-fuel ratio or rich. In the injection pattern D, post injection FPO is performed after the main injection FM. The post-injection FPO is performed after the fuel is burned in the combustion chamber 2. The post injection FPO is an injection in which fuel does not burn in the combustion chamber. The post injection FPO is an auxiliary injection as with the after injection. The post injection FPO is performed, for example, when the crank angle after compression top dead center is in the range of approximately 90 ° to approximately 120 °. By performing post injection FPO in the combustion chamber, NOXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst can be made the stoichiometric air-fuel ratio or rich.
Referring to FIG. 23, NO for desorbed particlesXIn the discharge control, by supplying fuel from the fuel addition valve 60, the air-fuel ratio of the exhaust gas flowing into the particulate filter 16 is made the stoichiometric air-fuel ratio or rich. In the example shown in FIG. 25, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made rich. NO against desorbed particlesXIn controlled release, the amount of desorbed particles or NO of desorbed particlesXDepending on the allowable value of the holding amount, NOXIt is preferable to select operating conditions for the release control. By this control, NOXThe fuel consumption in the emission control can be optimized. For example, the greater the amount of desorbed particles, the greater the total amount of fuel supplied from the fuel addition valve.
NOXNO with respect to the storage reduction catalyst 17XBy controlling the release, NOXNO retained in the storage reduction catalystXCan be released. NO for the desorbed particles collected in the particulate filterXBy controlling the release, NO retained in the desorbed particlesXCan be released. NO releasedXN2Can be reduced.
Referring to FIG. 25, time t3Thereafter, the same operation is repeated. Time t3To time t4Until NOXNO with occlusion reduction catalystXHolding. Time t4To time t5Up to NO by the desorbed particles collected in the particulate filter.XHolding. Time t5To time t6Until NOXRelease control is performed. Time t6Thereafter, the same operation control is repeated.
In this embodiment, the upstream NOXNO for the storage reduction catalyst 17XRelease control and NO for desorbed particles collected in downstream particulate filterXRelease control is performed simultaneously. By performing this control, NOXUsing a reducing agent such as unburned fuel or carbon monoxide contained in the exhaust gas flowing out from the storage reduction catalyst, NOXCan be released. As a result, NOXThe amount of fuel consumed for emission control can be reduced.
NOXIn the release control, the upstream NOXNO for the storage reduction catalyst 17XRelease control and NO for desorbed particles collected in the downstream particulate filterXYou may perform discharge | release control separately.
In this embodiment, the air-fuel ratio of the exhaust gas flowing into the particulate filter is made the stoichiometric air-fuel ratio or rich by supplying the fuel from the fuel addition valve. The air-fuel ratio of the exhaust gas flowing into the particulate filter can be made the stoichiometric air-fuel ratio or rich. For example, without using the fuel addition valve, by changing the combustion injection pattern in the combustion chamber, the air-fuel ratio of the exhaust gas flowing out from the engine body is kept in the stoichiometric or rich state. Upstream NOXNO of storage reduction catalystXAfter release control, NO of the desorbed particles collected in the particulate filterXRelease control can be performed.
In this embodiment, desorbed particles are NOXUsed as an occlusion reduction catalyst. For this reason, SOXAs the catalyst metal supported on the catalyst carrier of the trap catalyst, a metal having a strong oxidizing power is preferably disposed. For example, SOXAs the catalyst metal of the trap catalyst, a noble metal is preferably supported. With this configuration, the desorbed particles collected by the particulate filter are reduced to NO.XCan be more reliably oxidized. NO with high desorbed particles collected by the particulate filterXA purification rate can be achieved.
Also, the second operation control is SOXIn addition to when all of the catalyst support contained in the trap catalyst is desorbed, SOXThis can be performed when a part of the catalyst carrier contained in the trap catalyst is detached.
