JP6056056B2 - LED lighting device - Google Patents
LED lighting device Download PDFInfo
- Publication number
- JP6056056B2 JP6056056B2 JP2012061241A JP2012061241A JP6056056B2 JP 6056056 B2 JP6056056 B2 JP 6056056B2 JP 2012061241 A JP2012061241 A JP 2012061241A JP 2012061241 A JP2012061241 A JP 2012061241A JP 6056056 B2 JP6056056 B2 JP 6056056B2
- Authority
- JP
- Japan
- Prior art keywords
- led
- reflecting mirror
- light
- reflected light
- curved reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Description
本発明は、LEDを用いた照明装置に関するもので、特にLED放射光の反射光を利用した照明装置に関する。 The present invention relates to an illuminating device using LEDs, and more particularly to an illuminating device using reflected light of LED radiation.
最近のエネルギー問題の高まりの中で省エネルギーかつ長寿命であるLED照明が注目されている。LED照明に用いられているものは、基板に発光体であるLEDおよびそれを制御するICを搭載し、LEDからの放射光を直接照射するLED電球が大半である。LEDは点光源であり、LEDの放射光は指向性があり直進性が大きいため、放射光の進行方向から外れると暗くなるという問題がある。そこで、光拡散板を用いて光を拡散(分散)させ防眩効果を持たせたものが使用されている。たとえば、光拡散板としてアクリル等のプラスチック板の使用、サンドブラストなどにより表面を荒くしたガラスの使用、さらには、ガラス板に低融点ガラス粉および無機質フィラーを含むペーストをコートし、加熱処理し散光性膜を形成した防眩ガラスも提案されている。(特許文献1、特許文献2) With the recent increase in energy problems, LED lighting that is energy-saving and has a long life is attracting attention. Most of LED bulbs that are used for LED lighting include an LED that is a light emitter and an IC that controls the LED mounted on a substrate, and directly emits light emitted from the LED. The LED is a point light source, and the emitted light from the LED is directional and has a high straightness, so that there is a problem that the LED becomes dark when the emitted light deviates from the traveling direction. Therefore, a light diffusing plate that diffuses (disperses) light and has an antiglare effect is used. For example, use of a plastic plate such as acrylic as a light diffusing plate, use of glass whose surface has been roughened by sandblasting, etc., and further coat the glass plate with paste containing low melting glass powder and inorganic filler, heat treatment, and diffuse An antiglare glass having a film formed thereon has also been proposed. (Patent Document 1, Patent Document 2)
しかし、光拡散板として用いられるアクリル等は透過率が低いという問題がある。また、サンドブラストなどにより表面を荒くしたガラスは強度が低下することが懸念されている。一方、散光性膜を形成した防眩ガラスは無機質フィラーを添加しているため透過率が低下し、ヘイズ値も不十分である。またLED放射光の反射光を用いた照明装置の開示は少なく、実際の利用も少ないので、技術的要素が提供されていない。 However, acrylic or the like used as a light diffusing plate has a problem of low transmittance. Further, there is a concern that the strength of the glass whose surface is roughened by sandblasting or the like is lowered. On the other hand, the antiglare glass having a light-diffusing film has an inorganic filler added, so that the transmittance is lowered and the haze value is insufficient. Moreover, since there are few disclosures of the illuminating device using the reflected light of LED radiation light, and there are few actual utilization, a technical element is not provided.
本発明は、上記事情に鑑みてなされたものであり、LEDからの放射光を直接使用せず、その反射光を利用する照明方法を提案するものであり、本発明の主要な構成要件は以下の通りである。
(1)本発明は、縦方向、または縦方向かつ横方向に配置された複数のLEDを含むLED配列灯、前記LEDから放射される直進光を反射させる第1の反射鏡、および前記第1の反射鏡で反射された第1の反射光の一部または全部を反射させる第2の反射鏡を有するLED照明装置であって、
第2の反射鏡で反射された第2の反射光は前記LED配列灯の上部後方から前記LED照明装置の外側へ照射されることを特徴とするLED照明装置であり、特に第2の反射光は、前記LEDからの直進光と逆方向に進行することを特徴とする。
The present invention has been made in view of the above circumstances, and proposes an illumination method that uses reflected light without directly using the emitted light from the LED. The main components of the present invention are as follows. It is as follows.
(1) The present invention relates to an LED array lamp including a plurality of LEDs arranged in the vertical direction or in the vertical and horizontal directions, a first reflecting mirror that reflects straight light emitted from the LEDs, and the first An LED lighting device having a second reflecting mirror that reflects part or all of the first reflected light reflected by the reflecting mirror of
The second reflected light reflected by the second reflecting mirror is irradiated to the outside of the LED lighting device from the upper rear of the LED array lamp, and particularly the second reflected light. Travels in the opposite direction to the straight light from the LED.
(2)本発明は、上記に加えて、縦方向に配列されたn個のLED列において、最下部のLED(L1)から放射された直進光が第1の反射鏡に入射する入射角をα1、最下部のLED(L1)から数えてi番目のLED(Li)から放射されたLED直進光が第1の反射鏡に入射する入射角をαi、最上部のLED(i=n)から放射されたLED直進光が第1の反射鏡に入射する入射角をαnとしたとき、第1の反射鏡はα1<・・・<αi−1<αi<αi+1<・・・<αnを満足する曲面であり、かつなめらかで連続した(微分可能)曲面であるか、あるいは、第1の反射鏡は平面鏡であり、縦方向に配列されたn個のLED列におけるLED(Li)(i=1、・・・、i、・・・、n)から放射されたLED直進光が入射する入射角αiはαi=α(一定)であることを特徴とする。 (2) In addition to the above, in the present invention, in the n LED rows arranged in the vertical direction, the incident angle at which the straight light emitted from the lowermost LED (L1) enters the first reflecting mirror is set. α1, the incident angle at which the straight LED light emitted from the i-th LED (Li) counted from the lowermost LED (L1) is incident on the first reflecting mirror is αi, and the uppermost LED (i = n) When the incident angle at which the emitted straight LED light enters the first reflecting mirror is αn, the first reflecting mirror satisfies α1 <... <Αi-1 <αi <αi + 1 <. Or a smooth and continuous (differentiable) curved surface, or the first reflecting mirror is a plane mirror, and LEDs (Li) (i = i = n) in n LED rows arranged in the vertical direction. 1,..., I,. αi is characterized in that αi = α (constant).
(3)本発明は、上記に加えて、縦方向に配列されたn個のLED列において、最下部のLED(L1)から放射されたLED直進光の第1反射光が第2の反射鏡に入射する入射角をβ1、最下部のLED(L1)から数えてi番目のLED(Li)から放射されたLED直進光の第1の反射光が第2の反射鏡に入射する入射角をβi、最上部のLED(i=n)から放射されたLED直進光の第1の反射光が第2の反射鏡に入射する入射角をβnとしたとき、第2の反射鏡はβ1>・・・>βi−1<βi<βi+1<・・・<βnを満足する曲面であり、かつなめらかで連続した(微分可能)曲面であるか、あるいは、第2の反射鏡は平面鏡であり、縦方向に配列されたn個のLED列におけるLED(Li)(i=1、・・・、i、・・・、n)から放射されたLED直進光の第1の反射光が第2の反射鏡に入射する入射角βiはβi=β(一定)であることを特徴とする。 (3) In addition to the above, in the present invention, in the n LED rows arranged in the vertical direction, the first reflected light of the LED straight light emitted from the lowermost LED (L1) is the second reflecting mirror. The incident angle at which the first reflected light of the straight LED light emitted from the i-th LED (Li) counted from the lowermost LED (L1) is incident on the second reflecting mirror is β1. βi, where βn is an incident angle at which the first reflected light of the straight LED light emitted from the uppermost LED (i = n) is incident on the second reflecting mirror, β1> · ..> βi-1 <βi <βi + 1 <... <Βn, and is a smooth and continuous (differentiable) curved surface, or the second reflecting mirror is a plane mirror, LEDs (Li) (n = 1,..., I,...) In n LED rows arranged in the direction. The incident angle βi at which the first reflected light of the straight LED light emitted from n) enters the second reflecting mirror is βi = β (constant).
(4)本発明は、上記に加えて、80度<αi+βi<90度、好適には85度<αi+βi<95度、最適にはαi+βi=90度であることを特徴とする。
(5)本発明は、上記に加えて、第2の反射鏡は透明ガラスまたは透明プラスチックであり、さらに第2の反射鏡に入射した第1の反射光は全反射することを特徴とする。
(4) In addition to the above, the present invention is characterized in that 80 degrees <αi + βi <90 degrees, preferably 85 degrees <αi + βi <95 degrees, and most preferably αi + βi = 90 degrees.
(5) In addition to the above, the present invention is characterized in that the second reflecting mirror is made of transparent glass or transparent plastic, and the first reflected light incident on the second reflecting mirror is totally reflected.
本発明の照明装置はLED放射光の反射光を照明用として使用する。本発明によって、所望のLED放射光の反射光を照明として利用できる。用途に合わせて装置の大きさや形状を設計できるので実用性が高い。LED放射光は第1の反射鏡および第2の反射鏡によって適度に分散されるので、従来のLED電球の問題点であった周辺が暗いという問題を解消することができる。拡散板やコーティング材を透過した光は使用しないので、透過率の低下やヘイズ等の問題も発生しない。また、LEDの向きと逆方向に光を放射することが可能である。LED光源は反射鏡に虚像として写され、外部から視認も容易にできるので、フィラメント型電球と比較しても違和感が小さい。複数のLEDを配列したLED配列灯からの光線を平行に並べて取りだすこともできるので、所定の照明を得ることができる。 The illumination device of the present invention uses the reflected light of LED radiation for illumination. According to the present invention, the reflected light of the desired LED radiation can be used as illumination. Since the size and shape of the device can be designed according to the application, it is highly practical. Since the LED radiation is moderately dispersed by the first reflecting mirror and the second reflecting mirror, it is possible to solve the problem that the periphery of the conventional LED bulb, which is a problem, is dark. Since the light transmitted through the diffusion plate and the coating material is not used, problems such as a decrease in transmittance and haze do not occur. It is also possible to emit light in the direction opposite to the direction of the LED. The LED light source is copied as a virtual image on the reflecting mirror and can be easily viewed from the outside. Since the light from the LED array lamp in which a plurality of LEDs are arrayed can also be taken out in parallel, predetermined illumination can be obtained.
