WO2011024641A1 - Optical element and light emitting device - Google Patents

Optical element and light emitting device Download PDF

Info

Publication number
WO2011024641A1
WO2011024641A1 PCT/JP2010/063535 JP2010063535W WO2011024641A1 WO 2011024641 A1 WO2011024641 A1 WO 2011024641A1 JP 2010063535 W JP2010063535 W JP 2010063535W WO 2011024641 A1 WO2011024641 A1 WO 2011024641A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting device
optical element
light emitting
meniscus lens
Prior art date
Application number
PCT/JP2010/063535
Other languages
French (fr)
Japanese (ja)
Inventor
恵一 望月
Original Assignee
日東光学株式会社
小池 康博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東光学株式会社, 小池 康博 filed Critical 日東光学株式会社
Publication of WO2011024641A1 publication Critical patent/WO2011024641A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0018Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for preventing ghost images
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an optical element and a light emitting device.
  • LED lighting devices have been put to practical use as an alternative to incandescent bulbs and fluorescent lamps due to the high power and high efficiency of LEDs (Light Emitting Diodes).
  • LEDs Light Emitting Diodes
  • LEDs are smaller in size and have a higher luminous flux density.
  • incandescent bulbs and fluorescent lamps emit light in all directions, whereas LEDs have a feature that the directivity of light rays is easily increased.
  • power LEDs of 3W or 10W have been put into practical use.
  • Patent Document 1 proposes an LED light bulb including a diffusion sheet on the outer surface of a light-transmitting globe. This LED bulb is supposed to have a substantially uniform luminance.
  • the LED light bulb proposed in Patent Document 1 cannot adjust the light distribution angle depending on its design. For this reason, when a high-power LED is used, the glare is large.
  • the present invention has been made under such a background, and an object thereof is to provide an optical element and a light-emitting device capable of reducing glare.
  • the optical element of the present invention is solid inside, and in an optical element that guides light incident from one surface and emits light from the other surface, one surface is concave, A meniscus lens having the other surface as a convex surface was formed, and the meniscus lens was formed of a light diffuser that diffuses light.
  • the other surface side has a spherical shape, and the edge of the meniscus lens serving as a boundary portion between the one surface and the other surface is an annular surface protruding to the opposite side of the spherical surface.
  • one surface has a grain shape that scatters light.
  • a light-emitting device of the present invention includes a light-emitting member and a light-emitting member that is solid inside and has an optical element that emits light emitted from the light-emitting member and is emitted from one surface.
  • the optical element is a meniscus lens having one surface as a concave surface and the other surface as a convex surface, and the meniscus lens is formed of a light diffuser that diffuses light.
  • the edge of the meniscus lens serving as a boundary portion between one surface and the other surface totally reflects the light entering from one surface.
  • the optical element has a holder that supports the optical element from one side, and the holder has a reflection surface that reflects light toward the optical element.
  • the incident angle at which the light is incident on the other surface is ⁇ , and the total reflection criticality of the other surface
  • the incident angle ⁇ in the range of ( ⁇ c ⁇ 1.7)> ⁇ > ( ⁇ c ⁇ 0.9) is preferably 20% or more.
  • FIG. 1 It is a figure which shows the optical path of the light radiate
  • FIG. It is a figure which shows the optical path of the light radiate
  • FIG. 1 It is a figure which shows the light emission state from the upper surface of the light-emitting device shown in FIG. It is a figure which shows the light emission state from the side surface of the light-emitting device shown in FIG. It is a longitudinal cross-sectional schematic diagram of the light-emitting device which concerns on the 4th Embodiment of this invention. It is a top view of the LED member of the light-emitting device shown in FIG. It is a figure which shows the light emission state from the upper surface of the light-emitting device shown in FIG. It is a figure which shows the light emission state from the side surface of the light-emitting device shown in FIG. It is a figure which shows the light emission state from the upper surface of the light-emitting device of the comparative example 2. It is a figure which shows the light emission state from the side surface of the light-emitting device of the comparative example 2. FIG.
  • FIG. 1 is a schematic vertical cross-sectional view of the light-emitting device 1.
  • the light-emitting device 1 includes an LED member 3 in which a chip-type LED serving as a light-emitting member is arranged in the center of a circular plate, a light guide 2 that guides light emitted from the LED member 3 and has a solid interior.
  • the holder 4 that holds the light guide 2 is provided.
  • the light guide 2 has a concave surface 11 that has a triangular pyramid shape on which light emitted from the LED member 3 is incident. This concave surface 11 becomes one surface.
  • the light guide 2 has a dome-shaped emission surface 12 (the other surface) that emits light emitted from the LED member 3 on the side opposite to the one surface. That is, the light guide 2 is a meniscus lens having a smooth concave surface 11 and a spherical emission surface 12. Furthermore, the light guide 2 has an edge 13 that surrounds the periphery of the concave surface 11 in the shape of a circular truncated cone in order to connect the concave surface 11 and the emission surface 12. That is, the light guide 2 is light emitted from the LED member 3 and guided into the light guide 2, and is lighted at a large angle (for example, 60 to 80 degrees) with respect to the central axis M of the light guide 2.
  • a large angle for example, 60 to 80 degrees
  • edge 13 that is an annular surface that reflects light emitted from the member 3.
  • the surface of the edge 13 is a convex surface that slightly protrudes in the circumferential direction of the light guide 2. That is, the curved surface slightly protrudes toward the LED member 3 side.
  • the light guide 2 is a resin molded body made of, for example, transparent polymethyl methacrylate (hereinafter abbreviated as “PMMA”).
  • PMMA transparent polymethyl methacrylate
  • translucent silicone particles that are light scattering particles having a particle diameter of 2 ⁇ m to 10 ⁇ m are dispersed. Thereby, the light guide 2 is a light diffuser.
  • This silicone particle is a light guide provided with a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the light guide 2, the light is scattered by the scattering fine particles.
  • Mie scattering theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. .
  • the intensity distribution I ( ⁇ , ⁇ ) depending on the angle of the scattered light scattered by the scattering fine particles corresponding to the light scattering particles is expressed by the following equation (1).
  • is a size parameter indicating the optical size of the scattering fine particles, and is an amount corresponding to the radius r of the spherical particles (scattering fine particles) normalized by the wavelength ⁇ of light in the matrix.
  • i 1 and i 2 in the formula (1) are represented by the formula (4).
  • a and b with the subscript ⁇ in the expressions (2) to (4) are expressed by the expression (5).
  • P (cos ⁇ ) with superscript 1 and subscript ⁇ is Legendre's polynomial
  • a and b with subscript ⁇ are first- and second-order Recati-Bessel functions ⁇ * and ⁇ * (where “*” Means the subscript ⁇ ) and its derivative.
  • m is the relative refractive index of the scattering fine particles based on the matrix
  • m nscatter / nmattrix.
  • FIG. 2 is a graph showing the intensity distribution I ( ⁇ , ⁇ ) by a single true spherical particle based on the above equations (1) to (5).
  • FIG. 2 shows the angular distribution I ( ⁇ , ⁇ ) of the scattered light intensity when there is a true spherical particle as a scattering fine particle at the position of the origin G and incident light is incident from below.
  • the distance from the origin G to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction.
  • Curve S1 shows the scattered light intensity when ⁇ is 1.7
  • curve S2 shows the scattered light intensity when ⁇ is 11.5
  • curve S3 shows the scattered light intensity when ⁇ is 69.2. Yes.
  • the scattered light intensity is shown on a logarithmic scale. For this reason, the portion that appears as a slight difference in intensity in FIG. 2 is actually a very large difference.
  • the larger the size parameter ⁇ (the larger the particle size of the true spherical particle when considered at a certain wavelength ⁇ ), the higher the directivity with respect to the upper side (front of the irradiation direction). It can be seen that light is highly scattered. Actually, the angle distribution I ( ⁇ , ⁇ ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scattered fine particles as parameters if the incident light wavelength ⁇ is fixed. can do. In addition, the light guide 2 has a large forward scattering.
  • I ( ⁇ ) in the equation (6) is the scattering intensity of the true spherical particle having the size parameter ⁇ represented by the equation (1). If light of intensity Io enters the light scattering light guide and passes through the distance y, then the intensity of the light is attenuated to I by scattering, and these relationships are expressed by the following equation (7).
  • ⁇ in the equation (7) is called turbidity and corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8).
  • ⁇ s is a scattering cross section.
  • the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity ⁇ .
  • the resin molded body holder 4 shown in FIG. 1 has an annular shape with the center cut out.
  • the annular inner peripheral surface is an inclined surface 21 that decreases in diameter as it goes from the upper side to the lower side in FIG.
  • the inclined surface 21 is a straight line in cross-sectional shape, and is a concave surface in the overall shape.
  • seat (illustration omitted) is affixed on this inclined surface 21 so that it may become a mirror surface. Therefore, the inclined surface 21 is a part of the concave mirror.
  • the inclined surface 21 may not be a concave mirror.
  • the light guide 2 is disposed so that the edge 13 faces the inclined surface 21 of the holder 4. Further, the edge 13 of the light guide 2 is held by the upper peripheral edge 22 of the holder 4.
  • the LED member 3 is fixed so as to face the cutout portion 23 cut out in a circular shape on the lower surface of the holder 4 in FIG. 1.
  • the position N1 that intersects the central axis M of the light guide 2 at the emission position of the LED member 3 is opposed to the conical apex of the concave surface 11.
  • the emission position N1 is also the central position of the LED member 3.
  • a gap 25 is formed between the edge 13 and the inclined surface 21 so that the gap becomes narrower from the concave surface 11 side toward the outer peripheral edge 22 on the upper side of the holder 4.
  • the optical path of the light emitted from the LED member 3 in the light emitting device 1 will be described. 3 to 6 show examples of the optical path.
  • the LED member 3 in the light emitting device 1, the LED member 3 is emitted not from the central position N ⁇ b> 1 but from the central emission position N ⁇ b> 1 in the outer peripheral direction, that is, from the emission position N ⁇ b> 2 toward the conical circumferential surface of the concave surface 11.
  • An optical path when light is irradiated to a specific region P of the concave surface 11 is shown.
  • the light has two optical paths: an optical path L1 that is transmitted from the region P to the light guide 2 and an optical path L2 of reflected light that is reflected by the region P.
  • the reason why the emission position N1 and the emission position N2 are assumed is that the light emission portion of the LED member 3 is not a point but a region having a predetermined area.
  • the optical path L1 is an optical path in which the light emitted from the LED member 3 hits a portion having the region P, enters the light guide 2 from the concave surface 11, and exits from the emission surface 12 to the outside.
  • the light emitted from the LED member 3 hits another part of the region P, is reflected by the region P of the concave surface 11, and then enters the inside of the light guide 2 from another region of the concave surface 11 to be emitted.
  • This is an optical path emitted from the surface 12 to the outside. It should be noted that the light is affected by the light scattering particles until the light enters the light guide 2 and is emitted to the outside from the light exit surface 12, and is scattered multiple times.
  • the optical paths L1 and L2 are both paths when no scattering occurs, and are high-probability paths even when subjected to multiple scattering.
  • FIG. 4 shows an optical path L3 of the light emitted from the emission position N2 of the LED member 3 to the lower region of the concave surface 11 with the light that has spread widely.
  • the light applied to the lower region enters the light guide 2 from the concave surface 11 and is then totally reflected by the edge 13.
  • the light taking such a path has a spread angle with respect to the central axis M exceeding 60 degrees. However, by changing the shape of the concave surface 11, it can be 45 degrees or more, or 65 degrees or more.
  • the light totally reflected by the edge 13 is further totally reflected at the exit surface 12.
  • the light is influenced by light scattering particles. Receiving and multiple scattering. For this reason, in the process of repeating total reflection on the emission surface 12, a part of the light is emitted from the emission surface 12 without being totally reflected.
  • the light paths L31, L32, and L33 of the emitted light are shown by broken lines in FIG. Note that not all of the light totally reflected by the edge 13 is totally reflected again by the emission surface 12. The role of the edge 13 is to apparently widen the emission range of the LED member 3.
  • the light that has spread further than the light shown in FIG. 4 is reflected by the mirror surface sheet of the inclined surface 21 and enters the specific region Q of the edge 13.
  • the optical path of the irradiated light is shown.
  • the light takes two optical paths L4 and L5.
  • the optical path L4 is an optical path through which the light emitted from the LED member 3 hits the region Q and enters the light guide 2 from the edge 13.
  • the light emitted from the LED member 3 hits the region Q, is reflected by the region Q of the edge 13, and then is reflected again by the mirror surface sheet of the inclined surface 21, and from the other region of the edge 13 of the light guide 2 It is an optical path that enters inside.
  • the light that has entered the light guide 2 repeats total reflection at the exit surface 12.
  • the light is influenced by the light scattering particles until the light enters the inside of the light guide 2 and repeats total reflection at the exit surface 12 and finally exits from the exit surface 12, so that multiple scattering occurs. To do. For this reason, in the process of repeating total reflection on the emission surface 12, a part of the light is emitted from the emission surface 12 without being totally reflected.
  • the light paths L41, L42, L51, and L52 of the emitted light are shown by broken lines in FIG.
  • the light that is reflected by the edge 13 or the holder 4 and is incident on the light guide 2 and has no light scattering particles is incident on the emission surface 12.
  • the incident angle ⁇ in the range of ( ⁇ c ⁇ 1.7)> ⁇ > ( ⁇ c ⁇ 0.9), where ⁇ is the incident angle of incidence and ⁇ c is the critical total reflection angle of the exit surface 12, 20% or more.
  • FIG. 6 shows an optical path L6 in the case where the light emitted from the LED member 3 is the emission position N4 on the side close to the outer periphery of the LED member 3.
  • the light takes an optical path L6.
  • the optical path L6 is first transmitted from the edge 13 to the inside of the light guide 2, then totally reflected by the concave surface 11, and then emitted from the emission surface 12 to the outside. Note that the light is affected by the light scattering particles until the light is transmitted to the inside of the light guide 2 and is emitted from the emission surface 12 to the outside.
  • a plurality of emission positions of the LED member 3 may be directed toward the concave surface 11.
  • FIG. 7 shows a light emission state from the upper surface of the light emitting device 1.