FIG. 28 shows a time chart of the third operation control in the present embodiment. In the third operation control, time tXIn SOXAll the catalyst carriers of the trap catalyst are detached. Time t1, Time t2, Time t3And time t4, The particulate matter accumulation amount in the particulate filter reaches an allowable value, and the particulate filter is regenerated. The regeneration time of the particulate filter can be determined by the differential pressure across the front and back. Following the regeneration control of the particulate filter, the air-fuel ratio of the exhaust gas flowing into the particulate filter is further made the stoichiometric air-fuel ratio or rich so that the desorbed particles collected in the particulate filter are SO.XRelease control is performed.
Time t1Until, the SO of the desorbed particles collected in the particulate filterXIncreased retention. Time t1SOXBy controlling the release, SOXThe holding amount becomes almost zero. As described above, in this embodiment, every time the particulate filter regeneration control is performed, the SO with respect to the desorbed particles is controlled.XRelease control is performed. Time t2, Time t3And time t4The same control is performed in FIG.
Particulate filter regeneration control and desorbed particle SOXBy continuously performing the release control, it is possible to suppress the amount of fuel consumed for raising the temperature of the particulate filter. Also, SO in the atmosphereXIn the case of release of SO.XIs preferably discharged at a low concentration. In this embodiment, when regeneration control of the particulate filter is performed, the SO retained on the desorbed particles is controlled.XThe amount is small. For this reason, SO at a low concentrationXCan be released into the atmosphere.
Time tXIn SOXAlmost all of the catalyst support of the trap catalyst is detached. Time tXIn SOXSO of trap catalystXThe holdable amount is almost zero. That is, SOXIntegrated SO of trap catalystXRetention amount is saturated SOXRetention amount has been reached.
In this embodiment, SOXTime t after the trap catalyst is saturated5In addition, the regeneration control of the particulate filter and the SO of the desorbed particlesXRelease control is performed. Time t5SOXBy performing release control, the SO of the desorbed particles collected by the particulate filterXThe holding amount is almost zero. SO of desorbed particles collected by the particulate filterXThe holdable amount is the time t5Increase to.
By the way, time tXIn the following, SO contained in the exhaust gasXThat is, SO2Is NOXIt flows into the storage reduction catalyst 17. NOXSulfur poisoning appears in the occlusion reduction catalyst 17. To recover from sulfur poisoning, the same SOXRelease control is performed. SOXIn release control, NOXSet the temperature of the storage reduction catalyst to SOXRaise to a temperature where release is possible. NO in this stateXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is made rich or stoichiometric. SOXBy controlling the release, NOXFrom storage reduction catalyst to SOXCan be released.
Time tXIn the following, NOXThe storage reduction catalyst 17 has SOXIs retained, so NOXSO of storage reduction catalystXIncreased retention. Time t6NOXSO of storage reduction catalyst 17XThe holding amount has reached a predetermined allowable value. Time t6NOXSO for storage reduction catalyst 17XControlled release. NOXFrom storage reduction catalyst 17 to SOXIs released. SO releasedXIs NOXIt is held by the desorbed particles collected by the particulate filter 16 disposed downstream of the storage reduction catalyst 17. The desorbed particles are SOXThe holding amount increases and SOXThe amount that can be held decreases.
Figure 29, NOXThe graph explaining the operation area | region of a storage reduction catalyst is shown. The horizontal axis is NOXIt is the bed temperature of the storage reduction catalyst, the vertical axis is NOXThis is the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst. SO in the operable rangeXAn emission area is defined. As indicated by an arrow 205, the smaller the air-fuel ratio of the exhaust gas, that is, the deeper the rich, the more SOXAre released at high concentrations. NOXThe higher the bed temperature of the storage reduction catalyst, the higher the concentration of SOXIs released.
By the way, SOXWhen is released into the atmosphere, it is preferably released at a low concentration. NO in conventional technologyXSO of storage reduction catalystXIn controlled release, SO at low concentrationsXSO to releaseXWas kept released gradually. For example, the air-fuel ratio of the exhaust gas is controlled so as not to become too low. NOXThe bed temperature of the storage reduction catalyst was controlled so as not to become too high. On the other hand, in this embodiment, NOXSO released from the storage reduction catalystXCan be held by the desorbed particles collected by the particulate filter. For this reason, NOXHigh concentration of SO from the storage reduction catalystXCan be released.
