WO2011024865A1 - Image target identification device, image target identification method, and image target identification program - Google Patents

Image target identification device, image target identification method, and image target identification program Download PDF

Info

Publication number
WO2011024865A1
WO2011024865A1 PCT/JP2010/064403 JP2010064403W WO2011024865A1 WO 2011024865 A1 WO2011024865 A1 WO 2011024865A1 JP 2010064403 W JP2010064403 W JP 2010064403W WO 2011024865 A1 WO2011024865 A1 WO 2011024865A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
luminance
value
infrared
shift
Prior art date
Application number
PCT/JP2010/064403
Other languages
French (fr)
Japanese (ja)
Inventor
岳夫 野崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2011528826A priority Critical patent/JP5664551B2/en
Publication of WO2011024865A1 publication Critical patent/WO2011024865A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Definitions

  • the present invention relates to an image processing apparatus for detecting a target such as a ship using an infrared image.
  • pilots search for people floating in the waves and rescue boats using radio signals by beacons such as rescue signals, visual search while flying in the search sea area in the low sky, Perform searches based on images from infrared cameras. Especially at night and in bad weather, the visibility and visibility are worse than when searching for clear sky and daytime, so it is possible to discover the target objects such as the victims floating on the sea surface, people on ships and ships, etc. with the naked eye. Or shooting as an image that can be detected by an infrared camera becomes difficult. As a result, there is a risk that in the situation related to lifesaving, it takes time to discover the person, so the probability of survival becomes low, or the invasion of ships and suspicious persons of other countries due to delay in discovery of the search target There is an inconvenience that increases.
  • the searcher by performing contrast improvement in the captured infrared image, the searcher generates a field of view support information (image) for identifying and finding the target object at an early stage.
  • image image
  • Image information processing technology, image identification support technology, and the like that are effectively supported have been developed.
  • an infrared camera that captures an infrared image by an uncooled infrared sensor that is downsized by omitting a cooling function and has a significantly improved S / N ratio with respect to noise
  • an image processing system using the infrared camera, and the like are known. ing.
  • a miniature uncooled infrared camera is installed on an aircraft or flying object, an infrared image is taken, the obtained infrared image is processed, and a target object is extracted and identified from the infrared image.
  • An infrared image processing system for display is disclosed (Patent Document 1).
  • Patent Document 1 infrared light incident from the target and the background of the target is separated into plane polarized light orthogonal to each other, and the infrared light is received by an image sensor in which two light receiving elements are two-dimensionally arranged, and converted into an electric signal amount. Then, a polarization difference image signal obtained by taking the difference of the electric signal amount at the same coordinate position of the two-dimensional coordinates among the output image signals is output.
  • a polarization image pickup device that outputs a luminance image signal obtained by adding electric signal amounts at the same coordinate position of two-dimensional coordinates, a combination of a target and a background, a target and its background, Is a binarized image signal obtained by binarizing the electric signal amount of the polarization difference image signal based on a comparison with the threshold value in combination with a threshold database that stores the threshold value of the polarization difference image signal that can be separated in advance. Is output. Further, a target candidate is extracted from an image obtained by multiplying the binarized value of the binarized image signal and the electric signal amount of the luminance image signal at the same coordinate position of the two-dimensional coordinates. Yes.
  • the target object and its background Is equipped with an optical system consisting of surface deflection light receiving elements that separate P waves and S waves in front of the infrared sensor, and an appropriate brightness calculation processing unit for captured images.
  • Infrared image processing is performed to extract a target object on the assumption that a location above a predetermined temperature (luminance) is the target object.
  • infrared rays from various directions are collected using a dome-shaped lens composed of a large number of lenses (Patent Document 2), and the captured image is binarized based on the temporal change in luminance of the captured image.
  • Patent Document 3 a system for detecting a target moving from a background of a complicated luminance distribution in an infrared image is disclosed.
  • Patent Document 4 an image device for improving the visibility of a target object in an infrared image taken when fog occurs by combining an infrared image and a radar image is disclosed (Patent Document 4).
  • JP 2001-056860 A Japanese Patent Laid-Open No. 06-242304 Japanese Patent Laid-Open No. 06-303485 JP-A-10-62531
  • Patent Document 1 has a disadvantage that it is difficult to reduce the size because the optical system for separating the P wave and the S wave before the infrared sensor has a large-scale configuration.
  • the infrared sensor is used. Since the captured infrared image has a lot of background noise, the contrast between the target object and the background cannot be obtained depending on the optical system, making it difficult to correctly recognize and capture the target object. There were inconveniences such as erroneous recognition of (target) and oversight.
  • the present invention provides an image target identification device, an image target extraction method, and an image target extraction program that can improve the inconvenience of the related technology and can reliably identify a target object in a captured infrared image. For that purpose.
  • an image target identification device condenses infrared light from a photographing object including a target object and acquires a specific wavelength band from the condensed infrared light.
  • An optical unit that performs, an uncooled infrared image sensor that generates an infrared image corresponding to the temperature of the imaging target based on the wavelength acquired by the optical unit, and a calculation in which the target object is highlighted based on the infrared image
  • An image target identification device including an image processing unit that generates a processed image, wherein the image processing unit generates a luminance histogram indicating a frequency of appearance of luminance values of pixels included in the infrared image And the luminance value having the highest appearance frequency in the luminance histogram is set to an intermediate value of the luminance range width in the infrared image, and the previous value based on the intermediate value
  • a luminance level adjustment unit that generates a luminance shift image in which each luminance value of the infrared image is linearly shifted
  • the image target identification method condenses infrared light from an imaging target including a target object and generates an infrared image based on the temperature of the imaging target from the condensed infrared light.
  • a luminance value that maximizes the appearance frequency in the infrared image is set to an intermediate value of the luminance range width in the infrared image, and a luminance shift image is generated by linearly shifting each luminance value of the infrared image based on the intermediate value,
  • a reverse shift image in which the brightness level of the brightness shift image is inverted is generated, and brightness values at corresponding positions of the brightness shift image and the reverse shift image are generated. It is characterized by generating the processing image by performing arithmetic processing based on the difference.
  • the image target identification program condenses infrared light from a photographing object including a target object and generates an infrared image based on the temperature of the imaging object from the condensed infrared light.
  • a luminance histogram for generating a luminance histogram indicating a frequency of appearance of luminance values of pixels included in the infrared image the image target identification program for generating an arithmetic processing image in which the target object is highlighted based on An arithmetic function and a luminance value with the highest appearance frequency in the luminance histogram are set to an intermediate value of the luminance range width in the infrared image, and each luminance value of the infrared image is linearly shifted based on the intermediate value
  • Luminance level adjustment function for generating a luminance shift image and inversion for generating an inverted shift image obtained by inverting the luminance level of the luminance shift image
  • a brightness calculation processing function for generating the calculation processing image by performing calculation processing based on
  • the luminance value having the maximum appearance frequency is set to the intermediate value of the display gradation number from the luminance histogram indicating the appearance frequency of the luminance value of the pixel of the infrared image.
  • the brightness value difference between the means for generating a brightness shifted image that is set and linearly shifting other brightness values based on this intermediate value, and the inverted shift image obtained by inverting the brightness level of this image and the brightness shifted image Since the calculation processing image is generated by performing the calculation processing based on the target object, the target object in the captured infrared image is highlighted, and the calculation processing image that can reliably identify the target object is generated.
  • An image target identification device, an image target identification method, and an image target identification program can be provided.
  • FIG. 3A is a schematic explanatory diagram of one frame data of an infrared image in the image target identification device disclosed in FIG. 1
  • FIG. 3B is a diagram showing a luminance shift image of the infrared image and its inverted shift image.
  • FIG. 3C is an explanatory diagram showing a luminance profile
  • FIG. 3C is an explanatory diagram showing a luminance profile of a processed image that is a result of the subtraction process for the image shown in FIG.
  • FIG. 6A is a schematic explanatory diagram of one frame data of an infrared image shown by the image target identification device disclosed in FIG. 1
  • FIG. 6B is a luminance shift image of the infrared image and its inverted shift image.
  • FIG. 6C is an explanatory diagram showing a brightness profile of a processed image that is a result of division processing on an infrared image.
  • an image identification support device (image target identification device) 100 includes a far-infrared light collecting dome 1 (hereinafter referred to as “light collecting dome”) for collecting infrared light,
  • the optical unit 2 that receives the emitted infrared light through a preset condenser lens, and the heat corresponding to the temperature of the imaging object based on the wavelength (band) obtained through the optical unit 2
  • An image processing is performed on an uncooled infrared image sensor unit (uncooled infrared sensor unit) 3 that generates an image (infrared image) and an infrared image generated by the uncooled infrared sensor unit 3,
  • It has a configuration including an image processing unit 4 that generates a processed image in which a target object such as a ship is highlighted on a background region such as the sky, and an image display unit 5 that outputs and displays the generated processed image.
  • the condensing dome 1 that condenses the infrared light includes a condensing lens that guides the condensed infrared light to the uncooled infrared sensor unit 3 of the optical unit 2.
  • the optical unit 2 includes an optical filter that detects a desired wavelength band set in advance.
  • the uncooled infrared sensor unit 3 generates an infrared image indicating the amount of heat corresponding to the infrared rays that have passed through the optical filter of the optical unit 2.
  • the generated infrared image is processed in the image processing unit 4 for each frame included in the infrared image.
  • the image processing unit 4 generates a luminance histogram of each frame of the infrared image, and determines a luminance level (mode frequency level) at which the appearance frequency (appearance frequency value) is maximum based on the luminance histogram.
  • the appearance frequency value corresponding to each luminance level in each frame of the infrared image is linearly converted so that the histogram calculating unit (luminance histogram calculating unit) 6 to detect and the mode luminance level become an intermediate value of the number of display gradations.
  • a luminance shift calculation unit 7 that generates a luminance shift image and an inverted image processing unit 8 that generates an inverted shift image obtained by inverting the luminance level of the luminance shift image are included.
  • the image processing unit 4 divides (or subtracts) the luminance in the corresponding pixels based on the inverted shift image and the luminance shift image, and performs an operation based on an appropriate gain coefficient, thereby performing an intermediate processing image.
  • a luminance calculation processing unit 9 that generates (subtraction processing image, division processing image), a feature detection unit 10 that performs appropriate filtering processing on specific luminance information in the intermediate processing image, and a target object and background in the intermediate processing image
  • a contrast expansion unit 11 that performs a process for improving the contrast with the image, and a binarization processing unit 12 that performs binarization at a certain luminance level on the processed image and extracts a target object.
  • the histogram calculation unit 6 has an original image receiving function for receiving an infrared image (frame data group) imaged from the uncooled infrared sensor unit 3 and each frame data in units of each frame (frame data) 6a of the infrared image.
  • Has a luminance level detection function for detecting the luminance level of each pixel included in the.
  • the luminance level of each pixel included in the frame data indicates a luminance level proportional to the temperature of the heat source, detected for each pixel of the infrared sensor included in the uncooled infrared sensor unit 3.
  • the histogram calculation unit 6 correlates with the frame number of each captured frame, based on the image data relating to the captured image stored in the memory of the uncooled infrared sensor unit 3, and the luminance level in each frame A histogram generation function for generating a luminance histogram (FIG. 4) representing the relationship with the appearance frequency is provided. Further, the histogram calculation unit 6 has a maximum frequency extraction function for extracting the mode luminance level 6b as the luminance level having the maximum appearance frequency (referred to as “mode”) based on the luminance histogram in each frame. .
  • the luminance shift calculation unit (luminance level adjustment unit) 7 sets the mode value of the mode luminance level extracted by the histogram calculation unit 6 to an intermediate value of the luminance range width that is the number of display gradations of each frame.
  • the luminance shift image is obtained by performing a process of linearly shifting the frequency value of the other luminance level in the image (frame) while maintaining the contrast relationship with the mode of the mode luminance level (intermediate value).
  • a luminance shift image generation function is provided.
  • the luminance shift calculation unit 7 shows the most frequent luminance level in the histogram (FIG. 4) of the generated frame data 6a.
  • the intermediate value is set to 128, and the other luminance level in the frame data 6a is linearly shifted (converted) using this as a reference to generate the luminance shifted image 7a.
  • the visibility of the target object is improved. It is assumed that the brightness exceeding 255 is calculated as 255 and the brightness level at which the minimum brightness is 0 or less is 0.
  • the luminance shift calculation unit 7 duplicates the generated luminance shift image 7 a and stores it in a luminance shift image storage unit set in advance in the image processing unit 4, as well as the inverted image processing unit 8 and the luminance calculation processing unit. 9 each has a luminance shift image transfer function to transmit to each.
  • the inverted image processing unit 8 holds the luminance shift image 7a in the imaging memory and has an inverted image generation function for generating an inverted shift image in which the luminance level of the luminance shift image 7a is inverted (for example, black and white inversion). ing.
  • the luminance calculation processing unit 9 receives the inverted shift image 8a sent from the inverted image unit 8, and each of the average luminance values in the frames of the luminance shifted image 7a and the inverted shifted image 8a stored in the luminance shifted image storage unit, respectively.
  • the image with the larger (higher) in-frame luminance average value is the larger luminance image
  • the image with the smaller (lower) luminance average is the smaller luminance image.
  • the luminance calculation processing unit 9 calculates an image having a larger luminance average (large luminance) with respect to the luminance value of the position address corresponding to each of the luminance shifted image 7a and the inverted shifted image 8a.
  • the luminance calculation processing unit 9 ensures that the most frequent luminance level before the calculation and the intermediate value level that is the calculation (division) result are equal to each other as shown in Expression 1.
  • the luminance calculation processing unit 9 generates a division processing image 9a composed of Id (x, y) in which the contrast with respect to the background of the target object in the image is enhanced, and the division processing image 9a is used as the feature detection unit 10. Is sent to.
  • the luminance calculation processing unit 9 uses the image with the larger average luminance (large luminance) as shown in the following [Equation 2] for the luminance value of the position address corresponding to each of the luminance shifted image 7a and the inverted shifted image 8a. It may be set to perform processing for subtracting the luminance value of the image (small luminance image) having the smaller average luminance from the luminance value of the image (subtraction processing).