  • FIG. 8 shows a light emission state from the side surface of the light emitting device 1. 7 and 8, the light emission state is shown such that the emission luminance increases as the color approaches white, and the emission luminance decreases as the color approaches black.
  • FIG. 9 is a figure which shows the structural example of a comparison object, and has arrange
  • FIG. It is a longitudinal cross-sectional schematic diagram of the light-emitting device 93.
  • FIG. 10 shows a light emission state from the upper surface of the light emitting device 93.
  • FIG. 11 shows a light emission state from the side surface of the light emitting device 93. The light emission state is shown in the same manner as in FIGS.
  • the LED member 3 of the light emitting device 1 and the LED member 91 of the light emitting device 93 were the same, and the supplied power was also the same.
  • the emission positions N1, N2, etc. are the same as those of the light emitting device 1. That is, the emission range is the entire range of the LED members 3 and 91. This means that a square range with one side of the length in the left-right direction of the LED members 3 and 91 shown in the figure is the emission range.
  • FIGS. 10 and 11 are compared with FIGS. 10 and 11, it can be seen that the light emitting device 1 diffuses light to the entire light guide 2 and the glare can be reduced compared to the light emitting device 93. That is, in the light emitting device 93, as shown in FIG. 10, a high brightness portion, that is, a portion corresponding to the center of the emission range of the LED member 91 appears clearly in the central portion. As shown in FIG. 5, there is no high brightness portion in the center, and a ring-like high brightness portion appears around the center.
  • FIG. 12 is a schematic vertical cross-sectional view of the light-emitting device 31.
  • the light emitting device 31 has the same configuration as the light emitting device 1 except that the shape of the light guide 2 in the light emitting device 1 is different. Therefore, members other than the light guide 32 are denoted by the same reference numerals as those of the light emitting device 1 and description thereof is omitted.
  • the light guide 32 guides the light emitted from the LED member 3 and the inside is filled.
  • the light guide 32 has a concave surface 41 which is a cylindrical space so that the back side of the part where the light emitted from the LED member 3 enters is triangular pyramid, and the opening side continues from the triangular pyramid bottom surface. ing.
  • the concave surface 41 is one surface.
  • the light guide 32 has a light emitting surface 42 (the other surface) that emits light emitted from the LED member 3 on a side opposite to the one surface. That is, the light guide 32 is a meniscus lens having a concave surface 41 and an exit surface 42. Furthermore, the light guide 32 includes an annular portion 43 that surrounds the concave surface 41 and forms a right angle with the opening-side inner peripheral surface of the concave surface 41, and an annular portion 43 similar to the edge 13 in the light guide 2 of the light emitting device 1. Has an annular portion 44 which is an annular surface surrounding the circular truncated cone. These annular portions 43 and 44 are collectively referred to as an edge 45. The edge 45 reflects light emitted from the LED member 3 and guided into the light guide 2.
  • the optical path of the light emitted from the LED member 3 in the light emitting device 31 is substantially the same as that of the light emitting device 1. Further, the incident angle at which the light that is reflected by the edge 45 or the holder 4 and is incident on the light guide 32 and does not have light scattering particles when entering the light exit surface 42 is ⁇ , and the light exit surface 42.
  • the incident angle ⁇ in the range of ( ⁇ c ⁇ 1.7)> ⁇ > ( ⁇ c ⁇ 0.9) is 20% or more like the light emitting device 1 where the total reflection critical angle is ⁇ c. .
  • FIG. 13 shows a light emission state from the upper surface of the light emitting device 31.
  • FIG. 14 shows a light emission state from the side surface of the light emitting device 31.
  • the light emission state is shown in the same manner as in FIGS.
  • the LED member 3 of the light emitting device 31 and the LED device 3 of the light emitting device 1 were the same, and the supplied power was also the same. Comparing FIGS. 13 and 14 with FIGS. 10 and 11 for comparison, it is found that light is diffused in the entire light guide 32 and glare can be reduced in the light emitting device 31 rather than in the light emitting device 93. Recognize.
  • FIG. 15 is a schematic vertical cross-sectional view of the light-emitting device 51.
  • the light emitting device 51 has the same configuration as the light emitting device 31 except that the shape of the holder 4 in the light emitting device 31 is different and the thickness of the light guide 32 is slightly larger. Therefore, members other than the holder 53 are denoted by the same reference numerals as those of the light emitting device 31 and description thereof is omitted.
  • the height from the upper side to the lower side of the holder 53 in FIG. 15 is three times that of the holder 4.
  • the holder 53 has an annular shape with the center cut out.
  • the annular inner peripheral surface is a concave and curved inclined surface 61 that decreases in diameter as it goes from the upper side to the lower side in FIG.
  • a mirror surface sheet (not shown) is attached to the inclined surface 61 so as to be a mirror surface.
  • the inclined surface 61 is a concave mirror similar to the inclined surface 21 of the light emitting device 1. However, the inclined surface 61 may not be a concave mirror.
  • the light guide 32 is disposed so that the edge 45 faces the inclined surface 61 of the holder 53.
  • the edge 45 of the light guide 32 is held by the edge 62 of the holder 53.
  • the LED member 3 is fixed so as to face the cut-out portion 63 cut out in a circular shape on the lower surface of the holder 53 in FIG.
  • the emission position N1 of the LED member 3 is disposed so as to face the concave surface 41.
  • a gap 64 is formed between the edge 45 and the inclined surface 61 so that the gap becomes narrower from the concave surface 61 side toward the edge portion 62.
  • the light path of the light emitted from the LED member 3 in the light emitting device 51 is substantially the same as that of the light emitting device 1. Further, the incident angle at which the light that is reflected by the edge 45 or the holder 53 and is incident on the light guide 32 and does not include light scattering particles is incident on the exit surface 42 is ⁇ , and the exit surface 42
  • the incident angle ⁇ in the range of ( ⁇ c ⁇ 1.7)> ⁇ > ( ⁇ c ⁇ 0.9) is 20% or more like the light emitting device 1 where the total reflection critical angle is ⁇ c. .
  • FIG. 16 shows a light emission state from the upper surface of the light emitting device 51.
  • FIG. 17 shows a light emission state from the side surface of the light emitting device 51.
  • the light emission state is shown in the same manner as in FIGS.
  • the LED member 3 of the light emitting device 51 and the LED member 3 of the light emitting device 1 were the same, and the supplied power was also the same.
  • FIGS. 16 and 17 it is found that light is diffused in the entire light guide unit 32 and glare can be reduced in the light emitting device 51 than in the light emitting device 93. Recognize.
  • FIG. 18 is a schematic vertical cross-sectional view of the light emitting device 71.
  • the light emitting device 71 has the same configuration as that of the light emitting device 1 except that the light emitting device 1 has four light emission positions. That is, four LED 3A, 3B, 3C, 3D is arranged on one LED member 3. Therefore, the same reference numerals as those of the light emitting device 1 are used except for the emission center positions P1, P2, P3, P4 and the LEDs 3A to 3D which are the centers of the LED members 3A to 3D, and the description thereof is omitted.
  • the emission center positions P1 to P4 are positions facing the boundary position between the edge 13 and the concave surface 11.
  • FIG. 19 is a plan view of the LED member 3 of the light emitting device 71.
  • the square portions are LEDs 3A to 3D, and their center positions are emission center positions P1 to P4.
  • the optical path of light emitted from the LED member 3 in the light emitting device 71 is substantially the same as that of the light emitting device 1.
  • FIG. 20 shows a light emission state from the upper surface of the light emitting device 71.
  • FIG. 21 shows a light emission state from the side surface of the light emitting device 71. 20 and 21, the light emission state is shown such that the emission luminance increases as the color approaches white and the emission luminance decreases as the color approaches black.
  • FIG. 22 shows a comparative example 2 using the LED member 3 shown in FIGS. 18 and 19 in the light emitting device 93 of the comparative example, and shows a light emission state from the upper surface of the light emitting device.
  • FIG. 23 shows a light emission state from the side surface of the light emitting device of Comparative Example 2. The light emission state is shown in the same manner as in FIGS.
  • the same thing as the LED member 3 of the light-emitting device 71 was used, and the power supply was also made the same.
  • the light emitting device 71 diffuses light throughout the light guide 2 and the glare can be reduced compared to the light emitting device of Comparative Example 2. Recognize.
  • the light guides 2 and 32 according to the embodiment of the present invention are solid inside, and are meniscus lenses that guide the light incident from the concave surfaces 11 and 41 and emit the light from the output surfaces 12 and 42.
  • the lens was formed of a light diffuser containing light scattering particles that diffuse light. For this reason, the light distribution angle can be easily controlled by changing the shapes of the concave surfaces 11 and 41, and the glare can be reduced.
  • the light emitting devices 1, 31, 51, 71 can form an optical path that totally reflects part of the light on the emission surfaces 12, 42, while emitting part of the light.
  • the exit surfaces 12 and 42 side is spherical, and the edges 13 and 45 that serve as boundaries connecting the concave surfaces 11 and 41 and the exit surfaces 12 and 42 are annular convex surfaces. Therefore, the light that has entered the light guides 2 and 32 at a large angle with respect to the central axis M is easily totally reflected by the annular surfaces of the edges 13 and 45.
  • edges 13 and 45 totally reflect the light entering from the concave surfaces 11 and 41 and guide the light to the emission surfaces 12 and 42, the luminance is generated from outside the emission part of the LED member 3, and the luminance is uniform. And prevent glare more.
  • the holders 4 and 53 have a reflection surface that reflects light toward the light guides 2 and 32, even when there is light leaking in the direction of the holders 4 and 53, the light is guided. Returning to the bodies 2 and 32, the luminous efficiency of the light emitting devices 1, 31, 51, 71 is increased. In addition, since the light is totally reflected by the reflecting surfaces of the holders 4 and 53 and guided to the light guides 2 and 32 side, the brightness is generated from the outside of the emission part of the LED member 3, the brightness is made uniform, and the glare is further increased. Can be prevented.
  • the incident angle at which light is incident on the exit surfaces 12 and 42 is ⁇
  • the total reflection critical angle of the exit surfaces 12 and 42 is ⁇ c
  • the incident angle ⁇ in the range is 20% or more. Therefore, the probability of total reflection of light on the exit surfaces 12 and 42 is increased, and brightness can be generated from the entire exit surfaces 12 and 42 of the light guides 2 and 32. Light within this range can suppress the number of times of total reflection inside the light guides 2 and 32, and can maintain high emission efficiency.
  • the incident angle ⁇ in the range of ( ⁇ c ⁇ 1.7)> ⁇ > ( ⁇ c ⁇ 1.1) is 30% or more.
  • Light in this range has a high probability of being totally reflected and emitted to the side surfaces of the light guides 2 and 32 even when scattered, and the luminance is uniform even when viewed from the side surface.
  • the light guides 2 and 32 contain light scattering particles made of translucent silicone particles. Therefore, compared to the overall brightness of the light emitting device 93 (shown in FIGS. 10 and 11) when a conventional light diffusion sheet is used, the overall brightness of the light emitting devices 1, 31, 51, 71 (respectively illustrated). 7 and 8, FIG. 13 and FIG. 14, FIG. 16 and FIG. 17, FIG. 20 and FIG. This is because light diffusion by the light scattering particles has a low degree of light absorption.
  • the light guides 2 and 32 are solid bodies and are meniscus lenses that guide the light incident from the concave surfaces 11 and 41 and emit the light from the output surfaces 12 and 42.
  • the meniscus lens is formed of a light diffuser that contains light scattering particles that diffuse light.
  • the meniscus lens may be, for example, one in which silicone particles as a light diffuser are dispersed in a polycarbonate resin.
  • the light scattering particles are spherical and translucent silicone particles having a particle diameter of 2 ⁇ m to 9 ⁇ m.
  • various particles can be used regardless of their materials, shapes, particle diameters, etc., as long as they scatter multiple light in the light guide 2.
  • spherical and translucent silicone particles having a particle diameter of 2 ⁇ m to 9 ⁇ m, more preferably 5 ⁇ m to 9 ⁇ m, should be used. Is preferred.
  • the emission surfaces 12 and 42 are spherical (dome-shaped), and the edges 13 and 45 that connect the concave surfaces 11 and 41 and the emission surfaces 12 and 42 and protrude toward the LED member 3 are annular surfaces.
  • the exit surfaces 12 and 42 may have an elliptical sphere shape.
  • the edges 13 and 45 are not annular surfaces, and for example, a part of the annular shape may be interrupted. Further, the edges 13 and 45 protruding to the LED member 3 side may not be provided.
  • the concave surfaces 11 and 41 are smooth surfaces, they may have a grain shape that scatters light. By making the concave surfaces 11 and 41 have a textured shape, the diffusion and scattering of light in the light guides 2 and 32 is promoted.
  • edges 13 and 45 that are the boundary portions between the concave surfaces 11 and 41 and the emission surfaces 12 and 42 totally reflect the light that has entered the light guides 2 and 32 from the concave surfaces 11 and 41.
  • light may be transmitted through the edges 13 and 45 and reflected by the holders 4 and 53.
  • the light emitting devices 1, 31, 51, 71 have holders 4, 53 that support the light guides 2, 32 from the concave surfaces 11, 41 side, and the holders 4, 53 transmit light to the light guides 2, 2. It has a reflecting surface (mirror sheet affixed to the inclined surface 21) that reflects to the 32 side.
  • the light-emitting devices 1, 31, 51, 71 may omit the holders 4, 53 and their reflecting surfaces.
  • a prism may be formed on the surfaces of the edges 13 and 45 to reflect light.
  • the mirror surface may be formed by vapor deposition, polishing, or the like instead of attaching the mirror sheet to the inclined surfaces 21 and 61.
  • the light that is reflected by the edges 13 and 45 or the holders 4 and 53 and is incident on the light guides 2 and 32 without light scattering particles is generated.
  • the incident angle incident on the exit surfaces 12 and 42 is ⁇ and the total reflection critical angle of the exit surfaces 12 and 42 is ⁇ c
  • the incident angle ⁇ is 20% or more. However, the value may be less than 20%.
  • the emission positions A and B of the LED member 3 are directed toward the concave surface 11.
  • the emission center positions P1 to P4 of the LEDs 3A to 3D of the LED member 3 are directed to the boundary position between the concave surface 11 and the edge 13.
  • the emission center positions of the LEDs 3A to 3D may be directed toward the edge portions 13 and 45.
  • the emission position of the LED member 3 may be directed toward the concave surface 11 and the edges 13 and 45. In this case, a plurality of LEDs are used.
  • the light emitting member is not limited to the LED, but organic electroluminescence (Organic Other light-emitting members such as Electro-Luminescence (OEL, organic EL), inorganic electroluminescence (IEL, inorganic EL), and laser light can be used. Furthermore, although a chip type LED is used, an LED with a lens can be used.
  • Light-emitting device 2 32 Light guide (optical element, meniscus lens) 3 LED members (light emitting members) 4,53 Holder 11,41 Concave surface (one surface) 12, 42 Output surface (the other surface) 13,45 edge ⁇ Incident angle ⁇ c Total reflection critical angle