Conventional SOXIn release control, NOXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is, for example, in the range of 14 to 14.5. On the other hand, in the present embodiment, the air-fuel ratio of the exhaust gas can be made less than 14. Furthermore, in this embodiment, NOXThe temperature of the exhaust gas flowing into the storage reduction catalyst can be increased within a range in which the components of the exhaust purification device are not damaged.
This way, NOXSO of storage reduction catalystXIn controlled release, high concentration of SOXBy efficiently releasing SOXCan be released. SOXRelease control can be performed in a short time. Or many SOXCan be released. As a result, SOXThe amount of fuel consumed to perform release control can be reduced.
NOXSO for storage reduction catalystXExhaust gas air-fuel ratio and NO when performing emission controlXThe temperature of the storage reduction catalyst is preferably determined based on the amount of desorbed particles collected in the particulate filter. The greater the amount of desorbed particles, the higher the concentration of SOXNOXIt can be discharged from the storage reduction catalyst. By this control, SOXCan be released. For example, the greater the amount of desorbed particles collected in the particulate filter, the more NOXThe air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst can be reduced. Further, as the amount of desorbed particles collected in the particulate filter increases, the NO.XThe temperature of the storage reduction catalyst can be increased.
In the third operation control in this embodiment, NOXSO of storage reduction catalyst 17XAt the time of release control, the desorbed particles collected in the particulate filterXIs preferably captured. That is, SOXIt is preferable that no is released. For this reason, SOXNO to releaseXWhen the temperature of the storage reduction catalyst 17 is raised, the temperature of the desorbed particles is SO.XIt is preferred to maintain below the temperature at which release is possible. For example, the particulate filter is NOXIt is preferable to arrange it sufficiently away from the storage reduction catalyst.
Or NOXWhen the air-fuel ratio of the exhaust gas flowing into the storage reduction catalyst is the stoichiometric air-fuel ratio or rich, it is preferable that the air-fuel ratio of the exhaust gas flowing into the particulate is lean. For example, NOXIt is preferable that an air-fuel ratio adjustment valve for introducing air is disposed between the storage reduction catalyst and the particulate filter. NOXSO of storage reduction catalystXAt the time of release control, the air-fuel ratio of the exhaust gas flowing into the particulate filter can be made lean by introducing air into the engine exhaust passage upstream of the particulate filter.
Referring to FIG. 28, time t6After that, NOXSO of storage reduction catalystXEach time the holding amount reaches a predetermined tolerance, a similar SOXRelease control can be performed. In the example shown in FIG. 28, time t7In SOXControlled release. SO releasedXIs held by the desorbed particles collected by the particulate filter. SO of the desorbed particlesXThis control is continued until the holding amount reaches a predetermined allowable value. SO of the desorbed particlesXWhen the holding amount reaches a predetermined allowable value, the particulate filter is replaced.
Time t5Thereafter, regeneration control for burning the particulate matter collected by the particulate filter continues. Meanwhile, time t5Thereafter, SO for the desorbed particles collected by the particulate filter is used.XRelease control is not performed. However, time t6Thereafter, SO with respect to the desorbed particles collected in the particulate filter will be described.XRelease control may be performed. In this case, SO released from the desorbed particlesXIt is preferable to adjust the air-fuel ratio of the exhaust gas flowing into the particulate filter and the temperature of the particulate filter so as to reduce the concentration.
Other configurations, operations, and effects are the same as those of the exhaust gas purification apparatus for an internal combustion engine described in the first or second embodiment, and thus description thereof will not be repeated here.
The above embodiments can be combined as appropriate. In the respective drawings described above, the same or corresponding parts are denoted by the same reference numerals. In addition, said embodiment is an illustration and does not limit invention. Further, in the embodiment, changes included in the scope of claims are intended.
