WO2011026343A1 - Ip网络信令传输故障处理方法及装置 - Google Patents

Ip网络信令传输故障处理方法及装置 Download PDF

Info

Publication number
WO2011026343A1
WO2011026343A1 PCT/CN2010/072754 CN2010072754W WO2011026343A1 WO 2011026343 A1 WO2011026343 A1 WO 2011026343A1 CN 2010072754 W CN2010072754 W CN 2010072754W WO 2011026343 A1 WO2011026343 A1 WO 2011026343A1
Authority
WO
WIPO (PCT)
Prior art keywords
congestion
signaling
congested
signaling link
link
Prior art date
Application number
PCT/CN2010/072754
Other languages
English (en)
French (fr)
Inventor
梁庆永
徐力群
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011026343A1 publication Critical patent/WO2011026343A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/062Generation of reports related to network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/70Routing based on monitoring results
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level

Definitions

  • the present invention relates to an IP network signaling transmission protocol (SIGTRAN protocol), and more particularly to a method and apparatus for processing an IP network signaling transmission failure.
  • SIGTRAN protocol IP network signaling transmission protocol
  • IP network signaling multiple transmission network paths are often used to transmit IP from the perspective of disaster recovery backup.
  • Network signaling message due to the different routers and transmission media that the IP transmission network passes through, there are often some differences in the transmission network. It is often the case that a transmission network has a poor quality of packet loss, and another transmission network never loses quality. The difference in the transmission network is different in the IP network signaling layer. The congestion of the IP path is different.
  • IP network signaling M3UA protocol one IP channel is coupled, but the underlying specific is not seen.
  • the main technical problem to be solved by the present invention is to provide a processing method and device for IP network signaling transmission failure, which solves the service interruption problem caused by the IP network signaling transmission plane failure.
  • the present invention provides a method for processing an IP network signaling transmission fault, which includes:
  • the node After the node receives the IP signaling link congestion message from the office to another node, it determines whether the proportion of the IP signaling link that has been congested exceeds the preset congestion reporting threshold.
  • the traffic is not reported to the office. If the proportion of the IP signaling link that exceeds the congestion exceeds the threshold for reporting congestion, the reporting service is congested.
  • the method further includes: setting a congestion flag to the congestion-initiated IP signaling link, and prohibiting the congestion of the IP signaling chain.
  • the road bears the business load.
  • the IP signaling link that is congested is set with a congestion flag, and the IP signaling link that is prohibited from being congested bears the traffic load, and specifically includes: marking, in the dynamic routing table, the congestion of the IP signaling link as Congested state, making traffic load dynamic routing prohibit selection selection when routing Congested IP signaling link.
  • the method further includes:
  • the method further includes the following steps:
  • the traffic load is not allocated to the de-congested IP signaling link until the timer expires.
  • the method further includes: detecting, during the timing of the timer, whether the fault of the de-congested IP signaling link is truly restored, specifically:
  • the present invention also provides an IP network signaling transmission failure processing apparatus, the apparatus comprising: a determining unit, configured to determine that congestion occurs after the node receives an IP signaling link congestion message from the office to another node. Whether the ratio of the IP signaling link exceeds a preset congestion reporting threshold; the message sending unit is configured to: when the judgment result of the determining unit is that the proportion of the IP signaling link that is congested does not exceed the congestion reporting threshold, The service bureau is congested; and when the result of the judgment is that the proportion of the IP signaling link that is congested exceeds the congestion reporting threshold, the service office is reported to be congested.
  • a determining unit configured to determine that congestion occurs after the node receives an IP signaling link congestion message from the office to another node. Whether the ratio of the IP signaling link exceeds a preset congestion reporting threshold
  • the message sending unit is configured to: when the judgment result of the determining unit is that the proportion of the IP signaling link that is congested does not exceed the congestion reporting
  • the apparatus further includes: a tag setting unit for occluding the congestion in the dynamic routing table
  • the signaling link is marked as a congestion state, so that when the traffic load dynamic routing is routed, the IP signaling link marked as a congestion state is prohibited from being selected.
  • the device further includes: a statistics unit, configured to count the number of IP signaling links marked as being in a congestion state in the dynamic routing table;
  • the service allocation unit is configured to enable all IP signaling links to bear the traffic load when all IP signaling links to a signaling office are marked as congested according to the statistical result of the statistical unit.
  • the apparatus further includes: a timer unit, configured to: when the node receives the office route to another node
  • a preset timer is triggered to start timing.
  • the marking setting unit further uses a congestion flag of the IP signaling link that is released from the congestion before the timer expires;
  • a heartbeat sending unit configured to send a heartbeat message to the uncongested IP signaling link during the timer timing
  • a detecting unit configured to detect whether the heartbeat message causes congestion of the de-congested IP signaling link to reoccur, and if yes, controlling the flag setting unit to continue to set congestion on the de-congested IP signaling link Marking; if the sent heartbeat message does not cause the de-congested IP signaling link to reoccur after the timer expires, controlling the flag setting unit to cancel the de-congested IP signaling link Congestion mark.
  • the invention avoids the problem that in the prior art, once a part of the IP signaling link is congested, the service performs load flow control, which leads to service call loss or even a failure, and solves the problem that the service interruption of the IP signaling transmission plane causes the service to be interrupted.
  • the invention can prevent the excessive load control of the service due to the transmission plane failure to the greatest extent, so that the transmission failure of the single plane does not have any negative impact on the service when the service is invisible. For the current IP signaling network, it is very important to optimize the communication network to improve the user service quality.
  • Figure 1 is a structural diagram of the M3UA protocol stack
  • Figure 2 is a service load sharing diagram under normal conditions
  • Figure 3 is a service load sharing diagram of an IP transmission plane failure
  • Figure 5 is a flow chart of an embodiment of the present invention.
  • Figure 6 is a schematic structural view of another embodiment of the present invention.