  • the luminance calculation processing unit 9 generates a subtraction processing image 9a ′ composed of Is (x, y) and in which the contrast of the target object in the image is emphasized, and the subtraction processing image 9a ′ is used as the feature detection unit. 10 is sent out.
  • the selection of whether to perform the division process or the subtraction process in the luminance calculation processing unit 9 preferably employs the calculation with the larger luminance difference with respect to the target target background, but the final result The setting may be selected by comparing the processed images obtained in the above.
  • the feature detection unit 10 applies a region (pixel) having a luminance frequency lower than a preset luminance frequency in the image to the division processing image 9a (or the subtraction processing image 9a ′) sent from the luminance calculation processing unit 9.
  • a filtering process function for generating the filtered image 10a by performing the filtering process to be removed is provided. Thereby, the brightness
  • the contrast extension unit 11 selects a region (referred to as “luminance region”) having a luminance value equal to or higher than a preset luminance value of the filtered image 10a, and based on the luminance mode value in the selected region, the vicinity of the mode value. Is provided with a contrast expansion processing function for generating a contrast expansion image 11a in which the contrast is expanded by linearly expanding the luminance range of the luminance region so that the maximum is.
  • the binarization processing unit 12 has a binarization processing function for generating a binarized image 12a by performing preset threshold processing on the luminance of each pixel of the contrast expansion image 11a. Further, the binarization processing unit 12 may be configured to extract a target object from the binarized image 12a output to the image display unit 5 and to perform image highlight display of the target object. As a method for the above-described image emphasis display, the binarization processing unit 12 is configured to display, for example, a mark set corresponding to the extracted target object so as to be superimposed on the target object in the binarized image 12a. Also good.
  • the luminance shift image in which the most frequent luminance level of the luminance distribution of the infrared image (original image) captured by the uncooled infrared sensor unit 3 is matched with the intermediate value of the luminance dynamic range,
  • the inverted shift image is created, and the image obtained by dividing or subtracting the luminance level at the same pixel position of the two images is subjected to filtering processing and contrast expansion, whereby the original image is compared with the original image.
  • Image processing that suppresses the luminance variation of the background that occupies most of the luminance distribution in the image and enlarges the luminance difference of the target object with respect to the background can be performed.
  • the image identification support device 100 improves the target object and background contrast of the image captured by the uncooled infrared sensor unit 3, and supports the identification of the target object (target object) in the image. For this reason, the image identification support device 100 can be used, for example, to find a floating object between waves such as a person or a rescue boat for rescue of a marine accident, and the floating in an infrared image photographed by the uncooled infrared sensor unit 3.
  • the image contrast with respect to the background of the target object can be improved.
  • the luminance histogram calculation unit 6 of the image processing unit 4 generates a luminance histogram indicating the appearance frequency of the luminance value (luminance level) of the pixels included in the infrared image (luminance histogram calculation step), and then the luminance shift calculation.
  • the unit 7 sets the luminance value having the highest appearance frequency in the luminance histogram to an intermediate value of the number of display gradations in the infrared image, and maintains a contrast relationship with the frequency value of the luminance level set to the intermediate value.
  • a luminance shift image is generated by linearly shifting the frequency value of each other luminance level (luminance level adjustment step).
  • the inverted image processing unit 8 generates an inverted shift image in which the luminance level of the luminance shift image is inverted (inverted shift image generating step), and the luminance calculation processing unit 9 corresponds to the corresponding positions of the luminance shift image and the inverted shift image.
  • An arithmetic processing image is generated by performing arithmetic processing based on the difference in luminance values at (luminance arithmetic processing step), and the image target extraction unit 13 extracts a target object from the arithmetic processing image.
  • the execution contents may be programmed and executed by a computer.
  • the image processing unit 4 receives an infrared image (frame data 6a) imaged from the uncooled infrared sensor unit 3, and the luminance histogram calculation unit (histogram calculation unit) 6 receives each frame (frame data) of the infrared image.
  • the luminance level of each pixel included in 6a is detected in units of 6a.
  • the luminance level imaged by the non-cooling infrared sensor unit 3 is a luminance level proportional to the temperature of the heat source detected by the infrared sensor included in the non-cooling infrared sensor unit 3 in units of pixels.
  • FIG. 3A is an explanatory diagram schematically showing one frame of the infrared image.
  • the histogram calculation unit 6 generates a luminance histogram (FIG. 4) that represents the relationship between the luminance level and the appearance frequency in each frame in association with the frame number of each captured image. Further, the histogram calculation unit 6 transfers the mode-level luminance level value 6b and the corresponding infrared image frame data 6a to the luminance shift calculation unit 7 based on each luminance histogram (step S1).
  • the luminance shift calculation unit 7 uses the luminance level of the mode 6b of the luminance histogram corresponding to each frame data 6a of the infrared image as an intermediate value of the luminance display range (number of display gradations) in each frame data 6a. Based on this intermediate value, a process of linearly shifting the frequency values of other luminance levels is performed.
  • the luminance shift calculation unit 7 indicates the luminance level of the mode value in the luminance histogram (FIG. 4) of the generated frame data 6a as shown in FIG. Then, the intermediate value is set to 128, and the frequency value of the other luminance level in the frame is linearly shifted (converted) using this as a reference to generate the luminance shifted image 7a. It is assumed that the brightness exceeding 255 is calculated as 255 and the brightness level at which the minimum brightness is 0 or less is 0.
  • the luminance shift calculation unit 7 duplicates the generated luminance shift image 7 a and stores it in a luminance shift image storage unit set in advance in the image processing unit 4, as well as the inverted image processing unit 8 and the luminance calculation processing unit. 9 is transmitted to each of them (step S2).
  • the inverted image unit 8 generates an inverted shift image 8a in which the luminance level of the luminance shift image 7a is inverted (for example, black and white inversion), and sends it to the luminance calculation processing unit 9 (step S3).
  • the luminance calculation processing unit 9 receives the inverted shift image 8a sent from the inverted image unit 8, and averages the in-frame luminance of each of the luminance shifted image 7a and the inverted shifted image 8a stored in the luminance shifted image storage unit. Each value is calculated, and an image having a larger luminance average of both images (luminance shift image 7a and inverted shift image 8a) is set as A (x, y), and one of the images is set as B (x, y). . Note that (x, y) indicates the position address of the pixel in the frame.
  • the luminance calculation processing unit 9 determines the image with the larger luminance average (larger) for the luminance value of the position address corresponding to each of the luminance shifted image 7a and the inverted shifted image 8a.
  • a process of dividing the luminance value of the luminance image) by the luminance value of the image having the smaller average luminance (small luminance image) is performed (division processing).
  • the luminance calculation processing unit 9 generates a division processing image (9a) made of Id (x, y) in which the contrast with respect to the background of the target object in the image is emphasized, and the division processing image 9a is characterized.
  • the data is sent to the detection unit 10 (step S4).
  • the luminance calculation processing unit 9 replaces the division processing with respect to the luminance value of the position address corresponding to each of the luminance shift image 7a and the inverted shift image 8a, as shown in [Equation 2] below, It may be set to perform processing for subtracting the luminance value of the small luminance image from the luminance value (subtraction processing).
  • the calculation result is set in advance so that the most frequent luminance level before calculation at each position address is equal to the intermediate value level that is the calculation (subtraction) result.
  • the luminance calculation processing unit 9 is a subtraction consisting of Is (x, y), in which the contrast with respect to the background of the target object in the image (particularly, the color tone away from the intermediate value, for example, the background of white waves, etc.) is enhanced.
  • a processed image (9a ′) is generated, and the subtracted processed image 9a ′ is sent to the feature detection unit 10 (step S4).
  • the selection of whether to perform the above-described division processing or subtraction processing on the frame data may employ the calculation that increases the luminance difference with respect to the target target background. Although desirable, it may be a setting for selecting a process in which the contrast with respect to the background of the target object is further improved by comparing the processed images obtained in the final result.
  • the luminance calculation processing unit 9 inputs the generated division processing image 9a or subtraction processing image 9a ′ to the feature detection unit 10.
  • the luminance calculation processing unit 9 displays the generated division processing image 9a or subtraction processing image 9a ′ as a through image when there is a certain luminance difference between the background image and the target object. 5 may be set to be sent out.
  • the division processing image 9a or the subtraction processing image 9a ′ is displayed on the image display unit 5 as the arithmetic processing image.
  • FIG. 3A and FIG. 6A schematically showing the luminance shift image 7a of the infrared image.
  • FIG. 3B is a luminance profile in the X direction passing through the target object 3a in FIG. 3A
  • 602 in FIG. 3B is an inversion obtained by inverting the luminance of the luminance shift image 7a.
  • a luminance profile passing through the target object 3a in the shift image 8a is shown.
  • reference numeral 801 in FIG. 6B denotes a luminance profile in the X direction passing through the target object 3a in FIG. 6A
  • luminance of the shift image 7a is shown.
  • the background region 3b occupying the majority of the luminance frequencies in the images of the luminance shift image 7a and the inverted shift image 8a (FIG. 6A).
  • the luminance difference between the luminance shift image 7a and the inverted shift image 8a is in the vicinity of 0 with an extremely small luminance level according to [Equation 2].
  • the luminance difference with respect to the background region in the vicinity of the target object in the processed image which is the processing result of the subtraction process, is enlarged as shown in the luminance profile 701 in FIG.
  • FIG. 12 shows a processed image when the subtraction process is performed on the infrared image of FIG. 11 as described above.
  • the contrast of the ship, which is the target (target target) is effectively enhanced.
  • the visibility is significantly improved as compared with the suspended matter between waves in FIG.
  • the luminance calculation processing unit 9 executes the luminance division processing for each pixel, the quotient that is the division result is 1. It is a nearby value.
  • the quotient that is the result of the calculation (division) processing of the luminance value of the luminance shift image 7a near the target object and the luminance value of the pixel position at the corresponding address position in the inverted shift image 8a is 1 or more, and the gain K By performing the operation of multiplying by (128), the luminance difference is further expanded. For this reason, as shown in the luminance profile 901 of FIG. 6C, in the processed image (division processed image 9a), the luminance variation in the background region is suppressed, and the luminance difference between the target object and the background region becomes large. Thereby, since the contrast of the target object with respect to the background region in the image is enlarged, the target object can be easily extracted.
  • FIG. 8 shows a luminance histogram of the infrared image of FIG. 7 (corresponding to FIG. 4).
  • FIG. 9 shows a processed image (division processed image 9a) when the division processing is performed on the infrared image of FIG. 7 as described above.
  • this division processed image 9a in particular, the contrast of the target object with respect to the background having a luminance level close to the intermediate value (128) in the number of display gradations is effectively enhanced as compared with the subtraction processed image 9a ′.
  • FIG. 10 shows a luminance histogram of the processed image of FIG.
  • the luminance level of the background region (sea surface) that occupies the highest frequency on the luminance histogram (FIG. 7) is set to the intermediate value (128) of the number of gradations, and other luminance levels (pixels other than the back region) are set. (Brightness level) is linearly converted based on the intermediate value.
  • the luminance calculation processing unit 9 executes one of the division process or the subtraction process for the luminance shift image 7a and the inverted shift image 8a of the infrared image.
  • the subtraction process has the effect of eliminating white waves on the sea surface
  • the division process has the effect of increasing the contrast between the background in the vicinity of the intermediate color tone and the target object, so a process combining the division process and the subtraction process is performed. Accordingly, it may be set to perform processing for further expanding the distribution width of the luminance distribution. Thereby, the contrast between the background and the target object in the processed image is enlarged, and the visibility of the sailing ship on the sea surface that is the target object can be further enhanced.
  • the feature detection unit 10 applies a luminance region that is less than a preset luminance frequency in the image to the division processing image 9a (or the subtraction processing image 9a ′) sent from the luminance calculation processing unit 9 in step S4.
  • a filtering image 10a is generated by performing filtering processing to remove (pixels), and is transmitted to the contrast extension unit 11 (step S5). Thereby, the luminance level of the mode value in the image (filtering image 10a) is relatively increased.
  • the contrast extension unit 11 selects a region (referred to as “luminance region”) that is equal to or higher than a preset luminance value of the input filtered image 10a, and based on the selected luminance mode value, this mode value.
  • a contrast expansion image 11a having a contrast expanded by linearly expanding the luminance range of the luminance region so as to maximize the vicinity is generated and sent to the binarization processing unit 12 (step S6).
  • the binarization processing unit 12 generates a binarized image 12a by performing preset threshold processing on the luminance of each pixel of the contrast expansion image 11a (binarization processing), and The binarized image 12a is output to the image display unit 5 (step S7).
  • the binarization processing unit 12 may be configured to extract a target object from the binarized image 12a output to the image display unit 5 and to perform highlight display of the target object.
  • the binarization processing unit 12 displays, for example, a mark set corresponding to the extracted target object so as to be superimposed on the target object in the binarized image 12a as the highlighting method. To do.
  • the luminance of the target object with respect to the luminance of the background region is suppressed while suppressing the luminance variation of the background region that occupies most of the luminance distribution of the captured infrared image.
  • Processing for enlarging contrast (luminance difference) can be performed.
  • by the division (subtraction) processing on the luminance shift image and the inverted shift image it is possible to remove noise that is very small in the image and extremely small in luminance difference, and further, an effect of increasing the luminance difference can be obtained.
  • the present invention can be usefully applied to an infrared image processing system that automatically detects a target such as a ship using an infrared image.

Abstract

In order to reliably identify a target object in a captured infrared image, a luminance histogram calculation unit (6) which generates a luminance histogram indicating the appearance frequencies of luminance values of pixels included in the infrared image, a luminance shift calculation unit (7) which sets the luminance value at which the appearance frequency is maximum in the luminance histogram to the intermediate value of the luminance range width of the infrared image, and generates a luminance-shifted image obtained by linearly shifting the respective luminance values of the infrared image on the basis of the intermediate value, a reverse image processing unit (8) which generates a reverse shifted image obtained by reversing luminance levels of the luminance- shifted image, and a luminance calculation processing unit (9) which generates a calculation-processed image by performing calculation processing based on the difference between luminance values at respective corresponding positions of the luminance-shifted image and reverse shifted image are provided.