Abstract

Disclosed are an optical element and a light emitting device capable of reducing glare. A light guiding body (2) of which interior is solid is a meniscus lens that guides light entering a concave surface (11) and emits the light from a light emitting surface (12). The meniscus lens is formed of a light diffusing body containing light diffusing particles that diffuse light. A light emitting device (1) comprises the light guiding body (2), of which interior is solid, receiving light emitted from an LED member (3) using the concave surface (11) and emitting the light from the light emitting surface (12). The light guiding body (2) is a meniscus lens having the concave surface (11) serving as a concave and the light emitting surface (12) serving as a convex. This meniscus lens is formed of a light diffusing body that diffuses light.

Description

光学素子および発光装置Optical element and light emitting device
 本発明は、光学素子および発光装置に関する。 The present invention relates to an optical element and a light emitting device.
 近年、LED(Light Emitting Diode)のハイパワー化、高効率化により、白熱電球および蛍光灯の代替えとして、LED照明装置が実用化されてきている。白熱電球または蛍光灯に比べて、LEDは大きさが小さく、光束密度が高い。また、白熱電球および蛍光灯が全方位に発光するのに対して、LEDは光線の指向性を高くし易いという特徴を有する。また、最近では、3Wさらには10WというパワーLEDも実用化されている。 In recent years, LED lighting devices have been put to practical use as an alternative to incandescent bulbs and fluorescent lamps due to the high power and high efficiency of LEDs (Light Emitting Diodes). Compared with incandescent bulbs or fluorescent lamps, LEDs are smaller in size and have a higher luminous flux density. Further, incandescent bulbs and fluorescent lamps emit light in all directions, whereas LEDs have a feature that the directivity of light rays is easily increased. Recently, power LEDs of 3W or 10W have been put into practical use.
 このようなLEDを光源とする電球として、特許文献1には、透光性のグローブの外表面に拡散シートを具備しているLED電球が提案されている。このLED電球は、その輝度をほぼ均一にできるものとされている。 As such a light bulb using an LED as a light source, Patent Document 1 proposes an LED light bulb including a diffusion sheet on the outer surface of a light-transmitting globe. This LED bulb is supposed to have a substantially uniform luminance.
特開2008-91140号公報JP 2008-91140 A
 しかしながら特許文献1に提案されているLED電球は、その設計によって配光角を調整できない。そのため、ハイパワーのLEDを用いた場合には、まぶしさ(グレア)の大きいものとなる。 However, the LED light bulb proposed in Patent Document 1 cannot adjust the light distribution angle depending on its design. For this reason, when a high-power LED is used, the glare is large.
 本発明は、このような背景の下に行われたものであって、グレアを低減できる光学素子および発光装置を提供することを目的とする。 The present invention has been made under such a background, and an object thereof is to provide an optical element and a light-emitting device capable of reducing glare.
 上記目的を達成するため、本発明の光学素子は、内部が充実体とされ、一方の面から入射された光を導光し他方の面から出射する光学素子において、一方の面を凹面とし、他方の面を凸面としたメニスカスレンズとし、メニスカスレンズを光を拡散する光拡散体で形成した。 In order to achieve the above object, the optical element of the present invention is solid inside, and in an optical element that guides light incident from one surface and emits light from the other surface, one surface is concave, A meniscus lens having the other surface as a convex surface was formed, and the meniscus lens was formed of a light diffuser that diffuses light.
 ここで、他方の面側が球形をなし、一方の面と他方の面との境界部となるメニスカスレンズのコバが、球形の面とは反対側に突出した環状の面となっていることが好ましい。 Here, it is preferable that the other surface side has a spherical shape, and the edge of the meniscus lens serving as a boundary portion between the one surface and the other surface is an annular surface protruding to the opposite side of the spherical surface. .
 また、一方の面は、光を散乱するシボ状になっていることが好ましい。 Further, it is preferable that one surface has a grain shape that scatters light.
 上記目的を達成するため、本発明の発光装置は、発光部材と、内部が充実体とされ、発光部材から発せられる光が一方の面から入射され他方の面から出射する光学素子とを有する発光装置において、光学素子は、一方の面を凹面とし、他方の面を凸面としたメニスカスレンズとされ、このメニスカスレンズは、光を拡散する光拡散体で形成されている。 In order to achieve the above object, a light-emitting device of the present invention includes a light-emitting member and a light-emitting member that is solid inside and has an optical element that emits light emitted from the light-emitting member and is emitted from one surface. In the apparatus, the optical element is a meniscus lens having one surface as a concave surface and the other surface as a convex surface, and the meniscus lens is formed of a light diffuser that diffuses light.
 ここで、一方の面と他方の面との境界部となるメニスカスレンズのコバが一方の面から進入してきた光を全反射することが好ましい。 Here, it is preferable that the edge of the meniscus lens serving as a boundary portion between one surface and the other surface totally reflects the light entering from one surface.
 また、光学素子を一方の面側から支える保持具を有し、保持具が、光を光学素子側に反射する反射面を有していることが好ましい。 Further, it is preferable that the optical element has a holder that supports the optical element from one side, and the holder has a reflection surface that reflects light toward the optical element.
 また、コバまたは保持具によって反射され、メニスカスレンズ内に入射した光であって光散乱体が無いとした場合の光が他方の面に入射する入射角をθとし、他方の面の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものを20%以上とすることが好ましい。 In addition, if the light is reflected by the edge or the holder and is incident on the meniscus lens and there is no light scatterer, the incident angle at which the light is incident on the other surface is θ, and the total reflection criticality of the other surface When the angle is θc, the incident angle θ in the range of (θc × 1.7)> θ> (θc × 0.9) is preferably 20% or more.
 本発明によれば、グレアを低減できる光学素子および発光装置を提供することができる。 According to the present invention, it is possible to provide an optical element and a light emitting device that can reduce glare.
本発明の第1の実施の形態に係る発光装置の縦断面概要図である。It is a longitudinal cross-sectional schematic diagram of the light-emitting device which concerns on the 1st Embodiment of this invention. 図1に示す導光体中の光散乱粒子となるシリコーン粒子の散乱原理を示す図で、単一真球粒子による散乱光強度の角度分布(Α、Θ)を示すグラフである。It is a figure which shows the scattering principle of the silicone particle | grains used as the light-scattering particle | grains in the light guide shown in FIG. 1, and is a graph which shows angle distribution (Α, Θ) of the scattered light intensity by a single true spherical particle. 図1に示す発光装置におけるLED部材から出射された光の光路を示す図であり、凹面の特定の領域に照射される光の光路を示す図である。It is a figure which shows the optical path of the light radiate | emitted from the LED member in the light-emitting device shown in FIG. 1, and is a figure which shows the optical path of the light irradiated to the specific area | region of a concave surface. 図1に示す発光装置におけるLED部材から出射された光の光路を示す図であり、LED部材から出射された光のうち、大きく広がった光が凹面の下部領域に照射された光の光路を示す図である。It is a figure which shows the optical path of the light radiate | emitted from the LED member in the light-emitting device shown in FIG. 1, and shows the optical path of the light by which the light which spread widely among the light radiate | emitted from the LED member was irradiated to the lower area | region of the concave surface. FIG. 図1に示す発光装置におけるLED部材から出射された光の光路を示す図であり、LED部材から出射された光のうち、図4に示す光よりさらに大きく広がった光が傾斜面の鏡面シートに反射してコバの特定の領域に照射された光の光路を示す図である。It is a figure which shows the optical path of the light radiate | emitted from the LED member in the light-emitting device shown in FIG. 1, Out of the light radiate | emitted from the LED member, the light which spread more largely than the light shown in FIG. 4 is on the mirror surface sheet of an inclined surface. It is a figure which shows the optical path of the light which reflected and was irradiated to the specific area | region of the edge. 図1に示す発光装置においてLEDから直接コバの特定の領域に向けて出射された光の光路を示す図である。It is a figure which shows the optical path of the light radiate | emitted toward the specific area | region of the edge directly from LED in the light-emitting device shown in FIG. 図1に示す発光装置の上面からの発光状態を示す図である。It is a figure which shows the light emission state from the upper surface of the light-emitting device shown in FIG. 図1に示す発光装置の側面からの発光状態を示す図である。It is a figure which shows the light emission state from the side surface of the light-emitting device shown in FIG. 比較例の構成を示す図で、LED部材の外表面に拡散シートをを配置した比較例の発光装置の縦断面概要図を示す図である。It is a figure which shows the structure of a comparative example, and is a figure which shows the longitudinal cross-sectional schematic diagram of the light-emitting device of the comparative example which has arrange | positioned the diffusion sheet to the outer surface of an LED member. 図9に示す比較例の発光装置の上面からの発光状態を示す図である。It is a figure which shows the light emission state from the upper surface of the light-emitting device of the comparative example shown in FIG. 図9に示す比較例の発光装置の側面からの発光状態を示す図である。It is a figure which shows the light emission state from the side surface of the light-emitting device of the comparative example shown in FIG. 本発明の第2の実施の形態に係る発光装置の縦断面概要図である。It is a longitudinal cross-sectional schematic diagram of the light-emitting device which concerns on the 2nd Embodiment of this invention. 図12に示す発光装置の上面からの発光状態を示す図である。It is a figure which shows the light emission state from the upper surface of the light-emitting device shown in FIG. 図12に示す発光装置の側面からの発光状態を示す図である。It is a figure which shows the light emission state from the side surface of the light-emitting device shown in FIG. 本発明の第3の実施の形態に係る発光装置の縦断面概要図である。It is a longitudinal cross-sectional schematic diagram of the light-emitting device which concerns on the 3rd Embodiment of this invention. 図15に示す発光装置の上面からの発光状態を示す図である。It is a figure which shows the light emission state from the upper surface of the light-emitting device shown in FIG. 図15に示す発光装置の側面からの発光状態を示す図である。It is a figure which shows the light emission state from the side surface of the light-emitting device shown in FIG. 本発明の第4の実施の形態に係る発光装置の縦断面概要図である。It is a longitudinal cross-sectional schematic diagram of the light-emitting device which concerns on the 4th Embodiment of this invention. 図18に示す発光装置のLED部材の平面図である。It is a top view of the LED member of the light-emitting device shown in FIG. 図18に示す発光装置の上面からの発光状態を示す図である。It is a figure which shows the light emission state from the upper surface of the light-emitting device shown in FIG. 図18に示す発光装置の側面からの発光状態を示す図である。It is a figure which shows the light emission state from the side surface of the light-emitting device shown in FIG. 比較例2の発光装置の上面からの発光状態を示す図である。It is a figure which shows the light emission state from the upper surface of the light-emitting device of the comparative example 2. 比較例2の発光装置の側面からの発光状態を示す図である。It is a figure which shows the light emission state from the side surface of the light-emitting device of the comparative example 2. FIG.
(本発明の第1の実施の形態に係る発光装置1について)
 本発明の第1の実施の形態に係る発光装置1および発光装置1に用いられる光学素子としての導光体2の構成について説明する。
(About the light emitting device 1 according to the first embodiment of the present invention)
The structure of the light guide 2 as an optical element used for the light-emitting device 1 and the light-emitting device 1 according to the first embodiment of the present invention will be described.
 図1は、発光装置1の縦断面概要図である。発光装置1は、発光部材となるチップ型のLEDを円形板状の中央に配置したLED部材3と、LED部材3から発せられる光を導光し内部が充実体とされる導光体2と、導光体2を保持する保持具4を有している。導光体2は、LED部材3から発せられる光が入射する三角錐状にえぐれた凹面11を有している。この凹面11が、一方の面となる。 FIG. 1 is a schematic vertical cross-sectional view of the light-emitting device 1. The light-emitting device 1 includes an LED member 3 in which a chip-type LED serving as a light-emitting member is arranged in the center of a circular plate, a light guide 2 that guides light emitted from the LED member 3 and has a solid interior. The holder 4 that holds the light guide 2 is provided. The light guide 2 has a concave surface 11 that has a triangular pyramid shape on which light emitted from the LED member 3 is incident. This concave surface 11 becomes one surface.
 そして、導光体2は、一方の面とは反対側に、球形をなしLED部材3から発せられた光を出射するドーム形状の出射面12(他方の面)を有している。すなわち、導光体2は、平滑な凹面11と球形状の出射面12を有するメニスカスレンズである。さらに、導光体2は、凹面11と出射面12とをつなぐために凹面11の周囲を円錐台の周面状に取り囲むコバ13を有している。すなわち、導光体2は、LED部材3から発せられ導光体2内に導光された光であって導光体2の中心軸Mに対して大きな角度(たとえば60から80度)でLED部材3から出射される光を反射する環状の面であるコバ13を有している。このコバ13の面は、導光体2の周方向に若干突出する凸面となっている。すなわち、LED部材3側にわずかに突出する曲面となっている。 The light guide 2 has a dome-shaped emission surface 12 (the other surface) that emits light emitted from the LED member 3 on the side opposite to the one surface. That is, the light guide 2 is a meniscus lens having a smooth concave surface 11 and a spherical emission surface 12. Furthermore, the light guide 2 has an edge 13 that surrounds the periphery of the concave surface 11 in the shape of a circular truncated cone in order to connect the concave surface 11 and the emission surface 12. That is, the light guide 2 is light emitted from the LED member 3 and guided into the light guide 2, and is lighted at a large angle (for example, 60 to 80 degrees) with respect to the central axis M of the light guide 2. It has an edge 13 that is an annular surface that reflects light emitted from the member 3. The surface of the edge 13 is a convex surface that slightly protrudes in the circumferential direction of the light guide 2. That is, the curved surface slightly protrudes toward the LED member 3 side.
 また、導光体2は、たとえば透明のポリメチルメタクリレート(以下、「PMMA」と略記する。)からなる樹脂成形体である。そして、PMMAには、粒子径が2μm~10μmの光散乱粒子となる透光性シリコーン粒子を分散させてある。これにより、導光体2は、光拡散体になっている。 The light guide 2 is a resin molded body made of, for example, transparent polymethyl methacrylate (hereinafter abbreviated as “PMMA”). In PMMA, translucent silicone particles that are light scattering particles having a particle diameter of 2 μm to 10 μm are dispersed. Thereby, the light guide 2 is a light diffuser.
 以下、導光体2のシリコーン粒子について説明する。このシリコーン粒子は、体積的に一様な散乱能が与えられた導光体であり、散乱微粒子としての球形粒子を多数含んでいる。導光体2の内部に光が入射すると、その光は散乱微粒子によって散乱することになる。 Hereinafter, the silicone particles of the light guide 2 will be described. This silicone particle is a light guide provided with a volumetric uniform scattering ability, and includes a large number of spherical particles as scattering fine particles. When light enters the light guide 2, the light is scattered by the scattering fine particles.
 ここで、シリコーン粒子の理論的な基礎を与えるMie散乱理論について説明する。Mie散乱理論は、一様な屈折率を有する媒体(マトリックス)中に該媒体と異なる屈折率を有する球形粒子(散乱微粒子)が存在するケースについてマックスウェルの電磁方程式の解を求めたものである。光散乱粒子に相当する散乱微粒子によって散乱した散乱光の角度に依存した強度分布I(Α、Θ)は下記(1)式で表される。Αは、散乱微粒子の光学的大きさを示すサイズパラメータであり、マトリックス中での光の波長λで規格化された球形粒子(散乱微粒子)の半径rに相当する量である。角度Θは散乱角で、入射光の進行方向と同一方向をΘ=180°にとる。 Here, the Mie scattering theory that gives the theoretical basis of silicone particles will be described. Mie scattering theory is the solution of Maxwell's electromagnetic equation for the case where spherical particles (scattering fine particles) having a refractive index different from that of the medium exist in a medium (matrix) having a uniform refractive index. . The intensity distribution I (Α, Θ) depending on the angle of the scattered light scattered by the scattering fine particles corresponding to the light scattering particles is expressed by the following equation (1). Α is a size parameter indicating the optical size of the scattering fine particles, and is an amount corresponding to the radius r of the spherical particles (scattering fine particles) normalized by the wavelength λ of light in the matrix. The angle Θ is a scattering angle, and the same direction as the traveling direction of incident light is Θ = 180 °.