本発明は、指向性が強く直進性があるLED放射光を反射鏡にて反射させて、適度に分散させながらLED光源も視認できるとともに周囲も明るく照らせる照明装置を提供するものである。 The present invention provides an illuminating device in which LED radiation light having high directivity and straightness is reflected by a reflecting mirror so that the LED light source can be visually recognized while being appropriately dispersed, and the surroundings can be illuminated brightly.
図1は、本発明のLED照明装置における第1の実施形態を示す図である。本発明のLED照明装置11は、LED配列灯13、第1の反射鏡(平面反射鏡)15、および第2の反射鏡(平面反射鏡)17を含む。図1において、複数(n個)のLED(L1、・・・、Li、・・・、Ln)を一方向(表現上および照明装置をセットするときに基本的には縦置きにするので、以下「縦方向」と称する)に配列したLED配列灯13があり、このLED配列灯13の複数(n個)のLEDからの光線(直進性がある)が一方向(縦方向に垂直方向、表現上、横方向と称する)に放射されている。すなわち各LEDからの直進光は横方向に進む平行光線である。 FIG. 1 is a diagram showing a first embodiment of the LED lighting device of the present invention. The LED illumination device 11 of the present invention includes an LED array lamp 13, a first reflecting mirror (planar reflecting mirror) 15, and a second reflecting mirror (planar reflecting mirror) 17. In FIG. 1, a plurality (n) of LEDs (L1,..., Li,..., Ln) are arranged in one direction (in terms of expression and basically when setting a lighting device, LED array lamps 13 arranged in the following “vertical direction”), and light rays (with straightness) from a plurality (n) of LEDs of this LED array lamp 13 are unidirectional (perpendicular to the vertical direction), (Referred to as a lateral direction for the sake of expression). That is, the straight light from each LED is a parallel light beam traveling in the lateral direction.
これらのLEDから放射された直進光が入射し反射する第1の反射鏡15が、LED配列灯13の直進光の方向(横方向)において、直進光に対して入射角度αを有して配置されている。図1に示す第1の反射鏡15は平面反射鏡であるから、各LEDからの直進光に対して反射角も一定であり、αである。すなわち各第1の反射光は平行光線である。 The first reflecting mirror 15 on which the straight light emitted from these LEDs is incident and reflected is arranged with an incident angle α with respect to the straight light in the direction (lateral direction) of the straight light of the LED array lamp 13. Has been. Since the first reflecting mirror 15 shown in FIG. 1 is a plane reflecting mirror, the angle of reflection with respect to straight light from each LED is also constant and is α. That is, each first reflected light is a parallel light beam.
LED配列灯13の直進光が第1の反射鏡(平面鏡)15で反射した反射光(第1の反射光)は、次に第2の反射鏡17に入射し、反射光(第2の反射光)として反射されて、その後第2の反射光はLED照明装置外へ出ていく。第1の反射光と第2の反射鏡17とのなす入射角度をβとすると、第2の反射鏡17は平面(反射)鏡であるから、各第1の反射光の第2の反射鏡17からの第2の反射光の反射角も一定であり、βである。すなわち、各第2の反射光は平行光線となる。第1の反射鏡15と第2の反射鏡17のなす角度をγとすると、α+β=γである。 The reflected light (first reflected light) obtained by the straight light from the LED array lamp 13 reflected by the first reflecting mirror (planar mirror) 15 is then incident on the second reflecting mirror 17 and reflected light (second reflected light). The second reflected light then goes out of the LED lighting device. If the incident angle formed by the first reflected light and the second reflecting mirror 17 is β, the second reflecting mirror 17 is a plane (reflecting) mirror, and therefore the second reflecting mirror for each first reflected light. The reflection angle of the second reflected light from 17 is also constant and β. That is, each 2nd reflected light turns into a parallel ray. If the angle formed by the first reflecting mirror 15 and the second reflecting mirror 17 is γ, α + β = γ.
たとえば、LED配列灯13の最下部(縦方向に配置されたLED配列灯13における各LEDのうちで、第1の反射鏡15に距離が最も近いLED)におけるLED(L1)から放射された直進光P1は、第1の反射鏡15に入射しかつ反射し、(入射角=反射角=α)第1の反射光P1−1となる。第1の反射光P1−1は第2の反射鏡17に入射しかつ反射し、(入射角=反射角=β)第2の反射光P1−2となる。 For example, the straight line radiated from the LED (L1) at the lowermost part of the LED array lamp 13 (the LED having the closest distance to the first reflecting mirror 15 among the LEDs in the LED array lamp 13 arranged in the vertical direction) The light P1 enters the first reflecting mirror 15 and is reflected (incident angle = reflection angle = α) to become the first reflected light P1-1. The first reflected light P1-1 is incident on and reflected by the second reflecting mirror 17 (incident angle = reflecting angle = β) to become the second reflected light P1-2.
また、LED配列灯13の最上部(縦方向に配置されたLED配列灯13における各LEDのうちで、第1の反射鏡15から距離が最も遠いLED)におけるLED(Ln)から放射された直進光Pnは、第1の反射鏡15に入射しかつ反射し、(入射角=反射角=α)第1の反射光Pn−1となる。第1の反射光Pn−1は第2の反射鏡17に入射しかつ反射し、(入射角=反射角=β)第2の反射光Pn−2となる。 Moreover, the straight line radiated | emitted from LED (Ln) in the uppermost part (LED in the LED array lamp 13 arrange | positioned in the vertical direction is the furthest distance from the 1st reflective mirror 15) of the LED array lamp 13 The light Pn is incident on and reflected by the first reflecting mirror 15 (incident angle = reflection angle = α), and becomes the first reflected light Pn−1. The first reflected light Pn−1 is incident on and reflected from the second reflecting mirror 17 (incident angle = reflecting angle = β) to become the second reflected light Pn−2.
LED配列灯13のL1とLnとの間に配置されている各LEDのLi(i=2〜n-1、この順に並んでいる)からの直進光Pi、第1の反射光Pi−1、第2の反射光Pi−2も同様の関係となる。(Pi、Pi−1、Pi−2は図示せず)また、直進光P1、・・・、Pi、・・・、Pnは平行であり、第1の反射光P1−1、・・・、Pi−1、・・・、Pn−1は平行であり、第2の反射光P1−2、・・・、Pi−2、・・・、Pn−2は平行である。また、直進光P1、・・・、Pi、・・・、Pnおよび第1の反射光P1−1、・・・、Pi−1、・・・、Pn−1はLED照明装置11内に存在するが、第2の反射光P1−2、・・・、Pi−2、・・・、Pn−2はLED照明装置11外に放射され、外部の物体や空間を照射するとともに、外部からLEDの存在を視認できる。また図1から分かるように、LED配列灯13は外部から確認すると、R1の方向とは異なり、逆方向側R2となる。また、その大きさも異なっている。(R1≠R2) A straight light Pi from the Li (i = 2 to n-1, arranged in this order) of each LED arranged between L1 and Ln of the LED array lamp 13, a first reflected light Pi-1, The second reflected light Pi-2 has the same relationship. (Pi, Pi-1, Pi-2 are not shown) Further, the straight light P1,..., Pi,..., Pn are parallel, and the first reflected light P1-1,. Pi-1,..., Pn-1 are parallel, and the second reflected lights P1-2, ..., Pi-2, ..., Pn-2 are parallel. Further, the straight light P1, ..., Pi, ..., Pn and the first reflected light P1-1, ..., Pi-1, ..., Pn-1 exist in the LED illumination device 11. However, the second reflected light P1-2,..., Pi-2,..., Pn-2 is radiated to the outside of the LED illumination device 11 to irradiate an external object or space, and the LED from the outside. Can be visually recognized. Further, as can be seen from FIG. 1, when the LED array lamp 13 is confirmed from the outside, it is on the reverse direction side R2 unlike the direction of R1. Moreover, the size is also different. (R1 ≠ R2)
図1は、第1の反射鏡(平面鏡)15と第2の反射鏡(平面鏡)17のなす角度γは90度として描写している。このとき、第2の反射光Pi−2(i=1〜n)は直進光Pi(i=1〜n)と逆向きで平行な光線となる。すなわち、第2の反射光Pi−2(i=1〜n)の向きは、直進光Pi(i=1〜n)の向きに対して、180度となる。LED配列灯13の向きから見れば、第2の反射光Pi−2(i=1〜n)の向きは横方向であり、LED配列灯13の上側後方に放射される。すなわち、LED配列灯13、第1反射鏡(平面鏡)、および15と第2の反射鏡(平面鏡)17によって、LED放射光は平行な反射光線となって、その上側後方にあるLED照明装置11の外側にある物体や空間を照らすことができる。 In FIG. 1, the angle γ formed by the first reflecting mirror (plane mirror) 15 and the second reflecting mirror (plane mirror) 17 is depicted as 90 degrees. At this time, the second reflected light Pi-2 (i = 1 to n) is a light beam in the opposite direction and parallel to the straight light Pi (i = 1 to n). That is, the direction of the second reflected light Pi-2 (i = 1 to n) is 180 degrees with respect to the direction of the straight light Pi (i = 1 to n). When viewed from the direction of the LED array lamp 13, the direction of the second reflected light Pi-2 (i = 1 to n) is the lateral direction, and is emitted to the upper rear side of the LED array lamp 13. That is, the LED array light 13, the first reflecting mirror (planar mirror), and the 15 and second reflecting mirror (planar mirror) 17 make the LED radiation light into a parallel reflected light beam, and the LED illumination device 11 on the upper rear side thereof. You can illuminate objects and spaces outside.
