WO2011024719A1 - Anisotropic conductive material, connection structure, and connection structure producing method - Google Patents

Anisotropic conductive material, connection structure, and connection structure producing method Download PDF

Info

Publication number
WO2011024719A1
WO2011024719A1 PCT/JP2010/064077 JP2010064077W WO2011024719A1 WO 2011024719 A1 WO2011024719 A1 WO 2011024719A1 JP 2010064077 W JP2010064077 W JP 2010064077W WO 2011024719 A1 WO2011024719 A1 WO 2011024719A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive material
compound
group
weight
Prior art date
Application number
PCT/JP2010/064077
Other languages
French (fr)
Japanese (ja)
Inventor
茂雄 真原
敬士 久保田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201080037248.5A priority Critical patent/CN102484326B/en
Priority to JP2011528764A priority patent/JP5602743B2/en
Publication of WO2011024719A1 publication Critical patent/WO2011024719A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Abstract

Provided are an anisotropic conductive material including conductive particles, by which the reliability in conduction between electrodes which are electrically connected can be improved, and a connection structure using the anisotropic conductive material. The anisotropic conductive material contains a curable compound, a heat-curable agent, a light curing initiator, and conductive particles. In 100 wt% of the anisotropic conductive material, the content of the conductive particles ranges 1 to 19 wt%. the connection structure is comprised of a first member (2) to be connected, a second member (4) to be connected, and a connection portion (3) which connects the first and second members (2, 4). The connection portion (3) is formed by curing the anisotropic conductive material.

