WO2011027016A1 - Coated fibre optic sensors based on near cutoff lossy mode resonance - Google Patents

Coated fibre optic sensors based on near cutoff lossy mode resonance Download PDF

Info

Publication number
WO2011027016A1
WO2011027016A1 PCT/ES2010/070574 ES2010070574W WO2011027016A1 WO 2011027016 A1 WO2011027016 A1 WO 2011027016A1 ES 2010070574 W ES2010070574 W ES 2010070574W WO 2011027016 A1 WO2011027016 A1 WO 2011027016A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor according
fiber
thin film
poly
absorbent material
Prior art date
Application number
PCT/ES2010/070574
Other languages
Spanish (es)
French (fr)
Inventor
Ignacio DEL VILLAR FERNÁNDEZ
Carlos RUIZ ZAMARREÑO
Miguel HERNÁEZ SÁENZ DE ZÁITIGUI
Francisco Javier ARREGUI SAN MARTÍN
Ignacio Raúl MATÍAS MAESTRO
Original Assignee
Universidad Pública de Navarra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Pública de Navarra filed Critical Universidad Pública de Navarra
Publication of WO2011027016A1 publication Critical patent/WO2011027016A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/7736Reagent provision exposed, cladding free

Definitions

  • the following invention relates to fiber optic sensors coated with a thin film of absorbent material.
  • the detection technique is based on the generation of one or several resonances originated by modes with losses close to the cut-off condition (the lossy mode resonance - MRL).
  • Actuators B 12: 213, 1993 Depending on the properties of the coatings that form the thin films, three different cases are distinguished.
  • the first case occurs when the real part of the permittivity of the absorbent material is negative and its absolute value is greater than the absolute value of its imaginary part and greater than the real part of the permittivity of the dielectric surrounding the thin film. In this case, there is a coupling between the light that propagates through the waveguide and a surface plasmon called surface plasmon resonance (SPR).
  • SPR surface plasmon resonance
  • the second case occurs when the real part of the permittivity of the material is positive and its absolute value greater than that of its imaginary part and also greater than the real part of the permittivity of the dielectric that surrounds the thin film.
  • the cutting condition marks the point from which a mode becomes guided in the coating and is fundamentally controlled by two variables: the wavelength of the light that is propagated by the waveguide and the width of the coating. If, for example, the wavelength remains fixed, there is a width from which a mode is guided in the coating. Therefore, for widths close to this value it can be said that the modes are close to the cutting condition and there is a transfer of energy between the waveguide and the coating that causes the appearance of resonance.
  • the third case occurs when the real part of the material that forms the thin coating approaches zero while its imaginary part is elevated. This case is known as long-range exciton polariton.
  • the metal surface comes into contact with the sample and, using a monochromatic polarized light in TM mode that crosses the prism and the measurement of the intensity of reflected light as a function of the angle of incidence, the SPR reflection spectrum is calculated of the sample.
  • the angle with minimum reflection intensity is the resonance angle at which the maximum coupling between the incident light and the surface plasmon waves originates. This angle, together with the resonance spectrum and the intensity at the angle at which the minimum reflection intensity is obtained, It can be used to characterize or determine the sample in contact with the metal surface.
  • SPR-based sensors have been described in the literature, sensitive to changes in both refractive index and sample thickness. These systems, together with the appropriate sensitive chemical coatings have led to the development of a wide variety of SPR-based chemical sensors (such as C. Nylander, B. Liedberg and T. Lindt, Sens. & Actuators, 4: 299, 1983 use angular scanning; K. Matsubara, S. Kawata and S, Minami, Appl. Opt, 27: 1 160, 1988 use a multiple linear detector; LM Zhang and D. Uttamchandani, Electron. Lett., 24: 1469, 1988 make a wavelength scan; Liedberg et al., Sens.
  • the object of the present invention is to present a new type of fiber optic devices that overcome the limitations of SPR sensors based on optical fiber, where resonance is only produced in the event that the polarization of the incident light is TM and where Multiple resonances can only be achieved by modifying the geometry of the substrate on which the coating is deposited.
  • the invention proposes a fiber optic sensor based on the phenomenon of resonance by modes with losses close to the cutting condition, which comprises: - an optical fiber with a waveguide core and at least one film of absorbent material located in a sensitive area in direct contact with at least a part of the fiber waveguide core
  • the film is formed by an absorbent material in which the real part of its permittivity is positive and its absolute value is greater than the absolute value of its imaginary part and greater than the real part of the permittivity of the dielectric surrounding the thin film and capable of producing at least one mode close to the cutting condition.
  • An additional advantage of the device of the invention is that the range of deposited materials capable of producing resonance goes from being practically limited to the use of metals (especially gold and silver) in the case of SPR, to the use of metals, semiconductors and any other material with absorbent properties such as polymers.
  • Some suitable materials are polymers deposited with the monolayer electrostatic self-assembling technique or with the Langmuir Blodgett technique which, due to the fact that they are constituted by multiple layers of molecular size linked together, acquire a roughness that translates into a part value Imagination of non-zero permittivity in the aforementioned optical range.
  • Another group of materials are transparent conductive metal oxides, which after an adequate parameterization (thickness, tempered, doped, etc.), also meet the above conditions for polymers in the ultraviolet, visible and, depending on the parameterization, in the infrared
  • the deposition process of the thin film must take into account that the deposition is carried out on a substrate that is the fiber itself, being necessary the adequate adaptation of the deposition process used to said substrate.
  • the sensor may be based on direct transmission, where the radiation source is applicable to the input end of the fiber optic core so that the radiation is propagated through the fiber by total internal reflection from the input end to the end. of exit, or based on reflection, where the propagation mechanism is also by total internal reflection, but when the light reaches the other end, a specular layer in contact with the end of the waveguide core, causes the light to reflect The original end.
  • the radiation source is applicable to the input end of the fiber optic core so that the radiation is propagated through the fiber by total internal reflection from the input end to the end. of exit, or based on reflection, where the propagation mechanism is also by total internal reflection, but when the light reaches the other end, a specular layer in contact with the end of the waveguide core, causes the light to reflect The original end.
  • at least one additional layer of particles sensitive specifically to the species to be detected can be incorporated into the absorbent material film.
  • the sensitive area may be in the center of the guide or at the end in reflection.
  • the preferred compound for the thin film is (without the invention limiting this) a transparent conductive metal oxide of an element chosen from the elements zinc, indium, tin, iridium, cadmium, yttrium, scandium and nickel, or alloys, doped or binary, ternary or quaternary combinations of the oxides of the above elements among themselves, with other elements such as fluorine, copper, gallium, magnesium, calcium, strontium or aluminum or combinations of the latter among them.
  • polymers obtained from the elements poly (vinyl pyrrolidone), poly (vinyl alcohol), polyacrylamide, polyacrylic acid, polystyrene sulfate, polyaniline sulfate, poly (thiophene-3-acetic acid), polyaniline, polypyrrole, poly (3-hexyl thiophene) ), poly (3,4-ethylenedioxythiophene) and poly (dimethyl ammonium dichloride).
  • the film can be of a thickness adapted to generate multiple resonances.
  • the senor may incorporate another optical fiber capable of generating an output reference signal.
  • the source of electromagnetic radiation can consist of an LED, an array of LEDS, a semiconductor laser or a halogen lamp.
  • the light detection system will be adapted to detect the wavelengths produced by the chosen source.
  • the detector device preferably comprises a spectrometer.
  • the specular layer comprises a material of high reflectivity, preferably gold, silver, chromium, aluminum or platinum.
  • Figure 1 a - Schematic representation of the operation of the transmission configuration when a broad-spectrum white light source is used as the emitting device.
  • Figure 1 b Schematic representation of the operation of the configuration in reflection when a broad-spectrum white light source is used as the emitting device.
  • FIG 2 Detailed representation of the sensitive part of the resonance-based fiber optic device caused by modes with losses close to the cut condition in the online transmission based configuration shown in Figure 1 a.
  • FIG 3a Detailed representation of the sensitive part of the resonance-based fiber optic device caused by modes with losses close to the cut condition in the reflection-based configuration shown in Figure 1 b.
  • Figure 3b Detailed representation of a second embodiment of the reflection-based configuration, where the sensitive part of the resonance-based fiber optic device originated by modes with losses close to the cutting condition is at the end of the fiber.
  • Figure 4a Representation of the cross-sectional and longitudinal section to the direction of light propagation by the sensor.
  • Figure 4b Representation of the cross-sectional and longitudinal section to the direction of light propagation by the sensor, in which an additional sensitive layer is included.
  • Figure 5 Spectral responses in sensor absorption for different refractive indices on the thin film and for a small width thereof.
  • Figure 6 Wavelength variation of the resonance peak for different refractive indices on the thin film and for a small width thereof.
  • Figure 7 Spectral responses in sensor transmission for two different refractive indices on the thin film and for a large width thereof.
  • the fiber optic sensor device coated with absorbent material (the real part of its permittivity is positive and with absolute value greater than that of its imaginary part and also greater than the real part of the permittivity of the dielectric surrounding the thin film) is suitable for the generation of one or several MRLs originated by modes with losses close to the cutting condition.
  • Said device combines the advantages of the elimination of the optical prism of the Kretschmann configuration mentioned above in favor of a design in fiber optic, portable, of small size and with the possibility of performing remote measurements and multiplexing, together with the advantage of using a material absorbent that, in conditions where the width of the thin film of absorbent material allows for a TE mode with losses close to the cutting condition, a TM mode with losses close to the cutting condition, or the combination of both, will be generated an MRL in the spectrum in transmission or in reflection whose displacement in the ultraviolet, visible or infrared range will allow measurements of chemical, biomedical or environmental parameters.