尚、LEDも厳密に言えば完全な点(あるいは線)光源ではなくある程度の幅があり、その放射方向も同じ方向ではなくある程度広がって放射される。さらに複数のLEDを基板等に配置してLED配列灯を作製する際の実装方法によるLEDの配置バラツキによる反射光の広がりバラツキもある。また直進性があると言っても距離が長くなるに従い徐々に散乱され広がっていく。また第1の反射鏡や第2の反射鏡の反射面自体の実際の入射角度や反射角度がバラツク場合も考慮する必要がある。さらにはLEDにキャップを被せる場合もあるので、LED光が分散される。従ってLED光を一定の方向に取りだす場合には一定の幅を考慮する必要がある。そこで、LEDの放射光の第2の反射光をある方向に取りだす場合にも、第1の反射鏡および第2の反射鏡のなす角度γの範囲を一定範囲内で許容する必要がある。たとえば、LED光を完全な後方(LEDの直進光に対して180度方向)に対する一定の幅を持った方向へ照射する(取りだす場合)には、好適には、80度<γ=α+β<100度、もっと好適には85度<γ=α+β<95度、最適にはγ=α+β=90度とするように第1の反射鏡15および第2の反射鏡17をLED配列灯13に対して配置すると良い。 Strictly speaking, the LED is not a perfect point (or line) light source but has a certain width, and the radiation direction is not the same direction but is spread to some extent. Furthermore, there is also a spread variation in reflected light due to a variation in LED arrangement due to a mounting method when a plurality of LEDs are arranged on a substrate or the like to produce an LED array lamp. Moreover, even if it says that there is a straight line, it gradually scatters and spreads as the distance increases. It is also necessary to consider the case where the actual incident angle and reflection angle of the reflecting surfaces of the first reflecting mirror and the second reflecting mirror vary. Furthermore, since the LED may be covered with a cap, the LED light is dispersed. Therefore, when LED light is taken out in a certain direction, it is necessary to consider a certain width. Therefore, even when the second reflected light of the emitted light of the LED is extracted in a certain direction, it is necessary to allow the range of the angle γ formed by the first reflecting mirror and the second reflecting mirror within a certain range. For example, in order to irradiate the LED light in a direction having a certain width with respect to the complete rear direction (180 degree direction with respect to the straight light of the LED) (when taking out), preferably, 80 degrees <γ = α + β <100 Degrees, more preferably 85 degrees <γ = α + β <95 degrees, and most preferably, γ = α + β = 90 degrees with respect to the LED array lamp 13 with respect to the LED array lamp 13. It is good to arrange.
図2は、第1の反射鏡(平面鏡)15と第2の反射鏡(平面鏡)17のなす角度γが90度より小さい場合を示す。α+β=γであるから、α+β=γ<90度である。図2に示すように、第2の反射光Pi−2(i=1〜n)は直進光Pi(i=1〜n)と逆向きであるが、平行光線よりも下向きになる。LED配列灯13の向きから見れば、第2の反射光Pi−2(i=1〜n)の向きは横方向よりも下方であり、互いに平行な光線となってLED配列灯13の後方に放射される。図2から分かるように、LED(Ln)から出た直進光の第2の反射光Pn−2はLED配列灯13の上部に当たり、外部へ放射されない場合があるので、全部のLEDの光を外部へ照射したい場合は、LEDからの直進光Piからの第1の入射角α、LED配列灯13と第1の反射鏡15、第1の反射鏡15および第2の反射鏡17の大きさを調節する必要がある。 FIG. 2 shows a case where the angle γ formed by the first reflecting mirror (plane mirror) 15 and the second reflecting mirror (plane mirror) 17 is smaller than 90 degrees. Since α + β = γ, α + β = γ <90 degrees. As shown in FIG. 2, the second reflected light Pi-2 (i = 1 to n) is opposite to the straight light Pi (i = 1 to n), but is lower than the parallel rays. When viewed from the direction of the LED array lamp 13, the direction of the second reflected light Pi-2 (i = 1 to n) is lower than the lateral direction and becomes a parallel light beam behind the LED array lamp 13. Radiated. As can be seen from FIG. 2, the second reflected light Pn-2 of the straight light emitted from the LED (Ln) hits the upper part of the LED array lamp 13 and may not be emitted to the outside. 1, the first incident angle α from the straight light Pi from the LED, the size of the LED array lamp 13 and the first reflecting mirror 15, the first reflecting mirror 15 and the second reflecting mirror 17. It needs to be adjusted.
図3は、第1の反射鏡(平面鏡)15と第2の反射鏡(平面鏡)17のなす角度γが90度より大きい場合を示す。(ただし、γ<180度である。)α+β=γであるから、α+β=γ>90度である。第2の反射光Pi−2(i=1〜n)は直進光Pi(i=1〜n)と逆向きであるが、横方向光線よりも上向きになる。LED配列灯13の向きから見れば、第2の反射光Pi−2(i=1〜n)の向きは横方向よりも上方であり、LED配列灯13の後方に放射される。図1〜図3から分かるように、平面反射鏡を2枚組み合わせることによって、LEDからの直進光をLEDの後方へ放射し、互いに平行な光線となってLEDの後方にある物体や空間を照射することができる。さらに、2枚の平面反射鏡の角度γを調節することによって、LED配列灯よりも後方下方側、あるいは180度(完全後方)方向、あるいは後方上方側を照射するLED照明装置を作製できる。これらの向きは用途(たとえば、照射する方向を選択するとき)によって適宜選択することができる。 FIG. 3 shows a case where the angle γ formed by the first reflecting mirror (plane mirror) 15 and the second reflecting mirror (plane mirror) 17 is greater than 90 degrees. (However, γ <180 degrees.) Since α + β = γ, α + β = γ> 90 degrees. The second reflected light Pi-2 (i = 1 to n) is in the opposite direction to the straight light Pi (i = 1 to n), but is more upward than the lateral light beam. When viewed from the direction of the LED array lamp 13, the direction of the second reflected light Pi-2 (i = 1 to n) is higher than the lateral direction, and is emitted to the rear of the LED array lamp 13. As can be seen from FIG. 1 to FIG. 3, by combining two plane reflecting mirrors, straight light from the LED is radiated to the rear of the LED, and the parallel light beams irradiate an object or space behind the LED. can do. Further, by adjusting the angle γ of the two plane reflecting mirrors, an LED illumination device that irradiates the rear lower side, the 180 degree (complete rear) direction, or the rear upper side of the LED array lamp can be manufactured. These directions can be appropriately selected depending on the application (for example, when selecting the irradiation direction).
図4は、反射鏡が曲面である本発明の別の実施形態を示す図である。図4に示す本発明の照明装置21は、LED配列灯23、第1の曲面反射鏡25、および第2の曲面反射鏡27を有する。LED配列灯23のうちの最下部のLEDのL1から放射された直進光P1は第1の曲面反射鏡25に入射すると、入射点D1において反射して第1の反射光P1−1となる。入射点D1における第1の曲面反射鏡25の接平面をG1とすると、入射点D1において接平面G1の法線と直進光P1とのなす角度が入射角で、これをα1とすると、反射角α1で反射光P1−1が進んでいく。第1の反射光P1−1は次に第2の曲面反射鏡27の入射点E1において反射して第2の反射光P1−2となる。入射点E1における第2の曲面反射鏡27の接平面をH1とすると、入射点E1において接平面H1と第1の反射光P1−1の法線とのなす角度が入射角で、これをβ1とすると、反射角β1で反射光P1−2が進んでいき、LED照明装置21の外側へ放射されて、LED照明装置21の外側の物体や空間を照射する。 FIG. 4 is a diagram showing another embodiment of the present invention in which the reflecting mirror is a curved surface. The illuminating device 21 of the present invention shown in FIG. 4 has an LED array lamp 23, a first curved reflector 25, and a second curved reflector 27. When the straight light P1 radiated from the lowermost LED L1 of the LED array lamps 23 is incident on the first curved reflecting mirror 25, it is reflected at the incident point D1 and becomes the first reflected light P1-1. If the tangent plane of the first curved reflecting mirror 25 at the incident point D1 is G1, the angle formed between the normal of the tangential plane G1 and the straight light P1 at the incident point D1 is the incident angle, and this is α1, the reflection angle. The reflected light P1-1 advances at α1. The first reflected light P1-1 is then reflected at the incident point E1 of the second curved reflecting mirror 27 to become the second reflected light P1-2. Assuming that the tangent plane of the second curved reflecting mirror 27 at the incident point E1 is H1, the angle formed by the tangential plane H1 and the normal line of the first reflected light P1-1 at the incident point E1 is the incident angle, which is β1. Then, the reflected light P1-2 proceeds at the reflection angle β1, and is emitted to the outside of the LED illumination device 21 to irradiate an object or space outside the LED illumination device 21.