Description

異方性導電材料、接続構造体及び接続構造体の製造方法Anisotropic conductive material, connection structure, and manufacturing method of connection structure
 本発明は、複数の導電性粒子を含む異方性導電材料であって、例えば、フレキシブルプリント基板、ガラス基板及び半導体チップなどの様々な接続対象部材の電極間の電気的な接続に用いることができる異方性導電材料、並びに該異方性導電材料を用いた接続構造体及び接続構造体の製造方法に関する。 The present invention is an anisotropic conductive material including a plurality of conductive particles, and can be used for electrical connection between electrodes of various connection target members such as a flexible printed circuit board, a glass substrate, and a semiconductor chip. The present invention relates to an anisotropic conductive material, a connection structure using the anisotropic conductive material, and a method of manufacturing the connection structure.
 異方性導電ペースト、異方性導電インク及び異方性導電粘接着剤等の異方性導電材料が広く知られている。これらの異方性導電材料では、ペースト、インク又は樹脂中に複数の導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste, anisotropic conductive ink and anisotropic conductive adhesive are widely known. In these anisotropic conductive materials, a plurality of conductive particles are dispersed in paste, ink, or resin.
 上記異方性導電材料は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、又は半導体チップとガラス基板との接続(COG(Chip on Glass))等に使用されている。 The anisotropic conductive material is, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), or a semiconductor chip. Used for connection to glass substrates (COG (Chip on Glass)) and the like.
 上記異方性導電材料の一例として、下記の特許文献1には、エポキシ樹脂と、ゴム状ポリマー粒子と、熱活性な潜在性エポキシ硬化剤と、高軟化点ポリマー粒子と、導電性粒子とを含有する異方性導電材料が開示されている。 As an example of the anisotropic conductive material, Patent Document 1 below includes an epoxy resin, rubber-like polymer particles, a thermally active latent epoxy curing agent, high softening point polymer particles, and conductive particles. An anisotropic conductive material is disclosed.
 また、下記の特許文献2には、25℃及び2.5pmでの粘度をη1、25℃及び20rpmでの粘度をη2としたときに、下記式(A)及び(B)を満たす異方性導電接着剤が開示されている。
 50Pa・s≦η2≦200Pa・s  ・・・式(A)
 1.5≦η1/η2≦4.3      ・・・式(B)
Patent Document 2 below describes anisotropy satisfying the following formulas (A) and (B) when the viscosity at 25 ° C. and 2.5 pm is η1, and the viscosity at 25 ° C. and 20 rpm is η2. A conductive adhesive is disclosed.
50 Pa · s ≦ η2 ≦ 200 Pa · s Formula (A)
1.5 ≦ η1 / η2 ≦ 4.3 Formula (B)
特開2000-345010号公報JP 2000-34010 A 特開2003-064330号公報JP 2003-064330 A
 上記異方性導電材料により、例えば、半導体チップの電極とガラス基板の電極とを電気的に接続する際には、ガラス基板上に、導電性粒子を含む異方性導電材料を配置する。次に、半導体チップを積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、かつ導電性粒子を介して電極間を電気的に接続し、接続構造体を得る。 For example, when the semiconductor chip electrode and the glass substrate electrode are electrically connected by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass substrate. Next, the semiconductor chips are stacked, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
 特許文献1,2に記載のような従来の異方性導電材料では、上記電極間の電気的な接続の際に、ガラス基板上に塗布された異方性導電材料及び該異方性導電材料に含まれている導電性粒子が、硬化前に大きく流動することがある。このため、異方性導電材料により形成された硬化物層及び導電性粒子を特定の領域に配置できないことがある。さらに、接続されるべき上下の電極間に導電性粒子を配置できなかったり、接続されてはならない隣接する電極間が複数の導電性粒子を介して電気的に接続されたりすることがある。このため、得られた接続構造体の導通信頼性が低いことがある。 In the conventional anisotropic conductive materials described in Patent Documents 1 and 2, the anisotropic conductive material applied on the glass substrate at the time of electrical connection between the electrodes and the anisotropic conductive material In some cases, the conductive particles contained in the fluid flow largely before curing. For this reason, the hardened | cured material layer and electroconductive particle formed with the anisotropic electrically-conductive material may not be arrange | positioned to a specific area | region. Furthermore, the conductive particles may not be disposed between the upper and lower electrodes to be connected, or adjacent electrodes that should not be connected may be electrically connected via a plurality of conductive particles. For this reason, the conduction | electrical_connection reliability of the obtained connection structure may be low.
 本発明の目的は、導電性粒子を含む異方性導電材料であって、電極間の電気的な接続に用いられた場合に、導通信頼性を高めることができる異方性導電材料、並びに該異方性導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。 An object of the present invention is an anisotropic conductive material containing conductive particles, which can increase conduction reliability when used for electrical connection between electrodes, and the It is to provide a connection structure using an anisotropic conductive material and a method for manufacturing the connection structure.
 本発明の広い局面によれば、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有し、上記導電性粒子の含有量が1~19重量%の範囲内である、異方性導電材料が提供される。 According to a wide aspect of the present invention, the composition contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles, and the content of the conductive particles is within a range of 1 to 19% by weight. An anisotropic conductive material is provided.
 本発明に係る異方性導電材料のある特定の局面では、上記硬化性化合物は、エピスルフィド化合物を含む。 In a specific aspect of the anisotropic conductive material according to the present invention, the curable compound includes an episulfide compound.
 本発明に係る異方性導電材料の他の特定の局面では、上記硬化性化合物は、エポキシ基及びチイラン基の内の少なくとも一種の基と、(メタ)アクリロイル基とを有する硬化性化合物を含む。 In another specific aspect of the anisotropic conductive material according to the present invention, the curable compound includes a curable compound having at least one of an epoxy group and a thiirane group and a (meth) acryloyl group. .
 本発明に係る異方性導電材料の25℃及び2.5rpmでの粘度は、20~200Pa・sの範囲内であることが好ましい。 The viscosity of the anisotropic conductive material according to the present invention at 25 ° C. and 2.5 rpm is preferably in the range of 20 to 200 Pa · s.
 本発明に係る異方性導電材料の他の特定の局面では、光の照射により硬化が進行されて、Bステージ化した後の粘度が2000~3500Pa・sの範囲内である。 In another specific aspect of the anisotropic conductive material according to the present invention, the viscosity after being cured by light irradiation and converted into a B stage is in the range of 2000 to 3500 Pa · s.
 本発明に係る異方性導電材料では、25℃及び2.5rpmでの粘度をη1とし、かつ25℃及び5rpmでの粘度をη2としたときに、上記η2が20Pa・s以上200Pa・s以下であり、かつ上記η1の上記η2に対する比(η1/η2)が0.9以上1.1以下であることが好ましい。 In the anisotropic conductive material according to the present invention, when the viscosity at 25 ° C. and 2.5 rpm is η1, and the viscosity at 25 ° C. and 5 rpm is η2, the η2 is 20 Pa · s or more and 200 Pa · s or less. And the ratio (η1 / η2) of η1 to η2 is preferably 0.9 or more and 1.1 or less.
 本発明に係る異方性導電材料の別の特定の局面では、上記硬化性化合物は、結晶性化合物を含む。 In another specific aspect of the anisotropic conductive material according to the present invention, the curable compound includes a crystalline compound.
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を電気的に接続している接続部とを備え、上記接続部が、本発明に従って構成された異方性導電材料を硬化させることにより形成されている。 A connection structure according to the present invention includes a first connection target member, a second connection target member, and a connection portion that electrically connects the first and second connection target members, and The connecting portion is formed by curing an anisotropic conductive material configured according to the present invention.
 さらに、本発明の広い局面によれば、第1の接続対象部材の上面に異方性導電材料を塗布し、異方性導電材料層を形成する工程と、該異方性導電材料層に光を照射することにより、上記異方性導電材料層の硬化を進行させて、粘度が2000~3500Pa・sの範囲内となるように、上記異方性導電材料層をBステージ化する工程と、Bステージ化された異方性導電材料層の上面に、第2の接続対象部材をさらに積層する工程とを備え、上記異方性導電材料として、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有し、上記導電性粒子の含有量が1~19重量%の範囲内である異方性導電材料を用いる、接続構造体の製造方法が提供される。 Furthermore, according to a wide aspect of the present invention, an anisotropic conductive material is applied to the upper surface of the first connection target member to form an anisotropic conductive material layer, and light is applied to the anisotropic conductive material layer. To cure the anisotropic conductive material layer to form a B-stage of the anisotropic conductive material layer so that the viscosity is in the range of 2000 to 3500 Pa · s; And a step of further laminating a second connection target member on the upper surface of the B-staged anisotropic conductive material layer. As the anisotropic conductive material, a curable compound, a thermosetting agent, and photocuring There is provided a method for producing a connection structure using an anisotropic conductive material containing an initiator and conductive particles, wherein the content of the conductive particles is in the range of 1 to 19% by weight.
 本発明に係る異方性導電材料は、硬化性化合物と熱硬化剤と光硬化開始剤と導電性粒子とを含有するので、光の照射及び加熱により、異方性導電材料を硬化させることができる。例えば、異方性導電材料を光の照射又は加熱により半硬化させた後に、熱硬化又は光硬化させることで、異方性導電材料を硬化させることができる。このため、塗布後の適切な時期に異方性導電材料に光を照射又は熱を付与することにより、異方性導電材料及び該異方性導電材料に含まれている導電性粒子の流動を抑制できる。従って、異方性導電材料により形成された硬化物層及び導電性粒子を特定の領域に配置できる。 Since the anisotropic conductive material according to the present invention contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles, the anisotropic conductive material can be cured by light irradiation and heating. it can. For example, after the anisotropic conductive material is semi-cured by light irradiation or heating, the anisotropic conductive material can be cured by thermosetting or photocuring. For this reason, the anisotropic conductive material and the conductive particles contained in the anisotropic conductive material can be flowed by irradiating the anisotropic conductive material with light or applying heat to the anisotropic conductive material at an appropriate time after coating. Can be suppressed. Therefore, the hardened | cured material layer and electroconductive particle formed with the anisotropic electrically-conductive material can be arrange | positioned in a specific area | region.
 さらに、本発明に係る異方性導電材料は、硬化性化合物と熱硬化剤と光硬化開始剤と導電性粒子とを含有し、更に上記導電性粒子の含有量が1~19重量%の範囲内であるので、電極間の電気的な接続に用いられた場合に、導通信頼性を高めることができる。例えば、接続されるべき上下の電極間を導電性粒子により容易に接続でき、かつ接続されてはならない隣り合う電極間が複数の導電性粒子を介して接続されるのを抑制できる。 Furthermore, the anisotropic conductive material according to the present invention contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles, and the content of the conductive particles is in the range of 1 to 19% by weight. Since it is inside, when it is used for the electrical connection between electrodes, conduction | electrical_connection reliability can be improved. For example, the upper and lower electrodes to be connected can be easily connected with conductive particles, and adjacent electrodes that should not be connected can be prevented from being connected via a plurality of conductive particles.
 本発明に係る接続構造体の製造方法では、異方性導電材料層に光を照射することにより、上記異方性導電材料層の硬化を進行させて、粘度が2000~3500Pa・sの範囲内となるように、上記異方性導電材料層をBステージ化するので、異方性導電材料層及び該異方性導電材料層に含まれている導電性粒子の流動を抑制できる。従って、異方性導電材料により形成された硬化物層及び導電性粒子を特定の領域に配置できる。このため、第1,第2の接続対象部材の電極間を電気的に接続した場合に、導通信頼性を高めることができる。例えば、接続されるべき上下の電極間を導電性粒子により容易に接続でき、かつ接続されてはならない隣り合う電極間が複数の導電性粒子を介して接続されるのを抑制できる。 In the method for manufacturing a connection structure according to the present invention, the anisotropic conductive material layer is cured by irradiating light to the anisotropic conductive material layer so that the viscosity is in the range of 2000 to 3500 Pa · s. Thus, the anisotropic conductive material layer is B-staged so that the flow of the anisotropic conductive material layer and the conductive particles contained in the anisotropic conductive material layer can be suppressed. Therefore, the hardened | cured material layer and electroconductive particle formed with the anisotropic electrically-conductive material can be arrange | positioned in a specific area | region. For this reason, conduction | electrical_connection reliability can be improved when the electrodes of the 1st, 2nd connection object member are electrically connected. For example, the upper and lower electrodes to be connected can be easily connected with conductive particles, and adjacent electrodes that should not be connected can be prevented from being connected via a plurality of conductive particles.
図1は、本発明の一実施形態に係る異方性導電材料を用いた接続構造体を模式的に示す部分切欠正面断面図である。FIG. 1 is a partially cutaway front sectional view schematically showing a connection structure using an anisotropic conductive material according to an embodiment of the present invention. 図2(a)~(c)は、本発明の一実施形態に係る異方性導電材料を用いた接続構造体の製造方法の各工程を説明するための部分切欠正面断面図である。2 (a) to 2 (c) are partially cutaway front cross-sectional views for explaining each step of a method for manufacturing a connection structure using an anisotropic conductive material according to an embodiment of the present invention. 図3(a)及び(b)は、本発明の一実施形態に係る異方性導電材料を用いた接続構造体の製造方法において、ディスペンサーと光照射装置とを備える複合装置を用いて、Bステージ化された異方性導電材料層を形成する方法を説明するための模式的な正面図である。3 (a) and 3 (b) show a method for manufacturing a connection structure using an anisotropic conductive material according to an embodiment of the present invention, using a composite device including a dispenser and a light irradiation device. It is a typical front view for demonstrating the method of forming the staged anisotropic conductive material layer. 図4(a)及び(b)は、Bステージ化された異方性導電材料層を形成する方法の変形例を説明するための模式的な正面図である。FIGS. 4A and 4B are schematic front views for explaining a modification of the method of forming the B-staged anisotropic conductive material layer.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る異方性導電材料は、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有する。本発明に係る異方性導電材料100重量%中、上記導電性粒子の含有量は1~19重量%の範囲内である。 The anisotropic conductive material according to the present invention contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles. In 100% by weight of the anisotropic conductive material according to the present invention, the content of the conductive particles is in the range of 1 to 19% by weight.
 先ず、本発明に係る異方性導電材料に含まれている各成分の詳細を説明する。 First, details of each component contained in the anisotropic conductive material according to the present invention will be described.
 (硬化性化合物)
 上記硬化性化合物は特に限定されない。上記硬化性化合物として、従来公知の硬化性化合物を用いることができる。上記硬化性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Curable compound)
The curable compound is not particularly limited. As the curable compound, a conventionally known curable compound can be used. As for the said sclerosing | hardenable compound, only 1 type may be used and 2 or more types may be used together.
 上記硬化性化合物としては、光及び熱硬化性化合物、光硬化性化合物、並びに熱硬化性化合物が挙げられる。上記光及び熱硬化性化合物は、光硬化性と熱硬化性とを有する。上記光硬化性化合物は、例えば光硬化性を有し、かつ熱硬化性を有さない。上記熱硬化性化合物は、例えば光硬化性を有さず、かつ熱硬化性を有する。 Examples of the curable compound include light and thermosetting compounds, photocurable compounds, and thermosetting compounds. The light and thermosetting compounds have photocuring properties and thermosetting properties. The said photocurable compound has photocurability, for example, and does not have thermosetting. The said thermosetting compound does not have photocurability, for example, and has thermosetting.
 上記硬化性化合物は、光及び熱硬化性化合物を含むか、又は光硬化性化合物と熱硬化性化合物とを含む。上記硬化性化合物が上記光及び熱硬化性化合物を含む場合には、上記硬化性化合物は、光硬化性化合物及び熱硬化性化合物の内の少なくとも一種を含んでいなくてもよく、上記光及び熱硬化性化合物に加えて、光硬化性化合物及び熱硬化性化合物の内の少なくとも一種をさらに含んでいてもよい。上記硬化性化合物が上記光及び熱硬化性化合物を含まない場合には、上記硬化性化合物は、光硬化性化合物と熱硬化性化合物とを含む。 The curable compound includes light and a thermosetting compound, or includes a photocurable compound and a thermosetting compound. When the curable compound includes the light and the thermosetting compound, the curable compound may not include at least one of the photocurable compound and the thermosetting compound. In addition to the thermosetting compound, at least one of a photocurable compound and a thermosetting compound may be further included. When the said curable compound does not contain the said light and a thermosetting compound, the said curable compound contains a photocurable compound and a thermosetting compound.
 異方性導電材料の硬化を容易に制御する観点からは、上記硬化性化合物は、上記光及び熱硬化性化合物と、光硬化性化合物及び熱硬化性化合物の内の少なくとも一種とを含むか、又は光硬化性化合物と熱硬化性化合物とを含むことが好ましい。上記硬化性化合物は、光硬化性化合物と熱硬化性化合物とを含むことがより好ましい。 From the viewpoint of easily controlling the curing of the anisotropic conductive material, the curable compound includes the light and the thermosetting compound, and at least one of the photocurable compound and the thermosetting compound, Or it is preferable that a photocurable compound and a thermosetting compound are included. More preferably, the curable compound includes a photocurable compound and a thermosetting compound.
 上記硬化性化合物は特に限定されない。上記硬化性化合物としては、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。上記(メタ)アクリルは、アクリル又はメタクリルを意味する。 The curable compound is not particularly limited. Examples of the curable compound include epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. The (meth) acryl means acryl or methacryl.
 光硬化性化合物と熱硬化性化合物とを併用する場合には、光硬化性化合物と熱硬化性化合物との使用量は、光硬化性化合物と熱硬化性化合物との種類に応じて適宜調整される。本発明に係る異方性導電材料は、光硬化性化合物と熱硬化性化合物とを重量比で、1:99~90:10で含むことが好ましく、5:95~60:40で含むことがより好ましく、20:80~40:60で含むことが更に好ましい。 When a photocurable compound and a thermosetting compound are used in combination, the usage amount of the photocurable compound and the thermosetting compound is appropriately adjusted according to the types of the photocurable compound and the thermosetting compound. The The anisotropic conductive material according to the present invention preferably contains the photocurable compound and the thermosetting compound in a weight ratio of 1:99 to 90:10, preferably 5:95 to 60:40. More preferably, it is more preferably included at 20:80 to 40:60.
 上記η2及び上記比(η1/η2)を上記範囲内に容易に制御する観点からは、上記硬化性化合物は、結晶性樹脂を含むことが好ましい。 From the viewpoint of easily controlling the η2 and the ratio (η1 / η2) within the above range, the curable compound preferably contains a crystalline resin.
 上記結晶性樹脂は、特に限定されず、結晶性を有していればよい。上記結晶性樹脂としては、例えば、ナフタレン骨格構造に上記光及び熱硬化性の官能基を有する樹脂、並びにレゾルシン骨格構造に上記光及び熱硬化性の官能基を有する樹脂等が挙げられる。 The crystalline resin is not particularly limited as long as it has crystallinity. Examples of the crystalline resin include a resin having the light and thermosetting functional groups in the naphthalene skeleton structure, and a resin having the light and thermosetting functional groups in the resorcin skeleton structure.
 上記η2及び上記比(η1/η2)を上記範囲内に容易に制御する観点からは、上記硬化性化合物100重量部中、上記結晶性樹脂の含有量の好ましい下限は80重量部、より好ましい下限は90重量部である。 From the viewpoint of easily controlling the η2 and the ratio (η1 / η2) within the above range, a preferable lower limit of the content of the crystalline resin in 100 parts by weight of the curable compound is 80 parts by weight, and a more preferable lower limit. Is 90 parts by weight.
 [熱硬化性化合物]
 異方性導電材料の硬化を容易に制御したり、接続構造体の導通信頼性をより一層高めたりする観点からは、上記硬化性化合物は、エポキシ化合物及びエピスルフィド化合物(チイラン基含有化合物)の内の少なくとも一種を含むことが好ましく、エピスルフィド化合物を含むことがより好ましい。異方性導電材料の硬化性を高める観点からは、上記硬化性化合物100重量部中、上記エピスルフィド化合物の含有量の好ましい下限は10重量部、より好ましい下限は20重量部、好ましい上限は50重量部、より好ましい上限は40重量部である。
[Thermosetting compound]
From the viewpoint of easily controlling the curing of the anisotropic conductive material and further enhancing the conduction reliability of the connection structure, the curable compound is an epoxy compound or an episulfide compound (thiirane group-containing compound). It is preferable that at least one of these is included, and it is more preferable that an episulfide compound is included. From the viewpoint of enhancing the curability of the anisotropic conductive material, in 100 parts by weight of the curable compound, the preferred lower limit of the content of the episulfide compound is 10 parts by weight, the more preferred lower limit is 20 parts by weight, and the preferred upper limit is 50 parts by weight. Parts, more preferred upper limit is 40 parts by weight.
 上記エポキシ化合物及び上記エピスルフィド化合物はそれぞれ、芳香族環を有することが好ましい。上記芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ペンタセン環、ピセン環及びペリレン環等が挙げられる。なかでも、上記芳香族環は、ベンゼン環、ナフタレン環又はアントラセン環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましい。 Each of the epoxy compound and the episulfide compound preferably has an aromatic ring. Examples of the aromatic ring include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetracene ring, chrysene ring, triphenylene ring, tetraphen ring, pyrene ring, pentacene ring, picene ring and perylene ring. Especially, it is preferable that the said aromatic ring is a benzene ring, a naphthalene ring, or an anthracene ring, and it is more preferable that it is a benzene ring or a naphthalene ring.
 エピスルフィド化合物は、エポキシ基ではなくチイラン基を有するので、低温で速やかに硬化させることができる。すなわち、チイラン基を有するエピスルフィド化合物は、エポキシ基を有するエポキシ化合物と比較して、チイラン基に由来してより一層低い温度で硬化可能である。 Since the episulfide compound has a thiirane group instead of an epoxy group, it can be quickly cured at a low temperature. That is, the episulfide compound having a thiirane group can be cured at a lower temperature derived from the thiirane group as compared with the epoxy compound having an epoxy group.
 低温でより一層速やかに硬化させる観点からは、上記エピスルフィド化合物は、下記式(1)、(2)、(5)、(7)又は(8)で表される構造を有することが好ましく、下記式(1)又は(2)で表される構造を有することがより好ましい。 From the viewpoint of curing more rapidly at a low temperature, the episulfide compound preferably has a structure represented by the following formula (1), (2), (5), (7) or (8). It is more preferable to have a structure represented by the formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表し、R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表し、R3、R4、R5及びR6の内の水素ではない基は下記式(3)で表される基を表す。 In the above formula (1), R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms, 2 to 4 groups out of 4 groups of R3, R4, R5 and R6 represent hydrogen, and R3 , R4, R5 and R6 which are not hydrogen represent a group represented by the following formula (3).
 上記式(1)中のR3、R4、R5及びR6の4個の基の全てが水素であってもよい。R3、R4、R5及びR6の4個の基の内の1個又は2個が下記式(3)で表される基であり、かつR3、R4、R5及びR6の4個の基の内の下記式(3)で表される基ではない基は水素であってもよい。 All of the four groups R3, R4, R5 and R6 in the above formula (1) may be hydrogen. One or two of the four groups of R3, R4, R5 and R6 are groups represented by the following formula (3), and among the four groups of R3, R4, R5 and R6 The group that is not a group represented by the following formula (3) may be hydrogen.
Figure JPOXMLDOC01-appb-C000002
 上記式(3)中、R7は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000002
In the above formula (3), R7 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(2)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表し、R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表し、R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(4)で表される基を表す。 In the above formula (2), R51 and R52 each represents an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R53, R54, R55, R56, R57 and R58 are hydrogen. The group which is not hydrogen among R53, R54, R55, R56, R57 and R58 represents a group represented by the following formula (4).
 上記式(2)中のR53、R54、R55、R56、R57及びR58の6個の基の全てが水素であってもよい。R53、R54、R55、R56、R57及びR58の6個の基の内の1個又は2個が下記式(4)で表される基であり、かつR53、R54、R55、R56、R57及びR58の内の下記式(4)で表される基ではない基は水素であってもよい。 All of the six groups of R53, R54, R55, R56, R57 and R58 in the above formula (2) may be hydrogen. One or two of the six groups of R53, R54, R55, R56, R57 and R58 are groups represented by the following formula (4), and R53, R54, R55, R56, R57 and R58. Of these, the group that is not a group represented by the following formula (4) may be hydrogen.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(4)中、R59は炭素数1~5のアルキレン基を表す。 In the above formula (4), R59 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(5)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表す。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の6~8個の基は水素を表す。 In the above formula (5), R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms. Six to eight groups out of the eight groups R103, R104, R105, R106, R107, R108, R109 and R110 represent hydrogen.
 上記式(5)中のR103、R104、R105、R106、R107、R108、R109及びR110の内の水素ではない基は、下記式(6)で表される基を表す。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の全てが水素であってもよい。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の1個又は2個が下記式(6)で表される基であり、かつR103、R104、R105、R106、R107、R108、R109及びR110の内の下記式(6)で表される基ではない基は水素であってもよい。 The non-hydrogen group in R103, R104, R105, R106, R107, R108, R109, and R110 in the above formula (5) represents a group represented by the following formula (6). All of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 may be hydrogen. One or two of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 are groups represented by the following formula (6), and R103, R104, R105, R106 , R107, R108, R109 and R110, which is not a group represented by the following formula (6), may be hydrogen.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記式(6)中、R111は炭素数1~5のアルキレン基を表す。 In the above formula (6), R111 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(7)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (7), R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(8)中、R3及びR4はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (8), R3 and R4 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(1)又は(2)で表される構造を有するエピスルフィド化合物は、チイラン基(エピスルフィド基)を少なくとも2つ有する。また、チイラン基を有する基が、ベンゼン環又はナフタレン環に結合されている。このような構造を有するので、異方性導電材料を加熱することにより、異方性導電材料を低温で速やかに硬化させることができる。なお、本明細書において、低温とは200℃以下の温度を意味する。 The episulfide compound having a structure represented by the above formula (1) or (2) has at least two thiirane groups (episulfide groups). In addition, a group having a thiirane group is bonded to a benzene ring or a naphthalene ring. Since it has such a structure, the anisotropic conductive material can be rapidly cured at a low temperature by heating the anisotropic conductive material. In this specification, low temperature means a temperature of 200 ° C. or lower.
