WO2011027042A1 - Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s) - Google Patents

Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s) Download PDF

Info

Publication number
WO2011027042A1
WO2011027042A1 PCT/FR2009/051682 FR2009051682W WO2011027042A1 WO 2011027042 A1 WO2011027042 A1 WO 2011027042A1 FR 2009051682 W FR2009051682 W FR 2009051682W WO 2011027042 A1 WO2011027042 A1 WO 2011027042A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
partitions
line
incomplete
lines
Prior art date
Application number
PCT/FR2009/051682
Other languages
English (en)
Inventor
Nicolas Fiot
Pierre Mahieu
Original Assignee
Solios Carbone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solios Carbone filed Critical Solios Carbone
Priority to EP09745074.6A priority Critical patent/EP2475948B1/fr
Priority to CN200980161301.XA priority patent/CN102597678B/zh
Priority to AU2009352124A priority patent/AU2009352124B2/en
Priority to PCT/FR2009/051682 priority patent/WO2011027042A1/fr
Priority to CA2772693A priority patent/CA2772693C/fr
Priority to RU2012113704/02A priority patent/RU2500961C1/ru
Publication of WO2011027042A1 publication Critical patent/WO2011027042A1/fr
Priority to ZA2012/01211A priority patent/ZA201201211B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • F27B13/14Arrangement of controlling, monitoring, alarm or like devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/04Arrangements of indicators or alarms