LED配列灯23のうちの最上部のLEDのLnから放射された直進光Pnは第1の曲面反射鏡25に入射すると、入射点Dnにおいて反射して第1の反射光Pn−1となる。入射点Dnにおける第1の曲面反射鏡25の接平面をGnとすると、入射点Dnにおいて接平面Gnの法線と直進光Pnとのなす角度が入射角で、これをαnとすると、反射角αnで第1の反射光Pn−1が進んでいく。第1の反射光Pn−1は次に第2の曲面反射鏡27の入射点Enにおいて反射して第2の反射光Pn−2となる。入射点Enにおける第2の曲面反射鏡27の接平面をHnとすると、入射点Enにおいて接平面Hnの法線と第1の反射光Pn−1とのなす角度が入射角で、これをβnとすると、反射角βnで反射光Pn−2が進んでいき、LED照明装置21の外側へ放射されて、LED照明装置21の外側の物体や空間を照射する。 When the straight light Pn radiated from Ln of the uppermost LED in the LED array lamp 23 is incident on the first curved reflecting mirror 25, it is reflected at the incident point Dn and becomes the first reflected light Pn-1. If the tangent plane of the first curved reflecting mirror 25 at the incident point Dn is Gn, the angle between the normal of the tangential plane Gn and the straight light Pn at the incident point Dn is the incident angle, and αn is the reflection angle. The first reflected light Pn-1 advances at αn. The first reflected light Pn−1 is then reflected at the incident point En of the second curved reflecting mirror 27 to become the second reflected light Pn-2. Assuming that the tangent plane of the second curved reflecting mirror 27 at the incident point En is Hn, the angle formed between the normal line of the tangential plane Hn and the first reflected light Pn−1 at the incident point En is the incident angle, which is βn. Then, the reflected light Pn-2 travels at the reflection angle βn and is emitted to the outside of the LED illumination device 21 to irradiate an object or space outside the LED illumination device 21.
LED配列灯23のうちの最上部のLEDのLnと最下部のLEDのL1との間におけるLEDのLiから放射された直進光Piは第1の曲面反射鏡25に入射すると、入射点Diにおいて反射して第1の反射光Pi−1となる。入射点Diにおける第1の曲面反射鏡25の接平面をGiとすると、入射点Diにおいて接平面Giの法線と直進光Piとのなす角度が入射角で、これをαiとすると、反射角αiで第1の反射光Pi−1が進んでいく。第1の反射光Pi−1は次に第2の曲面反射鏡27の入射点Eiにおいて反射して第2の反射光Pi−2となる。入射点Enにおける第2の曲面反射鏡27の接平面をHiとすると、入射点Eiにおいて接平面Hiの法線と第1の反射光Pi−1とのなす角度が入射角で、これをβiとすると、反射角βiで反射光Pi−2が進んでいき、LED照明装置21の外側へ放射されて、LED照明装置21の外側の物体や空間を照射する。 When the straight light Pi radiated from the Li of the LED between the Ln of the uppermost LED and the L1 of the lowermost LED of the LED array lamps 23 is incident on the first curved reflecting mirror 25, at the incident point Di. Reflected to become the first reflected light Pi-1. If the tangent plane of the first curved reflecting mirror 25 at the incident point Di is Gi, the angle between the normal of the tangential plane Gi and the straight light Pi at the incident point Di is the incident angle, and αi is the reflection angle. The first reflected light Pi-1 advances at αi. Next, the first reflected light Pi-1 is reflected at the incident point Ei of the second curved reflecting mirror 27 to become the second reflected light Pi-2. Assuming that the tangent plane of the second curved reflecting mirror 27 at the incident point En is Hi, the angle between the normal line of the tangential plane Hi and the first reflected light Pi-1 at the incident point Ei is the incident angle, which is βi. Then, the reflected light Pi-2 travels at the reflection angle βi and is emitted to the outside of the LED illumination device 21 to irradiate an object or space outside the LED illumination device 21.
接平面Giと接平面Hiとのなす角度をγiとするとαi+βi=γiとなる。図1〜図3において説明した様に、0<γi<90度のとき、第2の反射光Pi−2(i=1〜n)は直進光Pi(i=1〜n)と逆向きであるが、横方向光線よりも下向きになる。LED配列灯23の向きから見れば、第2の反射光Pi−2(i=1〜n)の向きは横方向よりも下方であり、LED配列灯23の上側後方に放射される。γi=γ0(一定)(i=1、2、・・、n)であれば、各LED放射光の第2の反射光は平行光線である。90度<γi<180度のとき、第2の反射光Pi−2(i=1〜n)は直進光Pi(i=1〜n)と逆向きであるが、横方向光線よりも上向きになる。LED配列灯23の向きから見れば、第2の反射光Pi−2(i=1〜n)の向きは横方向よりも上方であり、LED配列灯23の上側後方に放射される。γi=γ0(一定)(i=1、2、・・、n)であれば、各LED放射光の第2の反射光は平行光線である。 If the angle between the tangential plane Gi and the tangential plane Hi is γi, then αi + βi = γi. As described with reference to FIGS. 1 to 3, when 0 <γi <90 degrees, the second reflected light Pi-2 (i = 1 to n) is opposite to the straight light Pi (i = 1 to n). Yes, but below the transverse ray. When viewed from the direction of the LED array lamp 23, the direction of the second reflected light Pi-2 (i = 1 to n) is lower than the lateral direction, and is emitted to the upper rear side of the LED array lamp 23. If γi = γ0 (constant) (i = 1, 2,..., n), the second reflected light of each LED radiation light is a parallel light beam. When 90 degrees <γi <180 degrees, the second reflected light Pi-2 (i = 1 to n) is opposite to the straight traveling light Pi (i = 1 to n), but is more upward than the lateral light beam. Become. When viewed from the direction of the LED array lamp 23, the direction of the second reflected light Pi-2 (i = 1 to n) is higher than the lateral direction, and is emitted to the upper rear side of the LED array lamp 23. If γi = γ0 (constant) (i = 1, 2,..., n), the second reflected light of each LED radiation light is a parallel light beam.
γi=90度のときに、第2の反射光Pi−2(i=1〜n)は直進光Pi(i=1〜n)と逆向きで平行な光線となる。すなわち、第2の反射光Pi−2(i=1〜n)の向きは、直進光Pi(i=1〜n)の向きに対して、180度となる。LED配列灯23の向きから見れば、第2の反射光Pi−2(i=1〜n)の向きは横方向(180度の向き)であり、LED配列灯23の上側後方に放射される。すなわち、LED配列灯23によって、その後方(上側真後ろ)にあるLED照明装置21の外側にある物体や空間を照らすことができる。各LED放射光の第2の反射光は平行光線である。 When γi = 90 degrees, the second reflected light Pi-2 (i = 1 to n) is a light beam in the opposite direction and parallel to the straight traveling light Pi (i = 1 to n). That is, the direction of the second reflected light Pi-2 (i = 1 to n) is 180 degrees with respect to the direction of the straight light Pi (i = 1 to n). When viewed from the direction of the LED array lamp 23, the direction of the second reflected light Pi-2 (i = 1 to n) is the lateral direction (direction of 180 degrees), and is emitted to the upper rear side of the LED array lamp 23. . In other words, the LED array lamp 23 can illuminate an object or space outside the LED illumination device 21 behind (upper right behind) the LED illumination device 21. The second reflected light of each LED radiation is a parallel light beam.
尚、LEDも厳密に言えば完全な点(あるいは線)光源ではなくある程度の幅があり、その放射方向も同じ方向ではなくある程度広がって放射される。さらに複数のLEDを基板等に配置してLED配列灯を作製する際の実装方法によるLEDの配置バラツキによるバラツキもある。また直進性があると言っても距離が長くなるに従い徐々に散乱され広がっていく。また第1の反射鏡や第2の反射鏡の反射面自体の実際の入射角度や反射角度がバラツク場合も考慮する必要がある。さらにLEDにキャップをカバーする場合はある程度の広がりを持って放射される。 Strictly speaking, the LED is not a perfect point (or line) light source but has a certain width, and the radiation direction is not the same direction but is spread to some extent. Furthermore, there is also variation due to variation in LED arrangement due to a mounting method when a plurality of LEDs are arranged on a substrate or the like to produce an LED array lamp. Moreover, even if it says that there is a straight line, it gradually scatters and spreads as the distance increases. It is also necessary to consider the case where the actual incident angle and reflection angle of the reflecting surfaces of the first reflecting mirror and the second reflecting mirror vary. Further, when the LED is covered with a cap, it is emitted with a certain extent.
従ってLED光を一定の方向に取りだす場合には一定の幅を考慮する必要がある。そこで、LEDの放射光の第2の反射光をある方向に取りだす場合にも、第1の反射鏡および第2の反射鏡のなす角度γの範囲を一定範囲内で許容する必要がある。たとえば、LED光を完全な後方(LEDの直進光に対して180度方向)に対する一定の幅を持った方向へ照射する(取りだす場合)には、好適には、80度<γ=α+β<100度、もっと好適には85度<γ=α+β<95度、最適にはγ=α+β=90度とするように第1の反射鏡25および第2の反射鏡27をLED配列灯23に対して配置すると良い。 Therefore, when LED light is taken out in a certain direction, it is necessary to consider a certain width. Therefore, even when the second reflected light of the emitted light of the LED is extracted in a certain direction, it is necessary to allow the range of the angle γ formed by the first reflecting mirror and the second reflecting mirror within a certain range. For example, in order to irradiate the LED light in a direction having a certain width with respect to the complete rear direction (180 degree direction with respect to the straight light of the LED) (when taking out), preferably, 80 degrees <γ = α + β <100 Degrees, more preferably 85 degrees <γ = α + β <95 degrees, and most preferably, γ = α + β = 90 degrees, with respect to the LED array lamp 23 with respect to the LED array lamp 23. It is good to arrange.