  • the sensor of the invention can be used in the same applications as SPR sensors.
  • the device is highly sensitive to changes in the surrounding environment, so simply by adding, on the absorbent material, a layer sensitive to the parameter to be detected, chemical, environmental, biochemical sensors, etc. can be developed. Without said sensitive layer, sensor devices can also be developed based on the variation of the index of the external medium (refractometers), based on the variation of the properties of the film, or even optical filters.
  • the fact that the MRL is produced for angles that approximate the propagation of light by the fiber is very suitable, because after traveling a distance from the end of the fiber through which light is introduced, it tends to adopt these angles for the most part.
  • a thin film of absorbent material is deposited, which makes it possible to adjust its manufacturing parameters so that the MRL is in the appropriate range of electromagnetic spectrum wavelengths.
  • the combinations are very varied. If a single MRL is generated, it can be placed in one of the infrared windows, leaving other visible wavelengths free, for example to perform complementary measures such as absorption or fluorescence.
  • the width of the film will determine the sensitivity of this unique MRL.
  • the resonance sensitivity is also modified, which decreases with increasing thickness. In other words, the benefit of generating multiple resonances by increasing the thickness occurs to the detriment of a decrease in sensitivity.
  • Another possibility is to increase the thickness of the thin film of absorbent material to generate several MRLs distributed over the ultraviolet, visible and infrared range. Each of them will have a different sensitivity, which will allow multiple measures to improve errors caused by interference and noise.
  • the MRL itself, it generates an attenuation band in the electromagnetic spectrum.
  • the central wavelength of the MRL will experience variations depending on the parameters that are detected, reaching very large variations of up to 470 nm, as seen in Fig. 6.
  • the tuning of the MRL in the ultraviolet, the visible or the infrared is allowed through the manufacturing parameters of the coating of absorbent material, the need to introduce polarized light is eliminated, it is enhanced
  • the effect of the MRL thanks to the confinement that the optical fiber exerts on the light beam, and what is still more novel and advantageous, can be controlled with the width of the film
  • the sensitivity of the MRL and the appearance of several MRLs in the electromagnetic spectrum are thin, as shown in Fig. 7. As the width increases, more modes are guided in the absorbent material. Therefore, at each wavelength where it is fulfilled that the mode is located near the cut-off condition, the MRL will occur. In the case of Fig. 7, a width of about 440 nm is available, which causes the appearance of 4 MRLs in the spectrum. Each of them will have a different behavior, which implies different data for the monitoring of parameters.
  • This device uses, to couple light to the optical fiber (3), a "broad spectrum” light source (1) with multiple wavelengths, where "broad spectrum” means a minimum of two wavelengths although a wide enough range to cover the resonance spectrum of the sample, such as a white light source or black body radiation.
  • the range of angles will be defined by the numerical aperture of the optical fiber.
  • optical fibers that can be used for the present invention include all commercial ones that allow the transmission of light by internal total reflection. Such fibers will generally be characterized by three parameters: fiber core material, numerical fiber aperture and fiber optic core diameter. The choice of one type or another of optical fiber will vary the position of the resonance peak (the wavelength at which the MRL takes place).
  • FIG. 1 a and 1 b The embodiment of this device is presented in two preferred configurations as shown in FIG. 1 a and 1 b. These configurations are based on optical detection systems based on reflection and transmission respectively.
  • an additional element (12) located at one end of the optical fiber (1 1) is necessary, so that it reflects in reverse the light that propagates to through the fiber, which can consist of a layer of a highly reflective metal, such as gold, silver or chrome, adhered to the end of the fiber and thick enough to provide adequate reflection. It also requires a coupler (FIG. 1b, ref. 4).
  • the use of the present invention for the detection of the sample is carried out, by placing the sample (13) on the thin film of absorbent material (9) deposited on the optical fiber.
  • This movie is deposited in different places depending on the configurations used (5) in FIGS 2, 3a and 3b.
  • the process of deposition of the thin film (9) is carried out by removing the cover (8) adhered to the core of the optical fiber (6) and the subsequent deposition of the material itself in the exposed area of the core (7).
  • the thin film (9) is exposed to the sample (13) as shown in FIG. 4a thus allowing to determine the refractive index of the sample through the MRL (s) generated by combining the power coupling to the TE and TM modes close to the cut in the thin film.
  • a variant of this consists in the deposition of an additional sensitive layer (14) that will act as a mediator between the sample (13) and the thin film (9) as shown in FIG. 4b
  • the removal of the fiber cover is carried out through the use of known techniques, such as the use of appropriate chemical agents or tools.
  • the thin film is adhered by using known techniques.
  • the characteristics of the absorbent material are that the imaginary part of its permittivity is non-zero. In addition, its real part will be positive and greater in absolute value than the permittivity of the surrounding dielectric (fiber and external medium) and its imaginary part.
  • Tin doped indium oxide (ITO) meets this condition in ultraviolet, visible and infrared (200-1500nm).
  • a single optical fiber can contain one or more thin films of the same or different types, with the same or with different geometries and located along or at the end of it.
  • any core portion exposed in the optical fiber can be used to place the thin film thereon, although one of the preferred embodiments consists in removing the entire circumference of the shell surrounding the core and depositing the thin film symmetrically and with uniform thickness over the exposed core area.
  • a detection system (2) suitable for the present invention will consist of any device capable of detecting the intensity of all or a part of the wavelengths that exit through the optical fiber.
  • Detector device can be used a spectrometer capable of measuring the intensity of light as a function of wavelength.
  • the optical power injected by the emitting device (1) at one end of the optical fiber (3) travels through it through the sensitive area and reaching the detector device (2) directly in the case of the transmission configuration, FIG. 1 a, or once reflected by the specular layer (12) in the case of the configuration in reflection, FIG. 1 B.
  • This optical power that reaches the detector device is a function of the refractive index of the external medium in contact with the thin film (9), by which the mode close to the cutting condition that is guided by the fiber (6) is guided. ) to be guided in the thin film (9).
  • the sensor device can also incorporate a dynamic self-calibration signal by bifurcation of the optical fiber that comes from the light source so that we have a reference signal of the light that passes through the optical fiber without being affected by the sensitive area .
  • the sensor device can be used in multiple applications: refractometers, optical filters, and in the chemical or biochemical field, for the detection of species that are present in liquid or gas solutions.
  • the thin film of absorbent material can be coated with one or more additional layers that include immobilized compounds, specifically sensitive to the species to be detected (for example enzymes and coenzymes, antigens and antibodies, etc.).
  • immobilized compounds specifically sensitive to the species to be detected (for example enzymes and coenzymes, antigens and antibodies, etc.).
  • immobilized compounds specifically sensitive to the species to be detected
  • most biological reactions occur in the ultraviolet range, so the possibility of obtaining resonances in this range will allow sensors to adapt to these applications.
  • the refractive index and the thickness of the additional layer must also be suitable for the application. This layer also provides protection against external physical and chemical agents that can damage or affect the behavior of the sensor.
  • This embodiment is based on an optical transmission system in line transmission like the one shown in FIG. 1 a.
  • the light source used (1) corresponds to a DH-2000-H halogen light lamp (Avantes Inc.)
  • the optical fiber used corresponds to a silica optical fiber with polymeric cover and buffer of diameters 200/225/500 ⁇ for the core, cover and buffer respectively, and numerical aperture 0.39 (Thorlabs Inc.).
  • the buffer was removed by using the appropriate tools while the cover was removed by chemical procedures for several fibers with lengths of 1 cm, 2cm, 4 cm and 7cm. Once the fiber core was exposed, the dip-coating technique was used, which will allow us a homogeneous deposition of an 85 nm film of transparent conductive metal oxide (ITO on the optical fiber), resulting in the sensitive area that is represented in FIG. 2.
  • ITO transparent conductive metal oxide
  • the fiber optic output was connected to a NIR-512 spectrometer (Oceanoptics Inc.) with a detection range between 850 nm - 1700 nm and a spectral resolution of less than 5 nm using an SMA connection and connected in turn to a computer for the acquisition of the spectra.
  • a NIR-512 spectrometer (Oceanoptics Inc.) with a detection range between 850 nm - 1700 nm and a spectral resolution of less than 5 nm using an SMA connection and connected in turn to a computer for the acquisition of the spectra.
  • This variation assumes a sensitivity of 1.74x10 "4 units of refractive index per nanometer. If you want to cover a range of indexes of higher refraction, the option is to use a wider width of ITO. In the case of 1 15 nm, indices between 1.321 (water) to 1.46 (glycerin) can be monitored. This has a dynamic range of 0.14 units of refractive index, which could be increased in case of measuring solutions of another substance.
  • FIG. 7 shows the effect of depositing a film of absorbent material of width 440 nm.
  • the increase in width causes a greater number of modes to be guided in the film, which results in a greater number of wavelengths at which the condition of proximity to the cut is fulfilled in a film-guided manner.
  • An MRL is generated in each of these wavelengths.
  • FIG. 7 shows up to 4 MRLs that for an external water medium have their central wavelength at wavelengths 310 nm, 471 nm, 726 nm and 1257 nm.
  • the device has been oriented to the field of sensors, and more specifically to chemical or biochemical applications, it can also be used as an optical sensor to detect the variation of any physical or chemical parameter that affects the optical properties of the external medium under control and you can even leave the field of sensors to be used as an optical filter of various wavelengths in optical communications.

