WO2011025104A1 - Thermoelectric power generating device - Google Patents

Thermoelectric power generating device Download PDF

Info

Publication number
WO2011025104A1
WO2011025104A1 PCT/KR2010/000748 KR2010000748W WO2011025104A1 WO 2011025104 A1 WO2011025104 A1 WO 2011025104A1 KR 2010000748 W KR2010000748 W KR 2010000748W WO 2011025104 A1 WO2011025104 A1 WO 2011025104A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust port
heat
thermoelectric
heat pipe
thermoelectric element
Prior art date
Application number
PCT/KR2010/000748
Other languages
French (fr)
Korean (ko)
Inventor
김시호
이석호
유정호
김선국
원병철
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090079692A external-priority patent/KR100986655B1/en
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Publication of WO2011025104A1 publication Critical patent/WO2011025104A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a thermoelectric generator, and more particularly, to an apparatus capable of generating thermoelectric power from an exhaust port of a vehicle using a thermoelectric element using a Seebeck effect of a thermoelectric module.
  • thermoelectric devices are materials using electromotive force generated by electrons moving from a high place to a low place when a temperature difference occurs on both sides of the device.
  • thermoelectric element In order to utilize the waste heat from the exhaust of the car as a power source of the car, an effort to obtain a sufficient amount of energy is required, and from this point of view, it is necessary to increase the efficiency of the thermoelectric element.
  • thermoelectric devices In order to improve the efficiency of thermoelectric devices, the methodological aspects of device research and device incorporation are being studied in various directions.
  • thermoelectric elements The efficiency of commercialized thermoelectric elements was introduced with the concept of ZT and its efficiency was formulated as follows.
  • variable values of S, ⁇ , and k are variables according to the material of the thermoelectric element, and the T value represents the temperature difference between the high temperature part and the low temperature part of the thermoelectric element.
  • thermoelectric element when the temperature difference across the thermoelectric element is large, a larger amount of energy can be produced.
  • thermoelectric devices At present, there are two researches on the method side to increase the efficiency of thermoelectric devices.
  • the first is to efficiently transfer a larger amount of thermal energy to the hot part of the thermoelectric element, and the second is to cool the cold part.
  • thermoelectric element in order to increase the efficiency of the thermoelectric element, a large amount of thermal energy must be transferred to the high temperature portion of the thermoelectric element.
  • thermoelectric generator 1 and 2 show the structure of a conventional thermoelectric generator.
  • thermoelectric elements 1 is a method of General Motors Corporation (GM), in which a large amount of thermoelectric elements are directly attached to the outer wall of the exhaust port by changing the shape of the vehicle exhaust port.
  • GM General Motors Corporation
  • FIG. 2 is a method of Bayeyharinger Motoren Werke AG (BMW), in which oil is primarily heated using heat from an exhaust port, circulated in a polyhedron, and stacked in layers by attaching thermoelectric elements below.
  • BMW Bayeyharinger Motoren Werke AG
  • a disadvantage of the two conventional approaches is that the temperature is transmitted through the vehicle exhaust vent outer wall.
  • the exhaust heat has the highest temperature at the center of the exhaust port, but the conventional method obtains thermal energy from the outer wall of the exhaust pipe and transfers the thermal energy to the high temperature portion of the thermoelectric element, and thus has a disadvantage in that it cannot effectively transfer a larger amount of exhaust heat to the thermoelectric element.
  • an object of the present invention is to provide a device capable of efficiently generating thermoelectric power by using heat discharged through exhaust gas during fuel combustion of a vehicle.
  • the temperature of the outer wall of the exhaust port was measured to be 100 to 150 ⁇ ⁇ .
  • the object receiving heat is a thermoelectric element
  • the efficiency of the thermoelectric element that converts heat into energy is more effective to use the exhaust heat of a high temperature, the greater the effect can be obtained by transmitting a high heat inside the exhaust port.
  • a heat pipe having a merit of effectively transferring heat in order to receive heat inside the high temperature exhaust port is grafted to the exhaust port.
  • the heat pipe has an advantage of superior thermal conductivity than a general thermal conductor.
  • thermoelectric element By designing these heat pipes in various shapes and directly inserting them into the inside of the vehicle exhaust port instead of the outer wall, high-temperature exhaust heat can be effectively transmitted to the thermoelectric element.
  • thermoelectric power generation apparatus in order to achieve the above object is a form for generating electromotive force by transferring the heat of the vehicle exhaust port to the thermoelectric element using the Seeback effect, a thermoelectric element installed outside the exhaust port And a heat pipe connected to the thermoelectric element, and one side of the heat pipe penetrates the exhaust port and is positioned therein, so that heat in the exhaust port can be transferred to the thermoelectric element.
  • the end portion of the heat pipe located inside the exhaust port is located at the center of the exhaust port.
  • the shape of the end portion of the heat pipe positioned inside the exhaust port may be configured in various forms, such as a 90-degree angled form toward the axial direction of the exhaust port, and an annular shape in which part thereof is opened.
  • thermoelectric generator is a form in which electromotive force is generated by transferring heat from an automobile exhaust port to a thermoelectric element using a Seeback effect, and a thermoelectric element installed outside the exhaust port and a heat pipe connected to the thermoelectric element.
  • Two thermoelectric elements are provided on both sides of the exhaust port, and the heat pipe penetrates the exhaust port, and both ends thereof are connected to the respective thermoelectric elements. Characterized in that it consists of a protrusion or semi-circular shape facing in the direction.
  • thermoelectric generator is a form in which electromotive force is generated by transferring heat from an automobile exhaust port to a thermoelectric element using a Seeback effect, and a thermoelectric element installed outside the exhaust port and a heat pipe connected to the thermoelectric element.
  • the heat pipe is passed through again after passing through the exhaust port, both ends thereof are connected to the thermoelectric element, and the middle part of the length of the heat pipe belonging to the inside of the exhaust port is characterized in that the annular form.
  • thermoelectric generator is a form in which electromotive force is generated by transferring heat from an automobile exhaust port to a thermoelectric element using a Seeback effect, which is connected to the thermoelectric element installed outside the exhaust port and the thermoelectric element.
  • the thermoelectric element includes a plurality of thermoelectric elements disposed along the circumference of the exhaust port and disposed along the longitudinal direction of the exhaust port, and one side of the heat pipe extending from each thermoelectric element is located therein through the exhaust port.
  • Each heat pipe is characterized in that it is disposed in a radial form around the exhaust port.
  • thermoelectric generator provided by the present invention has the following advantages.
  • the efficiency can be improved by transferring a thermoelectric element after recovering a larger amount of heat using a heat pipe as a heat conductive agent.
  • thermoelectric device may be applied to the vehicle structure according to various embodiments of the present invention.
  • thermoelectric generator in which a thermoelectric element is disposed on an outer wall of an exhaust port (GM method)
  • thermoelectric power generation device in which a thermoelectric element is heated using a catalyst (BMW method)
  • thermoelectric generator 3 is a cross-sectional view showing a thermoelectric generator according to a first embodiment of the present invention.
  • thermoelectric generator 4 is a perspective view showing a thermoelectric generator according to a first embodiment of the present invention.
  • thermoelectric generator 5 is a side view showing a thermoelectric generator according to a first embodiment of the present invention.
  • thermoelectric generator 6 is a cross-sectional view showing a thermoelectric generator according to a second embodiment of the present invention.
  • thermoelectric generator 7 is a perspective view showing a thermoelectric generator according to a second embodiment of the present invention.
  • thermoelectric generator 8 is a side view showing a thermoelectric generator according to a second embodiment of the present invention.
  • thermoelectric generator 9 is a cross-sectional view showing a thermoelectric generator according to a third embodiment of the present invention.
  • thermoelectric generator 10 is a perspective view of a thermoelectric generator according to a third embodiment of the present invention.
  • thermoelectric generator 11 is a side view showing a thermoelectric generator according to a third embodiment of the present invention.
  • thermoelectric generator 12 is a cross-sectional view showing a thermoelectric generator according to a fourth embodiment of the present invention.
  • thermoelectric generator 13 is a perspective view of a thermoelectric generator according to a fourth embodiment of the present invention.
  • thermoelectric generator 14 is a side view showing a thermoelectric generator according to a fourth embodiment of the present invention.
  • thermoelectric generator 15 is a cross-sectional view of a thermoelectric generator according to a fifth embodiment of the present invention.
  • thermoelectric generator 16 is a perspective view of a thermoelectric generator according to a fifth embodiment of the present invention.
  • thermoelectric generator 17 is a side view showing a thermoelectric generator according to a fifth embodiment of the present invention.
  • thermoelectric generator 18 is a perspective view of a thermoelectric generator according to a sixth embodiment of the present invention.
  • thermoelectric generator 19 is a side view showing a thermoelectric generator according to a sixth embodiment of the present invention.
  • thermoelectric generator 20 is a perspective view showing a thermoelectric generator according to a seventh embodiment of the present invention.
  • thermoelectric generator 21 is a side view showing a thermoelectric generator according to a seventh embodiment of the present invention.
  • thermoelectric generator 22 is a perspective view showing a thermoelectric generator according to an eighth embodiment of the present invention.
  • thermoelectric generator 23 is a side view showing a thermoelectric generator according to an eighth embodiment of the present invention.
  • thermoelectric power generation apparatus 24 to 26 are a perspective view, a side view, and a sectional view showing a thermoelectric power generation apparatus modified from the first embodiment of the present invention.
  • thermoelectric power generation apparatus 27 to 29 are a perspective view, a side view, and a sectional view showing a thermoelectric power generation apparatus modified from the second embodiment of the present invention.
  • thermoelectric power generation apparatus 30 to 32 are a perspective view, a side view, and a sectional view of a thermoelectric power generation apparatus modified from the third embodiment of the present invention.
  • thermoelectric power generators 33 to 34 are perspective views and side views illustrating a thermoelectric power generator according to a modified eighth embodiment of the present invention.
  • thermoelectric device using a heat pipe
  • the heat input portion of the heat pipe is heated by the exhaust heat of the vehicle generated when the vehicle is driven, and the working liquid inside the heat pipe is continuously It absorbs heat and becomes steam, which flows past the heat pipe's thermal insulation and into the heat sink's heat sink.
  • the steam moved to the heat dissipation portion is dissipated heat and at the same time is deprived of heat to condense back to the original working fluid.
  • This condensed working fluid is moved to the heat input part by capillary action, and this cycle is performed again.
  • thermoelectric generator 3 to 5 are cross-sectional views, perspective views, and side views showing a thermoelectric generator according to a first embodiment of the present invention.
  • thermoelectric element 11 is installed outside the vehicle exhaust port 10, and one side of the heat pipe 12 is connected to one side of the thermoelectric element 11.
  • the heat pipe 12 may include a heat input part 14 heated by exhaust heat, a heat generating part 16 transferring heat to the thermoelectric element 11, and a section between the heat input part 14 and the heat generating part 16. It consists of the heat insulation part 15 which comprises.
  • the other side of the heat pipe 12 penetrates one wall surface of the exhaust port 10 and is located therein, so that the heat in the exhaust port can be transferred to the thermoelectric element.
  • the exhaust port through portion at this time may be sealed to prevent the exhaust heat or the exhaust gas from leaking.
  • the end portion of the heat pipe 12 located inside the exhaust port 10 is located in the center of the highest temperature in the exhaust port 10, it is preferable to be able to absorb the exhaust heat more efficiently. Do.
  • thermoelectric element 11 is not overheated and its temperature is appropriately maintained. It is desirable to be able to control it.
  • a plurality of the heat pipes 11 may be provided in one thermoelectric element 11, and each of the heat pipes 11 may be disposed in parallel with each other along a longitudinal direction of the exhaust port 10.
  • the heat energy of the heat pipe 12 receiving the exhaust heat from the heat input part 14 releases heat from the heat generating part 16 via the heat insulating part 15, and transfers heat inside the exhaust port to the thermoelectric element 11. Done.
  • the heat pipe 12 penetrates the exhaust port 10 so that the heat input part 14 is positioned therein, and the size of the heat input part 14 is limited to its length according to the diameter of the exhaust port cylinder. It can change without putting.
  • the length of the heat insulating part 15 which transfers the heat of the heat input part 14 to the heat generating part 16 is not limited to the length in the other embodiment of the present invention, and the thermoelectric element 11 or the cooling device ( The shape or length may vary depending on the position of 17).
  • the heat generating unit 16 is a portion that transfers heat to the thermoelectric element 11, and its size and shape may be changed according to the size of the thermoelectric element 11.
  • the length of the heat generating portion 16 may be increased or shortened.
  • the number of heat pipes inserted into the exhaust port may be changed depending on the number of thermoelectric elements 11, the amount of heat supplied to the thermoelectric element 11, and the length of the exhaust port 10. Do.
  • thermoelectric generator 6 to 8 are cross-sectional views, perspective views, and side views showing a thermoelectric generator according to a second embodiment of the present invention.
  • An end portion of the heat pipe 12 positioned at the center of the exhaust port 10 is formed to be 90 ° in the axial direction of the exhaust port 10.
  • the heat pipe 12 was made in the shape of "L” and inserted into the center of the inside of the automobile exhaust port.
  • the heat pipe 12 is formed in an “L” shape so that the existing exhaust port 10 can be easily inserted without cutting. It has advantages
  • the advantage of not having to cut the exhaust port when inserting the heat pipe 12 into the exhaust port of the existing vehicle represents the ease of operation, and has the advantage that the first embodiment also has.
  • thermoelectric power generator 9 to 11 are cross-sectional views, perspective views, and side views showing a thermoelectric power generator according to a third embodiment of the present invention.
  • thermoelectric elements 11 are provided at both sides of the vehicle exhaust port 10, for example, at positions facing each other with the exhaust port 10 interposed therebetween, and the heat pipe 12 at this time is connected to the exhaust port 10. Both ends thereof are connected to each thermoelectric element 11 while penetrating, and the middle portion of the length belongs to the inside of the exhaust port 10.
  • the middle portion of the length of the heat pipe 12 belonging to the inside of the exhaust port 10 is provided with a protrusion 13 facing in the exhaust port axial direction.
  • the heat insulating part 15 and the heat generating part 16 of the heat pipe 12 are each present, which has a characteristic of heating a larger amount of the thermoelectric element 11 to both sides.
  • thermoelectric generator 12 to 14 are cross-sectional views, perspective views, and side views showing a thermoelectric generator according to a fourth embodiment of the present invention.
  • the heat pipe is shown here in the form of an annulus with a part open.
  • the heat pipe portion positioned inside the exhaust port 10 is formed in an annular shape with a part open, and the annular shape at this time is arranged concentrically with the exhaust port 10.
  • the heat pipe portion belonging to the inside of the exhaust port 10 may be applied to the "U" shape in addition to the annular shape.
  • the heat pipe 12 having the annular shape is designed in a circular shape to fit the inner wall of the exhaust port 10 in order to receive a larger amount of heat energy.
  • thermoelectric element 11 The fact that the heat pipe 12 can be heated more easily has a merit of transferring a larger amount of thermal energy to the thermoelectric element 11.
  • thermoelectric generator 15 to 17 are cross-sectional views, perspective views, and side views illustrating a thermoelectric generator according to a fifth embodiment of the present invention.
  • the heat pipe 12 is formed in an annular shape in the middle of the length located in the exhaust port 10, both ends thereof are connected to the heat transfer element (11).
  • the heat pipe 12 passes through the exhaust port 10 and then exits again, and both ends thereof are connected to the thermoelectric element 11, and the length of the heat pipe 12 belonging to the inside of the exhaust port 10 at this time.
  • the middle part takes the form of an annulus.
  • the heat insulating part 14 and the heat generating part 16 are provided in two, respectively, so that a larger amount of the thermoelectric element 11 can be heated to both sides.
  • FIGS. 18 and 19 are perspective views and side views illustrating a thermoelectric generator according to a sixth embodiment of the present invention
  • FIGS. 20 and 21 are perspective views and side views illustrating a thermoelectric generator according to a seventh embodiment of the present invention.
  • FIGS. 18 to 21 an example in which a "1" shaped heat pipe and an "L” shaped heat pipe are inserted into the exhaust port in various directions is shown.
  • thermoelectric elements 11 are arranged along the circumference of the exhaust port 10 and are arranged along the longitudinal direction, and one side of each heat pipe 12 extending from each thermoelectric element 10 is an exhaust port. Penetrates 10 and is positioned therein.
  • the heat pipes 12 may be disposed in a radial shape with respect to the exhaust port 10 as a whole.
  • each heat pipe 12 at this time that is, the end located inside the exhaust port 10 may be located in the center of the exhaust port 10, or 90 toward the axial direction of the exhaust port 10 ° may be in a bent form.
  • thermoelectric element 11 Can be placed in multiple directions, which can be less affected by the structure of the car.
  • thermoelectric generator 22 and 23 are perspective and side views illustrating a thermoelectric generator according to an eighth embodiment of the present invention.
  • thermoelectric elements 11 are provided on both sides of the exhaust port 10, and the heat pipes 12 pass through the exhaust port 10 at both ends thereof and are connected to the respective thermoelectric elements 11. .
  • the middle part of the length of the heat pipe 12 belonging to the inside of the exhaust port 10 is formed in a semi-circular shape.
  • thermoelectric element 11 can be heated at both sides with a greater amount of heat.
  • the semi-circular shape of the heat pipe 12 at this time also takes the form arranged concentrically along the inner wall in the exhaust port (10).
  • the sizes, lengths, and angles of the heat input part, the heat insulating part, and the heat generating part of all the above-described embodiments are not limited and may be changed.
  • the position of the heat generating unit 16 is designed to be lower than that of the heat input unit 14, the condensate may be heated in the heat generating unit 16 to increase the thermal conductivity of the heat pipe. It is preferable that the position of the heat generating portion 16 is higher than the position of the heat input portion 14 as shown in FIGS. 24 to 40 so as to better return by the action of gravity and capillary force.
  • FIGS. 24 to 26 are the first embodiment of the present invention
  • FIGS. 27 to 29 are the second embodiment of the present invention
  • FIGS. 30 to 32 are the third embodiment of the present invention.
  • 34 is a view showing that the position of the heat generating portion 16 is designed to be higher than the position of the heat input portion 14 in the eighth embodiment of the present invention.
  • the heat pipe shown in FIGS. 30 to 32 is modified from the third embodiment, and the thermoelectric element 11 is provided at both sides of the vehicle exhaust port 10 facing each other.
  • the pipe 12 is arranged in a horizontal state as a whole, and both ends thereof are connected to the thermoelectric element 11, and a protrusion 13, which is a middle portion of the length, belongs to the inside of the exhaust port 10.
  • the bottom pipe extending toward both sides of the center is designed to have an approximately "Y" shape inclined upward, so that the condensate can be well returned along the inclined surface from the heat generating portion 16 to the heat input portion 14.
  • the heat pipes shown in Figs. 39 to 40 also extend to both sides about a semi-circular heat input portion 14 which is assigned to the inside of the exhaust port 10 at the middle portion of the length. It is configured to be inclined upward toward the heat generating portion 16 side.

Abstract

The present invention relates to a thermoelectric power generating device capable of generating power from an exhaust hole of a vehicle by using a thermoelectric element according to the Seebeck effect of a thermoelectric module. In the present invention, the exhaust hole is connected with a heat pipe having an advantage of effective heat transmission, so as to receive the internal heat from the exhaust hole of high temperature. The heat pipe has an advantage that heat conductivity thereof is superior rather than general thermal conductors. Exhaust heat of high temperature may be effectively transmitted to the thermoelectric element by designing such a heat pipe in various shapes and directly inserting the same into the vehicle exhaust hole but not to the outer wall of the vehicle exhaust hole. Therefore, the present invention provides the thermoelectric power generating device, which may effectively generate thermoelectric power by the heat discharged via the exhaust gas at the time of fuel combustion in the vehicle.

Description

열전 발전 장치Thermoelectric generator
본 발명은 열전 발전 장치에 관한 것으로서, 더욱 상세하게는 열전 모듈(Thermoelectric module)의 제벡(Seebeck) 효과를 이용한 열전 소자를 이용하여 자동차의 배기구로부터 열전 발전을 할 수 있는 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator, and more particularly, to an apparatus capable of generating thermoelectric power from an exhaust port of a vehicle using a thermoelectric element using a Seebeck effect of a thermoelectric module.
일반적으로 열전 소자는 소자의 양쪽 면에 온도차이가 발생하면 온도가 높은 곳에서 낮은 쪽으로 전자가 이동하여 만들어지는 기전력을 이용한 물질이다.In general, thermoelectric devices are materials using electromotive force generated by electrons moving from a high place to a low place when a temperature difference occurs on both sides of the device.
열전 소자에 자동차로부터 나오는 고온의 폐열을 인가하여 재생산되는 에너지를 자동차의 새로운 동력원으로 이용하려는 노력이 현재 HEV시장에서 연구시행 중이다. Efforts to use renewable energy as a new power source for automobiles by applying high-temperature waste heat from automobiles to thermoelectric devices are currently being studied in the HEV market.
자동차의 배기구에서 나오는 폐열을 자동차의 동력원으로 활용하기 위해서는 충분한 양의 에너지를 얻는 노력이 필요하며, 이에 대한 관점에서 보면 열전 소자의 효율을 높여야 할 필요가 있다. In order to utilize the waste heat from the exhaust of the car as a power source of the car, an effort to obtain a sufficient amount of energy is required, and from this point of view, it is necessary to increase the efficiency of the thermoelectric element.
현재 열전 소자의 효율을 높이기 위해 소자연구와 소자 접목에 대한 방법적인 측면이 여러 방향으로 연구 중이다. In order to improve the efficiency of thermoelectric devices, the methodological aspects of device research and device incorporation are being studied in various directions.
상용화된 열전 소자의 효율은 ZT라는 개념이 도입되어 그 효율을 아래와 같이 수식화 하였다.The efficiency of commercialized thermoelectric elements was introduced with the concept of ZT and its efficiency was formulated as follows.
Figure PCTKR2010000748-appb-I000001
Figure PCTKR2010000748-appb-I000001
(
Figure PCTKR2010000748-appb-I000002
=재료의 Seebeck 계수, σ:전기비저항, k:열전도도, T:절대온도)로 나타낼 수 있다.
(
Figure PCTKR2010000748-appb-I000002
= Seebeck coefficient of material, σ: electrical resistivity, k: thermal conductivity, T: absolute temperature).
여기서, S, σ, k 의 변수값은 열전 소자의 재료에 따른 변수들이며, T값은 열전 소자의 고온부와 저온부의 온도 차이를 나타낸다. Here, the variable values of S, σ, and k are variables according to the material of the thermoelectric element, and the T value represents the temperature difference between the high temperature part and the low temperature part of the thermoelectric element.
그러므로, 열전 소자 양단의 온도차이가 크면 보다 많은 양의 에너지를 생산할 수 있다. Therefore, when the temperature difference across the thermoelectric element is large, a larger amount of energy can be produced.
현재 열전 소자의 효율을 높이기 위한 방법적인 측면에서의 연구는 크게 두가지가 있다.At present, there are two researches on the method side to increase the efficiency of thermoelectric devices.
첫째는 보다 많은 양의 열에너지를 효과적으로 열전 소자의 고온부에 전달하고, 둘째는 저온부를 냉각하는 방법이다. The first is to efficiently transfer a larger amount of thermal energy to the hot part of the thermoelectric element, and the second is to cool the cold part.
다시 말해, 열전 소자의 효율을 높이기 위해서는 많은 양의 열에너지를 열전 소자의 고온부에 전달해 주어야 한다.In other words, in order to increase the efficiency of the thermoelectric element, a large amount of thermal energy must be transferred to the high temperature portion of the thermoelectric element.
도 1과 도 2는 종래 열전 발전 장치의 구조를 나타낸 것이다.1 and 2 show the structure of a conventional thermoelectric generator.
도 1은 GM(General Motors Corporation)의 방식으로서, 자동차 배기구의 모양을 변경하여 많은 양의 열전 소자를 직접 배기구의 외벽에 붙이는 방법이다.1 is a method of General Motors Corporation (GM), in which a large amount of thermoelectric elements are directly attached to the outer wall of the exhaust port by changing the shape of the vehicle exhaust port.
도 2는 BMW(Bayerische Motoren Werke AG)의 방식으로서, 배기구의 열을 이용하여 일차적으로 오일을 가열한 후, 다면체에 넣어 순환 시키고, 아래에 열전 소자를 붙여 층으로 쌓는 방식이다.FIG. 2 is a method of Bayeyrische Motoren Werke AG (BMW), in which oil is primarily heated using heat from an exhaust port, circulated in a polyhedron, and stacked in layers by attaching thermoelectric elements below.
상기 두가지의 종래 방식의 단점은 자동차 배기구 외벽을 통하여 온도를 전달받는다는 것이다.A disadvantage of the two conventional approaches is that the temperature is transmitted through the vehicle exhaust vent outer wall.
즉, 배기열은 배기구 중심부의 온도가 가장 높으나, 종래 방법에서는 배기 파이프의 외벽에서 열에너지를 얻어 열전 소자의 고온부에 열에너지를 전달하므로, 보다 많은 양의 배기열을 효과적으로 열전 소자에 전달하지 못하는 단점이 있다. In other words, the exhaust heat has the highest temperature at the center of the exhaust port, but the conventional method obtains thermal energy from the outer wall of the exhaust pipe and transfers the thermal energy to the high temperature portion of the thermoelectric element, and thus has a disadvantage in that it cannot effectively transfer a larger amount of exhaust heat to the thermoelectric element.
따라서, 본 발명은 이와 같은 점을 감안하여 안출한 것으로서, 차량의 연료 연소시 배기가스를 통해서 배출되는 열을 이용하여 효율적으로 열전 발전을 할 수 있는 장치를 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a device capable of efficiently generating thermoelectric power by using heat discharged through exhaust gas during fuel combustion of a vehicle.
보통 자동차 배기구의 온도분포의 특성을 측정해 본 결과, 배기구 외벽의 온도가 100∼ 150℃로 측정이 되었다.As a result of measuring the temperature distribution of the automobile exhaust port, the temperature of the outer wall of the exhaust port was measured to be 100 to 150 占 폚.
이것은 배기구 내부의 온도가 고온 600℃ 이상의 높은 열이 발생하는 것에 비해 상당히 낮은 수치로 배기가스의 열에너지는 배기구 외벽으로의 전달이 잘 안 된다는 것을 의미한다.This means that the temperature inside the exhaust port is considerably lower than the heat generated at a high temperature of 600 ° C. or higher, which means that the heat energy of the exhaust gas is not well transmitted to the outer wall of the exhaust port.
열을 전달 받는 물체가 열전 소자일 경우 열을 에너지로 변환하는 열전 소자의 효율은 높은 온도의 배기열을 이용하는 것이 더 효과적이므로, 배기구 내부의 높은 열을 전달하여야 더 큰 효과를 얻을 수 있다. If the object receiving heat is a thermoelectric element, the efficiency of the thermoelectric element that converts heat into energy is more effective to use the exhaust heat of a high temperature, the greater the effect can be obtained by transmitting a high heat inside the exhaust port.
본 발명에서는 고온의 배기구 내부의 열을 전달받기 위해서 열을 효과적으로 전달하는 장점을 가지고 있는 히트 파이프(Heat pipe)를 배기구에 접목시켰다.In the present invention, a heat pipe having a merit of effectively transferring heat in order to receive heat inside the high temperature exhaust port is grafted to the exhaust port.
상기 히트 파이프는 일반적인 열전도체보다 그 열전도성이 우수하다는 장점을 가지고 있다. The heat pipe has an advantage of superior thermal conductivity than a general thermal conductor.
이러한 히트 파이프를 다양한 형상으로 디자인하여 차량 배기구 외벽이 아닌 내부에 직접 넣어 줌으로써, 고온의 배기열을 열전 소자에 효과적으로 전달할 수 있다. By designing these heat pipes in various shapes and directly inserting them into the inside of the vehicle exhaust port instead of the outer wall, high-temperature exhaust heat can be effectively transmitted to the thermoelectric element.
상기 목적을 달성하기 위하여 본 발명에서 제공하는 열전 발전 장치의 일 예는 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구의 외측에 설치되는 열전 소자와 이 열전 소자에 연결되는 히트 파이프를 포함하며, 상기 히트 파이프의 한쪽은 배기구를 관통하여 그 내부에 위치되므로서, 배기구 내부의 열을 열전 소자에 전달할 수 있도록 된 것을 특징으로 한다. One example of the thermoelectric power generation apparatus provided by the present invention in order to achieve the above object is a form for generating electromotive force by transferring the heat of the vehicle exhaust port to the thermoelectric element using the Seeback effect, a thermoelectric element installed outside the exhaust port And a heat pipe connected to the thermoelectric element, and one side of the heat pipe penetrates the exhaust port and is positioned therein, so that heat in the exhaust port can be transferred to the thermoelectric element.
여기서, 상기 배기구의 내부에 위치되는 히트 파이프의 끝 부분은 배기구의 중심에 위치되도록 하는 것이 바람직하다. Here, it is preferable that the end portion of the heat pipe located inside the exhaust port is located at the center of the exhaust port.
그리고, 상기 배기구의 내부에 위치되는 히트 파이프의 끝 부분의 형태는 배기구의 축선방향을 향해 90°꺽인 형태, 일부가 개방된 환형의 형태 등 다양한 형태로 구성하는 것이 바람직하다. In addition, the shape of the end portion of the heat pipe positioned inside the exhaust port may be configured in various forms, such as a 90-degree angled form toward the axial direction of the exhaust port, and an annular shape in which part thereof is opened.
상기 열전 발전 장치의 다른 예는 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구의 외측에 설치되는 열전 소자와 이 열전 소자에 연결되는 히트 파이프를 포함하며, 상기 열전 소자는 배기구의 양편에 2개가 마련되고, 상기 히트 파이프는 배기구를 관통하면서 그 양단이 각 열전 소자에 연결되며, 상기 배기구의 내부에 속해 있는 히트 파이프의 길이 중간부분에는 배기구 축선방향으로 향하는 돌출부분 또는 반원형의 형태 등으로 이루어진 것을 특징으로 한다. Another example of the thermoelectric generator is a form in which electromotive force is generated by transferring heat from an automobile exhaust port to a thermoelectric element using a Seeback effect, and a thermoelectric element installed outside the exhaust port and a heat pipe connected to the thermoelectric element. Two thermoelectric elements are provided on both sides of the exhaust port, and the heat pipe penetrates the exhaust port, and both ends thereof are connected to the respective thermoelectric elements. Characterized in that it consists of a protrusion or semi-circular shape facing in the direction.
상기 열전 발전 장치의 또 다른 예는 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구의 외측에 설치되는 열전 소자와 이 열전 소자에 연결되는 히트 파이프를 포함하며, 상기 히트 파이프는 배기구를 관통한 후에 재차 빠져나와 그 양단이 열전 소자에 연결되고, 상기 배기구의 내부에 속해 있는 히트 파이프의 길이 중간부분은 환형의 형태로 이루어진 것을 특징으로 한다. Another example of the thermoelectric generator is a form in which electromotive force is generated by transferring heat from an automobile exhaust port to a thermoelectric element using a Seeback effect, and a thermoelectric element installed outside the exhaust port and a heat pipe connected to the thermoelectric element. The heat pipe is passed through again after passing through the exhaust port, both ends thereof are connected to the thermoelectric element, and the middle part of the length of the heat pipe belonging to the inside of the exhaust port is characterized in that the annular form.
그리고, 상기 열전 발전 장치의 또 다른 예는 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구의 외측에 설치되는 열전 소자와 이 열전 소자에 연결되는 히트 파이프를 포함하며, 상기 열전 소자는 배기구의 둘레를 따라 배치되면서 배기구의 길이방향을 따라 배치되는 다수 개로 이루어지고, 각 열전 소자에서 연장되는 히트 파이프의 한쪽은 배기구를 관통하여 그 내부에 위치되며, 각 히트 파이프들은 배기구를 중심으로 하여 방사상의 형태로 배치되는 것을 특징으로 한다. In addition, another example of the thermoelectric generator is a form in which electromotive force is generated by transferring heat from an automobile exhaust port to a thermoelectric element using a Seeback effect, which is connected to the thermoelectric element installed outside the exhaust port and the thermoelectric element. The thermoelectric element includes a plurality of thermoelectric elements disposed along the circumference of the exhaust port and disposed along the longitudinal direction of the exhaust port, and one side of the heat pipe extending from each thermoelectric element is located therein through the exhaust port. Each heat pipe is characterized in that it is disposed in a radial form around the exhaust port.
본 발명에서 제공하는 열전 발전 장치는 다음과 같은 장점이 있다.The thermoelectric generator provided by the present invention has the following advantages.
배기구 내부의 폐열을 이용함으로써, 기존의 외벽을 이용해 배기열을 전달한 방식보다 상대적으로 높은 열을 전달하기에 효과적이다.By using the waste heat inside the exhaust port, it is more effective to transfer the heat higher than the conventional method of transmitting the exhaust heat using the outer wall.
또한, 열전도제로 히트 파이프를 이용하여 보다 많은 양의 열을 회수한 후에 열전 소자의 전달함으로써, 그 효율을 높일 수 있다.In addition, the efficiency can be improved by transferring a thermoelectric element after recovering a larger amount of heat using a heat pipe as a heat conductive agent.
그리고, 본 발명에서 제시하는 여러 형태의 실시예로 자동차 구조에 맞게 다양한 열전 장치의 구조를 적용할 수 있다. In addition, various embodiments of the thermoelectric device may be applied to the vehicle structure according to various embodiments of the present invention.
도 1은 배기구 외벽에 열전 소자를 배치한 종래 열전 발전 장치의 구조를 나타내는 개략도(GM 방식)1 is a schematic view showing the structure of a conventional thermoelectric generator in which a thermoelectric element is disposed on an outer wall of an exhaust port (GM method)
도 2는 촉매제를 이용해 열전 소자를 가열한 종래 열전 발전 장치의 구조를 나타내는 개략도(BMW 방식)2 is a schematic view showing the structure of a conventional thermoelectric power generation device in which a thermoelectric element is heated using a catalyst (BMW method)
도 3은 본 발명의 제1실시예에 따른 열전 발전 장치를 나타내는 단면도3 is a cross-sectional view showing a thermoelectric generator according to a first embodiment of the present invention.
도 4는 본 발명의 제1실시예에 따른 열전 발전 장치를 나타내는 사시도4 is a perspective view showing a thermoelectric generator according to a first embodiment of the present invention;
도 5는 본 발명의 제1실시예에 따른 열전 발전 장치를 나타내는 측면도5 is a side view showing a thermoelectric generator according to a first embodiment of the present invention.
도 6은 본 발명의 제2실시예에 따른 열전 발전 장치를 나타내는 단면도6 is a cross-sectional view showing a thermoelectric generator according to a second embodiment of the present invention.
도 7은 본 발명의 제2실시예에 따른 열전 발전 장치를 나타내는 사시도7 is a perspective view showing a thermoelectric generator according to a second embodiment of the present invention.
도 8은 본 발명의 제2실시예에 따른 열전 발전 장치를 나타내는 측면도8 is a side view showing a thermoelectric generator according to a second embodiment of the present invention.
도 9는 본 발명의 제3실시예에 따른 열전 발전 장치를 나타내는 단면도9 is a cross-sectional view showing a thermoelectric generator according to a third embodiment of the present invention.
도 10은 본 발명의 제3실시예에 따른 열전 발전 장치를 나타내는 사시도10 is a perspective view of a thermoelectric generator according to a third embodiment of the present invention.
도 11은 본 발명의 제3실시예에 따른 열전 발전 장치를 나타내는 측면도11 is a side view showing a thermoelectric generator according to a third embodiment of the present invention.
도 12는 본 발명의 제4실시예에 따른 열전 발전 장치를 나타내는 단면도12 is a cross-sectional view showing a thermoelectric generator according to a fourth embodiment of the present invention.
도 13은 본 발명의 제4실시예에 따른 열전 발전 장치를 나타내는 사시도13 is a perspective view of a thermoelectric generator according to a fourth embodiment of the present invention.
도 14는 본 발명의 제4실시예에 따른 열전 발전 장치를 나타내는 측면도14 is a side view showing a thermoelectric generator according to a fourth embodiment of the present invention.
도 15는 본 발명의 제5실시예에 따른 열전 발전 장치를 나타내는 단면도15 is a cross-sectional view of a thermoelectric generator according to a fifth embodiment of the present invention.
도 16은 본 발명의 제5실시예에 따른 열전 발전 장치를 나타내는 사시도16 is a perspective view of a thermoelectric generator according to a fifth embodiment of the present invention.
도 17은 본 발명의 제5실시예에 따른 열전 발전 장치를 나타내는 측면도17 is a side view showing a thermoelectric generator according to a fifth embodiment of the present invention.
도 18은 본 발명의 제6실시예에 따른 열전 발전 장치를 나타내는 사시도18 is a perspective view of a thermoelectric generator according to a sixth embodiment of the present invention.
도 19는 본 발명의 제6실시예에 따른 열전 발전 장치를 나타내는 측면도19 is a side view showing a thermoelectric generator according to a sixth embodiment of the present invention.
도 20은 본 발명의 제7실시예에 따른 열전 발전 장치를 나타내는 사시도20 is a perspective view showing a thermoelectric generator according to a seventh embodiment of the present invention.
도 21은 본 발명의 제7실시예에 따른 열전 발전 장치를 나타내는 측면도21 is a side view showing a thermoelectric generator according to a seventh embodiment of the present invention.
도 22는 본 발명의 제8실시예에 따른 열전 발전 장치를 나타내는 사시도22 is a perspective view showing a thermoelectric generator according to an eighth embodiment of the present invention.
도 23은 본 발명의 제8실시예에 따른 열전 발전 장치를 나타내는 측면도23 is a side view showing a thermoelectric generator according to an eighth embodiment of the present invention.
도 24 내지 도 26은 본 발명의 제1실시예를 변형한 열전 발전 장치를 나타내는 사시도, 측면도, 단면도이다.24 to 26 are a perspective view, a side view, and a sectional view showing a thermoelectric power generation apparatus modified from the first embodiment of the present invention.
도 27 내지 도 29는 본 발명의 제2실시예를 변형한 열전 발전 장치를 나타내는 사시도, 측면도, 단면도27 to 29 are a perspective view, a side view, and a sectional view showing a thermoelectric power generation apparatus modified from the second embodiment of the present invention.
도 30 내지 도 32는 본 발명의 제3실시예를 변형한 열전 발전 장치를 나타내는 사시도, 측면도, 단면도.30 to 32 are a perspective view, a side view, and a sectional view of a thermoelectric power generation apparatus modified from the third embodiment of the present invention.
도 33 내지 도 34은 본 발명의 제8실시예를 변형한 열전 발전 장치를 나타내는 사시도, 측면도이다.33 to 34 are perspective views and side views illustrating a thermoelectric power generator according to a modified eighth embodiment of the present invention.
본 발명에서는 히트 파이프를 이용하여 효과적으로 열전 소자에 열을 전달 할 수 있도록 하는 방법을 여러 실시예로 제시한다.In the present invention, a method for effectively transferring heat to a thermoelectric device using a heat pipe is described in various embodiments.
본 발명에서 제공하는 다양한 실시예와 같이 히트 파이프를 자동차 배기구에 접목시킬 경우, 자동차의 운전시 발생하는 자동차의 배기열로 인해 히트 파이프의 입열부가 가열되게 되고, 계속해서 히트 파이프 내부의 작동액이 이 열을 흡수해 증기가 되며, 이 증기의 흐름은 히트 파이프의 단열부를 지나서 히트 파이프의 방열부로 이동하게 된다.When the heat pipe is grafted to the vehicle exhaust port as in various embodiments provided by the present invention, the heat input portion of the heat pipe is heated by the exhaust heat of the vehicle generated when the vehicle is driven, and the working liquid inside the heat pipe is continuously It absorbs heat and becomes steam, which flows past the heat pipe's thermal insulation and into the heat sink's heat sink.
상기 방열부로 이동한 증기는 밖으로 열을 방출함과 동시에 열을 빼앗기게 되어 다시 원래의 작동액으로 응축된다.The steam moved to the heat dissipation portion is dissipated heat and at the same time is deprived of heat to condense back to the original working fluid.
이렇게 응축된 작동액은 모세관현상에 의해 입열부로 이동하게 되며, 다시 이 사이클을 진행하게 된다.This condensed working fluid is moved to the heat input part by capillary action, and this cycle is performed again.
이것이 자동차에 접목시킨 히트 파이프의 원리이다. This is the principle of heat pipes incorporated in automobiles.
본 발명에서 제공하는 여러 실시예의 히트 파이프 모양은 각각 다르나, 내부에서 열을 전달하는 원리는 모두 동일하다. Although the shape of the heat pipes of the various embodiments provided by the present invention is different, the principle of transferring heat therein is the same.
도 3 내지 도 5는 본 발명의 제1실시예에 따른 열전 발전 장치를 나타내는 단면도, 사시도 및 측면도이다. 3 to 5 are cross-sectional views, perspective views, and side views showing a thermoelectric generator according to a first embodiment of the present invention.
도 3 내지 도 5에 도시한 바와 같이, 여기서는 "1" 자형의 히트 파이프를 보여준다. As shown in Figs. 3 to 5, a "1" shaped heat pipe is shown here.
자동차 배기구(10)의 외측에는 열전 소자(11)가 설치되고, 이 열전 소자(11)의 일측에는 히트 파이프(12)의 한쪽이 연결된다. The thermoelectric element 11 is installed outside the vehicle exhaust port 10, and one side of the heat pipe 12 is connected to one side of the thermoelectric element 11.
특히, 상기 히트 파이프(12)는 배기열로 인해 가열되는 입열부(14), 열전 소자(11)에 열을 전달하는 발열부(16) 및 입열부(14)와 발열부(16) 사이 구간을 구성하는 단열부(15)로 이루어진다. In particular, the heat pipe 12 may include a heat input part 14 heated by exhaust heat, a heat generating part 16 transferring heat to the thermoelectric element 11, and a section between the heat input part 14 and the heat generating part 16. It consists of the heat insulation part 15 which comprises.
그리고, 상기 히트 파이프(12)의 다른 한쪽은 배기구(10)의 한쪽 벽면을 관통하여 그 내부에 위치되어, 배기구 내부의 열을 열전 소자에 전달할 수 있게 된다.The other side of the heat pipe 12 penetrates one wall surface of the exhaust port 10 and is located therein, so that the heat in the exhaust port can be transferred to the thermoelectric element.
물론, 이때의 배기구 관통 부위는 실링처리되어 배기열 또는 배기가스가 누설되는 것이 방지될 수 있다. Of course, the exhaust port through portion at this time may be sealed to prevent the exhaust heat or the exhaust gas from leaking.
이때, 상기 배기구(10)의 내부에 위치되는 히트 파이프(12)의 끝 부분은 배기구(10)의 내부에서 가장 온도가 높은 중심에 위치되도록 하여, 보다 효율적으로 배기열을 흡수할 수 있도록 하는 것이 바람직하다. At this time, the end portion of the heat pipe 12 located inside the exhaust port 10 is located in the center of the highest temperature in the exhaust port 10, it is preferable to be able to absorb the exhaust heat more efficiently. Do.
또한, 상기 열전 소자(11)의 다른 일측, 예를 들면 히트 파이프(12)가 연결되는 부분의 반대쪽에는 냉각장치(17)를 마련하여, 열전 소자(11)가 과열되지 않고 그 온도가 적절하게 제어될 수 있도록 하는 것이 바람직하다. In addition, a cooling device 17 is provided on the other side of the thermoelectric element 11, for example, on the opposite side to the portion where the heat pipe 12 is connected, so that the thermoelectric element 11 is not overheated and its temperature is appropriately maintained. It is desirable to be able to control it.
여기서, 상기 히트 파이프(11)는 하나의 열전 소자(11)에 다수 개가 구비될 수 있으며, 각각은 배기구(10)의 길이방향을 따라가면서 일정간격으로 나란히 배치되는 형태로 설치될 수 있다. Here, a plurality of the heat pipes 11 may be provided in one thermoelectric element 11, and each of the heat pipes 11 may be disposed in parallel with each other along a longitudinal direction of the exhaust port 10.
이에 따라, 상기 입열부(14)에서 배기열을 받은 히트 파이프(12)의 열에너지는 단열부(15)를 거쳐 발열부(16)에서 열을 방출, 열전 소자(11)에 배기구 내부의 열을 전달하게 된다. Accordingly, the heat energy of the heat pipe 12 receiving the exhaust heat from the heat input part 14 releases heat from the heat generating part 16 via the heat insulating part 15, and transfers heat inside the exhaust port to the thermoelectric element 11. Done.
도 5에서 볼 수 있듯이 히트 파이프(12)는 배기구(10)를 관통하여 내부에 입열부(14)가 위치하게 되며, 이 입열부(14)의 크기는 배기구 원통의 지름에 따라서 그 길이에 제한을 두지 않고 변할 수 있다. As shown in FIG. 5, the heat pipe 12 penetrates the exhaust port 10 so that the heat input part 14 is positioned therein, and the size of the heat input part 14 is limited to its length according to the diameter of the exhaust port cylinder. It can change without putting.
상기 입열부(14)의 열을 발열부(16)로 전달하는 단열부(15)의 길이는 본 발명의 다른 실시예에서도 마찬가지로 그 길이에 제한을 두지 않으며, 열전 소자(11)나 냉각장치(17)의 위치에 따라 그 모양이나 길이가 변할 수 있다. The length of the heat insulating part 15 which transfers the heat of the heat input part 14 to the heat generating part 16 is not limited to the length in the other embodiment of the present invention, and the thermoelectric element 11 or the cooling device ( The shape or length may vary depending on the position of 17).
상기 발열부(16)는 열을 열전 소자(11)에 전달하는 부분으로서, 열전 소자(11)의 크기에 따라 그 크기와 모양의 변경이 가능하다. The heat generating unit 16 is a portion that transfers heat to the thermoelectric element 11, and its size and shape may be changed according to the size of the thermoelectric element 11.
상기 열전 소자(11)의 고온부에 열을 공급해 주는 양을 조절하기 위해 발열부(16)의 길이를 늘일 수도 줄일 수도 있다. In order to control the amount of heat supplied to the high temperature portion of the thermoelectric element 11, the length of the heat generating portion 16 may be increased or shortened.
본 발명에 적용되는 모든 실시예 중 배기구 내부에 삽입되는 히트 파이프의 수는 열전 소자(11)의 개수 및 열전 소자(11)에 열을 공급해 주는 양, 배기구(10)의 길이에 따라 변경이 가능하다. Among all the embodiments applied to the present invention, the number of heat pipes inserted into the exhaust port may be changed depending on the number of thermoelectric elements 11, the amount of heat supplied to the thermoelectric element 11, and the length of the exhaust port 10. Do.
도 6 내지 도 8은 본 발명의 제2실시예에 따른 열전 발전 장치를 나타내는 단면도, 사시도 및 측면도이다. 6 to 8 are cross-sectional views, perspective views, and side views showing a thermoelectric generator according to a second embodiment of the present invention.
도 6 내지 도 8에 도시한 바와 같이, 여기서는 "L"자 형의 히트 파이프를 보여준다. As shown in Fig. 6 to Fig. 8, a "L" shaped heat pipe is shown here.
상기 배기구(10)의 내부에서 그 중심에 위치되는 히트 파이프(12)의 끝 부분은 배기구(10)의 축선방향을 향해 90°꺽인 형태로 이루어진다. An end portion of the heat pipe 12 positioned at the center of the exhaust port 10 is formed to be 90 ° in the axial direction of the exhaust port 10.
즉, 히트 파이프(12)를 "L"자 형태로 제작하여 자동차 배기구 내부의 중심부에 집어넣었다. That is, the heat pipe 12 was made in the shape of "L" and inserted into the center of the inside of the automobile exhaust port.
자동차 배기구 내부 중에서도 중심부가 가장 많은 양의 열을 가지고 있다는 점을 감안한 것으로, 히트 파이프(12)를 "L"자 형태로 제작을 하여 기존의 배기구(10)를 절단하지 않고 쉽게 삽입을 할 수가 있다는 장점을 가지고 있다.In consideration of the fact that the center has the most amount of heat among the exhaust ports inside the car, the heat pipe 12 is formed in an “L” shape so that the existing exhaust port 10 can be easily inserted without cutting. It has advantages
상기 히트 파이프(12)를 기존 자동차의 배기구에 삽입시 배기구를 절단하지 않아도 된다는 장점은 작업의 용이성을 나타내며, 상기 제1실시예도 가지고 있는 장점이다. The advantage of not having to cut the exhaust port when inserting the heat pipe 12 into the exhaust port of the existing vehicle represents the ease of operation, and has the advantage that the first embodiment also has.
도 9 내지 도 11은 본 발명의 제3실시예에 따른 열전 발전 장치를 나타내는 단면도, 사시도 및 측면도이다. 9 to 11 are cross-sectional views, perspective views, and side views showing a thermoelectric power generator according to a third embodiment of the present invention.
도 9 내지 도 11에 도시한 바와 같이, 여기서는 "T"자 형태의 히트 파이프를 보여준다. As shown in Figs. 9 to 11, the heat pipe in the form of a "T" is shown here.
자동차 배기구(10)의 양편, 예를 들면 배기구(10)를 사이에 두고 서로 마주보는 위치의 양편에 2개의 열전 소자(11)가 마련되고, 이때의 히트 파이프(12)는 배기구(10)를 관통하면서 그 양단이 각 열전 소자(11)에 연결되는 동시에 길이 중간부분은 배기구(10)의 내부에 속하게 된다. Two thermoelectric elements 11 are provided at both sides of the vehicle exhaust port 10, for example, at positions facing each other with the exhaust port 10 interposed therebetween, and the heat pipe 12 at this time is connected to the exhaust port 10. Both ends thereof are connected to each thermoelectric element 11 while penetrating, and the middle portion of the length belongs to the inside of the exhaust port 10.
이때, 상기 배기구(10)의 내부에 속해 있는 히트 파이프(12)의 길이 중간부분에는 배기구 축선방향으로 향하는 돌출부분(13)이 구비된다. At this time, the middle portion of the length of the heat pipe 12 belonging to the inside of the exhaust port 10 is provided with a protrusion 13 facing in the exhaust port axial direction.
여기서는 히트 파이프(12)의 단열부(15)와 발열부(16)가 각각 2개씩 존재하여 보다 많은 양의 열전 소자(11)를 양쪽으로 가열해 줄 수 있다는 특징을 가지고 있다. In this case, the heat insulating part 15 and the heat generating part 16 of the heat pipe 12 are each present, which has a characteristic of heating a larger amount of the thermoelectric element 11 to both sides.
도 12 내지 도 14는 본 발명의 제4실시예에 따른 열전 발전 장치를 나타내는 단면도, 사시도 및 측면도이다. 12 to 14 are cross-sectional views, perspective views, and side views showing a thermoelectric generator according to a fourth embodiment of the present invention.
도 12 내지 도 14에 도시한 바와 같이, 여기서는 일부가 개방된 환형의 형태를 갖는 히트 파이프를 보여준다. As shown in Figs. 12-14, the heat pipe is shown here in the form of an annulus with a part open.
즉, 상기 배기구(10)의 내부에 위치되는 히트 파이프 부분은 일부가 개방된 환형의 형태로 이루어지고, 이때의 환형의 형태는 배기구(10)와 동심원상으로 배치된다. That is, the heat pipe portion positioned inside the exhaust port 10 is formed in an annular shape with a part open, and the annular shape at this time is arranged concentrically with the exhaust port 10.
여기서, 상기 배기구(10)의 내부에 속하는 히트 파이프 부분은 상기 환형의 형태 이외에도 "U"자 형태를 적용할 수도 있다. Here, the heat pipe portion belonging to the inside of the exhaust port 10 may be applied to the "U" shape in addition to the annular shape.
이러한 환형의 형태를 갖는 히트 파이프(12)는 보다 많은 양의 열에너지를 받기위해 입열부(14)의 모양을 배기구(10)의 내벽에 맞게 원형으로 설계하였다.The heat pipe 12 having the annular shape is designed in a circular shape to fit the inner wall of the exhaust port 10 in order to receive a larger amount of heat energy.
보다 쉽게 히트 파이프(12)가 가열이 될수 있다는 점은 열전 소자(11)에 보다 많은 양의 열에너지를 전달할 수 있다는 장점을 가지고 있다. The fact that the heat pipe 12 can be heated more easily has a merit of transferring a larger amount of thermal energy to the thermoelectric element 11.
도 15 내지 도 17은 본 발명의 제5실시예에 따른 열전 발전 장치를 나타내는 단면도, 사시도 및 측면도이다. 15 to 17 are cross-sectional views, perspective views, and side views illustrating a thermoelectric generator according to a fifth embodiment of the present invention.
도 15 내지 도 17에 도시한 바와 같이, 여기서는 위의 제4실시예에서 제공하는 히트 파이프의 형태를 변형한 예를 보여준다. As shown in Figs. 15 to 17, an example of a modification of the shape of the heat pipe provided in the fourth embodiment is shown here.
상기 히트 파이프(12)는 배기구(10) 내에 위치되는 길이 중간부분이 환형의 형태로 이루어지고, 그 양단부가 전열 소자(11)에 연결된다. The heat pipe 12 is formed in an annular shape in the middle of the length located in the exhaust port 10, both ends thereof are connected to the heat transfer element (11).
즉, 상기 히트 파이프(12)는 배기구(10)를 관통한 후에 재차 빠져나와 그 양단이 열전 소자(11)에 연결되고, 이때의 배기구(10)의 내부에 속해 있는 히트 파이프(12)의 길이 중간부분은 환형의 형태를 취하게 된다. That is, the heat pipe 12 passes through the exhaust port 10 and then exits again, and both ends thereof are connected to the thermoelectric element 11, and the length of the heat pipe 12 belonging to the inside of the exhaust port 10 at this time. The middle part takes the form of an annulus.
이러한 형태의 경우, 단열부(14)와 발열부(16)가 각각 2개씩 존재하여 보다 많은 양의 열전 소자(11)를 양쪽으로 가열해 줄 수 있다는 특징을 가지고 있다. In this case, the heat insulating part 14 and the heat generating part 16 are provided in two, respectively, so that a larger amount of the thermoelectric element 11 can be heated to both sides.
도 18과 도 19는 본 발명의 제6실시예에 따른 열전 발전 장치를 나타내는 사시도 및 측면도이고, 도 20과 도 21은 본 발명의 제7실시예에 따른 열전 발전 장치를 나타내는 사시도 및 측면도이다. 18 and 19 are perspective views and side views illustrating a thermoelectric generator according to a sixth embodiment of the present invention, and FIGS. 20 and 21 are perspective views and side views illustrating a thermoelectric generator according to a seventh embodiment of the present invention.
도 18 내지 도 21에 도시한 바와 같이, 여기서는 "1"자 형태의 히트 파이프와 "L"자 형태의 히트 파이프를 배기구에 여러 방향으로 삽입을 한 예를 보여준다. As shown in FIGS. 18 to 21, an example in which a "1" shaped heat pipe and an "L" shaped heat pipe are inserted into the exhaust port in various directions is shown.
예를 들면, 다수 개의 열전 소자(11)가 배기구(10)의 둘레를 따라 배치되는 동시에 길이방향을 따라 배치되고, 각각의 열전 소자(10)로부터 연장되는 각 히트 파이프(12)의 한쪽은 배기구(10)를 관통하여 그 내부에 위치된다. For example, a plurality of thermoelectric elements 11 are arranged along the circumference of the exhaust port 10 and are arranged along the longitudinal direction, and one side of each heat pipe 12 extending from each thermoelectric element 10 is an exhaust port. Penetrates 10 and is positioned therein.
이러한 히트 파이프(12)들은 전체적으로 볼 때 배기구(10)를 중심으로 하여 방사상의 형태로 배치되는 모습을 취할 수 있다. The heat pipes 12 may be disposed in a radial shape with respect to the exhaust port 10 as a whole.
물론, 이때의 각 히트 파이프(12)의 끝 부분, 즉 배기구(10)의 내부에 위치되는 끝 부분은 배기구(10)의 중심에 위치될 수 있고, 또는 배기구(10)의 축선방향을 향해 90°꺽인 형태가 될 수 있다. Of course, the end of each heat pipe 12 at this time, that is, the end located inside the exhaust port 10 may be located in the center of the exhaust port 10, or 90 toward the axial direction of the exhaust port 10 ° may be in a bent form.
이러한 구조의 장점은 같은 면적의 배기구(10)에 일렬로 정렬한 히트 파이프(12)의 삽입에 비해 보다 많은 수의 히트 파이프(12)를 삽입할 수 있다는 장정을 가지고 있으며, 열전 소자(11)를 여러 방향에 위치시킬 수도 있어 자동차의 구조에 영향을 덜 받을 수 있다. The advantage of this structure is that it is possible to insert a larger number of heat pipes 12 than the insertion of heat pipes 12 arranged in a line in the exhaust port 10 of the same area, the thermoelectric element 11 Can be placed in multiple directions, which can be less affected by the structure of the car.
도 22 및 도 23은 본 발명의 제8실시예에 따른 열전 발전 장치를 나타내는 사시도 및 측면도이다. 22 and 23 are perspective and side views illustrating a thermoelectric generator according to an eighth embodiment of the present invention.
도 22와 도 23에 도시한 바와 같이, 여기서는 위의 제3실시예와 유사한 형태의 히트 파이프 형태를 보여준다. As shown in Figs. 22 and 23, a heat pipe form similar to that of the third embodiment is shown here.
예를 들면, 열전 소자(11)의 경우 배기구(10)의 양편에 2개가 마련되고, 이때의 히트 파이프(12)는 배기구(10)를 관통하면서 그 양단이 각 열전 소자(11)에 연결된다. For example, two thermoelectric elements 11 are provided on both sides of the exhaust port 10, and the heat pipes 12 pass through the exhaust port 10 at both ends thereof and are connected to the respective thermoelectric elements 11. .
그리고, 상기 배기구(10)의 내부에 속하게 되는 히트 파이프(12)의 길이 중간부분은 반원형의 형태로 이루어진다. In addition, the middle part of the length of the heat pipe 12 belonging to the inside of the exhaust port 10 is formed in a semi-circular shape.
여기서도 히트 파이프(12)의 단열부(15)와 발열부(16)가 각각 2개씩 존재하게 되므로, 보다 많은 양의 열을 양쪽에서 열전 소자(11)를 가열해 줄 수 있다는 특징을 가지고 있다. In this case, since the heat insulating part 15 and the heat generating part 16 of the heat pipe 12 are present in two, respectively, the thermoelectric element 11 can be heated at both sides with a greater amount of heat.
물론, 이때의 히트 파이프(12)의 반원형 형태 또한 배기구(10)의 내부에서 내벽을 따라 동심원상으로 배치되는 형태를 취하게 된다. Of course, the semi-circular shape of the heat pipe 12 at this time also takes the form arranged concentrically along the inner wall in the exhaust port (10).
위에서 제시한 모든 실시예의 입열부, 단열부 및 발열부의 크기, 길이, 각도는 제한되지 않으며, 변경이 가능하다The sizes, lengths, and angles of the heat input part, the heat insulating part, and the heat generating part of all the above-described embodiments are not limited and may be changed.
예를 들어, 위에서 제시한 실시예들에서는 발열부(16)의 위치가 입열부(14)의 위치보다 낮게 설계되어 있지만, 히트파이프의 열전도율을 높이기 위해 응축액이 발열부(16)에서 입열부(14)로 중력 및 모세관력의 작용에 의해 보다 잘 귀환할 수 있도록 도 24 내지 도40에서 도시한 바와 같이 발열부(16)의 위치가 입열부(14)의 위치보다 높게 설계되는 것이 바람직하다.  For example, in the above-described embodiments, although the position of the heat generating unit 16 is designed to be lower than that of the heat input unit 14, the condensate may be heated in the heat generating unit 16 to increase the thermal conductivity of the heat pipe. It is preferable that the position of the heat generating portion 16 is higher than the position of the heat input portion 14 as shown in FIGS. 24 to 40 so as to better return by the action of gravity and capillary force.
여기서, 도24 내지 도26은 본 발명의 제 1실시예에서, 도27 내지 도29는 본 발명의 제2실시예에서, 도30 내지 도32는 본 발명의 제3실시예에서, 도33 내지 도34는 본 발명의 제8실시예에서 발열부(16)의 위치를 입열부(14)의 위치보다 높게 설계한 것을 보여주는 도면이다.  24 to 26 are the first embodiment of the present invention, FIGS. 27 to 29 are the second embodiment of the present invention, and FIGS. 30 to 32 are the third embodiment of the present invention. 34 is a view showing that the position of the heat generating portion 16 is designed to be higher than the position of the heat input portion 14 in the eighth embodiment of the present invention.
이때, 상기 제3실시예를 변형한 것으로 도30 내지 도32에 도시한 히트파이프는 자동차 배기구(10)를 사이에 두고 좌우 서로 마주보는 위치의 양편에 열전소자(11)가 마련되어 있고, 이때 히트 파이프(12)는 전체가 수평 상태로 배치되어 그 양단이 열전소자(11)에 연결되는 동시에 길이의 중간 부분인 돌출부분(13)은 배기구(10) 내부에 속하게 되는데, 돌출부분(13)을 중심으로 양측으로 연장되는 히프 파이프는 상향 경사지는 대략 "Y"자 형태로 설계하여 응축액이 발열부(16)에서 입열부(14)로 경사면을 따라 잘 귀환할 수 있도록 한다. At this time, the heat pipe shown in FIGS. 30 to 32 is modified from the third embodiment, and the thermoelectric element 11 is provided at both sides of the vehicle exhaust port 10 facing each other. The pipe 12 is arranged in a horizontal state as a whole, and both ends thereof are connected to the thermoelectric element 11, and a protrusion 13, which is a middle portion of the length, belongs to the inside of the exhaust port 10. The bottom pipe extending toward both sides of the center is designed to have an approximately "Y" shape inclined upward, so that the condensate can be well returned along the inclined surface from the heat generating portion 16 to the heat input portion 14.
이와 마찬가지로, 제8실시예를 변경한 도39 내지 도40에 도시한 히트파이프 역시, 길이의 중간부분으로 배기구(10) 내부에 배속되는 반원형태의 입열부(14)를 중심으로 양쪽으로 연장되는 발열부(16)측으로 상향 경사지는 형태로 구성된다.  Similarly, the heat pipes shown in Figs. 39 to 40, modified from the eighth embodiment, also extend to both sides about a semi-circular heat input portion 14 which is assigned to the inside of the exhaust port 10 at the middle portion of the length. It is configured to be inclined upward toward the heat generating portion 16 side.
이상으로 본 발명에 따른 특정의 바람직한 실시예에 대해서 도시하고 설명하였다. 그러나, 본 발명이 상술한 실시예로 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이하의 특허청구범위에 기재된 본 발명의 기술적 사상의 요지를 벗어남이 없이 얼마든지 다양하게 변경 실시할 수 있을 것이다.In the above, certain preferred embodiments according to the present invention have been illustrated and described. However, the present invention is not limited to the above-described embodiments, and a person of ordinary skill in the art may vary without departing from the spirit of the technical idea of the present invention described in the claims below. It will be possible to change this.

Claims (13)

  1. 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구(10)의 외측에 설치되는 열전 소자(11)와 이 열전 소자(11)에 연결되는 히트 파이프(12)를 포함하며, 상기 히트 파이프(12)의 한쪽은 배기구(10)를 관통하여 그 내부에 위치되므로서, 배기구 내부의 열을 열전 소자에 전달할 수 있도록 된 것을 특징으로 하는 열전 발전 장치. The electromotive force is generated by transferring the heat of the vehicle exhaust port to the thermoelectric element using the Seeback effect. The thermoelectric element 11 installed outside the exhaust port 10 and the heat pipe connected to the thermoelectric element 11. (12), wherein one of the heat pipes (12) is located through and through the exhaust port (10), so that heat in the exhaust port can be transferred to the thermoelectric element.
  2. 제1항에 있어서, 상기 배기구(10)의 내부에 위치되는 히트 파이프(12)의 끝 부분은 배기구(10)의 중심에 위치되는 것을 특징으로 하는 열전 발전 장치. The thermoelectric generator according to claim 1, wherein an end portion of the heat pipe (12) located inside the exhaust port (10) is located at the center of the exhaust port (10).
  3. 제1항 또는 제2항에 있어서, 상기 배기구(10)의 내부에 위치되는 히트 파이프(12)의 끝 부분은 배기구(10)의 축선방향을 향해 90°꺽인 형태로 이루어진 것을 특징으로 하는 열전 발전 장치. 3. The thermoelectric power generation system of claim 1, wherein an end portion of the heat pipe 12 positioned inside the exhaust port 10 is formed to be 90 ° in an axial direction of the exhaust port 10. Device.
  4. 제1항 또는 제2항에 있어서, 상기 배기구(10)의 내부에 위치되는 히트 파이프 부분은 일부가 개방된 환형의 형태로 이루어진 것을 특징으로 하는 열전 발전 장치. 3. The thermoelectric power generation apparatus according to claim 1 or 2, wherein the heat pipe portion located inside the exhaust port (10) is formed in an annular shape with a portion thereof open.
  5. 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구(10)의 외측에 설치되는 열전 소자(11)와 이 열전 소자(11)에 연결되는 히트 파이프(12)를 포함하며, 상기 열전 소자(11)는 배기구(10)의 양편에 2개가 마련되고, 상기 히트 파이프(12)는 배기구(10)를 관통하면서 그 양단이 각 열전 소자(11)에 연결되며, 상기 배기구(10)의 내부에 속해 있는 히트 파이프(12)의 길이 중간부분에는 배기구 축선방향으로 향하는 돌출부분(13)이 구비되는 것을 특징으로 하는 열전 발전 장치. The electromotive force is generated by transferring the heat of the vehicle exhaust port to the thermoelectric element using the Seeback effect. The thermoelectric element 11 installed outside the exhaust port 10 and the heat pipe connected to the thermoelectric element 11. And a plurality of thermoelectric elements 11 are provided on both sides of the exhaust port 10, and the heat pipes 12 pass through the exhaust port 10, and both ends thereof are connected to each thermoelectric element 11. Connected, the thermoelectric power generation device, characterized in that the protruding portion (13) directed in the axial direction of the exhaust port is provided in the middle portion of the length of the heat pipe (12) belonging to the inside of the exhaust port (10).
  6. 제5항에 있어서, 상기 배기구(10)의 내부에 속해 있는 히트 파이프(12)의 길이 중간부분은 반원형의 형태로 이루어진 것을 특징으로 하는 열전 발전 장치. The thermoelectric generator according to claim 5, wherein the middle part of the length of the heat pipe (12) belonging to the inside of the exhaust port (10) has a semicircular shape.
  7. 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구(10)의 외측에 설치되는 열전 소자(11)와 이 열전 소자(11)에 연결되는 히트 파이프(12)를 포함하며, 상기 히트 파이프(12)는 배기구(10)를 관통한 후에 재차 빠져나와 그 양단이 열전 소자(11)에 연결되고, 상기 배기구(10)의 내부에 속해 있는 히트 파이프(12)의 길이 중간부분은 환형의 형태로 이루어진 것을 특징으로 하는 열전 발전 장치. The electromotive force is generated by transferring the heat of the vehicle exhaust port to the thermoelectric element using the Seeback effect. The thermoelectric element 11 installed outside the exhaust port 10 and the heat pipe connected to the thermoelectric element 11. And a heat pipe 12 which passes through the exhaust port 10 and then exits again and is connected to the thermoelectric element 11 at both ends thereof, and which belongs to the inside of the exhaust port 10. 12) the middle portion of the length of the thermoelectric power generation device, characterized in that formed in the form of a ring.
  8. 자동차 배기구의 열을 제벡(Seeback) 효과를 이용한 열전 소자에 전달하여 기전력을 발생시키는 형태로서, 배기구(10)의 외측에 설치되는 열전 소자(11)와 이 열전 소자(11)에 연결되는 히트 파이프(12)를 포함하며, 상기 열전 소자(11)는 배기구(10)의 둘레를 따라 배치되면서 배기구(10)의 길이방향을 따라 배치되는 다수 개로 이루어지고, 각 열전 소자(10)에서 연장되는 히트 파이프(12)의 한쪽은 배기구(10)를 관통하여 그 내부에 위치되며, 각 히트 파이프(12)들은 배기구(10)를 중심으로 하여 방사상의 형태로 배치되는 것을 특징으로 하는 열전 발전 장치. The electromotive force is generated by transferring the heat of the vehicle exhaust port to the thermoelectric element using the Seeback effect. The thermoelectric element 11 installed outside the exhaust port 10 and the heat pipe connected to the thermoelectric element 11. And a plurality of thermoelectric elements 11 disposed along the circumference of the exhaust port 10 and arranged along the longitudinal direction of the exhaust port 10 and extending from each thermoelectric element 10. One side of the pipe (12) penetrates the exhaust port (10) is located therein, each heat pipe (12) characterized in that arranged in a radial form around the exhaust port (10).
  9. 제7항에 있어서, 상기 배기구(10)의 내부에 위치되는 히트 파이프(12)의 끝 부분은 배기구(10)의 중심에 위치되는 것을 특징으로 하는 열전 발전 장치. 8. The thermoelectric power generation apparatus according to claim 7, wherein an end portion of the heat pipe (12) located inside the exhaust port (10) is located at the center of the exhaust port (10).
  10. 제7항 또는 제9항에 있어서, 상기 배기구(10)의 내부에 위치되는 히트 파이프(12)의 끝 부분은 배기구(10)의 축선방향을 향해 90°꺽인 형태로 이루어진 것을 특징으로 하는 열전 발전 장치. 10. The thermoelectric power generation system according to claim 7 or 9, wherein an end portion of the heat pipe 12 positioned inside the exhaust port 10 is formed to be turned 90 ° toward the axial direction of the exhaust port 10. Device.
  11. 제1항, 제5항, 제7항, 제8항 중 어느 한 항에 있어서, 상기 열전 소자(11)는 냉각장치(17)를 포함하는 것을 특징으로 하는 열전 발전 장치.  The thermoelectric generator according to claim 1, wherein the thermoelectric element (11) comprises a cooling device (17).
  12. 제1항, 제5항, 제7항, 제8항 중 어느 한 항에 있어서, 상기 히트 파이프(12)는 응축액이 중력에 의해 흡열부에서 발열부로 잘 귀환할 수 있도록, 상기 열전 소자(11)에 연결한 히트 파이프(12)의 한쪽이 상기 배기구(10) 내부에 속해 있는 히트 파이프(12)의 다른 쪽보다 높게 형성된 것을 특징으로 하는 열전 발전 장치.   The thermoelectric element (11) according to any one of claims 1, 5, 7, and 8, wherein the heat pipe (12) allows the condensate to return well from the heat absorbing portion to the heat generating portion by gravity. Thermoelectric power generation device characterized in that one side of the heat pipe (12) connected to the () is formed higher than the other side of the heat pipe (12) belonging to the inside of the exhaust port (10).
  13. 제5항 또는 제6항에 있어서, 상기 열전 소자(11)는 배기구(10)의 좌우 양편에 마련되고, 상기 히트 파이프(12)는 상기 배기구(10) 내부에 속해 있는 히트 파이프(12)의 한쪽으로부터 양단이 각 열전 소자(11) 연결된 히트 파이프(12)의 다른 쪽을 갈수록 일정 각도로 상향 경사지게 형성된 것을 특징으로 하는 열전 발전 장치.  The thermoelectric element of claim 5 or 6, wherein the thermoelectric element 11 is provided on both left and right sides of the exhaust port 10, and the heat pipe 12 of the heat pipe 12 belonging to the inside of the exhaust port 10. The thermoelectric power generation device, characterized in that both ends are formed to be inclined upward at a predetermined angle toward the other side of the heat pipe (12) connected to each thermoelectric element (11) from one side.
PCT/KR2010/000748 2009-08-27 2010-02-05 Thermoelectric power generating device WO2011025104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090079692A KR100986655B1 (en) 2009-07-30 2009-08-27 An apparatus for thermoelectric generator
KR10-2009-0079692 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011025104A1 true WO2011025104A1 (en) 2011-03-03

Family

ID=43628723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000748 WO2011025104A1 (en) 2009-08-27 2010-02-05 Thermoelectric power generating device

Country Status (1)

Country Link
WO (1) WO2011025104A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005294A1 (en) * 2014-07-11 2016-01-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for recovering the energy from the heat of hot gas(es) and/or fumes, application to the recovery of energy from fouling fumes, in particular from heat engines
CN105471322A (en) * 2014-08-22 2016-04-06 上海通用汽车有限公司 Automobile engine exhaust system
WO2017097781A1 (en) * 2015-12-09 2017-06-15 Mahle International Gmbh Thermoelectric device, in particular thermoelectric generator
CN107005180A (en) * 2014-12-16 2017-08-01 洋马株式会社 Thermoelectric power generation component, thermoelectric generating device and its mounting structure using the thermoelectric power generation component, discharge duct and engine with the mounting structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062538A (en) * 1992-06-18 1994-01-11 Aisin Seiki Co Ltd Exhaust gas power generating set
KR19980020437A (en) * 1996-09-09 1998-06-25 김형수 Cold water tank thermoelectric chiller of reverse osmosis water purifier
KR20020032474A (en) * 2002-03-27 2002-05-03 유창호 Intake air system
KR20080008871A (en) * 2006-07-21 2008-01-24 한라공조주식회사 Assistance cooling and heating device for automobile using thermoelectric element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062538A (en) * 1992-06-18 1994-01-11 Aisin Seiki Co Ltd Exhaust gas power generating set
KR19980020437A (en) * 1996-09-09 1998-06-25 김형수 Cold water tank thermoelectric chiller of reverse osmosis water purifier
KR20020032474A (en) * 2002-03-27 2002-05-03 유창호 Intake air system
KR20080008871A (en) * 2006-07-21 2008-01-24 한라공조주식회사 Assistance cooling and heating device for automobile using thermoelectric element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005294A1 (en) * 2014-07-11 2016-01-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives System for recovering the energy from the heat of hot gas(es) and/or fumes, application to the recovery of energy from fouling fumes, in particular from heat engines
FR3023582A1 (en) * 2014-07-11 2016-01-15 Commissariat Energie Atomique SYSTEM FOR RECOVERING ENERGY FROM HOT (S) AND / OR SMOKE (S) GAS HEAT, APPLICATION TO THE RECOVERY OF ENERGY FROM HEAT-CONTAINING SMOKE, ESPECIALLY FROM THERMAL MOTORS.
CN105471322A (en) * 2014-08-22 2016-04-06 上海通用汽车有限公司 Automobile engine exhaust system
CN107005180A (en) * 2014-12-16 2017-08-01 洋马株式会社 Thermoelectric power generation component, thermoelectric generating device and its mounting structure using the thermoelectric power generation component, discharge duct and engine with the mounting structure
EP3236579A4 (en) * 2014-12-16 2017-12-20 Yanmar Co., Ltd. Thermoelectric generation unit, thermoelectric generation device using same and mounting structure therefor, exhaust duct having same mounting structure, and engine
CN107005180B (en) * 2014-12-16 2019-08-30 洋马株式会社 Use the thermoelectric generating device and its mounting structure of thermoelectric power generation component, exhaust pipe and engine with the mounting structure
WO2017097781A1 (en) * 2015-12-09 2017-06-15 Mahle International Gmbh Thermoelectric device, in particular thermoelectric generator

Similar Documents

Publication Publication Date Title
WO2011030976A1 (en) Thermoelectric cooling and power-generating apparatus
WO2011025104A1 (en) Thermoelectric power generating device
WO2013129815A1 (en) Cooling-water heating type heater
WO2014069819A1 (en) Battery cell assembly and method for manufacturing cooling fin for battery cell assembly
WO2013172603A1 (en) Heater for a vehicle
WO2014119902A1 (en) Heater for motor vehicle
WO2018094927A1 (en) Cable, wire and charging equipment cooling system
EP1336204A2 (en) Thermoelectric module with integrated heat exchanger and method of use
WO2019132447A2 (en) Apparatus for generating refrigeration
WO2017142290A1 (en) Battery system
WO2020013348A1 (en) Cooling apparatus
WO2020138584A1 (en) Portable air cooler
WO2022092665A1 (en) Solar energy storage system
WO2021145621A1 (en) Power generation apparatus
KR100986655B1 (en) An apparatus for thermoelectric generator
WO2016186481A1 (en) Cooling fan using surface cooling effect for rotating fan blade part
WO2016003088A1 (en) Thermoelectric generator comprising liquid metal heat exchange unit
WO2021054755A1 (en) Antenna device
WO2014003334A1 (en) Photovoltaic module cooling device applied to solar energy conversion apparatus
WO2021086013A1 (en) Temperature control device for motorcycle handle
WO2020204446A1 (en) Thermoelectric power generation module
WO2023120860A1 (en) Thermoelectric power generation gas burner
RU189936U1 (en) THERMOELECTRIC GENERATOR MODULE
WO2024034704A1 (en) Vehicle charging system
WO2023191407A1 (en) Power generation module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10812120

Country of ref document: EP

Kind code of ref document: A1