1…機関本体
14…SOトラップ触媒
16…パティキュレートフィルタ
17…NO吸蔵還元触媒
30…電子制御ユニット
48…触媒担体
48a…触媒担体(硫酸塩)
49…触媒金属
50…SO吸収剤
51…結合材
52…基体
53…コート層
54…補助粒子
60…燃料添加弁
DESCRIPTION OF SYMBOLS 1 ... Engine main body 14 ... SO X trap catalyst 16 ... Particulate filter 17 ... NO X storage reduction catalyst 30 ... Electronic control unit 48 ... Catalyst support 48a ... Catalyst support (sulfate)
49 ... Catalyst metal 50 ... SO X absorbent 51 ... Binder 52 ... Base 53 ... Coat layer 54 ... Auxiliary particles 60 ... Fuel addition valve

Claims (13)

  1.  機関排気通路内に配置され、流入する排気ガスの空燃比がリーンの時には排気ガス中に含まれるNOを保持し、流入する排気ガスの空燃比が理論空燃比又はリッチになると保持したNOを放出するNO吸蔵還元触媒と、NO吸蔵還元触媒の上流側の機関排気通路内に配置され、SOを保持するSO保持材とを備え、
     SO保持材は、触媒金属を担持する粒子状の触媒担体と、触媒担体と異なる材質で形成され、触媒担体同士を結合する結合材とを含み、
     触媒担体および結合材のうち少なくとも一方が、排気ガスに含まれるSOを吸蔵して硫酸塩に改質されることにより体積が膨張し、触媒担体と結合材との間の結合が解除されて触媒担体が粒子状に脱離することを特徴とする、内燃機関の排気浄化装置。
    Disposed engine exhaust passage, when the air-fuel ratio of the inflowing exhaust gas is lean holds the NO X contained in the exhaust gas, the air-fuel ratio of the inflowing exhaust gas was maintained to be the stoichiometric air-fuel ratio or rich NO X and the NO X storage reduction catalyst which releases, is disposed upstream of the engine exhaust passage of the NO X occluding and reducing catalyst, and a stored SO X material for holding the SO X,
    The SO X holding material includes a particulate catalyst carrier that supports the catalyst metal, and a binder that is formed of a material different from that of the catalyst carrier and bonds the catalyst carriers to each other.
    At least one of the catalyst carrier and the binding material absorbs SO X contained in the exhaust gas and is reformed to sulfate, whereby the volume expands and the bond between the catalyst carrier and the binding material is released. An exhaust gas purification apparatus for an internal combustion engine, wherein the catalyst carrier is desorbed in the form of particles.
  2.  触媒担体は、SOを吸蔵して硫酸塩に改質されることにより体積が膨張する材質で形成されており、結合材は、SOが流入したときに不変の材質またはSOを吸蔵して硫酸塩に改質されたときに体積がほぼ不変の材質で形成されていることを特徴とする、請求項1に記載の内燃機関の排気浄化装置。 The catalyst carrier is formed of a material that expands in volume when SO X is occluded and reformed to sulfate, and the binding material occludes an invariable material or SO X when SO X flows in. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purification apparatus is formed of a material whose volume is substantially unchanged when it is reformed into sulfate.
  3.  SO保持材は、触媒担体が基体の表面に層状に配置され、
     触媒担体の層の厚さを推定し、触媒担体の層の厚さを用いてSO保持材の積算SO保持量を算出することを特徴とする、請求項1に記載の内燃機関の排気浄化装置。
    In the SO X holding material, the catalyst carrier is arranged in layers on the surface of the substrate,
    2. The exhaust gas of an internal combustion engine according to claim 1, wherein the thickness of the catalyst carrier layer is estimated, and the integrated SO X retention amount of the SO X retention material is calculated using the layer thickness of the catalyst carrier. Purification equipment.