  • FIG. 7 is a flow chart of another embodiment of the present invention. detailed description
  • the present invention sets a congestion reporting threshold for an IP signaling link to a signaling office.
  • the service signaling is not reported to be congested.
  • the proportion of the IP signaling link that is congested is higher than the threshold, the service is reported. The bureau is congested.
  • the service is subjected to load flow control, so that when some IP signaling links are congested, as long as the set congestion reporting threshold is not exceeded, If the report is reported, traffic control will not be caused, the traffic that can be normally assumed will not be reduced, and the service call loss or even the failure of the service due to some or even some IP signaling link failures will be avoided.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a structure diagram of a SIGTRAN protocol stack, including two nodes NODE A and NODE B, one being a source signaling node and the other being a destination signaling node.
  • nodes NODE A and NODE B include an IP layer, a Stream Control Transmission Protocol (SCTP) layer, an M3UA layer, a Signaling Connection Control Part (SCCP), and a Transaction Capability Application Part (TCAP, Transaction). Capabilities Application Part ) shall be included in the M3UA protocol module.
  • the upper layer service module of the M3UA protocol module is the SCCP service module, the bottom The layer is carried on top of the IP transport network.
  • the M3UA protocol module provides a reliable and orderly service delivery function for the SCCP service module through the IP transmission network 1 and the IP transmission network 2.
  • the traffic load of NODE A to NODE B is evenly transmitted between the IP signaling links IPLinkl-IPLink8, and the same NODE.
  • the traffic load from B to NODE A is also evenly distributed between the IP signaling links IPLinkl-IPLink8. That is, when the IP transmission planes A-R1-B and A-R2-B are not abnormal, IPLinkl-IPLink4 bears 50% of the traffic load, and IPLink5-IPLink8 bears 50% of the traffic load.
  • IP router (Router) 1 when the IP transmission network fails, the path from NODE A to IP router (Router) 1 is abnormal, and packet loss causes IP channel congestion.
  • the exception may be that the IP Router1 is abnormal, causing the IP signaling link IPLinkl-IPLink4 to be congested. It may also be that some or some of the links in the IP signaling link IPLinkl-IPLink4 are partially congested.
  • the processing device for solving the IP network signaling transmission failure in this embodiment is as shown in FIG. 4, and includes a judging unit 41 and a message transmitting unit 42.
  • the determining unit 41 is configured to determine, after the node receives the IP signaling link congestion message from the office to another node, whether the proportion of the IP signaling link that is congested exceeds a preset congestion reporting threshold; the packet sending unit 42
  • the judging unit 41 is configured to: when the judgment result of the judging unit 41 is that the proportion of the IP signaling link that is congested does not exceed the congestion reporting threshold, the service office congestion is not reported; and when the judgment result is that congestion occurs.
  • the proportion of the IP signaling link exceeds the congestion reporting threshold the reporting service station is congested.
  • the flow control unit 44 controls the traffic of the node after responding to the congestion message sent by the message sending unit 42 to the traffic, for example, reducing the traffic.
  • the calculation of the proportion of the IP signaling link in which the congestion occurs may be calculated by using the prior art calculation method, for example, dividing the number of IP signaling links that are congested to an office direction by the protocol (for example, the M3UA protocol). The number of all IP signaling links to an office route, and the proportion of IP signaling links where congestion occurs. If the proportion of the IP signaling link that is congested does not exceed the congestion reporting threshold, the service bureau does not report the congestion to the service. If the traffic load sharing is still used, the fault persists. The transmission of service messages on the transmission path, such as packet loss and retransmission congestion, may result in an increase in the delay of the service message and a decrease in the quality of the communication service. To solve this problem, as shown in FIG.
  • the processing apparatus further includes a flag setting unit 43 for setting a congestion flag for the congested IP signaling link to cause a congested IP signaling link. Do not bear the business load. Specifically, by marking the congestion-initiated IP signaling link in the dynamic routing table 45 as a congestion state, the traffic load dynamic routing does not select the IP signaling link marked as a congestion state during routing, thereby avoiding congestion congestion. And improve the quality of communication services.
  • the determining unit 41 is further connected to the M3UA protocol module 40, and the M3UA protocol module 40 is responsible for receiving the congestion message of the IP signaling link and providing the information to the determining unit 41.
  • the M3UA protocol module 40 is responsible for receiving the congestion message of the IP signaling link and providing the information to the determining unit 41.
  • other protocol modules may also be responsible for receiving the congestion message of the IP signaling link. According to the specific requirements, message transmission and reception can also be completed by the same protocol module.
  • the processing device further Including the statistic unit 46 and the service allocating unit 47, as shown in FIG. 4, the statistic unit 46 is configured to count the number of IP signaling links marked as congestion in the dynamic routing table 45; the service allocating unit 47 is configured to perform statistics according to statistics.
  • the statistical result of unit 46 is that when all IP signaling links to a signaling office are marked as congested, all IP signaling links are hooked to bear the traffic load.
  • Step 51 Set a congestion reporting threshold to an IP signaling link to a signaling office in advance, when the node receives the local office. After the IP signaling link to another node is congested, step 52 is performed.
  • Step 52 After receiving the IP signaling link congestion packet, the IP signaling chain that is congested The congestion setting flag is set so that the IP signaling link that is congested does not bear the traffic load, that is, the traffic signaling dynamic link is marked as the congestion state in the dynamic routing table, so that the traffic load dynamic routing is not in the routing.
  • the IP signaling link marked as congested is selected, and all traffic loads are transmitted through other normal IP signaling links.
  • Step 53 Obtain the proportion of the IP signaling link in which the congestion occurs, and determine whether the proportion of the IP signaling link that is congested exceeds the preset congestion reporting threshold. If yes, go to Step 54 to report the congestion of the service office; otherwise, go to Step 55. , do not report to the business bureau to congestion.
  • Step 52 is to prevent the transmission of the traffic load on the already congested IP signaling link, and step 52 may be followed by step 53.