 また、(1)式中のi、iは(4)式で表される。そして、(2)~(4)式中の下添字ν付のaおよびbは(5)式で表される。上添字1および下添字νを付したP(cosΘ)は、Legendreの多項式、下添字ν付のa、bは1次、2次のRecatti-Bessel関数Ψ、ζ(ただし、「*」は下添字νを意味する。)とその導関数とからなる。mはマトリックスを基準にした散乱微粒子の相対屈折率で、m=nscatter/nmatrixである。 Further, i 1 and i 2 in the formula (1) are represented by the formula (4). Then, a and b with the subscript ν in the expressions (2) to (4) are expressed by the expression (5). P (cos Θ) with superscript 1 and subscript ν is Legendre's polynomial, and a and b with subscript ν are first- and second-order Recati-Bessel functions Ψ * and ζ * (where “*” Means the subscript ν) and its derivative. m is the relative refractive index of the scattering fine particles based on the matrix, and m = nscatter / nmattrix.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図2は、上記(1)~(5)式に基づいて、単一真球粒子による強度分布I(Α、Θ)を示すグラフである。この図2では、原点Gの位置に散乱微粒子としての真球粒子があり、下方から入射光が入射した場合の散乱光強度の角度分布I(Α、Θ)を示している。そして、原点Gから各曲線S1~S3までの距離が、それぞれの散乱角方向の散乱光強度である。曲線S1はΑが1.7であるときの散乱光強度、曲線S2はΑが11.5であるときの散乱光強度、曲線S3はΑが69.2であるときの散乱光強度を示している。なお、図2においては、散乱光強度を対数目盛で示している。このため、図2では僅かな強度差として見える部分が、実際には非常に大きな差となる。 FIG. 2 is a graph showing the intensity distribution I (Α, Θ) by a single true spherical particle based on the above equations (1) to (5). FIG. 2 shows the angular distribution I (Α, Θ) of the scattered light intensity when there is a true spherical particle as a scattering fine particle at the position of the origin G and incident light is incident from below. The distance from the origin G to each of the curves S1 to S3 is the scattered light intensity in each scattering angle direction. Curve S1 shows the scattered light intensity when Α is 1.7, curve S2 shows the scattered light intensity when Α is 11.5, and curve S3 shows the scattered light intensity when Α is 69.2. Yes. In FIG. 2, the scattered light intensity is shown on a logarithmic scale. For this reason, the portion that appears as a slight difference in intensity in FIG. 2 is actually a very large difference.
 この図2に示すように、サイズパラメータΑが大きくなればなるほど(ある波長λで考えた場合は真球粒子の粒径が大きくなればなるほど)、上方(照射方向の前方)に対して指向性高く光が散乱されていることがわかる。また、実際のところ、散乱光強度の角度分布I(Α、Θ)は、入射光波長λを固定すれば、散乱子の半径rと、媒体および散乱微粒子の相対屈折率mとをパラメータとして制御することができる。なお、導光体2は、前方散乱が大きいものとなっている。 As shown in FIG. 2, the larger the size parameter Α (the larger the particle size of the true spherical particle when considered at a certain wavelength λ), the higher the directivity with respect to the upper side (front of the irradiation direction). It can be seen that light is highly scattered. Actually, the angle distribution I (Α, Θ) of the scattered light intensity is controlled by using the radius r of the scatterer and the relative refractive index m of the medium and the scattered fine particles as parameters if the incident light wavelength λ is fixed. can do. In addition, the light guide 2 has a large forward scattering.
 このような、単一真球粒子がN個含まれる光散乱導光体に光を入射させると、光は真球粒子により散乱される。散乱光は光散乱導光体中を進み、他の真球粒子により再度散乱される。ある程度以上の体積濃度で粒子を添加した場合には、このような散乱が逐次的に複数回行われた後、光が光散乱導光体から出射する。このような散乱光がさらに散乱されるような現象を多重散乱現象と呼ぶ。このような多重散乱においては、透明ポリマーでの光線追跡法による解析は容易ではない。しかし、モンテカルロ法により光の挙動を追跡し、その特性を解析することはできる。それによると、入射光が無偏光の場合、散乱角の累積分布関数F(Θ)は下記の(6)式で表される。 When light is incident on such a light scattering light guide containing N single true spherical particles, the light is scattered by the true spherical particles. Scattered light travels through the light scattering light guide and is again scattered by other spherical particles. When particles are added at a volume concentration of a certain level or more, such scattering is sequentially performed a plurality of times, and then light is emitted from the light scattering light guide. A phenomenon in which such scattered light is further scattered is called a multiple scattering phenomenon. In such multiple scattering, analysis by a ray tracing method with a transparent polymer is not easy. However, the behavior of light can be traced by the Monte Carlo method and its characteristics can be analyzed. According to this, when the incident light is non-polarized light, the cumulative distribution function F (Θ) of the scattering angle is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで(6)式中のI(Θ)は、(1)式で表されるサイズパラメータΑの真球粒子の散乱強度である。強度Iの光が光散乱導光体に入射し、距離yを透過した後、光の強度が散乱によりIに減衰したとすると、これらの関係は下記の(7)式で表される。 Here, I (Θ) in the equation (6) is the scattering intensity of the true spherical particle having the size parameter 表 represented by the equation (1). If light of intensity Io enters the light scattering light guide and passes through the distance y, then the intensity of the light is attenuated to I by scattering, and these relationships are expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この(7)式中のτは濁度と呼ばれ、媒体の散乱係数に相当するものであり、下記の(8)式のように粒子数Nに比例する。なお、(8)式中、σは散乱断面積である。 Τ in the equation (7) is called turbidity and corresponds to the scattering coefficient of the medium, and is proportional to the number N of particles as in the following equation (8). In the equation (8), σ s is a scattering cross section.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (7)式から長さLの光散乱導光体を散乱せずに透過する確率P(L)は下記の(9)式で表される。 From the equation (7), the probability P t (L) of transmitting through the light-scattering light guide of length L without scattering is expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 反対に光路長Lまでに散乱される確率P(L)は下記の(10)式で表される。
Figure JPOXMLDOC01-appb-M000006
On the other hand, the probability P s (L) that is scattered up to the optical path length L is expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000006
 これらの式からわかるように、濁度τを変えることにより、光散乱導光体内での多重散乱の度合いを制御することができる。 As can be seen from these equations, the degree of multiple scattering in the light scattering light guide can be controlled by changing the turbidity τ.
 以上の関係式により、散乱微粒子のサイズパラメータΑと濁度τとの少なくとも1つをパラメータとして、光散乱導光体内での多重散乱を制御可能であり、出射面12における出射光強度と散乱角も適正に設定可能である。 By the above relational expression, it is possible to control the multiple scattering in the light scattering light guide using at least one of the size parameter Α and the turbidity τ of the scattering fine particles as parameters, and the outgoing light intensity and the scattering angle on the outgoing surface 12. Can also be set appropriately.
 図1に示す樹脂成形体の保持具4は、中央がくり抜かれた円環状の形状をしている。その円環状の内周面は、図1における上側から下側に向かうに従い円環状の径を小さくする傾斜面21となっている。この傾斜面21は、断面形状で直線となり、全体形状では凹面とされている。そして、この傾斜面21には、鏡面となるように鏡面シート(図示省略)が貼付されている。よって、傾斜面21は、凹面鏡の一部となっている。なお、傾斜面21は、曲面状の凹部の一部として形成しても良い。このように傾斜面21は、凹面鏡の一部を形成する構成としているが、傾斜面21は、凹面鏡としなくても良い。 The resin molded body holder 4 shown in FIG. 1 has an annular shape with the center cut out. The annular inner peripheral surface is an inclined surface 21 that decreases in diameter as it goes from the upper side to the lower side in FIG. The inclined surface 21 is a straight line in cross-sectional shape, and is a concave surface in the overall shape. And the mirror surface sheet | seat (illustration omitted) is affixed on this inclined surface 21 so that it may become a mirror surface. Therefore, the inclined surface 21 is a part of the concave mirror. In addition, you may form the inclined surface 21 as a part of curved-surface-shaped recessed part. Thus, although the inclined surface 21 is configured to form a part of the concave mirror, the inclined surface 21 may not be a concave mirror.
 導光体2は、コバ13が保持具4の傾斜面21に対向するように配置されている。また、導光体2のコバ13は、保持具4の上側の外周の縁部22にて保持されている。LED部材3は、図1における保持具4の下側面の円形にくり抜かれたくり抜き部23に対向するように固定されている。その結果、LED部材3の出射位置で導光体2の中心軸Mと交差する位置N1は、凹面11の円錐状の頂点に対向するようにされている。この出射位置N1は、LED部材3の中央位置でもある。また、コバ13と傾斜面21との間は、凹面11側から保持具4の上側の外周の縁部22に向かうに従って隙間の狭くなる間隙25となっている。 The light guide 2 is disposed so that the edge 13 faces the inclined surface 21 of the holder 4. Further, the edge 13 of the light guide 2 is held by the upper peripheral edge 22 of the holder 4. The LED member 3 is fixed so as to face the cutout portion 23 cut out in a circular shape on the lower surface of the holder 4 in FIG. 1. As a result, the position N1 that intersects the central axis M of the light guide 2 at the emission position of the LED member 3 is opposed to the conical apex of the concave surface 11. The emission position N1 is also the central position of the LED member 3. Further, a gap 25 is formed between the edge 13 and the inclined surface 21 so that the gap becomes narrower from the concave surface 11 side toward the outer peripheral edge 22 on the upper side of the holder 4.
 発光装置1におけるLED部材3から出射された光の光路について説明する。図3から図6に、その光路の各例を示している。図3は、発光装置1において、LED部材3の中央位置N1ではなく、中央の出射位置N1から外周方向にずれた位置、すなわち凹面11の円錐状の周面に向かう出射位置N2から出射された光が凹面11の特定の領域Pに照射された場合の光路を示している。その光は、領域Pから導光体2に透過される光路L1と、領域Pにて反射される反射光の光路L2の2つの光路である。出射位置N1と出射位置N2を想定するのは、LED部材3の光の出射部位が点ではなく所定の面積を有する領域となるためである。 The optical path of the light emitted from the LED member 3 in the light emitting device 1 will be described. 3 to 6 show examples of the optical path. In FIG. 3, in the light emitting device 1, the LED member 3 is emitted not from the central position N <b> 1 but from the central emission position N <b> 1 in the outer peripheral direction, that is, from the emission position N <b> 2 toward the conical circumferential surface of the concave surface 11. An optical path when light is irradiated to a specific region P of the concave surface 11 is shown. The light has two optical paths: an optical path L1 that is transmitted from the region P to the light guide 2 and an optical path L2 of reflected light that is reflected by the region P. The reason why the emission position N1 and the emission position N2 are assumed is that the light emission portion of the LED member 3 is not a point but a region having a predetermined area.
 光路L1は、LED部材3から出射された光が領域Pのある部分に当たり、凹面11から導光体2の内部へと進入し、出射面12から外部へ出射する光路である。光路L2は、LED部材3から出射された光が領域Pの他の部分に当たり、凹面11の領域Pで反射し、その後凹面11の別の領域から導光体2の内部へと進入し、出射面12から外部へ出射する光路である。なお、光が導光体2の内部へと進入し出射面12から外部へ出射するまでの間は、光は光散乱粒子の影響を受け、多重散乱する。光路L1,L2は、共に散乱が生じていないとしたときの経路であると共に多重散乱を受けた場合であっても確率が高い経路でもある。 The optical path L1 is an optical path in which the light emitted from the LED member 3 hits a portion having the region P, enters the light guide 2 from the concave surface 11, and exits from the emission surface 12 to the outside. In the optical path L2, the light emitted from the LED member 3 hits another part of the region P, is reflected by the region P of the concave surface 11, and then enters the inside of the light guide 2 from another region of the concave surface 11 to be emitted. This is an optical path emitted from the surface 12 to the outside. It should be noted that the light is affected by the light scattering particles until the light enters the light guide 2 and is emitted to the outside from the light exit surface 12, and is scattered multiple times. The optical paths L1 and L2 are both paths when no scattering occurs, and are high-probability paths even when subjected to multiple scattering.
 図4には、LED部材3の出射位置N2から出射された光のうち、大きく広がった光が凹面11の下部領域に照射された光の光路L3を示している。この下部領域に照射された光は、凹面11から導光体2の内部へと進入し、その後、コバ13にて全反射する。このような経路を取る光は、中心軸Mに対する広がり角度が60度を超えるものとなっている。しかし、凹面11の形状を変えることによって45度以上のものとしたり、65度以上のものとしたりすることができる。コバ13にて全反射した光は、さらに出射面12にて全反射を繰り返す。このとき、光が導光体2の内部へと進入し出射面12にて全反射を繰り返し、最後に導光体2の出射面から出射するまでの間は、光は光散乱粒子の影響を受け、多重散乱する。そのため、出射面12にて全反射を繰り返す過程で、その光の一部は、全反射されずに出射面12から光が出射されることとなる。この出射される光の光路L31,L32,L33を破線で図4に示す。なお、コバ13で全反射する光の全てが出射面12で再度全反射する訳ではない。なお、このコバ13の役割は、LED部材3の出射範囲を見かけ上広くするものである。 FIG. 4 shows an optical path L3 of the light emitted from the emission position N2 of the LED member 3 to the lower region of the concave surface 11 with the light that has spread widely. The light applied to the lower region enters the light guide 2 from the concave surface 11 and is then totally reflected by the edge 13. The light taking such a path has a spread angle with respect to the central axis M exceeding 60 degrees. However, by changing the shape of the concave surface 11, it can be 45 degrees or more, or 65 degrees or more. The light totally reflected by the edge 13 is further totally reflected at the exit surface 12. At this time, until the light enters the light guide 2 and repeats total reflection at the exit surface 12 and finally exits from the exit surface of the light guide 2, the light is influenced by light scattering particles. Receiving and multiple scattering. For this reason, in the process of repeating total reflection on the emission surface 12, a part of the light is emitted from the emission surface 12 without being totally reflected. The light paths L31, L32, and L33 of the emitted light are shown by broken lines in FIG. Note that not all of the light totally reflected by the edge 13 is totally reflected again by the emission surface 12. The role of the edge 13 is to apparently widen the emission range of the LED member 3.
 図5には、LED部材3の出射位置N2から出射された光のうち、図4に示す光よりさらに大きく広がった光が傾斜面21の鏡面シートに反射してコバ13の特定の領域Qに照射された光の光路を示している。LED部材3から出射された光が領域Qに照射されると、その光は、2つの光路L4,L5をとる。光路L4は、LED部材3から出射された光が領域Qに当たり、コバ13から導光体2の内部へと進入する光路である。光路L5は、LED部材3から出射された光が領域Qに当たり、コバ13の領域Qで反射し、その後再度傾斜面21の鏡面シートに反射してコバ13の別の領域から導光体2の内部へと進入する光路である。導光体2の内部へと進入した光は、出射面12にて全反射を繰り返す。このとき、光が導光体2の内部へと進入し出射面12にて全反射を繰り返し、最後に出射面12から出射するまでの間は、光は光散乱粒子の影響を受け、多重散乱する。そのため、出射面12にて全反射を繰り返す過程で、その光の一部は、全反射されずに出射面12から出射されることとなる。この出射される光の光路L41,L42,L51,L52を破線で図5に示す。 In FIG. 5, among the light emitted from the emission position N <b> 2 of the LED member 3, the light that has spread further than the light shown in FIG. 4 is reflected by the mirror surface sheet of the inclined surface 21 and enters the specific region Q of the edge 13. The optical path of the irradiated light is shown. When the light emitted from the LED member 3 is irradiated onto the region Q, the light takes two optical paths L4 and L5. The optical path L4 is an optical path through which the light emitted from the LED member 3 hits the region Q and enters the light guide 2 from the edge 13. In the optical path L5, the light emitted from the LED member 3 hits the region Q, is reflected by the region Q of the edge 13, and then is reflected again by the mirror surface sheet of the inclined surface 21, and from the other region of the edge 13 of the light guide 2 It is an optical path that enters inside. The light that has entered the light guide 2 repeats total reflection at the exit surface 12. At this time, the light is influenced by the light scattering particles until the light enters the inside of the light guide 2 and repeats total reflection at the exit surface 12 and finally exits from the exit surface 12, so that multiple scattering occurs. To do. For this reason, in the process of repeating total reflection on the emission surface 12, a part of the light is emitted from the emission surface 12 without being totally reflected. The light paths L41, L42, L51, and L52 of the emitted light are shown by broken lines in FIG.