Abstract

The invention relates to a coated fibre optic sensor device based on near cutoff lossy mode resonance (LMR) that uses a thin film of absorbent material placed on the core of the fibre optic. The device is advantageous in that it eliminates the optical prism from the Kretschmann configuration in favour of a portable, small fibre optic design and allows both measurements to be taken remotely and multiplexing. The invention is also advantageous in that it does not require the use of polarised light in TM mode, which is a requirement of surface plasmon resonance sensors. It is possible to adjust the sensitivity of the device as a function of the width of the thin film and to generate multiple resonances in the electromagnetic spectrum, thereby allowing the use thereof as a fibre optic.

Description

SENSORES DE FIBRA ÓPTICA RECUBIERTA BASADOS EN RESONANCIA ORIGINADA POR MODOS CON PÉRDIDAS CERCANOS A LA CONDICIÓN DE COATED OPTICAL FIBER SENSORS BASED ON RESONANCE ORIGINATED BY MODES WITH LOSSES NEAR TO THE CONDITION OF
CORTE D E S C R I P C I Ó N CUT D E S C R I P C I Ó N
CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION
La siguiente invención se refiere a sensores de fibra óptica recubiertos con una película delgada de material absorbente. La técnica de detección está basada en la generación de una o varias resonancias originadas por modos con pérdidas cercanos a la condición de corte (del inglés lossy mode resonance - LMR). The following invention relates to fiber optic sensors coated with a thin film of absorbent material. The detection technique is based on the generation of one or several resonances originated by modes with losses close to the cut-off condition (the lossy mode resonance - MRL).
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Durante las últimas décadas se ha trabajado en el estudio de guías-onda recubiertas con películas delgadas de material absorbente de anchura inferior a la longitud de onda de la luz; es decir, con parte imaginaria no nula de su permitividad óptica (Batchman y Me Wright, IEEE J. Quantum Electron., 18:782-788, 1982; Yang y Sambles, J. Mod. Opt., 44:1 155-1 163, 1997; R. C. Jorgenson y S. S. Yee, Sens. &During the last decades, work has been carried out on the study of waveguides covered with thin films of absorbent material of less than the wavelength of light; that is, with a non-null imaginary part of its optical permittivity (Batchman and Me Wright, IEEE J. Quantum Electron., 18: 782-788, 1982; Yang and Sambles, J. Mod. Opt., 44: 1 155-1 163, 1997; RC Jorgenson and SS Yee, Sens. &
Actuators. B 12:213, 1993). Dependiendo de las propiedades de los recubrimientos que forman las películas delgadas se distinguen tres casos diferentes. El primer caso ocurre cuando la parte real de la permitividad del material absorbente es negativa y su valor absoluto es mayor que el valor absoluto de su parte imaginaria y mayor que la parte real de la permitividad del dieléctrico que rodea a la película delgada. En este caso, se produce un acoplamiento entre la luz que se propaga por la guía onda y un plasmón superficial denominado resonancia de plasmón superficial (SPR). El segundo caso ocurre cuando la parte real de la permitividad del material es positiva y su valor absoluto mayor que el de su parte imaginaria y también mayor que la parte real de la permitividad del dieléctrico que rodea a la película delgada. En este caso se produce un acoplamiento entre la luz que se propaga por la guía onda y lo que algunos autores consideran como modos guiados de largo alcance mientras que otros los denominan como modos con pérdidas. Dichos modos originan una resonancia que consiste en una banda de atenuación que se origina en el espectro en transmisión por acoplo de luz a un modo con la componente eléctrica perpendicular a la dirección de propagación de la luz (modo transversal eléctrico o TE), a un modo con la componente magnética perpendicular a la dirección de propagación de la luz (modo transversal magnético o TM) o a la combinación entre ellos, ambos con pérdidas y cercanos a la condición de corte. Por ello a la resonancia se le denomina resonancia originada por modos con pérdidas (en inglés lossy mode resonace - LMR) cercanos a la condición de corte. La condición de corte marca el punto a partir del que un modo pasa a ser guiado en el recubrimiento y se controla fundamentalmente a través de dos variables: la longitud de onda de la luz que se propaga por la guía onda y la anchura del recubrimiento. Si por ejemplo la longitud de onda se mantiene fija hay una anchura a partir de la cual se guía un modo en el recubrimiento. Por tanto para anchuras cercanas a este valor se puede decir que los modos se encuentran cercanos a la condición de corte y se produce un transvase de energía entre la guía onda y el recubrimiento que provoca la aparición de la resonancia. Actuators B 12: 213, 1993). Depending on the properties of the coatings that form the thin films, three different cases are distinguished. The first case occurs when the real part of the permittivity of the absorbent material is negative and its absolute value is greater than the absolute value of its imaginary part and greater than the real part of the permittivity of the dielectric surrounding the thin film. In this case, there is a coupling between the light that propagates through the waveguide and a surface plasmon called surface plasmon resonance (SPR). The second case occurs when the real part of the permittivity of the material is positive and its absolute value greater than that of its imaginary part and also greater than the real part of the permittivity of the dielectric that surrounds the thin film. In this case there is a coupling between the light that propagates through the waveguide and what some authors consider as long-range guided modes while others call them as loss modes. These modes give rise to a resonance consisting of an attenuation band. which originates in the spectrum in transmission by light coupling to a mode with the electrical component perpendicular to the direction of propagation of light (electrical transverse mode or TE), to a mode with the magnetic component perpendicular to the direction of propagation of the light (magnetic transverse mode or TM) or the combination between them, both with losses and close to the cutting condition. Therefore, resonance is called resonance caused by loss modes (in English lossy mode resonace - MRLs) close to the cut-off condition. The cutting condition marks the point from which a mode becomes guided in the coating and is fundamentally controlled by two variables: the wavelength of the light that is propagated by the waveguide and the width of the coating. If, for example, the wavelength remains fixed, there is a width from which a mode is guided in the coating. Therefore, for widths close to this value it can be said that the modes are close to the cutting condition and there is a transfer of energy between the waveguide and the coating that causes the appearance of resonance.
El tercer caso ocurre cuando la parte real del material que forma el recubrimiento delgado se aproxima a cero mientras que su parte imaginaria es elevada. Este caso se conoce como polaritón excitón de largo alcance.  The third case occurs when the real part of the material that forms the thin coating approaches zero while its imaginary part is elevated. This case is known as long-range exciton polariton.
Hasta la fecha el fenómeno que ha dado lugar a mayor número de aplicaciones y que ha centrado el interés de la comunidad científica son los dispositivos basados en SPR (J. Homola, SS. Yee, G. Gauglitz. Sens. Actuators B, 54, 3-15, 1999). Tradicionalmente, se ha utilizado la configuración de Kretschmann (Kretschmann y Raether, Z. Naturforsch. Teil A 23:2315-2136, 1968) para la medida de SPR. En esta configuración, se deposita una capa fina de un metal altamente reflexivo (por ejemplo, oro o plata) sobre la base de un prisma (U.S. Pat. No. 7015471 ; U.S. Pat. No. 6738141 ). La superficie del metal entra en contacto con la muestra y, mediante la utilización de una luz monocromática polarizada en modo TM que atraviesa el prisma y la medición de la intensidad de luz reflejada en función del ángulo de incidencia, se calcula el espectro de reflexión SPR de la muestra. El ángulo con intensidad de reflexión mínima es el ángulo de resonancia en el cual se origina el acoplamiento máximo entre la luz incidente y las ondas de plasmones superficiales. Este ángulo, junto con el espectro de resonancia y la intensidad en el ángulo en el cual se obtiene la intensidad de reflexión mínima, puede ser utilizado para caracterizar o determinar la muestra en contacto con la superficie metálica. To date, the phenomenon that has given rise to the greatest number of applications and that has focused the interest of the scientific community are SPR-based devices (J. Homola, SS. Yee, G. Gauglitz. Sens. Actuators B, 54, 3-15, 1999). Traditionally, the Kretschmann configuration (Kretschmann and Raether, Z. Naturforsch. Teil A 23: 2315-2136, 1968) has been used for the measurement of SPR. In this configuration, a thin layer of a highly reflective metal (for example, gold or silver) is deposited on the base of a prism (US Pat. No. 7015471; US Pat. No. 6738141). The metal surface comes into contact with the sample and, using a monochromatic polarized light in TM mode that crosses the prism and the measurement of the intensity of reflected light as a function of the angle of incidence, the SPR reflection spectrum is calculated of the sample. The angle with minimum reflection intensity is the resonance angle at which the maximum coupling between the incident light and the surface plasmon waves originates. This angle, together with the resonance spectrum and the intensity at the angle at which the minimum reflection intensity is obtained, It can be used to characterize or determine the sample in contact with the metal surface.
Diversos tipos de sensores basados en SPR han sido descritos en la literatura, sensibles a cambios tanto del índice de refracción como del espesor de las muestras. Estos sistemas, junto con los recubrimientos químicos sensibles adecuados han originado el desarrollo de una gran variedad de sensores químicos basados en SPR (así por ejemplo C. Nylander, B. Liedberg y T. Lindt, Sens. & Actuators, 4:299, 1983 utilizan el barrido angular; K. Matsubara, S. Kawata y S,. Minami, Appl. Opt, 27:1 160, 1988 utilizan un detector lineal múltiple; L. M. Zhang y D. Uttamchandani, Electron. Lett., 24:1469, 1988 hacen un barrido en longitud de onda; Liedberg et al., Sens. & Actuators, 4:299, 1983; Daniels et al., Sens. & Actuators, 15:1 1 , 1988; Jorgenson et al., lEEE/Engineering Medicine and Biology Society Proceedings, 12:440, 1990 fabrican sensores para ensayos inmunológicos).  Various types of SPR-based sensors have been described in the literature, sensitive to changes in both refractive index and sample thickness. These systems, together with the appropriate sensitive chemical coatings have led to the development of a wide variety of SPR-based chemical sensors (such as C. Nylander, B. Liedberg and T. Lindt, Sens. & Actuators, 4: 299, 1983 use angular scanning; K. Matsubara, S. Kawata and S, Minami, Appl. Opt, 27: 1 160, 1988 use a multiple linear detector; LM Zhang and D. Uttamchandani, Electron. Lett., 24: 1469, 1988 make a wavelength scan; Liedberg et al., Sens. & Actuators, 4: 299, 1983; Daniels et al., Sens. & Actuators, 15: 1 1, 1988; Jorgenson et al., LEEE / Engineering Medicine and Biology Society Proceedings, 12: 440, 1990 manufacture sensors for immunological assays).
A pesar de que la configuración de Kretschmann para sensores químicos basados en SPR ofrece una sensibilidad considerable, presenta inconvenientes derivados de su configuración geométrica que han restringido enormemente su aplicación. Como un claro ejemplo de limitación, cabe citar la necesidad de incluir un prisma relativamente grande, caro e inapropiado para aplicaciones remotas. Además, tales dispositivos requieren un instrumental preciso o bien una elaboración complicada de los datos obtenidos; esto hace que sean dispositivos no portátiles y de difícil implantación en ambientes industriales. Asimismo, emplean en su mayoría una fuente de luz monocromática debido a las limitaciones de la configuración (como la presencia del prisma), y necesitan que la luz incidente realice un barrido en un rango amplio de ángulos incidentes debido a que utilizan, en su mayoría, como parámetro de medida el ángulo al cual se produce la máxima atenuación de la intensidad de reflexión.  Although the Kretschmann configuration for chemical sensors based on SPR offers considerable sensitivity, it has drawbacks derived from its geometric configuration that have greatly restricted its application. As a clear example of limitation, it is worth mentioning the need to include a relatively large, expensive and inappropriate prism for remote applications. In addition, such devices require precise instruments or complicated processing of the data obtained; This makes them non-portable devices and difficult to implement in industrial environments. Likewise, they mostly use a monochromatic light source due to configuration limitations (such as the presence of the prism), and they need the incident light to sweep across a wide range of incident angles because they use, mostly , as a measurement parameter the angle at which the maximum attenuation of the reflection intensity occurs.