Definitions

  • Fire (s) turning (s) for the firing of carbonaceous blocks, more particularly carbon anodes and cathodes for the production by electrolysis of aluminum, and the invention more particularly relates to a method characterizing combustion in partition lines of such a chamber furnace.
  • Fire furnaces (x) rotating (s) for baking anodes are described in particular in the following patent documents: US 4,859,175, WO 91/19147, US 6,339,729, US 6,436,335 and CA 2550880, to which reference will be made for more details about them.
  • FIGS. 1 and 2 respectively showing a schematic plan view of the structure of a furnace (x) rotating (s) and open chambers, at two lights in this example, for Figure 1, and a partial perspective view and cutaway cross-section showing the internal structure of such an oven, for Figure 2.
  • the baking oven (FAC) 1 comprises two parallel casings or bays 1a and 1b, extending along the longitudinal axis XX along the length of the oven 1 and each comprising (e) a succession of transverse chambers 2 (perpendicular to the axis XX), separated from each other by transverse walls 3.
  • Each chamber 2 is constituted, in its length, that is to say in the transverse direction of the furnace 1, by the juxtaposition, alternately, of 4 cells, open at their upper part, to allow the loading of the carbonaceous blocks to be cooked and the unloading of the cooled cooked blocks, and in which are stacked the carbonaceous blocks 5 to be embedded in a carbonaceous dust, and hollow-walled hollow heating partitions 6, generally kept spaced apart by transverse spacers 6a.
  • the hollow partitions 6 of a chamber 2 are in the longitudinal extension (parallel to the major axis XX of the furnace 1) of the hollow partitions 6 of the other chambers 2 of the same span 1a or 1b, and the hollow partitions 6 are in communication with each other through skylights 7 at the upper part of their longitudinal walls, facing longitudinal passages formed at this level in the transverse walls 3, so that the hollow partitions 6 form rows of longitudinal partitions, arranged parallel to the XX axis of the furnace and in which will circulate gaseous fluids (combustion air, combustible gases and gases and combustion fumes) for preheating and cooking the anodes 5, and then cooling.
  • gaseous fluids combustion air, combustible gases and gases and combustion fumes
  • the hollow partitions 6 further include baffles 8, to elongate and distribute more uniformly the path of the combustion gases or fumes, and these hollow partitions 6 are provided at their upper part with openings 9, called “openings", closable by removable covers and arranged in an oven crown block 1.
  • the two bays 1a and 1b of the furnace 1 are placed in communication at their longitudinal ends by turning flues 10, which make it possible to transfer the gaseous fluids from one end of each line of hollow partitions 6 of a span 1 a or 1b at the end of the line of corresponding hollow partitions 6 on the other bay 1b or 1a, so as to form substantially rectangular loops of hollow partition lines 6.
  • fire advance (x) furnaces consists in causing a flame front to move from one chamber 2 to another which is adjacent during a cycle, each chamber 2 undergoing successively stages of preheating, forced heating, fire, then cooling (natural then forced).
  • the firing of the anodes 5 is carried out by one or more lights or groups of lights (two groups of lights being represented in FIG. 1, in a position in which one extends, in this example, over thirteen chambers 2 of the span 1a and the other on thirteen chambers 2 of the span 1b) which move cyclically from chamber 2 to chamber 2.
  • Each fire or group of lights is composed of five successive zones A to E, which are, as shown on FIG. 1 for the fire of the span 1b, and of the downstream upstream with respect to the flow direction of the gaseous fluids in the hollow partition lines 6, and in the opposite direction to the cyclic chamber displacements in bedroom :
  • a preheating zone comprising, referring to the light of span 1a, and taking into account the direction of rotation of the lights indicated by the arrow at the turning flue 10 at the end of the furnace 1 at the top of Figure 1:
  • a suction ramp 1 1 equipped, for each hollow partition 6 of the chamber 2 above which this suction ramp extends, with a system for measuring and regulating the flow rate of the gases and combustion fumes by line of hollow partitions 6,
  • this system may comprise, in each suction pipe 1 1 a which is integral with the suction ramp 1 1 and opening into the latter, on the one hand, and, secondly, engaged in the opening 9 of one respectively of the hollow partitions 6 of this chamber 2, an adjustable shutter pivoted by a shutter actuator, for the flow control, and a flowmeter 12, slightly upstream, in the pipe 1 1 a corresponding, a temperature sensor (thermocouple) 13 for measuring the temperature of the exhaust combustion fumes, and
  • a preheating measurement ramp 15 substantially parallel to the suction ramp 1 1 upstream of the latter, generally above the same chamber 2, and equipped with temperature sensors (thermocouples) and pressure sensors to prepare the static depression and the temperature prevailing in each of the hollow partitions 6 of this chamber 2 in order to be able to display and adjust this depression and this temperature of the preheating zone;
  • a heating zone comprising:
  • each heating ramp 16 - several identical heating ramps 16, two or, preferably, three, as shown in Figure 1; each equipped with burners or fuel injectors (liquid or gaseous) and temperature sensors (thermocouples), each of the ramps 16 extending above one of the chambers respectively of a corresponding number of adjacent chambers 2 , so that the injectors of each heating ramp 16 are engaged in the openings 9 of the hollow partitions 6 to inject the fuel therein;
  • a natural blowing or cooling zone comprising:
  • a so-called "zero point” ramp 17 extending above chamber 2 immediately upstream of that below the most upstream heating ramp 16, and equipped with pressure sensors for measuring the prevailing pressure in each of the hollow partitions 6 of this chamber 2, in order to be able to adjust this pressure as indicated below, and -
  • a forced cooling zone which extends over three chambers 2 upstream of the blowing ramp 1 8, and which comprises, in this example, two parallel cooling ramps 1 9, each equipped with motorcycle fans and pipes blowing air blowing ambient air into the hollow partitions 6 of the corresponding chamber 2; and E) A working zone, extending upstream of the cooling ramps 1 9 and allowing charging and deflection of the anodes 5, and the maintenance of the rooms 2.
  • the heating of the oven 1 is thus provided by the heating ramps 1 6, the injectors of the burners are introduced through the openings 9 into the hollow walls 6 of the chambers 2 concerned.
  • the blowing ramp 1 8 and the cooling ramp (s) 1 9 comprise combustion air insufflation pipes supplied by motorcycle fans, these pipes being connected, through the openings 9, to the hollow partitions 6 of the chambers 2 concerned.
  • the suction ramp 1 1 is available to extract the combustion gases and fumes, referred to collectively as "combustion fumes", which circulate in hollow partition lines 6.
  • the heating and cooking of the anodes 5 are ensured both by the combustion of the fuel (gaseous or liquid) injected, in a controlled manner, by the heating ramps 1 6, and, to a substantially equal extent, by the combustion of materials.
  • volatile (such as polycyclic aromatic hydrocarbons) pitch diffused by the anodes 5 in the cells 4 of the chambers 2 in preheating zones and heating, these volatile materials, largely combustible, diffused into the cells 4 can flow into the two hollow partitions 6 adjacent by passages formed in these partitions, to ignite in these two partitions, thanks to residual combustion air present at this level, among the combustion fumes in these hollow partitions 6.
  • the air circulation and combustion fumes is performed along the lines of hollow partitions 6, and a negative pressure imposed downstream of the heating zone B by the suction ramp 1 1 at the downstream end of the preheating zone A, to control the flow of combustion fumes inside the hollow partitions 6, while the air from the cooling zones C and D, thanks to the ramps of 1 9, and especially at the blowing ramp 1 8, is preheated in the hollow partitions 6, cooling the anodes 5 cooked in the adjacent cells 4, during its journey and serves as an oxidizer when it reaches the zone of heating B.
  • the control method of the FAC 1 essentially comprises the temperature and / or pressure regulation of the preheating zones A, heating B and natural blowing or cooling C of the oven 1 according to predefined setpoint laws.
  • the combustion fumes extracted from the fires by the suction ramps 1 1 are collected in a flue gas duct 20, for example a cylindrical duct partially shown in FIG. 2, with a flue gas flue 21 that can have a U-shaped shape. (see dotted line in FIG. 1) or able to go around the furnace, and whose outlet 22 directs the combustion fumes sucked and collected to a smoke treatment center (CTF) not shown because it is not part of the furnace. invention.
  • CTF smoke treatment center
  • the current conduct of ovens of this type favors the supply of fuel (liquid or gaseous fuel) heating ramps 1 6 independently of draft depression conditions and aeraulic conditions in the partitions 6, where it can result in incomplete combustion in a significant number, or even a high number, of the partition lines 6.
  • fuel liquid or gaseous fuel
  • This results in high operating costs of the furnace, not only because of the overconsumption of fuel, but also because of clogging of the ducts and suction ducts that lead to the capture by the deposits of unburnt, deposits which represent in addition a potential risk of ignition and drift of the cooking process.
  • the problem underlying the invention is, in general, to improve the continuous optimization of the operation of such ovens, in order to reduce operating costs and prevent the risk of fire and drift of the cooking process, and to this end, the invention proposes a method or a method for characterizing the combustion in the partition lines of a chamber furnace called "rotating fire") for the cooking of carbon blocks, by analysis of the value of at least one image parameter of the overall content of unburned in the combustion gases and residual air from said partition lines and collected in a suction ramp of said oven, said furnace comprising a succession of preheating chambers, heating, natural cooling and forced cooling, arranged in series along the longitudinal axis of the furnace, each chamber being constituted by the juxtaposition, transversely to said longitudinal axis nal and alternately, cells in which are arranged carbon blocks to cook and hollow heating partitions, in communication and aligned with the partitions of the other rooms, parallel to the longitudinal axis of the furnace, in lines of partitions in which circulate cooling and combustion air and combustion gases, said suction ramp
  • the method according to the invention further comprises at least one previous step, so-called preselection of the partition lines likely to be in an incomplete combustion situation, and making it possible to limit the number of injection stop tests, in said step of successive tests of total fuel injection stoppage, to only lines of preselected partitions, and consisting in calculating, for each line of partitions of rank n, a combustion ratio, equal to the ratio of the quantity of combustion air available to the quantity of fuel injected into said line of partitions of rank n , to define empirically a so-called stoichiometric limit ratio from measurements of said image parameter of the unburned content in the combustion gases collected at the outlet of a line of standard partitions, representative of the best state of the oven partition lines, and so that this stoichiometric ratio corresponds to a measured threshold of said image parameter below which combustion is considered incomplete, to compare the combustion ratio of all the lines of partitions with a
  • the identification of the partition lines in an incomplete combustion situation is advantageously preceded by a pre-selection of the partition lines likely to be in this incomplete combustion situation, thanks to the calculations, on the one hand, of the combustion ratio for each of the furnace partition lines, and, on the other hand, of said stoichiometric ratio, empirically defined from measurements of the image parameter in a standard partition line, chosen as being representative of the best state of the partition lines and finally by comparing each combustion ratio to the stoichiometric ratio, to deduce which (s) is or are the line or lines of combustion, in which or which combustion may be considered incomplete.
  • the combustion ratio (RCcIn) in said step of preselecting the incomplete combustion partition lines, can be calculated in a line of partition walls.
  • row n being proportional to the square root of the static draw depression measured in the preheating zone for said line of partitions considered, and inversely proportional to the sum of the fuel injection power of the injectors of the heating ramps operating on the same line of partitions of rank n.
  • the combustion ratio of the row of partitions of rank n can be easily calculated by applying the following formula: where Pi and P 7 are the pressures measured in the n-row partitions of the chambers respectively in communication with the suction ramp and the so-called "zero point" ramp in the natural cooling zone, N is the number of heating ramps , generally equal to 2 or 3, and InjHRi is the total injection power in the rank n partition of the injectors of the heating ramp of rank i, where i varies from 1 to N.
  • the image parameter of the overall content of unburned in the combustion gases is chosen as the image parameter.
  • the carbon monoxide (CO) content which is measured, to determine said stoichiometric ratio, in the suction pipe of said suction ramp which is connected to the partition of the standard partition line in the first chamber of preheating, said threshold of this image parameter corresponding to the stoichiometric ratio being about 500 ppm of CO measured at said suction pipe, which corresponds, under the standard operating conditions of this type of furnace, to a level of 1000 ppm of CO at the point of combustion.
  • the process of the invention can be implemented without it is necessary to implement a specific detection and / or measurement apparatus, but only by using measurement data already available, because provided by sensors of a detection instrumentation already installed on such furnaces, the implementation of the method of the invention being carried out only through a software module that can simply and easily be integrated into the current programs for driving such ovens.
  • the method according to the present application can be completed by the fact that after the characterization steps for identifying and to select the partition lines in incomplete combustion, it is possible to implement at least one subsequent step called optimization of combustion.
  • such an optimization of the combustion can consist in automatically modifying control parameters in the zones of preheating, heating and / or natural cooling of the oven, in order to balance the stoichiometric ratio RS combustion air on fuel, in order to recover a complete combustion situation, which can be defined simply by passing the value of said image parameter under a parameterizable threshold.
  • the method of the present application can be advantageously such that, following said optimization step, at least one complementary step of characterization of the combustion as defined above, in the lines of non-preselected partitions, as also indicated above, among the partition lines assumed to be incomplete combustion, is activated if at least one step of optimizing the combustion as mentioned above did not recover a complete combustion situation.
  • FIGS. 1 and 2 are respectively a schematic plan view of the structure of a furnace with two rotating lights and open chambers, and a partial perspective view and cross section with tearing representing the internal structure of such an oven,
  • FIG. 3 is a double graph showing the evolution, on the one hand, of the measured CO (in ppm) and, on the other hand, of the percentage of residual oxygen in the fumes collected at the suction pipe of the same line of partitions, according to the total injection power, in the partition line, expressed as a percentage of the maximum installed power, according to three values different from the static draft depression measured at the preheating measurement ramp associated with the first preheating chamber of the oven;