LED配列灯23内における各LED(Li(i=1〜n)、nは正の整数)の第2の反射光Pi−2がこの順番で第2の反射光P1−2およびPn−2の間に存在するためには、入射角αi(i=1〜n)に関して、90度−α1<・・・<90度−αi<・・・<90度−αn、すなわち、α1>・・・>αi>・・・>αnとなるような接平面Gi(i=1〜n)を有する曲面25を作製すれば良い。かつ入射角βi(i=1〜n)に関して、90度−β1>・・・>90度−βi>・・・>90度−βn、すなわち、β1<・・・<βi<・・・<βnとなるような接平面Hi(i=1〜n)を有する曲面27を作製すれば良い。 The second reflected light Pi-2 of each LED (Li (i = 1 to n), n is a positive integer) in the LED array lamp 23 is the second reflected light P1-2 and Pn-2 in this order. In order to exist between them, with respect to the incident angle αi (i = 1 to n), 90 degrees−α1 <... <90 degrees−αi <... <90 degrees−αn, that is, α1>. A curved surface 25 having a tangent plane Gi (i = 1 to n) such that> αi>. And with respect to the incident angle βi (i = 1 to n), 90 degrees−β1>...> 90 degrees−βi>...> 90 degrees−βn, that is, β1 <. A curved surface 27 having a tangential plane Hi (i = 1 to n) that becomes βn may be produced.
さらに、第1の曲面反射鏡25はなめらかに連続しているので、D1、・・・、Di、・・・、Dnを結ぶ第1の曲面反射鏡25の曲線は、D1〜Dnの区間で微分可能である必要がある。第2の曲面反射鏡27もなめらかに連続しているので、E1、・・・、Ei、・・・、Enを結ぶ第2の曲面反射鏡27の曲線は、E1〜Enの区間で微分可能である必要がある。 Furthermore, since the first curved reflector 25 is smoothly continuous, the curve of the first curved reflector 25 connecting D1,..., Di,. Must be differentiable. Since the second curved reflecting mirror 27 is also smoothly continuous, the curve of the second curved reflecting mirror 27 connecting E1,..., Ei,. Need to be.
さらに、上述したように、α+β=γが成り立ち、たとえば、LED配列灯23に対して完全に後方(180度)に第2の反射光を照射するには、α+β=γ=90度であり、バラツキ(一定幅)を考慮すれば、好適には80度<γ=α+β<100度、もっと好適には85度<γ=α+β<95度、最適にはγ=α+β=90度とする。)また、第1の曲面反射鏡25と第2の曲面反射鏡27は接続する必要はなく、LED配列灯23内のLEDの反射光が及ばない部分に曲面反射鏡を設ける必要はない。たとえば、図4においては、第1の曲面反射鏡25上のDnおよび第2の曲面反射鏡27のE1点の間の曲面は不要であるから、LED照明装置21は小型化することもできる。 Furthermore, as described above, α + β = γ holds, and, for example, to irradiate the second reflected light completely (180 degrees) rearward with respect to the LED array lamp 23, α + β = γ = 90 degrees, Considering the variation (constant width), preferably 80 degrees <γ = α + β <100 degrees, more preferably 85 degrees <γ = α + β <95 degrees, and most preferably γ = α + β = 90 degrees. In addition, it is not necessary to connect the first curved reflector 25 and the second curved reflector 27, and it is not necessary to provide a curved reflector in the portion of the LED array lamp 23 where the reflected light of the LED does not reach. For example, in FIG. 4, since the curved surface between Dn on the first curved reflecting mirror 25 and the point E1 of the second curved reflecting mirror 27 is unnecessary, the LED illumination device 21 can be downsized.
図5は、図4に示す第2の反射鏡27を小型にした第2の反射鏡29を示す図である。LED(L1)の第1の反射光P1−1におけるD1点からE1点の間のE1’点において、接平面H1と平行な接平面H1’を作製すると、E1’点で入射角β1に対して反射角β1を有する第2の反射光P’1−2を得る。各LEDのLi(i=2〜n)の第1の反射光Pi−1上でE1’点になめらかに連続する(微分可能な曲線になる)ように接平面Hi’との交点Ei’を求め、その交点Ei’で入射角βiに対して反射角βiを有する第2の反射光P’i−2を得る。これをEn’点まで繰り返すことによって、新しい第2の曲面反射鏡29を得ることができる。このことから、第2の曲面反射鏡は多数作製でき、LED照明装置の大きさに対応させることができる。一方、第1の曲面反射鏡25についても別の曲面反射鏡も作製できる。すなわち、第1の曲面反射鏡25も、なめらかに連続する(微分可能な曲線になる)ような、別の曲面反射鏡も多数作製できるので、第1の曲面反射鏡25についてもLED照明装置の大きさに対応させることができる。このようにLED照明装置の用途や大きさに合わせて所望のサイズや形状を有するLED配列灯、第1の反射鏡、および第2の反射鏡を適宜選択することができる。 FIG. 5 is a diagram showing a second reflecting mirror 29 in which the second reflecting mirror 27 shown in FIG. 4 is reduced in size. When a tangential plane H1 ′ parallel to the tangential plane H1 is produced at the point E1 ′ between the points D1 and E1 in the first reflected light P1-1 of the LED (L1), the incident angle β1 is obtained at the point E1 ′. To obtain the second reflected light P′1-2 having the reflection angle β1. An intersection point Ei ′ with the tangential plane Hi ′ is formed so as to be smoothly continuous (a differentiable curve) at the point E1 ′ on the first reflected light Pi−1 of Li (i = 2 to n) of each LED. The second reflected light P′i−2 having the reflection angle βi with respect to the incident angle βi is obtained at the intersection Ei ′. By repeating this up to the En ′ point, a new second curved reflecting mirror 29 can be obtained. Thus, a large number of second curved reflecting mirrors can be produced and can be made to correspond to the size of the LED lighting device. On the other hand, another curved reflecting mirror can be produced for the first curved reflecting mirror 25. That is, since the first curved reflector 25 can be produced in a number of other curved reflectors that are smoothly continuous (become differentiable curves), the first curved reflector 25 is also an LED lighting device. Can correspond to the size. As described above, the LED array lamp, the first reflecting mirror, and the second reflecting mirror having a desired size and shape can be appropriately selected according to the application and size of the LED lighting device.
図6は、第2の反射光および第1の反射光が混在してLED配列灯の後方に照射される場合における実施形態を示す図である。LED配列灯33の最下部のLEDであるL1から放射される直進光P1は第1の曲面反射鏡35のD1点で入射角α1を有して入射し、D1点において反射角α1を有し反射されて第1の反射光P1−1となる。この第1の反射光P1−1は第2の曲面反射鏡37のE1点で入射角β1を有して入射し、E1点において反射角β1を有し反射されて第2の反射光P1−2となる。第2の反射光P1−2はLED照明装置31の外側へ放射されて、外部の物体や空間を照射する。 FIG. 6 is a diagram showing an embodiment in the case where the second reflected light and the first reflected light are mixed and irradiated behind the LED array lamp. The straight light P1 emitted from L1 which is the lowermost LED of the LED array lamp 33 is incident at the point D1 of the first curved reflecting mirror 35 with an incident angle α1, and has a reflection angle α1 at the point D1. It is reflected and becomes the first reflected light P1-1. The first reflected light P1-1 enters at the point E1 of the second curved reflecting mirror 37 with an incident angle β1, and is reflected at the point E1 with a reflection angle β1 to be reflected by the second reflected light P1−. 2 The second reflected light P1-2 is radiated to the outside of the LED illumination device 31 and irradiates an external object or space.
LED配列灯33の最上部のLEDであるLnから放射される直進光Pnは第1の曲面反射鏡35のDn点で入射角αnを有して入射し、Dn点において反射角αnを有し反射されて第1の反射光Pn−1となる。この第1の反射光Pn−1は第2の曲面反射鏡37に入射することなく、LED照明装置31の外側へ放射されて、外部の物体や空間を照射する。従って、第2の反射光は存在しない。 The straight traveling light Pn emitted from Ln which is the uppermost LED of the LED array lamp 33 is incident at the point Dn of the first curved reflecting mirror 35 with an incident angle αn, and has a reflection angle αn at the point Dn. It is reflected and becomes the first reflected light Pn-1. The first reflected light Pn−1 is emitted outside the LED illumination device 31 without being incident on the second curved reflecting mirror 37 to irradiate an external object or space. Therefore, there is no second reflected light.
LED配列灯33の最上部のLEDであるLnと最下部のLEDであるL1との間に配置されているLEDであるLiから放射される直進光Piは第1の曲面反射鏡35のDi点で入射角αiを有して入射し、Di点において反射角αiを有し反射されて第1の反射光Pi−1となる。この第1の反射光Pi−1はi≦m−1のときには、第1の反射光P1−1と同様に、第2の曲面反射鏡37のEi点で入射角βiを有して第2の曲面反射鏡37に入射し、Ei点において反射角βiを有し反射されて第2の反射光Pi−2となる。第2の反射光Pi−2はLED照明装置31の外側へ放射されて、外部の物体や空間を照射する。一方、第1の反射光Pi−1はi≧mのときには、第1の反射光Pn−1と同様に、第1の反射光Pi−1は第2の曲面反射鏡37に入射することなく、LED照明装置31の外側へ放射されて、外部の物体や空間を照射する。 The straight light Pi radiated from Li, which is an LED arranged between Ln, which is the uppermost LED of the LED array lamp 33, and L1, which is the lowermost LED, is the Di point of the first curved reflector 35. And incident at an angle of incidence αi and reflected at the point Di with a reflection angle αi to be the first reflected light Pi-1. When i ≦ m−1, the first reflected light Pi−1 has the incident angle βi at the point Ei of the second curved reflecting mirror 37 and is second as in the case of the first reflected light P1-1. , And is reflected at the point Ei with a reflection angle βi to become the second reflected light Pi-2. The second reflected light Pi-2 is emitted to the outside of the LED illumination device 31 and irradiates an external object or space. On the other hand, when the first reflected light Pi-1 is i ≧ m, the first reflected light Pi-1 is not incident on the second curved reflecting mirror 37, similarly to the first reflected light Pn-1. The light is emitted to the outside of the LED illumination device 31 to irradiate an external object or space.