Description

画像目標識別装置、画像目標識別方法、画像目標識別プログラムImage target identification device, image target identification method, and image target identification program
 本発明は、艦船などの目標物を、赤外線画像を用いて検出する画像処理装置に関する。 The present invention relates to an image processing apparatus for detecting a target such as a ship using an infrared image.
 航空機等による海難捜索や救助においては、パイロットは、波間に浮かぶ人や救難ボートを救難信号等のビーコンによる電波信号による捜索(探索)や、低空で捜索海域を飛行しながらの目視による捜索や、赤外線カメラの画像に基づく捜索などを行う。
 特に、夜間や悪天候下の場合、晴天、昼間の捜索に比べて視認性や視界が悪くなるため、海面に浮遊している遭難者や艦船内の人物および艦船等の目標対象を、肉眼により発見することや、赤外線カメラにより探知可能な画像として撮影したりすることが困難となる。
 これにより、人命救助にかかる場面では、人物発見までに時間がかかってしまうため生存確率が低くなってしまったり、捜索対象発見の遅れにより他国の艦船や不審者等の侵入を許してしまう危険性が増大してしまったりする不都合がある。
In maritime search and rescue by aircraft etc., pilots search for people floating in the waves and rescue boats using radio signals by beacons such as rescue signals, visual search while flying in the search sea area in the low sky, Perform searches based on images from infrared cameras.
Especially at night and in bad weather, the visibility and visibility are worse than when searching for clear sky and daytime, so it is possible to discover the target objects such as the victims floating on the sea surface, people on ships and ships, etc. with the naked eye. Or shooting as an image that can be detected by an infrared camera becomes difficult.
As a result, there is a risk that in the situation related to lifesaving, it takes time to discover the person, so the probability of survival becomes low, or the invasion of ships and suspicious persons of other countries due to delay in discovery of the search target There is an inconvenience that increases.
 これに対して、撮影された赤外線画像におけるコントラスト改善を行うことにより、捜索者が目標対象を早期に識別・発見するための視界支援情報(画像)を生成することにより、探索者による視界探索を有効に支援する画像情報処理技術や画像識別支援技術などが開発されている。 On the other hand, by performing contrast improvement in the captured infrared image, the searcher generates a field of view support information (image) for identifying and finding the target object at an early stage. Image information processing technology, image identification support technology, and the like that are effectively supported have been developed.
 例えば、冷却機能を省くことで小型化して、ノイズに対するS/N比を大幅に向上させた非冷却赤外線センサによって赤外線画像を撮像する赤外線カメラ、この赤外線カメラを利用した画像処理システムなどが知られている。 For example, an infrared camera that captures an infrared image by an uncooled infrared sensor that is downsized by omitting a cooling function and has a significantly improved S / N ratio with respect to noise, an image processing system using the infrared camera, and the like are known. ing.
 また、この関連技術として、航空機や飛翔体に小型化した非冷却赤外線カメラを搭載して赤外線画像を撮影し、得られた赤外線画像を処理して、赤外線画像から目標対象を抽出・識別して表示する赤外線画像処理システムが開示されている(特許文献1)。 In addition, as a related technology, a miniature uncooled infrared camera is installed on an aircraft or flying object, an infrared image is taken, the obtained infrared image is processed, and a target object is extracted and identified from the infrared image. An infrared image processing system for display is disclosed (Patent Document 1).
 この特許文献1では、目標物およびこの目標物の背景から入射する赤外線を互いに直交する平面偏光に分離し、2受光素子を二次元配列した画像センサで赤外線を受光し、電気信号量に変換して出力した各々の画像信号の間で、2次元座標の同一の座標位置にある電気信号量の差分をとって求めた偏光差分画像信号を出力する。 In Patent Document 1, infrared light incident from the target and the background of the target is separated into plane polarized light orthogonal to each other, and the infrared light is received by an image sensor in which two light receiving elements are two-dimensionally arranged, and converted into an electric signal amount. Then, a polarization difference image signal obtained by taking the difference of the electric signal amount at the same coordinate position of the two-dimensional coordinates among the output image signals is output.
 また、2次元座標の同一の座標位置にある電気信号量を加算して求めた輝度画像信号を出力する偏光画像撮像装置と、目標と背景とを組にした組み合わせと、目標物とその背景とが分離可能な偏光差分画像信号の閾値とを予め対応させて記憶する閾値データベースとの組み合わせにより、閾値との比較に基づいて偏光差分画像信号の電気信号量を二値化した二値化画像信号を出力する。
 さらに、2次元座標の同一の座標位置にある、二値化画像信号の二値化後の値と輝度画像信号の電気信号量とを乗算して得られる画像により目標物の候補を抽出している。
In addition, a polarization image pickup device that outputs a luminance image signal obtained by adding electric signal amounts at the same coordinate position of two-dimensional coordinates, a combination of a target and a background, a target and its background, Is a binarized image signal obtained by binarizing the electric signal amount of the polarization difference image signal based on a comparison with the threshold value in combination with a threshold database that stores the threshold value of the polarization difference image signal that can be separated in advance. Is output.
Further, a target candidate is extracted from an image obtained by multiplying the binarized value of the binarized image signal and the electric signal amount of the luminance image signal at the same coordinate position of the two-dimensional coordinates. Yes.
 また、特許文献1に記載の発明では、海面上に浮かぶ浮遊物、船舶、空域での飛翔体や低空域の視認性の低い障害物などの目標を抽出する際、一般に目標対象物とその背景とに温度差があることを利用し、赤外線センサの前にP波、S波に分離する面偏向受光素子で構成される光学系を搭載し、適切な撮像画像の輝度演算処理部を搭載して所定の温度(輝度)以上の個所が目標対象であるとして目標対象を抽出する赤外線画像処理が行われている。
 更に、この関連技術として、多数のレンズからなるドーム型レンズを利用して多方面からの赤外線を集光し(特許文献2)、撮像したものの輝度の時間的変化量に基づき撮像画像を二値化し、赤外線画像における複雑な輝度分布の背景から移動する目標物を検出するシステムが開示されている(特許文献3)。
 また、赤外線画像とレーダ画像とを合成することにより、霧が発生した場合に撮影された赤外線画像における目標物体の視認性を向上させるための画像装置が開示されている(特許文献4)。
In the invention described in Patent Document 1, when extracting targets such as floating objects floating on the sea surface, ships, flying objects in the airspace, and obstacles with low visibility in the low airspace, generally the target object and its background Is equipped with an optical system consisting of surface deflection light receiving elements that separate P waves and S waves in front of the infrared sensor, and an appropriate brightness calculation processing unit for captured images. Infrared image processing is performed to extract a target object on the assumption that a location above a predetermined temperature (luminance) is the target object.
Furthermore, as this related technique, infrared rays from various directions are collected using a dome-shaped lens composed of a large number of lenses (Patent Document 2), and the captured image is binarized based on the temporal change in luminance of the captured image. And a system for detecting a target moving from a background of a complicated luminance distribution in an infrared image is disclosed (Patent Document 3).
In addition, an image device for improving the visibility of a target object in an infrared image taken when fog occurs by combining an infrared image and a radar image is disclosed (Patent Document 4).
特開2001-056860号公報JP 2001-056860 A 特開平06-242304号公報Japanese Patent Laid-Open No. 06-242304 特開平06-303485号公報Japanese Patent Laid-Open No. 06-303485 特開平10-62531号公報JP-A-10-62531
 しかしながら、上記特許文献1に記載の発明では、赤外線センサの前にP波、S波に分離する光学系が大規模な構成となるため小型化が困難となる不都合がある。
 また、太陽光などにより背景が部分的に熱せられることにより、目標物とその背景との温度差が微小となった場合や、水面上での波しぶきによるノイズなどが多い場合に、赤外線センサで撮像された赤外線撮像画像には背景ノイズが多くなるため、光学系に依存して目標対象と背景とのコントラストがとれず、目標物を正しく認識・捕捉することが困難となり、このため、目標対象(目標物)の誤認識や見逃しが発生するといった不都合があった。
However, the invention described in Patent Document 1 has a disadvantage that it is difficult to reduce the size because the optical system for separating the P wave and the S wave before the infrared sensor has a large-scale configuration.
In addition, when the background is partially heated by sunlight, etc., when the temperature difference between the target and the background becomes minute, or when there is a lot of noise due to splashing on the water surface, the infrared sensor is used. Since the captured infrared image has a lot of background noise, the contrast between the target object and the background cannot be obtained depending on the optical system, making it difficult to correctly recognize and capture the target object. There were inconveniences such as erroneous recognition of (target) and oversight.
 また、上記特許文献2~4に記載の各発明、およびこれらを組み合わせた内容では、例えば、撮像領域内の海上などで、悪天候による白波が発生したり、ヘリコプターのホバリングによる人工的な波しぶきなどが発生したりする場合、赤外線撮像画像に映る目標対象物は白波で埋もれることにより、目標物の形状が変化して見えるため、この赤外線撮像画像に基づいて画像識別により目標対象識別を行った場合に、目標物の見逃しや誤った目標対象を選択(スクリーニング)してしまうといった不都合が生じ得る。 In addition, in the inventions described in Patent Documents 2 to 4 described above, and the contents obtained by combining these, for example, white waves are generated due to bad weather on the sea in the imaging region, or artificial wave splash is generated due to helicopter hovering. If the target object appearing in the infrared captured image is buried in white waves and the shape of the target appears to change, the target object is identified by image identification based on this infrared captured image. In addition, there may be inconveniences such as missing a target or selecting (screening) an incorrect target object.
[発明の目的]
 本発明は、上記関連技術の有する不都合を改善し、撮影された赤外線画像中の目標対象物を確実に識別し得る画像目標識別装置、画像目標抽出方法、画像目標抽出プログラムを提供することを、その目的とする。
[Object of invention]
The present invention provides an image target identification device, an image target extraction method, and an image target extraction program that can improve the inconvenience of the related technology and can reliably identify a target object in a captured infrared image. For that purpose.
 上記目的を達成するために、本発明に係る画像目標識別装置は、目標対象物を含む撮影対象からの赤外光を集光すると共に当該集光された赤外光から特定の波長帯域を取得する光学部と、前記光学部により取得された波長に基づき前記撮像対象の温度に対応した赤外線画像を生成する非冷却赤外線イメージセンサと、前記赤外線画像に基づき前記目標対象物が強調表示された演算処理画像を生成する画像処理部とを備えた画像目標識別装置であって、前記画像処理部は、前記赤外線画像内に含まれる画素の輝度値の出現頻度を示す輝度ヒストグラムを生成する輝度ヒストグラム演算部と、前記輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における輝度レンジ幅の中間値に設定すると共に、前記中間値に基づき前記赤外線画像の各輝度値を線形的にシフトした輝度シフト画像を生成する輝度レベル調整部と、前記輝度シフト画像の輝度レベルを反転した反転シフト画像を生成すると共に、前記輝度シフト画像および反転シフト画像それぞれの対応位置における輝度値の違いに基づく演算処理を行い前記演算処理画像を生成する輝度演算処理部とを備えたことを特徴としている。 In order to achieve the above object, an image target identification device according to the present invention condenses infrared light from a photographing object including a target object and acquires a specific wavelength band from the condensed infrared light. An optical unit that performs, an uncooled infrared image sensor that generates an infrared image corresponding to the temperature of the imaging target based on the wavelength acquired by the optical unit, and a calculation in which the target object is highlighted based on the infrared image An image target identification device including an image processing unit that generates a processed image, wherein the image processing unit generates a luminance histogram indicating a frequency of appearance of luminance values of pixels included in the infrared image And the luminance value having the highest appearance frequency in the luminance histogram is set to an intermediate value of the luminance range width in the infrared image, and the previous value based on the intermediate value A luminance level adjustment unit that generates a luminance shift image in which each luminance value of the infrared image is linearly shifted; and an inverted shift image that inverts the luminance level of the luminance shift image, and the luminance shift image and the inverted shift image And a luminance calculation processing unit that performs calculation processing based on a difference in luminance value at each corresponding position and generates the calculation processing image.
 また、本発明にかかる画像目標識別方法は、目標対象物を含む撮影対象からの赤外光を集光すると共に当該集光された赤外光から前記撮像対象の温度に基づき生成された赤外線画像に基づき前記目標対象物が強調表示された演算処理画像を生成する画像目標識別方法であって、前記赤外線画像内に含まれる画素の輝度値の出現頻度を示す輝度ヒストグラムを生成し、前記輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における輝度レンジ幅の中間値に設定すると共に、前記中間値に基づき前記赤外線画像の各輝度値を線形的にシフトした輝度シフト画像を生成し、前記輝度シフト画像の輝度レベルを反転した反転シフト画像を生成し、前記輝度シフト画像および反転シフト画像それぞれの対応位置における輝度値の違いに基づく演算処理を行うことにより前記演算処理画像を生成することを特徴としている。 In addition, the image target identification method according to the present invention condenses infrared light from an imaging target including a target object and generates an infrared image based on the temperature of the imaging target from the condensed infrared light. An image target identification method for generating an arithmetic processing image in which the target object is highlighted on the basis of a brightness histogram indicating a frequency of appearance of brightness values of pixels included in the infrared image, and the brightness histogram A luminance value that maximizes the appearance frequency in the infrared image is set to an intermediate value of the luminance range width in the infrared image, and a luminance shift image is generated by linearly shifting each luminance value of the infrared image based on the intermediate value, A reverse shift image in which the brightness level of the brightness shift image is inverted is generated, and brightness values at corresponding positions of the brightness shift image and the reverse shift image are generated. It is characterized by generating the processing image by performing arithmetic processing based on the difference.
 又、本発明にかかる画像目標識別プログラムは、目標対象物を含む撮影対象からの赤外光を集光すると共に当該集光された赤外光から前記撮像対象の温度に基づき生成された赤外線画像に基づき前記目標対象物が強調表示された演算処理画像を生成するための画像目標識別プログラムであって、前記赤外線画像内に含まれる画素の輝度値の出現頻度を示す輝度ヒストグラムを生成する輝度ヒストグラム演算機能と、前記輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における輝度レンジ幅の中間値に設定すると共に、前記中間値に基づき前記赤外線画像の各輝度値を線形的にシフトした輝度シフト画像を生成する輝度レベル調整機能と、前記輝度シフト画像の輝度レベルを反転した反転シフト画像を生成する反転シフト画像生成機能と、前記輝度シフト画像および反転シフト画像それぞれの対応位置における輝度値の違いに基づく演算処理を行うことにより前記演算処理画像を生成する輝度演算処理機能と、をコンピュータに実行させることを特徴としている。 In addition, the image target identification program according to the present invention condenses infrared light from a photographing object including a target object and generates an infrared image based on the temperature of the imaging object from the condensed infrared light. A luminance histogram for generating a luminance histogram indicating a frequency of appearance of luminance values of pixels included in the infrared image, the image target identification program for generating an arithmetic processing image in which the target object is highlighted based on An arithmetic function and a luminance value with the highest appearance frequency in the luminance histogram are set to an intermediate value of the luminance range width in the infrared image, and each luminance value of the infrared image is linearly shifted based on the intermediate value Luminance level adjustment function for generating a luminance shift image and inversion for generating an inverted shift image obtained by inverting the luminance level of the luminance shift image And a brightness calculation processing function for generating the calculation processing image by performing calculation processing based on a difference in luminance values at corresponding positions of the luminance shift image and the inverted shift image. It is characterized by.
 本発明は、以上のように構成され機能するので、これによると、赤外線画像の画素の輝度値の出現頻度を示す輝度ヒストグラムから出現頻度が最大となる輝度値を表示階調数の中間値に設定して、この中間値に基づき他の輝度値を線形的にシフトした輝度シフト画像を生成する手段と、この画像の輝度レベルを反転した反転シフト画像と上記輝度シフト画像とにおける輝度値の違いに基づく演算処理を行うことにより演算処理画像を生成する構成としたことにより、撮影された赤外線画像中の目標対象物が強調表示され、目標対象物を確実に識別し得る演算処理画像を生成する画像目標識別装置、画像目標識別方法、画像目標識別プログラムを提供することができる。 Since the present invention is configured and functions as described above, according to this, the luminance value having the maximum appearance frequency is set to the intermediate value of the display gradation number from the luminance histogram indicating the appearance frequency of the luminance value of the pixel of the infrared image. The brightness value difference between the means for generating a brightness shifted image that is set and linearly shifting other brightness values based on this intermediate value, and the inverted shift image obtained by inverting the brightness level of this image and the brightness shifted image Since the calculation processing image is generated by performing the calculation processing based on the target object, the target object in the captured infrared image is highlighted, and the calculation processing image that can reliably identify the target object is generated. An image target identification device, an image target identification method, and an image target identification program can be provided.