  4.  NO吸蔵還元触媒の下流の機関排気通路内に配置され、SO保持材から脱離した触媒担体を含む脱離粒子を捕集する捕集フィルタを備え、
     捕集フィルタに捕集された脱離粒子からSOを放出させた後に、排気ガスに含まれるNOを脱離粒子にて保持することを特徴とする、請求項1に記載の内燃機関の排気浄化装置。
    A collection filter that is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material;
    2. The internal combustion engine according to claim 1, wherein the NO X contained in the exhaust gas is held by the desorbed particles after the SO X is released from the desorbed particles collected by the collection filter. Exhaust purification device.
  5.  捕集フィルタに捕集された脱離粒子の量に基づいて、脱離粒子がNOを保持できる許容値を推定し、
     脱離粒子のNO保持量が許容値を超えた場合に、捕集フィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにし、脱離粒子に保持されたNOを放出させるNO放出制御を行うことを特徴とする、請求項4に記載の内燃機関の排気浄化装置。
    Based on the amount of desorbed particles collected by the collection filter, estimate the allowable value that the desorbed particles can hold NO X ,
    When the NO X holding amount of desorbed particles exceeds an allowable value, the air-fuel ratio of the exhaust gas flowing into the collection filter to the stoichiometric air-fuel ratio or rich, NO X to release the NO X held in the desorption particles 5. The exhaust emission control device for an internal combustion engine according to claim 4, wherein release control is performed.
  6.  SO保持材に含まれる粒子状の触媒担体の略全てが脱離した場合には、排気ガスに含まれるSOがNO吸蔵還元触媒に保持され、
     NO吸蔵還元触媒の温度をSOの放出が可能な温度まで昇温するとともに、NO吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比またはリッチにするSO放出制御を行う時に、捕集フィルタに捕集されている脱離粒子の量に基づいて、NO吸蔵還元触媒の温度およびNO吸蔵還元触媒に流入する排気ガスの空燃比のうち少なくとも一方を定めることを特徴とする、請求項4に記載の内燃機関の排気浄化装置。
    When almost all of the particulate catalyst carrier contained in the SO X holding material is desorbed, SO X contained in the exhaust gas is held in the NO X storage reduction catalyst,
    When the temperature of the NO X storage reduction catalyst is raised to a temperature at which SO X can be released and SO X release control is performed to make the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst the stoichiometric air-fuel ratio or rich , based on the amount of desorbed particles trapped in the collection filter, and characterized by determining at least one of the air-fuel ratio of the exhaust gas flowing into the temperature and the NO X storage reduction catalyst of the NO X occluding and reducing catalyst The exhaust emission control device for an internal combustion engine according to claim 4.
  7.  機関排気通路内に配置され、流入する排気ガスの空燃比がリーンの時には排気ガス中に含まれるNOを保持し、流入する排気ガスの空燃比が理論空燃比又はリッチになると保持したNOを放出するNO吸蔵還元触媒と、NO吸蔵還元触媒の上流側の機関排気通路内に配置され、SOを保持するSO保持材とを備え、
     SO保持材は、触媒金属を担持する粒子状の触媒担体と、触媒担体と異なる材質で形成され、平均粒径が触媒担体よりも小さな補助粒子と、補助粒子とほぼ同じ材質で形成され、補助粒子同士を結合する結合材とを含み、触媒担体は、補助粒子により支持されており、
     触媒担体が排気ガスに含まれるSOを吸蔵して硫酸塩に改質されることにより体積が膨張し、補助粒子による触媒担体の支持が解除されて触媒担体が粒子状に脱離することを特徴とする、内燃機関の排気浄化装置。
    Disposed engine exhaust passage, when the air-fuel ratio of the inflowing exhaust gas is lean holds the NO X contained in the exhaust gas, the air-fuel ratio of the inflowing exhaust gas was maintained to be the stoichiometric air-fuel ratio or rich NO X and the NO X storage reduction catalyst which releases, is disposed upstream of the engine exhaust passage of the NO X occluding and reducing catalyst, and a stored SO X material for holding the SO X,
    The SO X holding material is formed of a particulate catalyst carrier supporting a catalyst metal, a material different from the catalyst carrier, an auxiliary particle having an average particle size smaller than that of the catalyst carrier, and a material substantially the same as the auxiliary particle, And a support for binding the auxiliary particles to each other, the catalyst carrier is supported by the auxiliary particles,
    The catalyst carrier absorbs SO X contained in the exhaust gas and is reformed into sulfate, so that the volume expands, the support of the catalyst carrier by the auxiliary particles is released, and the catalyst carrier is detached in the form of particles. An exhaust gas purifying device for an internal combustion engine, characterized by the above.