 ここで、図4、図5に示すように、コバ13または保持具4によって反射され、導光体2内に入射した光であって光散乱粒子が無いとした場合の光が出射面12に入射する入射角をθとし、出射面12の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものは、20%以上となっている。 Here, as shown in FIGS. 4 and 5, the light that is reflected by the edge 13 or the holder 4 and is incident on the light guide 2 and has no light scattering particles is incident on the emission surface 12. The incident angle θ in the range of (θc × 1.7)> θ> (θc × 0.9), where θ is the incident angle of incidence and θc is the critical total reflection angle of the exit surface 12, 20% or more.
 図6は、LED部材3から出射される光がLED部材3の外周に近い側となる出射位置N4である場合の光路L6を示している。LED部材3から出射された光がコバ13の特定の領域Rに照射されると、その光は、光路L6をとる。光路L6は、まず、コバ13から導光体2の内部へと透過し、その後凹面11を全反射し、さらにその後出射面12から外部へ出射される。なお、光が導光体2の内部へと透過し出射面12から外部へ出射するまでの間は、光は光散乱粒子の影響を受け、多重散乱する。さらに、LED部材3の出射位置は、凹面11に複数向かうようにされていても良い。 FIG. 6 shows an optical path L6 in the case where the light emitted from the LED member 3 is the emission position N4 on the side close to the outer periphery of the LED member 3. When the light emitted from the LED member 3 is applied to the specific region R of the edge 13, the light takes an optical path L6. The optical path L6 is first transmitted from the edge 13 to the inside of the light guide 2, then totally reflected by the concave surface 11, and then emitted from the emission surface 12 to the outside. Note that the light is affected by the light scattering particles until the light is transmitted to the inside of the light guide 2 and is emitted from the emission surface 12 to the outside. Furthermore, a plurality of emission positions of the LED member 3 may be directed toward the concave surface 11.
 図7は、発光装置1の上面からの発光状態を示す。また、図8は、発光装置1の側面からの発光状態を示す。図7および図8において、発光状態は、色が白に近づくに従い出射輝度が高くなり、色が黒に近づくに従い出射輝度が低くなるように示している。 FIG. 7 shows a light emission state from the upper surface of the light emitting device 1. FIG. 8 shows a light emission state from the side surface of the light emitting device 1. 7 and 8, the light emission state is shown such that the emission luminance increases as the color approaches white, and the emission luminance decreases as the color approaches black.
 また、図9は、比較対象の構成例を示す図であり、特許文献1に開示されているLED電球の構成に近づけるべく、円形板状のLED部材91の外表面に拡散シート92を配置した発光装置93の縦断面概要図である。図10は、発光装置93の上面からの発光状態を示す。また、図11は、発光装置93の側面からの発光状態を示す。発光状態は、図7および図8と同様に示している。なお、発光装置1のLED部材3と発光装置93のLED部材91は同一のものを用い、供給電力も同一とした。よって、出射位置N1,N2なども発光装置1のそれと同一である。すなわち、出射範囲をLED部材3,91の全範囲とした場合である。これは、図に示すLED部材3,91の左右方向方向の長さを一辺とした四角形の範囲が出射範囲となることを意味する。 Moreover, FIG. 9 is a figure which shows the structural example of a comparison object, and has arrange | positioned the diffusion sheet 92 on the outer surface of the circular plate-shaped LED member 91 in order to approximate the structure of the LED bulb currently disclosed by patent document 1. FIG. It is a longitudinal cross-sectional schematic diagram of the light-emitting device 93. FIG. 10 shows a light emission state from the upper surface of the light emitting device 93. FIG. 11 shows a light emission state from the side surface of the light emitting device 93. The light emission state is shown in the same manner as in FIGS. The LED member 3 of the light emitting device 1 and the LED member 91 of the light emitting device 93 were the same, and the supplied power was also the same. Therefore, the emission positions N1, N2, etc. are the same as those of the light emitting device 1. That is, the emission range is the entire range of the LED members 3 and 91. This means that a square range with one side of the length in the left-right direction of the LED members 3 and 91 shown in the figure is the emission range.
 図7および図8と、図10および図11とを見比べると、発光装置93よりも発光装置1の方が導光体2全体に光が拡散し、グレアが低減できていることがわかる。すなわち、発光装置93は、図10に示すように中央部に高輝度部分、すなわちLED部材91の出射範囲の中央に相当する部分が明確に現われているこれに対し、発光装置1では、図7に示すように中央には高輝度部分はなく、中央を囲むようにして、リング状の高輝度部分が現われている。 7 and 8 are compared with FIGS. 10 and 11, it can be seen that the light emitting device 1 diffuses light to the entire light guide 2 and the glare can be reduced compared to the light emitting device 93. That is, in the light emitting device 93, as shown in FIG. 10, a high brightness portion, that is, a portion corresponding to the center of the emission range of the LED member 91 appears clearly in the central portion. As shown in FIG. 5, there is no high brightness portion in the center, and a ring-like high brightness portion appears around the center.
(本発明の第2の実施の形態に係る発光装置31について)
 本発明の第2の実施の形態に係る発光装置31および発光装置31に用いられる光学素子としての導光体32の構成について説明する。
(About the light emitting device 31 according to the second embodiment of the present invention)
The structure of the light guide 31 as an optical element used for the light-emitting device 31 and the light-emitting device 31 which concerns on the 2nd Embodiment of this invention is demonstrated.
 図12は、発光装置31の縦断面概要図である。発光装置31は、発光装置1における導光体2の形状が異なる以外は発光装置1と同一の構成である。よって、導光体32以外の部材については発光装置1と同一の符号を付し、その説明を省略する。 FIG. 12 is a schematic vertical cross-sectional view of the light-emitting device 31. The light emitting device 31 has the same configuration as the light emitting device 1 except that the shape of the light guide 2 in the light emitting device 1 is different. Therefore, members other than the light guide 32 are denoted by the same reference numerals as those of the light emitting device 1 and description thereof is omitted.
 導光体32は、LED部材3から発せられる光を導光し内部が充実体とされるものである。導光体32は、LED部材3から発せられる光が入射する部分の奥側が三角錐状にえぐれ、開口側がその三角錐状の底面から続くように円柱状の空間とされる凹面41を有している。この凹面41が、一方の面となる。 The light guide 32 guides the light emitted from the LED member 3 and the inside is filled. The light guide 32 has a concave surface 41 which is a cylindrical space so that the back side of the part where the light emitted from the LED member 3 enters is triangular pyramid, and the opening side continues from the triangular pyramid bottom surface. ing. The concave surface 41 is one surface.
 そして、導光体32は、一方の面とは反対側に、球形をなしLED部材3から発せられた光を出射する出射面42(他方の面)を有している。すなわち、導光体32は、凹面41と出射面42を有するメニスカスレンズである。さらに、導光体32は、凹面41の周囲を取り囲み凹面41の開口側内周面と直角をなす円環状部43と、発光装置1の導光体2におけるコバ13と同様に円環状部43を円錐台の周面状に取り囲む環状の面である円環状部44を有している。これら円環状部43,44を総称してコバ45ということにする。コバ45は、LED部材3から発せられ導光体2内に導光された光を反射する。 The light guide 32 has a light emitting surface 42 (the other surface) that emits light emitted from the LED member 3 on a side opposite to the one surface. That is, the light guide 32 is a meniscus lens having a concave surface 41 and an exit surface 42. Furthermore, the light guide 32 includes an annular portion 43 that surrounds the concave surface 41 and forms a right angle with the opening-side inner peripheral surface of the concave surface 41, and an annular portion 43 similar to the edge 13 in the light guide 2 of the light emitting device 1. Has an annular portion 44 which is an annular surface surrounding the circular truncated cone. These annular portions 43 and 44 are collectively referred to as an edge 45. The edge 45 reflects light emitted from the LED member 3 and guided into the light guide 2.
 発光装置31におけるLED部材3から出射された光の光路は、発光装置1のそれと略同様である。また、コバ45または保持具4によって反射され、導光体32内に入射した光であって光散乱粒子が無いとした場合の光が出射面42に入射する入射角をθとし、出射面42の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものは、発光装置1同様20%以上となっている。 The optical path of the light emitted from the LED member 3 in the light emitting device 31 is substantially the same as that of the light emitting device 1. Further, the incident angle at which the light that is reflected by the edge 45 or the holder 4 and is incident on the light guide 32 and does not have light scattering particles when entering the light exit surface 42 is θ, and the light exit surface 42. The incident angle θ in the range of (θc × 1.7)> θ> (θc × 0.9) is 20% or more like the light emitting device 1 where the total reflection critical angle is θc. .
 図13は、発光装置31の上面からの発光状態を示す。また、図14は、発光装置31の側面からの発光状態を示す。発光状態は、図7および図8と同様に示している。なお、発光装置31のLED部材3と発光装置1のLED装置3は同一のものを用い、供給電力も同一とした。図13および図14と、比較対象の図10および図11とを見比べると、発光装置93よりも発光装置31の方が導光体32全体に光が拡散し、グレアが低減できていることがわかる。 FIG. 13 shows a light emission state from the upper surface of the light emitting device 31. FIG. 14 shows a light emission state from the side surface of the light emitting device 31. The light emission state is shown in the same manner as in FIGS. The LED member 3 of the light emitting device 31 and the LED device 3 of the light emitting device 1 were the same, and the supplied power was also the same. Comparing FIGS. 13 and 14 with FIGS. 10 and 11 for comparison, it is found that light is diffused in the entire light guide 32 and glare can be reduced in the light emitting device 31 rather than in the light emitting device 93. Recognize.
(本発明の第3の実施の形態に係る発光装置51について)
 本発明の第3の実施の形態に係る発光装置51および発光装置51に用いられる光学素子としての導光体32の構成について説明する。
(About the light emitting device 51 according to the third embodiment of the present invention)
The structure of the light guide 51 as an optical element used for the light-emitting device 51 and the light-emitting device 51 according to the third embodiment of the present invention will be described.
 図15は、発光装置51の縦断面概要図である。発光装置51は、発光装置31における保持具4の形状が異なり、導光体32の厚みが若干大きいこと以外は発光装置31と同一の構成である。よって、保持具53以外の部材については発光装置31と同一の符号を付し、その説明を省略する。 FIG. 15 is a schematic vertical cross-sectional view of the light-emitting device 51. The light emitting device 51 has the same configuration as the light emitting device 31 except that the shape of the holder 4 in the light emitting device 31 is different and the thickness of the light guide 32 is slightly larger. Therefore, members other than the holder 53 are denoted by the same reference numerals as those of the light emitting device 31 and description thereof is omitted.
 保持具53の図15における上側から下側までの高さは、保持具4の3倍である。保持具53は、中央がくり抜かれた円環状の形状をしている。その円環状の内周面は、図14における上側から下側に向かうに従い円環状の径を小さくする凹形状かつ曲面形状の傾斜面61となっている。この傾斜面61には、鏡面となるように鏡面シート(図示省略)が貼付されている。傾斜面61は、発光装置1の傾斜面21と同様に凹面鏡となっている。しかし、傾斜面61は、凹面鏡としなくても良い。 The height from the upper side to the lower side of the holder 53 in FIG. 15 is three times that of the holder 4. The holder 53 has an annular shape with the center cut out. The annular inner peripheral surface is a concave and curved inclined surface 61 that decreases in diameter as it goes from the upper side to the lower side in FIG. A mirror surface sheet (not shown) is attached to the inclined surface 61 so as to be a mirror surface. The inclined surface 61 is a concave mirror similar to the inclined surface 21 of the light emitting device 1. However, the inclined surface 61 may not be a concave mirror.
 導光体32は、コバ45が保持具53の傾斜面61に対向するように配置されている。また、導光体32のコバ45は、保持具53の縁部62にて保持されている。LED部材3は、図15における保持具53の下側面の円形にくり抜かれたくり抜き部63に対向するようにして固定されている。その結果、LED部材3の出射位置N1は、凹面41に向かうように配置されている。また、コバ45と傾斜面61との間は、凹面61側から縁部62に向かうに従って隙間の狭くなる間隙64となっている。 The light guide 32 is disposed so that the edge 45 faces the inclined surface 61 of the holder 53. The edge 45 of the light guide 32 is held by the edge 62 of the holder 53. The LED member 3 is fixed so as to face the cut-out portion 63 cut out in a circular shape on the lower surface of the holder 53 in FIG. As a result, the emission position N1 of the LED member 3 is disposed so as to face the concave surface 41. Further, a gap 64 is formed between the edge 45 and the inclined surface 61 so that the gap becomes narrower from the concave surface 61 side toward the edge portion 62.
 発光装置51におけるLED部材3から出射された光の光路は、発光装置1のそれと略同様である。また、コバ45または保持具53によって反射され、導光体32内に入射した光であって光散乱粒子が無いとした場合の光が出射面42に入射する入射角をθとし、出射面42の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものは、発光装置1同様20%以上となっている。 The light path of the light emitted from the LED member 3 in the light emitting device 51 is substantially the same as that of the light emitting device 1. Further, the incident angle at which the light that is reflected by the edge 45 or the holder 53 and is incident on the light guide 32 and does not include light scattering particles is incident on the exit surface 42 is θ, and the exit surface 42 The incident angle θ in the range of (θc × 1.7)> θ> (θc × 0.9) is 20% or more like the light emitting device 1 where the total reflection critical angle is θc. .
 図16は、発光装置51の上面からの発光状態を示す。また、図17は、発光装置51の側面からの発光状態を示す。発光状態は、図7および図8と同様に示している。なお、発光装置51のLED部材3と発光装置1のLED部材3は同一のものを用い、供給電力も同一とした。図16および図17と、比較対象の図10および図11とを見比べると、発光装置93よりも発光装置51の方が導光部32全体に光が拡散し、グレアが低減できていることがわかる。 FIG. 16 shows a light emission state from the upper surface of the light emitting device 51. FIG. 17 shows a light emission state from the side surface of the light emitting device 51. The light emission state is shown in the same manner as in FIGS. The LED member 3 of the light emitting device 51 and the LED member 3 of the light emitting device 1 were the same, and the supplied power was also the same. When comparing FIGS. 16 and 17 with FIGS. 10 and 11 to be compared, it is found that light is diffused in the entire light guide unit 32 and glare can be reduced in the light emitting device 51 than in the light emitting device 93. Recognize.
(本発明の第4の実施の形態に係る発光装置71について)
 本発明の第4の実施の形態に係る発光装置71および発光装置71に用いられる光学素子としての導光体2の構成について説明する。
(About the light emitting device 71 according to the fourth embodiment of the present invention)
The structure of the light guide 2 as an optical element used in the light emitting device 71 and the light emitting device 71 according to the fourth embodiment of the present invention will be described.
 図18は、発光装置71の縦断面概要図である。発光装置71は、発光装置1における光の出射位置が4箇所となったこと以外は発光装置1と同一の構成である。すなわち、1つのLED部材3に4つのLED3A,3B,3C,3Dが配置される構成となっている。よって、各LED部材3A~3Dの中心となる出射中心位置P1,P2,P3,P4とLED3A~3D以外については発光装置1と同一の符号を付し、その説明を省略する。ここで、出射中心位置P1~P4は、コバ13と凹面11との境界位置に対向する位置である。 FIG. 18 is a schematic vertical cross-sectional view of the light emitting device 71. The light emitting device 71 has the same configuration as that of the light emitting device 1 except that the light emitting device 1 has four light emission positions. That is, four LED 3A, 3B, 3C, 3D is arranged on one LED member 3. Therefore, the same reference numerals as those of the light emitting device 1 are used except for the emission center positions P1, P2, P3, P4 and the LEDs 3A to 3D which are the centers of the LED members 3A to 3D, and the description thereof is omitted. Here, the emission center positions P1 to P4 are positions facing the boundary position between the edge 13 and the concave surface 11.