 上記式(1)、(2)、(5)、(7)又は(8)で表される構造を有するエピスルフィド化合物は、上記式(1)、(2)、(5)、(7)又は(8)中のチイラン基がエポキシ基である化合物に比べて、反応性が高い。これは、チイラン基はエポキシ基よりも、開環しやすく、反応性が高いためである。上記式(1)、(2)、(5)、(7)又は(8)で表される構造を有するエピスルフィド化合物は反応性が高いので、異方性導電材料を低温で速やかに硬化させることができる。特に、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物は反応性がかなり高いので、異方性導電材料を低温で速やかに硬化させることができる。 The episulfide compound having the structure represented by the above formula (1), (2), (5), (7) or (8) is represented by the above formula (1), (2), (5), (7) or The reactivity is high compared with the compound whose thiirane group in (8) is an epoxy group. This is because a thiirane group is easier to open a ring and has higher reactivity than an epoxy group. Since the episulfide compound having the structure represented by the above formula (1), (2), (5), (7) or (8) has high reactivity, the anisotropic conductive material is rapidly cured at a low temperature. Can do. In particular, since an episulfide compound having a structure represented by the above formula (1) or (2) has a considerably high reactivity, an anisotropic conductive material can be rapidly cured at a low temperature.
 上記式(1)中のR1及びR2、上記式(2)中のR51及びR52、上記式(3)中のR7、及び上記式(4)中のR59、上記式(5)中のR101及びR102、上記式(6)中のR111、上記式(7)中のR1及びR2、上記式(8)中のR3及びR4は、炭素数1~5のアルキレン基である。該アルキレン基の炭素数が5を超えると、上記エピスルフィド化合物の硬化速度が遅くなる傾向がある。 R1 and R2 in the above formula (1), R51 and R52 in the above formula (2), R7 in the above formula (3), R59 in the above formula (4), R101 in the above formula (5) and R102, R111 in the above formula (6), R1 and R2 in the above formula (7), and R3 and R4 in the above formula (8) are alkylene groups having 1 to 5 carbon atoms. If the alkylene group has more than 5 carbon atoms, the curing rate of the episulfide compound tends to be slow.
 上記式(1)中のR1及びR2、上記式(2)中のR51及びR52、上記式(3)中のR7、及び上記式(4)中のR59、上記式(5)中のR101及びR102、上記式(6)中のR111、上記式(7)中のR1及びR2、上記式(8)中のR3及びR4はそれぞれ、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。上記アルキレン基は直鎖構造を有するアルキレン基であってもよく、分岐構造を有するアルキレン基であってもよい。 R1 and R2 in the above formula (1), R51 and R52 in the above formula (2), R7 in the above formula (3), R59 in the above formula (4), R101 in the above formula (5) and R102, R111 in the above formula (6), R1 and R2 in the above formula (7), and R3 and R4 in the above formula (8) are each preferably an alkylene group having 1 to 3 carbon atoms. More preferably, it is a group. The alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
 上記(1)で表される構造は、下記式(1A)で表される構造であることが好ましい。下記式(1A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。 The structure represented by the above (1) is preferably a structure represented by the following formula (1A). An episulfide compound having a structure represented by the following formula (1A) is excellent in curability.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(1A)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (1A), R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(1)で表される構造は、下記式(1B)で表される構造であることがより好ましい。下記式(1B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。 The structure represented by the above formula (1) is more preferably a structure represented by the following formula (1B). An episulfide compound having a structure represented by the following formula (1B) is more excellent in curability.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記(2)で表される構造は、下記式(2A)で表される構造であることが好ましい。下記式(2A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。 The structure represented by the above (2) is preferably a structure represented by the following formula (2A). An episulfide compound having a structure represented by the following formula (2A) is excellent in curability.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(2A)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (2A), R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(2)で表される構造は、下記式(2B)で表される構造であることがより好ましい。下記式(2B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。 The structure represented by the above formula (2) is more preferably a structure represented by the following formula (2B). An episulfide compound having a structure represented by the following formula (2B) is more excellent in curability.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記エポキシ化合物は特に限定されない。エポキシ化合物として、従来公知のエポキシ化合物を使用できる。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The epoxy compound is not particularly limited. A conventionally well-known epoxy compound can be used as an epoxy compound. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
 上記エポキシ化合物としては、エポキシ基を有するフェノキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。 Examples of the epoxy compound include phenoxy resin having an epoxy group, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, phenol aralkyl type epoxy. Examples thereof include a resin, a naphthol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, an anthracene type epoxy resin, an epoxy resin having an adamantane skeleton, an epoxy resin having a tricyclodecane skeleton, and an epoxy resin having a triazine nucleus in the skeleton.
 上記エポキシ化合物の具体例としては、例えばエピクロルヒドリンと、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂又はビスフェノールD型エポキシ樹脂等とから誘導されるビスフェノール型エポキシ樹脂、並びにエピクロルヒドリンとフェノールノボラック又はクレゾールノボラックとから誘導されるエポキシノボラック樹脂が挙げられる。グリシジルアミン、グリシジルエステル、並びに脂環式又は複素環式等の1分子内に2個以上のオキシラン基を有する各種のエポキシ化合物を用いてもよい。 Specific examples of the epoxy compound include, for example, epichlorohydrin and bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol D type epoxy resin and the like, bisphenol type epoxy resin, and epichlorohydrin and phenol novolac or cresol novolak. And epoxy novolac resins derived from Various epoxy compounds having two or more oxirane groups in one molecule such as glycidylamine, glycidyl ester, and alicyclic or heterocyclic may be used.
 上記硬化性化合物は、上記式(1)、(2)、(5)、(7)又は(8)で表される構造におけるチイラン基をエポキシ基に置き換えた構造を有するエポキシ化合物を含んでいてもよい。この場合に、上記式(3)、(4)及び(6)で表される構造も、チイラン基をエポキシ基に置き換えた構造であることが好ましい。上記硬化性化合物は、下記式(11)又は(12)で表されるエポキシ化合物を含んでいてもよい。上記硬化性化合物は、上記式(1)又は(2)で表されるエピスルフィド化合物と、下記式(11)又は(12)で表されるエポキシ化合物とを含んでいることが好ましい。 The curable compound includes an epoxy compound having a structure in which the thiirane group in the structure represented by the formula (1), (2), (5), (7) or (8) is replaced with an epoxy group. Also good. In this case, the structures represented by the above formulas (3), (4) and (6) are also preferably structures in which the thiirane group is replaced with an epoxy group. The said curable compound may contain the epoxy compound represented by following formula (11) or (12). The curable compound preferably contains an episulfide compound represented by the above formula (1) or (2) and an epoxy compound represented by the following formula (11) or (12).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(11)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表し、R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表し、R13、R14、R15及びR16の内の水素ではない基は下記式(13)で表される基を表す。 In the above formula (11), R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms, 2 to 4 groups out of 4 groups of R13, R14, R15 and R16 represent hydrogen, and R13 , R14, R15 and R16, which are not hydrogen, represent a group represented by the following formula (13).
 上記式(11)中のR13、R14、R15及びR16の4個の基の全てが水素であってもよい。R13、R14、R15及びR16の4個の基の内の1個又は2個が下記式(13)で表される基であり、かつR13、R14、R15及びR16の4個の基の内の下記式(13)で表される基ではない基は水素であってもよい。 All four groups of R13, R14, R15, and R16 in the above formula (11) may be hydrogen. One or two of the four groups of R13, R14, R15 and R16 is a group represented by the following formula (13), and among the four groups of R13, R14, R15 and R16 The group that is not a group represented by the following formula (13) may be hydrogen.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(13)中、R17は炭素数1~5のアルキレン基を表す。 In the above formula (13), R17 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(12)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表し、R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表し、R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(14)で表される基を表す。 In the above formula (12), R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R63, R64, R65, R66, R67 and R68 are hydrogen. The group which is not hydrogen among R63, R64, R65, R66, R67 and R68 represents a group represented by the following formula (14).
 上記式(12)中のR63、R64、R65、R66、R67及びR68の6個の基の全てが水素であってもよい。R63、R64、R65、R66、R67及びR68の6個の基の内の1個又は2個が下記式(14)で表される基であり、かつR63、R64、R65、R66、R67及びR68の6個の基の内の下記式(14)で表される基ではない基は水素であってもよい。 All of the six groups of R63, R64, R65, R66, R67 and R68 in the above formula (12) may be hydrogen. One or two of the six groups R63, R64, R65, R66, R67 and R68 are groups represented by the following formula (14), and R63, R64, R65, R66, R67 and R68. Of these six groups, a group that is not a group represented by the following formula (14) may be hydrogen.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(14)中、R69は炭素数1~5のアルキレン基を表す。 In the above formula (14), R69 represents an alkylene group having 1 to 5 carbon atoms.
 上記式(11)中のR11及びR12、上記式(12)中のR61及びR62、上記式(13)中のR17、及び上記式(14)中のR69は、炭素数1~5のアルキレン基である。該アルキレン基の炭素数が5を超えると、上記式(11)又は(12)で表されるエポキシ化合物の硬化速度が遅くなりやすい。 R11 and R12 in the formula (11), R61 and R62 in the formula (12), R17 in the formula (13), and R69 in the formula (14) are alkylene groups having 1 to 5 carbon atoms. It is. If the alkylene group has more than 5 carbon atoms, the curing rate of the epoxy compound represented by the above formula (11) or (12) tends to be slow.
 上記式(11)中のR11及びR12、上記式(12)中のR61及びR62、上記式(13)中のR17、及び上記式(14)中のR69はそれぞれ、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。上記アルキレン基は直鎖構造を有するアルキレン基であってもよく、分岐構造を有するアルキレン基であってもよい。 R11 and R12 in the above formula (11), R61 and R62 in the above formula (12), R17 in the above formula (13), and R69 in the above formula (14) are each an alkylene having 1 to 3 carbon atoms. It is preferably a group, more preferably a methylene group. The alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
 上記(11)で表される構造は、下記式(11A)で表される構造であることが好ましい。下記式(11A)で表される構造を有するエポキシ化合物は、市販されており、容易に入手できる。 The structure represented by the above (11) is preferably a structure represented by the following formula (11A). An epoxy compound having a structure represented by the following formula (11A) is commercially available and can be easily obtained.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(11A)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (11A), R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(11)で表される構造は、下記式(11B)で表される構造であることがより好ましい。下記式(11B)で表される構造を有するエポキシ化合物は、レゾルシノールジグリシジルエーテルである。レゾルシノールジグリシジルエーテルは市販されており、容易に入手できる。 The structure represented by the above formula (11) is more preferably a structure represented by the following formula (11B). The epoxy compound having a structure represented by the following formula (11B) is resorcinol diglycidyl ether. Resorcinol diglycidyl ether is commercially available and can be easily obtained.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記(12)で表される構造は、下記式(12A)で表される構造であることが好ましい。下記式(12A)で表される構造を有するエポキシ化合物は、容易に入手できる。 The structure represented by (12) is preferably a structure represented by the following formula (12A). An epoxy compound having a structure represented by the following formula (12A) can be easily obtained.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(12A)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (12A), R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(12)で表される構造は、下記式(12B)で表される構造であることがより好ましい。下記式(12B)で表される構造を有するエポキシ化合物は、容易に入手できる。 The structure represented by the above formula (12) is more preferably a structure represented by the following formula (12B). An epoxy compound having a structure represented by the following formula (12B) can be easily obtained.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(1)又は(2)で表される構造を有するエピスルフィド化合物と、上記式(11)又は(12)で表されるエポキシ化合物との混合物(以下、混合物Aと略記することがある)の合計100重量%中、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が10~50重量%、かつ上記式(11)又は(12)で表されるエポキシ化合物の含有量が90~50重量%であることが好ましく、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が20~30重量%、かつ上記式(11)又は(12)で表されるエポキシ化合物の含有量が80~70重量%であることがより好ましい。 A mixture of an episulfide compound having a structure represented by the above formula (1) or (2) and an epoxy compound represented by the above formula (11) or (12) (hereinafter sometimes abbreviated as “mixture A”) In which the content of the episulfide compound having the structure represented by the formula (1) or (2) is 10 to 50% by weight, and the epoxy represented by the formula (11) or (12) The content of the compound is preferably 90 to 50% by weight, the content of the episulfide compound having a structure represented by the above formula (1) or (2) is 20 to 30% by weight, and the above formula (11) Alternatively, the content of the epoxy compound represented by (12) is more preferably 80 to 70% by weight.
 上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が少なすぎると、上記混合物Aの硬化速度が遅くなる傾向がある。上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が多すぎると、上記混合物Aの粘度が高くなりすぎたり、上記混合物Aが固体になったりすることがある。 When the content of the episulfide compound having the structure represented by the above formula (1) or (2) is too small, the curing rate of the mixture A tends to be slow. When there is too much content of the episulfide compound which has a structure represented by the said Formula (1) or (2), the viscosity of the said mixture A will become high too much, or the said mixture A may become a solid.
 上記混合物Aの製造方法は特に限定されない。この製造方法として、例えば、上記式(11)又は(12)で表されるエポキシ化合物を用意し、該エポキシ化合物の一部のエポキシ基をチイラン基に変換する製造方法が挙げられる。 The method for producing the mixture A is not particularly limited. Examples of the production method include a production method in which an epoxy compound represented by the above formula (11) or (12) is prepared and a part of the epoxy group of the epoxy compound is converted into a thiirane group.
 上記混合物Aの製造方法は、硫化剤を含む第1の溶液に、上記式(11)又は(12)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液を連続的又は断続的に添加した後、硫化剤を含む第2の溶液を連続的又は断続的にさらに添加する方法が好ましい。この方法により、上記エポキシ化合物の一部のエポキシ基をチイラン基に変換できる。この結果、上記混合物Aを得ることができる。上記硫化剤としては、チオシアン酸塩類、チオ尿素類、ホスフィンサルファイド、ジメチルチオホルムアミド及びN-メチルベンゾチアゾール-2-チオン等が挙げられる。上記チオシアン酸塩類としては、チオシアン酸ナトリウム、チオシアン酸カリウム及びチオシアン酸ナトリウム等が挙げられる。 In the method for producing the mixture A, the epoxy compound represented by the above formula (11) or (12) or the solution containing the epoxy compound is continuously or intermittently added to the first solution containing the sulfurizing agent. A method in which the second solution containing the sulfurizing agent is further added continuously or intermittently is preferable. By this method, some epoxy groups of the epoxy compound can be converted into thiirane groups. As a result, the mixture A can be obtained. Examples of the sulfurizing agent include thiocyanates, thioureas, phosphine sulfide, dimethylthioformamide, N-methylbenzothiazole-2-thione, and the like. Examples of the thiocyanates include sodium thiocyanate, potassium thiocyanate, and sodium thiocyanate.
 上記硬化性化合物は、下記式(21)で表される構造を有するエポキシ化合物の単量体、該エポキシ化合物が少なくとも2個結合された多量体、又は該単量体と該多量体との混合物を含んでいてもよい。 The curable compound is a monomer of an epoxy compound having a structure represented by the following formula (21), a multimer in which at least two epoxy compounds are bonded, or a mixture of the monomer and the multimer. May be included.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(21)中、R1は炭素数1~5のアルキレン基を表し、R2は炭素数1~5のアルキレン基を表し、R3は水素原子、炭素数1~5のアルキル基又は下記式(22)で表される構造を表し、R4は水素原子、炭素数1~5のアルキル基又は下記式(23)で表される構造を表す。 In the above formula (21), R1 represents an alkylene group having 1 to 5 carbon atoms, R2 represents an alkylene group having 1 to 5 carbon atoms, R3 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or the following formula ( 22), R4 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a structure represented by the following formula (23).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(22)中、R5は炭素数1~5のアルキレン基を表す。 In the above formula (22), R5 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(23)中、R6は炭素数1~5のアルキレン基を表す。 In the above formula (23), R6 represents an alkylene group having 1 to 5 carbon atoms.
 上記式(21)で表される構造を有するエポキシ化合物は、不飽和二重結合と、少なくとも2個のエポキシ基とを有することを特徴とする。上記式(21)で表される構造を有するエポキシ化合物の使用により、異方性導電材料を低温で速やかに硬化させることができる。 The epoxy compound having a structure represented by the above formula (21) has an unsaturated double bond and at least two epoxy groups. By using an epoxy compound having a structure represented by the above formula (21), the anisotropic conductive material can be rapidly cured at a low temperature.
 上記硬化性化合物は、下記式(31)で表される構造を有する化合物の単量体、該化合物が少なくとも2個結合された多量体、又は該単量体と該多量体との混合物を含んでいてもよい。 The curable compound includes a monomer having a structure represented by the following formula (31), a multimer in which at least two of the compounds are bonded, or a mixture of the monomer and the multimer. You may go out.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(31)中、R1は水素原子もしくは炭素数1~5のアルキル基又は下記式(32)で表される構造を表し、R2は炭素数1~5のアルキレン基を表し、R3は炭素数1~5のアルキレン基を表し、X1は酸素原子又は硫黄原子を表し、X2は酸素原子又は硫黄原子を表す。 In the above formula (31), R1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms or a structure represented by the following formula (32), R2 represents an alkylene group having 1 to 5 carbon atoms, and R3 represents carbon X 1 represents an oxygen atom or a sulfur atom, and X 2 represents an oxygen atom or a sulfur atom.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(32)中、R4は炭素数1~5のアルキレン基を表し、X3は酸素原子又は硫黄原子を表す。 In the above formula (32), R4 represents an alkylene group having 1 to 5 carbon atoms, and X3 represents an oxygen atom or a sulfur atom.
 上記式(31)で表される構造を有する化合物に相当するエポキシ化合物は、例えば、以下のようにして合成できる。 The epoxy compound corresponding to the compound having the structure represented by the above formula (31) can be synthesized as follows, for example.
 原料化合物である、水酸基を有するフルオレン化合物と、エピクロルヒドリンと、水酸化ナトリウムと、メタノールとを混合し、冷却し、反応させる。その後、水酸化ナトリウム水溶液を滴下する。滴下の後、さらに反応させ、反応液を得る。次に、反応液に水とトルエンとを加え、トルエン層を取り出す。トルエン層を水で洗浄した後、乾燥し、水と溶媒とを除去する。このようにして、上記式(31)で表される構造を有する化合物に相当するエポキシ化合物を容易に得ることができる。なお、原料化合物である、水酸基を有するフルオレン化合物は、例えばJFEケミカル社等から市販されている。 A raw material compound, a fluorene compound having a hydroxyl group, epichlorohydrin, sodium hydroxide, and methanol are mixed, cooled, and reacted. Thereafter, an aqueous sodium hydroxide solution is dropped. After dripping, it is further reacted to obtain a reaction solution. Next, water and toluene are added to the reaction solution, and the toluene layer is taken out. The toluene layer is washed with water and then dried to remove water and the solvent. In this way, an epoxy compound corresponding to the compound having the structure represented by the formula (31) can be easily obtained. In addition, the fluorene compound which has a hydroxyl group which is a raw material compound is marketed, for example from JFE Chemical Company etc., for example.
 また、上記式(31)で表される構造を有する化合物に相当するチイラン基含有化合物は、上記式(31)で表される構造を有する化合物に相当するエポキシ化合物のエポキシ基を、チイラン基に変換することにより合成できる。例えば、上記硫化剤を含む溶液に、原料化合物であるエポキシ化合物又は該エポキシ化合物を含む溶液を添加した後、上記硫化剤を含む溶液をさらに添加することにより、エポキシ基をチイラン基に容易に変換できる。 Further, the thiirane group-containing compound corresponding to the compound having the structure represented by the above formula (31) has the epoxy group of the epoxy compound corresponding to the compound having the structure represented by the above formula (31) as a thiirane group. It can be synthesized by conversion. For example, an epoxy compound as a raw material compound or a solution containing the epoxy compound is added to the solution containing the sulfurizing agent, and then the solution containing the sulfurizing agent is further added to easily convert the epoxy group to a thiirane group. it can.
 上記硬化性化合物は、窒素原子を含む複素環を有するエポキシ化合物を含んでいてもよい。上記窒素原子を含む複素環を有するエポキシ化合物は、下記式(41)で表されるエポキシ化合物、又は下記式(42)で表されるエポキシ化合物であることが好ましい。このような硬化性化合物の使用により、異方性導電材料の硬化速度をより一層速くし、異方性導電材料の硬化物の耐熱性をより一層高めることができる。 The curable compound may include an epoxy compound having a heterocyclic ring containing a nitrogen atom. The epoxy compound having a heterocyclic ring containing a nitrogen atom is preferably an epoxy compound represented by the following formula (41) or an epoxy compound represented by the following formula (42). By using such a curable compound, the curing rate of the anisotropic conductive material can be further increased, and the heat resistance of the cured product of the anisotropic conductive material can be further enhanced.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式(41)中、R1~R3はそれぞれ炭素数1~5のアルキレン基を表し、Zはエポキシ基又はヒドロキシメチル基を表す。R21~R23は同一であってもよく、異なっていてもよい。 In the above formula (41), R1 to R3 each represent an alkylene group having 1 to 5 carbon atoms, and Z represents an epoxy group or a hydroxymethyl group. R21 to R23 may be the same or different.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(42)中、R1~R3はそれぞれ炭素数1~5のアルキレン基を示し、p、q及びrはそれぞれ1~5の整数を表し、R4~R6はそれぞれ炭素数1~5のアルキレン基を表す。R1~R3は同一であってもよく、異なっていてもよい。p、q及びrは同一であってもよく、異なっていてもよい。R4~6は同一であってもよく、異なっていてもよい。 In the above formula (42), R1 to R3 each represents an alkylene group having 1 to 5 carbon atoms, p, q and r each represents an integer of 1 to 5, and R4 to R6 each represents an alkylene group having 1 to 5 carbon atoms. Represents a group. R1 to R3 may be the same or different. p, q and r may be the same or different. R4 to R6 may be the same or different.
 上記窒素原子を含む複素環を有するエポキシ化合物は、トリグリシジルイソシアヌレート、又はトリスヒドロキシエチルイソシアヌレートトリグリシジルエーテルであることが好ましい。これらの硬化性化合物の使用により、異方性導電材料の硬化速度をさらに一層速くすることができる。 The epoxy compound having a heterocyclic ring containing a nitrogen atom is preferably triglycidyl isocyanurate or trishydroxyethyl isocyanurate triglycidyl ether. By using these curable compounds, the curing rate of the anisotropic conductive material can be further increased.
 上記硬化性化合物は、芳香族環を有するエポキシ化合物を含むことが好ましい。芳香族環を有するエポキシ化合物の使用により、異方性導電材料の硬化速度をより一層速くし、異方性導電材料を塗布しやすくすることができる。異方性導電材料の塗布性をより一層高める観点からは、上記芳香族環は、ベンゼン環、ナフタレン環又はアントラセン環であることが好ましい。上記芳香族環を有するエポキシ化合物としては、レゾルシノールジグリシジルエーテル又は1,6-ナフタレンジグリシジルエーテルが挙げられる。なかでも、上記式(11B)で表される構造を有するレゾルシノールジグリシジルエーテルが特に好ましい。レゾルシノールジグリシジルエーテルの使用により、異方性導電材料の硬化速度を速くし、異方性導電材料を塗布しやすくすることができる。 The curable compound preferably contains an epoxy compound having an aromatic ring. By using an epoxy compound having an aromatic ring, the curing rate of the anisotropic conductive material can be further increased and the anisotropic conductive material can be easily applied. From the viewpoint of further improving the applicability of the anisotropic conductive material, the aromatic ring is preferably a benzene ring, a naphthalene ring or an anthracene ring. Examples of the epoxy compound having an aromatic ring include resorcinol diglycidyl ether and 1,6-naphthalenediglycidyl ether. Among these, resorcinol diglycidyl ether having a structure represented by the above formula (11B) is particularly preferable. By using resorcinol diglycidyl ether, the curing rate of the anisotropic conductive material can be increased and the anisotropic conductive material can be easily applied.
 [光硬化性化合物]
 本発明に係る硬化性化合物は、光の照射によっても硬化するように、光硬化性化合物を含有していてもよい。光の照射により硬化性化合物を半硬化させ、硬化性化合物の流動性を低下させることができる。
[Photocurable compound]
The curable compound according to the present invention may contain a photocurable compound so as to be cured by light irradiation. The curable compound can be semi-cured by light irradiation, and the fluidity of the curable compound can be reduced.
 上記光硬化性化合物としては特に限定されず、(メタ)アクリル樹脂及び環状エーテル基含有樹脂等が挙げられる。 The photocurable compound is not particularly limited, and examples thereof include (meth) acrylic resins and cyclic ether group-containing resins.