本発明による画像目標識別装置における一実施形態を示す概略ブロック図である。It is a schematic block diagram which shows one Embodiment in the image target identification device by this invention. 図1に開示した画像目標識別装置における画像処理部の内部構成の一例を示す概略ブロック図である。It is a schematic block diagram which shows an example of an internal structure of the image process part in the image target identification device disclosed in FIG. 図3(a)は、図1に開示した画像目標識別装置における赤外線画像の1フレームデータの模式的説明図であり、図3(b)は、赤外線画像の輝度シフト画像およびその反転シフト画像の輝度プロファイルを示す説明図であり、図3(c)は、図3(b)に示す画像に対する減算処理結果である処理画像の輝度プロファイルを示す説明図である。FIG. 3A is a schematic explanatory diagram of one frame data of an infrared image in the image target identification device disclosed in FIG. 1, and FIG. 3B is a diagram showing a luminance shift image of the infrared image and its inverted shift image. FIG. 3C is an explanatory diagram showing a luminance profile, and FIG. 3C is an explanatory diagram showing a luminance profile of a processed image that is a result of the subtraction process for the image shown in FIG. 図1に開示した画像目標識別装置における赤外線画像の1フレームデータの輝度ヒストグラムを示す説明図である。It is explanatory drawing which shows the brightness | luminance histogram of 1 frame data of the infrared image in the image target identification device disclosed in FIG. 図1に開示した画像目標識別装置における赤外線画像の各画素の輝度を線形シフトした輝度シフト画像の輝度ヒストグラムである。3 is a luminance histogram of a luminance shift image obtained by linearly shifting the luminance of each pixel of an infrared image in the image target identification device disclosed in FIG. 1. 図6(a)は、図1に開示した画像目標識別装置の示す赤外線画像の1フレームデータの模式的説明図であり、図6(b)は、赤外線画像の輝度シフト画像およびその反転シフト画像の輝度プロファイルを示す説明図であり、図6(c)は、赤外線画像に対する除算処理結果である処理画像の輝度プロファイルを示す説明図である。FIG. 6A is a schematic explanatory diagram of one frame data of an infrared image shown by the image target identification device disclosed in FIG. 1, and FIG. 6B is a luminance shift image of the infrared image and its inverted shift image. FIG. 6C is an explanatory diagram showing a brightness profile of a processed image that is a result of division processing on an infrared image. 図1に開示した画像目標識別装置に係る海面浮遊物を撮像した赤外線画像の一例を示す説明図である。It is explanatory drawing which shows an example of the infrared image which imaged the sea surface suspended | floating matter which concerns on the image target identification device disclosed in FIG. 図7に開示した赤外線画像の輝度ヒストグラムの一例を示す説明図である。It is explanatory drawing which shows an example of the brightness | luminance histogram of the infrared image disclosed in FIG. 図1に開示した画像目標識別装置により図7の赤外線画像を除算処理して得られた処理画像の一例を示す説明図である。It is explanatory drawing which shows an example of the process image obtained by dividing the infrared image of FIG. 7 with the image target identification apparatus disclosed in FIG. 図9に開示した赤外線画像の輝度ヒストグラムの一例を示す説明図である。It is explanatory drawing which shows an example of the brightness | luminance histogram of the infrared image disclosed in FIG. 図1に開示した画像目標識別装置に係る船舶を撮像した赤外線画像の一例を示す説明図である。It is explanatory drawing which shows an example of the infrared image which imaged the ship which concerns on the image target identification device disclosed in FIG. 図1に開示した画像目標識別装置により図11に開示した赤外線画像を減算処理して得られた処理画像の一例を示す説明図である。It is explanatory drawing which shows an example of the process image obtained by carrying out the subtraction process of the infrared image disclosed in FIG. 11 by the image target identification apparatus disclosed in FIG.
[実施形態]
 次に、本発明の実施形態について、その基本的構成内容を説明する。
[Embodiment]
Next, the basic configuration content of the embodiment of the present invention will be described.
 本実施形態である画像識別支援装置(画像目標識別装置)100は、図1に示すように、赤外光を集光する遠赤外線集光ドーム1(以下「集光ドーム」という)と、集光された赤外光を予め設定された集光レンズを介して受光する光学部2と、この光学部2を介して得られた波長(帯域)に基づいて撮像対象物の温度に対応した熱画像(赤外線画像)を生成する非冷却赤外線イメージセンサ部(非冷却赤外線センサ部)3と、この非冷却赤外線センサ部3で生成された赤外線画像に対して画像処理を行い、赤外線画像における海や空などの背景領域に対して、船舶などの目標対象が強調表示された処理画像を生成する画像処理部4と、生成された処理画像を出力表示する画像表示部5を備えた構成を有する。 As shown in FIG. 1, an image identification support device (image target identification device) 100 according to the present embodiment includes a far-infrared light collecting dome 1 (hereinafter referred to as “light collecting dome”) for collecting infrared light, The optical unit 2 that receives the emitted infrared light through a preset condenser lens, and the heat corresponding to the temperature of the imaging object based on the wavelength (band) obtained through the optical unit 2 An image processing is performed on an uncooled infrared image sensor unit (uncooled infrared sensor unit) 3 that generates an image (infrared image) and an infrared image generated by the uncooled infrared sensor unit 3, It has a configuration including an image processing unit 4 that generates a processed image in which a target object such as a ship is highlighted on a background region such as the sky, and an image display unit 5 that outputs and displays the generated processed image.
 以下、これを詳説する。
 赤外光を集光する集光ドーム1は、集光した赤外線を光学部2の非冷却赤外線センサ部3に導く集光レンズを備えている。
 また、光学部2は、予め設定された所望の波長帯域を検波する光学フィルタを含み構成される。
This will be described in detail below.
The condensing dome 1 that condenses the infrared light includes a condensing lens that guides the condensed infrared light to the uncooled infrared sensor unit 3 of the optical unit 2.
The optical unit 2 includes an optical filter that detects a desired wavelength band set in advance.
 非冷却赤外線センサ部3は、光学部2の光学フィルタを通過した赤外線に応じた熱量を示す赤外線画像を生成する。ここで、生成された赤外線画像は、当該赤外線画像に含まれる各フレーム毎に画像処理部4内で処理されるものとする。 The uncooled infrared sensor unit 3 generates an infrared image indicating the amount of heat corresponding to the infrared rays that have passed through the optical filter of the optical unit 2. Here, it is assumed that the generated infrared image is processed in the image processing unit 4 for each frame included in the infrared image.
 画像処理部4は、図2に示すように、赤外線画像の各フレームの輝度ヒストグラムを生成し、この輝度ヒストグラムに基づき出現頻度(出現頻度値)が最大となる輝度レベル(最頻輝度レベル)を検知するヒストグラム演算部(輝度ヒストグラム演算部)6と、最頻輝度レベルが表示階調数の中間値になるように、赤外線画像の各フレームにおける各輝度レベルに対応した出現頻度値を線形変換した輝度シフト画像を生成する輝度シフト演算部7と、この輝度シフト画像の輝度レベルを反転させた反転シフト画像を生成する反転画像処理部8を有する。 As shown in FIG. 2, the image processing unit 4 generates a luminance histogram of each frame of the infrared image, and determines a luminance level (mode frequency level) at which the appearance frequency (appearance frequency value) is maximum based on the luminance histogram. The appearance frequency value corresponding to each luminance level in each frame of the infrared image is linearly converted so that the histogram calculating unit (luminance histogram calculating unit) 6 to detect and the mode luminance level become an intermediate value of the number of display gradations. A luminance shift calculation unit 7 that generates a luminance shift image and an inverted image processing unit 8 that generates an inverted shift image obtained by inverting the luminance level of the luminance shift image are included.
 また、画像処理部4は、反転シフト画像と輝度シフト画像とに基づいて、相互に対応する画素における輝度の除算(または減算)を行うと共に適切なゲイン係数に基づく演算を行うことにより中間処理画像(減算処理画像、除算処理画像)を生成する輝度演算処理部9と、中間処理画像における特定の輝度情報に対して適切なフィルタリング処理を行う特徴検出部10と、中間処理画像における目標対象と背景とのコントラストを向上させる処理を行うコントラスト拡張部11と、処理が行われた画像に対してある輝度レベル以上の2値化を施して目標対象を抽出する2値化処理部12から構成される。 Further, the image processing unit 4 divides (or subtracts) the luminance in the corresponding pixels based on the inverted shift image and the luminance shift image, and performs an operation based on an appropriate gain coefficient, thereby performing an intermediate processing image. A luminance calculation processing unit 9 that generates (subtraction processing image, division processing image), a feature detection unit 10 that performs appropriate filtering processing on specific luminance information in the intermediate processing image, and a target object and background in the intermediate processing image A contrast expansion unit 11 that performs a process for improving the contrast with the image, and a binarization processing unit 12 that performs binarization at a certain luminance level on the processed image and extracts a target object. .
 ヒストグラム演算部6は、非冷却赤外線センサ部3から画像化された赤外線画像(フレームデータ群)を受信する原画像受信機能と、赤外線画像の各フレーム(フレームデータ)6aを単位として、各フレームデータに含まれる各画素の輝度レベルを検知する輝度レベル検知機能を有する。
 尚、上記フレームデータに含まれる各画素の輝度レベルは、非冷却赤外線センサ部3が有する赤外線センサの画素単位に検出される、熱源の温度に比例した輝度レベルを示すものとする。
The histogram calculation unit 6 has an original image receiving function for receiving an infrared image (frame data group) imaged from the uncooled infrared sensor unit 3 and each frame data in units of each frame (frame data) 6a of the infrared image. Has a luminance level detection function for detecting the luminance level of each pixel included in the.
The luminance level of each pixel included in the frame data indicates a luminance level proportional to the temperature of the heat source, detected for each pixel of the infrared sensor included in the uncooled infrared sensor unit 3.
 また、ヒストグラム演算部6は、撮像された各フレームのフレーム番号に対応させて、非冷却赤外線センサ部3のメモリ内に記憶された撮像画像に係る画像データに基づき、各フレームにおける輝度レベルとその出現頻度との関係を表す輝度ヒストグラム(図4)を生成するヒストグラム生成機能を備えている。
 更に、ヒストグラム演算部6は、各フレームにおける輝度ヒストグラムに基づき出現頻度が最大値(「最頻値」という)となる輝度レベルとしての最頻輝度レベル6bを抽出する最大頻度抽出機能を備えている。
In addition, the histogram calculation unit 6 correlates with the frame number of each captured frame, based on the image data relating to the captured image stored in the memory of the uncooled infrared sensor unit 3, and the luminance level in each frame A histogram generation function for generating a luminance histogram (FIG. 4) representing the relationship with the appearance frequency is provided.
Further, the histogram calculation unit 6 has a maximum frequency extraction function for extracting the mode luminance level 6b as the luminance level having the maximum appearance frequency (referred to as “mode”) based on the luminance histogram in each frame. .
 輝度シフト演算部(輝度レベル調整部)7は、ヒストグラム演算部6で抽出された最頻輝度レベルの最頻値を各フレームの表示階調数である輝度レンジ幅の中間値に設定すると共に、最頻輝度レベル(中間値)の最頻値との対比関係を維持した状態で、画像(フレーム)内の他の輝度レベルの頻度値を線形的にシフトする処理を行うことにより輝度シフト画像を生成する輝度シフト画像生成機能を備えている。 The luminance shift calculation unit (luminance level adjustment unit) 7 sets the mode value of the mode luminance level extracted by the histogram calculation unit 6 to an intermediate value of the luminance range width that is the number of display gradations of each frame. The luminance shift image is obtained by performing a process of linearly shifting the frequency value of the other luminance level in the image (frame) while maintaining the contrast relationship with the mode of the mode luminance level (intermediate value). A luminance shift image generation function is provided.
 例えば、輝度シフト演算部7は、赤外線センサ画像(赤外線画像)の輝度レベルが256階調である場合、生成されたフレームデータ6aのヒストグラム(図4)における最頻輝度レベルを、図5に示すように、中間値である128に設定し、これを基準としてフレームデータ6a内の他の輝度レベルを線形にシフト(変換)することにより、輝度シフト画像7aを生成する。
 これにより、輝度シフト画像7aでは、目標対象の視認性が向上する。
 尚、最大輝度255を超えるものは255、最小輝度0以下になる輝度レベルは、0として計算するものとする。
For example, when the luminance level of the infrared sensor image (infrared image) is 256 gradations, the luminance shift calculation unit 7 shows the most frequent luminance level in the histogram (FIG. 4) of the generated frame data 6a. As described above, the intermediate value is set to 128, and the other luminance level in the frame data 6a is linearly shifted (converted) using this as a reference to generate the luminance shifted image 7a.
Thereby, in the brightness shift image 7a, the visibility of the target object is improved.
It is assumed that the brightness exceeding 255 is calculated as 255 and the brightness level at which the minimum brightness is 0 or less is 0.
 また、輝度シフト演算部7は、生成した輝度シフト画像7aを複製して、画像処理部4内に予め設定された輝度シフト画像記憶部に格納すると共に、反転画像処理部8および輝度演算処理部9それぞれ対して送信する輝度シフト画像転送機能を有する。 In addition, the luminance shift calculation unit 7 duplicates the generated luminance shift image 7 a and stores it in a luminance shift image storage unit set in advance in the image processing unit 4, as well as the inverted image processing unit 8 and the luminance calculation processing unit. 9 each has a luminance shift image transfer function to transmit to each.
 反転画像処理部8は、輝度シフト画像7aを撮像メモリ内に保持すると共に、この輝度シフト画像7aの輝度レベルを反転(例えば、白黒反転)させた反転シフト画像を生成する反転画像生成機能を備えている。 The inverted image processing unit 8 holds the luminance shift image 7a in the imaging memory and has an inverted image generation function for generating an inverted shift image in which the luminance level of the luminance shift image 7a is inverted (for example, black and white inversion). ing.
 輝度演算処理部9は、反転画像部8から送り込まれた反転シフト画像8aを受信し、輝度シフト画像記憶部に記憶された輝度シフト画像7aおよび反転シフト画像8aそれぞれのフレーム内輝度平均値を各々算出すると共に、輝度シフト画像7aおよび反転シフト画像8a両画像のうち、フレーム内輝度平均値の大きい(高い)方の画像を大輝度画像、輝度平均の小さい(低い)方の画像を小輝度画像にそれぞれ設定する輝度平均値算出設定機能を有する。 The luminance calculation processing unit 9 receives the inverted shift image 8a sent from the inverted image unit 8, and each of the average luminance values in the frames of the luminance shifted image 7a and the inverted shifted image 8a stored in the luminance shifted image storage unit, respectively. In addition to the calculation, among the luminance shift image 7a and the inverted shift image 8a, the image with the larger (higher) in-frame luminance average value is the larger luminance image, and the image with the smaller (lower) luminance average is the smaller luminance image. Have a luminance average value calculation setting function to be set respectively.
 また、輝度演算処理部9は、以下の[式1]に示すように、輝度シフト画像7aおよび反転シフト画像8aそれぞれに対応する位置アドレスの輝度値について、輝度平均の大きい方の画像(大輝度画像)の輝度値を輝度平均の小さい方の画像(小輝度画像)の輝度値で除算する処理(除算処理)を行う輝度値除算処理機能を有する。
 ここで、輝度演算処理部9は、上記除算処理を行う場合に、式1に示すように、演算前の最頻輝度レベルと演算(除算)結果である中間値レベルとが同等となるように、除算結果に対して予め設定されたゲインK(例えばK=128)を掛けるものとする。
In addition, as shown in [Equation 1] below, the luminance calculation processing unit 9 calculates an image having a larger luminance average (large luminance) with respect to the luminance value of the position address corresponding to each of the luminance shifted image 7a and the inverted shifted image 8a. A luminance value division processing function for performing processing (division processing) to divide the luminance value of the image) by the luminance value of the image having the smaller average luminance (small luminance image).
Here, when performing the above-described division processing, the luminance calculation processing unit 9 ensures that the most frequent luminance level before the calculation and the intermediate value level that is the calculation (division) result are equal to each other as shown in Expression 1. The division result is multiplied by a preset gain K (for example, K = 128).
[式1]
Id(x,y) = K × A(x,y) / B(x,y)
[Formula 1]
Id (x, y) = K * A (x, y) / B (x, y)
 また、輝度演算処理部9は、Id(x,y)からなる、画像中における目標対象の背景に対するコントラストが強調された除算処理画像9aを生成すると共に、この除算処理画像9aを特徴検出部10に対して送出する。 In addition, the luminance calculation processing unit 9 generates a division processing image 9a composed of Id (x, y) in which the contrast with respect to the background of the target object in the image is enhanced, and the division processing image 9a is used as the feature detection unit 10. Is sent to.
 更に、輝度演算処理部9は、輝度シフト画像7aおよび反転シフト画像8aそれぞれに対応する位置アドレスの輝度値について、以下の[式2]に示すように、輝度平均の大きい方の画像(大輝度画像)の輝度値から輝度平均の小さい方の画像(小輝度画像)の輝度値を減算する処理を行う設定としてもよい(減算処理)。
 尚、輝度演算処理部9は、この減算処理を行う場合には、式2に示すように、各位置アドレスにおける演算前の最頻輝度レベルと演算(減算)結果である中間値レベルとが同等となるように、減算結果に対して予め設定されたゲイン値(例えばK=128)を加えるものとする。
Further, the luminance calculation processing unit 9 uses the image with the larger average luminance (large luminance) as shown in the following [Equation 2] for the luminance value of the position address corresponding to each of the luminance shifted image 7a and the inverted shifted image 8a. It may be set to perform processing for subtracting the luminance value of the image (small luminance image) having the smaller average luminance from the luminance value of the image (subtraction processing).
When performing the subtraction process, the luminance calculation processing unit 9 equals the mode luminance level before calculation at each position address and the intermediate value level as the calculation (subtraction) result, as shown in Expression 2. It is assumed that a preset gain value (for example, K = 128) is added to the subtraction result.
[式2]
Is(x,y) = | A(x,y) - B(x,y) | + K
[Formula 2]
Is (x, y) = | A (x, y) −B (x, y) | + K