A partir de las necesidades expuestas anteriormente se han desarrollado nuevos tipos de sensores basados en SPR sobre fibra óptica que proporcionan una sensibilidad razonable mejorando las limitaciones de los sistemas con la configuración de Kretschmann expuestas anteriormente, como la necesidad de utilización de un prisma o la utilización de una fuente de luz monocromática y posibilitando las aplicaciones de detección remota. Estos nuevos dispositivos utilizan una luz incidente de amplio espectro como fuente de excitación del dispositivo sensor, el cual está compuesto por una fibra óptica con una parte del núcleo expuesta y una fina capa de un metal altamente reflexivo (comúnmente oro o plata) depositado sobre el núcleo, que propicia el efecto de plasmones superficiales. De esta manera, midiendo la intensidad de la luz para cada longitud de onda a la salida de la fibra después de haber atravesado la zona sensible podemos determinar o caracterizar la muestra en contacto (U.S. Pat. No. 5327225;Based on the needs outlined above, new types of SPR-based sensors have been developed on fiber optics that provide reasonable sensitivity by improving the limitations of the systems with the Kretschmann configuration set forth above, such as the need to use a prism or use of a monochromatic light source and enabling remote sensing applications. These new devices use a broad spectrum incident light as a source of excitation of the sensor device, which is composed of an optical fiber with a part of the exposed core and a thin layer of a highly reflective metal (commonly gold or silver) deposited on the core, which promotes the effect of superficial plasmons. In this way, by measuring the intensity of the light for each wavelength at the exit of the fiber after crossing the sensitive area we can determine or characterize the sample in contact (US Pat. No. 5327225;
Esp. Pat. No. 21 14175). Al igual que anteriormente en la configuración de Kretschmann, este sistema también permite la utilización de capas o recubrimientos de partículas adheridos a la capa metálica y sensibles a diferentes sustancias o compuestos químicos en función de la aplicación tanto en la configuración en transmisión (A. Diez, M. V. Andrés y J. L. Cruz, Sens. & Actuators B, 73:95, 2001 ) como en reflexión (R. Slavik, J. Homola, Z. Manikova & J. Ctyroky, Sens. & Actuators B, 51 :31 1 , 1998). Por otro lado, son interesantes las aplicaciones que se derivan de la aparición de varias resonancias originadas por plasmones superficiales, lo que posibilita la generación de filtros en múltiples longitudes de onda adecuados para comunicaciones ópticas además de que permite disponer de varios puntos de referencia para su utilización en aplicaciones con sensores.(Monzón-Hernández et al. App Opt, 43:1216-1220, 2004). No obstante cabe destacar la problemática que supone la fabricación de un dispositivo basado en la generación de múltiples SPR adecuado para que ocurra este fenómeno debido a la dificultad de diseño del sustrato. En otras palabras, el fenómeno de múltiple resonancia se debe a la modificación de la geometría del dispositivo de fibra óptica. Además, los sensores SPR requieren luz polarizada para que se produzca la resonancia, lo que complica enormemente los dispositivos de medida. OBJETO DE LA INVENCIÓN Esp. Pat. No. 21 14175). As before in the Kretschmann configuration, this system also allows the use of layers or coatings of particles adhered to the metal layer and sensitive to different chemical substances or compounds depending on the application in both the transmission configuration (A. Ten , MV Andrés and JL Cruz, Sens. & Actuators B, 73:95, 2001) as in reflection (R. Slavik, J. Homola, Z. Manikova & J. Ctyroky, Sens. & Actuators B, 51: 31 1, 1998). On the other hand, the applications that are derived from the appearance of several resonances caused by surface plasmons are interesting, which allows the generation of filters in multiple wavelengths suitable for optical communications in addition to allowing several reference points to be available for use in applications with sensors (Monzón-Hernández et al. App Opt, 43: 1216-1220, 2004). However, it is worth highlighting the problems involved in the manufacture of a device based on the generation of multiple SPRs suitable for this phenomenon to occur due to the difficulty of substrate design. In other words, the phenomenon of multiple resonance is due to the modification of the geometry of the fiber optic device. In addition, SPR sensors require polarized light for resonance to occur, which greatly complicates measuring devices. OBJECT OF THE INVENTION
El objeto de la presente invención es presentar un nuevo tipo de dispositivos de fibra óptica que supere las limitaciones de los sensores SPR basados en fibra óptica, donde solo se produce la resonancia para el caso de que la polarización de la luz incidente sea TM y donde solo se pueden conseguir múltiples resonancias modificando la geometría del sustrato sobre el que se deposita el recubrimiento. Para ello la invención propone un sensor de fibra óptica basado en el fenómeno de resonancia por modos con pérdidas cercanos a la condición de corte, que comprende: - una fibra óptica con un núcleo guía-onda y al menos una película de material absorbente situada en una zona sensible en contacto directo con al menos una parte del núcleo guía-onda de la fibra The object of the present invention is to present a new type of fiber optic devices that overcome the limitations of SPR sensors based on optical fiber, where resonance is only produced in the event that the polarization of the incident light is TM and where Multiple resonances can only be achieved by modifying the geometry of the substrate on which the coating is deposited. For this, the invention proposes a fiber optic sensor based on the phenomenon of resonance by modes with losses close to the cutting condition, which comprises: - an optical fiber with a waveguide core and at least one film of absorbent material located in a sensitive area in direct contact with at least a part of the fiber waveguide core
- una fuente de radiación electromagnética de amplio espectro cuya salida es aplicable a uno de los extremos del núcleo guía-onda de la fibra óptica de manera que la radiación se propague a través de la fibra y salga de la fibra óptica; y  - a source of broad-spectrum electromagnetic radiation whose output is applicable to one of the ends of the optical waveguide core so that the radiation propagates through the fiber and out of the optical fiber; Y
- un dispositivo detector para la medida de la radiación que sale a través de la fibra  - a detector device for measuring the radiation that exits through the fiber
La película está formada por un material absorbente en el que la parte real de su permitividad es positiva y su valor absoluto es mayor que el valor absoluto de su parte imaginaria y mayor que la parte real de la permitividad del dieléctrico que rodea a la película delgada y capaz de producir al menos un modo cercano a la condición de corte.  The film is formed by an absorbent material in which the real part of its permittivity is positive and its absolute value is greater than the absolute value of its imaginary part and greater than the real part of the permittivity of the dielectric surrounding the thin film and capable of producing at least one mode close to the cutting condition.
La elección de una película delgada con una absorción adecuada en el rango del espectro electromagnético en que se va a trabajar es fundamental. Una ventaja adicional del dispositivo de la invención es que el rango de materiales depositados susceptibles de producir resonancia pasa de estar limitado prácticamente a la utilización de los metales (sobre todo oro y plata) en el caso de SPR, a la utilización de los metales, semiconductores y cualquier otro material con propiedades absorbentes como los polímeros. The choice of a thin film with adequate absorption in the range of the electromagnetic spectrum in which it is going to work is essential. An additional advantage of the device of the invention is that the range of deposited materials capable of producing resonance goes from being practically limited to the use of metals (especially gold and silver) in the case of SPR, to the use of metals, semiconductors and any other material with absorbent properties such as polymers.
Algunos materiales adecuados son los polímeros depositados con la técnica de autoensamblado electrostático monocapa o con la técnica Langmuir Blodgett que, por el hecho de estar constituidos por múltiples capas de tamaño molecular enlazadas entre sí, adquieren una rugosidad que se traduce en un valor de la parte imaginaria de la permitividad no nulo en el rango óptico citado. Otro grupo de materiales son los óxidos metálicos conductores transparentes, los cuales tras una adecuada parametrizacion (espesor, templado, dopado, etc.), también cumplen las condiciones antes citadas para los polímeros en el ultravioleta, visible y, dependiendo de la parametrizacion, en el infrarrojo. El proceso de deposición de la película delgada debe tener en cuenta que la deposición se realiza sobre un sustrato que es la propia fibra, siendo necesaria la adaptación adecuada del proceso de deposición utilizado a dicho substrato. El sensor puede estar basado en transmisión directa, donde la fuente de radiación es aplicable al extremo de entrada del núcleo de la fibra óptica de manera que la radiación se propague a través de la fibra por reflexión total interna desde el extremo de entrada hasta el extremo de salida, o basado en reflexión, donde el mecanismo de propagación también es por reflexión total interna, pero cuando la luz llega hasta el otro extremo, una capa especular en contacto con el extremo del núcleo guía onda, provoca la reflexión de la luz hasta el extremo original. En ambas configuraciones (transmisión y reflexión) se puede incorporar sobre la película de material absorbente al menos una capa adicional de partículas sensibles específicamente a la especie a detectar. La zona sensible puede estar en el centro de la guía o en el extremo en reflexión. Some suitable materials are polymers deposited with the monolayer electrostatic self-assembling technique or with the Langmuir Blodgett technique which, due to the fact that they are constituted by multiple layers of molecular size linked together, acquire a roughness that translates into a part value Imagination of non-zero permittivity in the aforementioned optical range. Another group of materials are transparent conductive metal oxides, which after an adequate parameterization (thickness, tempered, doped, etc.), also meet the above conditions for polymers in the ultraviolet, visible and, depending on the parameterization, in the infrared The deposition process of the thin film must take into account that the deposition is carried out on a substrate that is the fiber itself, being necessary the adequate adaptation of the deposition process used to said substrate. The sensor may be based on direct transmission, where the radiation source is applicable to the input end of the fiber optic core so that the radiation is propagated through the fiber by total internal reflection from the input end to the end. of exit, or based on reflection, where the propagation mechanism is also by total internal reflection, but when the light reaches the other end, a specular layer in contact with the end of the waveguide core, causes the light to reflect The original end. In both configurations (transmission and reflection) at least one additional layer of particles sensitive specifically to the species to be detected can be incorporated into the absorbent material film. The sensitive area may be in the center of the guide or at the end in reflection.
El compuesto preferido para la película delgada es (sin que la invención se limite esto) un óxido metálico conductor transparente de un elemento escogido entre los elementos zinc, indio, estaño, iridio, cadmio, itrio, escandio y níquel, o aleaciones, dopados o combinaciones binarias, ternarias o cuaternarias de los óxidos de los elementos anteriores entre ellos mismos, con otros elementos como flúor, cobre, galio, magnesio, calcio, estroncio o aluminio o combinaciones de estos últimos entre ellos. También son adecuados los polímeros obtenidos entre los elementos poli(vinilpirrolidona), poli(vinilalcohol), poliacrilamida, ácido poliacrílico, poliestireno sulfato, polianilina sulfato, poli(tiofeno-3-acético ácido), polianilina, polipirrol, poli(3-hexil tiofeno), poli(3,4-etilendioxitiofeno)y poli(dimetil amonio dicloruro). La película puede ser de un espesor adaptado para generar múltiples resonancias.  The preferred compound for the thin film is (without the invention limiting this) a transparent conductive metal oxide of an element chosen from the elements zinc, indium, tin, iridium, cadmium, yttrium, scandium and nickel, or alloys, doped or binary, ternary or quaternary combinations of the oxides of the above elements among themselves, with other elements such as fluorine, copper, gallium, magnesium, calcium, strontium or aluminum or combinations of the latter among them. Also suitable are polymers obtained from the elements poly (vinyl pyrrolidone), poly (vinyl alcohol), polyacrylamide, polyacrylic acid, polystyrene sulfate, polyaniline sulfate, poly (thiophene-3-acetic acid), polyaniline, polypyrrole, poly (3-hexyl thiophene) ), poly (3,4-ethylenedioxythiophene) and poly (dimethyl ammonium dichloride). The film can be of a thickness adapted to generate multiple resonances.