 図19は、発光装置71のLED部材3の平面図である。正方形の部位がLED3A~3Dで、その各中心位置が出射中心位置P1~P4となる。発光装置71におけるLED部材3から出射された光の光路は、発光装置1のそれと略同様である。 FIG. 19 is a plan view of the LED member 3 of the light emitting device 71. The square portions are LEDs 3A to 3D, and their center positions are emission center positions P1 to P4. The optical path of light emitted from the LED member 3 in the light emitting device 71 is substantially the same as that of the light emitting device 1.
 図20は、発光装置71の上面からの発光状態を示す。また、図21は、発光装置71の側面からの発光状態を示す。図20および図21において、発光状態は、色が白に近づくに従い出射輝度が高くなり、色が黒に近づくに従い出射輝度が低くなるように示している。 FIG. 20 shows a light emission state from the upper surface of the light emitting device 71. FIG. 21 shows a light emission state from the side surface of the light emitting device 71. 20 and 21, the light emission state is shown such that the emission luminance increases as the color approaches white and the emission luminance decreases as the color approaches black.
 また、図22は、比較例の発光装置93において、図18,図19に示すLED部材3を用いた比較例2を示すもので、発光装置の上面からの発光状態を示す。また、図23は、比較例2の発光装置の側面からの発光状態を示す。発光状態は、図20および図21と同様に示している。なお、比較例2の発光装置では、発光装置71のLED部材3と同一のものを用い、供給電力も同一とした。 FIG. 22 shows a comparative example 2 using the LED member 3 shown in FIGS. 18 and 19 in the light emitting device 93 of the comparative example, and shows a light emission state from the upper surface of the light emitting device. FIG. 23 shows a light emission state from the side surface of the light emitting device of Comparative Example 2. The light emission state is shown in the same manner as in FIGS. In addition, in the light-emitting device of the comparative example 2, the same thing as the LED member 3 of the light-emitting device 71 was used, and the power supply was also made the same.
 図20および図21と、図22および図23とを見比べると、比較例2の発光装置よりも発光装置71の方が導光体2全体に光が拡散し、グレアが低減できていることがわかる。 20 and FIG. 21, and FIG. 22 and FIG. 23, the light emitting device 71 diffuses light throughout the light guide 2 and the glare can be reduced compared to the light emitting device of Comparative Example 2. Recognize.
(本発明の実施の形態によって得られる主な効果)
 本発明の実施の形態に係る導光体2,32は、内部が充実体とされ、凹面11,41などから入射された光を導光し出射面12,42から出射するメニスカスレンズとし、メニスカスレンズを光を拡散する光散乱粒子が含有された光拡散体で形成した。このため、凹面11,41の形状を変えることで配光角を簡単に制御でき、しかもグレアを減少させることができる。また、発光装置1,31,51,71は、出射面12,42において光の一部を全反射させ、一方、光の一部を出射させる光路を形成できる。すなわち、出射面12,42にて全反射を繰り返す過程で、全反射されずに出射面12,42から光が出射される光が存在する。また、全反射をせずに出射面12,42から出射する光の方向も拡散される。そのため、出射する光を拡散してグレアを低減できる。
(Main effects obtained by the embodiment of the present invention)
The light guides 2 and 32 according to the embodiment of the present invention are solid inside, and are meniscus lenses that guide the light incident from the concave surfaces 11 and 41 and emit the light from the output surfaces 12 and 42. The lens was formed of a light diffuser containing light scattering particles that diffuse light. For this reason, the light distribution angle can be easily controlled by changing the shapes of the concave surfaces 11 and 41, and the glare can be reduced. The light emitting devices 1, 31, 51, 71 can form an optical path that totally reflects part of the light on the emission surfaces 12, 42, while emitting part of the light. That is, in the process of repeating total reflection at the emission surfaces 12 and 42, there is light that is emitted from the emission surfaces 12 and 42 without being totally reflected. Further, the direction of light emitted from the emission surfaces 12 and 42 without being totally reflected is also diffused. Therefore, glare can be reduced by diffusing outgoing light.
 また、出射面12,42側が球形をなし、凹面11,41と出射面12,42とをつなぐ境界部となるコバ13,45が、環状の凸面となっている。そのため、中心軸Mに対して大きな角度で導光体2,32に進入してきた光をコバ13,45の環状の面にて全反射させやすい。 Also, the exit surfaces 12 and 42 side is spherical, and the edges 13 and 45 that serve as boundaries connecting the concave surfaces 11 and 41 and the exit surfaces 12 and 42 are annular convex surfaces. Therefore, the light that has entered the light guides 2 and 32 at a large angle with respect to the central axis M is easily totally reflected by the annular surfaces of the edges 13 and 45.
 また、コバ13,45が凹面11,41から進入してきた光を全反射し、出射面12,42側へ光を導くため、LED部材3の出射部位外からも輝度を発生させ、輝度を均一にし、グレアをより防止する。 Further, since the edges 13 and 45 totally reflect the light entering from the concave surfaces 11 and 41 and guide the light to the emission surfaces 12 and 42, the luminance is generated from outside the emission part of the LED member 3, and the luminance is uniform. And prevent glare more.
 また、保持具4,53が、光を導光体2,32側に反射する反射面を有しているため、保持具4,53の方向に漏れる光がある場合でも、その光を導光体2,32へと戻し、発光装置1,31,51,71の発光効率を高める。また、保持具4,53の反射面によって光を全反射し、導光体2,32側に導くため、LED部材3の出射部位外からも輝度を発生させ、輝度を均一にし、グレアをより防止できる。 Moreover, since the holders 4 and 53 have a reflection surface that reflects light toward the light guides 2 and 32, even when there is light leaking in the direction of the holders 4 and 53, the light is guided. Returning to the bodies 2 and 32, the luminous efficiency of the light emitting devices 1, 31, 51, 71 is increased. In addition, since the light is totally reflected by the reflecting surfaces of the holders 4 and 53 and guided to the light guides 2 and 32 side, the brightness is generated from the outside of the emission part of the LED member 3, the brightness is made uniform, and the glare is further increased. Can be prevented.
 また、発光装置1、31,51,71において、コバ13,45または保持具4,53によって反射され、導光体2,32内に入射した光であって光散乱粒子が無いとした場合の光が出射面12,42に入射する入射角をθとし、出射面12,42の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものは、20%以上となっている。そのため、出射面12,42における光の全反射の確率が高まり、導光体2,32の出射面12,42の全体から輝度を発生させることができる。この範囲内の光は、導光体2,32内部で全反射する回数を抑えることができ、高い出射効率を維持できる。また、(θc×1.7)>θ>(θc×1.1)の範囲となる入射角θのものが、30%以上となることが、より好ましい。この範囲の光は、散乱を受けた際でも全反射し導光体2,32の側面に出射される確率が高くなり、側面から見た場合でも輝度が均一になる。 Further, in the light emitting devices 1, 31, 51, 71, the light that is reflected by the edges 13, 45 or the holders 4, 53 and is incident on the light guides 2, 32 and has no light scattering particles. When the incident angle at which light is incident on the exit surfaces 12 and 42 is θ, and the total reflection critical angle of the exit surfaces 12 and 42 is θc, (θc × 1.7)> θ> (θc × 0.9) The incident angle θ in the range is 20% or more. Therefore, the probability of total reflection of light on the exit surfaces 12 and 42 is increased, and brightness can be generated from the entire exit surfaces 12 and 42 of the light guides 2 and 32. Light within this range can suppress the number of times of total reflection inside the light guides 2 and 32, and can maintain high emission efficiency. Moreover, it is more preferable that the incident angle θ in the range of (θc × 1.7)> θ> (θc × 1.1) is 30% or more. Light in this range has a high probability of being totally reflected and emitted to the side surfaces of the light guides 2 and 32 even when scattered, and the luminance is uniform even when viewed from the side surface.
 また、導光体2,32には、透光性シリコーン粒子からなる光散乱粒子が含有されている。そのため、従来の光拡散シートを用いた場合の発光装置93の全体の明るさ(図10および図11に示す)に比べて、発光装置1,31,51,71の全体の明るさ(それぞれ図7および図8、図13および図14、図16および図17、図20および図21に示す)が明るい。これは、この光散乱粒子による光拡散は、光吸収の程度が低いためである。 Further, the light guides 2 and 32 contain light scattering particles made of translucent silicone particles. Therefore, compared to the overall brightness of the light emitting device 93 (shown in FIGS. 10 and 11) when a conventional light diffusion sheet is used, the overall brightness of the light emitting devices 1, 31, 51, 71 (respectively illustrated). 7 and 8, FIG. 13 and FIG. 14, FIG. 16 and FIG. 17, FIG. 20 and FIG. This is because light diffusion by the light scattering particles has a low degree of light absorption.
(他の形態)
 以上、本発明の実施の形態における導光体2,32およびそれを用いた発光装置1,31,51,71について説明したが、本発明の要旨を逸脱しない限り種々変更実施可能である。
(Other forms)
The light guides 2 and 32 and the light-emitting devices 1, 31, 51 and 71 using the light guides 2 and 32 in the embodiment of the present invention have been described above, but various modifications can be made without departing from the gist of the present invention.
 本発明の実施の形態に係る導光体2,32は、内部が充実体とされ、凹面11,41から入射された光を導光し出射面12,42から出射するメニスカスレンズとしている。そして、メニスカスレンズは、光を拡散する光散乱粒子を含有する光拡散体で形成している。しかし、メニスカスレンズは、たとえばポリカーボネート樹脂に光拡散体としてのシリコーン粒子を分散させたもの等としても良い。 The light guides 2 and 32 according to the embodiment of the present invention are solid bodies and are meniscus lenses that guide the light incident from the concave surfaces 11 and 41 and emit the light from the output surfaces 12 and 42. The meniscus lens is formed of a light diffuser that contains light scattering particles that diffuse light. However, the meniscus lens may be, for example, one in which silicone particles as a light diffuser are dispersed in a polycarbonate resin.
 また、光拡散体として光散乱粒子を用いる場合には、光散乱粒子の材質、形状、粒径等の諸条件を適宜設定できる。たとえば、光散乱粒子は、その粒子径が2μmから9μmの球状かつ透光性のシリコーン粒子としている。しかし、光散乱粒子は、導光体2内の光を多重散乱するものであれば、その材質、形状、粒子径等を問わず、種々のものを用いることができる。ただし、導光体2,32において入射光の前方散乱を適切な範囲で大きくするためには、粒子径が2μmから9μm、より好ましくは5μmから9μmの球状かつ透光性のシリコーン粒子を用いることが好ましい。 In addition, when using light scattering particles as the light diffuser, various conditions such as the material, shape, and particle size of the light scattering particles can be set as appropriate. For example, the light scattering particles are spherical and translucent silicone particles having a particle diameter of 2 μm to 9 μm. However, as the light scattering particles, various particles can be used regardless of their materials, shapes, particle diameters, etc., as long as they scatter multiple light in the light guide 2. However, in order to increase the forward scattering of incident light in an appropriate range in the light guides 2 and 32, spherical and translucent silicone particles having a particle diameter of 2 μm to 9 μm, more preferably 5 μm to 9 μm, should be used. Is preferred.
 また、出射面12,42側が球形(ドーム状)をなし、凹面11,41と出射面12,42とをつなぎ、LED部材3側に突出するコバ13,45が、環状の面となっている。しかし、出射面12,42側は楕円球のような形状等としても良い。また、コバ13,45は、環状の面ではなく、たとえば一部環状が途切れていても良い。また、LED部材3側に突出するコバ13,45を設けないようにしても良い。 Further, the emission surfaces 12 and 42 are spherical (dome-shaped), and the edges 13 and 45 that connect the concave surfaces 11 and 41 and the emission surfaces 12 and 42 and protrude toward the LED member 3 are annular surfaces. . However, the exit surfaces 12 and 42 may have an elliptical sphere shape. Further, the edges 13 and 45 are not annular surfaces, and for example, a part of the annular shape may be interrupted. Further, the edges 13 and 45 protruding to the LED member 3 side may not be provided.
 また、凹面11,41は、平滑面とされているが、光を散乱するシボ状になっていても良い。凹面11,41をシボ状とすることによって、導光体2,32内における光の拡散・散乱が促進される。 Moreover, although the concave surfaces 11 and 41 are smooth surfaces, they may have a grain shape that scatters light. By making the concave surfaces 11 and 41 have a textured shape, the diffusion and scattering of light in the light guides 2 and 32 is promoted.
 また、凹面11,41と出射面12,42との境界部となるコバ13,45が凹面11,41から導光体2,32へ進入してきた光を全反射している。しかし、たとえばコバ13,45にて光が透過され、保持具4,53によって反射されることとしても良い。 Further, the edges 13 and 45 that are the boundary portions between the concave surfaces 11 and 41 and the emission surfaces 12 and 42 totally reflect the light that has entered the light guides 2 and 32 from the concave surfaces 11 and 41. However, for example, light may be transmitted through the edges 13 and 45 and reflected by the holders 4 and 53.
 また、発光装置1,31,51,71は、導光体2,32を凹面11,41側から支える保持具4,53を有し、保持具4,53が、光を導光体2,32側に反射する反射面(傾斜面21に貼付されている鏡面シート)を有している。しかし、発光装置1,31,51,71は、保持具4,53とその反射面を省略しても良い。たとえば、コバ13,45の面にプリズムを形成して、光を反射することとしても良い。また、傾斜面21,61に鏡面シートを貼付するのではなく、蒸着、磨き加工等によって鏡面を形成しても良い。 The light emitting devices 1, 31, 51, 71 have holders 4, 53 that support the light guides 2, 32 from the concave surfaces 11, 41 side, and the holders 4, 53 transmit light to the light guides 2, 2. It has a reflecting surface (mirror sheet affixed to the inclined surface 21) that reflects to the 32 side. However, the light-emitting devices 1, 31, 51, 71 may omit the holders 4, 53 and their reflecting surfaces. For example, a prism may be formed on the surfaces of the edges 13 and 45 to reflect light. Further, the mirror surface may be formed by vapor deposition, polishing, or the like instead of attaching the mirror sheet to the inclined surfaces 21 and 61.
 また、発光装置1、31,53において、コバ13,45または保持具4,53によって反射され、導光体2,32内に入射した光であって光散乱粒子が無いとした場合の光が出射面12,42に入射する入射角をθとし、出射面12,42の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものは、 20%以上となっている。しかし、その値は20%未満としても良い。 Further, in the light emitting devices 1, 31, and 53, the light that is reflected by the edges 13 and 45 or the holders 4 and 53 and is incident on the light guides 2 and 32 without light scattering particles is generated. When the incident angle incident on the exit surfaces 12 and 42 is θ and the total reflection critical angle of the exit surfaces 12 and 42 is θc, the range of (θc × 1.7)> θ> (θc × 0.9) The incident angle θ is 20% or more. However, the value may be less than 20%.
 また、LED部材3の出射位置A,Bは、凹面11に向かうようにされている。そして、LED部材3の各LED3A~3Dの各出射中心位置P1~P4は、凹面11とコバ13の境界位置に向かうようにされている。しかし、各LED3A~3Dの出射中心位置は、コバ13,45の部分に向かうようにされていても良い。また、LED部材3の出射位置は、凹面11およびコバ13,45に向かうようにされていても良い。この場合、LEDは、複数個用いられる。 Further, the emission positions A and B of the LED member 3 are directed toward the concave surface 11. The emission center positions P1 to P4 of the LEDs 3A to 3D of the LED member 3 are directed to the boundary position between the concave surface 11 and the edge 13. However, the emission center positions of the LEDs 3A to 3D may be directed toward the edge portions 13 and 45. Further, the emission position of the LED member 3 may be directed toward the concave surface 11 and the edges 13 and 45. In this case, a plurality of LEDs are used.
 また、発光部材はLEDに限定されず、有機エレクトロルミネッセンス(Organic
Electro-Luminescence、OEL、有機EL)、無機エレクトロルミネッセンス(Inorganic Electro-Luminescence、IEL、無機EL)、レーザー光等の他の発光部材を用いることができる。さらに、LEDにはチップ型のものを用いているが、レンズ付きのLEDを用いることができる。
In addition, the light emitting member is not limited to the LED, but organic electroluminescence (Organic
Other light-emitting members such as Electro-Luminescence (OEL, organic EL), inorganic electroluminescence (IEL, inorganic EL), and laser light can be used. Furthermore, although a chip type LED is used, an LED with a lens can be used.
 1,31,51,71 発光装置
 2,32 導光体(光学素子、メニスカスレンズ)
 3 LED部材(発光部材)
 4,53 保持具
11,41 凹面(一方の面)
12,42 出射面(他方の面)
13,45 コバ
 θ 入射角
 θc 全反射臨界角
1, 31, 51, 71 Light-emitting device 2, 32 Light guide (optical element, meniscus lens)
3 LED members (light emitting members)
4,53 Holder 11,41 Concave surface (one surface)
12, 42 Output surface (the other surface)
13,45 edge θ Incident angle θc Total reflection critical angle

Claims (7)

  1.  内部が充実体とされ、一方の面から入射された光を導光し他方の面から出射する光学素子において、
     上記一方の面を凹面とし、上記他方の面を凸面としたメニスカスレンズとし、上記メニスカスレンズを上記光を拡散する光拡散体で形成したことを特徴とする光学素子。
    In the optical element that the inside is a solid body, guides light incident from one surface and emits it from the other surface,
    An optical element comprising: a meniscus lens having a concave surface on the one surface and a convex surface on the other surface; and the meniscus lens is formed of a light diffuser that diffuses the light.
  2.  請求項1記載の光学素子において、
     前記他方の面側が球形をなし、
     前記一方の面と前記他方の面との境界部となる前記メニスカスレンズのコバが、球形の面とは反対側に突出した環状の面となっていることを特徴とする光学素子。
    The optical element according to claim 1, wherein
    The other surface side is spherical,
    An optical element, wherein an edge of the meniscus lens serving as a boundary portion between the one surface and the other surface is an annular surface protruding to the opposite side of the spherical surface.
  3.  請求項1記載の光学素子において、
     前記一方の面は、前記光を散乱するシボ状になっていることを特徴とする光学素子。
    The optical element according to claim 1, wherein
    The one surface has an embossed shape that scatters the light.
  4.  発光部材と、内部が充実体とされ、上記発光部材から発せられる光が一方の面から入射され他方の面から出射する光学素子とを有する発光装置において、
     上記光学素子は、上記一方の面を凹面とし、上記他方の面を凸面としたメニスカスレンズとされ、このメニスカスレンズは、上記光を拡散する光拡散体で形成されていることを特徴とする発光装置。
    In a light-emitting device having a light-emitting member and an optical element in which the inside is a solid body and light emitted from the light-emitting member is incident from one surface and exits from the other surface,
    The optical element is a meniscus lens having one surface as a concave surface and the other surface as a convex surface, and the meniscus lens is formed of a light diffuser that diffuses the light. apparatus.
  5.  請求項4記載の発光装置において、
     前記一方の面と前記他方の面との境界部となる前記メニスカスレンズのコバが前記一方の面から進入してきた光を全反射することを特徴とする発光装置。
    The light-emitting device according to claim 4.
    The light emitting device according to claim 1, wherein the edge of the meniscus lens serving as a boundary portion between the one surface and the other surface totally reflects light entering from the one surface.
  6.  請求項4記載の発光装置において、
     前記光学素子を前記一方の面側から支える保持具を有し、上記保持具が、前記光を前記光学素子側に反射する反射面を有していることを特徴とする発光装置。
    The light-emitting device according to claim 4.
    A light-emitting device, comprising: a holder that supports the optical element from the one surface side; and the holder has a reflective surface that reflects the light toward the optical element.
  7.  請求項5記載の発光装置において、
     前記コバまたは前記保持具によって反射され、前記メニスカスレンズ内に入射した光であって光散乱体が無いとした場合の光が前記他方の面に入射する入射角をθとし、前記他方の面の全反射臨界角をθcとしたとき、(θc×1.7)>θ>(θc×0.9)の範囲となる入射角θのものを20%以上としたことを特徴とする発光装置。
    The light-emitting device according to claim 5.
    The incident angle at which the light incident on the other surface is reflected by the edge or the holder and is incident on the meniscus lens without the light scatterer is defined as θ. A light-emitting device having an incident angle θ in a range of (θc × 1.7)>θ> (θc × 0.9) when the total reflection critical angle is θc is 20% or more.
PCT/JP2010/063535 2009-08-25 2010-08-10 Optical element and light emitting device WO2011024641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009194457A JP5543157B2 (en) 2009-08-25 2009-08-25 Optical element and light emitting device
JP2009-194457 2009-08-25

Publications (1)

Publication Number Publication Date
WO2011024641A1 true WO2011024641A1 (en) 2011-03-03

Family

ID=43627747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063535 WO2011024641A1 (en) 2009-08-25 2010-08-10 Optical element and light emitting device

Country Status (2)

Country Link
JP (1) JP5543157B2 (en)
WO (1) WO2011024641A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317100A (en) * 2014-10-13 2015-01-28 青岛海信电器股份有限公司 Luminescent device and backlight source
CN105258074A (en) * 2014-07-18 2016-01-20 欧司朗有限公司 Lens and lighting device comprising same
WO2016193074A1 (en) * 2015-05-29 2016-12-08 Osram Opto Semiconductors Gmbh Optoelectronic component having a radiation source
CN106949383A (en) * 2017-04-01 2017-07-14 杭州有人光电技术有限公司 A kind of illuminator of utilization LIF
WO2018096041A1 (en) * 2016-11-25 2018-05-31 Osram Opto Semiconductors Gmbh Component with an optoelectronic part

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203731110U (en) * 2011-06-24 2014-07-23 松下电器产业株式会社 Light source for lighting
JP5059988B1 (en) * 2011-06-24 2012-10-31 パナソニック株式会社 Light source for illumination
RU2639980C2 (en) * 2011-10-19 2017-12-25 Филипс Лайтинг Холдинг Б.В. Lighting device with circular distribution of light
JP2015111497A (en) * 2012-03-30 2015-06-18 パナソニック株式会社 Lamp
JP6332491B1 (en) * 2017-02-13 2018-05-30 オムロン株式会社 LASER LIGHTING DEVICE AND PERSONAL MONITORING SENSOR HAVING THE SAME
CN117628423A (en) * 2022-08-12 2024-03-01 巨铠精密工业股份有限公司 Lamp set

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155279A (en) * 1988-10-05 1990-06-14 Hewlett Packard Co <Hp> Lamp
JP2002043629A (en) * 2000-07-24 2002-02-08 Yamakawa Akira Led projector and lens body for use therein
JP2002228921A (en) * 2001-01-29 2002-08-14 Rabo Sufia Kk Bulk type lens, light emitting body using the same, illuminator and optical information system
JP2004253477A (en) * 2003-02-18 2004-09-09 Stanley Electric Co Ltd Light emitting diode array light source
WO2007032187A1 (en) * 2005-08-24 2007-03-22 World Wide Engineering Co., Ltd. Led lamp light source and automatically lit led desk lamp upon power failure
JP2009054995A (en) * 2007-08-24 2009-03-12 Cree Inc Package of light-emitting device using light scattering particles of different sizes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02155279A (en) * 1988-10-05 1990-06-14 Hewlett Packard Co <Hp> Lamp
JP2002043629A (en) * 2000-07-24 2002-02-08 Yamakawa Akira Led projector and lens body for use therein
JP2002228921A (en) * 2001-01-29 2002-08-14 Rabo Sufia Kk Bulk type lens, light emitting body using the same, illuminator and optical information system
JP2004253477A (en) * 2003-02-18 2004-09-09 Stanley Electric Co Ltd Light emitting diode array light source
WO2007032187A1 (en) * 2005-08-24 2007-03-22 World Wide Engineering Co., Ltd. Led lamp light source and automatically lit led desk lamp upon power failure
JP2009054995A (en) * 2007-08-24 2009-03-12 Cree Inc Package of light-emitting device using light scattering particles of different sizes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105258074A (en) * 2014-07-18 2016-01-20 欧司朗有限公司 Lens and lighting device comprising same
WO2016008637A1 (en) * 2014-07-18 2016-01-21 Osram Gmbh Lens for led illumination
US9890922B2 (en) 2014-10-13 2018-02-13 Hisense Electric Co., Ltd. Light emitting device and backlight source
CN104317100A (en) * 2014-10-13 2015-01-28 青岛海信电器股份有限公司 Luminescent device and backlight source
US10175465B2 (en) 2015-05-29 2019-01-08 Osram Opto Semiconductors Gmbh Optoelectronic component having a radiation source
WO2016193074A1 (en) * 2015-05-29 2016-12-08 Osram Opto Semiconductors Gmbh Optoelectronic component having a radiation source
DE112016002421B4 (en) 2015-05-29 2022-03-31 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTOELECTRONIC COMPONENT WITH A RADIATION SOURCE
WO2018096041A1 (en) * 2016-11-25 2018-05-31 Osram Opto Semiconductors Gmbh Component with an optoelectronic part
CN109983388A (en) * 2016-11-25 2019-07-05 奥斯兰姆奥普托半导体股份有限两合公司 Component with electro-optical components
US11165004B2 (en) 2016-11-25 2021-11-02 Osram Oled Gmbh Component with an optoelectronic part
DE102016122770B4 (en) 2016-11-25 2022-01-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Component with an optoelectronic component
US11824147B2 (en) 2016-11-25 2023-11-21 Osram Oled Gmbh Component with an optoelectronic part
CN106949383A (en) * 2017-04-01 2017-07-14 杭州有人光电技术有限公司 A kind of illuminator of utilization LIF
CN106949383B (en) * 2017-04-01 2023-03-21 安徽仁和光电科技有限公司 Illumination system utilizing laser to induce fluorescence

Also Published As

Publication number Publication date
JP2011049233A (en) 2011-03-10
JP5543157B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5543157B2 (en) Optical element and light emitting device
JP5172592B2 (en) Optical element and light emitting device
JP5656461B2 (en) Light emitting device
US8616746B2 (en) Optical element and light-emitting device
JP5306799B2 (en) Optical element and light emitting device
RU2639980C2 (en) Lighting device with circular distribution of light
JP6223746B2 (en) Single-sided light-emitting transparent light guide plate and surface light-emitting device using this light guide plate
JP5351354B2 (en) Light distribution control lens, light source device using the same, and lighting fixture
CN107614964B (en) Light flux controlling member, light emitting device, and lighting device
JP2012160666A (en) Light source module and lighting device
JP6214151B2 (en) Lighting device
JP2011249141A (en) Light emitting device
JP5953021B2 (en) Light guide and lighting device
TW201414957A (en) Illumination device
JP6309660B2 (en) Light guide and light emitting device
JP6056056B2 (en) LED lighting device
JP5363884B2 (en) Light emitting device and optical element
JP5336879B2 (en) Optical element, light emitting device and road light
JP6062618B2 (en) Light guide and lighting device
JP5401331B2 (en) Optical element and light emitting device
JP6012972B2 (en) Lighting device
JP7287491B2 (en) Light source device
TWI588401B (en) Direct type of lighting
JP5712271B2 (en) Optical element and light emitting device
CN113531409A (en) Lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811691

Country of ref document: EP

Kind code of ref document: A1