 これにより、輝度演算処理部9は、Is(x,y)からなる、画像中における目標対象のコントラストが強調された減算処理画像9a’を生成すると共に、この減算処理画像9a’を特徴検出部10に対して送出する。 Thereby, the luminance calculation processing unit 9 generates a subtraction processing image 9a ′ composed of Is (x, y) and in which the contrast of the target object in the image is emphasized, and the subtraction processing image 9a ′ is used as the feature detection unit. 10 is sent out.
 尚、輝度演算処理部9内での除算処理又は減算処理のどちらの処理を実行するかの選択は、目標対象の背景に対する輝度差が大きくなる方の演算を採用することが望ましいが、最終結果で得られる処理画像を比較することにより選択する設定であってもよい。 It should be noted that the selection of whether to perform the division process or the subtraction process in the luminance calculation processing unit 9 preferably employs the calculation with the larger luminance difference with respect to the target target background, but the final result The setting may be selected by comparing the processed images obtained in the above.
 特徴検出部10は、輝度演算処理部9から送り込まれた除算処理画像9a(または減算処理画像9a’)に対して、画像中における予め設定された輝度頻度より少ない輝度頻度の領域(画素)を除去するフィルタリング処理を行うことによりフィルタリング画像10aを生成するフィルタリング処理機能を備えている。これにより、画像(フィルタリング画像10a)中における最頻値近辺の輝度を相対的に増大させることができる。 The feature detection unit 10 applies a region (pixel) having a luminance frequency lower than a preset luminance frequency in the image to the division processing image 9a (or the subtraction processing image 9a ′) sent from the luminance calculation processing unit 9. A filtering process function for generating the filtered image 10a by performing the filtering process to be removed is provided. Thereby, the brightness | luminance of the mode value vicinity in an image (filtering image 10a) can be increased relatively.
 コントラスト拡張部11は、フィルタリング画像10aの予め設定された輝度値以上の領域(「輝度領域」という)を選択すると共に、選択された領域における輝度の最頻値に基づいて、この最頻値近辺が最大となるように輝度領域の輝度レンジを線形的に拡張することによってコントラストを拡大したコントラスト拡張画像11aを生成するコントラスト拡張処理機能を備えている。 The contrast extension unit 11 selects a region (referred to as “luminance region”) having a luminance value equal to or higher than a preset luminance value of the filtered image 10a, and based on the luminance mode value in the selected region, the vicinity of the mode value. Is provided with a contrast expansion processing function for generating a contrast expansion image 11a in which the contrast is expanded by linearly expanding the luminance range of the luminance region so that the maximum is.
 二値化処理部12は、コントラスト拡張画像11aの各画素の輝度に対して予め設定された閾値処理を行うことにより2値化画像12aを生成する二値化処理機能を有する。
 また、二値化処理部12は、画像表示部5に出力された2値化画像12aから目標対象を抽出すると共に、目標対象の画像強調表示を行う設定としてもよい。
 尚、上記画像強調表示の手法として、二値化処理部12は、例えば、抽出した目標対象に対応して設定されたマークを2値化画像12a内の目標対象に重畳して表示する設定としてもよい。
The binarization processing unit 12 has a binarization processing function for generating a binarized image 12a by performing preset threshold processing on the luminance of each pixel of the contrast expansion image 11a.
Further, the binarization processing unit 12 may be configured to extract a target object from the binarized image 12a output to the image display unit 5 and to perform image highlight display of the target object.
As a method for the above-described image emphasis display, the binarization processing unit 12 is configured to display, for example, a mark set corresponding to the extracted target object so as to be superimposed on the target object in the binarized image 12a. Also good.
 以上のように、本実施形態では、非冷却赤外線センサ部3により撮像された赤外線画像(原画像)の輝度分布の最頻度の輝度レベルを輝度のダイナミックレンジの中間値に合わせた輝度シフト画像とその反転シフト画像を作成し、その両画像の同一画素位置での輝度レベルの除算、または減算処理を行うことにより得られる画像を、フィルタリング処理やコントラスト拡張することにより、原画像に対して、原画像中の輝度分布の大半を占める背景の輝度変異を抑制し、且つ背景に対する目標対象の輝度差を拡大する画像処理を行うことができる。 As described above, in the present embodiment, the luminance shift image in which the most frequent luminance level of the luminance distribution of the infrared image (original image) captured by the uncooled infrared sensor unit 3 is matched with the intermediate value of the luminance dynamic range, The inverted shift image is created, and the image obtained by dividing or subtracting the luminance level at the same pixel position of the two images is subjected to filtering processing and contrast expansion, whereby the original image is compared with the original image. Image processing that suppresses the luminance variation of the background that occupies most of the luminance distribution in the image and enlarges the luminance difference of the target object with respect to the background can be performed.
 これにより、画像識別支援装置100は、非冷却赤外線センサ部3により撮像された画像の目標対象および背景のコントラストの改善を行い、画像内における目標対象(目標物)の識別を支援する。
 このため、画像識別支援装置100は、例えば、海難救助などで人や救難ボートなど波間の浮遊物の発見のためなどに用いることができ、非冷却赤外線センサ部3により撮影した赤外線画像内の浮遊物、船舶などの目標対象を有効に抽出し、目標対象と白波などの背景ノイズを分離すると共に、背景ノイズを除去(抑制)することにより、目標対象の背景に対する画像コントラストを向上させることができる。
As a result, the image identification support device 100 improves the target object and background contrast of the image captured by the uncooled infrared sensor unit 3, and supports the identification of the target object (target object) in the image.
For this reason, the image identification support device 100 can be used, for example, to find a floating object between waves such as a person or a rescue boat for rescue of a marine accident, and the floating in an infrared image photographed by the uncooled infrared sensor unit 3. By effectively extracting target objects such as objects and ships, separating the target object and background noise such as white waves, and removing (suppressing) the background noise, the image contrast with respect to the background of the target object can be improved. .
[実施形態の動作説明]
 次に、本実施形態の動作について、その概略を説明する。
 まず、画像処理部4の輝度ヒストグラム演算部6が、赤外線画像内に含まれる画素の輝度値(輝度レベル)の出現頻度を示す輝度ヒストグラムを生成し(輝度ヒストグラム演算工程)、次いで、輝度シフト演算部7が、輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における表示階調数の中間値に設定すると共に、中間値に設定された輝度レベルの頻度値との対比関係を維持しつつ他の各輝度レベルの頻度値を線形的にシフトした輝度シフト画像を生成する(輝度レベル調整工程)。
[Description of Operation of Embodiment]
Next, an outline of the operation of this embodiment will be described.
First, the luminance histogram calculation unit 6 of the image processing unit 4 generates a luminance histogram indicating the appearance frequency of the luminance value (luminance level) of the pixels included in the infrared image (luminance histogram calculation step), and then the luminance shift calculation. The unit 7 sets the luminance value having the highest appearance frequency in the luminance histogram to an intermediate value of the number of display gradations in the infrared image, and maintains a contrast relationship with the frequency value of the luminance level set to the intermediate value. Meanwhile, a luminance shift image is generated by linearly shifting the frequency value of each other luminance level (luminance level adjustment step).
 次いで、反転画像処理部8が、輝度シフト画像の輝度レベルを反転した反転シフト画像を生成し(反転シフト画像生成工程)、輝度演算処理部9が、輝度シフト画像および反転シフト画像それぞれの対応位置における輝度値の違いに基づく演算処理を行うことにより、演算処理画像を生成し(輝度演算処理工程)、画像目標抽出部13が、演算処理画像から目標対象物の抽出を行う。 Next, the inverted image processing unit 8 generates an inverted shift image in which the luminance level of the luminance shift image is inverted (inverted shift image generating step), and the luminance calculation processing unit 9 corresponds to the corresponding positions of the luminance shift image and the inverted shift image. An arithmetic processing image is generated by performing arithmetic processing based on the difference in luminance values at (luminance arithmetic processing step), and the image target extraction unit 13 extracts a target object from the arithmetic processing image.
 ここで、上記輝度ヒストグラム演算工程、輝度レベル調整工程、反転シフト画像生成工程、および輝度演算処理工程については、その実行内容をプログラム化し、コンピュータに実行させるように構成してもよい。 Here, with respect to the luminance histogram calculation step, the luminance level adjustment step, the inverted shift image generation step, and the luminance calculation processing step, the execution contents may be programmed and executed by a computer.
 次に、装置100の画像処理部4による目標対象を抽出する処理動作について、図2に基づいて説明する。 Next, a processing operation for extracting a target object by the image processing unit 4 of the apparatus 100 will be described with reference to FIG.
 まず、画像処理部4では、非冷却赤外線センサ部3から画像化された赤外線画像(フレームデータ6a)を受信し、輝度ヒストグラム演算部(ヒストグラム演算部)6が、赤外線画像の各フレーム(フレームデータ)6aを単位として、そこに含まれる各画素の輝度レベルを検知する。
 尚、非冷却赤外線センサ部3により画像化された輝度レベルは、非冷却赤外線センサ部3が有する赤外線センサが画素単位に検出する熱源の温度に比例した輝度レベルを示すものとする。
 ここで、図3(a)は、赤外線画像の1フレームを模式的に示した説明図である。
First, the image processing unit 4 receives an infrared image (frame data 6a) imaged from the uncooled infrared sensor unit 3, and the luminance histogram calculation unit (histogram calculation unit) 6 receives each frame (frame data) of the infrared image. ) The luminance level of each pixel included in 6a is detected in units of 6a.
The luminance level imaged by the non-cooling infrared sensor unit 3 is a luminance level proportional to the temperature of the heat source detected by the infrared sensor included in the non-cooling infrared sensor unit 3 in units of pixels.
Here, FIG. 3A is an explanatory diagram schematically showing one frame of the infrared image.
 次いで、ヒストグラム演算部6は、撮像された各フレームのフレーム番号に対応させて、各フレームにおける輝度レベルと出現頻度との関係を表す輝度ヒストグラム(図4)を生成する。
 また、ヒストグラム演算部6は、各輝度ヒストグラムに基づき最頻値の輝度レベル値6b、および対応する赤外線画像の各フレームデータ6aを、輝度シフト演算部7に転送する(ステップS1)。
Next, the histogram calculation unit 6 generates a luminance histogram (FIG. 4) that represents the relationship between the luminance level and the appearance frequency in each frame in association with the frame number of each captured image.
Further, the histogram calculation unit 6 transfers the mode-level luminance level value 6b and the corresponding infrared image frame data 6a to the luminance shift calculation unit 7 based on each luminance histogram (step S1).
 次に、輝度シフト演算部7は、赤外線画像の各フレームデータ6aに対応した輝度ヒストグラムの最頻値6bの輝度レベルを、各フレームデータ6aにおける輝度表示レンジ(表示階調数)の中間値として設定し、この中間値に基づき他の輝度レベルの頻度値を線形的にシフトする処理を行う。 Next, the luminance shift calculation unit 7 uses the luminance level of the mode 6b of the luminance histogram corresponding to each frame data 6a of the infrared image as an intermediate value of the luminance display range (number of display gradations) in each frame data 6a. Based on this intermediate value, a process of linearly shifting the frequency values of other luminance levels is performed.
 例えば、赤外線画像の輝度レベルが256階調である場合、輝度シフト演算部7は、生成されたフレームデータ6aの輝度ヒストグラム(図4)における最頻値の輝度レベルを、図5に示すように、中間値である128に設定し、これを基準としてフレーム内の他の輝度レベルの頻度値を線形にシフト(変換)することにより、輝度シフト画像7aを生成する。
 尚、最大輝度255を超えるものは255、最小輝度0以下になる輝度レベルは、0として計算するものとする。
For example, when the luminance level of the infrared image is 256 gradations, the luminance shift calculation unit 7 indicates the luminance level of the mode value in the luminance histogram (FIG. 4) of the generated frame data 6a as shown in FIG. Then, the intermediate value is set to 128, and the frequency value of the other luminance level in the frame is linearly shifted (converted) using this as a reference to generate the luminance shifted image 7a.
It is assumed that the brightness exceeding 255 is calculated as 255 and the brightness level at which the minimum brightness is 0 or less is 0.
 また、輝度シフト演算部7は、生成した輝度シフト画像7aを複製して、画像処理部4内に予め設定された輝度シフト画像記憶部に格納すると共に、反転画像処理部8および輝度演算処理部9それぞれ対して送信する(ステップS2)。 In addition, the luminance shift calculation unit 7 duplicates the generated luminance shift image 7 a and stores it in a luminance shift image storage unit set in advance in the image processing unit 4, as well as the inverted image processing unit 8 and the luminance calculation processing unit. 9 is transmitted to each of them (step S2).
 次いで、反転画像部8は、輝度シフト画像7aの輝度レベルを反転(例えば、白黒反転)させた反転シフト画像8aを生成し、輝度演算処理部9に送出する(ステップS3)。 Next, the inverted image unit 8 generates an inverted shift image 8a in which the luminance level of the luminance shift image 7a is inverted (for example, black and white inversion), and sends it to the luminance calculation processing unit 9 (step S3).
 次に、輝度演算処理部9は、反転画像部8から送り込まれた反転シフト画像8aを受信し、輝度シフト画像記憶部に記憶された輝度シフト画像7aおよび反転シフト画像8aそれぞれのフレーム内輝度平均値を各々算出し、両画像(輝度シフト画像7aと反転シフト画像8a)のうち輝度平均の大きい方の画像をA(x,y)、その一方の画像をB(x,y)として設定する。尚、(x,y)はフレーム内の画素の位置アドレスを示すものとする。 Next, the luminance calculation processing unit 9 receives the inverted shift image 8a sent from the inverted image unit 8, and averages the in-frame luminance of each of the luminance shifted image 7a and the inverted shifted image 8a stored in the luminance shifted image storage unit. Each value is calculated, and an image having a larger luminance average of both images (luminance shift image 7a and inverted shift image 8a) is set as A (x, y), and one of the images is set as B (x, y). . Note that (x, y) indicates the position address of the pixel in the frame.
 ここで、輝度演算処理部9は、以下の[式1]に示すように、輝度シフト画像7aおよび反転シフト画像8aそれぞれに対応する位置アドレスの輝度値について、輝度平均の大きい方の画像(大輝度画像)の輝度値を輝度平均の小さい方の画像(小輝度画像)の輝度値で除算する処理を行う(除算処理)。
 また、輝度演算処理部9は、当該除算処理を行う場合には、式1に示すように、各位置アドレスにおける演算前の最頻輝度レベルと演算(除算)結果である中間値レベルとが同等となるように、演算結果に対して予め設定されたゲインK(例えばK=128)を掛ける。
Here, as shown in the following [Equation 1], the luminance calculation processing unit 9 determines the image with the larger luminance average (larger) for the luminance value of the position address corresponding to each of the luminance shifted image 7a and the inverted shifted image 8a. A process of dividing the luminance value of the luminance image) by the luminance value of the image having the smaller average luminance (small luminance image) is performed (division processing).
Further, when performing the division process, the luminance calculation processing unit 9 equals the most frequent luminance level before calculation at each position address and the intermediate value level that is the calculation (division) result as shown in Expression 1. In such a manner, a preset gain K (for example, K = 128) is multiplied to the calculation result.
[式1]
Id(x,y) = K × A(x,y) / B(x,y)
[Formula 1]
Id (x, y) = K * A (x, y) / B (x, y)
 これにより、輝度演算処理部9は、Id(x,y)からなる、画像中における目標対象の背景に対するコントラストが強調された除算処理画像(9a)を生成すると共に、この除算処理画像9aを特徴検出部10に対して送出する(ステップS4)。 As a result, the luminance calculation processing unit 9 generates a division processing image (9a) made of Id (x, y) in which the contrast with respect to the background of the target object in the image is emphasized, and the division processing image 9a is characterized. The data is sent to the detection unit 10 (step S4).
 尚、輝度演算処理部9は、上記除算処理に代えて、輝度シフト画像7aおよび反転シフト画像8aそれぞれに対応する位置アドレスの輝度値について、以下の[式2]に示すように、大輝度画像の輝度値から小輝度画像の輝度値を減算する処理を行う設定としてもよい(減算処理)。また、この減算処理を行う場合には、各位置アドレスにおける演算前の最頻輝度レベルと演算(減算)結果である中間値レベルとが同等となるように、演算結果に対して予め設定されたゲイン値(例えばK=128)を加えるものとする。 Note that the luminance calculation processing unit 9 replaces the division processing with respect to the luminance value of the position address corresponding to each of the luminance shift image 7a and the inverted shift image 8a, as shown in [Equation 2] below, It may be set to perform processing for subtracting the luminance value of the small luminance image from the luminance value (subtraction processing). In addition, when performing this subtraction process, the calculation result is set in advance so that the most frequent luminance level before calculation at each position address is equal to the intermediate value level that is the calculation (subtraction) result. A gain value (for example, K = 128) is added.
[式2]
Is(x,y) = | A(x,y) - B(x,y) | + K
[Formula 2]
Is (x, y) = | A (x, y) −B (x, y) | + K
 これにより、輝度演算処理部9は、Is(x,y)からなる、画像中における目標対象の背景(特に、中間値から離れた色調、例えば、白波などの背景)に対するコントラストが強調された減算処理画像(9a’)を生成すると共に、この減算処理画像9a’を特徴検出部10に対して送出する(ステップS4)。 Thereby, the luminance calculation processing unit 9 is a subtraction consisting of Is (x, y), in which the contrast with respect to the background of the target object in the image (particularly, the color tone away from the intermediate value, for example, the background of white waves, etc.) is enhanced. A processed image (9a ′) is generated, and the subtracted processed image 9a ′ is sent to the feature detection unit 10 (step S4).
 尚、輝度演算処理部9では、フレームデータに対して上記除算処理又は減算処理のどちらの処理を実行するかの選択は、目標対象の背景に対する輝度差が大きくなる方の演算を採用することが望ましいが、最終結果で得られる処理画像を比較することにより、目標対象の背景に対するコントラストがより改善された処理の方を選択する設定であってもよい。 In the luminance calculation processing unit 9, the selection of whether to perform the above-described division processing or subtraction processing on the frame data may employ the calculation that increases the luminance difference with respect to the target target background. Although desirable, it may be a setting for selecting a process in which the contrast with respect to the background of the target object is further improved by comparing the processed images obtained in the final result.
 次いで、輝度演算処理部9は、生成された除算処理画像9aまたは減算処理画像9a’を特徴検出部10に入力する。
 ここで、輝度演算処理部9は、生成された除算処理画像9aまたは減算処理画像9a’を、背景画像と目標対象における輝度に一定以上の輝度差がある場合には、スルー画像として画像表示部5に送出する設定としてもよい。
 この場合、画像表示部5には、除算処理画像9aまたは減算処理画像9a’が演算処理画像として表示される。
Next, the luminance calculation processing unit 9 inputs the generated division processing image 9a or subtraction processing image 9a ′ to the feature detection unit 10.
Here, the luminance calculation processing unit 9 displays the generated division processing image 9a or subtraction processing image 9a ′ as a through image when there is a certain luminance difference between the background image and the target object. 5 may be set to be sent out.
In this case, the division processing image 9a or the subtraction processing image 9a ′ is displayed on the image display unit 5 as the arithmetic processing image.
 ここで、輝度演算処理部9による画像中における目標対象のコントラスト強調する処理の内容について説明する。ここでは、赤外線画像の輝度シフト画像7aを模式的に示した図3(a)および図6(a)に基づき説明する。 Here, the content of the process of enhancing the contrast of the target object in the image by the luminance calculation processing unit 9 will be described. Here, a description will be given based on FIG. 3A and FIG. 6A schematically showing the luminance shift image 7a of the infrared image.
 また、図3(b)の601は、図3(a)における目標対象3aを通るX方向の輝度プロファイルであり、図3(b)の602は、輝度シフト画像7aの輝度を反転させた反転シフト画像8a中の目標対象3aを通過する輝度プロファイルを示すものとする。
 更に、図6(b)についても同様に、図6(b)の801は、図6(a)における目標対象3aを通るX方向の輝度プロファイルであり、図6(b)の602は、輝度シフト画像7aの輝度を反転させた反転シフト画像8a中の目標対象3aを通過する輝度プロファイルを示している。
3B is a luminance profile in the X direction passing through the target object 3a in FIG. 3A, and 602 in FIG. 3B is an inversion obtained by inverting the luminance of the luminance shift image 7a. A luminance profile passing through the target object 3a in the shift image 8a is shown.
Further, similarly in FIG. 6B, reference numeral 801 in FIG. 6B denotes a luminance profile in the X direction passing through the target object 3a in FIG. 6A, and reference numeral 602 in FIG. The brightness | luminance profile which passes the target object 3a in the reverse shift image 8a which reversed the brightness | luminance of the shift image 7a is shown.
 例えば、輝度演算処理部9で、上述のように減算処理が実行される場合、輝度シフト画像7aおよび反転シフト画像8aの画像中における輝度頻度の大多数を占める背景領域3b(図6(a))では、輝度シフト画像7aと反転シフト画像8aとの輝度差は、上記[式2]により、きわめて小さな輝度レベルの0近傍となる。 For example, when the luminance calculation processing unit 9 performs the subtraction process as described above, the background region 3b occupying the majority of the luminance frequencies in the images of the luminance shift image 7a and the inverted shift image 8a (FIG. 6A). ), The luminance difference between the luminance shift image 7a and the inverted shift image 8a is in the vicinity of 0 with an extremely small luminance level according to [Equation 2].
 一方、減算処理の処理結果である処理画像中の目標対象近傍の背景領域に対する輝度差は、図3(c)の輝度プロファイル701に示すように、拡大する。この処理画像での背景領域の輝度レベルはゲインK(例えばK=128)を加算することで、減算処理前の輝度シフト画像7aにおける輝度レベルとほぼ変わらない輝度レベルとなるが、目標対象付近の背景との輝度レベルの差異が拡大しているため、コントラストが改善され(強調され)、目標対象の視認性が大きく向上する。 On the other hand, the luminance difference with respect to the background region in the vicinity of the target object in the processed image, which is the processing result of the subtraction process, is enlarged as shown in the luminance profile 701 in FIG. The luminance level of the background area in this processed image becomes a luminance level almost the same as the luminance level in the luminance shifted image 7a before the subtraction processing by adding gain K (for example, K = 128), but near the target object. Since the difference in luminance level from the background is enlarged, the contrast is improved (emphasized), and the visibility of the target object is greatly improved.
 ここで、図11に海面を航行する船舶を非冷却赤外線センサ部3により撮像した画像を示す。また、図12に、図11の赤外線画像に対して、上述のように、減算処理を行った場合の処理画像を示す。
 特に、減算処理の処理画像である図12では、表示階調数における両端の値(0、255)に近い側の輝度レベルの背景に対する目標物(目標対象)である船舶のコントラストが有効に強調され、図11内における波間の浮遊物に比して視認性が大幅に向上している。
Here, the image which imaged the ship which navigates the sea surface in FIG. 11 by the non-cooling infrared sensor part 3 is shown. FIG. 12 shows a processed image when the subtraction process is performed on the infrared image of FIG. 11 as described above.
In particular, in FIG. 12, which is a processed image of the subtraction process, the contrast of the ship, which is the target (target target), with respect to the background of the brightness level near the values (0, 255) on both ends in the display gradation number is effectively enhanced. In addition, the visibility is significantly improved as compared with the suspended matter between waves in FIG.
 次に、輝度演算処理部9で、上記除算処理が実行される場合について説明する。
 ここでは、輝度シフト画像7aおよび反転シフト画像8aの画像中における輝度レベルの出現頻度の大多数を占める背景領域3b(図3(a))では、出現する輝度レベルは、輝度シフト画像7aおよび反転シフト画像8aともに中間値である128(表示階調数が256階調のとき)近傍となるため、輝度演算処理部9が各画素における輝度の除算処理を実行すると、除算結果である商は1近傍の値となる。
Next, a case where the above-described division process is executed in the luminance calculation processing unit 9 will be described.
Here, in the background region 3b (FIG. 3A) that occupies the majority of the appearance frequency of the brightness level in the brightness shift image 7a and the inverted shift image 8a, the appearing brightness level is the brightness shift image 7a and the inversion. Since both of the shift images 8a are close to the intermediate value of 128 (when the number of display gradations is 256 gradations), when the luminance calculation processing unit 9 executes the luminance division processing for each pixel, the quotient that is the division result is 1. It is a nearby value.
 このため、この除算処理では、背景の画素数の多い領域(3b:図3(a))では、輝度差が極めて小さく、ゲインK(例えばK=128)を掛ける演算を行った場合でも(式1)、輝度レベルが大きく変化することはなく、これは、階調中間値(128)に近い輝度値または、輝度シフト画像7aおよび反転シフト画像8aで輝度差の少ない領域で顕著となる。 For this reason, in this division processing, even in a region where the background has a large number of pixels (3b: FIG. 3A), the luminance difference is extremely small, and even when an operation of multiplying the gain K (for example, K = 128) is performed (formula 1) The luminance level does not change greatly, and this is noticeable in the luminance value close to the gradation intermediate value (128) or in the region where the luminance difference is small in the luminance shift image 7a and the inverted shift image 8a.
 一方、目標対象付近での輝度シフト画像7aの輝度値と、反転シフト画像8aにおける対応するアドレス位置にある画素位置の輝度値との演算(除算)処理結果である商は1以上となり、ゲインK(128)を掛ける演算を行うことにより、輝度の差異はより拡大する。
 このため、図6(c)の輝度プロファイル901に示すように、処理画像(除算処理画像9a)では、背景領域における輝度変異は抑制され、目標対象と背景領域との輝度差が大きくなる。
 これにより、画像中における背景領域に対する目標対象のコントラストが拡大されるため目標対象の抽出が容易になる。
On the other hand, the quotient that is the result of the calculation (division) processing of the luminance value of the luminance shift image 7a near the target object and the luminance value of the pixel position at the corresponding address position in the inverted shift image 8a is 1 or more, and the gain K By performing the operation of multiplying by (128), the luminance difference is further expanded.
For this reason, as shown in the luminance profile 901 of FIG. 6C, in the processed image (division processed image 9a), the luminance variation in the background region is suppressed, and the luminance difference between the target object and the background region becomes large.
Thereby, since the contrast of the target object with respect to the background region in the image is enlarged, the target object can be easily extracted.
 ここで、図7に海面を航行する船舶および海面上の浮遊物を非冷却赤外線センサ部3により撮像した画像(赤外線画像)を示す。また、図8は、図7の赤外線画像の輝度ヒストグラムを示す(図4に対応)。
 更に、図7の赤外線画像に対して、上述のように、除算処理を行った場合の処理画像(除算処理画像9a)を図9に示す。この除算処理画像9aでは、特に、上記減算処理画像9a’に比べて、表示階調数における中間値(128)に近い輝度レベルの背景に対する目標対象のコントラストが有効に強調される。また、図10は、図9の処理画像の輝度ヒストグラムを示す。
Here, the image (infrared image) which imaged the ship which navigates the sea surface and the floating matter on the sea surface with the uncooled infrared sensor part 3 in FIG. 7 is shown. FIG. 8 shows a luminance histogram of the infrared image of FIG. 7 (corresponding to FIG. 4).
Further, FIG. 9 shows a processed image (division processed image 9a) when the division processing is performed on the infrared image of FIG. 7 as described above. In this division processed image 9a, in particular, the contrast of the target object with respect to the background having a luminance level close to the intermediate value (128) in the number of display gradations is effectively enhanced as compared with the subtraction processed image 9a ′. FIG. 10 shows a luminance histogram of the processed image of FIG.
 本実施形態では、輝度ヒストグラム上(図7)で最頻度を占める背景領域(海面)の輝度レベルを階調数の中間値(128)に設定すると共に、その他の輝度レベル(背面領域以外の画素の輝度レベル)をこの中間値に基づき線形的に変換する。
 これにより、赤外線画像の輝度分布のレンジ幅を、有効に拡大することができ、このため、画像内における目標対象の視認性が向上する。
In the present embodiment, the luminance level of the background region (sea surface) that occupies the highest frequency on the luminance histogram (FIG. 7) is set to the intermediate value (128) of the number of gradations, and other luminance levels (pixels other than the back region) are set. (Brightness level) is linearly converted based on the intermediate value.
Thereby, the range width of the luminance distribution of the infrared image can be effectively expanded, and thus the visibility of the target object in the image is improved.
 尚、本実施形態では、輝度演算処理部9が、赤外線画像の輝度シフト画像7aおよび反転シフト画像8aに対して除算処理または減算処理の一方を実行する場合について説明しているが、上述のように、減算処理では、海面上の白波を消去する効果を有し、除算処理では中間色調近傍の背景と目標対象とのコントラストを高める効果を有するため、除算処理および減算処理を組み合わせた処理を行うことにより、輝度分布の分布幅をより拡大する処理を行う設定としてもよい。
 これにより、処理画像中における背景と目標対象とのコントラストが拡大され、目標対象となる海面上の航行船舶の視認性をより高めることができる。
In the present embodiment, the case where the luminance calculation processing unit 9 executes one of the division process or the subtraction process for the luminance shift image 7a and the inverted shift image 8a of the infrared image is described. In addition, the subtraction process has the effect of eliminating white waves on the sea surface, and the division process has the effect of increasing the contrast between the background in the vicinity of the intermediate color tone and the target object, so a process combining the division process and the subtraction process is performed. Accordingly, it may be set to perform processing for further expanding the distribution width of the luminance distribution.
Thereby, the contrast between the background and the target object in the processed image is enlarged, and the visibility of the sailing ship on the sea surface that is the target object can be further enhanced.
 次に、特徴検出部10は、ステップS4で輝度演算処理部9から送り込まれた除算処理画像9a(または減算処理画像9a’)に対して、画像中における予め設定された輝度頻度より少ない輝度領域(画素)を除去するフィルタリング処理を行うことによりフィルタリング画像10aを生成し、コントラスト拡張部11に対して送信する(ステップS5)。
 これにより、画像(フィルタリング画像10a)中における最頻値の輝度レベルが相対的に増大される。
Next, the feature detection unit 10 applies a luminance region that is less than a preset luminance frequency in the image to the division processing image 9a (or the subtraction processing image 9a ′) sent from the luminance calculation processing unit 9 in step S4. A filtering image 10a is generated by performing filtering processing to remove (pixels), and is transmitted to the contrast extension unit 11 (step S5).
Thereby, the luminance level of the mode value in the image (filtering image 10a) is relatively increased.
 コントラスト拡張部11は、入力されたフィルタリング画像10aの予め設定された輝度値以上の領域(「輝度領域」という)を選択すると共に、選択された輝度の最頻値に基づいて、この最頻値近辺が最大となるように輝度領域の輝度レンジを線形的に拡張することによってコントラストを拡大したコントラスト拡張画像11aを生成し、二値化処理部12に対して送出する(ステップS6)。 The contrast extension unit 11 selects a region (referred to as “luminance region”) that is equal to or higher than a preset luminance value of the input filtered image 10a, and based on the selected luminance mode value, this mode value. A contrast expansion image 11a having a contrast expanded by linearly expanding the luminance range of the luminance region so as to maximize the vicinity is generated and sent to the binarization processing unit 12 (step S6).
 次に、二値化処理部12は、コントラスト拡張画像11aの各画素の輝度に対して予め設定された閾値処理を行うことにより2値化画像12aを生成する(2値化処理)と共に、この2値化画像12aを画像表示部5に出力する(ステップS7)。 Next, the binarization processing unit 12 generates a binarized image 12a by performing preset threshold processing on the luminance of each pixel of the contrast expansion image 11a (binarization processing), and The binarized image 12a is output to the image display unit 5 (step S7).
 また、二値化処理部12は、画像表示部5に出力された2値化画像12aから目標対象を抽出すると共に、目標対象の強調表示を行う設定としてもよい。
 ここで、二値化処理部12は、上記強調表示の手法として、例えば、抽出した目標対象に対応して設定されたマークを2値化画像12a内の目標対象に重畳して表示するものとする。
Further, the binarization processing unit 12 may be configured to extract a target object from the binarized image 12a output to the image display unit 5 and to perform highlight display of the target object.
Here, the binarization processing unit 12 displays, for example, a mark set corresponding to the extracted target object so as to be superimposed on the target object in the binarized image 12a as the highlighting method. To do.
 以上のように、本実施形態である画像識別支援装置100では、撮影した赤外線画像の輝度分布の大半を占める、背景領域の輝度変異を抑制しつつ、この背景領域の輝度に対する目標対象の輝度のコントラスト(輝度差)を拡大する処理を行うことができる。
 また、輝度シフト画像および反転シフト画像に対する除算(減算)処理により、画像内における微小で輝度差が極めて小さいノイズの除去も行うことができ、更には、輝度差拡大の効果が得られる。
 このため、高価で複雑な光学系を必要とすることなく、更には、ヒストグラム量子化等の計算負荷の高い処理や、個別のノイズ除去処理を実行する必要なく、迅速で、効果的な画像処理を行うことが可能となる。また、目標と背景の温度差が微小で背景とのコントラストが確保しにくい、目標対象の抽出を可能にする。
 更には、赤外線画像内に含まれる波間の浮遊物の抽出、白波等の波消しを有効に行うことができる。
As described above, in the image identification support device 100 according to the present embodiment, the luminance of the target object with respect to the luminance of the background region is suppressed while suppressing the luminance variation of the background region that occupies most of the luminance distribution of the captured infrared image. Processing for enlarging contrast (luminance difference) can be performed.
In addition, by the division (subtraction) processing on the luminance shift image and the inverted shift image, it is possible to remove noise that is very small in the image and extremely small in luminance difference, and further, an effect of increasing the luminance difference can be obtained.
This eliminates the need for an expensive and complex optical system, and further eliminates the need for processing with a high computational load such as histogram quantization and individual noise removal processing, and enables rapid and effective image processing. Can be performed. In addition, it is possible to extract a target object in which the temperature difference between the target and the background is minute and it is difficult to ensure the contrast with the background.
Furthermore, it is possible to effectively extract floating substances between waves included in the infrared image and eliminate waves such as white waves.
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment (and an Example), this invention is not limited to the said embodiment (and Example). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は2009年8月27日に出願された日本出願特願2009-196926を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2009-196926 filed on Aug. 27, 2009, the entire disclosure of which is incorporated herein.
 本発明は、赤外線画像を用いて艦船などの目標物を自動的に検出する赤外線画像処理システムに対して有用に適用することができる。 The present invention can be usefully applied to an infrared image processing system that automatically detects a target such as a ship using an infrared image.
 1 集光ドーム
 2 光学部
 3 非冷却赤外線センサ部
 4 画像処理部
 5 画像表示部
 6 ヒストグラム演算部
 7 輝度シフト演算部
 8 反転画像処理部(輝度演算処理部)
 9 輝度演算処理部
 10 特徴検出部
 11 コントラスト拡張部
 12 二値化処理部
DESCRIPTION OF SYMBOLS 1 Condensing dome 2 Optical part 3 Uncooled infrared sensor part 4 Image processing part 5 Image display part 6 Histogram calculating part 7 Brightness shift calculating part 8 Reverse image processing part (luminance calculating process part)
9 brightness calculation processing unit 10 feature detection unit 11 contrast expansion unit 12 binarization processing unit