  • FIG. 4 is a characterization curve of the combustion in a line of walls of rank n, indicating the measured CO content (in ppm) per line of partitions as a function of the combustion ratio RC C i n ;
  • FIG. 5 is a diagram representing, on the abscissa, the notation of the combustion in a row of partitions of rank n by the note NC C
  • FIG. 6 is a diagram corresponding to an example of a total fuel injection stop test successively in three rows of partitions ⁇ , ⁇ , and ⁇ , and representing, on the ordinate, the value of the total measured CO content. (in ppm) in the suction ramp as a function of time (expressed in minutes), and showing, for the first line of partitions tested, a reduction in the overall measured CO content, due to the test, greater than one indicative threshold of an incomplete combustion state in this line of partitions a.
  • the method of the invention relates to a combustion characterization loop in the partition lines 6 of the furnace 1 by analysis of the total content of carbon monoxide (CO), or any other image parameter of the unburned content, in the fumes collected at the suction ramp 1 1 of a furnace fire 1, where this total CO content is measured by the CO-analyzer-detector 1 4 in the manifold of the suction ramp 1 1 (see Figure 2), and the combustion characterization method in the partition lines 6 comprises a first step of estimating the quality of combustion in each of the rows of partitions 6 and preselection of partition lines estimated in incomplete combustion state, then classification of the partition lines using a rating system, to select partition lines considered incomplete combustion, and defined according to the ratio of the combustion air to the fuel available in each line of partitions 6 and a stoichiometric ratio RS empirically defined by measurements in a line of partitions 6 one, representative of the best state of the rows of walls of the furnace.
  • CO carbon monoxide
  • This first step of the combustion characterization method makes it possible to preselect lines of partitions 6 which are estimated to be incomplete combustion if their so-called combustion ratio RC, which is the ratio of the combustion air to the fuel available for each line of partitions. 6 considered, is lower than the stoichiometric RS ratio presented above.
  • This step of preselecting the partition lines estimated in incomplete combustion is immediately followed by a step of selecting the rows of partitions 6 considered incomplete combustion by classification, according to a rating system of the combustion quality in the partition lines which is based, as already said, on the principle of stoichiometry of the ratio of the amount of combustion air to the amount of fuel available in each line of partitions.
  • the maximum amount of fuel that can be injected at a given moment in a line of partitions 6 depends on the air flow in this line of partitions, or the level of static depression measured in this line partitions at the same time. Below the stoichiometric ratio, combustion is incomplete, and some of the fuels present in the line of partitions no longer burn completely, giving rise to the formation of carbon monoxide (CO).
  • CO carbon monoxide
  • This threshold phenomenon is better perceived by the consideration of FIG. 3, representing, by 3 continuous curves, the CO content measured in ppm by a CO analyzer 14 in the suction pipe 11a (see FIG. a line of partitions considered, as a function of the quantity of fuel injected, expressed as total injection power in said line of partitions considered, and evaluated as a percentage of the maximum installed power, the three continuous curves of CO measurements being established each for one respectively of three different static draw draws in the considered partition line and respectively corresponding to three phantom curves indicative of the percentage of residual oxygen in the flue gases collected in the suction pipe of 1 1 a of the suction ramp January 1 considered, these three different static depressions being measured by the preheating ramp 15 at the level of the pre first chamber 2 preheating.
  • the curves 23, 24 and 25 of the CO content measured (in ppm) to said suction pipe 11a by varying the total injection power from 10% to about 30% of the maximum power installed, with a draw static depression respectively of -140 Pa, -120 Pa and -70 Pa respectively correspond to the curves in phantom lines 26, 27 and 28 indicating the corresponding variation (in continuous reduction) of the percentage of residual oxygen, as indicated on the right ordinate axis of Figure 3, respectively for the same drawdown depressions.
  • the curves of the measured CO 23, 24 and 25 to the suction pipe 11 1 has said line of partitions 6 are little different from each other, and indicate low CO contents (substantially less than 500 ppm), corresponding to a combustion considered complete, while for values of the total injection power greater than 15% of the maximum installed power, the three CO 23, 24 and 25 measuring curves diverge from one another with slopes that are initially increasing and then substantially constant, but as important as the draft depression is small in absolute value.
  • the three measurement curves of CO 23, 24 and 25 give results greater than 1000 ppm, which corresponds to a combustion even more incomplete as the draft depression is low in absolute value.
  • the curves 26, 27 and 28 indicating the variation of the percentage of residual oxygen are decreasing with a negative slope substantially constant and little different from one curve to another.
  • a combustion ratio RC C i n is defined which gives the ratio of the quantity of fuel injected into said line of partition walls of rank n to the quantity of fuel. combustion air available in this same line of partitions of rank n.
  • the amount of combustion air available in the line of partitions of rank n corresponds to the air flow in this line of partitions of rank n, which can be estimated by the calculation of the square root of the static draft depression in this line. of partitions of rank n, measured in the preheating zone A by the preheating measurement ramp 15 (see FIG. 1).
  • the quantity of fuel injected into the same line of partitions of rank n can be directly obtained by summing the powers of the injectors that operate on the same line of partitions.
  • formula (1) expressing the ratio or combustion ratio of this line of partitions of rank n may be the following: where P1 and P7 are the pressures measured in the line of partitions of rank n at the chambers 2 in communication respectively with the suction ramp 1 1 for P1, in the preheating zone A, and with the "point 0" ramp 1 7 in the natural cooling zone C, and where N is the number of heating ramps 1 6, in general equal to 2 or 3, and InjH Ri is the sum of the injector injection powers of the heating ramp 1 6 of rank i where i varies from 1 to N (2 or 3) in the row partition line not.
  • the combustion ratio RCcIn in a line of partitions of rank n is proportional to the square root of the static draft depression measured in the preheating zone A for this line of partitions 6 considered and inversely proportional to the sum of the powers of the injecting fuel injector heating ramps 1 6 operating on the same line of partitions 6 of rank n.
  • FIG. 4 represents, for this row of partitions 6 of rank n, a shaded and curved zone 29, which corresponds to the envelope of the different measurement points of the CO measured in ppm with the corresponding suction pipe 11a. of the variation of the corresponding combustion ratio RCcIn.
  • the threshold value of RC below which the combustion is estimated to be incomplete, that is to say the value of said stoichiometric ratio RS, is empirically defined by observation of the value of CO in a line of partitions representative of the best state oven partitions.
  • a pre-selection of the rows of partitions 6 likely to be in an incomplete combustion situation is further specified that the CO content, chosen in this embodiment as an image parameter of the overall content of unburned in the combustion gases , is measured, for determining the stoichiometric ratio RS, in that of the suction pipes 1 1 a of the suction ramp 1 1 which is connected to that of the partitions 6 which is at the intersection of the line of standard partitions and the first preheating chamber 2, the threshold of the CO content corresponding to the stoichiometric ratio RS being about 500 ppm of CO measured at this suction pipe 11a, which corresponds, under standard conditions of operation of this type of furnace 1, at a level of 1000 ppm CO at the point of combustion.
  • the combustion ratio RCcIn From calculation of the combustion ratio RCcIn, it is also deduced, at least for the lines of partitions 6 estimated in incomplete combustion by comparison of their combustion ratio RCcIn with the stoichiometric ratio RS, but preferably for all the rows of partitions 6 of the furnace 1, a note for classifying the partition lines in descending order from the one with the most incomplete combustion to the one with the least incomplete combustion, or even the most complete if all the partition lines are noted, for example by a system of notation from 0 to 20, defined such that beyond the value 10, the stoichiometric limit is exceeded and combustion is considered incomplete in the corresponding line of partitions.
  • a classification of the pre-selected partition lines as being in incomplete combustion in the manner described above consists in classifying these partition lines in the order from that in which combustion is most incomplete to that in which combustion is the less incomplete by applying the scoring system of the partition lines according to which any line of partitions 6 of rank n is assigned a classification note NCcIn given by the following formula (2):
  • NC C in 20 - 10 (- ⁇ )
  • RCcIn and RS are the previously defined ratios, namely respectively the combustion ratio in the n-rank partition and the stoichiometric ratio.
  • FIG. 5 The result of such a notation is shown, by way of example, in FIG. 5, in which the NCcIn notes are indicated by round dots on a continuous curve which crosses three hatched rectangular zones, one of which extends between the grades 0 and 10 on the abscissa and between 0 and the incomplete combustion threshold of 500 ppm measured CO, for the complete combustion partition lines, a second zone 31 of which extends on the abscissa between the notes 10 and 12 and on the ordinate between the values of 500 and 1000 ppm measured CO, for one or more line (s) of incomplete combustion walls, and finally whose third zone 32 extends for the grades greater than 12 on the abscissa and a CO measured greater than 1000 ppm on the ordinate, for any line of partitions in combustion very incomplete and therefore critical.
  • the NCcIn notes are indicated by round dots on a continuous curve which crosses three hatched rectangular zones, one of which extends between the grades 0 and 10 on the abscissa and between 0 and the incomplete combustion
  • the lines of closions considered in incomplete combustion are thus selected as having a grade greater than 10, which are then each subjected to a step of identification of the incomplete combustion partition lines, using a complete fuel injection stop test for a specified period and in succession on the fuel lines selected partitions, starting with the one with the highest rating and performing the test successively on the partition lines whose burn scores are in descending order.
  • FIG. 6 diagrammatically represents the unfolding of the fuel injection total stopping test successively on three rows of partitions of rank ⁇ , ⁇ and ⁇ , the combustion notes NC of which are progressively decreasing.
  • the overall CO content measured in ppm in the manifold of the suction manifold 1 1 is represented on the ordinate by the CO detector 14 (see FIG. 2), and, on the abscissa, the every minute Curve 33 represents the evolution over time of the overall CO content measured in the manifold of the suction manifold 1 1.
  • the row of partitions 6 of rank at the total stop of the fuel supply of injectors is controlled by heating ramps 16 operating on this line of partitions a, by an almost instantaneous break, starting from from an initial value (for the total stop test) of fuel injection rate to a zero flow, which corresponds to the left side with downward arrow of the rectangle "a", symbolizing the feed control fuel injectors from this line of bulkheads during this total injection stop test.
  • the injection is stopped for a time interval t1 t2 sufficient for the measurement of the CO content to stabilize before the time t2 of the end of the total injection cutoff.
  • the curve 33 of the CO content shows a drop to a stabilized value of, for example, 500 ppm during the interval t1 t2, so that it is possible to measure the ACO value corresponding to the difference between the initial value at time t1 and the final value at time t2 of the CO content due to this interruption of supply. Then, at time t2, the fuel supply of this line of partitions a is restored to its initial value, as symbolized on the right side of the rectangle "a" of Figure 6, by the rising arrow.
  • a time interval t2 t3 elapses, of a duration slightly greater than or substantially equal to the interval t1 t2, itself of the order of 2 minutes, to start at time t3, the same test total stop of fuel injection on the line of partitions of rank ⁇ , knowing that, during the execution of a test of total stop on a line of particular partitions, no modification is controlled on the course of the cooking process in all the other lines of partitions.
  • the duration of the second test, on the line of partitions ⁇ , corresponding to the interval t3 t4, is the same as the duration t1 t2, and the curve 33 of the CO content, which is returned, after the end of the test on the line of partitions a, at a normal level, marks, as a result of the test on the line of partitions ⁇ , a limited reduction in the CO content measured following the total injection stop in the line of partitions ⁇ during the interval t3 t4.
  • the total fuel injection stop test is therefore conducted, line of partitions per line of partitions, on the partition lines previously selected by their NC combustion rating. It is essential that no action be commanded on the lines of partitions 6 other than the one in total injection stop test, during the complete duration of this test, so as not to disturb the characterization of the combustion. This characterization indeed depends on the calculation of the variation of the measured CO content between the initial moment of the test and the final moment, while noting that the measurements of CO content always remain global. The sharp downward inflection then the rise of the curve 33 in FIG. 6 thus reflect the impact of the total fuel injection stoppage in the partition line a on the CO content in the collector. of the intake manifold 1 1, which therefore takes into account the flue gas extracted from all the walls of the oven walls.
  • this value of X depends in particular on the number of partitions 6 per chamber 2 of the oven, as well as the accuracy of measurement and detection threshold values of the CO detector 14, in particular. In general, X% is selected in a range of 5% to 10%.
  • the characterization system implementing the method of the invention must be able to detect at least one partition of rank n among 9 partitions 6 where the combustion tends to become incomplete.
  • Such a step may consist in modifying, preferably automatically, control parameters in at least one of the natural cooling zones C, heating B and preheating A, in order, as far as possible, to balance the combustion ratios on the stoichiometric ratio of combustion air on fuel, to recover a complete combustion situation in as many as possible of the partition lines, this transition to a complete combustion situation that can be defined by the passage of the measured value of the CO content, or by passing the value of at least one other image parameter of the overall unburned content in the combustion gases, below a parameterizable threshold.
  • the method according to the present application proposes at least one additional stage of characterization of the combustion, which is carried out by applying the total injection stop test to those of the partition lines which do not have were preselected, in accordance with the demand method, among the partition lines assumed to be incomplete combustion only because their RC combustion ratio was calculated lower than the stoichiometric RS ratio.
  • this additional characterization step makes it possible to identify partitions whose stoichiometric conditions are satisfactory, having an NC combustion rating of less than 10, in the example of the notation system previously described, but whose physical conditions generate problems. of combustion, because partitions are deformed, pinched or plugged more or less completely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

La méthode comprend des tests successifs d'arrêt total d'injection de combustible, ligne de cloisons (6) par ligne de cloisons, sans action sur les lignes de cloisons (6) autres que celle en test, le calcul de la variation entre les mesures d'un paramètre image de la teneur globale en imbrulés dans les gaz de combustion avant et après l'arrêt total d'injection dans chaque ligne de cloisons (6) testée, et l'identification de toute ligne de cloisons (6) en combustion incomplète si cette variation est supérieure à x % de la valeur initiale dudit paramètre image au début du test correspondant, x % étant de préférence de l'ordre de 5% à 10%.

Description

METHODE DE CARACTERISATION DE LA COMBUSTION DANS DES LIGNES DE CLOISONS D'UN FOUR A CHAMBRES A FEU(X)
TOURNANT(S).
L'invention concerne le domaine des fours à chambres dits à
« feu(x) tournant(s) », pour la cuisson de bloc carbonés, plus particulièrement d'anodes et de cathodes en carbone destinées à la production par électrolyse de l'aluminium, et l'invention a plus particulièrement pour objet une méthode de caractérisation de la combustion dans des lignes de cloisons d'un tel four à chambres.
Des fours à feu(x) tournant(s) pour cuire des anodes sont décrits notamment dans les documents de brevet suivants : US 4,859,175, WO 91 /19147, US 6,339, 729, US 6,436,335 et CA 2550880, auxquels on se reportera pour plus de précisions à leur sujet. On rappelle cependant partiellement leur structure et leur fonctionnement, en référence aux figures 1 et 2 ci-après, représentant respectivement une vue schématisée en plan de la structure d'un four à feu(x) tournant(s) et chambres ouvertes, à deux feux dans cet exemple, pour la figure 1 , et une vue partielle en perspective et coupe transversale avec arrachement représentant la structure interne d'un tel four, pour la figure 2.
Le four à cuire (FAC) 1 comprend deux cuvelages ou travées 1 a et 1 b parallèles, s'étendant selon l'axe longitudinal XX sur la longueur du four 1 et comportant chacun(e) une succession de chambres 2 transversales (perpendiculaires à l'axe XX), séparées les unes des autres par des murs transversaux 3. Chaque chambre 2 est constituée, dans sa longueur, c'est-à-dire dans la direction transversale du four 1 , par la juxtaposition, en alternance, d'alvéoles 4, ouverts à leur partie supérieure, pour permettre le chargement des blocs carbonés à cuire et le déchargement des blocs cuits refroidis, et dans lesquels sont empilés les blocs carbonés 5 à cuire noyés dans une poussière carbonée, et des cloisons chauffantes creuses 6, à parois minces, généralement maintenues espacées par des entretoises 6a transversales. Les cloisons creuses 6 d'une chambre 2 sont dans le prolongement longitudinal (parallèle au grand axe XX du four 1 ) des cloisons creuses 6 des autres chambres 2 de la même travée 1 a ou 1 b, et les cloisons creuses 6 sont en communication les unes avec les autres par des lucarnes 7 à la partie supérieure de leurs parois longitudinales, en regard de passages longitudinaux ménagés à ce niveau dans les murs transversaux 3, de sorte que les cloisons creuses 6 forment des lignes de cloisons longitudinales, disposées parallèlement au grand axe XX du four et dans lesquelles vont circuler des fluides gazeux (air comburant, gaz combustibles et gaz et fumées de combustion) permettant d'assurer la préchauffe et la cuisson des anodes 5, puis leur refroidissement. Les cloisons creuses 6 comportent, en outre, des chicanes 8, pour allonger et répartir plus uniformément le trajet des gaz ou fumées de combustion et ces cloisons creuses 6 sont munies, à leur partie supérieure, d'ouvertures 9, dites « ouvreaux » , obturables par des couvercles amovibles et ménagées dans un bloc de couronnement du four 1 . Les deux travées 1 a et 1 b du four 1 sont mises en communication à leurs extrémités longitudinales par des carneaux de virage 1 0, qui permettent de transférer les fluides gazeux d'une extrémité de chaque ligne de cloisons creuses 6 d'une travée 1 a ou 1 b à l'extrémité de la ligne de cloisons creuses 6 correspondante sur l'autre travée 1 b ou 1 a, de sorte à former des boucles sensiblement rectangulaires de lignes de cloisons creuses 6.
Le principe d'exploitation des fours à feu(x) tournant(s), également dénommés fours « à avancement de feu(x) » , consiste à amener un front de flammes à se déplacer d'une chambre 2 à une autre qui lui est adjacente au cours d'un cycle, chaque chambre 2 subissant successivement des stades de préchauffage, chauffage forcé, plein feu, puis refroidissement (naturel puis forcé).
La cuisson des anodes 5 est réalisée par un ou plusieurs feux ou groupes de feux (deux groupes de feux étant représentés sur la figure 1 , dans une position dans laquelle l'un s'étend, dans cet exemple, sur treize chambres 2 de la travée 1 a et l'autre sur treize chambres 2 de la travée 1 b) qui se déplacent cycliquement de chambre 2 en chambre 2. Chaque feu ou groupe de feux est composé de cinq zones successives A à E, qui sont, comme représenté sur la figure 1 pour le feu de la travée 1 b, et de l'aval vers l'amont par rapport au sens d'écoulement des fluides gazeux dans les lignes de cloisons creuses 6, et dans le sens contraire aux déplacements cycliques de chambre en chambre :
A) Une zone de préchauffage comportant, en se reportant au feu de la travée 1 a, et en tenant compte du sens de rotation des feux indiqué par la flèche au niveau du carneau de virage 10 à l'extrémité du four 1 en haut sur la figure 1 :
- une rampe d'aspiration 1 1 équipée, pour chaque cloison creuse 6 de la chambre 2 au-dessus de laquelle cette rampe d'aspiration s'étend, d'un système de mesure et de réglage du débit des gaz et fumées de combustion par ligne de cloisons creuses 6, ce système pouvant comprendre, dans chaque pipe d'aspiration 1 1 a qui est solidaire de la rampe d'aspiration 1 1 et débouchant dans cette dernière, d'une part, et, d'autre part, engagée dans l'ouverture 9 de l'une respectivement des cloisons creuses 6 de cette chambre 2, un volet d'obturation réglable pivoté par un actionneur de volet, pour le réglage du débit, ainsi qu'un débitmètre 12, légèrement en amont, dans la pipe 1 1 a correspondante, d'un capteur de température (thermocouple) 13 de mesure de la température des fumées de combustion à l'aspiration, et
- une rampe de mesure de préchauffage 15, sensiblement parallèle à la rampe d'aspiration 1 1 en amont de cette dernière, généralement, au-dessus de la même chambre 2, et équipée de capteurs de température (thermocouples) et de capteurs de pression pour préparer la dépression statique et la température régnant dans chacune des cloisons creuses 6 de cette chambre 2 afin de pouvoir afficher et régler cette dépression et cette température de la zone de préchauffage;
B) Une zone de chauffage comportant :
- plusieurs rampes de chauffage identiques 16, deux ou, de préférence, trois, comme représenté sur la figure 1 ; chacune équipée de brûleurs ou d'injecteurs de combustible (liquide ou gazeux) et de capteurs de température (thermocouples), chacune des rampes 16 s'étendant au-dessus de l'une des chambres respectivement d'un nombre correspondant de chambres 2 adjacentes, de sorte que les injecteurs de chaque rampe de chauffage 16 sont engagés dans les ouvertures 9 des cloisons creuses 6 pour y injecter le combustible ;
C) Une zone de soufflage ou de refroidissement naturel comportant :
- une rampe dite de « point zéro » 17, s'étendant au-dessus de la chambre 2 immédiatement en amont de celle en dessous de la rampe de chauffage 16 la plus en amont, et équipée de capteurs de pression pour mesurer la pression régnant dans chacune des cloisons creuses 6 de cette chambre 2, afin de pouvoir régler cette pression comme indiqué ci-après, et - une rampe de soufflage 1 8, équipée de moto ventilateurs munis d'un dispositif permettant le réglage du débit d'air ambiant insufflé dans chacune des cloisons creuses 6 d'une chambre 2 en amont de celle située sous la rampe de point zéro 1 7, de sorte que les débits d'air ambiant insufflés dans ces cloisons creuses 6 peuvent être régulées de sorte à obtenir une pression voulue (légère surpression ou légère dépression) au niveau de la rampe de point zéro 1 7 ;
D) Une zone de refroidissement forcé, qui s'étend sur trois chambres 2 en amont de la rampe de soufflage 1 8, et qui comporte, dans cet exemple, deux rampes de refroidissement 1 9 parallèles, chacune équipée de moto ventilateurs et de pipes de soufflage insufflant de l'air ambiant dans les cloisons creuses 6 de la chambre 2 correspondante ; et E) Une zone de travail, s'étendant en amont des rampes de refroidissement 1 9 et permettant l'enfournement et le défournement des anodes 5, et l'entretien des chambres 2.
Le chauffage du four 1 est ainsi assuré par les rampes de chauffage 1 6, dont les injecteurs des brûleurs sont introduits, via les ouvertures 9, dans les cloisons creuses 6 des chambres 2 concernées. En amont des rampes de chauffage 1 6 (par rapport au sens d'avancement du feu et au sens de circulation de l'air et des gaz et fumées de combustion dans les lignes de cloisons creuses 6), la rampe de soufflage 1 8 et la ou les rampe(s) de refroidissement 1 9 comportent des pipes d'insufflation d'air de combustion alimentées par des moto ventilateurs, ces pipes étant connectées, via les ouvertures 9, aux cloisons creuses 6 des chambres 2 concernées. En aval des rampes de chauffage 1 6, on dispose de la rampe d'aspiration 1 1 pour extraire les gaz et fumées de combustion, désignés dans leur ensemble par les termes « fumées de combustion » , qui circulent dans les lignes de cloisons creuses 6.
Le chauffage et la cuisson des anodes 5 sont assurés à la fois par la combustion du combustible (gazeux ou liquide) injecté, de manière contrôlée, par les rampes de chauffage 1 6, et, dans une mesure sensiblement égale, par la combustion de matières volatiles (telles que des hydrocarbures aromatiques polycycliques) du brai diffusées par les anodes 5 dans les alvéoles 4 des chambres 2 en zones de préchauffage et chauffage, ces matières volatiles, en grande partie combustible, diffusées dans les alvéoles 4 pouvant s'écouler dans les deux cloisons creuses 6 adjacentes par des passages ménagés dans ces cloisons, pour s'enflammer dans ces deux cloisons, grâce à de l'air comburant résiduel présent, à ce niveau, parmi les fumées de combustion dans ces cloisons creuses 6. Ainsi, la circulation de l'air et des fumées de combustion s'effectue le long des lignes de cloisons creuses 6, et une dépression, imposée en aval de la zone de chauffage B par la rampe d'aspiration 1 1 à l'extrémité aval de la zone de préchauffage A, permet de contrôler le débit des fumées de combustion à l'intérieur des cloisons creuses 6, tandis que l'air provenant des zones de refroidissement C et D, grâce aux rampes de refroidissement 1 9 et surtout à la rampe de soufflage 1 8, est préchauffé dans les cloisons creuses 6, en refroidissant les anodes 5 cuites dans les alvéoles 4 adjacents, au cours de son trajet et sert de comburant lorsqu'il parvient dans la zone de chauffage B. Au fur et à mesure que la cuisson des anodes 5 se produit, on fait avancer cycliquement (par exemples toutes les 24 heures environ) d'une chambre 2 l'ensemble des rampes 1 1 à 1 9 et les équipements et appareillages de mesures et d'enregistrement associés, chaque chambre 2 assurant ainsi, successivement, en amont de la zone de préchauffage A, une fonction de chargement des blocs carbonés crus 5, puis, dans la zone de préchauffage A, une fonction de préchauffage naturel par les fumées de combustion du combustible et des vapeurs de brai qui quittent les alvéoles 4 en pénétrant dans les cloisons creuses 6, compte tenu de la dépression dans les cloisons creuses 6 des chambres 2 en zone de préchauffage A, puis, dans la zone de chauffage B ou de cuisson, une fonction de chauffage des blocs 5 à environ 1 1 00 °C, et enfin, dans les zones de refroidissement C et D, une fonction de refroidissement des blocs cuits 5 par l'air ambiant et, corrélativement, de préchauffage de cet air constituant le comburant du four 1 , la zone de refroidissement forcé D étant suivie, dans le sens opposé au sens d'avancement du feu et de circulation des fumées de combustion, d'une zone E de déchargement des blocs carbonés 5 refroidis, puis éventuellement de chargement des blocs carbonés crus dans les alvéoles 4.
Le procédé de régulation du FAC 1 comprend essentiellement la régulation en température et/ou en pression des zones de préchauffage A, chauffage B et soufflage ou refroidissement naturel C du four 1 en fonction de lois de consignes prédéfinies. Les fumées de combustion extraites des feux par les rampes d'aspiration 1 1 sont collectées dans un conduit des fumées 20, par exemple un conduit cylindrique partiellement représenté sur la figure 2, avec un carneau des fumées 21 pouvant avoir une forme en plan en U (voir en pointillés sur la figure 1 ) ou pouvant faire le tour du four, et dont la sortie 22 dirige les fumées de combustion aspirées et collectées vers un centre de traitement des fumées (CTF) non représenté car ne faisant pas partie de l'invention.
Afin de conférer aux anodes (bloc carbonés) leurs caractéristiques optimales, et donc principalement de garantir l'obtention d'une température finale de cuisson, la conduite actuelle des fours de ce type privilégie l'alimentation en combustible (carburant liquide ou gazeux) des rampes de chauffage 1 6 indépendamment des conditions de dépression de tirage et des conditions aérauliques dans les cloisons 6, d'où il peut résulter une combustion incomplète dans un nombre non négligeable, voir élevé, des lignes de cloisons 6. Ceci a, à son tour, pour conséquence des coûts de fonctionnement élevés du four, non seulement en raison de la surconsommation en combustible, mais également en raison de l'encrassement des gaines et conduits d'aspiration qui mènent à la captation par les dépôts d'imbrûlés, dépôts qui représentent de surcroit un risque potentiel d'inflammation et de dérive du procédé de cuisson.
Le problème à la base de l'invention est, d'une manière générale, d'améliorer l'optimisation en continu du fonctionnement de tels fours, afin d'en réduire les coûts de fonctionnement et prévenir les risques d'incendie et de dérive du procédé de cuisson, et, à cet effet, l'invention propose un procédé ou une méthode de caractérisation de la combustion dans des lignes de cloisons d'un four à chambres dit « à feu(x) tournants ) » pour la cuisson de blocs carbonés, par analyse de la valeur d'au moins un paramètre image de la teneur globale en imbrulés dans les gaz de combustion et de l'air résiduel issus desdites lignes de cloisons et collectés dans une rampe d'aspiration dudit four, ledit four comportant une succession de chambres de préchauffage, de chauffage, de refroidissement naturel et de refroidissement forcé, disposées en série selon l'axe longitudinal du four, chaque chambre étant constituée par la juxtaposition, transversalement audit axe longitudinal et en alternance, d'alvéoles dans lesquels sont disposés des blocs carbonés à cuire et de cloisons chauffantes creuses, en communication et alignées avec les cloisons des autres chambres, parallèlement à l'axe longitudinal du four, en lignes de cloisons dans lesquelles circulent de l'air de refroidissement et comburant et des gaz de combustion, ladite rampe d'aspiration étant reliée à chacune des cloisons de la première chambre en préchauffage par l'une respectivement de pipes d'aspiration, l'air comburant nécessaire étant en partie injecté par une rampe de soufflage de la zone de refroidissement naturel, reliée à au moins un ventilateur, et en partie infiltré par dépression à travers les lignes de cloisons, et le combustible nécessaire à la cuisson des blocs carbonés étant en partie injecté par au moins deux rampes de chauffage s'étendant chacune sur l'une respectivement d'au moins deux chambres adjacentes de la zone de chauffage, et aptes à injecter chacune du combustible dans chacune des cloisons de la chambre respective correspondante de la zone de chauffage, la régulation de la combustion du four comprenant essentiellement une régulation en température et/ou en pression des zones de préchauffage, chauffage et refroidissement naturel, par ligne de cloisons, en fonction de lois de consignes prédéfinies en température et/ou en pression, et ladite méthode de caractérisation de la combustion se caractérise en ce qu'elle comprend au moins une étape de tests successifs d'arrêt total d'injection de combustible, ligne de cloisons par ligne de cloisons, d'une durée suffisante pour que la mesure dudit paramètre image de la teneur globale en imbrulés dans les gaz de combustion se stabilise, et sans commander d'action sur les lignes de cloisons autres que celle en test d'arrêt total d'injection pendant la durée de ce test, la caractérisation de la combustion étant basée sur le calcul de la variation entre les mesures dudit paramètre image prises avant et après l'arrêt total d'injection dans chacune des lignes de cloisons testées, afin d'identifier une ou plusieurs lignes de cloisons en situation de combustion incomplète, si ladite variation est supérieure à x % de la valeur dudit paramètre image au début dudit test d'arrêt total d'injection, x % étant, de préférence, de l'ordre de 5% à 10%, la valeur de x dépendant notamment du nombre de cloisons par chambre, des valeurs de seuil de détection et de la précision de mesure d'au moins un détecteur dudit paramètre image.
Ainsi, par un test d'arrêt total d'injection du combustible dans une ligne de cloisons seulement pendant une durée suffisante pour stabiliser la mesure du paramètre image, et sans rien modifier sur les autres lignes de cloisons, on peut, grâce au procédé de l'invention, identifier une ligne de cloisons fonctionnant en situation de combustion incomplète, sur laquelle des mesures postérieures d'optimisation de la combustion pourront être prises.
Afin de limiter le nombre de tests d'arrêt d'injection et de permettre au système d'identifier de manière plus rapide la ou les cloisons en situation de combustion incomplète, la méthode selon l'invention comprend de plus au moins une étape antérieure, dite de présélection des lignes de cloisons susceptibles d'être dans une situation de combustion incomplète, et permettant de limiter le nombre de tests d'arrêt d'injection, dans ladite étape de tests successifs d'arrêt total d'injection de combustible, aux seules lignes de cloisons présélectionnées, et consistant à calculer, pour chaque ligne de cloisons de rang n, un ratio de combustion, égal au rapport de la quantité d'air comburant disponible à la quantité de combustible injecté dans ladite ligne de cloisons de rang n, à définir empiriquement un rapport limite dit stœchiométrique à partir de mesures dudit paramètre image de la teneur en imbrulés dans les gaz de combustion collectés en sortie d'une ligne de cloisons étalon, représentative du meilleur état des lignes de cloisons du four, et de sorte que ce rapport stœchiométrique corresponde à un seuil mesuré dudit paramètre image en dessous duquel la combustion est considérée comme incomplète, à comparer le ratio de combustion de toutes les lignes de cloisons au rapport stœchiométrique, et à considérer comme incomplète la combustion dans toute ligne de cloisons de rang n pour laquelle le ratio de combustion correspondant est inférieur au rapport stœchiométrique.
Ainsi, l'identification des lignes de cloisons en situation de combustion incomplète, grâce au test d'arrêt total d'injection, est avantageusement précédée d'une présélection des lignes de cloisons susceptibles d'être dans cette situation de combustion incomplète, grâce aux calculs, d'une part, du ratio de combustion pour chacune de toutes les lignes de cloisons du four, et, d'autre part, dudit rapport stœchiométrique, défini empiriquement à partir de mesures du paramètre image dans une ligne de cloisons étalon, choisie comme étant représentative du meilleur état des lignes de cloisons et enfin par la comparaison de chaque ratio de combustion au rapport stœchiométrique, pour en déduire quelle(s) est ou sont la ou les lignes de combustion, dans laquelle ou lesquelles la combustion peut être considérée comme incomplète.
Dans un mode de mise en œuvre avantageux de la méthode de caractérisation de la combustion selon la présente demande, dans ladite étape de présélection des lignes de cloisons en combustion incomplète, on peut calculer le ratio de combustion (RCcIn) dans une ligne de cloisons de rang n comme étant proportionnel à la racine carrée de la dépression statique de tirage mesurée dans la zone de préchauffage pour ladite ligne de cloisons considérée, et inversement proportionnel à la somme des puissances d'injection de combustible des injecteurs des rampes de chauffage opérant sur la même ligne de cloisons de rang n.
En particulier, lors de cette étape de présélection, le ratio de combustion de la ligne de cloisons de rang n peut être aisément calculé en appliquant la formule suivante :
Figure imgf000013_0001
où Pi et P7 sont les pressions mesurées dans les cloisons de rang n des chambres en communication respectivement avec la rampe d'aspiration et la rampe dite de « point zéro » dans la zone de refroidissement naturel, N est le nombre de rampes de chauffage, en général égal à 2 ou 3, et InjHRi est la puissance d'injection totale dans la cloison de rang n des injecteurs de la rampe de chauffage de rang i, où i varie de 1 à N.
Avantageusement, de plus, dans la méthode de caractérisation selon la présente demande, l'étape de présélection des lignes de cloisons en combustion incomplète peut également comprendre une étape qui consiste à classer les lignes de cloisons en combustion incomplète dans l'ordre allant de celle où la combustion est la plus incomplète à celle où la combustion est la moins incomplète, en appliquant un système de notation des lignes de cloisons selon lequel on attribue à toute ligne de cloisons de rang n une note de classement NCCin donnée par la formule suivante : (2) NCcln = 20 - 10 (— ^ ) .
En outre, afin d'en tirer rapidement une information de présélection facile à utiliser, on peut effectuer l'étape de classement des lignes de cloisons en considérant avantageusement que, pour une ligne de cloisons de rang n en bon état, la combustion est complète si NCCin<10, la combustion est incomplète si 10<NCCin <12, et la combustion est très incomplète, et donc critique, si NCCin>12.
Pour assurer une mise en œuvre de cette méthode de caractérisation qui est avantageuse au plan de la simplicité des moyens de détection et du traitement des signaux fournis par ces moyens, on choisit, comme paramètre image de la teneur globale en imbrulés dans les gaz de combustion, la teneur en monoxyde de carbone (CO), qui est mesurée, pour déterminer ledit rapport stœchiométrique, dans la pipe d'aspiration de ladite rampe d'aspiration qui est reliée à la cloison de la ligne de cloisons étalon dans la première chambre de préchauffage, ledit seuil de ce paramètre image auquel correspond le rapport stœchiométrique étant d'environ 500 ppm de CO mesuré à ladite pipe d'aspiration, ce qui correspond, dans les conditions standards de fonctionnement de ce type de four, à un niveau de 1000 ppm de CO au point de combustion.
Ainsi, comme un détecteur de monoxyde de carbone peut déjà être présent, dans de tels fours de l'état de la technique, dans les collecteurs de la rampe d'aspiration, le procédé de l'invention peut être mis en œuvre sans qu'il soit nécessaire d'implanter un appareillage de détection et/ou de mesure spécifique, mais uniquement en utilisant des données de mesures déjà disponibles, car fournies par des capteurs d'une instrumentation de détection déjà implantée sur de tels fours, la mise en œuvre du procédé de l'invention s'effectuant uniquement grâce à un module logiciel qui peut simplement et facilement être intégré aux programmes actuels de conduite de tels fours.
En outre, la méthode selon la présente demande peut être complétée par le fait qu'après les étapes de caractérisation permettant d'identifier et de sélectionner les lignes de cloisons en combustion incomplète, on peut mettre en œuvre au moins une étape postérieure dite d'optimisation de la combustion.
Avantageusement, une telle optimisation de la combustion peut consister à modifier automatiquement des paramètres de régulation dans les zones de préchauffage, chauffage et/ou refroidissement naturel du four, afin d'équilibrer le rapport stœchiométrique RS air comburant sur combustible, dans le but de recouvrer une situation de combustion complète, qui peut être définie simplement par le passage de la valeur dudit paramètre image sous un seuil paramétrable.
Mais, que cette étape d'optimisation soit conduite comme précisé au paragraphe précédent, ou d'une toute autre manière, la méthode de la présente demande peut être avantageusement telle que, suite à ladite étape d'optimisation, au moins une étape complémentaire de caractérisation de la combustion telle que définie ci-dessus, dans les lignes de cloisons non présélectionnées, de la manière également indiquée ci-dessus, parmi les lignes de cloisons supposées en combustion incomplète, est activée si au moins une étape d'optimisation de la combustion telle qu'évoquée ci-dessus n'a pas permis de recouvrer une situation de combustion complète.
D'autres caractéristiques et avantages de l'invention ressortiront de la description donnée ci-après, à titre non limitatif, en référence aux dessins annexés sur lesquels :
- les figures 1 et 2, déjà décrites ci-dessus, sont respectivement une vue schématisée en plan de la structure d'un four à deux feux tournants et chambres ouvertes, et une vue partielle en perspective et coupe transversale avec arrachement représentant la structure interne d'un tel four,
- la figure 3 est un graphique double représentant l'évolution, d'une part, du CO mesuré (en ppm) et, d'autre part, du pourcentage d'oxygène résiduel dans les fumées collectées à la pipe d'aspiration d'une même ligne de cloisons, en fonction de la puissance d'injection totale, dans la ligne de cloisons, exprimée en pourcentage de la puissance maximum installée, selon trois valeurs différentes de la dépression statique de tirage mesurées au niveau de la rampe de mesure de préchauffage associée à la première chambre de préchauffage du four ;
- la figure 4 est une courbe de caractérisation de la combustion dans une ligne de cloisons de rang n, indiquant la teneur en CO mesurée (en ppm) par ligne de cloisons en fonction du rapport de combustion RCCin ;
- la figure 5 est un diagramme représentant, en abscisse, la notation de la combustion dans une ligne de cloisons de rang n par la note NCC|n, résultant de la mise en œuvre du système de classification de la combustion selon la présente demande, alors que la teneur en CO mesurée (en ppm) par ligne de cloisons dans la pipe d'aspiration correspondante est représentée en ordonnées, et
- la figure 6 est un diagramme correspondant à un exemple de test d'arrêt total d'injection de combustible successivement dans trois lignes de cloisons α, β, et γ, et représentant, en ordonnées, la valeur de la teneur en CO globale mesurée (en ppm) dans la rampe d'aspiration en fonction du temps (exprimé en minute), et faisant apparaître, pour la première ligne de cloisons a testée, une réduction de la teneur en CO globale mesurée, due au test, supérieure à un seuil indicatif d'un état de combustion incomplète dans cette ligne de cloisons a.
Le procédé de l'invention concerne une boucle de caractérisation deombustion dans les lignes de cloisons 6 du four 1 par analyse de la teneur globale en monoxyde de carbone (CO), ou de tout autre paramètre image de la teneur en imbrulés, dans les fumées collectées à la rampe d'aspiration 1 1 d'un feu du four 1 , où cette teneur globale en CO est mesurée par l'analyseur-détecteur de CO 1 4 dans le collecteur de la rampe d'aspiration 1 1 (voir figure 2), et la méthode de caractérisation de la combustion dans les lignes de cloisons 6 comporte une première étape d'estimation de la qualité de combustion dans chacune des lignes de cloisons 6 et de présélection de lignes de cloisons estimées en état de combustion incomplète, puis de classement des lignes de cloisons en utilisant un système de notation, permettant de sélectionner des lignes de cloisons considérées en combustion incomplète, et défini en fonction du rapport de l'air comburant au combustible disponibles dans chaque ligne de cloisons 6 et d'un rapport stœchiométrique RS défini empiriquement par mesures dans une ligne de cloisons 6 étalon, représentative du meilleur état des lignes de cloisons du four.
Cette première étape de la méthode de caractérisation de la combustion permet de présélectionner des lignes de cloisons 6 qui sont estimées en combustion incomplète si leur rapport dit de combustion RC, qui est le rapport de l'air comburant au carburant disponibles pour chaque ligne de cloisons 6 considérée, est inférieur au rapport stœchiométrique RS présenté ci-dessus.
Cette étape de présélection des lignes de cloisons estimées en combustion incomplète est immédiatement suivie d'une étape de sélection des lignes de cloisons 6 considérées en combustion incomplète par classement, selon un système de notation de la qualité de combustion dans les lignes de cloisons qui est basé, comme déjà dit, sur le principe de la stœchiométrie du rapport de la quantité d'air comburant à la quantité de combustible disponibles dans chaque ligne de cloisons.
En effet, la quantité maximale de combustible que l'on peut injecter à un instant donné dans une ligne de cloisons 6 dépend du débit d'air dans cette ligne de cloisons, ou du niveau de dépression statique mesuré dans cette ligne de cloisons au même instant. En deçà du rapport stœchiométrique, la combustion est incomplète, et une partie des combustibles en présence dans la ligne de cloisons ne brûle plus complètement, donnant naissance à la formation de monoxyde de carbone (CO).
Ce phénomène de seuil est mieux perçu par la considération de la figure 3, représentant, par 3 courbes continues, la teneur de CO mesurée en ppm par un analyseur de CO 14 dans la pipe d'aspiration 1 1 a (voir figure 2) d'une ligne de cloisons considérée, en fonction de la quantité de combustible injectée, exprimée en puissance d'injection totale dans ladite ligne de cloisons considérée, et évaluée en pourcentage de la puissance maximum installée, les trois courbes continues de mesures du CO étant établies chacune pour l'une respectivement de trois dépressions statiques de tirage différentes dans la ligne de cloisons considérée et correspondant respectivement à trois courbes en traits mixtes indicatives du pourcentage d'oxygène résiduel dans les gaz de fumées collectés dans la pipe d'aspiration de 1 1 a de la rampe d'aspiration 1 1 considérée, ces trois dépressions statiques différentes étant mesurées par la rampe de préchauffage 15, au niveau de la première chambre 2 de préchauffage.
Ainsi, les courbes 23, 24 et 25 de la teneur en CO mesurées (en ppm) à ladite pipe d'aspiration 1 1 a en faisant varier la puissance d'injection totale de 10% à environ 30% de la puissance maximum installée, avec une dépression statique de tirage respectivement de -140 Pa, - 120 Pa et -70 Pa, correspondent respectivement aux courbes en traits mixtes 26, 27 et 28 indiquant la variation correspondante (en réduction continue) du pourcentage d'oxygène résiduel, comme indiqué sur l'axe des ordonnées de droite de la figure 3, respectivement pour les mêmes dépressions de tirage.
On remarque que, pour une puissance d'injection totale dans une ligne de cloisons 6 comprise entre 10% et 15% de la puissance maximum installée, les courbes du CO mesuré 23, 24 et 25 à la pipe d'aspiration 1 1 a de la dite ligne de cloisons 6 sont peu différentes l'une de l'autre, et indiquent de faibles teneurs en CO (sensiblement inférieures à 500 ppm), correspondant à une combustion considérée comme complète, tandis que pour des valeurs de la puissance d'injection totale supérieures à 15% de la puissance maximum installée, les trois courbes de mesure du CO 23, 24 et 25 divergent l'une de l'autre avec des pentes d'abord progressivement croissantes puis sensiblement constantes, mais d'autant plus importantes que la dépression de tirage est faible en valeur absolue. De plus, pour une puissance d'injection totale par ligne de cloisons supérieure à environ 25% de la puissance maximum installée, les trois courbes de mesure du CO 23, 24 et 25 donnent des résultats supérieurs à 1000 ppm, ce qui correspond à une combustion d'autant plus incomplète que la dépression de tirage est faible en valeur absolue. Simultanément, les courbes 26, 27 et 28 indiquant la variation du pourcentage d'oxygène résiduel sont décroissantes avec une pente négative sensiblement constante et peu différente d'une courbe à l'autre.
En se basant sur cette constatation, on définit, pour chaque ligne de cloisons 6 de rang n, un ratio de combustion RCCin qui donne le rapport de la quantité de combustible injecté dans ladite ligne de cloisons de rang n à la quantité d'air comburant disponible dans cette même ligne de cloisons de rang n. La quantité d'air comburant disponible dans la ligne de cloisons de rang n correspond au débit d'air dans cette ligne de cloisons de rang n, qui peut être estimé par le calcul de la racine carrée de la dépression statique de tirage dans cette ligne de cloisons de rang n, mesurée dans la zone de préchauffage A par la rampe de mesure de préchauffage 15 (voir figure 1 ).
La quantité de combustible injectée dans la même ligne de cloisons de rang n peut être directement obtenue par sommation des puissances des injecteurs qui opèrent sur cette même ligne de cloisons.
Ainsi, la formule (1 ) exprimant le rapport ou ratio de combustion de cette ligne de cloisons de rang n, soit RCcIn, peut être la suivante :
Figure imgf000019_0001
où P1 et P7 sont les pressions mesurées dans la ligne de cloisons de rang n au niveau des chambres 2 en communication respectivement avec la rampe d'aspiration 1 1 pour P1 , dans la zone de préchauffage A, et avec la rampe de « point 0 » 1 7 dans la zone de refroidissement naturel C, et où N est le nombre de rampes de chauffage 1 6, en général égal à 2 ou 3, et InjH Ri est la somme des puissances d'injection des injecteurs de la rampe de chauffage 1 6 de rang i où i varie de 1 à N (2 ou 3) dans la ligne de cloison de rang n. On note de plus que chaque rampe de chauffage 1 6 comporte généralement deux injecteurs par cloison 6 de la même chambre 2 correspondante, de sorte que si N = 3, comme dans l'exemple de la figure 1 (avec trois rampes de chauffage 1 6), une ligne de cloisons de rang n est alimentée en combustible par six injecteurs. Ainsi, le rapport de combustion RCcIn dans une ligne de cloisons de rang n est proportionnel à la racine carrée de la dépression statique de tirage mesurée dans la zone de préchauffage A pour cette ligne de cloisons 6 considérée et inversement proportionnel à la somme des puissances d'injection de combustible des injecteurs des rampes de chauffage 1 6 opérant sur cette même ligne de cloisons 6 de rang n.
La figure 4 représente, pour cette ligne de cloisons 6 de rang n, une zone hachurée et cintrée 29, qui correspond à l'enveloppe des différents points de mesure du CO mesuré en ppm à la pipe d'aspiration 1 1 a correspondante en fonction de la variation du rapport de combustion correspondant RCcIn. La valeur seuil de RC en deçà de laquelle la combustion est estimé incomplète, c'est-à-dire la valeur dudit rapport stœchiométrique RS, est définie de manière empirique par observation de la valeur du CO dans une ligne de cloisons représentative du meilleur état des cloisons du four.
Au delà d'une valeur de 1000 ppm de CO non dilué, qui correspond approximativement à une valeur de 500 ppm mesurée au détecteur de CO 14 dans la pipe d'aspiration 1 1 a (figure 2) compte tenu de la dilution dans le four 1 , la combustion est considérée incomplète. Sur la figure 4, le seuil de combustion incomplète est donc indiqué à 500 ppm de CO mesuré, ce qui correspond à une valeur du rapport stœchiométrique RS d'environ 6, à l'intersection de la zone hachurée 29 de l'enveloppe des points de mesure du CO mesuré et du seuil de combustion incomplète de 500 ppm.
On réalise ainsi une présélection des lignes de cloisons 6 susceptibles d'être dans une situation de combustion incomplète, étant encore précisé que la teneur en CO, choisie dans cet exemple de réalisation comme paramètre image de la teneur globale en imbrulés dans les gaz de combustion, est mesurée, pour déterminer le rapport stœchiométrique RS, dans celle des pipes d'aspiration 1 1 a de la rampe d'aspiration 1 1 qui est reliée à celle des cloisons 6 qui se trouve à l'intersection de la ligne de cloisons étalon et de la première chambre 2 de préchauffage, le seuil de la teneur en CO auquel correspond le rapport stœchiométrique RS étant d'environ 500 ppm de CO mesuré à cette pipe d'aspiration 1 1 a, ce qui correspond, dans des conditions standards de fonctionnement de ce type de four 1 , à un niveau de 1000 ppm de CO au point de combustion.
Du calcul du rapport de combustion RCcIn, on déduit également, au moins pour les lignes de cloisons 6 estimées en combustion incomplète par comparaison de leur rapport de combustion RCcIn avec le rapport stœchiométrique RS, mais de préférence pour toutes les lignes de cloisons 6 du four 1 , une note permettant de classer les lignes de cloisons par ordre décroissant de celle ayant la combustion la plus incomplète à celle ayant la combustion la moins incomplète, voire la plus complète si toutes les lignes de cloisons sont notées, par exemple par un système de notation de 0 à 20, défini de telle sorte qu'au-delà de la valeur 10, la limite stœchiométrique est dépassée et la combustion est considérée comme incomplète dans la ligne de cloisons correspondante.
A titre d'exemple, un classement des lignes de cloisons présélectionnées comme étant en combustion incomplète de la manière décrite ci-dessus, consiste à classer ces lignes de cloisons dans l'ordre allant de celle où la combustion est la plus incomplète à celle où la combustion est la moins incomplète en appliquant le système de notation des lignes de cloisons selon lequel on attribue à toute ligne de cloisons 6 de rang n une note de classement NCcIn donnée par la formule (2) suivante :
RC
(2) NCCin = 20 - 10 (— ^ ) , où RCcIn et RS sont les rapports précédemment définis, à savoir respectivement le rapport de combustion dans la cloison de rang n et le rapport stœchiométrique.
Les lignes de cloisons ayant été notées de 0 à 20, en fonction de leur rapport respectif RCcnl/RS, on considère que si la note de combustion NCcIn est inférieure à 10, la combustion est complète, tandis que si cette note de combustion NCcIn est comprise entre 10 et 12, la combustion est incomplète, cette combustion étant même très incomplète, et donc critique, si la note NCcIn est supérieure à 12.
Le résultat d'une telle notation est représenté, à titre d'exemple, sur la figure 5, sur laquelle les notes NCcIn sont indiquées par des points ronds sur une courbe continue qui traverse trois zones rectangulaires hachurées, dont l'une 30 s'étend entre les notes 0 et 10 en abscisse et entre 0 et le seuil de combustion incomplète de 500 ppm de CO mesuré, pour les lignes de cloisons en combustion complète, dont une deuxième zone 31 s'étend en abscisse entre les notes 10 et 12 et en ordonnée entre les valeurs de 500 et 1000 ppm de CO mesuré, pour une ou des ligne(s) de cloisons en combustion incomplète, et enfin dont la troisième zone 32 s'étend pour les notes supérieures à 12 en abscisse et un CO mesuré supérieur à 1000 ppm en ordonnée, pour toute ligne de cloisons en combustion très incomplète et donc critique.
Par une telle notation, on sélectionne ainsi les lignes de closions considérées en combustion incomplète, comme ayant une note supérieure à 10, que l'on soumet ensuite chacune à une étape d'identification des lignes de cloisons en combustion incomplète, à l'aide d'un test d'arrêt total d'injection du combustible pendant une durée déterminée et en succession sur les lignes de cloisons sélectionnées, en commençant par celle ayant la note la plus élevée et en effectuant le test successivement sur les lignes de cloisons dont les notes de combustion sont par ordre décroissant.
La figure 6 représente schématiquement le déroulement du test d'arrêt total d'injection de combustible successivement sur trois lignes de cloisons de rang α, β et γ, dont les notes de combustion NC sont progressivement décroissantes. Sur la figure 6, on a représenté en ordonnée la teneur en CO globale mesurée en ppm dans le collecteur de la rampe d'aspiration 1 1 par le détecteur de CO 14 (voir figure 2), et, en abscisse, on a indiqué le temps en minute. La courbe 33 représente l'évolution dans le temps de la teneur en CO globale mesurée dans le collecteur de la rampe d'aspiration 1 1 ,. A l'instant t1 , on commande sur la ligne de cloisons 6 de rang a l'arrêt total de l'alimentation en carburant des injecteurs des rampes de chauffage 16 opérant sur cette ligne de cloisons a, par une coupure quasi instantanée, à partir d'une valeur initiale (pour le test d'arrêt total) de débit d'injection de carburant jusqu'à un débit nul, ce qui correspond au côté gauche avec flèche descendante du rectangle « a », symbolisant la commande d'alimentation des injecteurs de carburant de cette ligne de cloisons a pendant ce test d'arrêt total d'injection. L'injection est arrêtée pendant un intervalle de temps t1 t2 suffisant pour que la mesure de la teneur en CO se stabilise avant l'instant t2 de la fin de la coupure totale d'injection. La courbe 33 de la teneur en CO marque une chute jusqu'à une valeur stabilisée de, par exemple, 500 ppm au cours de l'intervalle t1 t2, de sorte qu'il est possible de mesurer la valeur ACO correspondant à la différence entre la valeur initiale à l'instant t1 et la valeur finale à l'instant t2 de la teneur en CO du fait de cette interruption d'alimentation. Puis, à l'instant t2, l'alimentation en combustible de cette ligne de cloisons a est rétablie à sa valeur initiale, comme symbolisé sur le côté droit du rectangle « a » de la figure 6, par la flèche montante. Puis il s'écoule un intervalle de temps t2 t3, d'une durée légèrement supérieure ou sensiblement égale à l'intervalle t1 t2, lui-même de l'ordre de 2 minutes, pour commencer à l'instant t3, le même test d'arrêt total d'injection de combustible sur la ligne de cloisons de rang β, sachant que, pendant l'exécution d'un test d'arrêt total sur une ligne de cloisons particulière, aucune modification n'est commandée sur le déroulement du processus de cuisson dans toutes les autres lignes de cloisons. La durée du second test, sur la ligne de cloisons β, correspondant à l'intervalle t3 t4, est la même que la durée t1 t2, et la courbe 33 de la teneur en CO, qui est revenue, après la fin du test sur la ligne de cloisons a, à un niveau normal, ne marque, en conséquence du test sur la ligne de cloisons β, qu'une diminution limitée de la teneur de CO mesurée suite à l'arrêt total d'injection dans la ligne de cloisons β pendant l'intervalle t3 t4. Il en est de même pour le troisième test d'arrêt total d'injection, conduit sur la ligne de cloisons γ pendant l'intervalle de temps t5 t6, d'une même durée d'environ 2 min que les durées des autres tests t1 t2 et t3 t4, de sorte qu'à chaque fois, la mesure de la teneur en CO pendant chaque test peut se stabiliser suite à cette coupure d'injection de carburant, et qu'elle peut à nouveau se stabiliser suite à la fin de la coupure de l'alimentation en carburant, pendant l'intervalle de temps séparant deux tests successifs.
Pour chaque test, la réduction de la teneur en CO qui en découle, ACO, est comparée à un pourcentage X de la valeur initiale de la teneur en CO au début de ce test, COi, et, comme cela est le cas pour la ligne de cloisons a, si ACO est supérieur à X% de COi, la ligne de cloisons a est identifiée comme étant en combustion incomplète, ce qui n'est pas le cas des lignes de cloisons β et Y, si l'on considère la courbe 33 de la figure 6.
Le test d'arrêt total d'injection de combustible est donc mené, ligne de cloisons par ligne de cloisons, sur les lignes de cloisons préalablement sélectionnées par leur notation de combustion NC. Il est essentiel qu'aucune action ne soit commandée sur les lignes de cloisons 6 autres que celle en test d'arrêt total d'injection, pendant la durée complète de ce test, afin de ne pas perturber la caractérisation de la combustion. Cette caractérisation dépend en effet du calcul de la variation de la teneur en CO mesurée entre l'instant initial du test et l'instant final, en notant que les mesures de teneur en CO restent toujours globales. L'inflexion brutale vers le bas puis la remontée de la courbe 33 sur la figure 6 traduisent donc bien l'incidence de l'arrêt total d'injection de combustible dans la ligne de cloisons a sur la teneur en CO dans le collecteur de la rampe d'admission 1 1 , qui prend donc en compte les gaz de fumées extraits de toutes les lignes de cloisons du four.
Concernant le seuil de X % de la valeur de la teneur en COi au début de chaque test d'arrêt total d'injection, cette valeur de X dépend notamment du nombre de cloisons 6 par chambre 2 du four, ainsi que de la précision de mesure et des valeurs de seuil de détection du détecteur de CO 14, en particulier. En général, X % est choisi dans une plage de 5% à 10%. Typiquement, pour un four 1 à 9 cloisons 6 par chambre 2, le système de caractérisation mettant en œuvre le procédé de l'invention doit pouvoir détecter au moins une cloison de rang n parmi 9 cloisons 6 où la combustion tend à devenir incomplète. Si l'on considère que les débits circulant dans chaque ligne de cloisons, et donc dans chaque cloison, sont équivalents, la baisse de la teneur en CO consécutive à l'arrêt de l'injection de combustible dans la cloison de rang n sera d'au moins égale à ACOn = 500 ppm/9 = 56 ppm, du fait de la dilution, soit environ X = 1 0% de la teneur en CO mesurée au collecteur de la rampe d'aspiration 1 1 , où cette teneur est égale à au moins 500 ppm.
Après avoir ainsi sélectionné les lignes de cloisons considérées en combustion incomplète, à l'aide du rapport stœchiométrique RS, des rapports de combustion RC des lignes de cloisons, de la comparaison des rapports de combustion au rapport stœchiométrique, et de l'attribution de notes de combustion NC aux lignes de cloisons, puis après l'identification des lignes de cloisons en combustion incomplète par le test d'arrêt total d'injection de combustible, au moins une étape postérieure, dite d'optimisation de la combustion, peut être mise en œuvre.
Une telle étape peut consister à modifier, de préférence automatiquement, des paramètres de régulation dans l'une au moins des zones de refroidissement naturel C, chauffage B et préchauffage A, afin, autant que possible, d'équilibrer les rapports de combustion sur le rapport stœchiométrique air comburant sur combustible, pour recouvrer une situation de combustion complète dans un nombre aussi élevé que possible des lignes de cloisons, ce passage à une situation de combustion complète pouvant être défini par le passage de la valeur mesurée de la teneur en CO, ou par le passage de la valeur d'au moins un autre paramètre image de la teneur globale en imbrûlé dans les gaz de combustion, sous un seuil paramétrable.
Mais, si la ou les étapes d'optimisation de la combustion, telles que présentées d'une manière générale ci-dessus, n'a ou n'ont pas permis de recouvrer une situation de combustion complète pour l'ensemble des lignes de cloisons du four 1 , alors la méthode selon la présente demande propose au moins une étape complémentaire de caractérisation de la combustion, qui s'effectue par l'application du test d'arrêt total d'injection sur celles des lignes de cloisons n'ayant pas été présélectionnées, conformément à la méthode selon la demande, parmi les lignes de cloisons supposées en combustion incomplète, du seul fait que leur rapport de combustion RC a été calculé inférieur au rapport stœchiométrique RS. De plus, cette étape complémentaire de caractérisation permet d'identifier des cloisons dont les conditions stœchiométriques sont satisfaisantes, ayant une notation de combustion NC inférieure à 10, dans l'exemple de système de notation précédemment décrit, mais dont les conditions physiques génèrent des problèmes de combustion, du fait que des cloisons sont déformées, pincées ou bouchées plus ou moins complètement.

Claims

REVENDICATIONS
Méthode de caractérisation de la combustion dans des lignes de cloisons d'un four à chambres dit « à feu(x) tournant(s) » pour la cuisson de blocs carbonés (5), par analyse de la valeur d'au moins un paramètre image de la teneur globale en imbrulés dans les gaz de combustion et de l'air résiduel issus desdites lignes de cloisons (6) et collectés dans une rampe d'aspiration (1 1 ) dudit four (1 ), ledit four (1 ) comportant une succession de chambres (2) de préchauffage, de chauffage, de refroidissement naturel et de refroidissement forcé, disposées en série selon l'axe longitudinal (XX) du four (1 ), chaque chambre (2) étant constituée par la juxtaposition, transversalement audit axe longitudinal (XX) et en alternance, d'alvéoles (4) dans lesquels sont disposés des blocs carbonés (5) à cuire et de cloisons chauffantes creuses (6), en communication et alignées avec les cloisons (6) des autres chambres (2), parallèlement à l'axe longitudinal (XX) du four (1 ), en lignes de cloisons (6) dans lesquelles circulent de l'air de refroidissement et comburant et des gaz de combustion, ladite rampe d'aspiration (1 1 ) étant reliée à chacune des cloisons (6) de la première chambre (2) en préchauffage par l'une respectivement de pipes d'aspiration (1 1 a) , l'air comburant nécessaire étant en partie injecté par une rampe de soufflage (18) de la zone de refroidissement naturel (C), reliée à au moins un ventilateur, et en partie infiltré par dépression à travers les lignes de cloisons (6) et le combustible nécessaire à la cuisson des blocs carbonés (5) étant en partie injecté par au moins deux rampes (16) de chauffage (B) s'étendant chacune sur l'une respectivement d'au moins deux chambres (2) adjacentes de la zone de chauffage, et aptes à injecter chacune du combustible dans chacune des cloisons (6) de la chambre (2) respective correspondante de la zone de chauffage (B), la régulation de la combustion du four (1 ) comprenant essentiellement une régulation en température et/ou en pression des zones de préchauffage (A), chauffage (B) et refroidissement naturel (C), par ligne de cloisons (6), en fonction de lois de consignes prédéfinies en température et/ou en pression, ladite méthode de caractérisation de la combustion étant caractérisée en ce qu'elle comprend au moins une étape de tests successifs d'arrêt total d'injection de combustible, ligne de cloisons (6) par ligne de cloisons (6), d'une durée suffisante pour que la mesure dudit paramètre image de la teneur globale en imbrûlés dans les gaz de combustion se stabilise, et sans commander d'action sur les lignes de cloisons (6) autres que celle en test d'arrêt total d'injection pendant la durée de ce test, la caractérisation de la combustion étant basée sur le calcul de la variation entre les mesures dudit paramètre image prises avant et après l'arrêt total d'injection dans chacune des lignes de cloisons (6) testées, afin d'identifier une ou plusieurs lignes de cloisons (6) en situation de combustion incomplète, si ladite variation est supérieure à x % de la valeur dudit paramètre image au début dudit test d'arrêt total d'injection, x % étant, de préférence, de l'ordre de 5% à 10%, la valeur de x dépendant notamment du nombre de cloisons (6) par chambre (2), des valeurs de seuil de détection et de la précision de mesure d'au moins un détecteur dudit paramètre image.
Méthode selon la revendication 1 , caractérisée en ce qu'elle comprend de plus au moins une étape antérieure, dite de présélection des lignes de cloisons (6) susceptibles d'être dans une situation de combustion incomplète, et permettant de limiter le nombre de tests d'arrêt d'injection, dans ladite étape de tests successifs d'arrêt total d'injection de combustible, aux seules lignes de cloisons (6) présélectionnées, et consistant à calculer, pour chaque ligne de cloisons (6) de rang n, un ratio de combustion (RCCin), égal au rapport de la quantité d'air comburant disponible à la quantité de combustible injecté dans ladite ligne de cloisons (6) de rang n, à définir empiriquement un rapport limite dit stœchiométrique (RS) à partir de mesures dudit paramètre image de la teneur en imbrulés dans les gaz de combustion collectés en sortie d'une ligne de cloisons (6) étalon, représentative du meilleur état des lignes de cloisons (6) du four, et de sorte que ce rapport stœchiométrique (RS) corresponde à un seuil mesuré dudit paramètre image en dessous duquel la combustion est considérée comme incomplète, à comparer le ratio de combustion (RCCin) de toutes les lignes de cloisons (6) au rapport stœchiométrique (RS), et à considérer comme incomplète la combustion dans toute ligne de cloisons (6) de rang n pour laquelle le ratio de combustion correspondant (RCCin) est inférieur au rapport stœchiométrique (RS).
Méthode selon la revendication 2 caractérisée en ce que, dans ladite étape de présélection des lignes de cloisons (6) en combustion incomplète, on calcule le ratio de combustion (RCCin) dans une ligne de cloisons (6) de rang n comme étant proportionnel à la racine carrée de la dépression statique de tirage mesurée dans la zone de préchauffage (A) pour ladite ligne de cloisons (6) considérée, et inversement proportionnel à la somme des puissances d'injection de combustible des injecteurs des rampes de chauffage (16) opérant sur la même ligne de cloisons (6) de rang n.
Méthode selon la revendication 3, caractérisée en ce que, lors de ladite étape de présélection, on calcule le ratio de combustion de la ligne de cloisons (6) de rang n en appliquant la formule suivante :
Figure imgf000029_0001
où Pi et P7 sont les pressions mesurées dans les cloisons (6) de rang n des chambres (2) en communication respectivement avec la rampe d'aspiration (1 1 ) et une rampe dite de « point zéro » (17) dans la zone de refroidissement naturel (C), N est le nombre de rampes de chauffage (16), en général égal à 2 ou 3, et InjHRi est la puissance d'injection totale dans la cloison de rang n des injecteurs de la rampe de chauffage (16) de rang i, où i varie de 1 à N. Méthode selon l'une quelconque des revendications 2 à 4, caractérisée en ce que ladite étape de présélection des lignes de cloisons (6) en combustion incomplète comprend également une étape qui consiste à classer les lignes de cloisons (6) en combustion incomplète dans l'ordre allant de celle où la combustion est la plus incomplète à celle où la combustion est la moins incomplète, en appliquant un système de notation des lignes de cloisons (6) selon lequel on attribue à toute ligne de cloisons (6) de rang n une note de classement NCCin donnée par la formule suivante :
RC
(2) NCcln = 20 - 10 (— ^ ) .
Méthode selon la revendication 5, caractérisée en ce qu'on effectue l'étape de classement des lignes de cloisons (6) en
considérant que, pour une ligne de cloisons (6) de rang n en bon état, la combustion est complète si NCcin<10, la combustion est incomplète si 10<NCCin <12, et la combustion est très incomplète, et donc critique, si NCCin>12.
Méthode selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'on choisit, comme paramètre image de la teneur globale en imbrulés dans les gaz de combustion, la teneur en monoxyde de carbone (CO), qui est mesurée, pour déterminer ledit rapport stœchiométrique, dans la pipe d'aspiration (1 1 a) de ladite rampe d'aspiration (1 1 ) qui est reliée à la cloison (6) de la ligne de cloisons (6) étalon dans la première chambre (2) de préchauffage, ledit seuil de ce paramètre image auquel correspond le rapport stœchiométrique (RS) étant d'environ 500 ppm de CO mesuré à ladite pipe d'aspiration (1 1 a), ce qui correspond, dans les conditions standards de fonctionnement de ce type de four, à un niveau de 1000 ppm de CO au point de combustion.
Méthode selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'après les étapes de caractérisation permettant d'identifier et de sélectionner les lignes de cloisons (6) en combustion incomplète, on met en œuvre au moins une étape postérieure dite d'optimisation de la combustion.
9. Méthode selon la revendication 8, caractérisée en ce que l'optimisation de la combustion consiste à modifier automatiquement des paramètres de régulation dans les zones de préchauffage (A), chauffage (B) et/ou refroidissement naturel (C) du four (1 ) afin d'équilibrer le rapport stœchiométrique (RS) air comburant sur combustible dans le but de recouvrer une situation de combustion complète, définie par le passage de la valeur dudit paramètre image sous un seuil paramétrable.
10. Méthode selon l'une quelconque des revendications 8 et 9, caractérisée en ce que, suite à la ladite étape d'optimisation, au moins une étape complémentaire de caractérisation de la combustion selon la revendication 1 , dans les lignes de cloisons (6) non présélectionnées selon la revendication 2 parmi les lignes de cloisons (6) supposées en combustion incomplète, est activée si l'étape d'optimisation de la combustion selon la revendication 8 ou 9 n'a pas permis de recouvrer une situation de combustion complète.
PCT/FR2009/051682 2009-09-07 2009-09-07 Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s) WO2011027042A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09745074.6A EP2475948B1 (fr) 2009-09-07 2009-09-07 Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s)
CN200980161301.XA CN102597678B (zh) 2009-09-07 2009-09-07 用于描述具有旋转点火膛的炉子的多排隔墙中的燃烧特性的方法
AU2009352124A AU2009352124B2 (en) 2009-09-07 2009-09-07 Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)
PCT/FR2009/051682 WO2011027042A1 (fr) 2009-09-07 2009-09-07 Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s)
CA2772693A CA2772693C (fr) 2009-09-07 2009-09-07 Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s)
RU2012113704/02A RU2500961C1 (ru) 2009-09-07 2009-09-07 Способ определения характеристик горения в линиях перегородок многокамерной печи с вращающимся пламенем
ZA2012/01211A ZA201201211B (en) 2009-09-07 2012-02-17 Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2009/051682 WO2011027042A1 (fr) 2009-09-07 2009-09-07 Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s)

Publications (1)

Publication Number Publication Date
WO2011027042A1 true WO2011027042A1 (fr) 2011-03-10

Family

ID=41800521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051682 WO2011027042A1 (fr) 2009-09-07 2009-09-07 Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s)

Country Status (7)

Country Link
EP (1) EP2475948B1 (fr)
CN (1) CN102597678B (fr)
AU (1) AU2009352124B2 (fr)
CA (1) CA2772693C (fr)
RU (1) RU2500961C1 (fr)
WO (1) WO2011027042A1 (fr)
ZA (1) ZA201201211B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034840A1 (fr) 2011-09-08 2013-03-14 Solios Carbone Dispositif et procédé d'optimisation de la combustion dans des lignes de cloisons d'un four à chambres pour la cuisson de blocs carbonés
WO2015049428A1 (fr) * 2013-10-02 2015-04-09 Solios Carbone Procede d'injection de combustible gazeux dans un four a chambres a feu(x) tournant(s)
FR3012590A1 (fr) * 2013-10-31 2015-05-01 Solios Carbone Procede de regulation d'un four a chambres a feu(x) tournant(s) pour la cuisson de blocs carbones
CN115187607A (zh) * 2022-09-14 2022-10-14 山东鑫亚格林鲍尔燃油系统有限公司 一种基于图像处理的喷油器喷雾形态检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284404A (en) * 1979-02-05 1981-08-18 Genevois Jean L Continuous ring baking furnaces of the Hoffmann type
FR2600152A1 (fr) * 1986-06-17 1987-12-18 Pechiney Aluminium Dispositif et procede d'optimisation de la combustion dans les fours a chambres pour la cuisson de blocs carbones
US6027339A (en) * 1998-06-11 2000-02-22 Aluminium Pechiney Ring furnace with central tubular flow
FR2918164A1 (fr) * 2007-06-29 2009-01-02 Solios Environnement Sa Procede de surveillance d'un conduit des fumees reliant un four de cuisson de blocs carbones a un centre de traitement des fumees

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU877285A1 (ru) * 1979-08-17 1981-10-30 Запорожский индустриальный институт Устройство дл дожигани летучих веществ
FR2616525B1 (fr) * 1987-06-09 1989-09-08 Pechiney Aluminium Dispositif et procede d'obturation des cloisons d'un four a chambres a feu tournant destine a la cuisson de blocs carbones
CN101172652B (zh) * 2007-10-29 2012-03-21 贾绍才 矾矿钙法步进式焙烧方法及焙烧炉

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4284404A (en) * 1979-02-05 1981-08-18 Genevois Jean L Continuous ring baking furnaces of the Hoffmann type
FR2600152A1 (fr) * 1986-06-17 1987-12-18 Pechiney Aluminium Dispositif et procede d'optimisation de la combustion dans les fours a chambres pour la cuisson de blocs carbones
US6027339A (en) * 1998-06-11 2000-02-22 Aluminium Pechiney Ring furnace with central tubular flow
FR2918164A1 (fr) * 2007-06-29 2009-01-02 Solios Environnement Sa Procede de surveillance d'un conduit des fumees reliant un four de cuisson de blocs carbones a un centre de traitement des fumees

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BEACH DAVID ET AL: "Proven control philosophy and operation for anode baking process", LIGHT METALS,, 1 January 2007 (2007-01-01), pages 953 - 957, XP009103395, ISSN: 0147-0809 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013034840A1 (fr) 2011-09-08 2013-03-14 Solios Carbone Dispositif et procédé d'optimisation de la combustion dans des lignes de cloisons d'un four à chambres pour la cuisson de blocs carbonés
CN103930741A (zh) * 2011-09-08 2014-07-16 索里斯卡彭公司 优化焙烧碳块用环形炉隔墙线路中燃烧的方法和装置
RU2600607C2 (ru) * 2011-09-08 2016-10-27 Солиос Карбон Устройство и способ оптимизации горения в линиях перегородок многокамерной печи для обжига углеродистых блоков
WO2015049428A1 (fr) * 2013-10-02 2015-04-09 Solios Carbone Procede d'injection de combustible gazeux dans un four a chambres a feu(x) tournant(s)
FR3012590A1 (fr) * 2013-10-31 2015-05-01 Solios Carbone Procede de regulation d'un four a chambres a feu(x) tournant(s) pour la cuisson de blocs carbones
WO2015063396A1 (fr) 2013-10-31 2015-05-07 Solios Carbone Procede de regulation d'un four a chambres a feu(x) tournant(s) pour la cuisson de blocs carbones
RU2682077C2 (ru) * 2013-10-31 2019-03-14 Фив Солиос Способ регулирования многокамерной печи с поворотным пламенем для обжига углеродных блоков
CN115187607A (zh) * 2022-09-14 2022-10-14 山东鑫亚格林鲍尔燃油系统有限公司 一种基于图像处理的喷油器喷雾形态检测方法
CN115187607B (zh) * 2022-09-14 2022-11-22 山东鑫亚格林鲍尔燃油系统有限公司 一种基于图像处理的喷油器喷雾形态检测方法

Also Published As

Publication number Publication date
AU2009352124B2 (en) 2014-05-01
EP2475948A1 (fr) 2012-07-18
RU2012113704A (ru) 2013-10-20
AU2009352124A1 (en) 2012-03-08
ZA201201211B (en) 2013-05-29
RU2500961C1 (ru) 2013-12-10
CA2772693A1 (fr) 2011-03-10
CA2772693C (fr) 2017-01-03
EP2475948B1 (fr) 2014-12-10
CN102597678A (zh) 2012-07-18
CN102597678B (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
EP0252856B1 (fr) Dispositif et procédé d&#39;optimisation de la combustion dans les fours à chambres pour la cuisson de blocs carbones
EP2475948B1 (fr) Methode de caracterisation de la combustion dans des lignes de cloisons d&#39;un four a chambres a feu(x) tournant(s)
EP2443407B1 (fr) Procede de regulation d&#39;un four de cuisson d&#39;anodes et four adapte a sa mise en oeuvre
EP2156126B1 (fr) Procede d&#39;optimisation de la commande d&#39;un centre de traitement des fumees d&#39;un four a feu tournant de cuisson de blocs carbones
EP1070224B1 (fr) Procede et dispositif de regulation des fours de cuisson a feu tournant
WO2010072907A1 (fr) Procede et systeme de controle du fonctionnement d&#39;une installation de cuisson de blocs carbones
FR2975463A1 (fr) Dispositif et procede de regulation de la combustion d&#39;une chaudiere a biomasse
EP2257753B1 (fr) Procede de detection de cloison au moins partiellement bouchee pour four a chambres
EP1083389B1 (fr) Gestion de la durée de pyrolyse
EP2753889B1 (fr) Dispositif et procédé d&#39;optimisation de la combustion dans des lignes de cloisons d&#39;un four à chambres pour la cuisson de blocs carbonés
EP3063487B1 (fr) Procédé de régulation d&#39;un four à chambres à feu(x) tournant(s) pour la cuisson de blocs carbones
CA2924723C (fr) Procede d&#39;injection de combustible gazeux dans un four a chambres a feu(x) tournant(s)
EP4055325B1 (fr) Installation de combustion
WO2010057929A1 (fr) Foyer ferme et procede de regulation
BE435781A (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161301.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09745074

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009745074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009352124

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2772693

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2031/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009352124

Country of ref document: AU

Date of ref document: 20090907

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012113704

Country of ref document: RU