Además, puede ser ventajoso que el sensor incorpore otra fibra óptica capaz de generar una señal de referencia de salida. La fuente de radiación electromagnética puede consistir en un LED, un array de LEDS, un láser de semiconductor o una lámpara halógena. El sistema de detección de luz estará adaptado para detectar las longitudes de onda producidas por la fuente escogida.  In addition, it may be advantageous for the sensor to incorporate another optical fiber capable of generating an output reference signal. The source of electromagnetic radiation can consist of an LED, an array of LEDS, a semiconductor laser or a halogen lamp. The light detection system will be adapted to detect the wavelengths produced by the chosen source.
El dispositivo detector comprende preferentemente un espectrómetro. En el modo de reflexión además la capa especular comprende un material de alta reflectividad, de preferencia, oro, plata, cromo, aluminio o platino.  The detector device preferably comprises a spectrometer. In the mode of reflection, in addition, the specular layer comprises a material of high reflectivity, preferably gold, silver, chromium, aluminum or platinum.
DESCRIPCIÓN DE LOS DIBUJOS Para la mejor comprensión de cuanto queda descrito en la presente memoria se acompañan unos dibujos en los que, tan sólo a título de ejemplo, se presenta una realización preferida de la invención. DESCRIPTION OF THE DRAWINGS For the best understanding of what is described herein, some drawings are attached in which, by way of example only, a preferred embodiment of the invention is presented.
Figura 1 a - Representación esquemática del funcionamiento de la configuración en transmisión cuando se utiliza como dispositivo emisor una fuente de luz blanca de amplio espectro.  Figure 1 a - Schematic representation of the operation of the transmission configuration when a broad-spectrum white light source is used as the emitting device.
Figura 1 b - Representación esquemática del funcionamiento de la configuración en reflexión cuando se utiliza como dispositivo emisor una fuente de luz blanca de amplio espectro.  Figure 1 b - Schematic representation of the operation of the configuration in reflection when a broad-spectrum white light source is used as the emitting device.
Figura 2 - Representación detallada de la parte sensible del dispositivo de fibra óptica basado en resonancia originada por modos con pérdidas cercanos a la condición de corte en la configuración basada en transmisión en línea mostrada en la figura 1 a.  Figure 2 - Detailed representation of the sensitive part of the resonance-based fiber optic device caused by modes with losses close to the cut condition in the online transmission based configuration shown in Figure 1 a.
Figura 3a - Representación detallada de la parte sensible del dispositivo de fibra óptica basado en resonancia originada por modos con pérdidas cercanos a la condición de corte en la configuración basada en reflexión mostrada en la figura 1 b.  Figure 3a - Detailed representation of the sensitive part of the resonance-based fiber optic device caused by modes with losses close to the cut condition in the reflection-based configuration shown in Figure 1 b.
Figura 3b - Representación detallada de una segunda realización de la configuración basada en reflexión, donde la parte sensible del dispositivo de fibra óptica basado resonancia originada por modos con pérdidas cercanos a la condición de corte está en el extremo de la fibra.  Figure 3b - Detailed representation of a second embodiment of the reflection-based configuration, where the sensitive part of the resonance-based fiber optic device originated by modes with losses close to the cutting condition is at the end of the fiber.
Figura 4a - Representación de la sección transversal y longitudinal a la dirección de propagación de la luz por el sensor.  Figure 4a - Representation of the cross-sectional and longitudinal section to the direction of light propagation by the sensor.
Figura 4b - Representación de la sección transversal y longitudinal a la dirección de propagación de la luz por el sensor, en la que se incluye una capa sensible adicional.  Figure 4b - Representation of the cross-sectional and longitudinal section to the direction of light propagation by the sensor, in which an additional sensitive layer is included.
Figura 5 - Respuestas espectrales en absorción del sensor para diferentes índices de refracción sobre la película delgada y para una anchura pequeña de la misma.  Figure 5 - Spectral responses in sensor absorption for different refractive indices on the thin film and for a small width thereof.
Figura 6 - Variación en longitud de onda del pico de resonancia para diferentes índices de refracción sobre la película delgada y para una anchura pequeña de la misma. Figura 7 - Respuestas espectrales en transmisión del sensor para dos índices de refracción diferentes sobre la película delgada y para una anchura grande de la misma. Figure 6 - Wavelength variation of the resonance peak for different refractive indices on the thin film and for a small width thereof. Figure 7 - Spectral responses in sensor transmission for two different refractive indices on the thin film and for a large width thereof.
Figura 8 - Simulación de las respuestas espectrales en transmisión del sensor para dos índices de refracción diferentes sobre la película delgada y para una anchura grande de la misma.  Figure 8 - Simulation of the spectral responses in sensor transmission for two different refractive indices on the thin film and for a large width thereof.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN El dispositivo sensor de fibra óptica recubierto con material absorbente (la parte real de su permitividad es positiva y con valor absoluto mayor que el de su parte imaginaria y también mayor que la parte real de la permitividad del dieléctrico que rodea la película delgada) es adecuado para la generación de una o varias LMR originadas por modos con pérdidas cercanos a la condición de corte. Dicho dispositivo aúna las ventajas de la eliminación del prisma óptico de la configuración de Kretschmann mencionadas anteriormente en favor de un diseño en fibra óptica, portátil, de pequeño tamaño y con posibilidad de realizar medidas remotas y multiplexación, junto con la ventaja de emplear un material absorbente que, en condiciones donde la anchura de la película delgada de material absorbente permita que haya un modo TE con pérdidas cercano a la condición de corte, un modo TM con pérdidas cercano a la condición de corte, o la combinación de ambos, se generará una LMR en el espectro en transmisión o en reflexión cuyo desplazamiento en el rango del ultravioleta, del visible o del infrarrojo permitirá realizar medidas de parámetros químicos, biomédicos o ambientales. Por otro lado, el sensor de la invención se puede usar en las mismas aplicaciones que los sensores SPR. El dispositivo es altamente sensible a los cambios en el medio que lo rodea, por lo que simplemente con añadir, sobre el material absorbente, una capa sensible al parámetro que se desea detectar se pueden desarrollar sensores químicos, ambientales, bioquímicos, etc. Sin dicha capa sensible se pueden también desarrollar dispositivos sensores basados en la variación del índice del medio externo (refractómetros), basados en la variación de las propiedades de la película, o incluso filtros ópticos. Además, el hecho de que la LMR se produzca para ángulos que se aproximan al de propagación de la luz por la fibra es muy adecuado, pues después de recorrer una distancia con respecto al extremo de la fibra por el que se introduce la luz, esta tiende a adoptar en su mayor parte estos ángulos. DETAILED DESCRIPTION OF THE INVENTION The fiber optic sensor device coated with absorbent material (the real part of its permittivity is positive and with absolute value greater than that of its imaginary part and also greater than the real part of the permittivity of the dielectric surrounding the thin film) is suitable for the generation of one or several MRLs originated by modes with losses close to the cutting condition. Said device combines the advantages of the elimination of the optical prism of the Kretschmann configuration mentioned above in favor of a design in fiber optic, portable, of small size and with the possibility of performing remote measurements and multiplexing, together with the advantage of using a material absorbent that, in conditions where the width of the thin film of absorbent material allows for a TE mode with losses close to the cutting condition, a TM mode with losses close to the cutting condition, or the combination of both, will be generated an MRL in the spectrum in transmission or in reflection whose displacement in the ultraviolet, visible or infrared range will allow measurements of chemical, biomedical or environmental parameters. On the other hand, the sensor of the invention can be used in the same applications as SPR sensors. The device is highly sensitive to changes in the surrounding environment, so simply by adding, on the absorbent material, a layer sensitive to the parameter to be detected, chemical, environmental, biochemical sensors, etc. can be developed. Without said sensitive layer, sensor devices can also be developed based on the variation of the index of the external medium (refractometers), based on the variation of the properties of the film, or even optical filters. In addition, the fact that the MRL is produced for angles that approximate the propagation of light by the fiber is very suitable, because after traveling a distance from the end of the fiber through which light is introduced, it tends to adopt these angles for the most part.
Para la fabricación de estos dispositivos se deposita una película delgada de material absorbente, lo que hace posible poder ajustar sus parámetros de fabricación de cara a que la LMR se sitúe en el rango adecuado de longitudes de onda del espectro electromagnético. Las combinaciones son muy variadas. Si se genera una sola LMR, ésta se puede situar en alguna de las ventanas del infrarrojo, dejando libres otras longitudes de onda del visible por ejemplo para la realización de medidas complementarias como absorción o fluorescencia. La anchura de la película determinará la sensibilidad de esta única LMR. Hay que apuntar que al ir aumentando el espesor también se ve modificada la sensibilidad de la resonancia, la cual disminuye al aumentar el espesor. En otras palabras, el beneficio de la generación de múltiples resonancias al aumentar el espesor se produce en detrimento de una disminución de la sensibilidad. Otra posibilidad es aumentar el espesor de la película delgada de material absorbente para generar varias LMR distribuidas por el rango ultravioleta, visible e infrarrojo. Cada una de ellas tendrá una sensibilidad diferente, lo que permitirá tener múltiples medidas que mejorarán los errores producidos por interferencias y ruido.  For the manufacture of these devices a thin film of absorbent material is deposited, which makes it possible to adjust its manufacturing parameters so that the MRL is in the appropriate range of electromagnetic spectrum wavelengths. The combinations are very varied. If a single MRL is generated, it can be placed in one of the infrared windows, leaving other visible wavelengths free, for example to perform complementary measures such as absorption or fluorescence. The width of the film will determine the sensitivity of this unique MRL. It should be noted that as the thickness increases, the resonance sensitivity is also modified, which decreases with increasing thickness. In other words, the benefit of generating multiple resonances by increasing the thickness occurs to the detriment of a decrease in sensitivity. Another possibility is to increase the thickness of the thin film of absorbent material to generate several MRLs distributed over the ultraviolet, visible and infrared range. Each of them will have a different sensitivity, which will allow multiple measures to improve errors caused by interference and noise.
La fabricación de estos dispositivos así como su funcionamiento no es tampoco algo obvio ya que para ello será necesaria la adaptación de las diferentes técnicas de deposición existentes de manera que sean apropiadas para la deposición adecuada de los recubrimientos independientemente de la forma del substrato utilizado, fibra óptica en lugar del prisma de vidrio, en sus diferentes superficies y dependiendo de la configuración del dispositivo.  The manufacture of these devices as well as their operation is not obvious either, as this will require the adaptation of the different existing deposition techniques so that they are appropriate for the proper deposition of the coatings regardless of the shape of the substrate used, fiber optics instead of the glass prism, on its different surfaces and depending on the configuration of the device.
En lo que respecta a la LMR en sí, ésta genera una banda de atenuación en el espectro electromagnético. La longitud de onda central de la LMR experimentará variaciones en función de los parámetros que se detectan, llegándose a alcanzar variaciones muy grandes de hasta 470 nm, como se observa en la Fig. 6.  As regards the MRL itself, it generates an attenuation band in the electromagnetic spectrum. The central wavelength of the MRL will experience variations depending on the parameters that are detected, reaching very large variations of up to 470 nm, as seen in Fig. 6.
En resumen, se consigue mejorar la sensibilidad de los sensores, se permite la sintonización de la LMR en el ultravioleta, el visible o el infrarrojo mediante los parámetros de fabricación del recubrimiento de material absorbente, se elimina la necesidad de introducir luz polarizada, se potencia el efecto de la LMR gracias al confinamiento que la fibra óptica ejerce sobre el haz de luz, y lo que todavía resulta más novedoso y ventajoso, se pueden controlar con la anchura de la película delgada la sensibilidad de la LMR y la aparición de varias LMR en el espectro electromagnético, tal y como se ve en la Fig. 7. Conforme aumenta la anchura se guían más modos en el material absorbente. Por lo tanto, en cada longitud de onda donde se cumpla que el modo está situado cerca de la condición de corte, ocurrirá la LMR. En el caso de la Fig. 7 se dispone de una anchura de unos 440 nm, lo que provoca la aparición de 4 LMR en el espectro. Cada una de ellas tendrá un comportamiento diferente, lo que implica diferentes datos de cara a la monitorización de parámetros. In summary, it is possible to improve the sensitivity of the sensors, the tuning of the MRL in the ultraviolet, the visible or the infrared is allowed through the manufacturing parameters of the coating of absorbent material, the need to introduce polarized light is eliminated, it is enhanced The effect of the MRL thanks to the confinement that the optical fiber exerts on the light beam, and what is still more novel and advantageous, can be controlled with the width of the film The sensitivity of the MRL and the appearance of several MRLs in the electromagnetic spectrum are thin, as shown in Fig. 7. As the width increases, more modes are guided in the absorbent material. Therefore, at each wavelength where it is fulfilled that the mode is located near the cut-off condition, the MRL will occur. In the case of Fig. 7, a width of about 440 nm is available, which causes the appearance of 4 MRLs in the spectrum. Each of them will have a different behavior, which implies different data for the monitoring of parameters.
Este dispositivo utiliza, para acoplar luz a la fibra óptica (3), una fuente de luz (1 ) de "amplio espectro" con múltiples longitudes de onda, donde "amplio espectro" significa un mínimo de dos longitudes de onda aunque es deseable un rango lo suficientemente amplio para abarcar el espectro de resonancia de la muestra, como por ejemplo una fuente de luz blanca o la radiación de un cuerpo negro. El rango de ángulos vendrá delimitado por la apertura numérica de la fibra óptica.  This device uses, to couple light to the optical fiber (3), a "broad spectrum" light source (1) with multiple wavelengths, where "broad spectrum" means a minimum of two wavelengths although a wide enough range to cover the resonance spectrum of the sample, such as a white light source or black body radiation. The range of angles will be defined by the numerical aperture of the optical fiber.
Las fibras ópticas que se pueden usar para la presente invención incluyen todas las comerciales que permitan la transmisión de luz mediante reflexión total interna. Tales fibras, vendrán generalmente caracterizadas mediante tres parámetros: material del núcleo de la fibra, apertura numérica de la fibra y diámetro del núcleo de la fibra óptica. La elección de un tipo u otro de fibra óptica variará la posición del pico de resonancia (la longitud de onda a la que tiene lugar la LMR).  The optical fibers that can be used for the present invention include all commercial ones that allow the transmission of light by internal total reflection. Such fibers will generally be characterized by three parameters: fiber core material, numerical fiber aperture and fiber optic core diameter. The choice of one type or another of optical fiber will vary the position of the resonance peak (the wavelength at which the MRL takes place).
La realización de este dispositivo se presenta en dos configuraciones preferidas según aparece en las FIG. 1 a y 1 b. Estas configuraciones están basadas en sistemas de detección óptica basados en reflexión y en transmisión respectivamente. En el sistema basado en reflexión (FIGS. 3a y 3b) es necesario un elemento adicional (12) situado en uno de los extremos de la fibra óptica (1 1 ), de manera que refleje en sentido inverso la luz que se propaga a través de la fibra, el cual puede consistir en una capa de un metal altamente reflexivo, como oro, plata o cromo, adherida al extremo de la fibra y lo suficientemente gruesa para proporcionar una reflexión adecuada. También requiere de un acoplador (FIG. 1 b, ref. 4). The embodiment of this device is presented in two preferred configurations as shown in FIG. 1 a and 1 b. These configurations are based on optical detection systems based on reflection and transmission respectively. In the reflection-based system (FIGS. 3 a and 3b) an additional element (12) located at one end of the optical fiber (1 1) is necessary, so that it reflects in reverse the light that propagates to through the fiber, which can consist of a layer of a highly reflective metal, such as gold, silver or chrome, adhered to the end of the fiber and thick enough to provide adequate reflection. It also requires a coupler (FIG. 1b, ref. 4).
La utilización de la presente invención para la detección de la muestra se lleva a cabo, mediante la colocación de la muestra (13) sobre la película delgada de material absorbente (9) depositada sobre la fibra óptica. Esta película se deposita en distinto lugar dependiendo de las configuraciones utilizadas (5) en las FIGS 2, 3a y 3b. El proceso de deposición de la película delgada (9) se realiza mediante la retirada de la cubierta (8) adherida al núcleo de la fibra óptica (6) y la posterior deposición del propio material en la zona expuesta del núcleo (7). Entonces, la película delgada (9) es expuesta a la muestra (13) tal y como aparece representado en la FIG. 4a permitiendo así determinar el índice de refracción de la muestra a través de la o las LMR generadas por combinación del acoplo de potencia a los modos TE y TM cercanos al corte en la película delgada. Una variante de ésta consiste en la deposición de una capa sensible adicional (14) que hará las veces de mediador entre la muestra (13) y la película delgada (9) como aparece representado en la FIG. 4b. The use of the present invention for the detection of the sample is carried out, by placing the sample (13) on the thin film of absorbent material (9) deposited on the optical fiber. This movie is deposited in different places depending on the configurations used (5) in FIGS 2, 3a and 3b. The process of deposition of the thin film (9) is carried out by removing the cover (8) adhered to the core of the optical fiber (6) and the subsequent deposition of the material itself in the exposed area of the core (7). Then, the thin film (9) is exposed to the sample (13) as shown in FIG. 4a thus allowing to determine the refractive index of the sample through the MRL (s) generated by combining the power coupling to the TE and TM modes close to the cut in the thin film. A variant of this consists in the deposition of an additional sensitive layer (14) that will act as a mediator between the sample (13) and the thin film (9) as shown in FIG. 4b
La retirada de la cubierta de la fibra se realiza mediante la utilización de técnicas conocidas, como por ejemplo la utilización de agentes químicos o herramientas apropiadas. Una vez expuesto el núcleo de la fibra óptica, se adhiere la película delgada mediante la utilización de técnicas conocidas. Las características del material absorbente son que la parte imaginaria de su permitividad sea no nula. Además, su parte real será positiva y mayor en valor absoluto que la permitividad del dieléctrico que lo rodea (fibra y medio externo) y que su parte imaginaria. El óxido de indio dopado con estaño (ITO) cumple esta condición en el ultravioleta, el visible y el infrarrojo (200-1500nm). Además, podemos utilizar otros óxidos metálicos conductores transparentes que nos permitan situarnos en otras zonas del espectro. Dependiendo del espesor de la película aparecerán una (FIG. 5) o varias LMR (FIG. 7).  The removal of the fiber cover is carried out through the use of known techniques, such as the use of appropriate chemical agents or tools. Once the fiber optic core is exposed, the thin film is adhered by using known techniques. The characteristics of the absorbent material are that the imaginary part of its permittivity is non-zero. In addition, its real part will be positive and greater in absolute value than the permittivity of the surrounding dielectric (fiber and external medium) and its imaginary part. Tin doped indium oxide (ITO) meets this condition in ultraviolet, visible and infrared (200-1500nm). In addition, we can use other transparent conductive metal oxides that allow us to place ourselves in other areas of the spectrum. Depending on the thickness of the film, one (FIG. 5) or several MRLs (FIG. 7) will appear.
A su vez, una única fibra óptica puede contener una o más películas delgadas del mismo o de diferentes tipos, con la misma o con diferentes geometrías y situadas a lo largo o al final de ella. Además, cualquier porción de núcleo expuesto en la fibra óptica puede utilizarse para situar sobre ella la película delgada, aunque una de las realizaciones preferidas consiste en la retirada de la circunferencia completa de la cubierta que rodea al núcleo y depositar la película delgada de manera simétrica y con espesor uniforme sobre la zona expuesta del núcleo.  In turn, a single optical fiber can contain one or more thin films of the same or different types, with the same or with different geometries and located along or at the end of it. In addition, any core portion exposed in the optical fiber can be used to place the thin film thereon, although one of the preferred embodiments consists in removing the entire circumference of the shell surrounding the core and depositing the thin film symmetrically and with uniform thickness over the exposed core area.
Un sistema de detección (2) apropiado para la presente invención consistirá en cualquier dispositivo capaz de detectar la intensidad de todas o una parte de las longitudes de onda que salgan a través de la fibra óptica. Como ejemplo de dispositivo detector puede emplearse un espectrómetro capaz de medir la intensidad de la luz en función de la longitud de onda. A detection system (2) suitable for the present invention will consist of any device capable of detecting the intensity of all or a part of the wavelengths that exit through the optical fiber. As an example of Detector device can be used a spectrometer capable of measuring the intensity of light as a function of wavelength.
En las configuraciones de la presente invención descritas, la potencia óptica inyectada por el dispositivo emisor (1 ) en un extremo de la fibra óptica (3) viaja a través de ésta atravesando la zona sensible y llegando al dispositivo detector (2) directamente en el caso de la configuración en transmisión, FIG. 1 a, o una vez reflejada por la capa especular (12) en el caso de la configuración en reflexión, FIG. 1 b. Esta potencia óptica que llega al dispositivo detector es función del índice de refracción del medio externo en contacto con la película delgada (9), por la que se guía el modo cercano a la condición de corte que pasa de ser guiado en la fibra (6) a ser guiado en la película delgada (9).  In the configurations of the present invention described, the optical power injected by the emitting device (1) at one end of the optical fiber (3) travels through it through the sensitive area and reaching the detector device (2) directly in the case of the transmission configuration, FIG. 1 a, or once reflected by the specular layer (12) in the case of the configuration in reflection, FIG. 1 B. This optical power that reaches the detector device is a function of the refractive index of the external medium in contact with the thin film (9), by which the mode close to the cutting condition that is guided by the fiber (6) is guided. ) to be guided in the thin film (9).
De esta manera, midiendo el espectro a la salida de la fibra podemos determinar el índice de refracción de la muestra en contacto con la zona sensible del sensor de fibra óptica.  In this way, by measuring the spectrum at the fiber exit we can determine the refractive index of the sample in contact with the sensitive area of the fiber optic sensor.
El dispositivo sensor puede incorporar también una señal de auto-calibración dinámica mediante la bifurcación de la fibra óptica que procede de la fuente de luz de manera que tengamos una señal de referencia de la luz que atraviesa la fibra óptica sin ser afectada por la zona sensible.  The sensor device can also incorporate a dynamic self-calibration signal by bifurcation of the optical fiber that comes from the light source so that we have a reference signal of the light that passes through the optical fiber without being affected by the sensitive area .
En general, el dispositivo sensor puede utilizarse en aplicaciones múltiples: refractómetros, filtros ópticos, y en el campo químico o bioquímico, para detección de especies que están presentes en disoluciones en estado líquido o gas. Para aplicaciones en biosensores o en detección selectiva se puede recubrir la película delgada de material absorbente con una o más capas adicionales que incluyen compuestos inmovilizados, sensibles específicamente a la especie a detectar (por ejemplo enzimas y coenzimas, antígenos y anticuerpos, etc.). Es más, la mayoría de reacciones biológicas ocurren en el rango del ultravioleta, por lo que la posibilidad de obtener resonancias en este rango permitirá adecuar los sensores a dichas aplicaciones. El índice de refracción y el espesor de la capa adicional deben ser también adecuados para la aplicación. Esta capa, además, supone una protección frente a los agentes físicos y químicos externos que pueden dañar o afectar el comportamiento del sensor.  In general, the sensor device can be used in multiple applications: refractometers, optical filters, and in the chemical or biochemical field, for the detection of species that are present in liquid or gas solutions. For applications in biosensors or selective detection, the thin film of absorbent material can be coated with one or more additional layers that include immobilized compounds, specifically sensitive to the species to be detected (for example enzymes and coenzymes, antigens and antibodies, etc.). Moreover, most biological reactions occur in the ultraviolet range, so the possibility of obtaining resonances in this range will allow sensors to adapt to these applications. The refractive index and the thickness of the additional layer must also be suitable for the application. This layer also provides protection against external physical and chemical agents that can damage or affect the behavior of the sensor.
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA Esta realización está basada en un sistema de fibra óptica en transmisión en línea como el que aparece representado en la FIG. 1 a. DESCRIPTION OF A PREFERRED EMBODIMENT This embodiment is based on an optical transmission system in line transmission like the one shown in FIG. 1 a.
La fuente de luz utilizada (1 ) corresponde a una lámpara de luz halógena DH-2000-H (Avantes Inc.), la fibra óptica utilizada corresponde a una fibra óptica de sílice con cubierta y buffer poliméricos de diámetros 200/225/500 μηι para el núcleo, cubierta y buffer respectivamente, y apertura numérica 0.39 (Thorlabs Inc.). El buffer fue retirado mediante la utilización de las herramientas apropiadas mientras que la cubierta se eliminó mediante procedimientos químicos para varias fibras con longitudes de 1 cm, 2cm, 4 cm y 7cm. Una vez expuesto el núcleo de la fibra se utilizó la técnica dip-coating, que nos permitirá una deposición homogénea de una película de 85 nm de óxido metálico conductor transparente (ITO sobre la fibra óptica), dando como resultado la zona sensible que aparece representada en la FIG. 2. Este proceso se realizó utilizando una disolución de iones de indio (In) y estaño (Sn) en relación 90:10 a la que se le añadió un elemento surfactante para mejorar la adhesión y sometiendo el sensor finalmente a un proceso de curado o recocido a 5005C para mejorar las características y homogeneidad de la película conductora transparente. Finalmente, se unen los extremos del sensor a sendos latiguillos de fibra óptica. The light source used (1) corresponds to a DH-2000-H halogen light lamp (Avantes Inc.), the optical fiber used corresponds to a silica optical fiber with polymeric cover and buffer of diameters 200/225/500 μηι for the core, cover and buffer respectively, and numerical aperture 0.39 (Thorlabs Inc.). The buffer was removed by using the appropriate tools while the cover was removed by chemical procedures for several fibers with lengths of 1 cm, 2cm, 4 cm and 7cm. Once the fiber core was exposed, the dip-coating technique was used, which will allow us a homogeneous deposition of an 85 nm film of transparent conductive metal oxide (ITO on the optical fiber), resulting in the sensitive area that is represented in FIG. 2. This process was carried out using a solution of indium (In) and tin (Sn) ions in relation to 90:10 to which a surfactant element was added to improve adhesion and finally subjecting the sensor to a curing process or Annealing at 500 5 C to improve the characteristics and homogeneity of the transparent conductive film. Finally, the ends of the sensor are attached to two fiber optic hoses.
La salida de la fibra óptica fue conectada a un espectrómetro NIR-512 (Oceanoptics Inc.) con un rango de detección entre 850 nm - 1700 nm y resolución espectral menor de 5 nm utilizando una conexión SMA y conectado a su vez a una computadora para la adquisición de los espectros.  The fiber optic output was connected to a NIR-512 spectrometer (Oceanoptics Inc.) with a detection range between 850 nm - 1700 nm and a spectral resolution of less than 5 nm using an SMA connection and connected in turn to a computer for the acquisition of the spectra.
Se utilizaron cinco disoluciones diferentes de glicerina diluida en agua desionizada en diferentes concentraciones con índices de refracción 1 .378, 1 .400, 1 .422, 1 .436 y 1 .46 respectivamente, que se corresponden con concentraciones de glicerina en agua del 45%, 60%, 75%, 85% y 100%. Se observa un aumento de la longitud de onda de resonancia con el índice de refracción tal y como aparece en la FIG. 5 y dicha resonancia se sitúa en el rango de mínima atenuación de la fibra óptica en torno a las ventanas de comunicaciones primera (850nm), segunda (1310 nm) y tercera (1550nm). En la FIG. 6, se presenta la correspondencia entre la longitud de onda del pico de resonancia y el índice de refracción para cada una de las disoluciones, donde se observa una variación espectral de 470 nm para el rango de índices analizado. Dicha variación supone una sensibilidad de 1 .74x10"4 unidades de índice de refracción por nanómetro. Si se desea cubrir un rango de índices de refracción superior, la opción es utilizar una anchura mayor de ITO. Para el caso de 1 15 nm, se pueden monitorizar índices entre 1 .321 (el del agua) hasta 1 .46 (el de la glicerina). Con esto se tiene un rango dinámico de 0.14 unidades de índice de refracción, que podría aumentarse en caso de medir disoluciones de otra sustancia. Five different solutions of glycerin diluted in deionized water in different concentrations were used with refractive indices 1,378, 1,400, 1,424, 1,436 and 1,446 respectively, which correspond to glycerin concentrations in water of 45 %, 60%, 75%, 85% and 100%. An increase in the resonance wavelength is observed with the refractive index as it appears in FIG. 5 and said resonance is in the range of minimum attenuation of the optical fiber around the first (850nm), second (1310 nm) and third (1550nm) communications windows. In FIG. 6, the correspondence between the wavelength of the resonance peak and the refractive index for each of the solutions is presented, where a spectral variation of 470 nm is observed for the range of indices analyzed. This variation assumes a sensitivity of 1.74x10 "4 units of refractive index per nanometer. If you want to cover a range of indexes of higher refraction, the option is to use a wider width of ITO. In the case of 1 15 nm, indices between 1.321 (water) to 1.46 (glycerin) can be monitored. This has a dynamic range of 0.14 units of refractive index, which could be increased in case of measuring solutions of another substance.
Además, en la FIG. 7 se muestra el efecto de depositar una película de material absorbente de anchura 440 nm. El incremento en anchura provoca que se guíen un mayor número de modos en la película, lo que redunda en un número mayor de longitudes de onda a las cuales se cumple la condición de proximidad al corte de un modo guiado por la película. En cada una de estas longitudes de onda se genera una LMR. En el caso mostrado en la FIG. 7 se muestran hasta 4 LMR que para un medio externo de agua tienen su longitud de onda central a longitudes de onda 310 nm, 471 nm, 726 nm y 1257 nm. Para obtener estos resultados, además del espectrómetro NIR-512 (Oceanoptics Inc.), se utiliza otro espectrómetro HR4000 (Oceanoptics Inc.), que mide entre 200 y 1200 nm. Como se observa por los datos obtenidos con agua y con disolución de glicerina en agua al 75%, queda claro que cada uno de los picos es sensible al medio externo y con una sensibilidad diferente. Otra aplicación es el desarrollo de filtros ópticos a diferentes longitudes de onda. Los datos anteriores quedan contrastados con los resultados de un análisis teórico basado en teoría de ondas electromagnéticas que se presenta en la FIG. 8.  In addition, in FIG. 7 shows the effect of depositing a film of absorbent material of width 440 nm. The increase in width causes a greater number of modes to be guided in the film, which results in a greater number of wavelengths at which the condition of proximity to the cut is fulfilled in a film-guided manner. An MRL is generated in each of these wavelengths. In the case shown in FIG. 7 shows up to 4 MRLs that for an external water medium have their central wavelength at wavelengths 310 nm, 471 nm, 726 nm and 1257 nm. To obtain these results, in addition to the NIR-512 spectrometer (Oceanoptics Inc.), another HR4000 spectrometer (Oceanoptics Inc.) is used, measuring between 200 and 1200 nm. As can be seen from the data obtained with water and with 75% glycerin solution in water, it is clear that each of the peaks is sensitive to the external environment and with a different sensitivity. Another application is the development of optical filters at different wavelengths. The above data are contrasted with the results of a theoretical analysis based on electromagnetic wave theory presented in FIG. 8.
En definitiva, con estos nuevos dispositivos basados en LMR sobre fibra óptica se consigue un salto cualitativo con respecto a los basados en SPR. Se ha visto la posibilidad de conseguir trabajar en un espectro de longitudes de onda tan amplio como el que acabamos de ver (ultravioleta, visible e infrarrojo), pudiéndose llegar a obtener múltiples LMR independientemente del sustrato, con las implicaciones para la detección de múltiples parámetros que ello supone. Esto está relacionado con la anchura de la película delgada depositada sobre la fibra, de tal forma que el número de LMR aumenta con el espesor. Por otro lado la anchura también permite controlar la sensibilidad de los dispositivos. Además, el rango de materiales con los que se pueden desarrollar este tipo de sensores es muy amplio. In short, with these new devices based on MRLs on optical fiber, a qualitative leap is achieved with respect to those based on SPR. We have seen the possibility of working in a spectrum of wavelengths as wide as the one we have just seen (ultraviolet, visible and infrared), being able to obtain multiple MRLs independently of the substrate, with the implications for the detection of multiple parameters That this implies. This is related to the width of the thin film deposited on the fiber, such that the number of MRLs increases with the thickness. On the other hand the width also allows to control the sensitivity of the devices. In addition, the range of materials with which these types of sensors can be developed is very wide.
Aquí se ha mostrado la aplicación de utilización de óxidos metálicos conductores transparentes, concretamente el ITO, aunque existen un gran número de materiales susceptibles de ser utilizados, como por ejemplo un material polimérico rugoso depositado con la técnica de autoensamblado electrostático monocapa o la Langmuir Blodgett. Here we have shown the application of the use of transparent conductive metal oxides, specifically ITO, although there are a large number of materials that can be used, such as a rough polymeric material deposited with the monolayer electrostatic self-assembling technique or the Langmuir Blodgett.
Aunque el dispositivo se ha orientado al campo de los sensores, y más concretamente a aplicaciones químicas o bioquímicas, también se puede utilizar como sensor óptico para detectar la variación de cualquier parámetro físico o químico que afecte a las propiedades ópticas del medio externo sometido a control e incluso se puede salir del campo de los sensores para ser utilizado como filtro óptico de varias longitudes de onda en comunicaciones ópticas.  Although the device has been oriented to the field of sensors, and more specifically to chemical or biochemical applications, it can also be used as an optical sensor to detect the variation of any physical or chemical parameter that affects the optical properties of the external medium under control and you can even leave the field of sensors to be used as an optical filter of various wavelengths in optical communications.

Claims

REIVINDICACIONES
1 . Sensor de fibra óptica recubierta basado en el fenómeno de resonancia por modos con pérdidas cercanos a la condición de corte, que comprende: one . Coated fiber optic sensor based on the phenomenon of resonance by modes with losses close to the cutting condition, comprising:
- una fibra óptica (3) con un núcleo guía-onda (6) y al menos una película de material absorbente (9) situada en una zona sensible en contacto directo con al menos una parte del núcleo guía-onda de la fibra,  - an optical fiber (3) with a waveguide core (6) and at least one film of absorbent material (9) located in a sensitive area in direct contact with at least a part of the fiber waveguide core,
- una fuente de radiación electromagnética (1 ) de amplio espectro cuya salida es aplicable a uno de los extremos del núcleo guía-onda de la fibra óptica de manera que la radiación se propague a través de la fibra y salga de la fibra óptica y  - a broad-spectrum electromagnetic radiation source (1) whose output is applicable to one of the ends of the optical waveguide core so that the radiation propagates through the fiber and out of the optical fiber and
- un dispositivo detector (2) para la medida de la radiación que sale a través de la fibra, caracterizado porque la película (9) en contacto directo con al menos una parte del núcleo guía-onda de la fibra está formada por un material absorbente en el que la parte real de su permitividad es positiva y su valor absoluto es mayor que el valor absoluto de su parte imaginaria y mayor que la parte real de la permitividad de la fibra (3) y capaz de producir al menos un modo cercano a la condición de corte.  - a detecting device (2) for measuring the radiation exiting through the fiber, characterized in that the film (9) in direct contact with at least a part of the fiber waveguide core is formed by an absorbent material in which the real part of its permittivity is positive and its absolute value is greater than the absolute value of its imaginary part and greater than the real part of the permittivity of the fiber (3) and capable of producing at least a mode close to The cutting condition.
2. Sensor según la reivindicación 1 caracterizado porque la fuente de radiación es aplicable al extremo de entrada del núcleo de la fibra óptica de manera que la radiación se propague a través de la fibra por reflexión total interna desde el extremo de entrada hasta el extremo de salida. 2. Sensor according to claim 1 characterized in that the radiation source is applicable to the input end of the fiber optic core so that the radiation is propagated through the fiber by total internal reflection from the input end to the end of exit.
3. Sensor según la reivindicación 1 caracterizado porque comprende un extremo en reflexión (1 1 ) definido por una capa especular (12) en contacto con el extremo del núcleo guía onda. 3. Sensor according to claim 1 characterized in that it comprises a reflecting end (1 1) defined by a specular layer (12) in contact with the end of the waveguide core.
4. Sensor según la reivindicación 3 caracterizado porque la película delgada de material absorbente está situada en el extremo en reflexión de la fibra óptica. 4. Sensor according to claim 3 characterized in that the thin film of absorbent material is located at the reflective end of the optical fiber.
5. Sensor según las reivindicaciones 3 o 4, caracterizado porque la capa especular comprende un material con alta reflectividad. 5. Sensor according to claims 3 or 4, characterized in that the specular layer comprises a material with high reflectivity.
6. Sensor según la reivindicación 5, caracterizado porque que la capa especular comprende oro, plata, cromo, aluminio o platino. 6. Sensor according to claim 5, characterized in that the specular layer comprises gold, silver, chrome, aluminum or platinum.
7. Sensor según cualquiera de las reivindicaciones anteriores caracterizado porque sobre la película delgada de material absorbente se deposita al menos una capa adicional (14) de partículas sensibles específicamente a la especie a detectar. 7. Sensor according to any of the preceding claims characterized in that at least one additional layer (14) of particles sensitive specifically to the species to be detected is deposited on the thin film of absorbent material.
8. Sensor según cualquiera de las reivindicaciones anteriores caracterizado porque la película delgada comprende un óxido metálico conductor transparente de un elemento escogido entre los elementos zinc, indio, estaño, iridio, cadmio, itrio, escandio y níquel, o aleaciones, dopados o combinaciones binarias, ternarias o cuaternarias de los óxidos de los elementos anteriores entre ellos mismos, con otros elementos como flúor, cobre, galio, magnesio, calcio, estroncio o aluminio o combinaciones de estos últimos entre ellos. A sensor according to any of the preceding claims characterized in that the thin film comprises a transparent conductive metal oxide of an element chosen from the elements zinc, indium, tin, iridium, cadmium, yttrium, scandium and nickel, or alloys, doped or binary combinations , ternary or quaternary of the oxides of the previous elements among themselves, with other elements such as fluorine, copper, gallium, magnesium, calcium, strontium or aluminum or combinations of the latter among them.
9. Sensor según cualquiera de las reivindicaciones 1 -7 caracterizado porque la película delgada comprende un material polimérico depositado mediante las técnicas de autoensamblado electrostático monocapa o la Langmuir Blodgett.  9. Sensor according to any one of claims 1-7, characterized in that the thin film comprises a polymeric material deposited by the electrostatic self-assembling techniques monolayer or the Langmuir Blodgett.
10. Sensor según la reivindicación 9 caracterizado porque la película delgada comprende uno de los compuestos poli(vinilpirrolidona), poli(vinilalcohol), poliacrilamida, ácido poliacrílico, poliestireno sulfato, polianilina sulfato, poli(tiofeno- 3-acético ácido), polianilina, polipirrol, poli(3-hexil tiofeno), poli(3,4- etilendioxitiofeno)y poli(dimetil amonio dicloruro) o combinaciones de los mismos. 10. Sensor according to claim 9 characterized in that the thin film comprises one of the compounds poly (vinyl pyrrolidone), poly (vinyl alcohol), polyacrylamide, polyacrylic acid, polystyrene sulfate, polyaniline sulfate, poly (thiophene-3-acetic acid), polyaniline, polypyrrole, poly (3-hexyl thiophene), poly (3,4-ethylenedioxythiophene) and poly (dimethyl ammonium dichloride) or combinations thereof.
1 1 . Sensor según cualquiera de las reivindicaciones anteriores caracterizado porque incorpora otra fibra óptica capaz de generar una señal de referencia de salida. eleven . Sensor according to any of the preceding claims characterized in that it incorporates another optical fiber capable of generating an output reference signal.
12. Sensor de fibra óptica según cualquiera de las reivindicaciones anteriores caracterizado porque la fuente de radiación electromagnética es una del grupo consistente en uno o varios LED, un láser de semiconductor o una lámpara halógena y donde el sistema de detección de luz está adaptado para detectar las longitudes de onda producidas por la fuente escogida. 12. Fiber optic sensor according to any of the preceding claims characterized in that the source of electromagnetic radiation is one of the group consisting of one or more LEDs, a semiconductor laser or a halogen lamp and where the light detection system is adapted to detect the wavelengths produced by the chosen source.
13. Sensor de fibra óptica según cualquiera de las reivindicaciones anteriores, caracterizado porque el dispositivo detector (2) comprende un espectrómetro. 13. Fiber optic sensor according to any of the preceding claims, characterized in that the detector device (2) comprises a spectrometer.
14. Sensor de fibra óptica según cualquiera de las reivindicaciones anteriores caracterizado porque la película es de un espesor adaptado para generar múltiples resonancias. 14. Fiber optic sensor according to any of the preceding claims characterized in that the film is of a thickness adapted to generate multiple resonances.
15. Uso de un sensor según cualquiera de las reivindicaciones 1 -14 como filtro en comunicaciones ópticas. 15. Use of a sensor according to any of claims 1-14 as a filter in optical communications.
PCT/ES2010/070574 2009-09-07 2010-08-31 Coated fibre optic sensors based on near cutoff lossy mode resonance WO2011027016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930656A ES2363285B2 (en) 2009-09-07 2009-09-07 COATED OPTICAL FIBER SENSORS BASED ON RESONANCE ORIGINATED BY MODES WITH LOSSES NEAR THE CUTTING CONDITION
ESP200930656 2009-09-07

Publications (1)

Publication Number Publication Date
WO2011027016A1 true WO2011027016A1 (en) 2011-03-10

Family

ID=43648918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070574 WO2011027016A1 (en) 2009-09-07 2010-08-31 Coated fibre optic sensors based on near cutoff lossy mode resonance

Country Status (2)

Country Link
ES (1) ES2363285B2 (en)
WO (1) WO2011027016A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788757A (en) * 2012-08-28 2012-11-21 中国计量学院 Water quality chromaticity detection device on basis of transmission-type optical fiber sensor
CN106872405A (en) * 2017-01-05 2017-06-20 深圳大学 A kind of biologic sensor chip based on bilayer graphene
CN109655434A (en) * 2019-02-22 2019-04-19 东北大学 A kind of optical fiber LMR sensor of measuring multiple parameters

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198844A (en) * 1986-07-17 1988-06-22 Atomic Energy Authority Uk Gas sensor
GB2210685A (en) * 1987-10-05 1989-06-14 Atomic Energy Authority Uk Sensor
EP0359705A2 (en) * 1988-09-16 1990-03-21 Centre Suisse D'electronique Et De Microtechnique S.A. Bi-modal fibre-optical sensor with spatial demultiplexation
EP0489274A1 (en) * 1990-12-03 1992-06-10 Corning Incorporated Optical fiber sensor with localized sensing regions
US7167615B1 (en) * 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198844A (en) * 1986-07-17 1988-06-22 Atomic Energy Authority Uk Gas sensor
GB2210685A (en) * 1987-10-05 1989-06-14 Atomic Energy Authority Uk Sensor
EP0359705A2 (en) * 1988-09-16 1990-03-21 Centre Suisse D'electronique Et De Microtechnique S.A. Bi-modal fibre-optical sensor with spatial demultiplexation
EP0489274A1 (en) * 1990-12-03 1992-06-10 Corning Incorporated Optical fiber sensor with localized sensing regions
US7167615B1 (en) * 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788757A (en) * 2012-08-28 2012-11-21 中国计量学院 Water quality chromaticity detection device on basis of transmission-type optical fiber sensor
CN106872405A (en) * 2017-01-05 2017-06-20 深圳大学 A kind of biologic sensor chip based on bilayer graphene
CN106872405B (en) * 2017-01-05 2019-08-13 深圳大学 A kind of biologic sensor chip based on bilayer graphene
CN109655434A (en) * 2019-02-22 2019-04-19 东北大学 A kind of optical fiber LMR sensor of measuring multiple parameters
CN109655434B (en) * 2019-02-22 2024-01-26 东北大学 Optical fiber LMR sensor for multi-parameter measurement

Also Published As

Publication number Publication date
ES2363285A1 (en) 2011-07-28
ES2363285B2 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
Wang et al. A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation
US9285534B2 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
Zamarreño et al. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings
Iga et al. Hetero-core structured fiber optic surface plasmon resonance sensor with silver film
Gryga et al. One-dimensional photonic crystal for Bloch surface waves and radiation modes-based sensing
US8937721B2 (en) Sensing device
JPWO2005078415A1 (en) Surface plasmon resonance sensor
Hu et al. High sensitivity fiber optic SPR refractive index sensor based on multimode-no-core-multimode structure
Cennamo et al. SPR sensor platform based on a novel metal bilayer applied on D–shaped plastic optical fibers for refractive index measurements in the range 1.38–1.42
Goddard et al. Real-time biomolecular interaction analysis using the resonant mirror sensor
Qin et al. Narrowband and full-angle refractive index sensor based on a planar multilayer structure
Tou et al. Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance
ES2363285B2 (en) COATED OPTICAL FIBER SENSORS BASED ON RESONANCE ORIGINATED BY MODES WITH LOSSES NEAR THE CUTTING CONDITION
Chopra et al. Tuning the sensitivity of a fiber-optic plasmonic sensor: An interplay among gold thickness, tapering ratio and surface roughness
JP6681070B2 (en) Optical fiber device and sensor system
Li et al. Dual-channel fiber-optic biosensor for self-compensated refractive index measurement
Lee et al. Curvature effects on flexible surface plasmon resonance biosensing: segmented-wave analysis
Popescu Interrogation methods for Bragg fiber-based plasmonic sensors
Fontana A novel gold-coated multimode fiber sensor
ES2381087B1 (en) OPTICAL FIBER SENSORS BASED ON THE RESONANCE EFFECT OF SURFACE PLASMONS USING TRANSPARENT CONDUCTING METAL OXIDES
Wang et al. Localized surface plasmon resonance refractometer based on no-core fiber
Del Villar et al. Nanocoated optical fibre for lossy mode resonance (LMR) sensors and filters
ES2765026B2 (en) Procedure, waveguide and system to generate modes close to the cutting condition
Ozcariz Celaya et al. A comprehensive review: materials for the fabrication of optical fiber refractometers based on lossy mode resonance
Beam et al. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813380

Country of ref document: EP

Kind code of ref document: A1