Claims (7)

  1.  目標対象物を含む撮影対象からの赤外光を集光すると共に当該集光された赤外光から特定の波長帯域を取得する光学部と、前記光学部により取得された波長に基づき前記撮像対象の温度に対応した赤外線画像を生成する非冷却赤外線イメージセンサと、前記赤外線画像に基づき前記目標対象物が強調表示された演算処理画像を生成する画像処理部とを備えた画像目標識別装置であって、
     前記画像処理部は、
     前記赤外線画像内に含まれる画素の輝度値の出現頻度を示す輝度ヒストグラムを生成する輝度ヒストグラム演算部と、
     前記輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における輝度レンジ幅の中間値に設定すると共に前記中間値に設定された輝度値との対比関係を維持して前記赤外線画像における他の各輝度値を線形的にシフトした輝度シフト画像を生成する輝度レベル調整部と、
     前記輝度シフト画像の輝度レベルの明暗を反転した反転シフト画像を生成すると共にこの反転シフト画像と前記輝度シフト画像それぞれの対応画素における輝度値の違いに基づく演算処理を行い前記演算処理画像を生成する輝度演算処理部とを備えたことを特徴とする画像目標識別装置。
    An optical unit that collects infrared light from an imaging target including a target object and acquires a specific wavelength band from the collected infrared light, and the imaging target based on the wavelength acquired by the optical unit An image target identification device comprising: an uncooled infrared image sensor that generates an infrared image corresponding to the temperature of the image; and an image processing unit that generates an arithmetic processing image in which the target object is highlighted based on the infrared image. And
    The image processing unit
    A luminance histogram calculator that generates a luminance histogram indicating the frequency of appearance of luminance values of pixels included in the infrared image;
    The luminance value having the highest appearance frequency in the luminance histogram is set to the intermediate value of the luminance range width in the infrared image, and the contrast relationship with the luminance value set to the intermediate value is maintained, and other values in the infrared image are maintained. A brightness level adjustment unit that generates a brightness shift image obtained by linearly shifting each brightness value;
    An inverted shift image in which the brightness level of the luminance shift image is inverted is generated, and an arithmetic processing based on a difference in luminance value between corresponding pixels of the inverted shift image and the luminance shift image is performed to generate the arithmetic processing image. An image target identification device comprising: a luminance calculation processing unit.
  2.  前記請求項1に記載の画像目標識別装置において、
     前記輝度演算処理部は、前記輝度シフト画像および反転シフト画像それぞれの輝度レベル平均値を算出すると共に、前記輝度レベル平均値に基づき前記輝度シフト画像および反転シフト画像の一方の画像を高明度側画像に、他方の画像を低明度側画像にそれぞれ設定する明度差画像設定手段と、
     前記高明度側画像における各画素の輝度値から前記低明度側画像の対応する位置の各画素の頻度値を減算する処理を前記演算処理として実行することにより前記演算処理画像を生成する減算処理手段を備えたことを特徴とする画像目標識別装置。
    In the image target identification device according to claim 1,
    The luminance calculation processing unit calculates an average luminance level value of each of the luminance shift image and the inverted shift image, and calculates one image of the luminance shift image and the inverted shift image based on the average luminance level value as a high brightness side image. And brightness difference image setting means for setting the other image as a low brightness side image,
    Subtraction processing means for generating the arithmetic processing image by executing, as the arithmetic processing, processing for subtracting the frequency value of each pixel at the corresponding position of the low lightness side image from the luminance value of each pixel in the high brightness side image. An image target identification device comprising:
  3.  前記請求項2に記載の画像目標識別装置において、
     前記高明度側画像における各画素の輝度値を前記低明度側画像の対応する位置の各画素の頻度値で除算する除算処理を前記演算処理として実行し前記演算処理画像を生成する除算処理手段を備えたことを特徴とする画像目標識別装置。
    In the image target identification device according to claim 2,
    Division processing means for executing the division process of dividing the luminance value of each pixel in the high brightness side image by the frequency value of each pixel at the corresponding position of the low brightness side image as the calculation process and generating the calculation process image. An image target identification device comprising:
  4.  前記請求項1に記載の画像目標識別装置において、
     前記輝度演算処理部は、前記輝度シフト画像および反転シフト画像それぞれの輝度レベル平均値を算出すると共に、前記輝度レベル平均値に基づき前記輝度シフト画像および反転シフト画像の一方の画像を高明度側画像に、他方の画像を低明度側画像にそれぞれ設定する明度差画像設定手段と、
     前記高明度側画像における各画素の輝度値を前記低明度側画像の対応する位置の各画素の頻度値で除算する除算処理を前記演算処理として実行し前記演算処理画像を生成する除算処理手段を備えたことを特徴とする画像目標識別装置。
    In the image target identification device according to claim 1,
    The luminance calculation processing unit calculates an average luminance level value of each of the luminance shift image and the inverted shift image, and calculates one image of the luminance shift image and the inverted shift image based on the average luminance level value as a high brightness side image. And brightness difference image setting means for setting the other image as a low brightness side image,
    Division processing means for executing the division process of dividing the luminance value of each pixel in the high brightness side image by the frequency value of each pixel at the corresponding position of the low brightness side image as the calculation process and generating the calculation process image. An image target identification device comprising:
  5.  前記請求項1、2、3、または4に記載の画像目標識別装置において、
     前記演算処理画像における予め設定された輝度頻度より少ない輝度領域の画素における輝度を除去することによりフィルタリング画像を生成するフィルタリング処理部と、
     前記フィルタリング画像に含まれる輝度値に基づき当該フィルタリング画像のコントラストの拡張処理を行うコントラスト拡張部と、
     前記演算処理画像における一定値以上の輝度レベルの画素を2値化する処理を行う二値化処理部とを備えたことを特徴とする画像目標識別装置。
    In the image target identification device according to claim 1, 2, 3, or 4,
    A filtering processing unit that generates a filtering image by removing luminance in pixels in a luminance region less than a preset luminance frequency in the arithmetic processing image;
    A contrast expansion unit that performs a process of expanding the contrast of the filtered image based on the luminance value included in the filtered image;
    An image target identification apparatus comprising: a binarization processing unit that performs a process of binarizing pixels having a luminance level equal to or higher than a certain value in the arithmetic processing image.
  6.  目標対象物を含む撮影対象からの赤外光を集光すると共に当該集光された赤外光から前記撮像対象の温度に基づき前記目標対象物が強調表示された演算処理画像を生成する画像目標識別方法であって、
     前記赤外線画像内に含まれる画素の輝度値の出現頻度を示す輝度ヒストグラムを生成し、
     前記輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における輝度レンジ幅の中間値に設定すると共に、前記中間値に設定された輝度値との対比関係を維持して前記赤外線画像における他の各輝度値を線形的にシフトした輝度シフト画像を生成し、
     前記輝度シフト画像の輝度レベルを反転した反転シフト画像を生成し、
     前記輝度シフト画像および反転シフト画像それぞれの対応位置における輝度値の違いに基づく演算処理を行うことにより前記演算処理画像を生成することを特徴とする画像目標識別方法。
    An image target that collects infrared light from an imaging target including the target object and generates an arithmetic processing image in which the target object is highlighted based on the temperature of the imaging target from the condensed infrared light. An identification method,
    Generating a luminance histogram indicating the frequency of appearance of luminance values of pixels included in the infrared image;
    The luminance value having the highest appearance frequency in the luminance histogram is set to the intermediate value of the luminance range width in the infrared image, and the contrast value with the luminance value set in the intermediate value is maintained, and the other values in the infrared image are maintained. A brightness shift image in which each brightness value is linearly shifted is generated,
    Generating an inverted shift image by inverting the luminance level of the luminance shift image;
    An image target identification method, wherein the arithmetic processing image is generated by performing arithmetic processing based on a difference in luminance values at corresponding positions of the luminance shift image and the inverted shift image.
  7.  目標対象物を含む撮影対象からの赤外光を集光すると共に当該集光された赤外光から前記撮像対象の温度に基づき生成された赤外線画像に基づき前記目標対象物が強調表示された演算処理画像を生成するための画像目標識別プログラムであって、
     前記赤外線画像内に含まれる画素の輝度値の出現頻度を示す輝度ヒストグラムを生成する輝度ヒストグラム演算機能と、
     前記輝度ヒストグラムにおける出現頻度が最大となる輝度値を前記赤外線画像における輝度レンジ幅の中間値に設定すると共に、前記中間値に設定された輝度値との対比関係を維持して前記赤外線画像における他の各輝度値を線形的にシフトした輝度シフト画像を生成する輝度レベル調整機能と、
     前記輝度シフト画像の輝度レベルを反転した反転シフト画像を生成する反転シフト画像生成機能と、
     前記輝度シフト画像および反転シフト画像それぞれの対応位置における輝度値の違いに基づく演算処理を行うことにより前記演算処理画像を生成する輝度演算処理機能と、
     をコンピュータに実行させることを特徴とする画像目標識別プログラム。
    An operation in which infrared light from an imaging target including the target object is condensed and the target object is highlighted based on an infrared image generated from the collected infrared light based on the temperature of the imaging target An image target identification program for generating a processed image,
    A luminance histogram calculation function for generating a luminance histogram indicating the frequency of appearance of luminance values of pixels included in the infrared image;
    The luminance value having the highest appearance frequency in the luminance histogram is set to the intermediate value of the luminance range width in the infrared image, and the contrast value with the luminance value set in the intermediate value is maintained, and the other values in the infrared image are maintained. A brightness level adjustment function for generating a brightness shift image obtained by linearly shifting each brightness value of
    An inverted shift image generation function for generating an inverted shift image obtained by inverting the luminance level of the luminance shift image;
    A luminance calculation processing function for generating the calculation processing image by performing calculation processing based on a difference in luminance value at corresponding positions of the luminance shift image and the inverted shift image;
    An image target identification program for causing a computer to execute.
PCT/JP2010/064403 2009-08-27 2010-08-25 Image target identification device, image target identification method, and image target identification program WO2011024865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528826A JP5664551B2 (en) 2009-08-27 2010-08-25 Image target identification device, image target identification method, and image target identification program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-196926 2009-08-27
JP2009196926 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024865A1 true WO2011024865A1 (en) 2011-03-03