以上のように本実施形態では、LED配列灯33のすべてのLEDからの直進光は第1の曲面反射鏡35に入射して反射し、第1の反射光となるが、この第1の反射光が第2の曲面反射鏡35に入射せずに、そのままLED照明装置31の外側へ放射される場合と、第1の反射光が第2の曲面反射鏡35に入射して、第2の反射光となってLED照明装置31の外側へ放射される場合とが存在する。すなわち、第1の反射光および第2の反射光が混在してLED照明装置31の外側へ放射されて、外部の物体や空間を照射する。このような混在型でもLED配列灯33の後方へLEDの反射光を放射して、外部の物体や空間を照射することができる。 As described above, in this embodiment, the straight light from all the LEDs of the LED array lamp 33 enters the first curved reflecting mirror 35 and is reflected to become the first reflected light. This first reflection In the case where light does not enter the second curved reflecting mirror 35 and is emitted as it is to the outside of the LED lighting device 31, the first reflected light enters the second curved reflecting mirror 35 and the second There are cases where the light is reflected and emitted outside the LED lighting device 31. That is, the first reflected light and the second reflected light are mixed and emitted to the outside of the LED lighting device 31 to irradiate an external object or space. Even in such a mixed type, it is possible to irradiate an external object or space by emitting reflected light of the LED to the rear of the LED array lamp 33.
図7は、本発明の応用例を示す図である。図7は、曲面反射鏡の下側における略半曲面反射鏡45および46の略中心部において縦方向に、複数のLED(Li(i=1、・・、a、・・、b、・・・、n)、最下部のLEDをL1、最上部のLEDをLnとする)を有するLED配列灯43が配置されている。曲面反射鏡の上側における略半曲面反射鏡47および48は透明ガラスまたは透明プラスチックで構成されている。LED(L1)から放射された直進光はLED前方にある下側曲面反射鏡45で反射して反射光(第1の反射光)となり、上側曲面反射鏡47に入射する。上側曲面反射鏡47は透明ガラスまたは透明プラスチックであるから、一部は反射してLED配列灯43の上側の後方へ反射光Q1(第2の反射光)となる。この反射光Q1はLED配列灯43の上側の後方にある曲面反射鏡48に入射する。一部は曲面反射鏡48を透過してLED照明装置41の外側へ放射されて、外部にある物体や空間を照射する。あるいは、目を向ければLEDを視認できる。曲面反射鏡48がなければ、曲面反射鏡48で反射した反射光Q1は全部LED照明装置41の外側へ放射される。他の複数のLED(たとえば、La、Lb)からの放射光も下側曲面反射鏡45で反射して、この反射光(第1の反射光)が上側曲面反射鏡47に入射し、さらに上側曲面反射鏡47で反射して反射光(たとえば、Qa、Qb)(第2の反射光)がLED配列灯43の上側の後方にある曲面反射鏡48に入射し、一部は曲面反射鏡48を透過してLED照明装置41の外側へ放射されて、外部にある物体や空間を照射する。 FIG. 7 is a diagram showing an application example of the present invention. FIG. 7 shows a plurality of LEDs (Li (i = 1,..., A,..., B,...) In the vertical direction at the substantially central portions of the substantially semi-curved reflectors 45 and 46 below the curved reflector. N), an LED array lamp 43 having a lowermost LED L1 and an uppermost LED Ln) is disposed. The substantially half curved reflectors 47 and 48 on the upper side of the curved reflector are made of transparent glass or transparent plastic. The straight-ahead light radiated from the LED (L1) is reflected by the lower curved reflecting mirror 45 in front of the LED to become reflected light (first reflected light), and enters the upper curved reflecting mirror 47. Since the upper curved reflector 47 is made of transparent glass or transparent plastic, a part of it is reflected and becomes reflected light Q1 (second reflected light) to the upper rear side of the LED array lamp 43. The reflected light Q1 is incident on the curved reflecting mirror 48 on the upper rear side of the LED array lamp 43. A part of the light passes through the curved reflector 48 and is emitted to the outside of the LED illumination device 41 to irradiate an object or space outside. Alternatively, the LED can be visually recognized by looking at the eyes. Without the curved reflecting mirror 48, the reflected light Q1 reflected by the curved reflecting mirror 48 is entirely radiated to the outside of the LED illumination device 41. Radiated light from other LEDs (for example, La and Lb) is also reflected by the lower curved reflector 45, and this reflected light (first reflected light) is incident on the upper curved reflector 47, and further on the upper side. The reflected light (for example, Qa, Qb) (second reflected light) reflected by the curved reflecting mirror 47 is incident on the curved reflecting mirror 48 on the upper rear side of the LED array lamp 43, and a part thereof is the curved reflecting mirror 48. Is transmitted to the outside of the LED illumination device 41 to irradiate an object or space outside.
上側曲面反射鏡47に入射する光の一部は透過してLED照明装置41の外側へ放射されるので、その外側も照射されるし、LED光を視認することもできる。しかし、曲面反射鏡47に入射する光を全反射することができれば、反射光Q1等による後方照射の効率を高めることができる。曲面反射鏡47は透明ガラスまたは透明プラスチックであるから入射光がこの曲面反射鏡47の内部へ入っていく。通常はこの光は曲面反射鏡47の内部で吸収されたり散乱されたりしながら、外側へ透過していくが、曲面反射鏡47の屈折率をg47としたとき、sinβ1>1/g47を満足したときに、曲面反射鏡47の外側へ透過せずに全反射していく。たとえば、g47=1.5とすれば、sinβ1>0.67すなわち、β1>42度となるように入射角β1を調整すれば良い。尚、曲面反射鏡47に光が入射するときに一部が散乱したり反射したりして失われるので、LED照明装置41内空間49を曲面反射鏡47の屈折率と同じ(または近い)液体材料で満たすことによって、全反射する光の効率を高めることができる。たとえば、曲面反射鏡47を屈折率1.5のガラスとして、液体材料をパラフィン油(屈折率1.48)とすれば良い。 A part of the light incident on the upper curved reflecting mirror 47 is transmitted and emitted to the outside of the LED illumination device 41, so that the outside is also irradiated and the LED light can be visually recognized. However, if the light incident on the curved reflecting mirror 47 can be totally reflected, the efficiency of back irradiation with the reflected light Q1 or the like can be increased. Since the curved reflecting mirror 47 is made of transparent glass or transparent plastic, incident light enters the curved reflecting mirror 47. Normally, this light is transmitted to the outside while being absorbed or scattered inside the curved reflecting mirror 47. However, when the refractive index of the curved reflecting mirror 47 is g47, sin β1> 1 / g47 is satisfied. Sometimes, it is totally reflected without transmitting to the outside of the curved reflecting mirror 47. For example, when g47 = 1.5, the incident angle β1 may be adjusted so that sin β1> 0.67, that is, β1> 42 degrees. Note that when the light is incident on the curved reflecting mirror 47, a part of the light is scattered or reflected and lost, so that the liquid space in the LED lighting device 41 is the same (or close) as the refractive index of the curved reflecting mirror 47. By filling with a material, the efficiency of the totally reflected light can be increased. For example, the curved reflecting mirror 47 may be made of glass having a refractive index of 1.5, and the liquid material may be paraffin oil (refractive index of 1.48).
図7においては、図6と同様に、LEDからの第1の反射光がすべて第2の反射鏡である上側曲面反射鏡47に入射するわけではなく、LED配列灯43の上部にあるLED(Li、・・・、Ln)からの第1の反射光は、たとえばQi、・・・、Qnとして、LED配列灯43の上側の後方にある曲面反射鏡48に入射し、一部は曲面反射鏡48を透過してLED照明装置41の外側へ放射されて、外部にある物体や空間を照射する。 In FIG. 7, as in FIG. 6, not all of the first reflected light from the LED is incident on the upper curved reflector 47 that is the second reflector, but the LED ( The first reflected light from Li,..., Ln) is incident on the curved reflecting mirror 48 on the upper rear side of the LED array lamp 43, for example, as Qi,. The light passes through the mirror 48 and is emitted to the outside of the LED illumination device 41 to irradiate an object or space outside.
LED(Li)からの直進光が曲面反射鏡45に入射する所をDiとし、入射角をαiとする。LED(Li)とDiまでの距離をti、LED(Li)からLED配列灯の最上部(第1の反射光を遮る最上部)までの長さをhiとすると、第1の反射光Qiを遮らないようにするためには、hi<ti(tan2αi)を満足するようにすれば良い。また、LED(Li)から上側曲面反射鏡47の最上部までの距離をuiとすれば、第1の反射光Qiが上側曲面反射鏡47に入射しないようにするためには、ui>ti(tan2αi)とすれば良い。以上のように設計することによって、LED配列灯の下側に配置されたLEDからの放射光を2回反射させて外部へ放射し、LED配列灯の上側に配置されたLEDからの放射光を1回だけ反射させてLED装置等43の後方の外部へ放射させる図7に示すLED照明装置41を作製することができる。 Let Di be the place where the straight light from the LED (Li) enters the curved reflecting mirror 45, and let αi be the incident angle. When the distance from the LED (Li) to Di is ti, and the length from the LED (Li) to the top of the LED array lamp (the top that blocks the first reflected light) is hi, the first reflected light Qi is In order not to block, it is only necessary to satisfy hi <ti (tan 2αi). Further, if the distance from the LED (Li) to the uppermost portion of the upper curved reflector 47 is ui, in order to prevent the first reflected light Qi from entering the upper curved reflector 47, ui> ti ( tan2αi). By designing as described above, the emitted light from the LED arranged on the lower side of the LED array lamp is reflected twice and emitted to the outside, and the emitted light from the LED arranged on the upper side of the LED array lamp is emitted. The LED illumination device 41 shown in FIG. 7 can be produced that is reflected only once and is emitted to the outside behind the LED device 43.
図7に示すLED照明装置41における曲面反射鏡45、46並びに47、48が回転体(たとえば、楕円球体)であるとすれば、LED配列灯43を回転させることによって、全方位へ光を放射することができる。(たとえば、ミラーボールのように使用できる。)LED照明装置41自体を回転させても良いが、LED照明装置41自体の移動(回転)はないため不思議な雰囲気を演出することができる。尚、図7に示すLEDはLEDの進行方向にキャップを被せているので、このキャップによって少しブロードな光として放射される。このことは、上述した一定の幅を有したLED放射光として解釈すれば良い。 If the curved reflecting mirrors 45, 46 and 47, 48 in the LED lighting device 41 shown in FIG. 7 are rotating bodies (for example, elliptical spheres), light is emitted in all directions by rotating the LED array lamp 43. can do. (For example, it can be used like a mirror ball.) The LED illumination device 41 itself may be rotated, but since the LED illumination device 41 itself is not moved (rotated), a mysterious atmosphere can be produced. Since the LED shown in FIG. 7 has a cap in the traveling direction of the LED, it is emitted as a little broad light by this cap. This may be interpreted as LED radiation having a certain width as described above.
図8は、LED配列灯53を横(水平)置きにし、(平面)反射鏡55を使用したときの反射光を示す図である。LED配列灯53を横(水平)置きにし、LED配列灯53の各LED(L1、・・・、Ln)から(平面)反射鏡55への入射角をαとすると、LED配列灯53の各LED(L1、・、Li、・・、Ln)から出た光は、0<α<90度のときに横(水平)方向に第1の反射光Qi(i=1、2、・・・、n)が反射されて、LED照明装置51の外側へ出ていき、外部の物体や空間を照射する。また外側からLEDを視認できる。0<α<45度のときに第1の反射光Qiは下向きに平行に出ていくが、αの角度によっては第1の反射光QiはLED配列灯53に当たる場合がある。45度<αのときには、第1の反射光Qiは上向きに平行に出ていく。α=45度のときに、第1の反射光Qiは横方向に平行に出ていき、装置51から見れば後方に照射されている。このようにLED配列灯53を横置きにすると、1枚の(平面)反射鏡55で、後方への反射光(照射光)を得ることができる。 FIG. 8 is a diagram showing reflected light when the LED array lamp 53 is placed horizontally (horizontal) and a (planar) reflecting mirror 55 is used. When the LED array lamp 53 is placed horizontally (horizontal) and the incident angle from the LEDs (L1,..., Ln) of the LED array lamp 53 to the (planar) reflecting mirror 55 is α, each of the LED array lamps 53 is arranged. The light emitted from the LEDs (L1,..., Li,..., Ln) is the first reflected light Qi (i = 1, 2,...) In the lateral (horizontal) direction when 0 <α <90 degrees. , N) is reflected and goes out of the LED illumination device 51 to irradiate an external object or space. Moreover, LED can be visually recognized from the outside. When 0 <α <45 degrees, the first reflected light Qi is emitted downward in parallel, but the first reflected light Qi may strike the LED array lamp 53 depending on the angle α. When 45 degrees <α, the first reflected light Qi is emitted upward in parallel. When α = 45 degrees, the first reflected light Qi is emitted in parallel in the lateral direction, and is irradiated backward as viewed from the device 51. When the LED array lamp 53 is placed sideways in this manner, reflected light (irradiation light) to the rear can be obtained with a single (planar) reflecting mirror 55.
本発明のLED照明装置は、LEDからの指向性の強い直進光を反射鏡で反射させた反射光を外部へ照射する装置であるが、反射鏡で適度に拡散分散し、また適度に広げて外部へ放射するものであるから、LEDからの直進光と比較すると、ブロードな光となり周辺も比較的明るくなる。しかも反射鏡を用いているのでLED光源を視認できるという利点もある。図1〜図7においては、LED配列灯は縦方向に対して一列で記載しているが、奥行き側に複数列のLED配列灯を配置しても良い。この場合、各反射鏡(第1の反射鏡、第2の反射鏡)は同じ大きさで同じ形状のものを奥行き側に作製しても良いし、奥行き側に曲面を持たせて作製しても良い。これらの奥行き側の曲面は、上述した様に多数の曲面反射鏡を用いることができるので、本発明に記載した条件に基づいて適宜設計すれば良い。また、第1の反射鏡に上述した平面鏡を用いて、第2の反射鏡に上述した曲面反射鏡を用いても良いし、あるいは、第1の反射鏡に上述した曲面反射鏡を用いても良いし、第2の反射鏡に上述した平面反射鏡を用いても良い。これらを適宜組み合わせたとき、図6および図7で述べたように、第1の反射光の一部はLED配列灯の後方へそのまま放射される場合もあるが、用途に応じてそのような方法を適宜選択すれば良い。本発明で述べた反射鏡は、たとえば球面、楕円面、双曲面、
あるいは円錐面である。また反射鏡としてガラス、プラスチック、金属等通常使用している材料を使うことができる。反射面に反射塗膜や金属膜等をコーティングしても良い。
The LED lighting device of the present invention is a device that irradiates the reflected light, which is reflected by a reflecting mirror, with a highly directional straight beam from the LED, but is appropriately diffused and dispersed by the reflecting mirror, and is also appropriately spread. Since it radiates to the outside, it becomes broader light and the surroundings are relatively brighter than the straight light from the LED. Moreover, since the reflecting mirror is used, there is an advantage that the LED light source can be visually recognized. In FIG. 1 to FIG. 7, the LED array lamps are described in a single line with respect to the vertical direction, but a plurality of LED array lamps may be arranged on the depth side. In this case, each reflecting mirror (first reflecting mirror, second reflecting mirror) having the same size and shape may be fabricated on the depth side, or may be fabricated with a curved surface on the depth side. Also good. Since the curved surfaces on the depth side can use a large number of curved reflecting mirrors as described above, they may be appropriately designed based on the conditions described in the present invention. Alternatively, the above-described flat mirror may be used as the first reflecting mirror, the above-described curved reflecting mirror may be used as the second reflecting mirror, or the above-described curved reflecting mirror may be used as the first reflecting mirror. Alternatively, the above-described planar reflecting mirror may be used as the second reflecting mirror. When these are appropriately combined, as described in FIG. 6 and FIG. 7, a part of the first reflected light may be radiated as it is to the rear of the LED array lamp, but such a method is used depending on the application. May be selected as appropriate. The reflecting mirror described in the present invention is, for example, a spherical surface, an ellipsoid, a hyperboloid,
Or it is a conical surface. Moreover, the material which is normally used, such as glass, a plastics, and a metal, can be used as a reflecting mirror. The reflective surface may be coated with a reflective coating film or a metal film.
図9は、縦(Z方向)にm個、横(X方向)にn個マトリックス状に配列したLED(Lij(i=1、・・、m;j=1、・・、n)を有するLED配列灯(m行xn列LEDマトリックス面光源、たとえば、12行12列、24行24列、24行36列等種々作成できる)63、これに対応した第1の反射鏡65、および第2の反射鏡67を有するLED照明装置61の一実施形態を示す図である。図9におけるLED照明装置61は立体的に示されている。このmxnLED配列灯は一つの基板内にLEDがマトリックス状に配置されたものであるが、m個のLEDが縦(Z方向)に一列に配置したn個のL11、・・・、Lmnが横(列状)につながったLED配列灯と考えれば良く、図1〜図7等に基づいて説明したLED照明装置に関する内容を適用できる。図9では、LED配列灯63およびそこから出た直進光による反射光Qij(i=1、・・、m;j=1、・・、n)が分かりやすいように、第1の反射鏡65および第2の反射鏡67を破線で示しているが、これらの第1の反射鏡65および第2の反射鏡67は実際には連続した曲面である。LED配列灯の上部後方は反射光を放出するために開放されている。(あるいは図7に示すように透明なガラスやプラスチックでカバーされても良い。) FIG. 9 has LEDs (Lij (i = 1,..., M; j = 1,..., N)) arranged in a matrix form of m in the vertical direction (Z direction) and n in the horizontal direction (X direction). LED array lamp (m-row xn-column LED matrix surface light source, for example, 12 rows, 12 columns, 24 rows, 24 columns, 24 rows, 36 columns, and the like can be variously created) 63, a first reflecting mirror 65 corresponding to this, and a second It is a figure which shows one Embodiment of the LED illuminating device 61 which has the reflective mirror 67. The LED illuminating device 61 in FIG.9 is shown in three dimensions.This mxnLED array lamp has LED in matrix form in one board | substrate. However, it can be thought of as an LED array light in which m L LEDs are arranged in a row in the vertical direction (Z direction), and L pieces of L11,. LED lighting device explained based on FIG. 1 to FIG. 9, the LED array lamp 63 and the reflected light Qij (i = 1,..., M; j = 1,..., N) generated by the straight light emitted from the LED array lamp 63 are easily understood. Although the first reflecting mirror 65 and the second reflecting mirror 67 are shown by broken lines, the first reflecting mirror 65 and the second reflecting mirror 67 are actually continuous curved surfaces. The upper rear is open to emit reflected light (or it may be covered with transparent glass or plastic as shown in FIG. 7).