 上記(メタ)アクリル樹脂として、例えば、(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させて得られるエポキシ(メタ)アクリレート、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させて得られるウレタン(メタ)アクリレート等が好適に用いられる。 Examples of the (meth) acrylic resin include an ester compound obtained by reacting (meth) acrylic acid and a compound having a hydroxyl group, and an epoxy (meth) acrylate obtained by reacting (meth) acrylic acid and an epoxy compound. Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with isocyanate is preferably used.
 上述した光硬化性化合物以外の光硬化性化合物が含まれる場合には、該光硬化性化合物は、架橋性化合物であってもよく、非架橋性化合物であってもよい。 When a photocurable compound other than the photocurable compounds described above is included, the photocurable compound may be a crosslinkable compound or a non-crosslinkable compound.
 上記架橋性化合物の具体例としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、ポリエステル(メタ)アクリレート、及びウレタン(メタ)アクリレート等が挙げられる。 Specific examples of the crosslinkable compound include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, (poly ) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, glycerol methacrylate acrylate, pentaerythritol tri (meth) acrylate, tri Examples include methylolpropane trimethacrylate, allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, polyester (meth) acrylate, and urethane (meth) acrylate.
 上記非架橋性化合物の具体例としては、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート及びテトラデシル(メタ)アクリレート等が挙げられる。 Specific examples of the non-crosslinkable compound include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, decyl (Meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, and the like.
 [光及び熱硬化性化合物]
 上記硬化性化合物が例えば熱硬化性化合物及び光重合性化合物を含む場合には、異方性導電材料の硬化を容易に制御したり、接続構造体の導通信頼性をより一層高めたりする観点からは、上記硬化性化合物は、エポキシ基及びチイラン基の内の少なくとも一種の基と、(メタ)アクリロイル基とを有する光及び熱硬化性化合物を含むことが好ましい。上記硬化性化合物は、エポキシ基と、(メタ)アクリロイル基とを有する光及び熱硬化性化合物(以下、部分(メタ)アクリレート化エポキシ樹脂ともいう)を含むことが好ましい。上記(メタ)アクリロイルは、アクリロイル又はメタクリロイルを意味する。上記(メタ)アクリレートは、アクリレート又はメタクリレートを意味する。
[Light and thermosetting compounds]
In the case where the curable compound contains, for example, a thermosetting compound and a photopolymerizable compound, from the viewpoint of easily controlling the curing of the anisotropic conductive material or further improving the conduction reliability of the connection structure. The curable compound preferably contains a light and thermosetting compound having at least one of an epoxy group and a thiirane group and a (meth) acryloyl group. It is preferable that the said curable compound contains the light and thermosetting compound (henceforth a partial (meth) acrylated epoxy resin) which has an epoxy group and a (meth) acryloyl group. The (meth) acryloyl means acryloyl or methacryloyl. The (meth) acrylate means acrylate or methacrylate.
 上記部分(メタ)アクリレート化エポキシ樹脂は、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られる。エポキシ基の20%以上が(メタ)アクリロイル基に変換され(転化率)、部分(メタ)アクリル化されていることが好ましい。エポキシ基の50%が(メタ)アクリロイル基に変換されていることがより好ましい。 The partial (meth) acrylated epoxy resin can be obtained, for example, by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. It is preferable that 20% or more of the epoxy groups are converted to (meth) acryloyl groups (conversion rate) and partially (meth) acrylated. More preferably, 50% of the epoxy groups are converted to (meth) acryloyl groups.
 異方性導電材料の硬化性を高める観点からは、上記硬化性化合物100重量%中、上記部分(メタ)アクリレート化エポキシ樹脂の含有量の好ましい下限は0.1重量%、より好ましい下限は0.5重量%、好ましい上限は2重量%、より好ましい上限は1.5重量%である。 From the viewpoint of increasing the curability of the anisotropic conductive material, the preferable lower limit of the content of the partially (meth) acrylated epoxy resin is 0.1% by weight and the more preferable lower limit is 0 in 100% by weight of the curable compound. 0.5 wt%, the preferred upper limit is 2 wt%, and the more preferred upper limit is 1.5 wt%.
 上記エポキシ(メタ)アクリレートとしては、ビスフェノール型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、カルボン酸無水物変性エポキシ(メタ)アクリレート、及びフェノールノボラック型エポキシ(メタ)アクリレート等が挙げられる。 Examples of the epoxy (meth) acrylate include bisphenol type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, carboxylic acid anhydride-modified epoxy (meth) acrylate, and phenol novolac type epoxy (meth) acrylate. .
 (熱硬化剤)
 上記熱硬化剤は特に限定されない。上記熱硬化剤として、従来公知の熱硬化剤を用いることができる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤及び酸無水物等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent)
The said thermosetting agent is not specifically limited. A conventionally known thermosetting agent can be used as the thermosetting agent. Examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, and acid anhydrides. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
 異方性導電材料を低温でより一層速やかに硬化させることができるので、上記熱硬化剤は、イミダゾール硬化剤、ポリチオール硬化剤又はアミン硬化剤であることが好ましい。また、異方性導電材料の保存安定性を高めることができるので、潜在性の硬化剤が好ましい。該潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性ポリチオール硬化剤又は潜在性アミン硬化剤であることが好ましい。上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。 Since the anisotropic conductive material can be cured more rapidly at a low temperature, the thermosetting agent is preferably an imidazole curing agent, a polythiol curing agent or an amine curing agent. In addition, a latent curing agent is preferable because the storage stability of the anisotropic conductive material can be improved. The latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent. The thermosetting agent may be coated with a polymer material such as polyurethane resin or polyester resin.
 上記イミダゾール硬化剤としては、特に限定されず、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。 The imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
 上記ポリチオール硬化剤としては、特に限定されず、トリメチロールプロパン トリス-3-メルカプトプロピオネート、ペンタエリスリトール テトラキス-3-メルカプトプロピオネート及びジペンタエリスリトール ヘキサ-3-メルカプトプロピオネート等が挙げられる。 The polythiol curing agent is not particularly limited, and examples include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .
 上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。 The amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
 上記熱硬化剤の含有量は特に限定されない。上記硬化性化合物の合計100重量部に対して、上記熱硬化剤の含有量の好ましい下限は5重量部、より好ましい下限は10重量部、好ましい上限は30重量部、より好ましい上限は20重量部である。上記熱硬化剤の含有量が上記好ましい下限及び上限を満たすと、異方性導電材料を充分に熱硬化させることができる。 The content of the thermosetting agent is not particularly limited. A preferable lower limit of the content of the thermosetting agent is 5 parts by weight, a more preferable lower limit is 10 parts by weight, a preferable upper limit is 30 parts by weight, and a more preferable upper limit is 20 parts by weight with respect to a total of 100 parts by weight of the curable compound. It is. If content of the said thermosetting agent satisfy | fills the said preferable minimum and upper limit, an anisotropic conductive material can fully be thermosetted.
 (光硬化開始剤)
 上記光硬化開始剤は特に限定されない。上記光硬化開始剤として、従来公知の光硬化開始剤を用いることができる。上記光硬化開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Photocuring initiator)
The photocuring initiator is not particularly limited. A conventionally known photocuring initiator can be used as the photocuring initiator. As for the said photocuring initiator, only 1 type may be used and 2 or more types may be used together.
 上記光硬化開始剤としては、特に限定されず、アセトフェノン光硬化開始剤、ベンゾフェノン光硬化開始剤、チオキサントン、ケタール光硬化開始剤、ハロゲン化ケトン、アシルホスフィノキシド及びアシルホスフォナート等が挙げられる。 The photocuring initiator is not particularly limited, and examples thereof include acetophenone photocuring initiator, benzophenone photocuring initiator, thioxanthone, ketal photocuring initiator, halogenated ketone, acyl phosphinoxide, and acyl phosphonate. .
 上記アセトフェノン光硬化開始剤の具体例としては、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、メトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、及び2-ヒドロキシ-2-シクロヘキシルアセトフェノン等が挙げられる。上記ケタール光硬化開始剤の具体例としては、ベンジルジメチルケタール等が挙げられる。 Specific examples of the acetophenone photocuring initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone. Specific examples of the ketal photocuring initiator include benzyldimethyl ketal.
 上記光硬化開始剤の含有量は特に限定されない。上記硬化性化合物の合計100重量部に対して、上記光硬化開始剤の含有量の好ましい下限は0.1重量部、より好ましい下限は0.2重量部、好ましい上限は2重量部、より好ましい上限は1重量部である。上記光硬化開始剤の含有量が上記好ましい下限及び上限を満たすと、異方性導電材料を適度に光硬化させることができる。異方性導電材料に光を照射し、Bステージ化することにより、異方性導電材料の流動を抑制できる。また、異方性導電材料に光を照射し、半硬化させることにより、異方性導電材料の流動を抑制できる。 The content of the photocuring initiator is not particularly limited. The preferable lower limit of the content of the photocuring initiator is 0.1 parts by weight, the more preferable lower limit is 0.2 parts by weight, and the preferable upper limit is 2 parts by weight with respect to the total of 100 parts by weight of the curable compound. The upper limit is 1 part by weight. If content of the said photocuring initiator satisfy | fills the said preferable minimum and upper limit, an anisotropic conductive material can be photocured moderately. By irradiating the anisotropic conductive material with light to form a B stage, the flow of the anisotropic conductive material can be suppressed. Moreover, the flow of the anisotropic conductive material can be suppressed by irradiating the anisotropic conductive material with light and semi-curing the light.
 (導電性粒子)
 本発明に係る異方性導電材料に含まれている導電性粒子として、例えば、電極間を電気的に接続できる従来公知の導電性粒子が用いられる。上記導電性粒子は、外表面に導電層を有する粒子であることが好ましい。上記導電性粒子は、導電層の表面に絶縁粒子が付着していたり、導電層の表面が絶縁層により被覆されていたりしてもよい。この場合には、電極の接続の際の加圧により、絶縁粒子又は絶縁層が取り除かれる。
(Conductive particles)
As the conductive particles contained in the anisotropic conductive material according to the present invention, for example, conventionally known conductive particles capable of electrically connecting the electrodes are used. The conductive particles are preferably particles having a conductive layer on the outer surface. The conductive particles may have insulating particles attached to the surface of the conductive layer, or the surface of the conductive layer may be covered with an insulating layer. In this case, the insulating particles or the insulating layer is removed by pressurization when the electrodes are connected.
 上記導電性粒子としては、例えば、有機粒子、無機粒子、有機無機ハイブリッド粒子、もしくは金属粒子等の表面が導電層で被覆された導電性粒子、並びに実質的に金属のみで構成される金属粒子等が挙げられる。上記導電層は特に限定されない。上記導電層としては、金層、銀層、銅層、ニッケル層、パラジウム層又は錫を含有する導電層等が挙げられる。 Examples of the conductive particles include organic particles, inorganic particles, organic-inorganic hybrid particles, or conductive particles whose surfaces are covered with a conductive layer, and metal particles that are substantially composed of only metal. Is mentioned. The conductive layer is not particularly limited. Examples of the conductive layer include a gold layer, a silver layer, a copper layer, a nickel layer, a palladium layer, or a conductive layer containing tin.
 上記異方性導電材料100重量%中、上記導電性粒子の含有量は1~19重量%の範囲内である。上記導電性粒子の含有量の好ましい下限は5重量%、好ましい上限は15重量%、より好ましい上限は10重量%である。上記導電性粒子の含有量が上記範囲内にある場合には、接続されるべき上下の電極間に導電性粒子を容易に配置できる。さらに、接続されてはならない隣接する電極間が複数の導電性粒子を介して電気的に接続され難くなる。すなわち、隣り合う電極間の短絡を防止できる。 In 100% by weight of the anisotropic conductive material, the content of the conductive particles is in the range of 1 to 19% by weight. The minimum with preferable content of the said electroconductive particle is 5 weight%, a preferable upper limit is 15 weight%, and a more preferable upper limit is 10 weight%. When the content of the conductive particles is within the above range, the conductive particles can be easily arranged between the upper and lower electrodes to be connected. Furthermore, it becomes difficult to electrically connect adjacent electrodes that should not be connected via a plurality of conductive particles. That is, a short circuit between adjacent electrodes can be prevented.
 (他の成分)
 本発明に係る異方性導電材料は、溶剤を含有していてもよい。該溶剤の使用により、異方性導電材料の粘度を容易に調整できる。さらに、例えば、上記硬化性化合物が固形である場合に、固形の硬化性化合物に溶剤を添加し、溶解させることにより、硬化性化合物の分散性を高めることができる。上記溶剤としては、例えば、酢酸エチル、メチルセロソルブ、トルエン、アセトン、メチルエチルケトン、シクロヘキサン、n-ヘキサン、テトラヒドロフラン及びジエチルエーテル等が挙げられる。
(Other ingredients)
The anisotropic conductive material according to the present invention may contain a solvent. By using the solvent, the viscosity of the anisotropic conductive material can be easily adjusted. Furthermore, for example, when the curable compound is solid, the dispersibility of the curable compound can be increased by adding a solvent to the solid curable compound and dissolving it. Examples of the solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran and diethyl ether.
 異方性導電材料の硬化物の接着力を高めることができるので、本発明に係る異方性導電材料は、接着力調整剤を含有することが好ましい。接着力をより一層高める観点からは、上記接着力調整剤は、シランカップリング剤であることが好ましい。 Since the adhesive strength of the cured product of the anisotropic conductive material can be increased, the anisotropic conductive material according to the present invention preferably contains an adhesive strength adjusting agent. From the viewpoint of further increasing the adhesive strength, the adhesive strength modifier is preferably a silane coupling agent.
 本発明に係る異方性導電材料は、フィラーを含有することが好ましい。該フィラーの使用により、異方性導電材料の硬化物の潜熱膨張を抑制できる。 The anisotropic conductive material according to the present invention preferably contains a filler. By using the filler, latent heat expansion of the cured product of the anisotropic conductive material can be suppressed.
 上記η2及び上記比(η1/η2)を好適な範囲に制御するために、フィラーは、表面処理されていることが好ましく、親水性フィラーであることが好ましい。 In order to control the η2 and the ratio (η1 / η2) within a suitable range, the filler is preferably surface-treated, and is preferably a hydrophilic filler.
 上記フィラーは特に限定されない。上記フィラーとしては、シリカ、窒化アルミニウム及びアルミナ等が挙げられる。上記フィラーは1種のみが用いられてもよく、2種以上が併用されてもよい。 The filler is not particularly limited. Examples of the filler include silica, aluminum nitride, and alumina. As for the said filler, only 1 type may be used and 2 or more types may be used together.
 上記親水性フィラーとは、表面が親水基で覆われているフィラーを示す。該親水基としては、水酸基、アミノ基、アミド基、カルボキシレート基及びカルボキシル基等の極性基、並びにカルボキシレートイオン基、スルホン酸イオン基及びアンモニウムイオン基等のイオン性基等が挙げられる。上記親水性フィラーとしては、従来の上記フィラーが親水性表面処理剤で表面処理された親水性フィラーが挙げられる。 The hydrophilic filler is a filler whose surface is covered with a hydrophilic group. Examples of the hydrophilic group include polar groups such as hydroxyl group, amino group, amide group, carboxylate group and carboxyl group, and ionic groups such as carboxylate ion group, sulfonate ion group and ammonium ion group. Examples of the hydrophilic filler include a hydrophilic filler obtained by surface-treating the conventional filler with a hydrophilic surface treatment agent.
 上記親水性表面処理剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、Al、TiO、ZrO、シリコーン及びステアリン酸アルミニウム等が挙げられる。中でも、上記親水性表面処理剤として、シランカップリング剤が好ましく用いられる。 Examples of the hydrophilic surface treatment agent include silane coupling agents, titanate coupling agents, aluminum coupling agents, zircoaluminate coupling agents, Al 2 O 3 , TiO 2 , ZrO 2 , silicone, and stearin. An aluminum acid etc. are mentioned. Among these, a silane coupling agent is preferably used as the hydrophilic surface treatment agent.
 上記フィラーの含有量は特に限定されない。上記硬化性化合物の合計100重量部に対して、上記フィラーの含有量の好ましい下限は5重量部、より好ましい下限は15重量部、好ましい上限は70重量部、より好ましい上限は50重量部である。上記フィラーの含有量が上記好ましい下限及び上限を満たすと、異方性導電材料の硬化物の潜熱膨張を充分に抑制でき、更に異方性導電材料中にフィラーを充分に分散させることができる。 The content of the filler is not particularly limited. The preferable lower limit of the filler content is 5 parts by weight, the more preferable lower limit is 15 parts by weight, the preferable upper limit is 70 parts by weight, and the more preferable upper limit is 50 parts by weight with respect to the total of 100 parts by weight of the curable compound. . When content of the said filler satisfy | fills the said preferable minimum and upper limit, the latent thermal expansion of the cured | curing material of an anisotropic conductive material can fully be suppressed, and also a filler can fully be disperse | distributed in an anisotropic conductive material.
 (異方性導電材料の他の詳細)
 本発明に係る異方性導電材料の製造方法としては、特に限定されず、上記硬化性化合物と、上記熱硬化剤と、上記光硬化開始剤と、上記導電性粒子と、必要に応じて添加される他の成分とを配合し、遊星式攪拌機等を用いて充分に混合する製造方法が挙げられる。
(Other details of anisotropic conductive material)
It does not specifically limit as a manufacturing method of the anisotropic electrically-conductive material which concerns on this invention, Adds the said sclerosing | hardenable compound, the said thermosetting agent, the said photocuring initiator, the said electroconductive particle, as needed. And other components to be mixed and sufficiently mixed using a planetary stirrer or the like.
 本発明に係る異方性導電材料の25℃及び2.5rpmでの粘度は、20~200Pa・sの範囲内であることが好ましい。すなわち、塗布前の上記異方性導電材料の25℃及び2.5rpmでの粘度は、20~200Pa・sの範囲内であることが好ましい。この場合には、例えば基板等の塗布対象部材(第1の接続対象部材)上に異方性導電材料を塗布した後に、硬化前の異方性導電材料の流動をより一層抑制できる。さらに、電極と導電性粒子との間の樹脂成分を容易に取り除くことができ、電極と導電性粒子との接触面積を大きくすることができる。さらに、塗布対象部材(第1の接続対象部材)の表面が凹凸である場合に、該凹凸の表面に異方性導電材料を充分に充填させることができ、硬化後にボイドが生じ難くなる。また、異方性導電材料中において導電性粒子が沈降し難くなり、導電性粒子の分散性を高めることができる。 The viscosity of the anisotropic conductive material according to the present invention at 25 ° C. and 2.5 rpm is preferably in the range of 20 to 200 Pa · s. That is, the viscosity of the anisotropic conductive material before coating at 25 ° C. and 2.5 rpm is preferably in the range of 20 to 200 Pa · s. In this case, for example, the flow of the anisotropic conductive material before curing can be further suppressed after applying the anisotropic conductive material on the application target member (first connection target member) such as a substrate. Furthermore, the resin component between the electrode and the conductive particles can be easily removed, and the contact area between the electrode and the conductive particles can be increased. Furthermore, when the surface of the application target member (first connection target member) is uneven, the surface of the unevenness can be sufficiently filled with an anisotropic conductive material, and voids are less likely to occur after curing. Further, it becomes difficult for the conductive particles to settle in the anisotropic conductive material, and the dispersibility of the conductive particles can be improved.
 本発明に係る異方性導電材料について、光の照射により硬化が進行されて、Bステージ化した後の粘度(以下、η3’と略記することがある)は2000~3500Pa・sの範囲内であることが好ましい。異方性導電材料層及び導電性粒子の流動をより一層抑制する観点からは、上記粘度η3’のより好ましい下限は2250Pa・s、より好ましい上限は3250Pa・sである。上記粘度η3’の測定温度の好ましい下限は20℃、好ましい上限は30℃である。上記粘度η3’の測定温度は25℃であることが特に好ましい。 With respect to the anisotropic conductive material according to the present invention, the viscosity after being cured by light irradiation to be B-staged (hereinafter sometimes abbreviated as η3 ′) is in the range of 2000 to 3500 Pa · s. Preferably there is. From the viewpoint of further suppressing the flow of the anisotropic conductive material layer and the conductive particles, the more preferable lower limit of the viscosity η3 'is 2250 Pa · s, and the more preferable upper limit is 3250 Pa · s. The preferable lower limit of the measurement temperature of the viscosity η3 'is 20 ° C, and the preferable upper limit is 30 ° C. The measurement temperature of the viscosity η3 ′ is particularly preferably 25 ° C.
 本発明に係る異方性導電材料は、25℃及び2.5rpmでの粘度をη1とし、かつ25℃及び5rpmでの粘度をη2としたときに、上記η2が20Pa・s以上200Pa・s以下であり、かつ上記η1の上記η2に対する比(η1/η2)が0.9以上1.1以下であることが好ましい。すなわち、本発明に係る異方性導電材料は、下記式(X)及び(Y)をいずれも満たすことが好ましい。
 20Pa・s≦η2≦200Pa・s  ・・・式(X)
 0.9≦η1/η2≦1.1      ・・・式(Y)
In the anisotropic conductive material according to the present invention, when the viscosity at 25 ° C. and 2.5 rpm is η1, and the viscosity at 25 ° C. and 5 rpm is η2, the η2 is 20 Pa · s or more and 200 Pa · s or less. And the ratio (η1 / η2) of η1 to η2 is preferably 0.9 or more and 1.1 or less. That is, the anisotropic conductive material according to the present invention preferably satisfies both the following formulas (X) and (Y).
20 Pa · s ≦ η2 ≦ 200 Pa · s Formula (X)
0.9 ≦ η1 / η2 ≦ 1.1 Formula (Y)
 特開2003-064330号公報に記載のような従来の異方性導電材料を、ディスペンサー等により塗布対象部材に塗布する際に、安定に塗布できないことがある。特許文献2に記載のような粘度特性を示す異方性導電材料では、塗布の開始直後に粘度が大きく低下し、異方性導電材料が部分的に多量に塗布されることがある。このため、塗布幅が一定にならず、結果として、異方性導電材料により形成された硬化物層の幅又は厚みにばらつきが生じやすい。これに対して、本発明に係る異方性導電材料において、上記η2及び上記比(η1/η2)が特定の上記範囲内にあることにあることによって、異方性導電材料を、ディスペンサー等により塗布対象部材に塗布する際に、より一層安定にかつ均一に塗布できる。さらに、塗布の開始直後に粘度が大きく低下することなく、異方性導電材料が部分的に多量に塗布されるのを抑制できる。このため、塗布幅を一定にすることができ、結果として、異方性導電材料により形成された硬化物層の幅又は厚みにばらつきが生じ難くなる。 When a conventional anisotropic conductive material as described in JP-A-2003-064330 is applied to a member to be applied with a dispenser or the like, it may not be applied stably. In the anisotropic conductive material having viscosity characteristics as described in Patent Document 2, the viscosity is greatly reduced immediately after the start of coating, and the anisotropic conductive material may be partially applied in large quantities. For this reason, the coating width is not constant, and as a result, the width or thickness of the cured product layer formed of the anisotropic conductive material tends to vary. On the other hand, in the anisotropic conductive material according to the present invention, when the η2 and the ratio (η1 / η2) are within the specific range, the anisotropic conductive material is dispensed by a dispenser or the like. When applying to the application target member, it can be applied more stably and uniformly. Furthermore, it is possible to prevent the anisotropic conductive material from being partially applied in a large amount without greatly reducing the viscosity immediately after the start of the application. For this reason, the coating width can be made constant, and as a result, variations in the width or thickness of the cured product layer formed of the anisotropic conductive material are less likely to occur.
 異方性導電材料をより一層均一に塗布する観点からは、上記η2の好ましい下限は50Pa・s、より好ましい下限は100Pa・s、好ましい上限は180Pa・s、より好ましい上限は150Pa・sである。 From the viewpoint of more uniformly applying the anisotropic conductive material, the preferable lower limit of η2 is 50 Pa · s, the more preferable lower limit is 100 Pa · s, the preferable upper limit is 180 Pa · s, and the more preferable upper limit is 150 Pa · s. .
 上記η2及び上記比(η1/η2)は、硬化性化合物として結晶性樹脂を用いたり、親水性を高めるために表面処理されたフィラーを用いたりすることにより、調整可能である。上記η2及び上記比(η1/η2)を上記範囲内に容易に制御する観点からは、上記硬化性化合物は、結晶性樹脂を含むことが好ましい。 The above η2 and the above ratio (η1 / η2) can be adjusted by using a crystalline resin as the curable compound or by using a filler that has been surface-treated to enhance hydrophilicity. From the viewpoint of easily controlling the η2 and the ratio (η1 / η2) within the above range, the curable compound preferably contains a crystalline resin.
 本発明に係る異方性導電材料を硬化させる方法としては、異方性導電材料に光を照射した後、異方性導電材料を加熱する方法、並びに異方性導電材料を加熱した後、異方性導電材料に光を照射する方法が挙げられる。また、光硬化の速度及び熱硬化の速度が異なる場合などには、光の照射と加熱とを同時に行ってもよい。なかでも、異方性導電材料に光を照射した後、異方性導電材料を加熱する方法が好ましい。光硬化と熱硬化との併用により、異方性導電材料を短時間で硬化させることができる。 As a method for curing the anisotropic conductive material according to the present invention, after the anisotropic conductive material is irradiated with light, the anisotropic conductive material is heated, and after the anisotropic conductive material is heated, the anisotropic conductive material is heated. A method of irradiating the anisotropic conductive material with light can be given. In addition, when the photocuring speed and the thermosetting speed are different, light irradiation and heating may be performed simultaneously. Especially, the method of heating an anisotropic conductive material after irradiating light to an anisotropic conductive material is preferable. The anisotropic conductive material can be cured in a short time by the combined use of photocuring and heat curing.
 (接続構造体及び接続構造体の製造方法)
 本発明に係る異方性導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connecting structure and manufacturing method of connecting structure)
A connection structure can be obtained by connecting the connection target members using the anisotropic conductive material according to the present invention.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を電気的に接続している接続部とを備えており、該接続部が上記異方性導電材料により形成されていることが好ましい。上記接続部は、上記異方性導電材料が硬化した硬化物層である。 The connection structure includes a first connection target member, a second connection target member, and a connection portion that electrically connects the first and second connection target members. The part is preferably formed of the anisotropic conductive material. The connection portion is a cured product layer obtained by curing the anisotropic conductive material.
 次に、図面を参照しつつ、本発明の一実施形態に係る異方性導電材料を用いた接続構造体、及び該接続構造体の製造方法をより詳細に説明する。 Next, a connection structure using an anisotropic conductive material according to an embodiment of the present invention and a method for manufacturing the connection structure will be described in more detail with reference to the drawings.
 図1に、本発明の一実施形態に係る異方性導電材料を用いた接続構造体の一例を模式的に部分切欠正面断面図で示す。 FIG. 1 schematically shows an example of a connection structure using an anisotropic conductive material according to an embodiment of the present invention in a partially cutaway front sectional view.
 図1に示す接続構造体1は、第1の接続対象部材2の上面2aに、硬化物層3を介して、第2の接続対象部材4が接続された構造を有する。硬化物層3は接続部である。硬化物層3は硬化性化合物と熱硬化剤と光硬化開始剤と導電性粒子5とを含む異方性導電材料を硬化させることにより形成されている。上記異方性導電材料は、複数の導電性粒子5を含む。第1の接続対象部材2の上面2aには、複数の電極2bが設けられている。第2の接続対象部材4の下面4aには、複数の電極4bが設けられている。電極2bと電極4bとが、1つ又は複数の導電性粒子5により電気的に接続されている。 1 has a structure in which a second connection target member 4 is connected to an upper surface 2a of a first connection target member 2 via a cured product layer 3. The connection structure 1 shown in FIG. The cured product layer 3 is a connection part. The cured product layer 3 is formed by curing an anisotropic conductive material including a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles 5. The anisotropic conductive material includes a plurality of conductive particles 5. A plurality of electrodes 2 b are provided on the upper surface 2 a of the first connection target member 2. A plurality of electrodes 4 b are provided on the lower surface 4 a of the second connection target member 4. The electrode 2b and the electrode 4b are electrically connected by one or a plurality of conductive particles 5.
 接続構造体1では、第1の接続対象部材2としてガラス基板が用いられており、第2の接続対象部材4として半導体チップが用いられている。第1,第2の接続対象部材は、特に限定されない。第1,第2の接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板等が挙げられる。 In the connection structure 1, a glass substrate is used as the first connection target member 2, and a semiconductor chip is used as the second connection target member 4. The first and second connection target members are not particularly limited. Specific examples of the first and second connection target members include electronic components such as semiconductor chips, capacitors, and diodes, and circuit boards such as printed boards, flexible printed boards, and glass boards.
 図1に示す接続構造体1は、例えば、以下のようにして得ることができる。 The connection structure 1 shown in FIG. 1 can be obtained as follows, for example.
 図2(a)に示すように、電極2bを上面2aに有する第1の接続対象部材2を用意する。次に、第1の接続対象部材2の上面2aに、複数の導電性粒子5を含む異方性導電材料を塗布し、第1の接続対象部材2の上面2aに異方性導電材料層3Aを形成する。このとき、電極2b上に、1つ又は複数の導電性粒子5が配置されていることが好ましい。 As shown in FIG. 2A, a first connection target member 2 having an electrode 2b on the upper surface 2a is prepared. Next, an anisotropic conductive material including a plurality of conductive particles 5 is applied to the upper surface 2a of the first connection target member 2, and the anisotropic conductive material layer 3A is applied to the upper surface 2a of the first connection target member 2. Form. At this time, it is preferable that one or a plurality of conductive particles 5 be disposed on the electrode 2b.
 次に、図2(b)に示すように、異方性導電材料層3Aに光を照射することにより、異方性導電材料層3Aの硬化を進行させる。異方性導電材料層3Aの硬化を進行させて、異方性導電材料層3AをBステージ化する。第1の接続対象部材2の上面2aに、Bステージ化された異方性導電材料層3Bを形成する。 Next, as shown in FIG. 2B, the anisotropic conductive material layer 3A is cured by irradiating the anisotropic conductive material layer 3A with light. By curing the anisotropic conductive material layer 3A, the anisotropic conductive material layer 3A is B-staged. A B-staged anisotropic conductive material layer 3B is formed on the upper surface 2a of the first connection target member 2.
 異方性導電材料層3Aの硬化を進行させて、異方性導電材料層3AをBステージ化する際には、Bステージ化された異方性導電材料層3Bの粘度(以下、η3と略記することがある)が2000~3500Pa・sの範囲内であるように、異方性導電材料層3AをBステージ化することが好ましい。上記粘度η3を上記範囲内にすることにより、異方性導電材料層の流動を充分に抑制できる。このため、電極2b,4b間に、導電性粒子5が配置されやすくなる。さらに、第1の接続対象部材2又は第2の接続対象部材4の外周面よりも側方の領域に、異方性導電材料層が意図せずに流動するのを抑制できる。 When the anisotropic conductive material layer 3A is hardened and the anisotropic conductive material layer 3A is B-staged, the viscosity of the B-staged anisotropic conductive material layer 3B (hereinafter abbreviated as η3). The anisotropic conductive material layer 3A is preferably B-staged so that it is within the range of 2000 to 3500 Pa · s. By setting the viscosity η3 within the above range, the flow of the anisotropic conductive material layer can be sufficiently suppressed. For this reason, it becomes easy to arrange the conductive particles 5 between the electrodes 2b and 4b. Furthermore, it is possible to suppress the anisotropic conductive material layer from flowing unintentionally in a region lateral to the outer peripheral surface of the first connection target member 2 or the second connection target member 4.
 異方性導電材料層及び導電性粒子5の流動をより一層抑制する観点からは、上記粘度η3のより好ましい下限は2250Pa・s、より好ましい上限は3250Pa・sである。上記粘度η3の測定温度の好ましい下限は20℃、好ましい上限は30℃である。上記粘度η3の測定温度は25℃であることが特に好ましい。 From the viewpoint of further suppressing the flow of the anisotropic conductive material layer and the conductive particles 5, a more preferable lower limit of the viscosity η3 is 2250 Pa · s, and a more preferable upper limit is 3250 Pa · s. The preferable lower limit of the measurement temperature of the viscosity η3 is 20 ° C., and the preferable upper limit is 30 ° C. The measurement temperature of the viscosity η3 is particularly preferably 25 ° C.
 第1の接続対象部材2の上面2aに、異方性導電材料を塗布しながら、異方性導電材料層3Aに光を照射することが好ましい。さらに、第1の接続対象部材2の上面2aへの異方性導電材料の塗布と同時に、又は塗布の直後に、異方性導電材料層3Aに光を照射することも好ましい。塗布と光の照射とが上記のように行われた場合には、異方性導電材料層の流動をより一層抑制できる。このため、得られた接続構造体1の導通信頼性をより一層高めることができる。第1の接続対象部材2の上面2aに異方性導電材料を塗布してから光を照射するまでの時間は、0~3秒の範囲内であることが好ましく、0~2秒の範囲内であることがより好ましい。 It is preferable to irradiate the anisotropic conductive material layer 3A with light while applying the anisotropic conductive material to the upper surface 2a of the first connection target member 2. Furthermore, it is also preferable to irradiate the anisotropic conductive material layer 3 </ b> A simultaneously with the application of the anisotropic conductive material to the upper surface 2 a of the first connection target member 2 or immediately after the application. When application and light irradiation are performed as described above, the flow of the anisotropic conductive material layer can be further suppressed. For this reason, the conduction | electrical_connection reliability of the obtained connection structure 1 can be improved further. The time from application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2 until irradiation with light is preferably within a range of 0 to 3 seconds, and within a range of 0 to 2 seconds. It is more preferable that
 第1の接続対象部材2の上面2aに、異方性導電材料を塗布しながら、異方性導電材料層3Aに光を照射することが好ましい。さらに、第1の接続対象部材2の上面2aへの異方性導電材料の塗布と同時に、又は塗布の直後に、異方性導電材料層3Aに光を照射することも好ましい。塗布及び光の照射が上記のように行われた場合には、異方性導電材料層の流動をより一層抑制できる。このため、得られた接続構造体1の導通信頼性をより一層高めることができる。第1の接続対象部材2の上面2aに異方性導電材料を塗布してから光を照射するまでの時間は、0~3秒の範囲内であることが好ましく、0~2秒の範囲内であることがより好ましい。 It is preferable to irradiate the anisotropic conductive material layer 3A with light while applying the anisotropic conductive material to the upper surface 2a of the first connection target member 2. Furthermore, it is also preferable to irradiate the anisotropic conductive material layer 3 </ b> A simultaneously with the application of the anisotropic conductive material to the upper surface 2 a of the first connection target member 2 or immediately after the application. When application and light irradiation are performed as described above, the flow of the anisotropic conductive material layer can be further suppressed. For this reason, the conduction | electrical_connection reliability of the obtained connection structure 1 can be improved further. The time from application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2 until irradiation with light is preferably within a range of 0 to 3 seconds, and within a range of 0 to 2 seconds. It is more preferable that
 光の照射により異方性導電材料層3AをBステージ化させる場合には、異方性導電材料層3Aの硬化を適度に進行させるための光照射強度は、例えば、0.1~100mW/cm程度である。 When the anisotropic conductive material layer 3A is B-staged by light irradiation, the light irradiation intensity for appropriately proceeding curing of the anisotropic conductive material layer 3A is, for example, 0.1 to 100 mW / cm. It is about 2 .
 光を照射する際に用いる光源は特に限定されない。該光源としては、例えば、波長420nm以下に充分な発光分布を有する光源等が挙げられる。また、光源の具体例としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、及びメタルハライドランプ等が挙げられる。 The light source used when irradiating light is not particularly limited. Examples of the light source include a light source having a sufficient light emission distribution at a wavelength of 420 nm or less. Specific examples of the light source include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
 次に、図2(c)に示すように、Bステージ化された異方性導電材料層3Bの上面3aに、第2の接続対象部材4を積層する。第1の接続対象部材2の上面2aの電極2bと、第2の接続対象部材4の下面4aの電極4bとが対向するように、第2の接続対象部材4を積層する。 Next, as shown in FIG. 2C, the second connection target member 4 is laminated on the upper surface 3a of the B-staged anisotropic conductive material layer 3B. The second connection target member 4 is laminated so that the electrode 2b on the upper surface 2a of the first connection target member 2 and the electrode 4b on the lower surface 4a of the second connection target member 4 face each other.
 さらに、第2の接続対象部材4の積層の際に、異方性導電材料層3Bに熱を付与することにより、異方性導電材料層3Bをさらに硬化させ、硬化物層3を形成する。ただし、第2の接続対象部材4の積層の前に、異方性導電材料層3Bに熱を付与してもよい。さらに、第2の接続対象部材4の積層の後に、異方性導電材料層3Bに熱を付与し完全に硬化させることが好ましい。 Furthermore, when the second connection target member 4 is laminated, the anisotropic conductive material layer 3B is further cured by applying heat to the anisotropic conductive material layer 3B, thereby forming the cured product layer 3. However, heat may be applied to the anisotropic conductive material layer 3B before the second connection target member 4 is laminated. Furthermore, it is preferable to apply heat to the anisotropic conductive material layer 3B and completely cure it after the second connection target member 4 is laminated.
 熱の付与により異方性導電材料層3Bを硬化させる場合には、異方性導電材料層3Bを充分に硬化させるための加熱温度の好ましい下限は160℃、好ましい上限は250℃、より好ましい上限は200℃である。 When the anisotropic conductive material layer 3B is cured by applying heat, the preferable lower limit of the heating temperature for sufficiently curing the anisotropic conductive material layer 3B is 160 ° C, the preferable upper limit is 250 ° C, and the more preferable upper limit. Is 200 ° C.
 異方性導電材料層3Bを硬化させる際に、加圧することが好ましい。加圧によって電極2bと電極4bとで導電性粒子5を圧縮することにより、電極2b,4bと導電性粒子5との接触面積を大きくすることができる。このため、導通信頼性を高めることができる。 It is preferable to apply pressure when the anisotropic conductive material layer 3B is cured. By compressing the conductive particles 5 with the electrodes 2b and 4b by pressurization, the contact area between the electrodes 2b and 4b and the conductive particles 5 can be increased. For this reason, conduction reliability can be improved.
 異方性導電材料層3Bを硬化させることにより、第1の接続対象部材2と第2の接続対象部材4とが、硬化物層3を介して接続される。また、電極2bと電極4bとが、導電性粒子5を介して電気的に接続される。このようにして、図1に示す接続構造体1を得ることができる。本実施形態では、光硬化と熱硬化とが併用されているため、異方性導電材料を短時間で硬化させることができる。 The first connection target member 2 and the second connection target member 4 are connected via the cured product layer 3 by curing the anisotropic conductive material layer 3B. Further, the electrode 2 b and the electrode 4 b are electrically connected through the conductive particles 5. In this way, the connection structure 1 shown in FIG. 1 can be obtained. In this embodiment, since photocuring and thermosetting are used together, the anisotropic conductive material can be cured in a short time.
 接続構造体1を得る際に、異方性導電材料層3Aに光を照射し、Bステージ化された異方性導電材料層3Bを形成した後、異方性導電材料層3Bに熱を付与することが好ましい。 When obtaining the connection structure 1, the anisotropic conductive material layer 3A is irradiated with light to form a B-staged anisotropic conductive material layer 3B, and then heat is applied to the anisotropic conductive material layer 3B. It is preferable to do.
 異方性導電材料層3Aを形成し、該異方性導電材料層3AをBステージ化する際に、図3(a)に示す複合装置が好適に用いられる。 When the anisotropic conductive material layer 3A is formed and the anisotropic conductive material layer 3A is B-staged, the composite apparatus shown in FIG. 3A is preferably used.
 図3(a)に示す複合装置11は、ディスペンサー12と、該ディスペンサー12に接続された光照射装置13とを備える。ディスペンサー12は、内部に異方性導電材料を充填するためのシリンジ12aと、該シリンジ12aの外周面を把持している把持部12bとを備える。光照射装置13は、光照射装置本体13aと、光照射部13bとを備える。複合装置11では、把持部12bと光照射装置本体13aとが接続されている。従って、ディスペンサー12と光照射装置13との距離を小さくすることができ、すなわち、ディスペンサー12の吐出部と、光照射部13bとの距離を小さくすることができる。さらに、ディスペンサー12と光照射装置13とを同じ速度で容易に移動させることができる。なお、シリンジ12aと光照射装置本体13aとが直接接続されていてもよい。 3 (a) includes a dispenser 12 and a light irradiation device 13 connected to the dispenser 12. The dispenser 12 includes a syringe 12a for filling the inside with an anisotropic conductive material, and a grip portion 12b that grips the outer peripheral surface of the syringe 12a. The light irradiation device 13 includes a light irradiation device main body 13a and a light irradiation unit 13b. In the composite apparatus 11, the grip part 12b and the light irradiation apparatus main body 13a are connected. Therefore, the distance between the dispenser 12 and the light irradiation device 13 can be reduced, that is, the distance between the discharge part of the dispenser 12 and the light irradiation part 13b can be reduced. Furthermore, the dispenser 12 and the light irradiation device 13 can be easily moved at the same speed. In addition, the syringe 12a and the light irradiation apparatus main body 13a may be directly connected.
 図3(a)に示すように、塗布及び光の照射の際には、複合装置11を矢印Aの方向に移動させながら、第1の接続対象部材2の上面2aに、シリンジ12aから異方性導電材料を塗布し、異方性導電材料層3Aを形成する。また、塗布しながら、ディスペンサー12に接続された光照射装置13の光照射部13bから、矢印Bで示すように異方性導電材料層3Aに光を照射する。 As shown in FIG. 3A, when applying and irradiating light, while moving the composite device 11 in the direction of arrow A, the syringe 12a is anisotropically moved from the syringe 12a to the upper surface 2a of the first connection target member 2. A conductive conductive material is applied to form the anisotropic conductive material layer 3A. Further, the anisotropic conductive material layer 3 </ b> A is irradiated with light from the light irradiation unit 13 b of the light irradiation device 13 connected to the dispenser 12 as indicated by an arrow B while being applied.
 第1の接続対象部材2の上面2aに形成された異方性導電材料層3A及び該異方性導電材料層3Aに含まれている導電性粒子5の流動をより一層抑制する観点からは、ディスペンサー12と光照射装置13とを移動させながら、塗布と光の照射とが行われることが好ましい。さらに、光の照射までの時間を高精度に制御する観点からは、ディスペンサー12と光照射装置13とは同じ速度で移動されることが好ましい。ただし、複合装置11を移動させずに、台31を矢印Aの方向に移動させてもよい。 From the viewpoint of further suppressing the flow of the anisotropic conductive material layer 3A formed on the upper surface 2a of the first connection target member 2 and the conductive particles 5 contained in the anisotropic conductive material layer 3A, It is preferable that application and light irradiation are performed while moving the dispenser 12 and the light irradiation device 13. Furthermore, it is preferable that the dispenser 12 and the light irradiation device 13 are moved at the same speed from the viewpoint of controlling the time until the light irradiation with high accuracy. However, the table 31 may be moved in the direction of the arrow A without moving the composite apparatus 11.
 図4(a)に示すように、ディスペンサー12と、該ディスペンサー12に接続されていない光照射装置21とを用いてもよい。光照射装置21は、光照射装置13と同様に、光照射装置本体21aと、光照射部21bとを備える。光照射装置21は、光照射装置13よりも、広い領域に光を照射することができるように構成されている。 As shown in FIG. 4A, a dispenser 12 and a light irradiation device 21 that is not connected to the dispenser 12 may be used. Similar to the light irradiation device 13, the light irradiation device 21 includes a light irradiation device main body 21 a and a light irradiation unit 21 b. The light irradiation device 21 is configured to irradiate light over a wider area than the light irradiation device 13.
 ディスペンサー12と、該ディスペンサー12に接続されていない光照射装置21とを用いる場合には、例えば、図4(a)に示すように、第1の接続対象部材2の上方に光照射装置21を配置する。次に、第1の接続対象部材2と光照射装置21との間においてディスペンサー12を矢印Aの方向に移動させながら、第1の接続対象部材2の上面2aに、シリンジ12aから異方性導電材料を塗布し、異方性導電材料層3Aを形成する。次に、図4(b)に示すように、異方性導電材料の塗布が終了した後、第1の接続対象部材2の上方に配置された光照射装置21の光照射部21bから、異方性導電材料層3Aに光を照射する。光の照射は、例えば異方性導電材料の塗布と同時又は塗布の直後に行われる。 When using the dispenser 12 and the light irradiation device 21 not connected to the dispenser 12, for example, as shown in FIG. 4A, the light irradiation device 21 is placed above the first connection target member 2. Deploy. Next, while the dispenser 12 is moved in the direction of the arrow A between the first connection target member 2 and the light irradiation device 21, anisotropic conduction is performed from the syringe 12 a to the upper surface 2 a of the first connection target member 2. The material is applied to form the anisotropic conductive material layer 3A. Next, as shown in FIG. 4 (b), after the application of the anisotropic conductive material is completed, the light irradiation unit 21b of the light irradiation device 21 disposed above the first connection target member 2 is different from the first irradiation target member 2. The isotropic conductive material layer 3A is irradiated with light. The light irradiation is performed, for example, simultaneously with the application of the anisotropic conductive material or immediately after the application.
 光照射装置21は、塗布の際に、第1の接続対象部材2の上方に配置されていることが好ましい。この場合には、塗布の後に、光を速やかに照射できる。塗布の後に、異方性導電材料層3Aの全領域に一括して光を照射することが好ましい。この場合には、異方性導電材料層3Aをより一層均一にBステージ化することができる。 It is preferable that the light irradiation device 21 is disposed above the first connection target member 2 at the time of application. In this case, light can be irradiated quickly after application. After the application, it is preferable to irradiate the entire region of the anisotropic conductive material layer 3A all together. In this case, the anisotropic conductive material layer 3A can be made B-stage even more uniformly.
 図3(a)又は図4(a)に示す装置の使用により、第1の接続対象部材2の上面2aへの異方性導電材料の塗布と同時に、又は塗布の直後に、異方性導電材料層3Aに光を容易に照射できる。 By using the apparatus shown in FIG. 3 (a) or FIG. 4 (a), the anisotropic conductive material is applied simultaneously or immediately after the application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2. The material layer 3A can be easily irradiated with light.
 本発明に係る接続構造体の製造方法で用いられる異方性導電材料は、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有するので、第1の接続対象部材2の上面2aに塗布された異方性導電材料又は該異方性導電材料に含まれている導電性粒子の流動を充分に抑制することができる。 The anisotropic conductive material used in the method for manufacturing a connection structure according to the present invention contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles. The flow of the anisotropic conductive material applied to the upper surface 2a of the member 2 or the conductive particles contained in the anisotropic conductive material can be sufficiently suppressed.
 本発明に係る異方性導電材料及び接続構造体の製造方法は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、又は半導体チップとガラス基板との接続(COG(Chip on Glass))等に使用できる。なかでも、本発明に係る異方性導電材料及び接続構造体の製造方法は、COG用途に好適である。本発明に係る異方性導電材料及び接続構造体の製造方法は、半導体チップとガラス基板との接続に好適に用いられる。ただし、本発明に係る異方性導電材料及び接続構造体の製造方法の用途は、上述した用途に限定されない。 The anisotropic conductive material and the connection structure manufacturing method according to the present invention include, for example, connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), connection between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)) or a connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)) or the like. Especially, the manufacturing method of the anisotropic electrically-conductive material and connection structure which concern on this invention is suitable for a COG use. The manufacturing method of the anisotropic conductive material and the connection structure according to the present invention is suitably used for the connection between the semiconductor chip and the glass substrate. However, the use of the anisotropic conductive material and the connection structure manufacturing method according to the present invention is not limited to the above-described use.
 COG用途では、特に、半導体チップとガラス基板との電極間を、異方性導電材料の導電性粒子により確実に接続することが困難なことが多い。例えば、COG用途の場合には、半導体チップの隣り合う電極間、及びガラス基板の隣り合う電極間の間隔が10~20μm程度であることがあり、微細な配線が形成されていることが多い。微細な配線が形成されていても、本発明に係る異方性導電材料及び接続構造体の製造方法により、半導体チップとガラス基板との電極間を高精度に接続することができ、導通信頼性を高めることができる。 In COG applications, in particular, it is often difficult to reliably connect the electrodes of the semiconductor chip and the glass substrate with conductive particles of an anisotropic conductive material. For example, in the case of COG use, the distance between adjacent electrodes of a semiconductor chip and the distance between adjacent electrodes of a glass substrate may be about 10 to 20 μm, and fine wiring is often formed. Even if fine wiring is formed, the anisotropic conductive material and the manufacturing method of the connection structure according to the present invention can connect the electrodes of the semiconductor chip and the glass substrate with high accuracy, and the conduction reliability. Can be increased.
 さらに、COG用途の場合には、異方性導電材料中の導電性粒子の含有量を多くしなければならないことがある。従って、圧着の際に、導通接点が多くなって導電性粒子の反発力が大きくなり、圧着時の圧力を高くする必要があることがある。このため、電極又は導電性粒子がつぶれて、導通信頼性が低くなりやすい。しかしながら、本発明に係る異方性導電材料及び接続構造体の製造方法の使用により、導通信頼性を充分に高めることができる。 Furthermore, in the case of COG use, it may be necessary to increase the content of conductive particles in the anisotropic conductive material. Therefore, during crimping, there are cases where the number of conductive contacts increases and the repulsive force of the conductive particles increases, and it is necessary to increase the pressure during crimping. For this reason, an electrode or electroconductive particle is crushed and conduction reliability tends to be lowered. However, the use of the anisotropic conductive material and the manufacturing method of the connection structure according to the present invention can sufficiently improve the conduction reliability.
 以下、本発明について、実施例および比較例を挙げて具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)エピスルフィド化合物含有混合物の調製
 攪拌機、冷却機及び温度計を備えた2Lの容器内に、エタノール250mLと、純水250mLと、チオシアン酸カリウム20gとを加え、チオシアン酸カリウムを溶解させ、第1の溶液を調製した。その後、容器内の温度を20~25℃の範囲内に保持した。次に、20~25℃に保持された容器内の第1の溶液を攪拌しながら、該第1の溶液中に、レゾルシノールジグリシジルエーテル160gを5mL/分の速度で滴下した。滴下後、30分間さらに攪拌し、エポキシ化合物含有混合液を得た。
Example 1
(1) Preparation of episulfide compound-containing mixture In a 2 L vessel equipped with a stirrer, a cooler and a thermometer, ethanol 250 mL, pure water 250 mL, and potassium thiocyanate 20 g were added to dissolve potassium thiocyanate, One solution was prepared. Thereafter, the temperature in the container was kept within the range of 20 to 25 ° C. Next, 160 g of resorcinol diglycidyl ether was added dropwise at a rate of 5 mL / min to the first solution while stirring the first solution in a container maintained at 20 to 25 ° C. After dropping, the mixture was further stirred for 30 minutes to obtain an epoxy compound-containing mixed solution.
 次に、純水100mLと、エタノール100mLとを含む溶液に、チオシアン酸カリウム20gを溶解させた第2の溶液を用意した。得られたエポキシ基含有混合液に、得られた第2の溶液を5mL/分の速度で添加した後、30分攪拌した。攪拌後、純水100mLとエタノール100mLとを含む溶液に、チオシアン酸カリウム20gを溶解させた第2の溶液をさらに用意し、該第2の溶液を5mL/分の速度で容器内にさらに添加し、30分間攪拌した。その後、容器内の温度を10℃に冷却し、2時間攪拌し、反応させた。 Next, a second solution in which 20 g of potassium thiocyanate was dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol was prepared. The obtained second solution was added to the obtained epoxy group-containing mixed solution at a rate of 5 mL / min, and then stirred for 30 minutes. After stirring, a second solution in which 20 g of potassium thiocyanate is dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol is further prepared, and the second solution is further added to the container at a rate of 5 mL / min. And stirred for 30 minutes. Thereafter, the temperature in the container was cooled to 10 ° C., and stirred for 2 hours to be reacted.
 次に、容器内に飽和食塩水100mLを加え、10分間攪拌した。攪拌後、容器内にトルエン300mLをさらに加え、10分間攪拌した。その後、容器内の溶液を分液ロートに移し、2時間静置し、溶液を分離させた。分液ロート内の下方の溶液を排出し、上澄み液を取り出した。取り出された上澄み液にトルエン100mLを加え、攪拌し、2時間静置した。更に、トルエン100mLをさらに加え、攪拌し、2時間静置した。 Next, 100 mL of saturated saline was added to the container and stirred for 10 minutes. After stirring, 300 mL of toluene was further added to the container and stirred for 10 minutes. Thereafter, the solution in the container was transferred to a separating funnel and allowed to stand for 2 hours to separate the solution. The lower solution in the separatory funnel was discharged, and the supernatant was taken out. 100 mL of toluene was added to the removed supernatant, stirred, and allowed to stand for 2 hours. Further, 100 mL of toluene was further added, stirred and allowed to stand for 2 hours.
 次に、トルエンが加えられた上澄み液に、硫酸マグネシウム50gを加え、5分間攪拌した。攪拌後、ろ紙により硫酸マグネシウムを取り除いて、溶液を分離した。真空乾燥機を用いて、分離された溶液を80℃で減圧乾燥することにより、残存している溶剤を除去した。このようにして、エピスルフィド化合物含有混合物を得た。 Next, 50 g of magnesium sulfate was added to the supernatant liquid to which toluene was added and stirred for 5 minutes. After stirring, magnesium sulfate was removed with a filter paper to separate the solution. The remaining solvent was removed by drying the separated solution under reduced pressure at 80 ° C. using a vacuum dryer. In this way, an episulfide compound-containing mixture was obtained.
 クロロホルムを溶媒として、得られたエピスルフィド化合物含有混合物のH-NMRの測定を行った。この結果、エポキシ基の存在を示す6.5~7.5ppmの領域のシグナルが減少し、エピスルフィド基の存在を示す2.0~3.0ppmの領域にシグナルが現れた。これにより、レゾルシノールジグリシジルエーテルの一部のエポキシ基がエピスルフィド基に変換されていることを確認した。また、H-NMRの測定結果の積分値より、エピスルフィド化合物含有混合物は、レゾルシノールジグリシジルエーテル70重量%と、上記式(1B)で表される構造を有するエピスルフィド化合物30重量%とを含有することを確認した。 The resulting episulfide compound-containing mixture was subjected to 1 H-NMR measurement using chloroform as a solvent. As a result, the signal in the 6.5 to 7.5 ppm region indicating the presence of the epoxy group decreased, and the signal appeared in the 2.0 to 3.0 ppm region indicating the presence of the episulfide group. This confirmed that some epoxy groups of resorcinol diglycidyl ether were converted into episulfide groups. From the integral value of the measurement result of 1 H-NMR, the episulfide compound-containing mixture contains 70% by weight of resorcinol diglycidyl ether and 30% by weight of the episulfide compound having the structure represented by the above formula (1B). It was confirmed.
 (2)異方性導電ペーストの調製
 得られたエピスルフィド化合物含有混合物30重量部に、熱硬化剤としてのアミンアダクト(味の素ファインテクノ社製「PN-23J」)5重量部と、光硬化性化合物としてのエポキシアクリレート(ダイセル・サイテック社製「EBECRYL3702」)5重量部と、光重合開始剤としてのアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)0.1重量部と、硬化促進剤としての2-エチル-4-メチルイミダゾール1重量部と、フィラーとしての平均粒子径0.25μmのシリカ20重量部及び平均粒子径0.5μmのアルミナ20重量部とを配合し、さらに平均粒子径3μmの導電性粒子を配合物100重量%中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、配合物を得た。
(2) Preparation of anisotropic conductive paste 30 parts by weight of the resulting episulfide compound-containing mixture, 5 parts by weight of an amine adduct (“PN-23J” manufactured by Ajinomoto Fine Techno Co.) as a thermosetting agent, and a photocurable compound 5 parts by weight of epoxy acrylate ("EBECRYL 3702" manufactured by Daicel-Cytec), 0.1 parts by weight of acylphosphine oxide compound ("DAROCUR TPO" manufactured by Ciba Japan) as a photopolymerization initiator, and curing acceleration 1 part by weight of 2-ethyl-4-methylimidazole as an agent, 20 parts by weight of silica having an average particle diameter of 0.25 μm and 20 parts by weight of alumina having an average particle diameter of 0.5 μm are blended, and average particles Conductive particles having a diameter of 3 μm were added so that the content in 100% by weight of the composition was 10% by weight. , By stirring for 5 minutes at 2000rpm using a planetary mixing machine to obtain a formulation.
 なお、用いた上記導電性粒子は、ジビニルベンゼン樹脂粒子の表面にニッケルめっき層が形成されており、かつ該ニッケルめっき層の表面に金めっき層が形成されている金属層を有する導電性粒子である。 The conductive particles used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinylbenzene resin particles and a gold plating layer is formed on the surface of the nickel plating layer. is there.
 得られた配合物を、ナイロン製ろ紙(孔径10μm)を用いてろ過することにより、導電性粒子の含有量が10重量%である異方性導電ペーストを得た。 The obtained composition was filtered using a nylon filter paper (pore diameter: 10 μm) to obtain an anisotropic conductive paste having a conductive particle content of 10% by weight.
 (3)接続構造体の作製
 L/Sが30μm/30μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmの銅電極パターンが下面に形成された半導体チップを用意した。
(3) Production of Connection Structure A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層に紫外線照射ランプを用いて紫外線を照射し、光重合によって異方性導電ペースト層を半硬化させ、Bステージ化した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the anisotropic conductive paste layer was irradiated with ultraviolet rays using an ultraviolet irradiation lamp, and the anisotropic conductive paste layer was semi-cured by photopolymerization to form a B stage. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and the pressure of 3 MPa is applied to apply the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
 (実施例2)
 異方性導電ペーストの調製の際に、導電性粒子を上記配合物100重量%中での含有量を5重量%となるように用いたこと以外は実施例1と同様にして、導電性粒子の含有量が5重量%である異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
(Example 2)
In the preparation of the anisotropic conductive paste, the conductive particles were used in the same manner as in Example 1 except that the conductive particles were used so that the content in 100% by weight of the blend was 5% by weight. An anisotropic conductive paste having a content of 5% by weight was obtained. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (実施例3)
 異方性導電ペーストの調製の際に、導電性粒子を上記配合物100重量%中での含有量を15重量%となるように用いたこと以外は実施例1と同様にして、導電性粒子の含有量が15重量%である異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
(Example 3)
In the preparation of the anisotropic conductive paste, the conductive particles were used in the same manner as in Example 1 except that the conductive particles were used so that the content in 100% by weight of the blend was 15% by weight. An anisotropic conductive paste having a content of 15% by weight was obtained. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (実施例4)
 異方性導電ペーストの調製の際に、導電性粒子を上記配合物100重量%中での含有量を1重量%となるように用いたこと以外は実施例1と同様にして、導電性粒子の含有量が1重量%である異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
Example 4
In the preparation of the anisotropic conductive paste, the conductive particles were used in the same manner as in Example 1 except that the conductive particles were used so that the content in 100% by weight of the composition was 1% by weight. An anisotropic conductive paste having a content of 1 wt% was obtained. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (比較例1)
 異方性導電ペーストの調製の際に、光硬化性化合物としてのエポキシアクリレートと、光重合開始剤としてのアシルホスフィンオキサイド系化合物とを用いなかったこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペースト100重量%中、導電性粒子の含有量は10重量%であった。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
(Comparative Example 1)
Anisotropic conductive paste was prepared in the same manner as in Example 1 except that epoxy acrylate as a photocurable compound and acylphosphine oxide compound as a photopolymerization initiator were not used. Conductive paste was obtained. In 100% by weight of the obtained anisotropic conductive paste, the content of conductive particles was 10% by weight. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (比較例2)
 異方性導電ペーストの調製の際に、導電性粒子を上記配合物100重量%中での含有量を20重量%となるように用いたこと以外は実施例1と同様にして、導電性粒子の含有量が20重量%である異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
(Comparative Example 2)
In the preparation of the anisotropic conductive paste, the conductive particles were used in the same manner as in Example 1 except that the conductive particles were used so that the content in 100% by weight of the blend was 20% by weight. An anisotropic conductive paste having a content of 20 wt% was obtained. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (比較例3)
 異方性導電ペーストの調製の際に、導電性粒子を上記配合物100重量%中での含有量を0.1重量%となるように用いた以外は実施例1と同様にして、導電性粒子の含有量が0.1重量%である異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
(Comparative Example 3)
In the preparation of the anisotropic conductive paste, the conductive particles were used in the same manner as in Example 1 except that the conductive particles were used so that the content in 100% by weight of the blend was 0.1% by weight. An anisotropic conductive paste having a particle content of 0.1% by weight was obtained. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (実施例1~4及び比較例1~3の評価)
 (1)粘度
 E型粘度計(東機産業社製)を用いて、25℃及び2.5rpmの条件で、得られた異方性導電ペースト(塗布前の異方性導電ペーストの粘度)の粘度を測定した。
(Evaluation of Examples 1 to 4 and Comparative Examples 1 to 3)
(1) Viscosity Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.) under the conditions of 25 ° C. and 2.5 rpm, the obtained anisotropic conductive paste (viscosity of the anisotropic conductive paste before application) The viscosity was measured.
 (2)リークの有無
 得られた接続構造体を用いて、隣り合う電極20個においてリークが生じているか否かを、テスターで測定した。
(2) Presence or absence of leakage Using the obtained connection structure, whether or not leakage occurred in 20 adjacent electrodes was measured with a tester.
 (3)ボイドの有無
 得られた接続構造体において、異方性導電ペースト層により形成された硬化物層にボイドが生じているか否かを、透明ガラス基板の下面側から目視により観察した。
(3) Presence / absence of voids In the obtained connection structure, whether or not voids were generated in the cured product layer formed of the anisotropic conductive paste layer was visually observed from the lower surface side of the transparent glass substrate.
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 上記表1に示すように、実施例1~4の異方性導電ペーストでは、リークが無く、ボイドも見られなかった。 As shown in Table 1 above, the anisotropic conductive pastes of Examples 1 to 4 had no leaks and no voids.
 比較例1の異方性導電ペーストでは、紫外線の照射時に光重合により半硬化しなかったため、加圧及び加熱時に異方性導電ペーストが半導体チップの外周面よりも側方に多く流れた。このため、ガラス基板と半導体チップとの間における異方性導電ペーストの充填が不十分であり、ボイドが見られた。 In the anisotropic conductive paste of Comparative Example 1, since it was not semi-cured by photopolymerization when irradiated with ultraviolet rays, the anisotropic conductive paste flowed more to the side than the outer peripheral surface of the semiconductor chip during pressurization and heating. For this reason, the anisotropic conductive paste was insufficiently filled between the glass substrate and the semiconductor chip, and voids were observed.
 比較例2では、導電性粒子の含有量が多すぎたため、接続されてはならい隣り合う電極間が複数の導電性粒子を介して接続され、リークが発生したと考えられる。 In Comparative Example 2, since the content of conductive particles was too much, it was considered that adjacent electrodes that should not be connected were connected via a plurality of conductive particles, and a leak occurred.
 比較例3の異方性導電ペーストでは、リーグが無く、ボイドも見られなかった。しかし、導電性粒子の含有量が少なすぎたため、電極間に導電性粒子が配置されていない箇所が多くみられた。 In the anisotropic conductive paste of Comparative Example 3, there was no league and no void was seen. However, since the content of the conductive particles was too small, there were many places where the conductive particles were not arranged between the electrodes.
 (実施例5)
 実施例1で得られた異方性導電材料を用意した。
(Example 5)
The anisotropic conductive material obtained in Example 1 was prepared.
 L/Sが30μm/30μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmの銅電極パターンが下面に形成された半導体チップを用意した。 A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 また、図3(a)に示すようなディスペンサーと、該ディスペンサーに接続された光照射装置としての紫外線照射ランプとを備える複合装置を用意した。 Further, a composite apparatus including a dispenser as shown in FIG. 3A and an ultraviolet irradiation lamp as a light irradiation apparatus connected to the dispenser was prepared.
 複合装置を移動させながら、上記透明ガラス基板の上面に、ディスペンサーのシリンジから、得られた異方性導電ペーストを厚さ30μmとなるように塗布し、異方性導電ペースト層を形成した。さらに、複合装置を移動させて、異方性導電ペーストを塗布しながら、異方性導電ペースト層に紫外線照射ランプを用いて、420nmの紫外線を光照射強度が50mW/cmとなるように照射し、光重合によって異方性導電ペースト層をBステージ化した。塗布してから、すなわち塗布された異方性導電ペーストが上記透明ガラス基板に接したときから、異方性導電ペースト層に光が照射されるまでの時間Tは、0.5秒であった。 While moving the composite device, the anisotropic conductive paste obtained was applied from the syringe of the dispenser to the upper surface of the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Further, while moving the composite device and applying the anisotropic conductive paste, using the ultraviolet irradiation lamp on the anisotropic conductive paste layer, the ultraviolet irradiation of 420 nm is irradiated so that the light irradiation intensity becomes 50 mW / cm 2. Then, the anisotropic conductive paste layer was B-staged by photopolymerization. The time T from the time when the anisotropic conductive paste was applied to the transparent glass substrate to the time when the anisotropic conductive paste layer was irradiated with light was 0.5 seconds. .
 次に、Bステージ化された異方性導電ペースト層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて、Bステージ化された異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 Next, the semiconductor chip was stacked on the upper surface of the B-staged anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 3 MPa is applied to make the B-staged difference. The isotropic conductive paste layer was completely cured at 185 ° C. to obtain a connection structure.
 (実施例6)
 異方性導電ペーストの調製の際に、エポキシアクリレートをウレタンアクリレート(ダイセル・サイテック社製「EBECRYL8804」)に変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。
(Example 6)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the epoxy acrylate was changed to urethane acrylate ("EBECRYL8804" manufactured by Daicel-Cytec Co., Ltd.) during the preparation of the anisotropic conductive paste.
 得られた異方性導電ペーストを用いたこと以外は実施例5と同様にして接続構造体を得た。 A connection structure was obtained in the same manner as in Example 5 except that the obtained anisotropic conductive paste was used.
 (実施例7)
 実施例1で得られた異方性導電材料を用意した。
(Example 7)
The anisotropic conductive material obtained in Example 1 was prepared.
 図3(a)に示す複合装置にかえて、図4(a)に示すディスペンサーと、該ディスペンサーに接続されていない光照射装置としての紫外線照射ランプとを用いて、異方性導電ペーストの塗布が終了した直後に光を照射したこと以外は実施例5と同様にして、接続構造体を得た。塗布してからに光が照射されるまでの時間Tは、2秒であった。 An anisotropic conductive paste is applied using a dispenser shown in FIG. 4A and an ultraviolet irradiation lamp as a light irradiation device not connected to the dispenser, instead of the composite device shown in FIG. A connection structure was obtained in the same manner as in Example 5 except that the light was irradiated immediately after the completion of. The time T from application to irradiation with light was 2 seconds.
 (比較例4)
 比較例1で得られた異方性導電材料を用意した。
(Comparative Example 4)
The anisotropic conductive material obtained in Comparative Example 1 was prepared.
 L/Sが30μm/30μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmの銅電極パターンが下面に形成された半導体チップを用意した。 A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 上記透明ガラス基板の上面に、ディスペンサーのシリンジから、得られた異方性導電ペーストを厚さ30μmとなるように塗布し、異方性導電ペースト層を形成した。塗布の際及び塗布の後に光を照射しなかった。 The obtained anisotropic conductive paste was applied on the upper surface of the transparent glass substrate from a syringe of a dispenser so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. No light was applied during and after application.
 次に、異方性導電ペースト層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 Next, the semiconductor chip was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
 (比較例5)
 異方性導電ペーストの作製の際に、エポキシアクリレートをナフタレン型エポキシ樹脂(結晶性樹脂、DIC社製「HP-4032」)に変更したこと、並びに光重合開始剤としてのアシルホスフィンオキサイド系化合物を用いなかったこと以外は実施例1と同様にして、異方性導電ペーストを得た。
(Comparative Example 5)
In the preparation of the anisotropic conductive paste, the epoxy acrylate was changed to a naphthalene type epoxy resin (crystalline resin, “HP-4032” manufactured by DIC), and an acylphosphine oxide compound as a photopolymerization initiator was used. An anisotropic conductive paste was obtained in the same manner as Example 1 except that it was not used.
 L/Sが30μm/30μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmの銅電極パターンが下面に形成された半導体チップを用意した。 A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 上記透明ガラス基板の上面に、ディスペンサーのシリンジから、得られた異方性導電ペーストを厚さ30μmとなるように塗布し、異方性導電ペースト層を形成した。塗布の際及び塗布の後に光を照射せず、かつ熱重合せず、異方性導電材料層をBステージ化しなかった。 The obtained anisotropic conductive paste was applied on the upper surface of the transparent glass substrate from a syringe of a dispenser so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. During application and after application, light was not irradiated, thermal polymerization was not performed, and the anisotropic conductive material layer was not B-staged.
 次に、Bステージ化していない異方性導電ペースト層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 Next, the semiconductor chip was laminated on the upper surface of the anisotropic conductive paste layer that was not B-staged so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
 (実施例5~7及び比較例4~5の評価)
 実施例1~4及び比較例1~3と同様に、上記(1)粘度、上記(2)リークの有無及び上記(3)ボイドの有無について評価を実施した。また、下記の(4)Bステージ化された異方性導電ペースト層の粘度についても評価を実施した。
(Evaluation of Examples 5 to 7 and Comparative Examples 4 to 5)
In the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, the above (1) viscosity, (2) presence or absence of leakage, and (3) presence or absence of voids were evaluated. In addition, the viscosity of the following (4) B-staged anisotropic conductive paste layer was also evaluated.
 (4)Bステージ化された異方性導電ペースト層の粘度
 光重合によって異方性導電ペースト層をBステージ化させた後であって、Bステージ化された異方性導電ペースト層の上面に半導体チップを積層する直前のBステージ化された異方性導電ペースト層の粘度を、レオメーター(Anton Paar社製)を用いて、25℃及び2.5rpmの条件で測定した。
(4) Viscosity of the B-staged anisotropic conductive paste layer After the anisotropic conductive paste layer is B-staged by photopolymerization, on the upper surface of the B-staged anisotropic conductive paste layer The viscosity of the B-staged anisotropic conductive paste layer immediately before stacking the semiconductor chips was measured using a rheometer (manufactured by Anton Paar) at 25 ° C. and 2.5 rpm.
 結果を下記の表2に示す。 The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 (実施例8)
 レゾルシノール型エポキシ樹脂(結晶性樹脂、ナガセケムテックス社製「EX-201」)16重量部に、ナフタレン型エポキシ樹脂(結晶性樹脂、DIC社製「HP-4032」)14重量部と、熱硬化剤としてのアミンアダクト(味の素ファインテクノ社製「PN-23J」)5重量部と、光硬化性樹脂としてのエポキシアクリレート(ダイセル・サイテック社製「EBECRYL3702」)5重量部と、光硬化開始剤としてのアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)0.1重量部と、硬化促進剤としての2-エチル-4-メチルイミダゾール1重量部と、フィラーとしての平均粒子径0.25μmのシリカ30重量部とを配合し、さらに平均粒子径3μmの導電性粒子を配合物中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、配合物を得た。
(Example 8)
Resorcinol type epoxy resin (crystalline resin, “EX-201” manufactured by Nagase ChemteX Corporation), 16 parts by weight, naphthalene type epoxy resin (crystalline resin, “HP-4032” manufactured by DIC), 14 parts by weight, and thermosetting 5 parts by weight of an amine adduct (“PN-23J” manufactured by Ajinomoto Fine Techno Co.) as an agent, 5 parts by weight of an epoxy acrylate (“EBECRYL 3702” manufactured by Daicel-Cytech) as a photocurable resin, 0.1 part by weight of an acylphosphine oxide compound (“DAROCUR TPO” manufactured by Ciba Japan), 1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator, and an average particle size of 0. 30 parts by weight of 25 μm silica, and further conductive particles having an average particle diameter of 3 μm in the blend After the chromatic amount is added so that the 10 wt%, by stirring for 5 minutes at 2000rpm using a planetary mixing machine to obtain a formulation.
 なお、用いた上記導電性粒子は、ジビニルベンゼン樹脂粒子の表面にニッケルめっき層が形成されており、かつ該ニッケルめっき層の表面に金めっき層が形成されている金属層を有する導電性粒子である。 The conductive particles used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinylbenzene resin particles and a gold plating layer is formed on the surface of the nickel plating layer. is there.
 得られた配合物を、ナイロン製ろ紙(孔径10μm)を用いてろ過することにより、異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。 The obtained composition was filtered using nylon filter paper (pore diameter: 10 μm) to obtain an anisotropic conductive paste. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (実施例9)
 レゾルシノール型エポキシ樹脂の添加量を16重量部から25重量部に変更し、かつナフタレン型エポキシ樹脂14重量部をビスフェノールA型エポキシ樹脂(JER社製「エピコート1001」)5重量部に変更したこと以外は実施例8と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。
Example 9
Other than changing the addition amount of resorcinol type epoxy resin from 16 parts by weight to 25 parts by weight and changing 14 parts by weight of naphthalene type epoxy resin to 5 parts by weight of bisphenol A type epoxy resin (“Epicoat 1001” manufactured by JER) Obtained an anisotropic conductive paste in the same manner as in Example 8. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (比較例6)
 ビスフェノールA型エポキシ樹脂(JER社製「jER1001」)30重量部に、ポリグリシジルアミン(東都化成社製「YH-434」)30重量部と、熱硬化剤としてのジシアンジアミド(JER社製「DICY-7」)10重量部と、硬化促進剤として2-エチル-4-メチルイミダゾール1重量部と、フィラーとしてのシリカ(日本アエロジル工業社製「アエロジルRY200」)5重量部とを配合し、さらに実施例8と同じ導電性粒子を配合物中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、配合物を得た。
(Comparative Example 6)
30 parts by weight of a bisphenol A type epoxy resin (“JER1001” manufactured by JER), 30 parts by weight of polyglycidylamine (“YH-434” manufactured by Tohto Kasei Co., Ltd.), and dicyandiamide (“DICY-” manufactured by JER) 7 ") 10 parts by weight, 1 part by weight of 2-ethyl-4-methylimidazole as a curing accelerator and 5 parts by weight of silica (" Aerosil RY200 "manufactured by Nippon Aerosil Kogyo Co., Ltd.) as a filler After adding the same electroconductive particle as Example 8 so that content in a formulation might be 10 weight%, the formulation was obtained by stirring for 5 minutes at 2000 rpm using a planetary stirrer.
 得られた配合物を、ナイロン製ろ紙(孔径10μm)を用いてろ過することにより、異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして、接続構造体を得た。 The obtained composition was filtered using nylon filter paper (pore diameter: 10 μm) to obtain an anisotropic conductive paste. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (実施例8~9及び比較例6の評価)
 実施例1~4及び比較例1~3と同様に、上記(2)リークの有無及び上記(3)ボイドの有無について評価を実施した。また、下記の(1A)粘度、(5)塗布幅のばらつき及び(6)硬化物層の厚みについても評価を実施した。
(Evaluation of Examples 8 to 9 and Comparative Example 6)
In the same manner as in Examples 1 to 4 and Comparative Examples 1 to 3, the above (2) presence / absence of leakage and (3) presence / absence of voids were evaluated. In addition, the following (1A) viscosity, (5) coating width variation, and (6) cured product layer thickness were also evaluated.
 (1A)粘度
 E型粘度計(東機産業社製)を用いて、得られた異方性導電ペーストの25℃及び2.5rpmでの粘度η1と、25℃及び5rpmでの粘度η2とを測定した。
(1A) Viscosity Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.), the viscosity η1 at 25 ° C. and 2.5 rpm of the obtained anisotropic conductive paste, and the viscosity η2 at 25 ° C. and 5 rpm are obtained. It was measured.
 (5)塗布幅のばらつき
 得られた異方性導電ペーストをノズル径1.1mmのシリンジに充填し、ディスペンサーを用いて、圧力300Pa、塗布厚み30μm、移動スピード10mm/s、塗布ライン距離20mm及び塗布幅1mmの条件で、異方性導電ペーストをガラス基板上に塗布した。
(5) Variation in coating width The obtained anisotropic conductive paste was filled into a syringe having a nozzle diameter of 1.1 mm, and using a dispenser, the pressure was 300 Pa, the coating thickness was 30 μm, the moving speed was 10 mm / s, the coating line distance was 20 mm, and An anisotropic conductive paste was applied on a glass substrate under the condition of an application width of 1 mm.
 異方性導電ペーストの塗布開始地点から2mmの距離、5mmの距離、10mmの距離の各地点での塗布幅を、測長機能付きのマイクロスコープで測定した。 The coating width at each point of 2 mm, 5 mm, and 10 mm from the application start point of the anisotropic conductive paste was measured with a microscope with a length measuring function.
 (6)硬化物層の高さ(厚み)
 上記(5)の評価と同様にして、異方性導電ペーストをガラス基板上に塗布した。塗布の直後に紫外線を照射し、異方性導電ペーストの光硬化を開始させた。さらに、紫外線の照射から10秒後に、異方性導電ペーストが塗布されたガラス基板を150℃のオーブン内に5分間入れ、異方性導電ペーストを熱硬化させた。異方性導電ペーストの硬化により形成された硬化物層の高さを、マイクロメーターで測定した。
(6) Height (thickness) of cured product layer
An anisotropic conductive paste was applied on a glass substrate in the same manner as in the evaluation of (5) above. Immediately after the application, ultraviolet rays were irradiated to initiate photocuring of the anisotropic conductive paste. Furthermore, 10 seconds after the irradiation of the ultraviolet rays, the glass substrate coated with the anisotropic conductive paste was placed in an oven at 150 ° C. for 5 minutes to thermally cure the anisotropic conductive paste. The height of the cured product layer formed by curing the anisotropic conductive paste was measured with a micrometer.
 結果を下記の表3に示す。 The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 実施例8~9の異方性導電ペーストは、安定的に塗布でき、塗布幅はほぼ一定であった。さらに、実施例8の異方性導電ペーストでは、塗布時に異方性導電ペーストの流れが抑制されたため、得られた硬化物層の厚みが30μmであった。 The anisotropic conductive pastes of Examples 8 to 9 could be applied stably and the application width was almost constant. Furthermore, in the anisotropic conductive paste of Example 8, since the flow of the anisotropic conductive paste was suppressed at the time of application, the thickness of the obtained cured product layer was 30 μm.
 比較例6の異方性導電ペーストでは、塗布圧力が一定であるにもかかわらず、塗布量が変化し、塗布幅にばらつきが生じた。 In the anisotropic conductive paste of Comparative Example 6, the coating amount varied and the coating width varied even though the coating pressure was constant.
 1…接続構造体
 2…第1の接続対象部材
 2a…上面
 2b…電極
 3…硬化物層(接続部)
 3a…上面
 3A…異方性導電材料層
 3B…Bステージ化された異方性導電材料層
 4…第2の接続対象部材
 4a…下面
 4b…電極
 5…導電性粒子
 11…複合装置
 12…ディスペンサー
 12a…シリンジ
 12b…把持部
 13…光照射装置
 13a…光照射装置本体
 13b…光照射部
 21…光照射装置
 21a…光照射装置本体
 21b…光照射部
 31…台
DESCRIPTION OF SYMBOLS 1 ... Connection structure 2 ... 1st connection object member 2a ... Upper surface 2b ... Electrode 3 ... Hardened | cured material layer (connection part)
3a ... Upper surface 3A ... Anisotropic conductive material layer 3B ... B-staged anisotropic conductive material layer 4 ... Second connection target member 4a ... Lower surface 4b ... Electrode 5 ... Conductive particles 11 ... Composite device 12 ... Dispenser DESCRIPTION OF SYMBOLS 12a ... Syringe 12b ... Grasp part 13 ... Light irradiation apparatus 13a ... Light irradiation apparatus main body 13b ... Light irradiation part 21 ... Light irradiation apparatus 21a ... Light irradiation apparatus main body 21b ... Light irradiation part 31 ... Stand