Family

ID=43627965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064403 WO2011024865A1 (en) 2009-08-27 2010-08-25 Image target identification device, image target identification method, and image target identification program

Country Status (2)

Country Link
JP (1) JP5664551B2 (en)
WO (1) WO2011024865A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011055772A1 (en) * 2009-11-05 2013-03-28 日本電気株式会社 Image target identification device, image target identification method, and image target identification program
JPWO2011074413A1 (en) * 2009-12-14 2013-04-25 日本電気株式会社 Image generation apparatus, image generation method, and image generation program
JP2020064052A (en) * 2018-09-10 2020-04-23 アクシス アーベー Method and system for filtering thermal image data
JP7400599B2 (en) 2020-03-31 2023-12-19 株式会社豊田中央研究所 object detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056860A (en) * 1999-08-20 2001-02-27 Mitsubishi Electric Corp Image processor
JP2006160140A (en) * 2004-12-09 2006-06-22 Mitsubishi Electric Corp Target detecting device
JP2007322374A (en) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp Infrared target selector
JP2009010669A (en) * 2007-06-28 2009-01-15 Sony Corp Image processing unit, imaging apparatus, image processing method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056860A (en) * 1999-08-20 2001-02-27 Mitsubishi Electric Corp Image processor
JP2006160140A (en) * 2004-12-09 2006-06-22 Mitsubishi Electric Corp Target detecting device
JP2007322374A (en) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp Infrared target selector
JP2009010669A (en) * 2007-06-28 2009-01-15 Sony Corp Image processing unit, imaging apparatus, image processing method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011055772A1 (en) * 2009-11-05 2013-03-28 日本電気株式会社 Image target identification device, image target identification method, and image target identification program
JP5742722B2 (en) * 2009-11-05 2015-07-01 日本電気株式会社 Image target identification device, image target identification method, and image target identification program
JPWO2011074413A1 (en) * 2009-12-14 2013-04-25 日本電気株式会社 Image generation apparatus, image generation method, and image generation program
JP5741447B2 (en) * 2009-12-14 2015-07-01 日本電気株式会社 Image generation apparatus, image generation method, and image generation program
JP2020064052A (en) * 2018-09-10 2020-04-23 アクシス アーベー Method and system for filtering thermal image data
JP6995092B2 (en) 2018-09-10 2022-01-14 アクシス アーベー Methods and systems for filtering thermal image data
JP7400599B2 (en) 2020-03-31 2023-12-19 株式会社豊田中央研究所 object detection device

Also Published As

Publication number Publication date
JPWO2011024865A1 (en) 2013-01-31
JP5664551B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5741447B2 (en) Image generation apparatus, image generation method, and image generation program
JP5742722B2 (en) Image target identification device, image target identification method, and image target identification program
CN109377469B (en) Processing method, system and storage medium for fusing thermal imaging with visible light image
JP6729394B2 (en) Image processing apparatus, image processing method, program and system
US9398235B2 (en) Apparatus and method for fusing images
WO2014185064A1 (en) Image processing method and system
US8594435B2 (en) Image processing device and method, and program therefor
EP2503774A1 (en) Image processing method, and image processing device
JP2008286725A (en) Person detector and detection method
JP5664551B2 (en) Image target identification device, image target identification method, and image target identification program
JP2007295357A (en) On-vehicle peripheral situation presentation device
JP2017038162A (en) Imaging apparatus and image processing method, program, and storage medium
CA2989188A1 (en) Method for ir or thermal image enchancement based on scene information for video analysis
JP2010166363A (en) Pseudo-gray-image generating device, and program
JP6375911B2 (en) Curve mirror detector
JP5906696B2 (en) Vehicle periphery photographing apparatus and vehicle periphery image processing method
CN104205170B (en) Article detection device and object detecting method
CN116385340A (en) Medical endoscope image rapid defogging method and system
CN115578304A (en) Multi-band image fusion method and system combining saliency region detection
CN112241935B (en) Image processing method, device and equipment and storage medium
JP2012095342A (en) Pseudo-gray-image generating device, and program
JP2018072884A (en) Information processing device, information processing method and program
JP2008040724A (en) Image processing device and image processing method
JP6314281B1 (en) Image processing method and foreground region acquisition method
Qi et al. A new defogging method with nested windows

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811914

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528826

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811914

Country of ref document: EP

Kind code of ref document: A1