  8.  結合材および補助粒子は、SOを吸蔵して硫酸塩になった場合に硫酸塩が分解する分解温度を有し、
     SO保持材の温度を分解温度以上に上昇させる脱離促進制御を行うことにより、硫酸塩が分解して結合材および補助粒子の体積が小さくなり、補助粒子による触媒担体の支持が解除されることを特徴とする、請求項7に記載の内燃機関の排気浄化装置。
    The binder and the auxiliary particles have a decomposition temperature at which the sulfate decomposes when SO X is occluded to become sulfate.
    By performing desorption promotion control that raises the temperature of the SO X holding material above the decomposition temperature, the sulfate is decomposed to reduce the volume of the binder and auxiliary particles, and the support of the catalyst carrier by the auxiliary particles is released. The exhaust emission control device for an internal combustion engine according to claim 7, wherein:
  9.  NO吸蔵還元触媒の下流の機関排気通路内に配置され、SO保持材から脱離した触媒担体を含む脱離粒子を捕集する捕集フィルタを備え、
     捕集フィルタに捕集された脱離粒子の量が予め定められた許容値よりも大きくなった場合には、脱離促進制御を禁止することを特徴とする、請求項8に記載の内燃機関の排気浄化装置。
    A collection filter that is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material;
    9. The internal combustion engine according to claim 8, wherein when the amount of desorbed particles collected by the collection filter exceeds a predetermined allowable value, desorption promotion control is prohibited. Exhaust purification equipment.
  10.  SO保持材は、触媒担体が基体の表面に層状に配置され、
     触媒担体の層の厚さを推定し、触媒担体の層の厚さを用いてSO保持材の積算SO保持量を算出することを特徴とする、請求項7に記載の内燃機関の排気浄化装置。
    In the SO X holding material, the catalyst carrier is arranged in layers on the surface of the substrate,
    The exhaust gas of an internal combustion engine according to claim 7, wherein the thickness of the catalyst carrier layer is estimated, and the integrated SO X retention amount of the SO X retention material is calculated using the layer thickness of the catalyst carrier. Purification equipment.
  11.  NO吸蔵還元触媒の下流の機関排気通路内に配置され、SO保持材から脱離した触媒担体を含む脱離粒子を捕集する捕集フィルタを備え、
     捕集フィルタに捕集された脱離粒子からSOを放出させた後に、排気ガスに含まれるNOを脱離粒子にて保持することを特徴とする、請求項7に記載の内燃機関の排気浄化装置。
    A collection filter that is disposed in the engine exhaust passage downstream of the NO X storage reduction catalyst and collects desorbed particles including the catalyst carrier desorbed from the SO X holding material;
    8. The internal combustion engine according to claim 7, wherein the NO X contained in the exhaust gas is retained by the desorbed particles after the SO X is released from the desorbed particles collected by the collection filter. Exhaust purification device.
  12.  捕集フィルタに捕集された脱離粒子の量に基づいて、脱離粒子のNOを保持できる許容値を推定し、
     脱離粒子のNO保持量が許容値を超えた場合に、捕集フィルタに流入する排気ガスの空燃比を理論空燃比またはリッチにし、脱離粒子に保持されたNOを放出させるNO放出制御を行うことを特徴とする、請求項11に記載の内燃機関の排気浄化装置。
    Based on the amount of desorbed particles collected by the collection filter, an allowable value capable of holding NO X of desorbed particles is estimated,
    When the NO X holding amount of desorbed particles exceeds an allowable value, the air-fuel ratio of the exhaust gas flowing into the collection filter to the stoichiometric air-fuel ratio or rich, NO X to release the NO X held in the desorption particles The exhaust emission control device for an internal combustion engine according to claim 11, wherein the emission control is performed.