  • Step 56 Count the number of IP signaling links marked as congestion in the dynamic routing table, and determine whether all IP signaling links are congested. If yes, go to step 57. Otherwise, go to step 51.
  • Step 57 When all the IP signaling links to a signaling office are marked as being in a congestion state, all the IP signaling links are delineated to bear the traffic load, so that the service traffic cannot be distributed.
  • step 53 and step 52 can also be interchanged as needed, and the effect of the embodiment can be achieved.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the processing apparatus for solving the IP network signaling transmission failure of the present invention includes: a determining unit 61, a text sending unit 62, and a flag setting unit 63; the determining unit 61 is respectively connected to the M3UA protocol module 60 and the message sending unit 62. .
  • the determining unit 61 determines, according to the congestion packet of the IP signaling link received by the M3UA protocol module 60, whether the proportion of the IP signaling link that is congested exceeds the congestion reporting threshold, and the packet sending unit 62 determines according to the judgment result of the determining unit 61. Whether it is reported to the business bureau to congestion.
  • the flag setting unit 63 sets the IP signaling link in which congestion occurs. Plug mark.
  • the processing device further includes: a timer unit 66, a heartbeat sending unit 67, and a detecting unit 68, configured to process the congestion of the IP signaling link after congestion is released.
  • the timer unit 66 is configured to: when the node receives the un-congested packet of the IP signaling link from the office to the other node, perform timing according to a preset timer; the heartbeat sending unit 67 is configured to use the timer During the timing, the heartbeat message is sent to the IP signaling link that has been de-congested; the detecting unit 68 is configured to detect whether the heartbeat message causes the IP signaling link to reoccur, and if so, the control flag setting unit 63 Continue to set a congestion flag or keep the congestion flag unchanged for the IP signaling link, and control the heartbeat sending unit 67 to stop sending the heartbeat message, and control the timer unit 66 to cancel the timer timing; if the timer expires, the heartbeat is sent after the timer The message does
  • the processing flow is as shown in FIG. 7, and includes the following steps:
  • Step 71 Receive an un-congested packet of the IP signaling link, and perform step 72 after receiving.
  • Step 73 During the timer timing, the heartbeat message data is sent on the IP signaling link that has been de-congested, and the heartbeat message data may be sent periodically, and then step 74 is performed.
  • Step 74 Determine whether the heartbeat message causes the IP signaling link to be re-congested, that is, detect whether the packet that receives the congestion of the IP signaling link is received again. If yes, go to step 75. Otherwise, go to step 77.
  • Step 75 After detecting that the sent heartbeat message once causes the IP signaling link to re-congest the packet, continue to set a congestion flag on the IP signaling link, so that the IP signaling link still does not bear the service. load. And step 76 is executed to stop sending the heartbeat message and cancel the timer. Step 77: If the heartbeat message sent this time does not cause the IP signaling link to re-congest, determine whether the timer expires, if yes, go to step 78, otherwise go to step 73 and continue to the IP address that has been de-congested. Let the heartbeat message data be sent on the link.
  • Step 78 Cancel the congestion flag of the IP signaling link, that is, set a non-congestion flag for the IP signaling link, that is, mark the congestion of the IP signaling link in the dynamic routing table as a non-congested state, so that the service
  • the load dynamic routing can select the IP signaling link to undertake the service when routing.
  • the service load is not immediately allocated to the IP signaling link, but the IP signaling link is first tested to confirm that the IP signaling link is indeed normal.
  • the traffic load is then allocated to the IP signaling link.
  • the IP signaling link that cancels the congestion avoids congestion immediately after the service is taken, and the normal jitter is restored after canceling the service.
  • FIG. 3 A specific embodiment of the present invention will be described below by taking FIG. 3 as an example.
  • the IP transmission plane A-R1-B is abnormal, causing IP congestion on IPLinkl-IPLink4.
  • the NODE A node M3UA protocol module determines whether the SCCP service module needs to be reported according to the configured congestion reporting threshold. If the congestion occurs, the IPLink ratio does not exceed the set congestion. If the threshold is reported, the M3UA protocol module does not report congestion on the NODEB node of the SCCP service module. Therefore, the SCCP service module does not perform traffic control on the services of the NODE B node, thus ensuring that the user service is not damaged.
  • IPLinkl-IPLink4 is marked as congested in the dynamic routing table.
  • the services to the NODEB node no longer select IPLinkl-IPLink4.
  • IPLink5-IPLink8 is responsible for 100% of the traffic from NODE A to NODE B.
  • IPLink l-IPLink4 sends traffic data through Router 1 and no congestion occurs.
  • IP transmission plane A-R1-B is abnormally released and the A-Rl-B IP transmission plane is no longer congested, that is, IPLinkl-IPLink4 IP congestion is released, IPLinkl-IPLink4 cannot directly bear the traffic and avoid jitter.
  • the M3UA protocol module of the NODE A node receives the IPLinkl-IPLink4 on the bottom layer to release the congestion message
  • the M3UA protocol module starts the damping timer, which is used to monitor the link congestion recovery of IPLinkl-IPLink4, if the damping timer is used. If IPLinkl-IPLink4 congestion occurs again before then, go back to step 3 and stop the damping timer. If the IPLinkl-IPLink4 is not re-occurring when the damping timer expires, the A-Rl-B IP transmission plane has completely returned to normal and can be put into service load.
  • the NODE A node M3UA protocol module periodically sends a heartbeat message on IPLinkl-IPLink4 during the start of the damping timer to detect whether IPLinkl-IPLink4 is actually congested and whether the heartbeat message is sent on IPLinkl-IPLink4. This caused congestion on IPLinkl-IPLink4 again. If congestion occurs again, go back to step 3.
  • NODE A node The M3UA protocol module determines that the damping timer expires and IPLinkl-IPLink4 congestion does not occur again. This indicates that the A-Rl-B IP transmission path has completely returned to normal and can be put into service bearer service traffic. At this time, the traffic of the NODE A node to the NODE B node can evenly share the traffic of the two IP transmission planes A-R1-B and A-R2-B, that is, IPLinkl-IPLink8 bears the traffic evenly.
  • the present invention solves the problem of service interruption caused by the failure of the IP network signaling transmission plane, especially the problem of service interruption when the IP network signaling M3UA protocol is abnormal in the underlying single-plane IP transmission network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种IP网络信令传输故障处理方法,包括:当节点接收到局向到另一个节点的IP信令链路拥塞报文后, 判断发生拥塞的IP信令链路比例是否超过预设的拥塞上报门限;发生拥塞的IP信令链路比例未超过所述拥塞上报门限时,不上报业务局向拥塞;发生拥塞的IP信令链路比例超过所述拥塞上报门限时,上报业务局向拥塞;本发明还公开了一种IP网络信令传输故障处理装置,通过本发明能够解决只因部分甚至少部分IP信令链路故障而导致的业务呼叫损失甚至瘫局的故障。

Description

IP网络信令传输故障处理方法及装置 技术领域
本发明涉及 IP网络信令传输协议( SIGTRAN协议 ),尤其涉及 IP网络 信令传输故障的处理方法及装置。 背景技术
随着 IP网络技术的逐步成熟,出现了在 IP网络上传输七号信令等电路 交换信令协议的需求。 为了满足在 IP网络上传输信令协议的需求, 互联网 工程任务组( IETF, The Internet Engineering Task Force )组成立了专门的信 令传输小组, 他们所制订的 IP 网络信令传输协议(SIGTRAN协议) 支持 通过 IP网络传输传统电路交换信令。 2006年 IETF工作组正式发布了消息 传输协议 (MTP , Message Transfer Protocol ) 第三级用户的适配层协议 ( M3UA, Signaling System 7 ( SS7 ) Message Transfer Part 3 ( MTP3 )-User Adaptation Layer, RFC4666 ), M3UA协议用来实现承载在 IP网络上的信令 消息的可靠有序传递。
电信网络的发展趋势是信令 IP化和容灾备份 (包括信令网和传输网的 容灾备份),在 IP网络信令中常从容灾备份的角度考虑釆用多条传输网通路 来传输 IP网络信令消息。而 IP传输网络由于所经过的路由器以及传输介质 的不同, 传输网络常常存在一些差异性, 经常发生一个传输网络丟包严重 质量很差, 而另外的一个传输网络却从来不丟包质量很好; 这种传输网络 的差异性在 IP网络信令层表现为 IP通路的拥塞情况不同, 一般对一个 IP 网络信令 M3UA协议而言看到的是一个个 IP通路偶联,而看不到底层具体 的哪个 IP通路偶联走的哪个 IP传输网络, 即上层 IP网络信令 M3UA对底 层 IP通路偶联都是一视同仁不区分对待的。 由于这个特性就引入了一个问 题, 当一个 IP传输网络发生问题时, 对 IP网络信令 M3UA而言就是承载 在这个 IP传输网络上的 IP通路偶联发生拥塞,根据协议只要发生偶联拥塞 就需要上报业务局向拥塞,进而导致一个 IP网络信令 M3UA局向发生拥塞, 并导致业务开始进行流量控制。 由于一个 IP传输网络存在问题, 因此这个 拥塞情况长时间得不到改善而一直保持拥塞状态, 这样业务流量控制就会 不断的加剧业务负荷流控的级别, 可以正常承担的业务流量会不断的由于 流量控制而降低到越来越少, 严重情况下会导致流控过度而发生呼叫全部 控制的瘫局故障。 而在已知的现有技术中还没有一个协议和方案能很好的 解决这个问题。 发明内容
本发明要解决的主要技术问题是, 提供一种 IP网络信令传输故障的处 理方法及装置, 解决因 IP网络信令传输平面故障而导致的业务中断问题。
为解决上述技术问题,本发明提供一种 IP网络信令传输故障处理方法, 包括:
当节点接收到局向到另一个节点的 IP信令链路拥塞报文后, 判断发生 拥塞的 IP信令链路比例是否超过预设的拥塞上报门限;
发生拥塞的 IP信令链路比例未超过所述拥塞上报门限时, 不上报业务 局向拥塞; 发生拥塞的 IP信令链路比例超过所述拥塞上报门限时, 上报业 务局向拥塞。
进一步地, 当节点收到局向到另一个节点的 IP信令链路拥塞报文后, 该方法还包括: 对发生拥塞的 IP信令链路设置拥塞标记, 禁止发生拥塞的 IP信令链路承担业务负荷。
进一步地, 所述对发生拥塞的 IP信令链路设置拥塞标记, 禁止发生拥 塞的 IP信令链路承担业务负荷, 具体包括: 在动态路由表中将发生拥塞的 IP信令链路标记为拥塞态, 使业务负荷动态路由在选路时禁止选择标记为 拥塞态的 IP信令链路。
进一步地, 所述上报业务局向拥塞之后, 该方法还包括:
统计动态路由表中标记设为拥塞态的 IP信令链路的数量;
当一个信令局向的所有 IP信令链路都标记为拥塞态时,使所有 IP信令 链路均勾分担业务负荷。
进一步地, 当节点接收到局向到另一个节点的 IP信令链路的解除拥塞 报文后, 该方法进一步包括以下步骤:
触发预先设定的定时器, 开始计时;
在所述定时器到时之前, 不向解除拥塞的 IP信令链路分配业务负荷。 该方法还包括: 在所述定时器计时期间检测所述解除拥塞的 IP信令链 路的故障是否真正恢复, 具体为:
在所述解除拥塞的 IP信令链路上发送心跳消息;
检测所述心跳消息是否导致所述 IP信令链路再次发生拥塞, 如果是, 判定所述解除拥塞的 IP信令链路的故障没有真正恢复,则继续对所述 IP信 令链路设置拥塞标记; 如果定时器到时, 发送的心跳消息没有导致所述 IP 信令链路再次发生拥塞,判定所述解除拥塞的 IP信令链路的故障真正恢复, 则取消所述 IP信令链路的拥塞标记。
本发明还提供了一种 IP网络信令传输故障处理装置, 该装置包括: 判断单元, 用于当节点接收到局向到另一个节点的 IP信令链路拥塞报 文后, 判断发生拥塞的 IP信令链路比例是否超过预设的拥塞上报门限; 报文发送单元, 用于当所述判断单元的判断结果是发生拥塞的 IP信令 链路比例未超过所述拥塞上报门限时, 不上报业务局向拥塞; 还用于当所 述判断结果是发生拥塞的 IP信令链路比例超过所述拥塞上报门限时, 上报 业务局向拥塞。
该装置还包括: 标记设置单元, 用于在动态路由表中将发生拥塞的 IP 信令链路标记为拥塞态, 使业务负荷动态路由在选路时, 禁止选择标记为 拥塞态的 IP信令链路。
该装置还包括: 统计单元, 用于统计动态路由表中标记设为拥塞态的 IP信令链路的数量;
业务分配单元, 用于根据所述统计单元的统计结果, 当一个信令局向 的所有 IP信令链路都标记为拥塞态时,使所有 IP信令链路均勾分担业务负 荷。
该装置还包括: 定时器单元, 用于当节点接收到局向到另一个节点的
IP信令链路的解除拥塞报文后, 触发预先设定的定时器, 开始计时;
相应的, 所述标记设置单元, 还用在所述定时器到时之前保持解除拥 塞的 IP信令链路的拥塞标记;
心跳发送单元, 用于在所述定时器计时期间, 向解除拥塞的 IP信令链 路上发送心跳消息;
检测单元, 用于检测所述心跳消息是否导致所述解除拥塞的 IP信令链 路再次发生拥塞, 如果是, 则控制所述标记设置单元继续对所述解除拥塞 的 IP信令链路设置拥塞标记; 如果所述定时器到时后, 发送的心跳消息没 有导致所述解除拥塞的 IP信令链路再次发生拥塞, 则控制所述标记设置单 元取消所述解除拥塞的 IP信令链路的拥塞标记。
本发明的有益效果是:
本发明避免了现有技术中一旦部分 IP信令链路发生拥塞, 业务进行负 荷流量控制进而导致业务呼叫损失甚至瘫局的故障, 解决了 IP信令传输平 面故障导致业务中断的问题。 通过本发明, 可以从机制上最大程度的避免 由于传输平面故障导致业务过度进行负荷控制, 使得单平面的传输故障, 对业务不可见对业务不产生任何负面的影响。 对于目前的 IP信令组网下, 优化通信网络提高用户服务质量有非常重要的意义。 附图说明
图 1是 M3UA协议栈结构图;
图 2是正常情况下的业务负荷分担图;
图 3是发生 IP传输平面故障下的业务负荷分担图;
图 4是本发明一种实施例的结构示意图;
图 5是本发明一种实施例的流程图;
图 6是本发明另一种实施例的结构示意图;
图 7是本发明另一种实施例的流程图。 具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
针对目前的 IP信令组网,本发明对到一个信令局向的 IP信令链路设置 一个拥塞上报门限。 当发生拥塞的 IP信令链路比例未超过设定的门限值时 不上报业务信令局向拥塞, 当发生拥塞的 IP信令链路比例高于设定的门限 值时上报业务信令局向拥塞。 避免了现有技术中一旦部分 IP信令链路发生 拥塞, 即导致业务进行负荷流量控制的缺陷, 使当部分 IP信令链路发生拥 塞时, 只要不超过设定的拥塞上报门限, 就不进行上报, 即不会引起流量 控制, 可以正常承担的业务流量不会减少, 避免了只因部分甚至少部分 IP 信令链路故障而导致的业务呼叫损失甚至瘫局的故障。
实施例一:
请参考图 1 , 图 1所示的实施例为 SIGTRAN协议栈结构图, 包括两个 节点 NODE A和 NODE B , —个为源信令节点, 另一个为目的信令节点。 本实施例中, 节点 NODE A和 NODE B包括 IP层、 流控传输协议( SCTP , Stream Control Transmission Protocol )层、 M3UA层、 信令连接控制部分 ( SCCP ) 和事务处理能力应用部分 ( TCAP , Transaction Capabilities Application Part )„ M3UA协议模块的上层业务模块为 SCCP业务模块, 底 层承载在 IP传输网络之上。 M3UA协议模块通过 IP传输网络 1、 IP传输网 络 2为 SCCP业务模块提供可靠有序的业务传递功能。
如图 2所示, 当 IP传输网络没有发生故障, 所有 IP信令链路都正常 时, NODE A到 NODE B 的业务负荷在 IP信令链路 IPLinkl-IPLink8之间 进行负荷均匀发送, 同样 NODE B 到 NODE A的业务负荷也在 IP信令链 路 IPLinkl-IPLink8之间均匀负荷分担。 即 IP传输平面 A-R1-B、 A-R2-B没 有异常时, IPLinkl-IPLink4承担 50%的业务负荷流量, IPLink5-IPLink8承 担 50%的业务负荷流量。
如图 3所示,当 IP传输网络发生故障, NODE A到 IP路由器(Router ) 1 路径发生异常, 丟包导致 IP通路拥塞。 该异常可能是 IP Routerl发生异 常, 导致 IP 信令链路 IPLinkl-IPLink4 拥塞, 也可能是 IP 信令链路 IPLinkl-IPLink4中的某个或某些链路异常导致部分拥塞。
本实施例解决 IP网络信令传输故障的处理装置如图 4所示, 包括判断 单元 41和报文发送单元 42。 判断单元 41用于当节点接收到局向到另一个 节点的 IP信令链路拥塞报文后,判断发生拥塞的 IP信令链路比例是否超过 预设的拥塞上报门限; 报文发送单元 42与判断单元 41相连, 用于当判断 单元 41的判断结果是发生拥塞的 IP信令链路比例未超过所述拥塞上报门限 时, 不上报业务局向拥塞; 还用于当判断结果是发生拥塞的 IP信令链路比 例超过所述拥塞上报门限时, 上报业务局向拥塞。 流控单元 44响应到报文 发送单元 42发出的业务局向拥塞报文后, 对节点的业务流量进行控制, 例 如减少业务流量。
发生拥塞的 IP信令链路比例的计算可以釆用现有技术的计算方法, 例 如:将到一个局向的发生拥塞的 IP信令链路数量除以根据协议(例如 M3UA 协议)所设定的到一个局向的所有 IP信令链路数量,得出发生拥塞的 IP信 令链路比例。 如果发生拥塞的 IP信令链路比例未超过所述拥塞上报门限时, 不进行 业务局向拥塞的上报, 而此时如果在业务负荷分担方面仍釆用均匀分担, 即仍然坚持在存在故障的传输通路上传送业务消息, 丟包重传拥塞等异常 会导致业务消息时延加大而引起通讯服务质量下降。 为解决这一问题, 如 图 4所示, 处理装置还进一步包括标记设置单元 43 , 标记设置单元 43用于 对发生拥塞的 IP信令链路设置拥塞标记,使发生拥塞的 IP信令链路不承担 业务负荷。具体是,通过在动态路由表 45中将发生拥塞的 IP信令链路标记 为拥塞态, 使业务负荷动态路由在选路时不选择标记为拥塞态的 IP信令链 路, 避免加重拥塞情况并提高通讯服务质量。
本实施例中 , 判断单元 41还与 M3UA协议模块 40相连, M3UA协议 模块 40负责接收 IP信令链路的拥塞报文, 并提供给判断单元 41。 在其他 的实施例中, 根据源信令节点和目的信令节点之间传输的信令协议, 也可 以是其他协议模块负责接收 IP信令链路的拥塞报文。 根据具体的要求, 报 文发送和接收也可以由同一个协议模块完成。
当所有的 IP信令链路都发生拥塞后, 虽然已经上报业务局向拥塞, 进 行流量控制, 但可能仍有少量的业务需要通过 IP信令链路传输, 此种情况 下, 处理装置还进一步包括统计单元 46和业务分配单元 47, 如图 4所示, 统计单元 46用于统计动态路由表 45中标记设为拥塞态的 IP信令链路的数 量; 业务分配单元 47, 用于根据统计单元 46的统计结果, 当一个信令局向 的所有 IP信令链路都标记为拥塞态时,使所有 IP信令链路均勾分担业务负 荷。
基于本实施例的装置的一种处理方法实例如图 5所示, 包括以下步骤: 步骤 51 ,事先对到一个信令局向的 IP信令链路设置一个拥塞上报门限, 当节点接收到局向到另一个节点的 IP信令链路拥塞报文后, 执行步骤 52。
步骤 52, 在接收到 IP信令链路拥塞报文后, 对发生拥塞的 IP信令链 路设置拥塞标记, 使发生拥塞的 IP信令链路不承担业务负荷, 即通过在动 态路由表中将发生拥塞的 IP信令链路标记为拥塞态, 使业务负荷动态路由 在选路时不选择标记为拥塞态的 IP信令链路, 而是将所有的业务负荷都通 过其他正常的 IP信令链路传输。
步骤 53 , 获取发生拥塞的 IP信令链路比例, 判断发生拥塞的 IP信令 链路比例是否超过预设的拥塞上报门限, 如果是则执行步骤 54, 上报业务 局向拥塞; 否则执行步骤 55 , 不上报业务局向拥塞。
其中,步骤 52是为避免仍然坚持在已经拥塞的 IP信令链路上传送业务 负荷, 步骤 52还可以在步骤 53之后。
在改进的实施例中, 如图 5所示, 在对发生拥塞的 IP信令链路设置拥 塞标记后、 且上 业务局向拥塞之后, 还进一步包括以下步骤:
步骤 56, 统计动态路由表中标记设为拥塞态的 IP信令链路的数量, 判 断是否所有的 IP信令链路都发生了拥塞, 如果是则执行步骤 57, 否则转向 步骤 51。
步骤 57, 当一个信令局向的所有 IP信令链路都标记为拥塞态时, 使所 有 IP信令链路均勾分担业务负荷, 这样可避免业务流量无法分发。
上述实施例中, 根据需要, 步骤 53和步骤 52的顺序还可以互换, 依 然可以达到本实施例的效果。
实施例二:
如图 6所示, 本发明解决 IP网络信令传输故障的处理装置包括: 判断 单元 61、 文发送单元 62和标记设置单元 63; 判断单元 61分别与 M3UA 协议模块 60和报文发送单元 62相连。 判断单元 61根据 M3UA协议模块 60接收到的 IP信令链路的拥塞报文, 判断发生拥塞的 IP信令链路比例是 否超出拥塞上报门限, 报文发送单元 62根据判断单元 61的判断结果确定 是否上报业务局向拥塞。标记设置单元 63对发生拥塞的 IP信令链路设置拥 塞标记。 与实施例一不同的是, 该处理装置还包括: 定时器单元 66、 心跳 发送单元 67和检测单元 68 , 用于对发生拥塞的 IP信令链路在解除拥塞后 进行处理。 定时器单元 66, 用于当节点接收到局向到另一个节点的 IP信令 链路的解除拥塞报文后, 根据预先设定的定时器进行计时; 心跳发送单元 67, 用于在定时器计时期间, 向已经解除拥塞的 IP信令链路上发送心跳消 息; 检测单元 68, 用于检测所述心跳消息是否导致该 IP信令链路再次发生 拥塞,如果是,则控制标记设置单元 63继续对该 IP信令链路设置拥塞标记 或保持拥塞标记不变, 并控制心跳发送单元 67停止发送心跳消息, 和控制 定时器单元 66取消定时器计时; 如果定时器到时, 后发送的心跳消息都没 有导致该 IP信令链路再次发生拥塞, 则控制标记设置单元 63取消该 IP信 令链路的拥塞标记。
基于本实施例的装置, 当节点接收到局向到另一个节点的 IP信令链路 的解除拥塞报文后, 其处理流程如图 7所示, 包括以下步骤:
步骤 71 , 接收 IP信令链路的解除拥塞报文, 当接收到后执行步骤 72。 步骤 72, 触发预先设定的定时器开始计时, 并且在定时器到时之前保 持该 IP信令链路的拥塞标记,即在定时器到时之前不向解除拥塞的 IP信令 链路分配业务负荷, 然后执行步骤 73。
步骤 73 , 在定时器计时期间, 在已经解除拥塞的 IP信令链路上发送心 跳消息数据, 心跳消息数据可以是定时发送, 然后执行步骤 74。
步骤 74, 判断心跳消息是否导致该 IP信令链路再次发生拥塞, 即检测 是否收到该 IP信令链路再次发生拥塞的报文, 如果是则执行步骤 75 , 否则 执行步骤 77。
步骤 75 , 当检测到一次发送的心跳消息导致该 IP信令链路再次发生拥 塞的报文后, 则继续对该 IP信令链路设置拥塞标记,使该 IP信令链路仍然 不承担业务负荷。 并执行步骤 76, 停止发送心跳消息并取消定时器。 步骤 77,如果本次发送的心跳消息没有导致该 IP信令链路再次发生拥 塞, 则判断定时器是否到时, 如果是则执行步骤 78 , 否则转向步骤 73 , 继 续向已经解除拥塞的 IP信令链路上发送心跳消息数据。
步骤 78, 取消该 IP信令链路的拥塞标记, 即对该 IP信令链路设置不 拥塞标记, 即在动态路由表中将发生拥塞的 IP信令链路标记为不拥塞态, 使业务负荷动态路由在选路时可选择该 IP信令链路承担业务。
本实施例在 IP信令链路的拥塞解除后,并不立即向该 IP信令链路分配 业务负荷, 而是先对该 IP信令链路进行测试,确认该 IP信令链路确实正常 后才向该 IP信令链路分配业务负荷。本实施例避免了解除拥塞的 IP信令链 路在承担业务后马上又发生拥塞, 而一取消业务又恢复正常的抖动情况。
下面以图 3为例, 说明本发明的一种具体实施例。
1、 IP传输平面 A-R1-B发生异常,导致 IPLinkl-IPLink4发生 IP拥塞。
2、 NODE A节点 M3UA协议模块接收到底层上 4艮的 IPLink l-IPLink4 拥塞报文后, 根据配置的拥塞上报门限判断是否需要上报 SCCP业务模块, 如果发生拥塞的 IPLink比例没有超过设定的拥塞上报门限值,则 M3UA协 议模块不上报 SCCP业务模块 NODEB 节点发生拥塞。 因此 SCCP业务模 块也不会对 NODE B 节点的业务进行流量控制, 这样保证用户业务不受损 失。
3、 NODE A节点将发生拥塞的 IPLinkl-IPLink4在动态路由表中标记 为拥塞状态,到 NODEB节点的业务不再选择 IPLinkl-IPLink4 这些拥塞 IP 链路发送业务消息。而将所有的业务消息都通过另外一个完全正常的 IP传 输通路 IPLink5-IPLink8 进行消息发送。 即 IPLink5-IPLink8承担 NODE A 到 NODE B 节点的 100%业务量。
4、 当 IP传输网络故障恢复时, NODE A到 IP Router 1 路径异常解除, IPLink l-IPLink4 通过 Router 1 发送业务数据不再产生拥塞。 为防止抖动, 当 IP 传输平面 A-R1-B 异常解除, A-Rl-B IP 传输平面不再拥塞, 即 IPLinkl-IPLink4 IP拥塞解除时, IPLinkl-IPLink4不能直接承担业务流量, 避免发生抖动。
5、 NODE A节点 M3UA协议模块接收到底层上 4艮的 IPLinkl-IPLink4 解除拥塞报文后, M3UA 协议模块启动阻尼定时器, 用于监控 IPLinkl-IPLink4 的链路拥塞恢复情况, 如果在阻尼定时器到时之前再次发 生 IPLinkl-IPLink4的拥塞, 则退回到步骤 3 , 且停止本阻尼定时器。 如果 在阻尼定时器到时, IPLinkl-IPLink4 —直没有再发生拥塞情况, 则说明 A-Rl-B IP传输平面已经完全恢复正常, 可以投入业务负荷。
6、 NODE A 节点 M3UA 协议模块在阻尼定时器启动期间, 在 IPLinkl-IPLink4上定时的发送心跳消息报文, 探测 IPLinkl-IPLink4是否真 正拥塞解除, 以及探测在 IPLinkl-IPLink4 上发送心跳报文是否会导致 IPLinkl-IPLink4上再次发生拥塞。 如果再次发生拥塞则退回到步骤 3。
7、 NODE A节点 M3UA协议模块确定阻尼定时器到时、 且没有再次 发生 IPLinkl-IPLink4拥塞,则说明 A-Rl-B IP传输通路已经完全恢复正常, 可以投入服务承载业务流量。 此时 NODE A节点到 NODE B 节点的业务 流量可以在两个 IP传输平面 A-R1-B 以及 A-R2-B 上均匀分担发送业务流 量, 即 IPLinkl-IPLink8 均匀承担业务流量。
综上所述, 本发明解决了 IP网络信令传输平面故障导致的业务中断的 问题, 尤其是 IP网络信令 M3UA协议在底层单平面 IP传输网络发生异常 时业务中断的问题。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明, 不 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的 普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单 推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1、 一种 IP网络信令传输故障处理方法, 其特征在于, 该方法包括: 当节点接收到局向到另一个节点的 IP信令链路拥塞报文后, 判断发生 拥塞的 IP信令链路比例是否超过预设的拥塞上报门限;
发生拥塞的 IP信令链路比例未超过所述拥塞上报门限时, 不上报业务 局向拥塞; 发生拥塞的 IP信令链路比例超过所述拥塞上报门限时, 上报业 务局向拥塞。
2、 如权利要求 1所述的处理方法, 其特征在于, 当节点收到局向到另 一个节点的 IP信令链路拥塞报文后, 该方法还包括: 对发生拥塞的 IP信令 链路设置拥塞标记, 禁止发生拥塞的 IP信令链路承担业务负荷。
3、 如权利要求 2所述的处理方法, 其特征在于, 所述对发生拥塞的 IP 信令链路设置拥塞标记, 禁止发生拥塞的 IP信令链路承担业务负荷, 具体 包括: 在动态路由表中将发生拥塞的 IP信令链路标记为拥塞态, 使业务负 荷动态路由在选路时禁止选择标记为拥塞态的 IP信令链路。
4、 如权利要求 3所述的处理方法, 其特征在于, 所述上报业务局向拥 塞之后, 该方法还包括:
统计动态路由表中标记设为拥塞态的 IP信令链路的数量;
当一个信令局向的所有 IP信令链路都标记为拥塞态时,使所有 IP信令 链路均勾分担业务负荷。
5、 如权利要求 1至 4中任一项所述的处理方法, 其特征在于, 当节点 接收到局向到另一个节点的 IP信令链路的解除拥塞报文后, 该方法进一步 包括以下步骤:
触发预先设定的定时器, 开始计时;
在所述定时器到时之前, 不向解除拥塞的 IP信令链路分配业务负荷。
6、 如权利要求 5所述的处理方法, 其特征在于, 该方法还包括: 在所 述定时器计时期间检测所述解除拥塞的 IP信令链路的故障是否真正恢复, 具体为:
在所述解除拥塞的 IP信令链路上发送心跳消息;
检测所述心跳消息是否导致所述 IP信令链路再次发生拥塞, 如果是, 判定所述解除拥塞的 IP信令链路的故障没有真正恢复,则继续对所述 IP信 令链路设置拥塞标记; 如果定时器到时, 发送的心跳消息没有导致所述 IP 信令链路再次发生拥塞,判定所述解除拥塞的 IP信令链路的故障真正恢复, 则取消所述 IP信令链路的拥塞标记。
7、 一种 IP网络信令传输故障处理装置, 其特征在于, 该装置包括: 判断单元, 用于当节点接收到局向到另一个节点的 IP信令链路拥塞报 文后, 判断发生拥塞的 IP信令链路比例是否超过预设的拥塞上报门限; 报文发送单元, 用于当所述判断单元的判断结果是发生拥塞的 IP信令 链路比例未超过所述拥塞上报门限时, 不上报业务局向拥塞; 还用于当所 述判断结果是发生拥塞的 IP信令链路比例超过所述拥塞上报门限时, 上报 业务局向拥塞。
8、 如权利要求 7所述的处理装置, 其特征在于, 该装置还包括: 标记设置单元, 用于在动态路由表中将发生拥塞的 IP信令链路标记为 拥塞态, 使业务负荷动态路由在选路时, 禁止选择标记为拥塞态的 IP信令 链路。
9、 如权利要求 8所述的处理装置, 其特征在于, 该装置还包括: 统计单元, 用于统计动态路由表中标记设为拥塞态的 IP信令链路的数 量;
业务分配单元, 用于根据所述统计单元的统计结果, 当一个信令局向 的所有 IP信令链路都标记为拥塞态时,使所有 IP信令链路均勾分担业务负 荷。
10、 如权利要求 8或 9所述的处理装置, 其特征在于, 该装置还包括: 定时器单元, 用于当节点接收到局向到另一个节点的 IP信令链路的解 除拥塞报文后, 触发预先设定的定时器, 开始计时;
相应的, 所述标记设置单元, 还用在所述定时器到时之前保持解除拥 塞的 IP信令链路的拥塞标记;
心跳发送单元, 用于在所述定时器计时期间, 向解除拥塞的 IP信令链 路上发送心跳消息;
检测单元, 用于检测所述心跳消息是否导致所述解除拥塞的 IP信令链 路再次发生拥塞, 如果是, 则控制所述标记设置单元继续对所述解除拥塞 的 IP信令链路设置拥塞标记; 如果所述定时器到时后, 发送的心跳消息没 有导致所述解除拥塞的 IP信令链路再次发生拥塞, 则控制所述标记设置单 元取消所述解除拥塞的 IP信令链路的拥塞标记。
PCT/CN2010/072754 2009-09-03 2010-05-13 Ip网络信令传输故障处理方法及装置 WO2011026343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101899574A CN102006220A (zh) 2009-09-03 2009-09-03 Ip网络信令传输故障处理方法及装置
CN200910189957.4 2009-09-03

Publications (1)

Publication Number Publication Date
WO2011026343A1 true WO2011026343A1 (zh) 2011-03-10

Family

ID=43648862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072754 WO2011026343A1 (zh) 2009-09-03 2010-05-13 Ip网络信令传输故障处理方法及装置

Country Status (2)

Country Link
CN (1) CN102006220A (zh)
WO (1) WO2011026343A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625406B (zh) * 2011-01-28 2015-07-29 中国移动通信集团公司 一种应用层信令路由保护方法和设备
US8892936B2 (en) * 2012-03-20 2014-11-18 Symantec Corporation Cluster wide consistent detection of interconnect failures
CN106559351B (zh) * 2015-09-30 2021-06-18 中兴通讯股份有限公司 一种处理报文的方法、sdn控制器及网元
CN115499370B (zh) * 2021-06-17 2023-08-15 中国移动通信集团浙江有限公司 信令网链路故障处理方法、装置及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030057853A (ko) * 2001-12-29 2003-07-07 엘지전자 주식회사 넘버.세븐 신호 메시지 트래픽에 대한 폭주 제어 장치 및방법
CN101170488A (zh) * 2006-10-25 2008-04-30 华为技术有限公司 业务网络拥塞控制方法及装置
CN101513095A (zh) * 2006-06-09 2009-08-19 泰克莱克公司 用于管理多层电信信令网络协议栈中的拥塞的方法、系统和计算机程序产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030057853A (ko) * 2001-12-29 2003-07-07 엘지전자 주식회사 넘버.세븐 신호 메시지 트래픽에 대한 폭주 제어 장치 및방법
CN101513095A (zh) * 2006-06-09 2009-08-19 泰克莱克公司 用于管理多层电信信令网络协议栈中的拥塞的方法、系统和计算机程序产品
CN101170488A (zh) * 2006-10-25 2008-04-30 华为技术有限公司 业务网络拥塞控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IETF RFC 4666: SIGNALING SYSTEM 7 (SS7) MESSAGE TRANSFER PART 3 (MTP3) - USER ADAPTATION LAYER (M3UA), September 2006 (2006-09-01), pages 39,47,88, Retrieved from the Internet <URL:http://tools.ietf.org.html/rfc4666> [retrieved on 20100621] *

Also Published As

Publication number Publication date
CN102006220A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
US8971308B2 (en) Call admission control in VoIP systems
CA2713938C (en) Method and system for controlling link saturation of synchronous data across packet networks
US9485181B2 (en) Dynamic bandwidth adjustment in packet transport network
EP2361468B1 (en) Congestion control method and devices
EP2319209B1 (en) Methods for establishing a traffic connection and an associated monitoring connection
US8289844B2 (en) Networks having multiple paths between nodes and nodes for such a network
US20070211623A1 (en) Failure recovery method, network device, and program
US20070133398A1 (en) Method for Implementing Bidirectional Protection Switching in Multiple Protocol Label Switching Network
CN101068139A (zh) 媒体网关上联链路的主备保护方法
US20060233183A1 (en) Methods, systems, and computer program products for dynamic blocking and unblocking of media over packet resources
JP5088239B2 (ja) 輻輳制御システム、境界ゲートウェイ装置及びそれらに用いる輻輳制御方法
WO2009124499A1 (zh) 信令传送的保护方法、装置及通信系统
WO2007048299A1 (fr) Procede et dispositif pour la verification de coherence de l’etat d’intervalle temporel dans la liaison d’ingenierie de trafic.
US20080219167A1 (en) Method, system and device for processing device overload in communication network
CN102132524B (zh) 用于建立业务连接及相关监控连接的方法
WO2011026343A1 (zh) Ip网络信令传输故障处理方法及装置
EP2704382B1 (en) Method for managing services in a generalized-multi-protocol label switching, GMPLS, controlled network
JP2005311596A (ja) 輻輳制御を行うルータ、輻輳制御システム及び方法
WO2018040916A1 (zh) 一种转发报文的方法及装置
JP2013251795A (ja) 中継装置及びデータ中継方法
Weifeng Optimization of One-Plane Packet Loss in IP Bearer Networks
WO2009034426A2 (en) Method and system for ip network admission control
JP2015167365A (ja) ノード間の複数のパスを有するネットワーク及びそのようなネットワークに対するノード
JP2005136678A (ja) 通信装置の主信号経路監視方法および監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813265

Country of ref document: EP

Kind code of ref document: A1