Claims (10)

  1.  硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有し、
     前記導電性粒子の含有量が1~19重量%の範囲内である、異方性導電材料。
    Containing a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles,
    An anisotropic conductive material having a content of the conductive particles in the range of 1 to 19% by weight.
  2.  前記硬化性化合物が、エピスルフィド化合物を含む、請求項1に記載の異方性導電材料。 The anisotropic conductive material according to claim 1, wherein the curable compound contains an episulfide compound.
  3.  前記硬化性化合物が、エポキシ基及びチイラン基の内の少なくとも一種の基と、(メタ)アクリロイル基とを有する硬化性化合物を含む、請求項1に記載の異方性導電材料。 The anisotropic conductive material according to claim 1, wherein the curable compound includes a curable compound having at least one group selected from an epoxy group and a thiirane group and a (meth) acryloyl group.
  4.  前記硬化性化合物が、エポキシ基及びチイラン基の内の少なくとも一種の基と、(メタ)アクリロイル基とを有する硬化性化合物を含む、請求項2に記載の異方性導電材料。 The anisotropic conductive material according to claim 2, wherein the curable compound includes a curable compound having at least one group out of an epoxy group and a thiirane group and a (meth) acryloyl group.
  5.  25℃及び2.5rpmでの粘度が、20~200Pa・sの範囲内である、請求項1~4のいずれか1項に記載の異方性導電材料。 The anisotropic conductive material according to any one of claims 1 to 4, wherein the viscosity at 25 ° C and 2.5 rpm is in the range of 20 to 200 Pa · s.
  6.  光の照射により硬化が進行されて、Bステージ化した後の粘度が2000~3500Pa・sの範囲内である、請求項1~4のいずれか1項に記載の異方性導電材料。 The anisotropic conductive material according to any one of claims 1 to 4, wherein the viscosity after being cured by light irradiation and having a B-stage is in a range of 2000 to 3500 Pa · s.
  7.  25℃及び2.5rpmでの粘度をη1とし、かつ25℃及び5rpmでの粘度をη2としたときに、前記η2が20Pa・s以上200Pa・s以下であり、かつ前記η1の前記η2に対する比(η1/η2)が0.9以上1.1以下である、請求項1~4のいずれか1項に記載の異方性導電材料。 When the viscosity at 25 ° C. and 2.5 rpm is η1, and the viscosity at 25 ° C. and 5 rpm is η2, the η2 is 20 Pa · s or more and 200 Pa · s or less, and the ratio of the η1 to the η2 The anisotropic conductive material according to any one of claims 1 to 4, wherein (η1 / η2) is 0.9 or more and 1.1 or less.
  8.  前記硬化性化合物が、結晶性化合物を含む、請求項7に記載の異方性導電材料。 The anisotropic conductive material according to claim 7, wherein the curable compound includes a crystalline compound.
  9.  第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を電気的に接続している接続部とを備え、
     前記接続部が、請求項1~4のいずれか1項に記載の異方性導電材料を硬化させることにより形成されている、接続構造体。
    A first connection target member, a second connection target member, and a connection part that electrically connects the first and second connection target members;
    A connection structure in which the connection portion is formed by curing the anisotropic conductive material according to any one of claims 1 to 4.
  10.  第1の接続対象部材の上面に異方性導電材料を塗布し、異方性導電材料層を形成する工程と、
     前記異方性導電材料層に光を照射することにより、前記異方性導電材料層の硬化を進行させて、粘度が2000~3500Pa・sの範囲内となるように、前記異方性導電材料層をBステージ化する工程と、
     Bステージ化された異方性導電材料層の上面に、第2の接続対象部材をさらに積層する工程とを備え、
     前記異方性導電材料として、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有し、前記導電性粒子の含有量が1~19重量%の範囲内である異方性導電材料を用いる、接続構造体の製造方法。
    Applying an anisotropic conductive material to the upper surface of the first connection target member to form an anisotropic conductive material layer;
    By irradiating the anisotropic conductive material layer with light, the anisotropic conductive material layer is cured so that the viscosity is in the range of 2000 to 3500 Pa · s. B-stage the layer;
    A step of further laminating a second connection object member on the upper surface of the B-staged anisotropic conductive material layer,
    The anisotropic conductive material contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles, and the content of the conductive particles is in the range of 1 to 19% by weight. A method for manufacturing a connection structure using an anisotropic conductive material.
PCT/JP2010/064077 2009-08-26 2010-08-20 Anisotropic conductive material, connection structure, and connection structure producing method WO2011024719A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080037248.5A CN102484326B (en) 2009-08-26 2010-08-20 Anisotropic conductive material, connection structure, and connection structure producing method
JP2011528764A JP5602743B2 (en) 2009-08-26 2010-08-20 Anisotropic conductive material, connection structure, and manufacturing method of connection structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-195431 2009-08-26
JP2009-195432 2009-08-26
JP2009195430 2009-08-26
JP2009-195430 2009-08-26
JP2009195431 2009-08-26
JP2009195432 2009-08-26