  13.  SO保持材に含まれる粒子状の触媒担体の略全てが脱離した場合には、排気ガスに含まれるSOがNO吸蔵還元触媒に保持され、
     NO吸蔵還元触媒の温度をSOの放出が可能な温度まで昇温するとともに、NO吸蔵還元触媒に流入する排気ガスの空燃比を理論空燃比またはリッチにするSO放出制御を行う時に、捕集フィルタに捕集されている脱離粒子の量に基づいて、NO吸蔵還元触媒の温度およびNO吸蔵還元触媒に流入する排気ガスの空燃比のうち少なくとも一方を定めることを特徴とする、請求項11に記載の内燃機関の排気浄化装置。
    When almost all of the particulate catalyst carrier contained in the SO X holding material is desorbed, SO X contained in the exhaust gas is held in the NO X storage reduction catalyst,
    When the temperature of the NO X storage reduction catalyst is raised to a temperature at which SO X can be released, and SO X release control is performed to make the air-fuel ratio of the exhaust gas flowing into the NO X storage reduction catalyst the stoichiometric air-fuel ratio or rich , based on the amount of desorbed particles trapped in the collection filter, and characterized by determining at least one of the air-fuel ratio of the exhaust gas flowing into the temperature and the NO X storage reduction catalyst of the NO X occluding and reducing catalyst The exhaust emission control device for an internal combustion engine according to claim 11.
PCT/JP2009/065555 2009-09-01 2009-09-01 Exhaust purification device for internal combustion engine WO2011027470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065555 WO2011027470A1 (en) 2009-09-01 2009-09-01 Exhaust purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065555 WO2011027470A1 (en) 2009-09-01 2009-09-01 Exhaust purification device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2011027470A1 true WO2011027470A1 (en) 2011-03-10

Family

ID=43649032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065555 WO2011027470A1 (en) 2009-09-01 2009-09-01 Exhaust purification device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2011027470A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157406A (en) * 1997-08-22 1999-03-02 Mitsubishi Motors Corp Exhaust gas cleaning device
JP2008014236A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009191735A (en) * 2008-02-14 2009-08-27 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157406A (en) * 1997-08-22 1999-03-02 Mitsubishi Motors Corp Exhaust gas cleaning device
JP2008014236A (en) * 2006-07-06 2008-01-24 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2009191735A (en) * 2008-02-14 2009-08-27 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
EP0862941A2 (en) An exhaust gas purification device for an internal combustion engine
JP4285460B2 (en) Exhaust gas purification device for internal combustion engine
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
JP4935929B2 (en) Exhaust gas purification device for internal combustion engine
JP3858749B2 (en) Exhaust gas purification device for internal combustion engine
JP3525912B2 (en) Exhaust gas purification device for internal combustion engine
JP5163808B2 (en) Exhaust gas purification device for internal combustion engine
JP2010007639A (en) Exhaust emission control device for internal combustion engine
JP3746179B2 (en) Exhaust gas purification device for internal combustion engine
JP2011208600A (en) Exhaust emission control system of internal combustion engine
JP5067478B2 (en) Exhaust gas purification device for internal combustion engine
WO2011027470A1 (en) Exhaust purification device for internal combustion engine
JP2011231755A (en) Exhaust emission control device of internal combustion engine
JP3558055B2 (en) Exhaust gas purification device for internal combustion engine
JP4341351B2 (en) How to recover the purification capacity of an exhaust purifier
JP3632633B2 (en) Exhaust gas purification device for internal combustion engine
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JP4581287B2 (en) Exhaust gas purification device for internal combustion engine
JP3772729B2 (en) Exhaust gas purification device for internal combustion engine
JP4337527B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP3558046B2 (en) Exhaust gas purification device for internal combustion engine
JP4306566B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP3858750B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP