WO2011025001A1 - 燃料油基材及びこれを含有する航空燃料組成物 - Google Patents

燃料油基材及びこれを含有する航空燃料組成物 Download PDF

Info

Publication number
WO2011025001A1
WO2011025001A1 PCT/JP2010/064723 JP2010064723W WO2011025001A1 WO 2011025001 A1 WO2011025001 A1 WO 2011025001A1 JP 2010064723 W JP2010064723 W JP 2010064723W WO 2011025001 A1 WO2011025001 A1 WO 2011025001A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
less
mass
aviation fuel
hydrogen
Prior art date
Application number
PCT/JP2010/064723
Other languages
English (en)
French (fr)
Inventor
靖敏 井口
秀樹 尾野
成 小山
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to BR112012004507A priority Critical patent/BR112012004507A2/pt
Priority to EP10812047.8A priority patent/EP2474599A4/en
Priority to CN2010800386948A priority patent/CN102482600A/zh
Priority to US13/391,765 priority patent/US20120209038A1/en
Priority to SG2012012449A priority patent/SG178538A1/en
Priority to AU2010287356A priority patent/AU2010287356B2/en
Publication of WO2011025001A1 publication Critical patent/WO2011025001A1/ja
Priority to US14/331,775 priority patent/US9505986B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/62Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to an environmentally low load type fuel oil base material produced from a raw material of animal and vegetable oils and / or triglyceride-containing hydrocarbons derived from animal and vegetable oils and fats, and an aviation fuel composition containing the same.
  • biomass energy derived from plants can effectively use carbon immobilized from carbon dioxide in the atmosphere by photosynthesis during the growth process of plants, so it does not lead to an increase in carbon dioxide in the atmosphere from the viewpoint of the life cycle, so-called It has the property of being carbon neutral.
  • Biomass fuel is also very promising as an alternative energy for oil from the viewpoint of depletion of petroleum resources and rising crude oil prices.
  • fatty acid methyl ester oils (abbreviated as “FAME” from the acronym of Fatty Acid Methyl Ester) are generally known.
  • FAME is produced by subjecting triglyceride, which is a general structure of animal and vegetable oils, to transesterification with methanol by the action of an alkali catalyst or the like.
  • FAME has concerns about low temperature performance and oxidation stability.
  • aviation fuel is exposed to extremely low temperatures when flying at high altitudes, so extremely strict low-temperature performance standards have been established.
  • FAME mixing with petroleum-based jet fuel is unavoidable. In fact, the mixing amount is inevitably low.
  • oxidation stability the addition of antioxidants is stipulated in the aviation fuel standard, but considering the stability as a base material, the mixing ratio must be limited to a low concentration as well as low temperature performance. I don't get it.
  • biomass fuel produced by the following method is a hydrocarbon obtained by reacting animal and vegetable fats and oils (including algae) under high temperature and pressure in the presence of hydrogen and a catalyst.
  • this hydrocarbon can be used as an aviation fuel base material, it can be used at a higher concentration than FAME and can greatly contribute to reducing the environmental burden in the aviation field.
  • aviation fuel oil is required to have stricter low-temperature performance standards (precipitation point: ⁇ 47 ° C. or lower) than diesel fuel. For this reason, there is still room for improvement in using conventional hydrocarbons obtained by hydrotreating animal and vegetable fats and oils as a base material for aviation fuel oil.
  • the present invention has been made in view of such a situation, and the object thereof is to contain an environmentally low-load base material produced using animal and vegetable oils and / or triglyceride-containing hydrocarbons derived from animal and vegetable oils and fats as a raw material,
  • An object of the present invention is to provide an aviation fuel composition having excellent life cycle CO 2 emission characteristics and oxidation stability, and excellent low-temperature fluidity.
  • the aviation fuel base material according to the present invention hydrotreats an oil to be treated containing an oxygen-containing hydrocarbon compound and a sulfur-containing hydrocarbon compound derived from animal and plant oils and fats in the presence of hydrogen, and then hydroisomerization
  • the fraction yield obtained by performing the treatment and having a boiling point range of 140 to 300 ° C. is 70% by mass or more; the content of isoparaffin is 80% by mass or more; the content of isoparaffin having two or more branches is 17% by mass or more;
  • the group content is less than 0.1% by volume; the olefin content is less than 0.1% by volume; the sulfur content is less than 1 ppm by mass; and the oxygen content is 0.1% by mass or less.
  • the aviation fuel base material according to the present invention has sufficient low-temperature performance because the content of isoparaffin and the content of isoparaffin having two or more branches satisfy the above conditions. For this reason, when preparing an aviation fuel composition, the said base material can be mix
  • the oil to be treated preferably contains a petroleum base material.
  • a petroleum base material as used herein means a fraction obtained by atmospheric distillation or reduced pressure distillation of crude oil, a fraction obtained by reactions such as hydrodesulfurization, hydrocracking, fluid catalytic cracking, catalytic reforming, and chemical products. It means a fraction obtained by refining the derived compound, synthetic oil or the like obtained via the Fischer-Tropsch reaction.
  • the above hydrogenation treatment is carried out on a carrier made of a porous inorganic oxide containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium in the presence of hydrogen. And a catalyst supporting one or more metals selected from Group 8 elements, hydrogen pressure 2 to 13 MPa, liquid space velocity 0.1 to 3.0 h ⁇ 1 , hydrogen / oil ratio 150 to 1500 NL / L and a process of hydrotreating the oil to be treated under the conditions of a reaction temperature of 150 to 480 ° C.
  • the hydrotreated oil obtained by the hydrotreatment is further made of a porous material composed of a substance selected from aluminum, silicon, zirconium, boron, titanium, magnesium and zeolite in the presence of hydrogen.
  • a catalyst comprising a support made of a porous inorganic oxide and a metal selected from Group 8 elements of the periodic table, a hydrogen pressure of 1 to 5 MPa, a liquid space velocity of 0.1 to 3.0 h ⁇ 1 , hydrogen /
  • the isomerization treatment is preferably performed under conditions of an oil ratio of 250 to 1500 NL / L and a reaction temperature of 200 to 360 ° C.
  • the aviation fuel composition according to the present invention contains the above aviation fuel base material, and has a sulfur content of 10 mass ppm or less and a precipitation point of -47 ° C. or less.
  • the aviation fuel oil composition preferably contains one or more additives selected from an antioxidant, an antistatic agent, a metal deactivator and an anti-icing agent. Moreover, it is preferable that the said aviation fuel oil composition satisfies the specification value of the aviation turbine fuel oil prescribed
  • a life that has been difficult to realize with a conventional aviation fuel oil composition by containing an environmentally low-load gas oil base material produced using an oxygen-containing hydrocarbon compound derived from animal and vegetable oils and fats as a raw material.
  • An aviation fuel oil composition having excellent cycle CO 2 emission characteristics and oxidation stability and excellent low-temperature fluidity is provided.
  • the aviation fuel oil composition of the present invention uses an environmentally low load aviation fuel oil base material as a constituent component.
  • the aviation fuel base material of the present invention is a low sulfur and low oxygen fraction obtained by hydrotreating a predetermined oil to be treated. More specifically, in the presence of hydrogen, the base material hydrotreats an oil to be treated containing an oxygen-containing hydrocarbon compound and a sulfur-containing hydrocarbon compound derived from animal and vegetable oils and fats, and then hydroisomerizes the oil. It is obtained by processing and satisfies all the following conditions.
  • the fraction yield with a boiling point range of 140 to 300 ° C. is less than 70% by mass, an aviation fuel oil base material cannot be obtained sufficiently.
  • the content of isoparaffin is less than 80% by mass, the aviation fuel oil does not satisfy the low temperature performance standard.
  • the content of isoparaffins having two or more branches is less than 17% by mass, the aviation fuel oil does not satisfy the low temperature performance standard.
  • the olefin content exceeds 0.1% by volume, the oxidation stability decreases.
  • the sulfur content exceeds 1 ppm by mass, the corrosivity deteriorates.
  • the oxygen content exceeds 0.1% by mass, the calorific value is lowered and the fuel consumption rate is deteriorated.
  • the oxygen-containing hydrocarbon compound needs to be a component derived from animal and vegetable fats and / or animal fats and oils.
  • animal and vegetable oils include beef tallow, rapeseed oil, camelina oil, soybean oil, palm oil, oils and fats produced by specific microalgae, hydrocarbons, and the like.
  • Specific microalgae means algae that have the property of converting a part of nutrients in the body into hydrocarbon or oily form, for example, chlorella, squid damo, spirulina, euglena, botriococcus brownie, pseudocollistis Ellipsoidia can be mentioned.
  • Chlorella, squid damo, spirulina and euglena are known to produce oils and fats
  • Botriococcus brownie and pseudocollistis ellipsoidia are known to produce hydrocarbons.
  • any oil or fat may be used as the animal or vegetable oil or fat, and waste oil after using these oils or fats may be used.
  • wax esters extracted from microalgae and free fatty acids produced as a by-product in oil refining can also be used.
  • the animal and vegetable fats and oils according to the present invention include the above-mentioned waste oils of fats and oils, wax esters extracted from microalgae, free fatty acids produced as a by-product in the purification of fats and oils, and the like.
  • the constituent ratio of each fatty acid group having a fatty acid carbon chain of 10 to 14 (fatty acid composition)
  • the oils and fats that can be considered from this viewpoint include coconut oil, palm kernel oil and camelina oil, and the oils and fats produced by specific microalgae include the oils and fats produced by Euglena. It is done.
  • the fatty acid composition is methyl prepared according to the standard oil analysis method (established by the Japan Oil Chemists' Society) (1991) “2.4.20.2-91 Preparation of fatty acid methyl ester (boron trifluoride-methanol method)”. Establish the ester oil analysis test method (established by the Japan Oil Chemists' Society) (1993) “2.4.21.3-77 fatty acid composition (FID temperature rising gas romatograph) using a temperature rising gas chromatograph equipped with a flame ionization detector (FID). It is a value obtained according to “method)” and indicates the constituent ratio (% by mass) of each fatty acid group constituting the oil or fat.
  • FID flame ionization detector
  • a typical composition of the fatty acid portion of the glyceride compound contained in these raw oils is butyric acid which is a fatty acid having no unsaturated bond in the molecular structure called saturated fatty acid.
  • the hydrocarbon part of these fatty acids in natural substances is generally linear, but it is used in the present invention even if it has a structure having a side chain, that is, an isomer, as long as the properties defined in the present invention are satisfied. be able to. Further, the position of the unsaturated bond in the molecule of the unsaturated fatty acid is not limited to those generally found in nature as long as the properties defined in the present invention are satisfied in the present invention. The set one can also be used.
  • the above-mentioned raw material oil has one or more of these fatty acids, and the fatty acids possessed by the raw materials differ.
  • coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid
  • soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.
  • the sulfur-containing hydrocarbon compound is not particularly limited, and specific examples include sulfides, disulfides, polysulfides, thiols, thiophenes, benzothiophenes, dibenzothiophenes, and derivatives thereof.
  • the sulfur-containing hydrocarbon compound contained in the oil to be treated may be a single compound or a mixture of two or more. Furthermore, a petroleum hydrocarbon fraction containing a sulfur content may be mixed with the oil to be treated.
  • the sulfur content in the oil to be treated is preferably 1 to 50 ppm by mass, more preferably 5 to 30 ppm by mass, and further preferably 10 to 20 ppm by mass in terms of sulfur atom, based on the total amount of oil to be treated. It is. When the content is less than 1 ppm by mass in terms of sulfur atom, it tends to be difficult to stably maintain the deoxygenation activity. On the other hand, if it exceeds 50 ppm by mass, the sulfur concentration in the light gas discharged in the hydrorefining process will increase, and the sulfur content in the hydrorefined oil will tend to increase. When used as a fuel such as oil, there are concerns about adverse effects such as corrosion of members.
  • the sulfur content in the present invention means the mass content of the sulfur content measured according to the method described in JIS K 2541 “Sulfur Content Test Method” or ASTM-5453.
  • the sulfur-containing hydrocarbon compound contained in the oil to be treated may be mixed in advance with the oxygen-containing hydrocarbon compound derived from the animal and vegetable oil and fat, and the mixture may be introduced into the reactor of the hydrorefining apparatus.
  • the derived oxygen-containing hydrocarbon compound When the derived oxygen-containing hydrocarbon compound is introduced into the reactor, it may be supplied before the reactor.
  • Petroleum base materials contained in the oil to be treated include straight-run light oil obtained from atmospheric distillation equipment, straight-run heavy oil obtained from atmospheric distillation equipment, and residual oil treated with a vacuum distillation equipment.
  • the content ratio of the petroleum base material obtained by refining crude oil in the oil to be treated is not particularly limited, but is preferably 20 to 70% by volume, more preferably 30 to 60% by volume.
  • the hydrotreating of the oil to be treated according to the present invention preferably includes the following hydrotreating steps.
  • the hydrotreating conditions include hydrogen pressure of 2 to 13 MPa, liquid space velocity of 0.1 to 3.0 h ⁇ 1 , hydrogen / oil ratio of 150 to 1500 NL / L, reaction temperature.
  • a support made of a porous inorganic oxide containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is used as a catalyst for the hydrogenation treatment.
  • a catalyst carrying a metal selected from these elements is used as a catalyst for the hydrogenation treatment.
  • a porous inorganic oxide composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is used.
  • it is a porous inorganic oxide containing alumina, and other carrier constituents include silica, zirconia, boria, titania, magnesia and the like.
  • it is a complex oxide containing at least one selected from alumina and other constituents, and examples thereof include silica-alumina.
  • phosphorus may be included as another component.
  • the total content of components other than alumina is preferably 1 to 20% by weight, more preferably 2 to 15% by weight.
  • the total content of components other than alumina is less than 1% by weight, a sufficient catalyst surface area cannot be obtained and the activity may be lowered.
  • the content exceeds 20% by weight the acid content of the carrier Properties may increase, leading to a decrease in activity due to coke formation.
  • phosphorus is included as a carrier constituent, its content is preferably 1 to 5% by weight, more preferably 2 to 3.5% by weight in terms of oxide.
  • the raw material to be a precursor of silica, zirconia, boria, titania, and magnesia, which are carrier components other than alumina, is not particularly limited, and a solution containing general silicon, zirconium, boron, titanium, or magnesium can be used.
  • magnesium magnesium nitrate or the like can be used.
  • phosphorus phosphoric acid or an alkali metal salt of phosphoric acid can be used.
  • the raw materials for the carrier constituents other than alumina be added in any step prior to the firing of the carrier.
  • it may be added to an aluminum aqueous solution in advance and then an aluminum hydroxide gel containing these components, may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder.
  • a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable.
  • the active metal of the hydrotreating catalyst contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, preferably two or more metals selected from Groups 6A and 8 Contains.
  • metals selected from Groups 6A and 8 Contains For example, Co—Mo, Ni—Mo, Ni—Co—Mo, Ni—W and the like can be mentioned. In the hydrogenation treatment, these metals are converted into sulfides and used.
  • the content of the active metal is, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide. If the total supported amount of W and Mo is less than 12% by weight, the activity may decrease due to a decrease in the number of active points. If it exceeds 35% by weight, the metal is not effectively dispersed and is similarly active. May lead to a decrease in The total supported amount of Co and Ni is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of Co and Ni is less than 1.5% by weight, a sufficient cocatalyst effect may not be obtained and the activity may be reduced. If it is more than 10% by weight, the metal is effective. In the same manner, there is a possibility of causing activity.
  • the method for supporting the active metal on the carrier is not particularly limited, and a known method applied when producing a normal desulfurization catalyst can be used.
  • a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed.
  • an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed.
  • the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
  • the reactor type of the hydrogenation process may be a fixed bed system. That is, hydrogen can take either a countercurrent or a cocurrent flow with respect to the oil to be treated, or may have a plurality of reaction towers and a combination of countercurrent and cocurrent. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted.
  • the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.
  • the hydrotreated oil hydrotreated in the reactor is fractionated into predetermined fractions through a gas-liquid separation process, a rectification process, and the like.
  • gas-liquid separation equipment and other by-products are formed between the reactors and in the product recovery process.
  • a gas removal device may be installed.
  • a high-pressure separator or the like can be preferably exemplified.
  • hydrogen gas is introduced from the inlet of the first reactor along with the oil to be treated before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled and reaction is possible as much as possible.
  • it may be introduced between the catalyst beds or between a plurality of reactors.
  • the hydrogen thus introduced is referred to as quench hydrogen.
  • the ratio of quench hydrogen to hydrogen introduced along with the oil to be treated is preferably 10 to 60% by volume, more preferably 15 to 50% by volume.
  • the ratio of quench hydrogen is less than 10% by volume, the reaction at the subsequent reaction site may not proceed sufficiently, and when it exceeds 60% by volume, the reaction near the reactor inlet may not proceed sufficiently.
  • a specific amount of recycled oil is included in the oil to be treated in order to suppress the amount of heat generated in the hydrotreating reactor. be able to.
  • the content of the recycled oil is preferably 0.5 to 5 times by mass with respect to the oxygenated hydrocarbon compound derived from animal and plant oils and fats, and the ratio is appropriately set within the above range according to the maximum use temperature of the hydrotreating reactor. Can be determined. Assuming that the specific heat of both is the same, if the two are mixed one-on-one, the temperature rise is half that of the case where the substance derived from animal and vegetable fats and oils is reacted alone.
  • the reaction heat can fully be reduced. If the content of recycled oil is more than 5 times the mass of the oxygen-containing hydrocarbon compound, the concentration of the oxygen-containing hydrocarbon compound decreases and the reactivity decreases, and the flow rate of piping etc. increases and the load is increased. Increase. On the other hand, when the content of the recycled oil is less than 0.5 times the mass of the oxygen-containing hydrocarbon compound, the temperature rise cannot be sufficiently suppressed.
  • the method for mixing the oil to be treated and the recycle oil is not particularly limited.
  • the mixture may be mixed in advance and the mixture may be introduced into the reactor of the hydrotreating apparatus, or when the oil to be treated is introduced into the reactor, You may supply in the front
  • a plurality of reactors can be connected in series and introduced between the reactors, or the catalyst layer can be divided and introduced between the catalyst layers in a single reactor.
  • Recycled oil should contain a portion of the hydrotreated oil obtained by removing by-product water, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. after hydrotreating the oil to be treated. Is preferred. Further, a fraction obtained by isomerizing each of the light fraction, middle fraction and heavy fraction fractionated from hydrotreated oil, or fractionated from further isomerized hydrotreated oil. It is preferable to contain a part of the middle distillate.
  • the sulfur content contained in the hydrotreated oil that is the raw oil for the hydroisomerization process is preferably 1 ppm by mass or less, and more preferably 0.5 ppm by mass. If the sulfur content exceeds 1 ppm by mass, the progress of hydroisomerization may be hindered. In addition, for the same reason, the reaction gas containing hydrogen introduced together with the hydrotreated oil needs to have a sufficiently low sulfur concentration, and is preferably 1 ppm by volume or less, and 0.5 volume. More preferably, it is ppm or less.
  • the hydrogen pressure is 1 to 5 MPa
  • the liquid space velocity is 0.1 to 3.0 h ⁇ 1
  • the hydrogen / oil ratio is 250 to 1500 NL / L
  • the reaction temperature is 200 to 360 ° C.
  • the hydrogen pressure is 0.3 to 4.5 MPa
  • the liquid space velocity is 0.5 to 2.0 h ⁇ 1
  • the hydrogen / oil ratio is 380 to 1200 NL / L
  • the reaction temperature is 220 to More preferably, the reaction is carried out at 350 ° C.
  • the hydrogen pressure is 0.5 to 4.0 MPa
  • the liquid space velocity is 0.8 to 1.8 h ⁇ 1
  • the hydrogen / oil ratio is 350 to 1000 NL / L
  • the reaction It is more desirable that the temperature is 250 to 340 ° C. All of these conditions are factors that influence the reaction activity.
  • the hydrogen pressure and the hydrogen / oil ratio are less than the lower limit values, there is a risk of causing a decrease in reactivity or a rapid decrease in activity.
  • the hydrogen / oil ratio exceeds the upper limit, excessive equipment investment such as a compressor may be required.
  • the lower the liquid space velocity the more advantageous the reaction.
  • the reaction temperature is lower than the lower limit, sufficient hydroisomerization reaction may not proceed. If the reaction temperature is higher than the upper limit, excessive decomposition or other side reaction proceeds, and the liquid product fraction of There is a risk of lowering.
  • a catalyst for hydroisomerization treatment is selected from elements of Group 8 of the periodic table on a carrier made of a porous inorganic oxide composed of a substance selected from aluminum, silicon, zirconium, boron, titanium, magnesium and zeolite.
  • a catalyst formed by supporting one or more metals is used.
  • the porous inorganic oxide used as a carrier for the hydroisomerization catalyst include alumina, titania, zirconia, boria, silica, or zeolite. Among them, titania, zirconia, boria, silica, and zeolite are used in the present invention. Of these, those composed of at least one kind and alumina are preferable.
  • the production method is not particularly limited, but any preparation method can be employed using raw materials in various sols, salt compounds, and the like corresponding to each element.
  • the composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, and alumina boria
  • the ratio of alumina to other oxides can be any ratio with respect to the support, but preferably alumina is 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass or less, preferably Is 10% by mass or more, more preferably 20% by mass or more.
  • Zeolites are crystalline aluminosilicates, such as faujasite, pentasil, mordenite, TON, MTT, MRE, etc., which are ultra-stabilized by the prescribed hydrothermal treatment and / or acid treatment, or the alumina content in the zeolite What adjusted can be used.
  • faujasite and mordenite particularly preferably Y type and beta type are used.
  • the Y type is preferably ultra-stabilized, and the zeolite that has been super-stabilized by hydrothermal treatment forms new pores in the range of 20 to 100 mm in addition to the original pore structure called micropores of 20 mm or less.
  • Known conditions can be used for the hydrothermal treatment conditions.
  • the active metal of the hydroisomerization catalyst one or more metals selected from Group 8 elements of the periodic table are used.
  • these metals it is preferable to use one or more metals selected from Pd, Pt, Rh, Ir, Au, and Ni, and it is more preferable to use them in combination.
  • Suitable combinations include, for example, Pd—Pt, Pd—Ir, Pd—Rh, Pd—Au, Pd—Ni, Pt—Rh, Pt—Ir, Pt—Au, Pt—Ni, Rh—Ir, Rh— Examples thereof include Au, Rh—Ni, Ir—Au, Ir—Ni, Au—Ni, Pd—Pt—Rh, Pd—Pt—Ir, and Pt—Pd—Ni.
  • the total content of active metals based on the catalyst mass is preferably 0.1 to 2% by mass, more preferably 0.2 to 1.5% by mass, and 0.5 to 1.3% by mass as the metal. Even more preferred. If the total supported amount of the metal is less than 0.1% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 2% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.
  • a method for supporting an active metal on a support is not particularly limited, and a known method applied when producing a normal desulfurization catalyst can be used.
  • a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed.
  • an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are preferably employed.
  • the pore-filling method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of the metal salt solution, but the impregnation method is not particularly limited, and the amount of metal supported Further, it can be impregnated by an appropriate method depending on the physical properties of the catalyst support.
  • the isomerization catalyst used in the present invention is preferably subjected to a reduction treatment of active metal contained in the catalyst before being subjected to the reaction.
  • the reduction conditions are not particularly limited, but the reduction is performed by treatment at a temperature of 200 to 400 ° C. in a hydrogen stream.
  • the treatment is preferably performed in the range of 240 to 380 ° C.
  • the reduction temperature is less than 200 ° C., the reduction of the active metal does not proceed sufficiently and the hydrodeoxygenation and hydroisomerization activity may not be exhibited. Further, when the reduction temperature exceeds 400 ° C., the aggregation of the active metal proceeds, and there is a possibility that the activity cannot be exhibited similarly.
  • the reactor type of the hydroisomerization treatment may be a fixed bed method. That is, hydrogen can take either a countercurrent or a cocurrent flow with respect to the raw material oil, or a combination of countercurrent and cocurrent flow having a plurality of reaction towers. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted.
  • the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.
  • hydrogen gas is introduced from the inlet of the first reactor before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled and the reactor is as much as possible. It may be introduced between the catalyst beds or between a plurality of reactors in order to maintain the hydrogen pressure throughout.
  • the hydrogen thus introduced is referred to as quench hydrogen.
  • the ratio of quench hydrogen to hydrogen introduced accompanying the feedstock is preferably 10 to 60% by volume, more preferably 15 to 50% by volume. When the ratio of quench hydrogen is less than 10% by volume, the reaction at the subsequent reaction site may not proceed sufficiently, and when it exceeds 60% by volume, the reaction near the reactor inlet may not proceed sufficiently.
  • the hydroisomerized oil obtained after the hydroisomerization process may be fractionated into a plurality of fractions in a rectifying tower as necessary.
  • it may be fractionated into light fractions such as gas and naphtha fractions, middle fractions such as kerosene, jet and diesel oil fractions, and heavy fractions such as residues.
  • the cut temperature of the light fraction and the middle fraction is preferably 100 to 200 ° C, more preferably 120 to 180 ° C, further preferably 120 to 160 ° C, and still more preferably 130 to 150 ° C.
  • the cut temperature of the middle fraction and the heavy fraction is preferably 250 to 360 ° C, more preferably 250 to 320 ° C, further preferably 250 to 300 ° C, and still more preferably 250 to 280 ° C.
  • Hydrogen can be produced by reforming a part of the light hydrocarbon fraction produced in a steam reformer.
  • the hydrogen produced in this way has a characteristic of carbon neutral because the raw material used for steam reforming is a biomass-derived hydrocarbon, and can reduce the burden on the environment.
  • the middle distillate obtained by fractionating hydroisomerized oil can be suitably used as an aviation fuel oil base material.
  • the aviation fuel oil composition of the present invention contains the above-mentioned aviation fuel oil base material, has a sulfur content of 10 mass ppm or less and a precipitation point of -47 ° C or less.
  • the aviation fuel oil composition satisfying a predetermined performance can be produced by mixing the environmentally low-load aviation fuel oil base produced above and a hydrorefined oil refined from crude oil or the like. it can.
  • the content of the aviation fuel base material in the aviation fuel oil composition of the present invention is not particularly limited, but it is preferably 1% by volume or more, and preferably 3% by volume or more from the viewpoint of reducing the environmental load. More preferably, the content is more preferably 5% by volume or more.
  • a petroleum base material obtained by refining crude oil or the like is obtained by a reaction such as a fraction obtained by atmospheric distillation or vacuum distillation of crude oil, hydrodesulfurization, hydrocracking, fluid catalytic cracking, catalytic reforming, etc. Such as fractions.
  • the petroleum-based base material obtained by refining crude oil or the like may be a chemical-derived compound or a synthetic oil obtained via a Fischer-Tropsch reaction.
  • additives conventionally added to aviation fuel oil can be used.
  • the additive include one or more additives selected from an antioxidant, an antistatic agent, a metal deactivator, and an antifreezing agent.
  • Antioxidants include N, N-diisopropylparaphenylenediamine, 2,6-ditertiary butylphenol 75% or more in a range not exceeding 24.0 mg / l in order to suppress the generation of gum in aviation fuel oil.
  • tertiary and tritertiary butylphenol a mixture of 25% or less of tertiary and tritertiary butylphenol, a mixture of 72% or more of 2,4-dimethyl-6-tertiary butylphenol and 28% or less of monomethyl and dimethyl tertiary butylphenol, 2,4-dimethyl-6-tersia
  • a mixture of 55% or more of butylphenol and 45% or less of tertiary and ditertiary butylphenol, 2,6-ditertiary butyl-4-methylphenol and the like can be added.
  • the range does not exceed 3.0 mg / l in order to increase the electrical conductivity. Then, STADIS 450 manufactured by Octel Co., Ltd. can be added.
  • N, N-disalicylidene is used in a range not exceeding 5.7 mg / l so that the free metal component contained in the aviation fuel oil does not react and the fuel becomes unstable. 1,2-propanediamine and the like can be added.
  • ethylene glycol monomethyl ether or the like is added in the range of 0.1 to 0.15% by volume in order to prevent a minute amount of water contained in aviation fuel oil from freezing and blocking the piping. be able to.
  • optional additives such as an antistatic agent, a corrosion inhibitor and a bactericide can be appropriately blended without departing from the present invention.
  • the aviation fuel oil composition of the present invention satisfies the standard value of JIS K2209 “aviation turbine fuel oil”.
  • Density at 15 °C aviation fuel oil composition of the present invention is preferably 0.775 g / cm 3 or more, and more preferably 0.780 g / cm 3 or more.
  • it is preferably 0.839 g / cm 3 or less, more preferably 0.830 g / cm 3 or less, still more preferably 0.820 g / cm 3 or less.
  • the density at 15 ° C. means a value measured by JIS K2249 “Crude oil and petroleum products—density test method and density / mass / capacity conversion table”.
  • the 10% by volume distillation temperature is preferably 204 ° C. or lower, more preferably 200 ° C. or lower, from the viewpoint of evaporation characteristics.
  • the end point is preferably 300 ° C. or less, more preferably 290 ° C. or less, and still more preferably 280 ° C. or less from the viewpoint of combustion characteristics (burn-out property).
  • the distillation property means a value measured by JIS K2254 “Petroleum products—distillation test method”.
  • the actual gum content of the aviation fuel oil composition of the present invention is preferably 7 mg / 100 ml or less, more preferably 5 mg / 100 ml or less, from the viewpoint of preventing problems due to precipitate formation in the fuel introduction system and the like. More preferably, it is 3 mg / 100 ml or less.
  • the real gum part here means the value measured by JIS K2261 "Gasoline and aviation fuel oil real gum test method".
  • the true calorific value of the aviation fuel oil composition of the present invention is preferably 42.8 MJ / kg or more, and more preferably 45 MJ / kg or more, from the viewpoint of fuel consumption rate.
  • the true calorific value here means a value measured by JIS K2279 “Crude oil and fuel oil calorific value test method”.
  • the kinetic viscosity of the aviation fuel oil composition of the present invention is such that the kinematic viscosity at ⁇ 20 ° C. is preferably 8 mm 2 / s or less, and 7 mm 2 / s or less, from the viewpoint of fluidity of fuel piping and uniform fuel injection. More preferably, it is 5 mm ⁇ 2 > / s or less.
  • kinematic viscosity here means the value measured by JIS K2283 "Kinematic viscosity test method of crude oil and petroleum products".
  • the copper plate corrosion of the aviation fuel oil composition of the present invention is preferably 1 or less from the viewpoint of the corrosiveness of the fuel tank and piping.
  • the copper plate corrosion here means a value measured by JIS K2513 “Petroleum products—Copper plate corrosion test method”.
  • the aromatic content of the aviation fuel oil composition of the present invention is preferably 25% by volume or less, and more preferably 20% by volume from the viewpoint of flammability (preventing soot generation).
  • the aromatic content here means a value measured by JIS K2536 “Testing method for fuel oil hydrocarbon components (fluorescence indicator adsorption method)”.
  • the smoke point of the aviation fuel oil composition of the present invention is preferably 25 mm or more, more preferably 27 mm or more, and further preferably 30 mm or more from the viewpoint of flammability (preventing soot generation).
  • the smoke point here means a value measured by JIS K2537 “Fuel oil smoke point test method”.
  • the sulfur content of the aviation fuel oil composition of the present invention is preferably 0.3% by mass or less, more preferably 0.2% by mass or less, and 0.1% by mass or less from the viewpoint of corrosiveness. More preferably. From the same corrosive viewpoint, the mercaptan sulfur content is preferably 0.003% by mass or less, more preferably 0.002% by mass or less, and 0.001% by mass or less. Further preferred.
  • the sulfur content mentioned here is the value measured by JIS K2541 “Crude oil and petroleum product sulfur test method”, and the mercaptan sulfur content is measured by JIS K2276 “Mercaptan sulfur content test method (potentiometric titration method)”. Value.
  • the flash point of the aviation fuel oil composition of the present invention is preferably 38 ° C. or higher, more preferably 40 ° C. or higher, and further preferably 45 ° C. or higher from the viewpoint of safety.
  • the flash point here means a value obtained by JIS K2265 “Crude oil and petroleum products—flash point test method—tag sealed flash point test method”.
  • the total acid value of the aviation fuel oil composition of the present invention is preferably 0.1 mgKOH / g or less, more preferably 0.08 mgKOH / g or less, and 0.05 mgKOH / g or less from the viewpoint of corrosivity. More preferably.
  • the total acid value here means a value measured by JIS K2276 “Total Acid Value Test Method”.
  • the precipitation point of the aviation fuel oil composition of the present invention is preferably ⁇ 47 ° C. or less, preferably ⁇ 48 ° C. or less, from the viewpoint of preventing a decrease in fuel supply due to fuel freezing under low temperature exposure during flight. More preferably, the temperature is ⁇ 50 ° C. or lower.
  • the precipitation point here means a value measured by JIS K2276 “Precipitation point test method”.
  • the thermal stability of the aviation fuel oil composition of the present invention is such that the pressure difference in the method A is 10.1 kPa or less, the preheating tube deposit evaluation value is less than 3, from the viewpoint of preventing the fuel filter from being clogged due to the formation of precipitates at high temperature exposure, It is preferable that the pressure difference in the method B is 3.3 kPa or less and the preheating tube deposit evaluation value is less than 3.
  • the thermal stability means a value measured by JIS K2276 “thermal stability test method A method, B method”.
  • the water solubility of the aviation fuel oil composition of the present invention is preferably 2 or less in the separated state and 1b or less in the interface state in order to prevent troubles due to precipitation of dissolved water during low temperature exposure.
  • the water solubility herein means a value measured by JIS K2276 “Water solubility test method”.
  • the aviation fuel oil base material and the aviation fuel oil composition containing the environmentally low load base material manufactured using the animal and vegetable oils and fats of the present invention as raw materials have all of combustibility, oxidation stability, and life cycle CO 2 emission characteristics. It is excellent.
  • the cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% ammonia aqueous solution were added, and the mixture was heated and stirred at 75 ° C. for 20 hours.
  • the slurry was put in a kneading apparatus and heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product.
  • the obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.
  • Catalyst A 50 g of the obtained shaped carrier was put into an eggplant-shaped flask, and while degassing with a rotary evaporator, 17.3 g of molybdenum trioxide, 13.2 g of nickel nitrate (II) hexahydrate, 3.9 g of phosphoric acid (concentration 85%) And an impregnation solution containing 4.0 g of malic acid was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst A. Table 1 shows the physical properties of Catalyst A.
  • ZSM-48 zeolite was synthesized by the method described in non-patent literature (Appl. Catal. A, 299 (2006), pages 167-174). The synthesized ZSM-48 zeolite was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere to obtain a calcined zeolite.
  • a commercially available boehmite powder (trade name: Cataloid-AP) was prepared as an alumina binder.
  • a calcined zeolite and boehmite powder were sufficiently kneaded into a boehmite powder made into a slurry by adding an appropriate amount of water so that the ratio of zeolite: alumina was 70:30 (% by mass) to obtain a kneaded product.
  • This kneaded material was supplied to an extrusion molding machine to obtain a cylindrical shaped carrier (diameter: 1.5 mm, length: 1 cm). The obtained shaped carrier was dried at 95 ° C. for 3 hours under air flow, and then calcined at 550 ° C. for 3 hours in an air atmosphere.
  • Example 1 A reaction tube (inner diameter 20 mm) filled with catalyst A (100 ml) was attached to the fixed bed flow reactor in countercurrent. Thereafter, using straight-run gas oil (sulfur content: 3% by mass) to which dimethyl disulfide has been added, the catalyst layer average temperature is 300 ° C., the hydrogen partial pressure is 6 MPa, the liquid space velocity is 1 h ⁇ 1 , and the hydrogen / oil ratio is 200 NL / L. The catalyst was presulfided for 4 hours.
  • straight-run gas oil sulfur content: 3% by mass
  • a part of the hydrotreated oil after introduction of the high-pressure separator described below is recycled to the vegetable oil 1 having the properties shown in Table 2 in an amount that is 1 times the mass of the vegetable oil 1 to the oil to be treated.
  • Dimethyl sulfide was added so that the sulfur content (sulfur atom conversion) was 10 ppm by mass to prepare an oil to be treated.
  • the hydrogenation process of the to-be-processed oil was performed.
  • the conditions for the hydrotreating were as follows: the catalyst layer average temperature (reaction temperature) was 300 ° C., the hydrogen pressure was 6.0 MPa, the liquid space velocity was 1.0 h ⁇ 1 , and the hydrogen / oil ratio was 500 NL / L.
  • the treated oil after the hydrotreatment was introduced into a high pressure separator, and hydrogen, hydrogen sulfide, carbon dioxide and water were removed from the treated oil.
  • a portion of the hydrotreated oil after introduction of the high-pressure separator is cooled to 40 ° C. with cooling water, recycled to the vegetable oil that is the raw material oil as described above, and the remaining hydrotreated oil is recycled to the catalyst B (
  • the reaction tube (inner diameter 20 mm) filled with 150 ml) was introduced into a fixed bed flow type reaction apparatus (isomerization apparatus) and subjected to hydroisomerization treatment.
  • the catalyst B is subjected to a reduction treatment for 6 hours under conditions of an average catalyst layer temperature of 320 ° C., a hydrogen pressure of 5 MPa, and a hydrogen gas amount of 83 ml / min, and then the catalyst layer average temperature (reaction temperature) is set to 320.
  • Hydroisomerization was performed under the conditions of ° C, hydrogen pressure of 3 MPa, liquid space velocity of 1.0 h -1 , and hydrogen / oil ratio of 500 NL / L.
  • the hydroisomerized oil after the isomerization treatment was led to a rectification column and fractionated into a light fraction having a boiling point range of less than 140 ° C, an intermediate fraction having a boiling point of 140 to 300 ° C, and a heavy fraction having a temperature exceeding 300 ° C. .
  • the middle fraction at 140 to 300 ° C. was used as the aviation fuel base material 1.
  • Table 3 shows the hydrotreating conditions, hydroisomerization conditions, and properties of the obtained aviation fuel base material 1.
  • Examples 2 to 4 Comparative Examples 1 to 4
  • the same treatment as in Example 1 was carried out except that the conditions for the catalyst, vegetable oil and fat, the hydrotreating step, and the hydroisomerizing step were changed to the conditions shown in Table 3.
  • the properties of the obtained aviation fuel base materials 2 to 8 are also shown in Table 3.
  • a petroleum-based aviation fuel base material hydrogen obtained by treating straight-run kerosene obtained from a crude oil atmospheric distillation apparatus at a reaction temperature of 320 ° C., a hydrogen pressure of 3 MPa, LHSV 3.0 h ⁇ 1 , and a hydrogen / oil ratio of 150 NL / L.
  • Table 2 shows the properties of the hydrodesulfurization base material.
  • Example 4 The aviation fuel oil composition shown in Table 4 was prepared by mixing the environmentally low load aviation fuel oil base material having the properties shown in Table 3 and the petroleum aviation fuel oil base material having the properties shown in Table 2. The following additives were added to all of Examples 4 to 7.
  • Antistatic agent (STADIS 450) 2.0mg / l
  • the general properties of raw oil, aviation fuel base and aviation fuel oil are values measured by the following methods.
  • the density at 15 ° C. means a value measured according to JIS K2249 “Crude oil and petroleum products—Density test method and density / mass / capacity conversion table”.
  • the kinematic viscosity at 30 ° C. or ⁇ 20 ° C. means a value measured by JIS K2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
  • Elemental analysis C (mass%) and H (mass%) mean values measured by the method defined in ASTM D 5291 “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants”.
  • the oxygen content means a value measured by a method such as UOP649-74 “Total Oxygen in Organic Materials by Pyrolysis Gas Chromatographic Technology”.
  • the sulfur content means a value measured according to JIS K2541 “Crude oil and petroleum product sulfur content test method”.
  • the mercaptan sulfur content means a value measured by JIS K2276 “Testing method for mercaptan sulfur content (potentiometric titration method)”.
  • the acid value means a value measured by the method of JIS K 2501 “Petroleum products and lubricating oils—neutralization number test method”.
  • the composition ratio of fatty acid groups in fats and oils is in accordance with the aforementioned standard fat analysis method (established by the Japan Oil Chemists' Society) (1993) “2.4.21.3-77 fatty acid composition (FID temperature rising gas chromatograph method)”. Is the value obtained.
  • the flash point means a value determined according to JIS K2265 “Crude oil and petroleum products—flash point test method—tag sealed flash point test method”.
  • the distillation property means a value measured according to JIS K2254 “Petroleum product-distillation test method”.
  • the aromatic content means a value measured by JIS K2536 “Test method for fuel oil hydrocarbon components (fluorescence indicator adsorption method)”.
  • the total acid value means a value measured according to JIS K2276 “Petroleum products—Aeronautical fuel oil test method—Total acid value test method”.
  • the precipitation point means a value measured according to JIS K2276 “Petroleum products—Aeronautical fuel oil test method—Precipitation point test method”.
  • the smoke point means a value measured by JIS K2537 “Fuel oil smoke point test method”.
  • the thermal stability means a value measured according to JIS K2276 “Petroleum products—Aeronautical fuel oil test method—Thermal stability test method A method, B method”.
  • the true calorific value means a value measured by JIS K2279 “Crude oil and fuel oil calorific value test method”. Copper plate corrosion (50 ° C., 4 hours) means a value measured by JIS K2513 “Petroleum products—Copper plate corrosion test method”.
  • the conductivity means a value measured according to JIS K 2276 “Petroleum products—Aeronautical fuel oil test method—Conductivity test method”.
  • the actual gum content means a value measured by JIS K2261 “Gasoline and aviation fuel oil actual gum test method”.
  • the water solubility means a value measured according to JIS K2276 “Petroleum products—Aeronautical fuel oil test method—Water solubility test method”.
  • the isomerization rate (content of isoparaffin having 2 or more branches) means a value measured by a gas chromatograph / time-of-flight mass spectrometer.
  • the isoparaffin content of two or more branches means a value measured by a gas chromatograph / time-of-flight mass spectrometer.
  • the 140 to 300 ° C. fraction yield is the mass ratio of the 140 to 300 ° C. fraction with respect to the total amount of hydroisomerized oil obtained by hydrotreating and hydroisomerizing the oil to be treated. Means.
  • the life cycle characteristics (life cycle CO 2 calculation) described in this example were calculated by the following method.
  • the life cycle CO 2 was calculated by dividing it into CO 2 generated as a result of aircraft flight (fuel combustion) using aviation fuel oil and CO 2 generated from raw material mining to fuel refueling in fuel production.
  • the CO 2 generated by combustion (hereinafter referred to as “Tank to Wheel CO 2 ”) uses the value defined by the Ministry of the Environment (jet fuel: 2.5 kg-CO 2 / L), and emissions per unit calorific value Used in conversion.
  • CO 2 generated from mining to refueling fuel tanks hereinafter referred to as “Well to Tank CO 2 ”) is used for mining, transporting, processing, delivering and refueling raw materials and crude oil sources.
  • the aviation fuel composition containing the aviation fuel base material obtained by hydrotreating the raw material derived from animal and plant fats and oils is inferior to the typical petroleum aviation fuel composition. While it has no general properties, it is a new aviation fuel oil composition that is an alternative to petroleum that has excellent life cycle characteristics and contributes to the prevention of global warming.
  • a life that has been difficult to realize with a conventional aviation fuel oil composition by containing an environmentally low-load gas oil base material produced using an oxygen-containing hydrocarbon compound derived from animal and vegetable oils and fats as a raw material.
  • An aviation fuel oil composition having excellent cycle CO 2 emission characteristics and oxidation stability and excellent low-temperature fluidity is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

 本発明の航空燃料油基材は、動植物油脂に由来する含酸素炭化水素化合物と含硫黄炭化水素化合物とを含有する被処理油を水素化処理し、次いで水素化異性化処理を施すことで得られ、沸点範囲140~300℃である留分収率が70質量%以上;イソパラフィンの含有率が80質量%以上;2分岐以上のイソパラフィン含有率が17質量%以上;芳香族分が0.1容量%未満;オレフィン分が0.1容量%未満;硫黄分が1質量ppm未満;及び酸素含有量が0.1質量%未満である。

Description

燃料油基材及びこれを含有する航空燃料組成物
 本発明は、動植物油脂および/または動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型燃料油基材及びこれを含有する航空燃料組成物に関するものである。
 地球温暖化の防止対策としてバイオマスのもつエネルギーの有効利用に注目が集まっている。その中でも植物由来のバイオマスエネルギーは、植物の成長過程で光合成により大気中の二酸化炭素から固定化された炭素を有効利用できるため、ライフサイクルの観点からすると大気中の二酸化炭素の増加につながらない、所謂カーボンニュートラルという性質を持つ。また、石油資源の枯渇、原油価格の高騰といった観点からも石油代替エネルギーとしてバイオマス燃料は非常に有望視されている。
 このようなバイオマスエネルギーの利用は輸送用燃料の分野においても種々検討がなされている。例えば、ディーゼル燃料として動植物油由来の燃料を使用できれば、ディーゼルエンジンの高いエネルギー効率との相乗効果により、二酸化炭素の排出量削減において有効な役割を果たすと期待されている。動植物油を利用したディーゼル燃料としては、一般的には脂肪酸メチルエステル油(Fatty Acid Methyl Ester の頭文字から「FAME」と略称される。)が知られている。FAMEは動植物油の一般的な構造であるトリグリセリドを、アルカリ触媒等の作用によりメタノールとエステル交換反応に供することで製造される。
 しかし、FAMEを製造するプロセスにおいては、下記特許文献1に記載されている通り、副生するグリセリンの処理が必要であり、また生成油の洗浄などにコストやエネルギーを要する等の問題が指摘されている。
特開2005-154647号公報
 ところで、上記のFAMEは、ディーゼル燃料だけではなく、航空燃料油、いわゆるジェット燃料にも利用することが検討されている。航空機は燃料使用量が膨大であることもあり、近年の原油価格高騰の影響を大きく受けている。このような情勢の中で、バイオマス燃料を地球温暖化防止としてだけでなく、石油代替燃料としての役割を担う重要なアイテムとして注目されている。現在、複数の航空会社において、FAMEの石油系ジェット燃料への混合利用が試験的ではあるが実施されている。
 しかし、FAMEは低温性能や酸化安定性に懸念点を有している。特に航空燃料においては高い高度での飛行時に極低温に曝されることから、非常に厳しい低温性能規格が設けられており、FAMEを利用する場合には、石油系ジェット燃料への混合利用を余儀なくされ、且つその混合量も低濃度にせざるを得ないのが実状である。また、酸化安定性についても、航空燃料規格として酸化防止剤の添加が定められてはいるものの、基材としての安定性を考えると、低温性能同様、その混合割合は低濃度に限定せざるを得ない。
 FAMEの他に以下のような手法によって製造されるバイオマス燃料の利用が検討されている。すなわち、動植物油脂(藻類も含む)を水素、触媒の存在のもと、高温高圧下で反応させて得られる炭化水素である。この手法によれば、FAMEと異なり、酸素や不飽和結合を含まず石油系炭化水素燃料と同等の性状を有する炭化水素の製造が可能である。この炭化水素を航空燃料油基材として使用できれば、FAMEよりも高濃度での使用が実現して航空分野における環境負荷低減に大きく貢献し得る。しかし、航空燃料油は、上述の通り、ディーゼル燃料と比較して厳しい低温性能規格(析出点:-47℃以下)が要求される。このため、動植物油脂類を水素化処理して得られた従来の炭化水素を航空燃料油の基材として使用するには未だ改善の余地があった。
 本発明は、かかる実状に鑑みてなされたものであり、その目的は、動植物油脂および/または動植物油脂由来成分であるトリグリセリド含有炭化水素を原料として製造された環境低負荷型基材を含有し、ライフサイクルCO排出特性および酸化安定性に優れ、なおかつ低温流動性が優れた航空燃料組成物を提供することにある。
 本発明に係る航空燃料油基材は、水素の存在下、動植物油脂に由来する含酸素炭化水素化合物と含硫黄炭化水素化合物とを含有する被処理油を水素化処理し、次いで水素化異性化処理を施すことで得られ、沸点範囲140~300℃である留分収率が70質量%以上;イソパラフィンの含有率が80質量%以上;2分岐以上のイソパラフィン含有率が17質量%以上;芳香族分が0.1容量%未満;オレフィン分が0.1容量%未満;硫黄分が1質量ppm未満;及び酸素含有量が0.1質量%以下であることを特徴とする。
 本発明に係る航空燃料油基材は、イソパラフィンの含有率及び2分岐以上のイソパラフィン含有率が上記の条件を満たしているため、十分な低温性能を有する。このため、航空燃料組成物を調製するにあたり、当該基材を高濃度で配合できる。なお、通常、パラフィンの異性化度及び分岐度を上げるプロセス処理を行なうと分解により軽質留分が多くなるところ、本発明の航空燃料油基材は沸点範囲140~300℃の留分収率が70質量%以上である。
 上記被処理油は、石油系基材を含有するものであることが好ましい。ここでいう石油系基材とは、原油の常圧蒸留または減圧蒸留によって得られる留分や水素化脱硫、水素化分解、流動接触分解、接触改質などの反応で得られる留分および化学品由来の化合物やフィッシャー・トロプシュ反応を経由して得られる合成油等を精製して得られる留分を意味する。
 上記水素化処理は、水素の存在下、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物からなる担体に周期表第6A族及び第8族の元素から選ばれる1種以上の金属を担持してなる触媒を用いて、水素圧力2~13MPa、液空間速度0.1~3.0h-1、水素/油比150~1500NL/L、反応温度150~480℃の条件下で前記被処理油を水素化処理する工程であることが好ましい。
 上記水素化異性化処理は、上記水素化処理により得られた水素化処理油を、さらに、水素存在下、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン、マグネシウム及びゼオライトから選ばれる物質より構成される多孔性無機酸化物からなる担体に周期表第8族の元素から選ばれる金属を担持してなる触媒を用いて、水素圧力1~5MPa、液空間速度0.1~3.0h-1、水素/油比250~1500NL/L、反応温度200~360℃の条件下で異性化処理する工程であることが好ましい。
 本発明に係る航空燃料組成物は、上記航空燃料油基材を含有するとともに、硫黄分10質量ppm以下であり且つ析出点が-47℃以下であることを特徴とする。
 上記航空燃料油組成物は、酸化防止剤、静電気防止剤、金属不活性化剤および氷結防止剤から選ばれる一つ以上の添加剤を含有することが好ましい。また、上記航空燃料油組成物は、JIS K2209で規定される航空タービン燃料油の規格値を満足することが好ましい。
 本発明によれば、動植物油脂に由来する含酸素炭化水素化合物を原料として製造された環境低負荷型軽油基材を含有することにより、従来の航空燃料油組成物では実現が困難であったライフサイクルCO排出特性および酸化安定性に優れ、なおかつ低温流動性が優れた航空燃料油組成物を提供される。
 以下、本発明について詳細に説明する。本発明の航空燃料油組成物は、構成成分として環境低負荷型航空燃料油基材が用いられる。
(航空燃料油基材)
 本発明の航空燃料油基材は、所定の被処理油を水素化処理して得られる低硫黄、低酸素の留分である。より具体的には、当該基材は、水素の存在下、動植物油脂に由来する含酸素炭化水素化合物と含硫黄炭化水素化合物とを含有する被処理油を水素化処理し、次いで水素化異性化処理を施すことで得られるものであり、以下の条件をすべて満たすものである。
 (条件)
  沸点範囲が140~300℃である留分収率:70質量%以上(好ましくは75質量%以上)、
  イソパラフィンの含有率:80質量%以上(好ましくは85質量%以上)、
  2分岐以上のイソパラフィン含有率:17質量%以上(好ましくは20質量%以上)、
  芳香族分:0.1容量%未満、
  オレフィン分:0.1容量%未満、
  硫黄分:1質量ppm未満、
  酸素含有量:0.1質量%未満。
 沸点範囲が140~300℃である留分収率が70質量%未満であると、航空燃料油基材を十分得ることができなくなる。イソパラフィンの含有率が80質量%未満であると航空燃料油として低温性能の規格を満たさなくなる。2分岐以上のイソパラフィン含有率が17質量%未満であると航空燃料油として低温性能の規格を満たさなくなる。オレフィン分が0.1容量%を超えると酸化安定性が低下する。硫黄分が1質量ppmを超えると腐食性が悪化する。酸素含有量が0.1質量%を超えると発熱量が低下し、燃料消費率が悪化する。
 上記含酸素炭化水素化合物は、動植物油脂および/または動物油脂由来成分であることが必要である。動植物油脂としては、例えば、牛脂、菜種油、カメリナ油、大豆油、パーム油、特定の微細藻類が生産する油脂類または炭化水素等などが挙げられる。特定の微細藻類とは、体内の栄養分の一部を炭化水素または油脂の形に変換する性質を有する藻類を意味し、例えば、クロレラ、イカダモ、スピルリナ、ユーグレナ、ボツリオコッカスブラウニー、シュードコリシスチスエリプソイディアを挙げることが出来る。クロレラ、イカダモ、スピルリナ、ユーグレナは油脂類を、ボツリオコッカスブラウニー、シュードコリシスチスエリプソイディアは炭化水素を生産することが知られている。本発明においては動植物油脂として、いかなる油脂を用いてもよく、これら油脂を使用した後の廃油でもよい。また、微細藻類から抽出されるワックスエステル類や油脂精製で副生する遊離脂肪酸なども用いることができる。すなわち、本発明に係る動植物油脂には、上記の油脂の廃油、微細藻類から抽出されるワックスエステル類、油脂精製で副生する遊離脂肪酸などが包含される。カーボンニュートラルの観点からは植物由来の油脂類が好ましく、水素化処理後の灯油留分収率の観点から、脂肪酸炭素鎖の炭素数が10から14である各脂肪酸基の構成比率(脂肪酸組成)の高いものが好ましく、この観点から考えられる植物油脂としては、ココナッツ油及びパーム核油及びカメリナ油などが挙げられ、特定の微細藻類が生産する油脂類としては、ユーグレナが生産する油脂類が挙げられる。なお、上記の油脂は1種を単独で又は2種以上混合して用いてもよい。
 なお、脂肪酸組成とは、基準油脂分析試験法(日本油化学会制定)(1991)「2.4.20.2-91脂肪酸メチルエステルの調整方法(三フッ化ホウ素-メタノール法)」に準じて調製したメチルエステルを、水素炎イオン化検出器(FID)を備えた昇温ガスクロマトグラフを用い、基準油脂分析試験法(日本油化学会制定)(1993)「2.4.21.3-77脂肪酸組成(FID昇温ガスロマトグラフ法)」に準じて求められる値であり、油脂を構成する各脂肪酸基の構成比率(質量%)を指す。
 これらの原料油(動植物油脂および/または動物油脂由来成分)に含有されるグリセライド化合物の脂肪酸部分の代表的な組成としては、飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCOOH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプリン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(C1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C1735COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレイン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられる。自然界の物質におけるこれら脂肪酸の炭化水素部は一般に直鎖であることが多いが、本発明において本発明で規定する性状を満たす限りで、側鎖を有する構造、すなわち異性体であっても使用することができる。また、不飽和脂肪酸における分子中の不飽和結合の位置も、本発明において本発明で規定する性状を満たす限りで、自然界で一般に存在確認されているものだけでなく、化学合成によって任意の位置に設定されたものも使用することができる。
 上述の原料油はこれらの脂肪酸を1種または複数種有しており、原料によってその有する脂肪酸類は異なっている。例えば、ココヤシ油はラウリン酸、ミリスチン酸等の飽和脂肪酸を比較的多く有しているが、大豆油はオレイン酸、リノール酸等の不飽和脂肪酸を多く有している。
 上記含硫黄炭化水素化合物は特に制限されないが、具体的には、スルフィド、ジスルフィド、ポリスルフィド、チオール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン及びこれらの誘導体などが挙げられる。被処理油に含まれる含硫黄炭化水素化合物は単一の化合物であってもよく、あるいは2種以上の混合物であってもよい。さらに、硫黄分を含有する石油系炭化水素留分を被処理油に混合してもよい。
 被処理油に含まれる硫黄分は、被処理油全量を基準として、硫黄原子換算として1~50質量ppmであることが好ましく、より好ましくは5~30質量ppm、さらに好ましくは10~20質量ppmである。硫黄原子換算として含有量が1質量ppm未満であると、脱酸素活性を安定的に維持することが困難となる傾向にある。他方、50質量ppmを超えると、水素化精製工程で排出される軽質ガス中の硫黄濃度が増加するのに加え、水素化精製油に含まれる硫黄分含有量が増加する傾向にあり、航空燃料油等の燃料として用いる場合に部材の腐食等の悪影響が懸念される。なお、本発明における硫黄分は、JIS K 2541「硫黄分試験方法」又はASTM-5453に記載の方法に準拠して測定される硫黄分の質量含有量を意味する。
 被処理油に含有される含硫黄炭化水素化合物は、動植物油脂に由来する含酸素炭化水素化合物と予め混合してその混合物を水素化精製装置の反応器に導入してもよく、あるいは動植物油脂に由来する含酸素炭化水素化合物を反応器に導入する際に、反応器の前段において供給してもよい。
 被処理油に含有される石油系基材としては、原油の常圧蒸留装置から得られる直留軽油、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧軽油、減圧重質軽油あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油または水素化分解軽油、これらの石油系炭化水素を水素化精製して得られる水素化精製軽油若しくは水素化脱硫軽油、化学品由来の化合物やフィッシャー・トロプシュ反応を経由して得られる合成油等を含んでいても良い。これらの留分は、航空燃料油基材に含まれる硫黄分が前述の条件を満たしている限りにおいて、1種または2種類以上を被処理油に含有させることができる。被処理油中の原油等を精製して得られる石油系基材の含有割合は特に限定されないが、20~70容量%が好ましく、より好ましくは30~60容量%である。
(水素化処理工程)
 本発明に係る被処理油の水素化処理は、以下の水素化処理工程を含むことが好ましい。本発明に係る水素化処理工程では、水素化処理条件として、水素圧力が2~13MPa、液空間速度が0.1~3.0h-1、水素/油比が150~1500NL/L、反応温度が150~480℃である条件下で行われることが望ましく、水素圧力が2~13MPa、液空間速度が0.1~3.0h-1、水素/油比が150~1500NL/L、反応温度が200~400℃である条件がより望ましく、水素圧力が3~10.5MPa、液空間速度が0.25~1.0h-1、水素/油比が300~1000NL/L、反応温度が260~360℃である条件がさらにより望ましい。これらの条件はいずれも反応活性を左右する因子であり、例えば、水素圧力および水素/油比が前記下限値に満たない場合には反応性の低下や急速な活性低下を招く恐れがあり、水素圧力および水素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れがある。液空間速度は低いほど反応に有利な傾向にあるが、前記下限未満の場合は極めて大きな反応塔容積が必要となり過大な設備投資となる傾向にあり、他方、前記上限を超えている場合は反応が十分進行しなくなる傾向にある。反応温度は150℃未満の場合には、反応が十分に進行しなくなる恐れがあり、480℃を超える場合には過度に分解が進行し、液生成物収率の低下を招く傾向にある。
 水素化処理の触媒としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を2種以上含んで構成される多孔性無機酸化物からなる担体に周期表第6A族及び第8族の元素から選ばれる金属を担持した触媒が用いられる。
 水素化処理触媒の担体としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる元素を2種以上含んで構成される多孔性の無機酸化物が用いられる。一般的にはアルミナを含む多孔性無機酸化物であり、その他の担体構成成分としてはシリカ、ジルコニア、ボリア、チタニア、マグネシアなどが挙げられる。望ましくはアルミナとその他構成成分から選ばれる少なくとも1種類以上を含む複合酸化物であり、一例としてシリカ-アルミナ等を例示できる。また、このほかの成分として、リンを含んでいてもよい。アルミナ以外の成分の合計含有量は1~20重量%であることが好ましく、2~15重量%がより望ましい。アルミナ以外の成分の合計含有量が1重量%に満たない場合、十分な触媒表面積を得ることが出来ず、活性が低くなる恐れがあり、一方含有量が20重量%を超える場合、担体の酸性質が上昇し、コーク生成による活性低下を招く恐れがある。リンを担体構成成分として含む場合には、その含有量は、酸化物換算で1~5重量%であることが望ましく、2~3.5重量%がさらに望ましい。
 アルミナ以外の担体構成成分である、シリカ、ジルコニア、ボリア、チタニア、マグネシアの前駆体となる原料は特に限定されず、一般的なケイ素、ジルコニウム、ボロン、チタン又はマグネシウムを含む溶液を用いることができる。例えば、ケイ素についてはケイ酸、水ガラス、シリカゾルなど、チタンについては硫酸チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウム、各種アルコキサイド塩など、ボロンについてはホウ酸などを用いることができる。マグネシウムについては、硝酸マグネシウムなどを用いることができる。リンとしては、リン酸あるいはリン酸のアルカリ金属塩などを用いることができる。
 これらのアルミナ以外の担体構成成分の原料は、担体の焼成より前のいずれかの工程において添加する方法が望ましい。例えば予めアルミニウム水溶液に添加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、調合した水酸化アルミニウムゲルに添加してもよく、あるいは市販のアルミナ中間体やベーマイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させる方法がより望ましい。これらのアルミナ以外の担体構成成分の効果発現機構は解明できていないが、アルミニウムと複合的な酸化物状態を形成していると思われ、このことが担体表面積の増加や、活性金属となんらかの相互作用を生じることにより、活性に影響を及ぼしていることが考えられる。
 水素化処理触媒の活性金属としては、周期表第6A族および第8族金属から選ばれる少なくとも一種類の金属を含有し、望ましくは第6A族および第8族から選択される二種類以上の金属を含有している。例えば、Co-Mo、Ni-Mo、Ni-Co-Mo、Ni-Wなどが挙げられ、水素化処理に際しては、これらの金属を硫化物の状態に転換して使用する。
 活性金属の含有量は、例えば、WとMoの合計担持量は、望ましくは酸化物換算で触媒重量に対して12~35重量%、より望ましくは15~30重量%である。WとMoの合計担持量が12重量%未満の場合、活性点数の減少により活性が低下する可能性があり、35重量%を超える場合には、金属が効果的に分散せず、同様に活性の低下を招く可能性がある。また、CoとNiの合計担持量は、望ましくは酸化物換算で触媒重量に対して1.5~10重量%、より望ましくは2~8重量%である。CoとNiの合計担持量が1.5重量%未満の場合には充分な助触媒効果が得られず活性が低下してしまう恐れがあり、10重量%より多い場合には、金属が効果的に分散せず、同様に活性を招く可能性がある。
 上記水素化処理触媒のいずれの触媒において、活性金属を担体に担持させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
 水素化処理の反応器形式は、固定床方式であってもよい。すなわち、水素は被処理油に対して向流または並流のいずれの形式をとることもでき、また、複数の反応塔を有し向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独または複数を組み合わせてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用しても良い。本発明において、反応器内で水素化処理された水素化処理油は気液分離工程、精留工程等を経て所定の留分に分画される。このとき、反応に伴い生成する水、一酸化炭素、二酸化炭素、硫化水素などの副生ガスを除去するため、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置しても良い。副生物を除去する装置としては、高圧セパレータ等を好ましく挙げることができる。
 一般的に水素ガスは加熱炉を通過前あるいは通過後の被処理油に随伴して最初の反応器の入口から導入するが、これとは別に、反応器内の温度を制御するとともに、できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間や複数の反応器の間に導入してもよい。このようにして導入される水素をクエンチ水素と呼称する。このとき、被処理油に随伴して導入する水素に対するクエンチ水素との割合は望ましくは10~60容量%、より望ましくは15~50容量%である。クエンチ水素の割合が10容量%未満の場合には後段反応部位での反応が十分進行しない恐れがあり、60容量%を超える場合には反応器入口付近での反応が十分進行しない恐れがある。
 本発明の航空燃料油基材を製造する方法においては、被処理油を水素化処理するに際し、水素化処理反応器における発熱量を抑制するために、被処理油にリサイクル油を特定量含有させることができる。リサイクル油の含有量は、動植物油脂に由来する含酸素炭化水素化合物に対して0.5~5質量倍が好ましく、水素化処理反応器の最高使用温度に応じて前記の範囲内で適宜比率を定めることができる。これは、両者の比熱が同じであると仮定した場合に、両者を1対1で混合すると温度上昇は動植物油脂に由来する物質を単独で反応させる場合の半分となることから、上記範囲内であれば反応熱を十分に低下させることができるとの理由による。なお、リサイクル油の含有量が含酸素炭化水素化合物の5質量倍より多いと、含酸素炭化水素化合物の濃度が低下して反応性が低下し、また、配管等の流量が増加して負荷が増大する。他方、リサイクル油の含有量が含酸素炭化水素化合物の0.5質量倍より少ない場合は温度上昇を十分に抑制できない。
 被処理油とリサイクル油の混合方法は特に限定されないが、例えば予め混合してその混合物を水素化処理装置の反応器に導入してもよく、あるいは被処理油を反応器に導入する際に、反応器の前段において供給してもよい。さらに、反応器を複数直列に繋げて反応器間に導入する、あるいは単独の反応器内で触媒層を分割して触媒層間に導入することも可能である。
 また、リサイクル油は、被処理油の水素化処理を行った後、副生する水、一酸化炭素、二酸化炭素、硫化水素などを除去して得られる水素化処理油の一部を含有することが好ましい。さらに、水素化処理油から分留された軽質留分、中間留分若しくは重質留分のそれぞれについて異性化処理したものの一部、あるいは、水素化処理油をさらに異性化処理したものから分留される中間留分の一部を含有することが好ましい。
(水素化異性化処理工程)
 本発明の水素化処理においては、上記水素化処理工程で得られた水素化処理油を、次いで水素化異性化処理する工程(第二水素化工程)を含むことが必要である。
 水素化異性化処理の原料油である水素化処理油に含まれる硫黄分含有量は、1質量ppm以下であることが好ましく、0.5質量ppmであることがより好ましい。硫黄分含有量が1質量ppmを超えると水素化異性化の進行が妨げられる恐れがある。加えて、同様の理由で、水素化処理油と共に導入される水素を含む反応ガスについても硫黄分濃度が十分に低いことが必要であり、1容量ppm以下であることが好ましく、0.5容量ppm以下であることがより好ましい。
 異性化処理工程は、水素存在下、水素圧力が1~5MPa、液空間速度が0.1~3.0h-1、水素/油比が250~1500NL/L、反応温度が200~360℃である条件で行われることが望ましく、水素圧力が0.3~4.5MPa、液空間速度が0.5~2.0h-1、水素/油比が380~1200NL/L、反応温度が220~350℃である条件で行われることがより望ましく、水素圧力が0.5~4.0MPa、液空間速度が0.8~1.8h-1、水素/油比が350~1000NL/L、反応温度が250~340℃である条件で行われることがさらに望ましい。これらの条件はいずれも反応活性を左右する因子であり、例えば水素圧力および水素/油比が前記下限値に満たない場合には反応性の低下や急速な活性低下を招く恐れがあり、水素圧力および水素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れがある。液空間速度は低いほど反応に有利な傾向にあるが、前記下限未満の場合は極めて大きな反応塔容積が必要となり過大な設備投資となる傾向にあり、他方、前記上限を超えている場合は反応が十分進行しなくなる傾向にある。反応温度が下限未満の場合には、十分な水素化異性化反応が進行しないおそれがあり、上限値より高い場合には、過度の分解あるいは他の副反応が進行し、液生成物留率の低下を招くおそれがある。
 水素化異性化処理の触媒としては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン、マグネシウム及びゼオライトから選ばれる物質より構成される多孔性の無機酸化物からなる担体に周期表第8族の元素から選ばれる金属を1種以上担持してなる触媒が用いられる。
 水素化異性化処理触媒の担体として用いられる多孔性の無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトが挙げられ、本発明ではこのうちチタニア、ジルコニア、ボリア、シリカおよびゼオライトのうち少なくとも1種類とアルミナによって構成されているものが好ましい。その製造法は特に限定されないが、各元素に対応した各種ゾル、塩化合物などの状態の原料を用いて任意の調製法を採用することができる。さらには一旦シリカアルミナ、シリカジルコニア、アルミナチタニア、シリカチタニア、アルミナボリアなどの複合水酸化物あるいは複合酸化物を調製した後に、アルミナゲルやその他水酸化物の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製してもよい。アルミナと他の酸化物との比率は担体に対して任意の割合を取り得るが、好ましくはアルミナが90質量%以下、さらに好ましくは60質量%以下、より好ましくは40質量%以下であり、好ましくは10質量%以上、より好ましくは20質量%以上である。
 ゼオライトは結晶性アルミノシリケートであり、フォージャサイト、ペンタシル、モルデナイト、TON、MTT、MREなどが挙げられ、所定の水熱処理および/または酸処理によって超安定化したもの、あるいはゼオライト中のアルミナ含有量を調整したものを用いることができる。好ましくはフォージャサイト、モルデナイト、特に好ましくはY型、ベータ型が用いられる。Y型は超安定化したものが好ましく、水熱処理により超安定化したゼオライトは本来の20Å以下のミクロ細孔と呼ばれる細孔構造に加え、20~100Åの範囲に新たな細孔が形成される。水熱処理条件は公知の条件を用いることができる。
 水素化異性化処理触媒の活性金属としては、周期表第8族の元素から選ばれる1種以上の金属が用いられる。これらの金属の中でも、Pd、Pt、Rh、Ir、Au、Niから選ばれる1種以上の金属を用いることが好ましく、組み合わせて用いることがより好ましい。好適な組み合せとしては、例えば、Pd-Pt、Pd-Ir、Pd-Rh、Pd-Au、Pd-Ni、Pt-Rh、Pt-Ir、Pt-Au、Pt-Ni、Rh-Ir、Rh-Au、Rh-Ni、Ir-Au、Ir-Ni、Au-Ni、Pd-Pt-Rh、Pd-Pt-Ir、Pt-Pd-Niなどが挙げられる。このうち、Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Rh、Pt-Ir、Rh-Ir、Pd-Pt-Rh、Pd-Pt-Ni、Pd-Pt-Irの組み合わせがより好ましく、Pd-Pt、Pd-Ni、Pt-Ni、Pd-Ir、Pt-Ir、Pd-Pt-Ni、Pd-Pt-Irの組み合わせがさらにより好ましい。
 触媒質量を基準とする活性金属の合計含有量としては、金属として0.1~2質量%が好ましく、0.2~1.5質量%がより好ましく、0.5~1.3質量%がさらにより好ましい。金属の合計担持量が0.1質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、2質量%を超えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。
 上記水素化異性化処理触媒のいずれの触媒において、活性金属を担体に担持させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常は、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また平衡吸着法、Pore-filling法、Incipient-wetness法なども好ましく採用される。例えば、Pore-filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法であるが、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
 本発明で用いられる上記異性化処理触媒は、反応に供する前に触媒に含まれる活性金属を還元処理しておくことが好ましい。還元条件は特に限定されないが、水素気流下、200~400℃の温度で処理することによって還元される。好ましくは、240~380℃の範囲で処理することが好ましい。還元温度が200℃に満たない場合、活性金属の還元が十分進行せず、水素化脱酸素および水素化異性化活性が発揮できない恐れがある。また、還元温度が400℃を超える場合、活性金属の凝集が進行し、同様に活性が発揮できなくなる恐れがある。
 水素化異性化処理の反応器形式は、固定床方式であってもよい。すなわち、水素は原料油に対して向流または並流のいずれの形式をとることもでき、また、複数の反応塔を有し向流、並流を組み合わせた形式のものでもよい。一般的な形式としてはダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独または複数を組み合わせてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用しても良い。
 一般的に水素ガスは加熱炉を通過前あるいは通過後の原料油に随伴して最初の反応器の入口から導入するが、これとは別に、反応器内の温度を制御するとともに、できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間や複数の反応器の間に導入してもよい。このようにして導入される水素をクエンチ水素と呼称する。このとき、原料油に随伴して導入する水素に対するクエンチ水素との割合は望ましくは10~60容量%、より望ましくは15~50容量%である。クエンチ水素の割合が10容量%未満の場合には後段反応部位での反応が十分進行しない恐れがあり、60容量%を超える場合には反応器入口付近での反応が十分進行しない恐れがある。
 水素化異性化処理工程後に得られる水素化異性化処理油は、必要に応じて精留塔で複数留分に分留してもよい。例えば、ガス、ナフサ留分等の軽質留分、灯油、ジェット、軽油留分等の中間留分、残渣分等の重質留分に分留してもよい。この場合、軽質留分と中間留分とのカット温度は100~200℃が好ましく、120~180℃がより好ましく、120~160℃がさらに好ましく、130~150℃がさらにより好ましい。中間留分と重質留分とのカット温度は250~360℃が好ましく、250~320℃がより好ましく、250~300℃がさらに好ましく、250~280℃がさらにより好ましい。生成するこのような軽質炭化水素留分の一部を水蒸気改質装置において改質することにより水素を製造することができる。このようにして製造された水素は、水蒸気改質に用いた原料がバイオマス由来炭化水素であることから、カーボンニュートラルという特徴を有しており、環境への負荷を低減することができる。なお、水素化異性化処理油を分留して得られる中間留分は、航空燃料油基材として好適に用いることができる。
(航空燃料油組成物)
 本発明の航空燃料油組成物は、上述の航空燃料油基材を含有するとともに、硫黄分10質量ppm以下であり且つ析出点が-47℃以下である。本発明においては、前記で製造された環境低負荷型航空燃料油基材と原油等から精製された水素化精製油を混合して所定の性能を満たした航空燃料油組成物を製造することができる。本発明の航空燃料油組成物に対する航空燃料油基材の含有量には特に限定はないが、環境負荷低減の観点から、1容量%以上含有することが好ましく、3容量%以上含有することがより好ましく、5容量%以上含有することがさらに好ましい。原油等を精製して得られる石油系基材とは、原油の常圧蒸留または減圧蒸留によって得られる留分や水素化脱硫、水素化分解、流動接触分解、接触改質などの反応で得られる留分などが挙げられる。さらに、原油等を精製して得られる石油系基材は、化学品由来の化合物やフィッシャー・トロプシュ反応を経由して得られる合成油であってもよい。
 本発明の航空燃料油組成物には、従来航空燃料油に添加されている各種添加剤を使用することができる。この添加剤としては、酸化防止剤、静電気防止剤、金属不活性化剤および氷結防止剤から選ばれる一つ以上の添加剤が挙げられる。
 酸化防止剤としては、航空燃料油中のガムの発生を抑止するために、24.0mg/lを超えない範囲で、N,N-ジイソプロピルパラフェニレンジアミン、2,6-ジターシャリーブチルフェノール75%以上とターシャリー及びトリターシャリーブチルフェノール25%以下の混合物、2,4-ジメチル-6-ターシャリーブチルフェノール72%以上とモノメチル及びジメチルターシャリーブチルフェノール28%以下の混合物、2,4-ジメチル-6-ターシャリーブチルフェノール55%以上とターシャリー及びジターシャリーブチルフェノール45%以下の混合物、2,6-ジターシャリーブチル-4-メチルフェノールなどを加えることができる。
 静電気防止剤としては、航空燃料油が高速で燃料配管系内部を流れる時に配管内壁との摩擦によって生じる静電気の蓄積を防止し、電気伝導度を高めるために、3.0mg/lを超えない範囲で、オクテル社製のSTADIS450などを加えることができる。
 金属不活性化剤としては、航空燃料油に含有する遊離金属成分が反応して燃料が不安定とならないようにするために、5.7mg/lを超えない範囲で、N,N-ジサリシリデン-1,2-プロパンジアミンなどを加えることができる。
 氷結防止剤としては、航空燃料油に含まれている微量の水が凍結して配管を塞ぐのを防止するために、0.1~0.15容量%の範囲でエチレングリコールモノメチルエーテルなどを加えることができる。
 本発明の航空燃料油組成物は、本発明を逸脱しない範囲で、さらに帯電防止剤、腐食抑制剤および殺菌剤等の任意の添加剤を適宜配合することができる。
 本発明の航空燃料油組成物は、JIS K2209「航空タービン燃料油」の規格値を満足するものである。
 本発明の航空燃料油組成物の15℃における密度は、燃料消費率の観点から、0.775g/cm以上であることが好ましく、0.780g/cm以上であることがより好ましい。一方、燃焼性の観点から、0.839g/cm以下であることが好ましく、0.830g/cm以下であることがより好ましく、0.820g/cm以下であることが更に好ましい。なお、ここでいう15℃における密度とは、JIS K2249「原油及び石油製品-密度試験方法並びに密度・質量・容量換算表」で測定される値を意味する。
 本発明の航空燃料油組成物の蒸留性状は、10容量%留出温度が、蒸発特性の観点から204℃以下であることが好ましく、200℃以下であることがより好ましい。終点は燃焼特性(燃え切り性)の観点から300℃以下であることが好ましく、290℃以下であることがより好ましく、280℃以下であることが更に好ましい。なお、ここでいう蒸留性状とは、JIS K2254「石油製品-蒸留試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の実在ガム分は、燃料導入系統等での析出物生成による不具合防止の観点から、7mg/100ml以下であることが好ましく、5mg/100ml以下であることがより好ましく、3mg/100ml以下であることが更に好ましい。なお、ここでいう実在ガム分とは、JIS K2261「ガソリン及び航空燃料油実在ガム試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の真発熱量は、燃料消費率の観点から、42.8MJ/kg以上であることが好ましく、45MJ/kg以上であることがより好ましい。なお、ここでいう真発熱量とは、JIS K2279「原油及び燃料油発熱量試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の動粘度は、燃料配管の流動性や均一な燃料噴射実現の観点から-20℃における動粘度が8mm/s以下であることが好ましく、7mm/s以下であることがより好ましく、5mm/s以下であることが更に好ましい。なお、ここでいう動粘度とは、JIS K2283「原油及び石油製品の動粘度試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の銅板腐食は、燃料タンクや配管の腐食性の観点から、1以下であることが好ましい。ここでいう銅板腐食とは、JIS K2513「石油製品-銅板腐食試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の芳香族分は、燃焼性(煤発生防止)の観点から25容量%以下であることが好ましく、20容量%であることがより好ましい。ここでいう芳香族分とは、JIS K2536「燃料油炭化水素成分試験方法(けい光指示薬吸着法)」で測定される値を意味する。
 本発明の航空燃料油組成物の煙点は、燃焼性(煤発生防止)の観点から25mm以上であることが好ましく、27mm以上であることがより好ましく、30mm以上であることが更に好ましい。なお、ここでいう煙点とは、JIS K2537「燃料油煙点試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の硫黄分は、腐食性の観点から、0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。また、同様の腐食性の観点より、メルカプタン硫黄分は、0.003質量%以下であることが好ましく、0.002質量%以下であることがより好ましく、0.001質量%以下であることが更に好ましい。なお、ここでいう硫黄分とは、JIS K2541「原油及び石油製品硫黄分試験方法」で測定された値、メルカプタン硫黄分は、JIS K2276「メルカプタン硫黄分試験方法(電位差滴定法)」で測定された値を意味する。
 本発明の航空燃料油組成物の引火点は、安全性の観点から38℃以上であることが好ましく、40℃以上であることがより好ましく、45℃以上であることが更に好ましい。なお、ここでいう引火点とは、JIS K2265「原油及び石油製品‐引火点試験方法‐タグ密閉式引火点試験方法」で求めた値を意味する。
 本発明の航空燃料油組成物の全酸価は、腐食性の観点から0.1mgKOH/g以下であることが好ましく、0.08mgKOH/g以下であることがより好ましく、0.05mgKOH/g以下であることが更に好ましい。なお、ここでいう全酸価とは、JIS K2276「全酸価試験方法」で測定される値を意味する。
 本発明の航空燃料油組成物の析出点は、飛行時の低温暴露下での燃料凍結による燃料供給低下を防ぐ観点から、-47℃以下であることが好ましく、-48℃以下であることがより好ましく、-50℃以下であることが更に好ましい。なお、ここでいう析出点とは、JIS K2276「析出点試験方法」により測定された値を意味する。
 本発明の航空燃料油組成物の熱安定度は、高温暴露時の析出物生成による燃料フィルタ閉塞防止等の観点から、A法における圧力差10.1kPa以下、予熱管堆積物評価値3未満、B法における圧力差3.3kPa以下、予熱管堆積物評価値3未満であることが好ましい。なお、ここでいう熱安定度とは、JIS K2276「熱安定度試験方法A法、B法」により測定された値を意味する。
 本発明の航空燃料油組成物の水溶解度は、低温暴露時における溶解水の析出によるトラブル防止のため、分離状態2以下、界面状態1b以下であることが好ましい。なお、ここでいう水溶解度とは、JIS K2276「水溶解度試験方法」により測定された値を意味する。
 本発明の動植物油脂を原料として製造された環境低負荷型基材を含有する航空燃料油基材、および航空燃料油組成物は、燃焼性、酸化安定性、ライフサイクルCO排出特性の全てに優れるものである。
 以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(触媒の調製)
<触媒A>
 濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号18.0gを加え、65℃に保温した容器に入れた。他方、65℃に保温した別の容器において濃度2.5質量%の硫酸アルミニウム水溶液3000gにリン酸(濃度85%)6.0gを加えた溶液を調製し、これに前述のアルミン酸ナトリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状の生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。
 このケーキ状のスラリーを、還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、75℃で20時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去しながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押し出し、110℃で1時間乾燥した後550℃で焼成し、成形担体を得た。
 得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながら三酸化モリブデン17.3g、硝酸ニッケル(II)6水和物13.2g、リン酸(濃度85%)3.9g及びリンゴ酸4.0gを含む含浸溶液をフラスコ内に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。触媒Aの物性を表1に示す。
<触媒B>
 シリカ-アルミナ比(質量比)が70:30であるシリカアルミナ担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらテトラアンミン白金(II)クロライド水溶液をフラスコ内に注入した。含浸した試料は110℃で乾燥した後、350℃で焼成し、触媒Bを得た。触媒Bにおける白金の担持量は、触媒全量を基準として0.5質量%であった。触媒Bの物性を表1に示す。
<触媒C>
 非特許文献(Appl. Catal.A, 299(2006)、167-174頁)に記載された方法により、ZSM-48ゼオライトを合成した。合成したZSM-48ゼオライトを、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成して焼成ゼオライトを得た。
 アルミナバインダーとして、市販のベーマイトパウダー(商品名:カタロイド-AP)を準備した。適当量の水を加えてスラリー状にしたベーマイトパウダーに、ゼオライト:アルミナが70:30(質量%)になるように、焼成ゼオライトとベーマイトパウダーとを十分混練して混練物を得た。この混練物を押し出し成型機に供給して、シリンダー状(直径:1.5mm、長さ:1cm)の成形担体を得た。得られた成形担体を、空気流通下、95℃で3時間乾燥した後、空気雰囲気下、550℃で3時間焼成した。
 焼成した成形担体50gをナス型フラスコに入れ、ロータリーエバポレーターで脱気しながらジニトロジアミノ白金、ジニトロジアミノパラジウムを加えて、成形担体にこれらを含浸させて含浸試料を得た。含浸量は、得られる触媒を基準として、白金及びパラジウムの担持量がそれぞれ0.3質量%及び0.3質量%になるように調整した。含浸試料を空気雰囲気下、120℃で1時間乾燥した後、空気雰囲気下、550℃で焼成し、触媒Cを得た。触媒Cの物性を表1に示す。
(実施例1)
 触媒A(100ml)を充填した反応管(内径20mm)を固定床流通式反応装置に向流に取り付けた。その後、ジメチルジサルファイドを加えた直留軽油(硫黄分3質量%)を用いて触媒層平均温度300℃、水素分圧6MPa、液空間速度1h-1、水素/油比200NL/Lの条件下で、4時間触媒の予備硫化を行った。
 予備硫化後、表2に示す性状を有する植物油脂1に後述の高圧セパレータ導入後の水素化処理油の一部を植物油脂1に対して1質量倍となる量をリサイクルし、被処理油に対する硫黄分含有量(硫黄原子換算)が10質量ppmになるようにジメチルサルファイドを添加して被処理油を調製した。その後、被処理油の水素化処理を行った。また、水素化処理の条件は、触媒層平均温度(反応温度)を300℃、水素圧力を6.0MPa、液空間速度を1.0h-1、水素/油比を500NL/Lとした。水素化処理後の処理油を高圧セパレータに導入し、処理油から水素、硫化水素、二酸化炭素および水の除去を行った。
 高圧セパレータ導入後の水素化処理油の一部は、冷却水で40℃まで冷却して、前述の通り原料油である植物油脂にリサイクルし、リサイクルした残りの水素化処理油を、触媒B(150ml)を充填した反応管(内径20mm)を固定床流通式反応装置(異性化装置)に導入し、水素化異性化処理を行った。まず、触媒Bに対して、触媒層平均温度320℃、水素圧力5MPa、水素ガス量83ml/minの条件化で6時間、還元処理を行い、次に、触媒層平均温度(反応温度)を320℃、水素圧力を3MPa、液空間速度を1.0h-1、水素/油比を500NL/Lの条件で水素化異性化処理を行った。異性化処理後の水素化異性化処理油は精留塔に導かれ、沸点範囲140℃未満の軽質留分、140~300℃の中間留分、300℃を超える重質留分に分留した。このうち140~300℃の中間留分を航空燃料油基材1とした。水素化処理条件および水素化異性化処理条件及び得られた航空燃料油基材1の性状を表3に示す。
(実施例2~4、比較例1~4)
 触媒、植物油脂、水素化処理工程の反応条件、水素化異性化処理工程の反応条件を表3に記載の条件にした以外は実施例1と同様の処理を行なった。得られた航空燃料油基材2~8の性状を表3に併記する。
 また、石油系航空燃料基材としては、原油の常圧蒸留装置から得られる直留灯油を反応温度320℃、水素圧力3MPa、LHSV3.0h-1、水素/油比150NL/Lで処理した水素化脱硫基材を用い、その性状を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(実施例4~8および比較例6、7)
 表3に示す性状を有する環境低負荷型航空燃料油基材と表2に示す性状を有する石油系航空燃料油基材とを混合し、表4に示す航空燃料油組成物を調製した。なお、実施例4~7にはいずれにも下記添加剤を添加した。
 ・酸化防止剤(2,6-ditertiary-butyl-phenol) 20質量ppm
 ・静電気防止剤(STADIS 450)    2.0mg/l
(原料油、航空燃料油基材および航空燃料油の一般性状)
 表2、表3および表4に示す原料油、航空燃料油基材および航空燃料油組成物の一般性状は以下の方法により測定された値をいう。
 15℃における密度(密度@15℃)は、JIS K2249「原油及び石油製品-密度試験方法並びに密度・質量・容量換算表」で測定される値を意味する。
 30℃または-20℃における動粘度は、JIS K2283「原油及び石油製品-動粘度試験方法及び粘度指数算出方法」で測定される値を意味する。
 元素分析C(質量%)、H(質量%)はASTM D 5291 “Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants”で定められる方法で測定される値を意味する。
 酸素分は、UOP649-74 “Total Oxygen in Organic Materials by Pyrolysis Gas ChromatographicTechnique”等の方法で測定される値を意味する。
 硫黄分は、JIS K2541「原油及び石油製品硫黄分試験方法」で測定される値を意味する。
 メルカプタン硫黄分は、JIS K2276「メルカプタン硫黄分試験方法(電位差滴定法)」で測定された値を意味する。
 酸価は、JIS K 2501「石油製品及び潤滑油-中和価試験方法」の方法で測定される値を意味する。
 油脂中の脂肪酸基の構成比率は、前述の基準油脂分析試験法(日本油化学会制定)(1993)「2.4.21.3-77脂肪酸組成(FID昇温ガスロマトグラフ法)」に準じて求められる値を指す。
 引火点は、JIS K2265「原油及び石油製品‐引火点試験方法‐タグ密閉式引火点試験方法」で求めた値を意味する。
 蒸留性状は、JIS K2254「石油製品-蒸留試験方法」で測定される値を意味する。
 芳香族分は、JIS K2536「燃料油炭化水素成分試験方法(けい光指示薬吸着法)」で測定される値を意味する。
 全酸価は、JIS K2276「石油製品-航空燃料油試験方法-全酸価試験方法」で測定される値を意味する。
 析出点は、JIS K2276「石油製品-航空燃料油試験方法-析出点試験方法」により測定された値を意味する。
 煙点は、JIS K2537「燃料油煙点試験方法」で測定される値を意味する。
 熱安定度は、JIS K2276「石油製品-航空燃料油試験方法-熱安定度試験方法A法、B法」により測定された値を意味する。
 真発熱量は、JIS K2279「原油及び燃料油発熱量試験方法」で測定される値を意味する。
 銅板腐食(50℃、4hr)は、JIS K2513「石油製品-銅板腐食試験方法」で測定される値を意味する。
 導電率は、JIS K 2276「石油製品-航空燃料油試験方法-導電率試験方法」で測定される値を意味する。
 実在ガム分は、JIS K2261「ガソリン及び航空燃料油実在ガム試験方法」で測定される値を意味する。
 水溶解度は、JIS K2276「石油製品-航空燃料油試験方法-水溶解度試験方法」により測定された値を意味する。
 異性化率(2分岐以上のイソパラフィン含有率)は、ガスクロマトグラフ・飛行時間質量分析計により測定された値を意味する。
 2分岐以上のイソパラフィン含有率は、ガスクロマトグラフ・飛行時間質量分析計により測定された値を意味する。
 140~300℃留分収率とは、被処理油を水素化処理及び水素化異性化処理して得られた水素化異性化処理油の全量に対する140~300℃の留分の質量割合のことを意味する。
(ライフサイクル特性)
 本実施例で記載するライフサイクル特性(ライフサイクルCO算出)は以下の手法によって計算した。
 ライフサイクルCOは、航空燃料油使用による航空機の飛行(燃料の燃焼)に伴い発生したCOと、燃料製造における原料採掘から燃料給油までに発生したCOと分けて算出した。
 燃焼に伴い発生するCO(以下、「Tank to Wheel CO」という)は、環境省の定義値(ジェット燃料:2.5kg‐CO/L)を使用し、単位発熱量当たりの排出量に換算して使用した。また、採掘から燃料タンクへの燃料給油までに発生したCO(以下、「Well to Tank CO」という。)は、原料及び原油ソースの採掘、輸送、加工、配送、車両への給油までの一連の流れにおけるCO排出量の総和として算出した。なお、「Well to Tank CO」の算出にあたっては、下記(1B)~(5B)に示す二酸化炭素の排出量を加味して演算を行った。かかる演算に必要となるデータとしては、本発明者らが有する製油所運転実績データを用いた。
(1B)各種処理装置、ボイラー等設備の燃料使用に伴う二酸化炭素の排出量。
(2B)水素を使用する処理においては、水素製造装置における改質反応に伴う二酸化炭素の排出量。
(3B)接触分解装置等の連続触媒再生を伴う装置を経由する場合は、触媒再生に伴う二酸化炭素の排出量。
(4B)航空燃料組成物を、横浜で製造又は陸揚げし、横浜から仙台まで配送し、仙台で燃焼機器に給油したときの二酸化炭素の排出量。
(5B)動植物油脂および動植物油脂由来の成分は原産地をマレーシアおよびその周辺地域とし、製造を横浜で行うとした際の二酸化炭素の排出量。
 なお、動植物油脂および動植物油脂由来の成分を使用した場合、いわゆる京都議定書においてはこれらの燃料に起因する二酸化炭素は排出量として計上されないルールが適用される。本計算においては、燃焼時に発生する「Tank to Wheel CO」に対してこれを適用させた。
 表4から明らかなとおり、動植物油脂由来の原料を水素化処理して得られた航空燃料油基材を含有する航空燃料油組成物は、代表的な石油系航空燃料油組成物と較べ遜色の無い一般性状を有する一方、ライフサイクル特性に優れ、且つ地球温暖化防止に資する石油代替の新規航空燃料油組成物となっている。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、動植物油脂に由来する含酸素炭化水素化合物を原料として製造された環境低負荷型軽油基材を含有することにより、従来の航空燃料油組成物では実現が困難であったライフサイクルCO排出特性および酸化安定性に優れ、なおかつ低温流動性が優れた航空燃料油組成物を提供される。

Claims (7)

  1.  水素の存在下、動植物油脂に由来する含酸素炭化水素化合物と含硫黄炭化水素化合物とを含有する被処理油を水素化処理し、次いで水素化異性化処理を施すことで得られ、
     沸点範囲140~300℃である留分収率が70質量%以上;
     イソパラフィンの含有率が80質量%以上;
     2分岐以上のイソパラフィン含有率が17質量%以上;
     芳香族分が0.1容量%未満;
     オレフィン分が0.1容量%未満;
     硫黄分が1質量ppm未満;及び
     酸素含有量が0.1質量%未満であることを特徴とする航空燃料油基材。
  2.  前記被処理油が、石油系基材を含有することを特徴とする請求項1に記載の航空燃料油基材。
  3.  前記水素化処理が、水素の存在下、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物からなる担体に周期表第6A族及び第8族の元素から選ばれる1種以上の金属を担持してなる触媒を用いて、水素圧力2~13MPa、液空間速度0.1~3.0h-1、水素/油比150~1500NL/L、反応温度150~480℃の条件下で前記被処理油を水素化処理する工程であることを特徴とする請求項1または2に記載の航空燃料油基材。
  4.  前記水素化異性化処理が、前記水素化処理により得られた水素化処理油を、さらに、水素存在下、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン、マグネシウム及びゼオライトから選ばれる物質より構成される多孔性無機酸化物からなる担体に周期表第8族の元素から選ばれる金属を担持してなる触媒を用いて、水素圧力1~5MPa、液空間速度0.1~3.0h-1、水素/油比250~1500NL/L、反応温度200~360℃の条件下で異性化処理する工程であることを特徴とする請求項1~3のいずれかに記載の航空燃料油基材。
  5.  請求項1~4のいずれかに記載の航空燃料油基材を含有するとともに、硫黄分10質量ppm以下であり且つ析出点が-47℃以下であることを特徴とする航空燃料組成物。
  6.  酸化防止剤、静電気防止剤、金属不活性化剤および氷結防止剤から選ばれる一つ以上の添加剤を含有することを特徴とする請求項5に記載の航空燃料油組成物。
  7.  JIS K2209で規定される航空タービン燃料油の規格値を満足することを特徴とする請求項5または6に記載の航空燃料油組成物。
PCT/JP2010/064723 2009-08-31 2010-08-30 燃料油基材及びこれを含有する航空燃料組成物 WO2011025001A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012004507A BR112012004507A2 (pt) 2009-08-31 2010-08-30 base de óleo combustível e composição de combustível para aviação contendo a mesma
EP10812047.8A EP2474599A4 (en) 2009-08-31 2010-08-30 FUEL OIL BASE AND AIRCRAFT FUEL COMPOSITION THEREWITH
CN2010800386948A CN102482600A (zh) 2009-08-31 2010-08-30 燃料油基材及含有其的航空燃料组合物
US13/391,765 US20120209038A1 (en) 2009-08-31 2010-08-30 Fuel oil base and aviation fuel composition containing same
SG2012012449A SG178538A1 (en) 2009-08-31 2010-08-30 Fuel oil base and aviation fuel composition containing same
AU2010287356A AU2010287356B2 (en) 2009-08-31 2010-08-30 Fuel oil base and aviation fuel composition containing same
US14/331,775 US9505986B2 (en) 2009-08-31 2014-07-15 Fuel oil base and aviation fuel composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009200777A JP5525786B2 (ja) 2009-08-31 2009-08-31 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
JP2009-200777 2009-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/391,765 A-371-Of-International US20120209038A1 (en) 2009-08-31 2010-08-30 Fuel oil base and aviation fuel composition containing same
US14/331,775 Division US9505986B2 (en) 2009-08-31 2014-07-15 Fuel oil base and aviation fuel composition containing same

Publications (1)

Publication Number Publication Date
WO2011025001A1 true WO2011025001A1 (ja) 2011-03-03

Family

ID=43628092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064723 WO2011025001A1 (ja) 2009-08-31 2010-08-30 燃料油基材及びこれを含有する航空燃料組成物

Country Status (11)

Country Link
US (2) US20120209038A1 (ja)
EP (1) EP2474599A4 (ja)
JP (1) JP5525786B2 (ja)
KR (1) KR20120083340A (ja)
CN (1) CN102482600A (ja)
AU (1) AU2010287356B2 (ja)
BR (1) BR112012004507A2 (ja)
MY (1) MY156762A (ja)
SG (1) SG178538A1 (ja)
TW (1) TW201113360A (ja)
WO (1) WO2011025001A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130220882A1 (en) * 2012-02-29 2013-08-29 Total Raffinage Marketing Jet Turbine Fuel Compositions and Methods of Making and Using the Same
US20140357924A1 (en) * 2011-11-15 2014-12-04 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for producing fuel oil
US20150011784A1 (en) * 2012-01-31 2015-01-08 Jx Nippon Oil & Energy Corporation Method for producing fuel oil base
US20150031929A1 (en) * 2011-11-15 2015-01-29 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for producing fuel oil
US20150045593A1 (en) * 2012-11-12 2015-02-12 Uop Llc Jet-range hydrocarbons

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330935B2 (ja) 2009-08-31 2013-10-30 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物
JP5525786B2 (ja) 2009-08-31 2014-06-18 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
KR101936440B1 (ko) 2013-04-09 2019-01-08 에스케이이노베이션 주식회사 탄화수소의 알킬화 반응에 의한 윤활기유의 제조방법
RU2577520C2 (ru) * 2013-05-24 2016-03-20 Открытое акционерное общество "Интеравиагаз" Авиационное сконденсированное топливо (варианты)
US9469583B2 (en) * 2014-01-03 2016-10-18 Neste Oyj Composition comprising paraffin fractions obtained from biological raw materials and method of producing same
EP3095838A1 (en) * 2015-05-20 2016-11-23 Total Marketing Services Process for the production of biodegradable hydrocarbon fluids
EP3095839A1 (en) 2015-05-20 2016-11-23 Total Marketing Services Biodegradable hydrocarbon fluids by hydrogenation
EP3095842A1 (en) * 2015-05-20 2016-11-23 Total Marketing Services Biodegradable hydrocarbon fluids based on syngas
CN105251524B (zh) * 2015-10-15 2017-12-08 广东石油化工学院 生物质液化油催化裂化脱氧催化剂
ES2803557T3 (es) 2015-12-21 2021-01-27 Neste Corp Método para producir una composición de combustible de aviación
CN106190351A (zh) * 2016-08-31 2016-12-07 西安精典石化科技有限公司 节能环保锅炉高清洁燃料
CN106675672B (zh) * 2016-11-24 2018-08-31 贵州黔晟新能源实业有限公司 一种高闪点煤焦油醇基燃料及其制备方法
FI20175528A1 (en) 2017-06-07 2018-12-08 Neste Oyj Fuel composition and process for preparing a fuel composition
CN111225968A (zh) * 2017-10-16 2020-06-02 出光兴产株式会社 喷气发动机生物燃料用基材、包含其的喷气发动机生物燃料、和喷气发动机生物燃料的制造方法
US11085336B2 (en) * 2018-12-21 2021-08-10 General Electric Company Method for operating a combined cycle power plant and corresponding combined cycle power plant
US20220195321A1 (en) * 2019-03-28 2022-06-23 Adeka Corporation Fuel oil composition
FI128378B (en) * 2019-04-03 2020-04-15 Neste Oyj Process and input material for the production of hydrocarbons
US20230250348A1 (en) * 2022-02-09 2023-08-10 ExxonMobil Technology and Engineering Company Hydrocarbon composition
WO2023154701A1 (en) * 2022-02-09 2023-08-17 ExxonMobil Technology and Engineering Company Renewable jet production
FR3138442A1 (fr) * 2022-07-29 2024-02-02 Totalenergies Onetech Composition de carburateur d’origine renouvelable et son procede de fabrication

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154647A (ja) 2003-11-27 2005-06-16 Rebo International:Kk 油脂からのデイーゼル燃料油製造プロセス
JP2007308566A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法及び環境低負荷型ガソリン基材
JP2007308565A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法
JP2007308569A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp A重油組成物
JP2007332360A (ja) * 2006-05-17 2007-12-27 Nippon Oil Corp ガソリン組成物
JP2008239876A (ja) * 2007-03-28 2008-10-09 Nippon Oil Corp 軽油組成物
JP2008291274A (ja) * 1997-02-07 2008-12-04 Exxonmobil Research & Engineering Co 合成ジェット燃料およびその製造方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300009A (en) 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
US4992605A (en) 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US7217852B1 (en) * 1998-10-05 2007-05-15 Sasol Technology (Pty) Ltd. Process for producing middle distillates and middle distillates produced by that process
GB2355725A (en) 1999-10-29 2001-05-02 Exxon Research Engineering Co Jet fuels with improved flow properties
US6846402B2 (en) * 2001-10-19 2005-01-25 Chevron U.S.A. Inc. Thermally stable jet prepared from highly paraffinic distillate fuel component and conventional distillate fuel component
US6743962B2 (en) * 2002-01-31 2004-06-01 Chevron U.S.A. Inc. Preparation of high octane alkylate from Fischer-Tropsch olefins
US7232935B2 (en) 2002-09-06 2007-06-19 Fortum Oyj Process for producing a hydrocarbon component of biological origin
EP1396531B2 (en) 2002-09-06 2016-11-30 Neste Oil Oyj Process for producing a hydrocarbon component of biological origin
KR101143114B1 (ko) * 2003-11-13 2012-05-08 인피늄 인터내셔날 리미티드 고온에서 제트연료에서의 침적물 형성을 억제하는 방법
WO2007027955A2 (en) * 2005-08-29 2007-03-08 Brazen Biofuels Inc Fuel composition
JP4878824B2 (ja) * 2005-11-30 2012-02-15 Jx日鉱日石エネルギー株式会社 環境低負荷型燃料の製造方法および環境低負荷型燃料
JP5072006B2 (ja) 2006-05-17 2012-11-14 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
EP2035532A4 (en) 2006-06-30 2012-08-01 Univ North Dakota PROCESS FOR COLD, STABLE BIOJET FUEL
WO2008117856A1 (ja) * 2007-03-28 2008-10-02 Nippon Oil Corporation 軽油組成物
WO2008124607A1 (en) * 2007-04-06 2008-10-16 Syntroleum Corporation Process for co-producing jet fuel and lpg from renewable sources
US8143469B2 (en) * 2007-06-11 2012-03-27 Neste Oil Oyj Process for producing branched hydrocarbons
JP5022117B2 (ja) 2007-06-22 2012-09-12 Jx日鉱日石エネルギー株式会社 炭化水素油の製造方法
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US8742183B2 (en) * 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
JP5072609B2 (ja) 2008-01-08 2012-11-14 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
US8039682B2 (en) * 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US20090300971A1 (en) * 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
US8766025B2 (en) * 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US7919664B2 (en) * 2008-07-31 2011-04-05 Chevron U.S.A. Inc. Process for producing a jet fuel
US7955495B2 (en) * 2008-07-31 2011-06-07 Chevron U.S.A. Inc. Composition of middle distillate
US7968757B2 (en) * 2008-08-21 2011-06-28 Syntroleum Corporation Hydrocracking process for biological feedstocks and hydrocarbons produced therefrom
CA2742793C (en) * 2008-11-26 2016-05-10 Elevance Renewable Sciences, Inc. Methods of producing jet fuel from natural oil feedstocks through oxygen-cleaved reactions
SI2253608T2 (sl) * 2009-05-19 2021-11-30 Neste Oyj Postopek za izdelavo razvejenih nasičenih ogljikovodikov
US8686203B2 (en) * 2009-06-12 2014-04-01 Exxonmobil Research And Engineering Company Process for preparing diesel fuels using vegetable oils or fatty acid derivatives
JP5330935B2 (ja) 2009-08-31 2013-10-30 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物
JP5530134B2 (ja) * 2009-08-31 2014-06-25 Jx日鉱日石エネルギー株式会社 航空燃料油組成物
JP5525786B2 (ja) 2009-08-31 2014-06-18 Jx日鉱日石エネルギー株式会社 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
WO2014164406A1 (en) * 2013-03-13 2014-10-09 Basf Corporation Hydroisomerization catalysts based on fe containing molecular sieves

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291274A (ja) * 1997-02-07 2008-12-04 Exxonmobil Research & Engineering Co 合成ジェット燃料およびその製造方法
JP2005154647A (ja) 2003-11-27 2005-06-16 Rebo International:Kk 油脂からのデイーゼル燃料油製造プロセス
JP2007308566A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法及び環境低負荷型ガソリン基材
JP2007308565A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp 水素化精製方法
JP2007308569A (ja) * 2006-05-17 2007-11-29 Nippon Oil Corp A重油組成物
JP2007332360A (ja) * 2006-05-17 2007-12-27 Nippon Oil Corp ガソリン組成物
JP2008239876A (ja) * 2007-03-28 2008-10-09 Nippon Oil Corp 軽油組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"The Path to a Jet Fuel Alternative: Airbus Initiatives and the Steps Ahead", ICAO JOURNAL, vol. 63, no. 4, September 2008 (2008-09-01), pages 22, 24, XP008139975 *
APPL. CATAL. A, vol. 299, 2006, pages 167 - 174
See also references of EP2474599A4 *
TADAHIDE SONE: "Suisoka Bio Keiyu (BHD) no Seizo Gijutsu", MATERIAL STAGE, vol. 7, no. 11, February 2008 (2008-02-01), pages 73 - 78, XP008140460 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140357924A1 (en) * 2011-11-15 2014-12-04 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for producing fuel oil
US20150031929A1 (en) * 2011-11-15 2015-01-29 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Method for producing fuel oil
US20150011784A1 (en) * 2012-01-31 2015-01-08 Jx Nippon Oil & Energy Corporation Method for producing fuel oil base
US20130220882A1 (en) * 2012-02-29 2013-08-29 Total Raffinage Marketing Jet Turbine Fuel Compositions and Methods of Making and Using the Same
US20150045593A1 (en) * 2012-11-12 2015-02-12 Uop Llc Jet-range hydrocarbons

Also Published As

Publication number Publication date
JP2011052074A (ja) 2011-03-17
CN102482600A (zh) 2012-05-30
KR20120083340A (ko) 2012-07-25
US20140323777A1 (en) 2014-10-30
AU2010287356A1 (en) 2012-03-15
EP2474599A1 (en) 2012-07-11
US20120209038A1 (en) 2012-08-16
BR112012004507A2 (pt) 2016-03-29
JP5525786B2 (ja) 2014-06-18
TW201113360A (en) 2011-04-16
EP2474599A4 (en) 2013-10-30
SG178538A1 (en) 2012-03-29
US9505986B2 (en) 2016-11-29
AU2010287356B2 (en) 2016-04-14
MY156762A (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP5525786B2 (ja) 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
JP5339863B2 (ja) 航空燃料油組成物の製造方法
JP5330935B2 (ja) 航空燃料油基材の製造方法及び航空燃料油組成物
JP5317644B2 (ja) 航空燃料油基材の製造方法
JP5530134B2 (ja) 航空燃料油組成物
JP5833634B2 (ja) 燃料油基材の製造方法
JP5349213B2 (ja) 航空燃料油基材の製造方法および航空燃料油組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038694.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10812047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010287356

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12012500377

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1759/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201000828

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2010287356

Country of ref document: AU

Date of ref document: 20100830

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127006886

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010812047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010812047

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391765

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012004507

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012004507

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120229