Publications (1)

Publication Number Publication Date
WO2011024719A1 true WO2011024719A1 (en) 2011-03-03

Family

ID=43627825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064077 WO2011024719A1 (en) 2009-08-26 2010-08-20 Anisotropic conductive material, connection structure, and connection structure producing method

Country Status (5)

Country Link
JP (1) JP5602743B2 (en)
KR (1) KR101538834B1 (en)
CN (1) CN102484326B (en)
TW (1) TWI443175B (en)
WO (1) WO2011024719A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186161A (en) * 2011-02-17 2012-09-27 Sekisui Chem Co Ltd Anisotropic conductive material, connection structure, and method for manufacturing connection structure
JP2012212864A (en) * 2011-03-18 2012-11-01 Sekisui Chem Co Ltd Manufacturing method of connection structure and connection structure
JP2013016473A (en) * 2011-06-10 2013-01-24 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
JP2013062302A (en) * 2011-09-12 2013-04-04 Sekisui Chem Co Ltd Method of manufacturing connection structure
JP2015195199A (en) * 2014-03-26 2015-11-05 積水化学工業株式会社 Photocurable conductive material, connection structure and method of producing connection structure
JP2015195200A (en) * 2014-03-26 2015-11-05 積水化学工業株式会社 Photocurable conductive material, connection structure and method of producing connection structure
JP2017063038A (en) * 2014-05-14 2017-03-30 積水化学工業株式会社 Conductive paste, method for producing conductive paste, connection structure, and method for producing connection structure
JP2017193630A (en) * 2016-04-20 2017-10-26 積水化学工業株式会社 Curable resin composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105636A (en) * 2011-11-14 2013-05-30 Dexerials Corp Anisotropic conductive film, connection method, and connected body
TWI553089B (en) * 2012-09-28 2016-10-11 長興材料工業股份有限公司 Coating composition and the use thereof
WO2016043265A1 (en) * 2014-09-18 2016-03-24 積水化学工業株式会社 Electrically conductive paste, joined structure, and method for manufacturing joined structure
KR102240963B1 (en) * 2014-10-28 2021-04-16 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, manufacturing method for same, and connection structure
WO2016129670A1 (en) 2015-02-12 2016-08-18 積水化学工業株式会社 Curable composition for inkjet, and method for manufacturing electronic component
CN107210084A (en) * 2015-05-25 2017-09-26 积水化学工业株式会社 Conductive material and connection structural bodies
CN107251163A (en) * 2015-08-19 2017-10-13 积水化学工业株式会社 Conductive material and connection structural bodies
CN107636774B (en) * 2015-08-24 2020-11-06 积水化学工业株式会社 Conductive material and connection structure
KR102164171B1 (en) * 2019-04-26 2020-10-13 (주)엘프스 self-assembled conductive bonding paste for mini LED chip bonding, mini LED chip-circuit board bondig module comprising the same and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351445A (en) * 2000-06-09 2001-12-21 Jsr Corp Manufacturing method of compound sheet and compound sheet
JP2002093485A (en) * 2000-09-19 2002-03-29 Jsr Corp Manufacturing method for composite sheet and composite sheet
JP2002124318A (en) * 2000-10-12 2002-04-26 Jsr Corp Composite sheet and its manufacturing method
JP2002128911A (en) * 2000-10-30 2002-05-09 Jsr Corp Anisotropically conductive sheet and method of using the same
JP2003055583A (en) * 1998-12-08 2003-02-26 Taiyo Ink Mfg Ltd Photocurable anisotropic electroconductive composition and anisotropic electroconductive pattern formed by using the same
JP2005235956A (en) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd Method of circuit connection
WO2008010294A1 (en) * 2006-07-21 2008-01-24 Hitachi Chemical Company, Ltd. Circuit connection material, circuit member connecting structure and method of connecting circuit member
WO2008023670A1 (en) * 2006-08-22 2008-02-28 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
JP2008071495A (en) * 2006-09-12 2008-03-27 Kyoritsu Kagaku Sangyo Kk Orientation method of conductive material, anisotropy material using this orientation method, and manufacturing method of electronic device with anisotropy material using this orientation method
JP2008210585A (en) * 2007-02-23 2008-09-11 Sekisui Chem Co Ltd Manufacturing method of connecting member, and connecting member
JP2009016133A (en) * 2007-07-03 2009-01-22 Sony Chemical & Information Device Corp Anisotropic conductive film and its manufacturing method, and joint

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086989A (en) * 1998-09-14 2000-03-28 Sekisui Chem Co Ltd Joint structure of display device and joining
JP2002076055A (en) * 2000-08-22 2002-03-15 Hitachi Ltd Packaging method and packaging structure of semiconductor device
JP3864078B2 (en) * 2001-11-30 2006-12-27 三井化学株式会社 Anisotropic conductive paste and method of using the same
JP2003165825A (en) * 2001-11-30 2003-06-10 Mitsui Chemicals Inc Anisotropic electroconductive paste and method for using the same
JP2003167331A (en) * 2001-12-03 2003-06-13 Japan U-Pica Co Ltd Resin composition and cured body thereof
JP4238124B2 (en) * 2003-01-07 2009-03-11 積水化学工業株式会社 Curable resin composition, adhesive epoxy resin paste, adhesive epoxy resin sheet, conductive connection paste, conductive connection sheet, and electronic component assembly
JP2005235530A (en) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd Circuit connection material
JP2006124531A (en) * 2004-10-29 2006-05-18 Shin Etsu Chem Co Ltd Anisotropic conductive adhesive
JP5005530B2 (en) * 2005-03-23 2012-08-22 パナソニック株式会社 Method for forming electric / electronic circuit and electric / electronic equipment using the same
JP5268260B2 (en) * 2007-01-24 2013-08-21 デクセリアルズ株式会社 Anisotropic conductive adhesive and electrical device
JP2009074020A (en) * 2007-03-06 2009-04-09 Tokai Rubber Ind Ltd Anisotropic conductive film
JP4673932B2 (en) * 2009-08-26 2011-04-20 積水化学工業株式会社 Method for manufacturing connection structure and anisotropic conductive material
JP4673933B2 (en) * 2009-08-26 2011-04-20 積水化学工業株式会社 Anisotropic conductive material and connection structure
JP4673931B2 (en) * 2009-08-26 2011-04-20 積水化学工業株式会社 Anisotropic conductive material and connection structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055583A (en) * 1998-12-08 2003-02-26 Taiyo Ink Mfg Ltd Photocurable anisotropic electroconductive composition and anisotropic electroconductive pattern formed by using the same
JP2001351445A (en) * 2000-06-09 2001-12-21 Jsr Corp Manufacturing method of compound sheet and compound sheet
JP2002093485A (en) * 2000-09-19 2002-03-29 Jsr Corp Manufacturing method for composite sheet and composite sheet
JP2002124318A (en) * 2000-10-12 2002-04-26 Jsr Corp Composite sheet and its manufacturing method
JP2002128911A (en) * 2000-10-30 2002-05-09 Jsr Corp Anisotropically conductive sheet and method of using the same
JP2005235956A (en) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd Method of circuit connection
WO2008010294A1 (en) * 2006-07-21 2008-01-24 Hitachi Chemical Company, Ltd. Circuit connection material, circuit member connecting structure and method of connecting circuit member
WO2008023670A1 (en) * 2006-08-22 2008-02-28 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
JP2008071495A (en) * 2006-09-12 2008-03-27 Kyoritsu Kagaku Sangyo Kk Orientation method of conductive material, anisotropy material using this orientation method, and manufacturing method of electronic device with anisotropy material using this orientation method
JP2008210585A (en) * 2007-02-23 2008-09-11 Sekisui Chem Co Ltd Manufacturing method of connecting member, and connecting member
JP2009016133A (en) * 2007-07-03 2009-01-22 Sony Chemical & Information Device Corp Anisotropic conductive film and its manufacturing method, and joint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186161A (en) * 2011-02-17 2012-09-27 Sekisui Chem Co Ltd Anisotropic conductive material, connection structure, and method for manufacturing connection structure
JP2012212864A (en) * 2011-03-18 2012-11-01 Sekisui Chem Co Ltd Manufacturing method of connection structure and connection structure
JP2013016473A (en) * 2011-06-10 2013-01-24 Sekisui Chem Co Ltd Anisotropic conductive material and connection structure
JP2013062302A (en) * 2011-09-12 2013-04-04 Sekisui Chem Co Ltd Method of manufacturing connection structure
JP2015195199A (en) * 2014-03-26 2015-11-05 積水化学工業株式会社 Photocurable conductive material, connection structure and method of producing connection structure
JP2015195200A (en) * 2014-03-26 2015-11-05 積水化学工業株式会社 Photocurable conductive material, connection structure and method of producing connection structure
JP2017063038A (en) * 2014-05-14 2017-03-30 積水化学工業株式会社 Conductive paste, method for producing conductive paste, connection structure, and method for producing connection structure
JP2017193630A (en) * 2016-04-20 2017-10-26 積水化学工業株式会社 Curable resin composition

Also Published As

Publication number Publication date
KR20120062682A (en) 2012-06-14
CN102484326A (en) 2012-05-30
TWI443175B (en) 2014-07-01
TW201120182A (en) 2011-06-16
JPWO2011024719A1 (en) 2013-01-31
CN102484326B (en) 2014-12-10
KR101538834B1 (en) 2015-07-22
JP5602743B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5602743B2 (en) Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP4673933B2 (en) Anisotropic conductive material and connection structure
KR101538820B1 (en) Curable composition, anisotropic conductive material and connection structure
JP5520265B2 (en) Anisotropic conductive material, B-stage-like cured product, and manufacturing method of connection structure
JP4673931B2 (en) Anisotropic conductive material and connection structure
JP2011105942A (en) Curable composition and connection structure
JP4673932B2 (en) Method for manufacturing connection structure and anisotropic conductive material
JP2013077557A (en) Anisotropic conductive material and connection structure
JP5400545B2 (en) Anisotropic conductive material, connection structure manufacturing method, and connection structure
WO2011024720A1 (en) Method for manufacturing connection structure
JP5559723B2 (en) Method for manufacturing connection structure
JP5886582B2 (en) Anisotropic conductive material, B-stage cured product, method for producing B-stage cured product, and connection structure
JP2012191195A (en) Manufacturing method of connection structure, anisotropic conductive material, and connection structure
JP5926601B2 (en) Anisotropic conductive material and connection structure
JP5314713B2 (en) Method for manufacturing connection structure and anisotropic conductive material
JP5879105B2 (en) Anisotropic conductive paste, method for manufacturing anisotropic conductive paste, connection structure, and method for manufacturing connection structure
JP5705003B2 (en) Method for manufacturing connection structure
JP2012136697A (en) Anisotropic conductive material, connection structure, and method for manufacturing connection structure
JP5580752B2 (en) Mixture of thermosetting compound containing conductive particles, curable composition, and connection structure
JP5859783B2 (en) Anisotropic conductive material and connection structure
JP5815343B2 (en) Method for producing episulfide compound material, method for producing curable composition, and method for producing connection structure
JP2011225831A (en) Curable composition and connected structure
JP2012021114A (en) Curable composition and connection structure
JP5438783B2 (en) Anisotropic conductive material and connection structure
JP2012175038A (en) Method of manufacturing connection structure and anisotropic conductive material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037248.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127001991

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011528764

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811769

Country of ref document: EP

Kind code of ref document: A1