横に並べたj列目のLED(Lij)(i=1、・・、m)からの直進光は、第1の反射鏡の曲面(曲線)Sjで反射し、この第1の反射光が第2の反射鏡の曲面(曲線)Tjで反射し、第2の反射光QijとしてLED照明装置61の外側へ出ていく。図1〜図7で説明した条件を満たせば、この反射光QijはLED配列灯63の後方外側(逆Y方向)へ出ていく。上述したようにSjは(j=1〜n)同じ曲線でなくても良いし、Tjも(j=1〜n)同じ曲線でなくても良い。その場合は、第1の反射鏡65は、図9に示すようにn列側(X方向)に曲線状(Oi)になり、また、第2の反射鏡67も、図9に示すようにn列側(X方向)に曲線状(Ui)になる。第1の反射鏡65における接平面と第2の反射鏡67における接平面のなす角度が90度を有する場合、第2の反射光QilはLED直進光と逆方向(逆Y方向)へLED照明灯61の上側後方の開放部から外側へ放射される。すなわち、すべてのQijは平行光線となって逆Y方向へ放射され、外部の物体や空間を照射する。尚、Sjおよび/またはTjが同じ曲線となる場合には、上述したように、奥行き側(X方向)は同じ曲面となる。あるいは、Sjおよび/またはTjが直線(平面鏡)の場合には奥行き側(X方向)も同じ平面鏡となっている。尚、上記ではm行xn列LEDマトリックス面光源と記載したが、その中の一部を取り除いているものに関しても含むことは言うまでもない。たとえば、マトリックス平面の角側を省いたものや、マトリックス平面の内側の一部を省いたものも含まれる。 The straight-ahead light from the LEDs (Lij) (i = 1,..., M) in the j-th row arranged side by side is reflected by the curved surface (curve) Sj of the first reflecting mirror, and this first reflected light is reflected. The light is reflected by the curved surface (curve) Tj of the second reflecting mirror and goes out of the LED illumination device 61 as the second reflected light Qij. If the conditions described with reference to FIGS. 1 to 7 are satisfied, the reflected light Qij goes out to the rear outside (reverse Y direction) of the LED array lamp 63. As described above, Sj may not be the same curve (j = 1 to n), and Tj may not be the same curve (j = 1 to n). In that case, the first reflecting mirror 65 is curved (Oi) on the n-row side (X direction) as shown in FIG. 9, and the second reflecting mirror 67 is also as shown in FIG. A curve (Ui) is formed on the n-row side (X direction). When the angle formed by the tangent plane in the first reflecting mirror 65 and the tangential plane in the second reflecting mirror 67 has 90 degrees, the second reflected light Qil is LED-illuminated in the direction opposite to the LED straight light (reverse Y direction). The light is radiated to the outside from the upper rear opening of the lamp 61. That is, all Qij are emitted as parallel rays in the reverse Y direction, and illuminate an external object or space. When Sj and / or Tj are the same curve, as described above, the depth side (X direction) is the same curved surface. Alternatively, when Sj and / or Tj is a straight line (plane mirror), the depth side (X direction) is also the same plane mirror. In addition, although it described as an m-row xn-column LED matrix surface light source in the above, it cannot be overemphasized that it includes also about what remove | eliminated one part in it. For example, a case where the corner side of the matrix plane is omitted and a case where a part inside the matrix plane is omitted are included.
尚、明細書のある部分に記載し説明した内容について記載しなかった他の部分においても矛盾なく適用できることに関しては、当該他の部分に当該内容を適用できることは言うまでもない。さらに、前記実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施でき、本発明の権利範囲が前記実施形態に限定されないことも言うまでもない。 In addition, it cannot be overemphasized that the said content can be applied to the said other part regarding that it can apply without contradiction also to the other part which was not described about the content described and demonstrated in a certain part of the specification. Furthermore, the above-described embodiment is an example, and various modifications can be made without departing from the scope of the invention. Needless to say, the scope of rights of the present invention is not limited to the above-described embodiment.
本発明の反射鏡を用いたLED照明装置は、照明装置だけでなく、玩具、置物としても使用できる。 The LED lighting device using the reflecting mirror of the present invention can be used not only as a lighting device but also as a toy and an ornament.
11・・・LED照明装置、13・・・LED配列灯、
15・・・第1の反射鏡(平面反射鏡)、17・・・第2の反射鏡(平面反射鏡)、
21・・・LED照明装置、23・・・LED配列灯、
25・・・第1の曲面反射鏡、27・・・第2の曲面反射鏡、
29・・・第2の曲面反射鏡、
31・・・LED照明装置、33・・・LED配列灯、
35・・・第1の曲面反射鏡、37・・・第2の曲面反射鏡、
41・・・LED照明装置、43・・・LED配列灯、
45・・・第1の曲面反射鏡、46・・・第1の曲面反射鏡、
47・・・第2の曲面反射鏡、48・・・第2の曲面反射鏡、
49・・・LED照明装置内空間、
51・・・LED照明装置、53・・・LED配列灯、
55・・・平面反射鏡、
61・・・LED照明装置、
63・・・LED配列灯(m行xn列LEDマトリックス面光源)、
65・・・第1の(曲面)反射鏡、67・・・第2の(曲面)反射鏡、
11 ... LED lighting device, 13 ... LED array lamp,
15 ... 1st reflecting mirror (planar reflecting mirror), 17 ... 2nd reflecting mirror (planar reflecting mirror),
21 ... LED lighting device, 23 ... LED array lamp,
25 ... 1st curved reflector, 27 ... 2nd curved reflector,
29 ... second curved reflector,
31 ... LED lighting device, 33 ... LED array lamp,
35 ... 1st curved reflector, 37 ... 2nd curved reflector,
41 ... LED lighting device, 43 ... LED array lamp,
45... First curved reflector, 46... First curved reflector,
47 ... second curved reflector, 48 ... second curved reflector,
49 ... Space inside the LED lighting device,
51 ... LED lighting device, 53 ... LED array lamp,
55 ... plane reflector,
61 ... LED lighting device,
63 ... LED array lamp (m row xn column LED matrix surface light source),
65 ... first (curved surface) reflecting mirror, 67 ... second (curved surface) reflecting mirror,
Claims (7)
前記曲面反射鏡は下側半曲面反射鏡と上側半曲面反射鏡からなり、The curved reflector comprises a lower half curved reflector and an upper half curved reflector,
前記上側半曲面反射鏡は透明ガラスまたは透明プラスチックから構成されており、The upper half curved reflector is made of transparent glass or transparent plastic,
前記LED配列灯は前記下側半曲面反射鏡の中心部に配置され、ここで、前記LED配列灯の縦方向は前記曲面反射鏡の上下方向であり、The LED array lamp is disposed at the center of the lower half curved reflector, wherein the vertical direction of the LED array lamp is the vertical direction of the curved reflector,
前記LED配列灯から出射されるLED光は、LED前方の前記下側半曲面反射鏡で反射して(これを第1の反射光とする)前記上側半曲面反射鏡に入射し、The LED light emitted from the LED array lamp is reflected by the lower half curved reflector in front of the LED (this is referred to as first reflected light) and enters the upper half curved reflector,
第1の反射光の一部または全部は前記上側半曲面反射鏡で反射して(これを第2の反射光とする)前記上側半曲面反射鏡に入射し、Part or all of the first reflected light is reflected by the upper semi-curved reflector (this is referred to as second reflected light) and enters the upper semi-curved reflector.
第2の反射光の一部は前記上側半曲面反射鏡で透過して前記上側半曲面反射鏡の外側へ照射されることを特徴とするLED照明装置。A part of 2nd reflected light permeate | transmits with the said upper semi-curved reflector, and is irradiated to the outer side of the said upper semi-curved reflector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012061241A JP6056056B2 (en) | 2012-03-16 | 2012-03-16 | LED lighting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012061241A JP6056056B2 (en) | 2012-03-16 | 2012-03-16 | LED lighting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013196868A JP2013196868A (en) | 2013-09-30 |
JP6056056B2 true JP6056056B2 (en) | 2017-01-11 |
Family
ID=49395579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012061241A Expired - Fee Related JP6056056B2 (en) | 2012-03-16 | 2012-03-16 | LED lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6056056B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016021285A (en) * | 2014-07-11 | 2016-02-04 | パイオニア株式会社 | Luminaire |
JP2016021286A (en) * | 2014-07-11 | 2016-02-04 | パイオニア株式会社 | Luminaire |
JP2016194880A (en) * | 2015-04-02 | 2016-11-17 | 谷口商会株式会社 | Signal device |
CN107514614B (en) * | 2016-06-16 | 2019-11-29 | 深圳市佰骏工业产品设计有限公司 | Lamps and lanterns |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2886712B1 (en) * | 2005-06-06 | 2007-08-17 | Valeo Vision Sa | PROJECTOR FOR MOTOR VEHICLE. |
US8197105B2 (en) * | 2009-08-13 | 2012-06-12 | Intematix Corporation | LED-based lamps |
-
2012
- 2012-03-16 JP JP2012061241A patent/JP6056056B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013196868A (en) | 2013-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108474540B (en) | Modular sun and sky simulation lighting system | |
JP6806775B2 (en) | Large area light source and large area luminaire | |
JP5172592B2 (en) | Optical element and light emitting device | |
JP5543157B2 (en) | Optical element and light emitting device | |
WO2010058554A1 (en) | Optical element and light-emitting device | |
CN1766408A (en) | Lighting device | |
CN102472860A (en) | Free form lighting module | |
JP5839674B2 (en) | Lighting device | |
JP2009087596A (en) | Reflector, lighting device, and lighting module | |
CN108139062B (en) | Illumination system and method of generating a light output | |
JP6347390B2 (en) | Lighting device | |
JP6056056B2 (en) | LED lighting device | |
JP2012160666A (en) | Light source module and lighting device | |
CN108291702A (en) | Light supply apparatus, lighting device and lamps apparatus for vehicle | |
JP5292629B2 (en) | Lighting device | |
JP2009087595A (en) | Lighting module, light source unit, and lighting device | |
KR20150076553A (en) | Lighting device using line shaped light | |
CN103388773B (en) | Sunshine spectral pattern LED eyeshield flat lamp | |
JP2005044766A (en) | Lighting body of assembled led lamps | |
JP2018049748A (en) | Optical element | |
CN1844988A (en) | Assembled uniform area light source | |
KR20150056401A (en) | Optical member and lighting device using same | |
JP2012234729A (en) | Lighting device | |
JP2016530668A (en) | Lighting unit | |
JP5336879B2 (en) | Optical element, light emitting device and road light |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20131010 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131010 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160408 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20160408 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160608 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6056056 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |