WO2011024589A1 - Automatic bread maker - Google Patents

Automatic bread maker Download PDF

Info

Publication number
WO2011024589A1
WO2011024589A1 PCT/JP2010/062674 JP2010062674W WO2011024589A1 WO 2011024589 A1 WO2011024589 A1 WO 2011024589A1 JP 2010062674 W JP2010062674 W JP 2010062674W WO 2011024589 A1 WO2011024589 A1 WO 2011024589A1
Authority
WO
WIPO (PCT)
Prior art keywords
bread
kneading
unit
pulverization
container
Prior art date
Application number
PCT/JP2010/062674
Other languages
French (fr)
Japanese (ja)
Inventor
輝明 田口
敏治 藤原
吉成 白井
正雄 早勢
理如 下澤
Original Assignee
三洋電機株式会社
三洋電機コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三洋電機コンシューマエレクトロニクス株式会社 filed Critical 三洋電機株式会社
Publication of WO2011024589A1 publication Critical patent/WO2011024589A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/02Mixing or kneading machines for the preparation of dough with vertically-mounted tools; Machines for whipping or beating
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B7/00Baking plants
    • A21B7/005Baking plants in combination with mixing or kneading devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/808Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/83Mixing plants specially adapted for mixing in combination with disintegrating operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/836Mixing plants; Combinations of mixers combining mixing with other treatments
    • B01F33/8361Mixing plants; Combinations of mixers combining mixing with other treatments with disintegrating
    • B01F33/83613Mixing plants; Combinations of mixers combining mixing with other treatments with disintegrating by grinding or milling

Definitions

  • the present invention relates to an automatic bread maker mainly used in general households.
  • a commercially available automatic bread maker for home use puts a bread container containing bread-making ingredients into a baking chamber in the main body, kneads and kneads the bread-making ingredients in the bread container with a kneading blade, and after undergoing a fermentation process, A structure in which bread is baked using a bread container as it is is generally used (see, for example, Patent Document 1).
  • the present invention provides an automatic bread maker equipped with a convenient mechanism for producing bread directly from cereal grains, not from milled flour (cereal flour), and makes bread production more familiar. For the purpose.
  • the automatic bread maker of the present invention was crushed by a container into which bread ingredients were charged, a pulverizing part for pulverizing grains put into the container as bread ingredients, and the pulverizing part.
  • a bread making process selection unit that enables the controller, and a control unit that controls the crushing unit, the kneading unit, and the temperature adjustment unit to execute the bread manufacturing process selected by the bread making process selection unit; It is characterized by providing.
  • the automatic bread maker since the automatic bread maker has a pulverizing section, it is possible to manufacture bread from cereal grains without using milled powder (cereal flour). That is, according to the automatic bread maker of this configuration, it is possible to bake bread from hand-held grain grains without purchasing grain flour. And since the automatic bread maker of this structure has the bread making process selection part which enables selection of the manufacturing process of bread according to the kind of grain, it makes bread on various conditions using various grain. It can be baked.
  • the bread making process selection unit may be capable of selecting a white rice bread manufacturing process and a brown rice bread manufacturing process.
  • White rice and brown rice have different hardness.
  • the process for producing bread differs between when white rice is used as the grain (rice grain) and when brown rice is used. Can make bread.
  • the bread manufacturing process includes a liquid absorption process for immersing the grain grains in a liquid and absorbing the liquid, a pulverizing process for crushing the absorbed grain grains, A kneading process for kneading bread ingredients including crushed powder into bread dough, a fermentation process for fermenting the kneaded bread dough, and a baking process for baking the fermented bread dough, including a plurality of selectable bread making process selection units
  • the length of time required for at least one of the liquid absorption process and the pulverization process may be different from each other.
  • the bread manufacturing process includes a pulverizing process for pulverizing the cereal grains, a kneading process for kneading bread ingredients containing the pulverized powder of the cereal grains into bread dough, and a kneaded bread dough
  • a fermentation process for fermenting and a baking process for baking the fermented dough wherein the pulverization step is alternately repeated with a pulverization period for pulverizing the cereal grains and a liquid absorption period for absorbing the cereal grains. It is good also as the repetition frequency of the said crushing period and the said liquid absorption period mutually differing between the manufacturing processes of the some bread which are provided and can be selected by the said bread-making process selection part.
  • the number of repetitions of the pulverization period and the liquid absorption period which affect the particle size of the pulverized powder of the cereal grains, varies depending on the type of cereal grains. For this reason, the particle diameters of the pulverized powders after pulverizing various grains can be made substantially the same, and it is easy to produce high-quality bread.
  • the pulverization period and the liquid absorption period are alternately repeated, it is not necessary to provide the liquid absorption process before the pulverization process, and the time required for bread production can be shortened. It is.
  • the length of time required for the kneading step may be different between a plurality of bread manufacturing steps that can be selected by the bread making step selection unit.
  • an automatic bread maker equipped with a convenient mechanism for producing bread directly from cereal grains, not from milled flour (cereal flour). And can.
  • FIG. 1 is a schematic plan view of the automatic bread maker shown in FIG. Control block diagram of automatic bread maker of this embodiment The figure which shows the manufacturing process of the bread for white rice performed with the automatic bread maker of this embodiment. The figure which shows the manufacturing process of the bread for brown rice performed with the automatic bread maker of this embodiment. The figure for demonstrating other embodiment of the automatic bread maker to which this invention was applied. The other figure for demonstrating other embodiment of the automatic bread maker to which this invention was applied
  • FIG. 1 is a vertical sectional view of the automatic bread maker according to the present embodiment.
  • the left side of the figure is the front (front) side of the automatic bread maker 1
  • the right side of the figure is the back (rear) side of the automatic bread maker 1.
  • FIG. 2 is a schematic plan view of the automatic bread maker shown in FIG. 1 as viewed from above with the lid removed.
  • the lower side of the figure is the front side of the automatic bread maker 1
  • the upper side of the figure is the back side of the automatic bread maker 1.
  • the overall configuration of the automatic bread maker 1 according to this embodiment will be described with reference to FIGS.
  • the automatic bread maker 1 has a box-shaped main body 10 constituted by a synthetic resin outer shell.
  • the main body 10 is provided with a U-shaped synthetic resin handle 11 connected to both ends of the left side surface and the right side surface thereof, thereby facilitating transportation.
  • An operation unit 20 is provided on the front surface of the main body 10.
  • the operation unit 20 displays an operation key group 21 such as a start key, a cancel key, a timer key, a reservation key, and a selection key for selecting a bread manufacturing process, and contents and errors set by the operation key group 21.
  • a liquid crystal display panel 22 is provided on the front surface of the main body 10.
  • the operation key group 21 has a bread making process selection key (embodiment of the bread making process selection unit of the present invention) that enables selection of a bread manufacturing process according to the type of grain used as bread ingredients.
  • a bread making process selection key (embodiment of the bread making process selection unit of the present invention) that enables selection of a bread manufacturing process according to the type of grain used as bread ingredients.
  • the brown rice key 21a is provided so that one of a white rice bread manufacturing process and a brown rice bread manufacturing process can be selected. Yes.
  • the automatic bread maker 1 is in a state in which the brown rice key 21a is off, and the white rice bread manufacturing process is selected.
  • a brown rice course lamp (not shown) is turned on, and the production process of the brown rice bread is selected.
  • the upper surface of the main body behind the operation unit 20 is covered with a lid 30 made of synthetic resin.
  • the lid 30 is attached to the back side of the main body 10 with a hinge shaft (not shown), and is configured to rotate in a vertical plane with the hinge shaft as a fulcrum.
  • the lid 30 is provided with a ceiling 31 in which a sheet metal is molded into a dome shape at a portion covering a firing chamber 40 which will be described in detail later.
  • the top of the ceiling 31 is connected to a viewing window 32 made of heat-resistant glass provided on the lid 30.
  • a firing chamber 40 is provided inside the main body 10.
  • the baking chamber 40 is made of sheet metal and has an open top surface, from which a bread container 50 is placed.
  • the baking chamber 40 includes a peripheral side wall 40a and a bottom wall 40b having a rectangular horizontal section.
  • a heating device 41 is arranged so as to surround the bread container 50 accommodated in the baking chamber 40.
  • the heating device 41 is constituted by a sheathed heater.
  • a sheet metal base 12 is installed inside the main body 10.
  • a bread container support 13 made of an aluminum alloy die-cast product is fixed at a location corresponding to the center of the firing chamber 40. The inside of the bread container support part 13 is exposed inside the baking chamber 40.
  • the bread container support unit 13 supports the bread container 50 by receiving a cylindrical pedestal 51 fixed to the bottom surface of the bread container 50.
  • a double shaft composed of an inner shaft 14a and an outer shaft 14b is vertically supported. Both lower ends of the inner shaft 14a and the outer shaft 14b protrude from the lower surface of the bread container support portion 13, the inner shaft 14a is fixed to the pulley 15a, and the outer shaft 14b is fixed to the pulley 15b.
  • the bread container 50 is made of sheet metal and has a bucket-like shape, and a handle (not shown) for handbags is attached to the mouth edge.
  • the horizontal cross section of the bread container 50 is a rectangle with rounded four corners, and ridge-like protrusions 50a extending in the vertical direction are formed on the inner surfaces of two opposite sides of the four sides.
  • a kneading blade 52 and a crushing blade 70 are disposed at the bottom center of the bread container 50.
  • a double shaft composed of an inner shaft 53a and an outer shaft 53b is vertically supported after a countermeasure against sealing is applied to the center of the bread container 50.
  • a kneading blade 52 is attached to the inner shaft 53a, and a grinding blade 70 is attached to the outer shaft 53b.
  • the arrangement of the kneading blade 52 and the crushing blade 70 is coaxial, so that the kneading blade 52 and the crushing blade 70 can coexist in a compact area at the bottom of the bread container 50. It has become.
  • the kneading blade 52 has plate-like blades having a substantially rectangular shape in plan view.
  • the kneading blade 52 is attached to the non-circular cross section at the upper end of the inner shaft 53a by simple fitting, and can be attached and detached without using a tool. For this reason, it can be easily replaced with a different kind of kneading blade.
  • the grinding blade 70 is attached to the outer shaft 53b so as not to hit the lower surface of the kneading blade 52.
  • the grinding blade 70 may also be attached by simply fitting.
  • the crushing blade 70 has a plurality of cutting blades 72 scattered on the upper surface of a metal disc 71 (see FIG. 2).
  • the cutting blade 72 is formed like a juicer cutter or a grater tooth.
  • the plurality of cutting blades 72 constitute a plurality of rows that extend in the radial direction. The distance from the center of the disk 71 of each cutting blade projection in each line is slightly different from the front and rear lines for each line. For this reason, the plurality of cutting blades 72 can uniformly exert a crushing action on the entire arrangement region.
  • the inner shaft 53a provided in the bread container 50 is connected to the inner shaft 14a provided in the bread container support 13 to transmit power.
  • the outer shaft 53b provided in the bread container 50 is connected to the outer shaft 14b provided in the bread container support portion 13 to transmit power.
  • couplings 54a and 54b enclosed in a pedestal 51 are used.
  • the two members constituting the coupling 54a one member is fixed to the lower end of the inner shaft 53a, and the other member is fixed to the upper end of the inner shaft 14a.
  • the two members constituting the coupling 54b one member is fixed to the lower end of the inner shaft 53b, and the other member is fixed to the upper end of the inner shaft 14b.
  • the protrusion which is not illustrated is formed in the inner peripheral surface of the bread container support part 13, and the outer peripheral surface of the base 51, respectively, These protrusion comprises the well-known bayonet coupling
  • the bread container 50 is lowered so that the protrusions of the base 51 do not interfere with the protrusions of the bread container support part 13.
  • the protrusion of the pedestal 51 is engaged with the lower surface of the protrusion of the bread container support part 13. Thereby, the bread container 50 cannot be pulled out upward. Further, by this operation, the coupling 54a and the coupling 54b are simultaneously achieved.
  • the twisting direction when the bread container 50 is attached matches the rotational direction of the kneading blade 52 and the grinding blade 70. Thereby, even if the kneading blade 52 and the crushing blade 70 rotate, the bread container 50 does not come off.
  • the kneading motor 60 a is attached to the base 12, and the crushing motor 60 b is attached to the beam 16 provided in the main body 10 separately from the base 12.
  • the kneading motor 60a and the grinding motor 60b are both shafts, and the output shaft 61a projects from the lower surface of the kneading motor 60a, and the output shaft 61b projects from the lower surface of the grinding motor 60b.
  • a pulley 62a is fixed to the output shaft 61a of the kneading motor 60a, and the pulley 62a is connected to a pulley 15a to which the inner shaft 14a is fixed by a belt 63a.
  • a pulley 62b is fixed to the output shaft 61b of the grinding motor 60b, and this pulley 62b is connected to a pulley 15b to which the outer shaft 14b is fixed by a belt 63b.
  • the inner shaft 14a for rotating the kneading blade 52 is required to rotate at a low speed and a high torque.
  • the outer shaft 14b that rotates the grinding blade 70 is required to rotate at high speed.
  • the pulley 62a rotates the pulley 15a at a reduced speed, and the pulley 62b sets a diameter ratio between the pulleys so that the pulley 15b rotates at a constant speed or an increased speed.
  • a high-speed rotation type is selected as the grinding motor 60b.
  • FIG. 3 is a control block diagram of the automatic bread maker according to the present embodiment.
  • the automatic bread maker 1 includes a control device 80 for controlling the operation thereof.
  • the control device 80 is disposed at an appropriate position in the main body 10. In addition, it is preferable to arrange
  • the control device 80 includes a microcomputer 81 composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like.
  • the various keys of the operation unit 20 described above are electrically connected to the microcomputer 81 included in the control device 80.
  • the microcomputer 81 is electrically connected to a temperature sensor 18 that is disposed inside the baking chamber 40 and detects the temperature in the baking chamber 40.
  • the kneading motor drive circuit 82a is a circuit that controls the driving of the kneading motor 60a that rotates the kneading blade 52 under a command from the microcomputer 81.
  • the crushing motor drive circuit 82 b is a circuit that controls the driving of the crushing motor 60 b that rotates the crushing blade 70 under a command from the microcomputer 81.
  • the heater drive circuit 83 is a circuit that controls the operation of the heating device 41 including a sheathed heater under a command from the microcomputer 81 that receives information from the temperature sensor 18.
  • the microcomputer 81 reads a program related to a bread manufacturing process stored in a ROM or the like based on an input signal from the operation unit 20, rotates the kneading blade 52 via the kneading motor drive circuit 82a, and crushes the motor drive circuit. While controlling the rotation of the grinding blade 70 via 82b and the heating operation of the heating device 41 via the heater drive circuit 83, the automatic bread maker 1 executes the bread production process.
  • the control device 80 is an embodiment of the control unit of the present invention.
  • the kneading blade 52 and the kneading motor 60a are embodiments of the kneading unit of the present invention.
  • the crushing blade 70 and the crushing motor 60b are embodiments of the crushing unit of the present invention.
  • the temperature sensor 18 and the heating device 41 are embodiments of the temperature adjustment unit of the present invention.
  • the grinding blade 70 is provided to grind the grain, but when the grain is ground, heat is generated and the temperature in the bread container 50 may rise to an unfavorable temperature. .
  • the component which comprises the temperature control part with which the automatic bread maker 1 is provided is set as the structure which further contains a cooling device.
  • a cooling device for example, a configuration in which a cooling jacket into which a coolant (coolant) such as water or ice is charged is disposed so as to be in contact with the outer surface of the bread container 50.
  • a structure etc. which arrange
  • the automatic bread maker 1 can manufacture bread using rice grains (an example of cereal grains) as bread ingredients. And in manufacturing bread from rice grains, it is possible to select which process is used to manufacture bread among the white rice bread manufacturing process and the brown rice bread manufacturing process by the brown rice key 21a described above. It is like that.
  • the user attaches the kneading blade 52 and the crushing blade 70 to the bread container 50. Then, the user measures a predetermined amount of each of the rice grains (white rice grains) and water and puts them in the bread container 50.
  • rice grains and water are mixed, but instead of mere water, for example, a liquid having a taste component such as broth, fruit juice, a liquid containing alcohol, or the like may be used.
  • the user puts the bread container 50 filled with rice grains and water into the baking chamber 40, closes the lid 30, selects the production process for white rice by the operation unit 20 (the brown rice course lamp is not lit), and starts. Press the key. Thereby, the process of manufacturing bread from the rice grain by a white rice course is started.
  • a coolant is thrown into a cooling jacket at this stage or just before the below-mentioned crushing process.
  • the coolant for example, water, ice, a mixture of water and ice, a gel for keeping cold, or the like can be used.
  • FIG. 4A is a diagram showing a process for producing white rice bread performed by an automatic bread maker. As shown in FIG. 4A, in the white rice course, the liquid absorption process, the pulverization process, the kneading process, the fermentation process, the degassing process, the fermentation process, and the firing process are sequentially performed in this order.
  • the liquid-absorbing step is a step aimed at making the rice grains easy to be pulverized to the core in the subsequent pulverization step by adding liquid (water) to the rice grains (white rice grains).
  • this liquid absorption step the mixture of rice grains and water is left standing in the bread container 50 and left for a predetermined time (in this embodiment, 50 minutes). This time is experimentally determined, for example, as a time during which the subsequent pulverization process can be performed efficiently.
  • this liquid absorption step may be performed in a state where the temperature is raised to, for example, 40 to 50 ° C. in order to increase the liquid absorption efficiency.
  • the pulverization blade 70 may be rotated at the initial stage of the liquid absorption process, and thereafter, the pulverization blade may be intermittently rotated. In this way, the surface of the rice grain can be damaged, and the liquid absorption efficiency of the rice grain can be increased.
  • This pulverization step is a step of pulverizing rice grains to form a paste.
  • the controller 80 controls the grinding motor 60b to rotate the grinding blade 70 at a high speed.
  • the rice grains are pulverized by the cutting blade 72 by the high-speed rotation of the pulverizing blade 70. Since this pulverization is performed in a state where water is soaked in the rice grains, the rice grains can be easily pulverized to the core.
  • the protrusion 50a formed in the inner surface of the bread container 50 suppresses the flow of the mixture of rice grains and water, and assists the pulverization.
  • the kneading blade 52 is stopped, the kneading blade 52 also suppresses the flow of the mixture of the rice grains and water and assists the pulverization.
  • the pulverization process ends when the pulverization time by the pulverization blade 70 reaches a predetermined time (5 minutes in the present embodiment). This time is experimentally determined as the time for obtaining a pulverized powder having a desired particle size (or particle size distribution).
  • the end of the crushing process is notified to the user by, for example, a display on the liquid crystal panel 22 of the operation unit 20 or a notification sound.
  • the rotation of the pulverizing blade 70 in the pulverization step may be continuous rotation or intermittent rotation. The intermittent rotation is preferable because the rice grains can be crushed uniformly by convection of the rice grains by intermittent rotation.
  • the controller 80 performs a control operation so that the temporary bread making operation is stopped instead of immediately executing the kneading process. This is to give a period for the user to put seasonings such as gluten, salt, sugar and shortening into the bread container 50 by the user.
  • seasonings such as gluten, salt, sugar and shortening
  • the user puts bread ingredients such as gluten and seasonings into the bread container 50 according to his / her preference, and then covers the bread container 50 and presses the start key.
  • a kneading process is started in which the bread ingredients in the bread container 50 containing the pulverized rice grains pulverized in the pulverization process are kneaded into the dough.
  • the control device 80 controls the kneading motor 60a to rotate the kneading blade 52.
  • the kneading blade 52 rotates at a low speed and a high torque.
  • the rotation of the kneading blade 52 causes the bread ingredients to be kneaded and kneaded into a dough that has a predetermined elasticity.
  • an element of “kneading” is added to the kneading.
  • the protrusion 50a formed on the inner wall of the bread container 50 helps “kneading".
  • the rotation of the kneading blade 52 in the kneading step may be continuous rotation or intermittent rotation.
  • the kneading process ends when the kneading time by the kneading blade 52 reaches a predetermined time (12 minutes in the present embodiment). This time is experimentally determined as the time to obtain bread dough having a desired elasticity.
  • the semi-finished state is referred to as “dough”.
  • the control device 80 controls the heating device 41 so as to adjust the temperature of the firing chamber 40 to a predetermined temperature (for example, around 30 ° C.). Then, when the temperature of the baking chamber 40 reaches a predetermined temperature, yeast (for example, dry yeast) is introduced into the dough.
  • yeast for example, dry yeast
  • the yeast is input by the user in the automatic bread maker 1 of the present embodiment, but may be automatically input.
  • the automatic bread maker 1 is configured to be notified by the display on the liquid crystal panel 22, a notification sound, or the like that the temperature has reached a predetermined temperature because of a configuration that the user inputs.
  • the fermentation process is subsequently executed according to a command from the control device 80.
  • the control device 80 controls the heating device 41 to set the temperature of the baking chamber 40 to a temperature at which fermentation proceeds (for example, 32 ° C.). Then, it is left for a predetermined time (in this embodiment, 50 minutes) in an environment in which fermentation proceeds.
  • the degassing process is subsequently executed according to a command from the control device 80.
  • the control device 80 controls the kneading motor 60b to rotate the kneading blade 52 for a predetermined time (in this embodiment, 0.1 minute). By the rotation of the kneading blade 52, carbon dioxide contained in the dough is extracted.
  • the fermentation process is subsequently executed according to a command from the control device 80.
  • the control device 80 controls the heating device 41 to set the temperature of the baking chamber 40 to a temperature at which fermentation proceeds (for example, 38 ° C.). Then, it is left for a predetermined time (in this embodiment, 50 minutes) in an environment in which fermentation proceeds.
  • the firing process is subsequently performed according to a command from the control device 80.
  • the control device 80 controls the heating device 41 to raise the temperature of the baking chamber 40 to a temperature suitable for baking (for example, 125 ° C.), and for a predetermined time (50 in this embodiment) in the baking environment. Min) Bake.
  • the end of the firing process is notified to the user by, for example, a display on the liquid crystal panel 22 of the operation unit 20 or a notification sound.
  • the user opens the lid 30 and takes out the bread container 50. Thereby, the process of manufacturing bread from white rice grains is completed.
  • FIG. 4B is a diagram illustrating a process for producing brown rice bread performed by an automatic bread maker.
  • the liquid absorption process, the pulverization process, the kneading process, the fermentation process, the degassing process, the fermentation process, and the baking process are sequentially performed in this order as in the white rice course.
  • the length of time required for the liquid absorption process, the pulverization process, and the kneading process is longer than that for the white rice course.
  • Brown rice has a harder rice grain than white rice. For this reason, brown rice is more difficult to grind rice grains than white rice. For this reason, in the brown rice course, the length of time required for the liquid absorption process (liquid absorption time) performed for the purpose of facilitating the pulverization of the brown rice grains is made longer than that for white rice. In addition, the brown rice grains are hard, and the same pulverization time is insufficient when pulverizing to the same particle size as that of white rice. For this reason, in the brown rice course, the time required for the pulverization process (pulverization time) is set longer than that for white rice.
  • the pulverized powder of brown rice is in a more sloppy state than the pulverized powder of white rice. For this reason, in order to obtain a desired dough having high elasticity by the kneading step, the time required for the kneading step (kneading time) is made longer than that for white rice.
  • the time required for the liquid absorption process is increased by 50 minutes and the time required for the pulverization process is increased by 8 minutes compared to the white rice course, and the time required for the kneading process. Is 4 minutes longer.
  • the specific operation performed in the liquid absorption process, the pulverization process, and the kneading process of the brown rice course is the same as the white rice course except that the length of time required for each process is changed.
  • finish of a baking process is the same as a white rice course including the time which each process requires. For this reason, description of the details of these operations is omitted.
  • the automatic bread maker 1 of the present embodiment is provided with the brown rice key 21a that enables selection of the bread production process according to the type of rice grain (whether white rice or brown rice). .
  • the user selects an appropriate bread manufacturing process corresponding to the bread raw material (type of rice grain) with this brown rice key 21a, and does not go through the milling process from the rice grain (from the milled powder (rice flour)) (Not directly from rice grains) and can produce delicious bread.
  • the automatic bread maker shown above is an example of the present invention, and the configuration of the automatic bread maker to which the present invention is applied is not limited to the embodiment described above.
  • the input keys provided on the main body 10 are employed in the embodiment described above.
  • the present invention is not limited to this configuration.
  • a remote controller or the like may be used as the input means.
  • the grain grain used when manufacturing bread directly from a grain grain instead of the milled powder (cereal flour) is a rice grain
  • the present invention is not limited to rice grains, but can be applied to the production of bread using grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybeans as raw materials.
  • the following configuration can be given as an application example.
  • various grain grains are classified into a plurality of groups that gather together those that can be manufactured in the same bread manufacturing process, and the bread manufacturing process according to each classification (in other words, according to the type of grain)
  • An automatic bread maker may be configured to select and produce bread. In the case of such a configuration, it is preferable to devise, for example, imprinting a classification table on an automatic bread maker so that the user can easily understand the grain classification.
  • the length of time it takes is changed.
  • the length of time required for any one or two of the three steps may be changed.
  • the method for controlling the rotation of the crushing blade 70 and the kneading blade 52 may be changed.
  • the bread manufacturing process employed in the embodiment described above is an example, and may be another manufacturing process.
  • the liquid absorption process is performed before the pulverization process, but the liquid absorption process is not performed. (The process shown in FIG. 5A is applicable). However, if the liquid absorption step is simply eliminated, the pulverization efficiency of the grain in the pulverization step is lowered, so that the pulverization step is preferably configured as shown in FIG. 5B.
  • the pulverization period for example, 1 minute
  • the liquid absorption period for example, 9 minutes
  • the liquid absorption period that is performed after the first pulverization period is executed after the grain has been refined to some extent.
  • the cereal grains are allowed to absorb liquid with the surface area of the cereal grains increased, and the liquid absorption is performed with high liquid absorption efficiency. Therefore, the length of the liquid absorption period (9 minutes) is relatively short as the time for liquid absorption, but the liquid absorption proceeds considerably even during this time.
  • the pulverization of the grain in the second and subsequent pulverization periods can be efficiently performed due to the effect of the absorption of the cereal grains in the liquid absorption period previously performed.
  • the absorption of the grain grains in the second and subsequent liquid-absorbing periods can be efficiently performed by the effect of the grain grain grinding performed previously. That is, by alternately repeating the pulverization period and the liquid absorption period, the cereal grains can be efficiently pulverized while sufficiently containing water in the cereal grains. Therefore, according to the configuration shown in FIG. 5B, the grain can be efficiently pulverized without performing the liquid absorption step before the pulverization step. And in this structure, since it is not necessary to provide a liquid absorption process separately from a crushing process, the time of the bread manufacturing process can be shortened.
  • the white rice course and the brown rice course have a different number of repetitions of the pulverization period and the liquid absorption period, and the brown rice course has a higher number of repetitions.
  • brown rice is harder than white rice and difficult to grind as described above.
  • the process after the pulverization process may be the same as that in the embodiment described above. And by providing two courses in this way, delicious bread can be produced when any rice grain is used, as in the embodiment described above.
  • the pulverization period (1 minute) and the liquid absorption period (9 minutes) were each repeated 4 times, and then the pulverization period was performed once more. At the time (that is, when 41 minutes have passed since the start of the rotation of the first crushing blade), the crushing process is finished.
  • the length and number of times of the pulverization period and the liquid absorption period in the pulverization process are merely examples, and the length and number of times of these times are, for example, based on conditions that allow the grains to have a desired particle size (or particle size distribution). What is necessary is just to set and it can change suitably.
  • the length of the pulverization period is the same (a constant length).
  • the length of the first pulverization period may be set short (for example, 10 seconds), and thereafter may be set longer than the first pulverization period.
  • the lengths of the second and subsequent grinding periods may all be the same, or the length of the grinding period may be gradually increased.
  • the pulverization in the first pulverization period is poor in pulverization efficiency because the grain does not contain water sufficiently.
  • the primary grinding period is mainly intended to obtain grain grains that are easily damaged by scratching the surface of the grain grains, and the length of the grinding period is shorter than the length of the subsequent grinding period. It is good to do.
  • the length of the liquid absorption period is the same (constant length).
  • the purpose is not limited to this configuration, and the length of each liquid absorption period may not be a fixed length. That is, for example, the length of the first liquid absorption period may be longer than the length of other liquid absorption periods.
  • the automatic bread maker is configured to include two blades, a grinding blade and a kneading blade.
  • the present invention is not limited to this, and the automatic bread maker may be configured to include only one blade for both crushing and kneading.
  • the present invention is suitable for an automatic bread maker for home use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Baking, Grill, Roasting (AREA)

Abstract

An automatic bread maker (1) comprises: a container (50) into which a raw material for bread is loaded; a crushing unit (including a crushing blade (70)) for crushing cereal grains loaded into the container (50) as the raw material for bread; a kneading unit (including a kneading blade (52)) for kneading the raw material for bread into bread dough, said raw material for bread being located within the container (50) and including the powder of the cereal grains crushed by the crushing unit; a temperature adjustment unit for adjusting the temperature in the container (50); a bread-making-step selection unit (21a) for enabling the selection of a bread making step corresponding to the type of the cereal grains; and a control unit for controlling the crushing unit, the kneading unit, and the temperature adjustment unit to execute the bread making step selected by the bread-making-step selection unit (21a).

Description

自動製パン器Automatic bread machine
 本発明は、主として一般家庭で使用される自動製パン器に関する。 The present invention relates to an automatic bread maker mainly used in general households.
 市販の家庭用自動製パン器は、製パン原料を入れたパン容器を本体内の焼成室に入れ、パン容器内の製パン原料を混練ブレードで混練して捏ね上げ、発酵工程を経た後に、パン容器をそのままパン焼き型としてパンを焼き上げる仕組みのものが一般的である(例えば特許文献1参照)。 A commercially available automatic bread maker for home use puts a bread container containing bread-making ingredients into a baking chamber in the main body, kneads and kneads the bread-making ingredients in the bread container with a kneading blade, and after undergoing a fermentation process, A structure in which bread is baked using a bread container as it is is generally used (see, for example, Patent Document 1).
 このような自動製パン器を用いてパンを製造する場合、小麦や米などの穀物を製粉した粉や、そのような製粉した粉に各種の補助原料を混ぜたミックス粉を入手し、これを製パン原料として用いることによってパンを製造していた。すなわち、手元に穀物粒(例えば米粒等)があっても、従来の自動製パン器では、それから直接パンを製造することはできなかった。 When bread is produced using such an automatic bread maker, obtain a powder obtained by milling grains such as wheat and rice, or a mixed powder obtained by mixing various auxiliary ingredients with such a milled powder. Bread was produced by using it as a raw material for making bread. That is, even if there are grain grains (for example, rice grains, etc.) at hand, the conventional automatic bread maker cannot directly produce bread.
特開2000-116526号公報JP 2000-116526 A
 そこで、本発明は、製粉した粉(穀物粉)からではなく、穀物粒から直接パンを製造するのに便利な仕組みを備えた自動製パン器を提供し、パン製造をより身近なものにすることを目的とする。 Therefore, the present invention provides an automatic bread maker equipped with a convenient mechanism for producing bread directly from cereal grains, not from milled flour (cereal flour), and makes bread production more familiar. For the purpose.
 上記目的を達成するために本発明の自動製パン器は、パン原料が投入される容器と、パン原料として前記容器に投入された穀物粒を粉砕する粉砕部と、前記粉砕部で粉砕された前記穀物粒の粉砕粉を含む前記容器内のパン原料をパン生地に練り上げる混練部と、前記容器内の温度を調整する温度調整部と、前記穀物粒の種類に応じたパンの製造工程の選択を可能とする製パン工程選択部と、前記粉砕部、前記混練部、及び前記温度調整部を制御して、前記製パン工程選択部で選択されたパンの製造工程を実行させる制御部と、を備えることを特徴としている。 In order to achieve the above object, the automatic bread maker of the present invention was crushed by a container into which bread ingredients were charged, a pulverizing part for pulverizing grains put into the container as bread ingredients, and the pulverizing part. Selection of a kneading unit for kneading bread ingredients in the container containing the pulverized powder of the grain into bread dough, a temperature adjusting unit for adjusting the temperature in the container, and a bread manufacturing process according to the type of the grain A bread making process selection unit that enables the controller, and a control unit that controls the crushing unit, the kneading unit, and the temperature adjustment unit to execute the bread manufacturing process selected by the bread making process selection unit; It is characterized by providing.
 本構成によれば、自動製パン器が粉砕部を有するために、製粉した粉(穀物粉)を用いることなく、穀物粒からパンを製造することが可能である。すなわち、本構成の自動製パン器によれば、穀物粉を買い求めることなく、手持ちの穀物粒からパンを焼き上げることが可能である。そして、本構成の自動製パン器は、穀物粒の種類に応じたパンの製造工程の選択を可能とする製パン工程選択部を有するために、各種穀物粒を用いて適切な条件でパンを焼き上げることが可能である。 According to this configuration, since the automatic bread maker has a pulverizing section, it is possible to manufacture bread from cereal grains without using milled powder (cereal flour). That is, according to the automatic bread maker of this configuration, it is possible to bake bread from hand-held grain grains without purchasing grain flour. And since the automatic bread maker of this structure has the bread making process selection part which enables selection of the manufacturing process of bread according to the kind of grain, it makes bread on various conditions using various grain. It can be baked.
 上記構成の自動製パン器において、前記製パン工程選択部によって、白米用のパンの製造工程と、玄米用のパンの製造工程との選択が可能であることとしてもよい。 In the automatic bread maker configured as described above, the bread making process selection unit may be capable of selecting a white rice bread manufacturing process and a brown rice bread manufacturing process.
 白米と玄米ではその硬さが異なる。この点、本構成によれば、穀物粒(米粒)として白米を用いる場合と玄米を用いる場合とで、パンの製造工程が異なるものとされるために、いずれの米粒を用いる場合も適切な条件でパンの製造を行える。 White rice and brown rice have different hardness. In this respect, according to the present configuration, the process for producing bread differs between when white rice is used as the grain (rice grain) and when brown rice is used. Can make bread.
 上記構成の自動製パン器において、前記パンの製造工程には、前記穀物粒を液体に浸して吸液させる吸液工程と、吸液した前記穀物粒を粉砕する粉砕工程と、前記穀物粒の粉砕粉を含むパン原料をパン生地に練り上げる混練工程と、練り上げられたパン生地を発酵させる発酵工程と、発酵させたパン生地を焼く焼成工程とが含まれ、前記製パン工程選択部によって選択可能な複数のパンの製造工程の間では、前記吸液工程および前記粉砕工程のうちの少なくとも一方の工程に要する時間の長さが、互いに異なっていることとしてもよい。 In the automatic bread maker configured as described above, the bread manufacturing process includes a liquid absorption process for immersing the grain grains in a liquid and absorbing the liquid, a pulverizing process for crushing the absorbed grain grains, A kneading process for kneading bread ingredients including crushed powder into bread dough, a fermentation process for fermenting the kneaded bread dough, and a baking process for baking the fermented bread dough, including a plurality of selectable bread making process selection units Between bread manufacturing processes, the length of time required for at least one of the liquid absorption process and the pulverization process may be different from each other.
 穀物粒は多数の種類があり、その種類によって硬さが異なる。そして、穀物粒の硬さの差が大きいもの同士を同一条件で粉砕した場合には、得られる粉砕粉の粒径に大きな差がでてしまう。この点、本構成によれば、穀物粒の粉砕の程度に影響を与える工程に要する時間の長さを穀物粒の種類によって異なるものとしている。このために、各種穀物粒を粉砕した後の粉砕粉の粒径をほぼ同一に揃えることができ、良質なパンの製造を行い易い。 There are many types of grain and the hardness varies depending on the type. And when what has the big difference of the hardness of a grain is grind | pulverized on the same conditions, a big difference will appear in the particle size of the pulverized powder obtained. In this regard, according to the present configuration, the length of time required for the process that affects the degree of pulverization of the grain is made different depending on the kind of grain. For this reason, the particle diameters of the pulverized powders after pulverizing various grains can be made substantially the same, and it is easy to produce high-quality bread.
 上記構成の自動製パン器において、前記パンの製造工程には、前記穀物粒を粉砕する粉砕工程と、前記穀物粒の粉砕粉を含むパン原料をパン生地に練り上げる混練工程と、練り上げられたパン生地を発酵させる発酵工程と、発酵させたパン生地を焼く焼成工程とが含まれ、前記粉砕工程は、前記穀物粒を粉砕する粉砕期間と、前記穀物粒に吸液させる吸液期間と、が交互に繰り返されるように設けられ、前記製パン工程選択部によって選択可能な複数のパンの製造工程の間では、前記粉砕期間及び前記吸液期間の繰り返し回数が、互いに異なっていることとしてもよい。 In the automatic bread maker configured as described above, the bread manufacturing process includes a pulverizing process for pulverizing the cereal grains, a kneading process for kneading bread ingredients containing the pulverized powder of the cereal grains into bread dough, and a kneaded bread dough A fermentation process for fermenting and a baking process for baking the fermented dough, wherein the pulverization step is alternately repeated with a pulverization period for pulverizing the cereal grains and a liquid absorption period for absorbing the cereal grains. It is good also as the repetition frequency of the said crushing period and the said liquid absorption period mutually differing between the manufacturing processes of the some bread which are provided and can be selected by the said bread-making process selection part.
 本構成によれば、穀物粒の粉砕粉の粒径に影響を与える、粉砕期間と吸液期間の繰り返し回数を、穀物粒の種類によって異なるものとしている。このために、各種穀物粒を粉砕した後の粉砕粉の粒径をほぼ同一に揃えることができ、良質なパンの製造を行い易い。そして、本構成の場合には、粉砕期間と吸液期間とを交互に繰り返す構成としているために、粉砕工程の前に吸液工程を設ける必要がなく、パンの製造に要する時間の短縮が可能である。 According to this configuration, the number of repetitions of the pulverization period and the liquid absorption period, which affect the particle size of the pulverized powder of the cereal grains, varies depending on the type of cereal grains. For this reason, the particle diameters of the pulverized powders after pulverizing various grains can be made substantially the same, and it is easy to produce high-quality bread. In the case of this configuration, since the pulverization period and the liquid absorption period are alternately repeated, it is not necessary to provide the liquid absorption process before the pulverization process, and the time required for bread production can be shortened. It is.
 上記構成の自動製パン器において、前記製パン工程選択部によって選択可能な複数のパンの製造工程の間では、前記混練工程に要する時間の長さが、互いに異なっていることとしてもよい。 In the automatic bread maker configured as described above, the length of time required for the kneading step may be different between a plurality of bread manufacturing steps that can be selected by the bread making step selection unit.
 例えば白米粒と玄米粒とでは、粉砕した粉砕粉の状態に差が見られる。このため、穀物粒の種類に応じて、本構成のように混練工程に要する時間の長さを異なる構成とするのも、良質のパンを製造するために必要な場合がある。 For example, there is a difference in the state of pulverized pulverized powder between white rice grains and brown rice grains. For this reason, depending on the type of grain, it may be necessary to produce a high-quality bread that has a different length of time required for the kneading step as in this configuration.
 本発明によると、製粉した粉(穀物粉)からではなく、穀物粒から直接パンを製造するのに便利な仕組みを備えた自動製パン器を提供することができ、パン製造をより身近なものとできる。 According to the present invention, it is possible to provide an automatic bread maker equipped with a convenient mechanism for producing bread directly from cereal grains, not from milled flour (cereal flour). And can.
本実施形態の自動製パン器の垂直断面図Vertical sectional view of the automatic bread maker of this embodiment 図1に示した自動製パン器の蓋を取り除いて上から見た場合の概略平面図FIG. 1 is a schematic plan view of the automatic bread maker shown in FIG. 本実施形態の自動製パン器の制御ブロック図Control block diagram of automatic bread maker of this embodiment 本実施形態の自動製パン器によって実行される白米用のパンの製造工程を示す図The figure which shows the manufacturing process of the bread for white rice performed with the automatic bread maker of this embodiment. 本実施形態の自動製パン器によって実行される玄米用のパンの製造工程を示す図The figure which shows the manufacturing process of the bread for brown rice performed with the automatic bread maker of this embodiment. 本発明が適用された自動製パン器の他の実施形態を説明するための図The figure for demonstrating other embodiment of the automatic bread maker to which this invention was applied. 本発明が適用された自動製パン器の他の実施形態を説明するための別図The other figure for demonstrating other embodiment of the automatic bread maker to which this invention was applied
 以下、本発明の自動製パン器の実施形態について、図面を参照しながら説明する。なお、本明細書に登場する具体的な時間や温度等はあくまでも例示であり、本発明の内容を限定するものではない。 Hereinafter, embodiments of the automatic bread maker of the present invention will be described with reference to the drawings. In addition, the specific time, temperature, etc. which appear in this specification are illustrations to the last, and do not limit the content of this invention.
 図1は、本実施形態の自動製パン器の垂直断面図である。なお、図1において、図の左側が自動製パン器1の正面(前面)側、図の右側が自動製パン器1の背面(後面)側である。図2は、図1に示した自動製パン器の蓋を取り除いて上から見た場合の概略平面図である。なお、図2においては、図の下側が自動製パン器1の正面側、図の上側が自動製パン器1の背面側となっている。この図1及び図2を参照しながら本実施形態の自動製パン器1の全体構成について説明する。 FIG. 1 is a vertical sectional view of the automatic bread maker according to the present embodiment. In FIG. 1, the left side of the figure is the front (front) side of the automatic bread maker 1, and the right side of the figure is the back (rear) side of the automatic bread maker 1. FIG. 2 is a schematic plan view of the automatic bread maker shown in FIG. 1 as viewed from above with the lid removed. In FIG. 2, the lower side of the figure is the front side of the automatic bread maker 1, and the upper side of the figure is the back side of the automatic bread maker 1. The overall configuration of the automatic bread maker 1 according to this embodiment will be described with reference to FIGS.
 自動製パン器1は、合成樹脂製の外殻により構成される箱形の本体10を有する。本体10には、その左側面と右側面の両端に連結したコの字状の合成樹脂製ハンドル11が設けられ、これにより運搬容易となっている。本体10の上面前部には操作部20が設けられる。操作部20には、スタートキー、取り消しキー、タイマーキー、予約キー、パンの製造工程を選択する選択キー等の操作キー群21と、操作キー群21によって設定された内容やエラー等を表示する液晶表示パネル22と、が設けられている。 The automatic bread maker 1 has a box-shaped main body 10 constituted by a synthetic resin outer shell. The main body 10 is provided with a U-shaped synthetic resin handle 11 connected to both ends of the left side surface and the right side surface thereof, thereby facilitating transportation. An operation unit 20 is provided on the front surface of the main body 10. The operation unit 20 displays an operation key group 21 such as a start key, a cancel key, a timer key, a reservation key, and a selection key for selecting a bread manufacturing process, and contents and errors set by the operation key group 21. And a liquid crystal display panel 22.
 なお、操作キー群21には、パン原料として使用する穀物粒の種類に応じたパンの製造工程の選択を可能とする製パン工程選択キー(本発明の製パン工程選択部の実施形態)が含まれている。具体的には、米粒からパンの製造を行う場合に、白米用のパンの製造工程と、玄米用のパンの製造工程とのうちのいずれかを選択できるように、玄米キー21aが設けられている。自動製パン器1はデフォルトにおいては、玄米キー21aがオフとなっており、白米用のパンの製造工程が選択された状態となっている。そして、玄米キー21aを選択することによって、図示しない玄米コースランプが点灯して、玄米用のパンの製造工程が選択された状態となる。 The operation key group 21 has a bread making process selection key (embodiment of the bread making process selection unit of the present invention) that enables selection of a bread manufacturing process according to the type of grain used as bread ingredients. include. Specifically, when manufacturing bread from rice grains, the brown rice key 21a is provided so that one of a white rice bread manufacturing process and a brown rice bread manufacturing process can be selected. Yes. By default, the automatic bread maker 1 is in a state in which the brown rice key 21a is off, and the white rice bread manufacturing process is selected. Then, by selecting the brown rice key 21a, a brown rice course lamp (not shown) is turned on, and the production process of the brown rice bread is selected.
 操作部20から後ろの本体上面は、合成樹脂製の蓋30で覆われる。蓋30は、図示しない蝶番軸で本体10の背面側に取り付けられており、その蝶番軸を支点として垂直面内で回動する構成となっている。蓋30には、詳細は後述する焼成室40を覆う部分に、板金をドーム状に成型した天井31が設けられている。この天井31の頂部は、蓋30に設けられた耐熱ガラスからなる覗き窓32につながっている。 The upper surface of the main body behind the operation unit 20 is covered with a lid 30 made of synthetic resin. The lid 30 is attached to the back side of the main body 10 with a hinge shaft (not shown), and is configured to rotate in a vertical plane with the hinge shaft as a fulcrum. The lid 30 is provided with a ceiling 31 in which a sheet metal is molded into a dome shape at a portion covering a firing chamber 40 which will be described in detail later. The top of the ceiling 31 is connected to a viewing window 32 made of heat-resistant glass provided on the lid 30.
 本体10の内部には焼成室40が設けられている。焼成室40は板金製で、上面が開口しており、ここからパン容器50が入れられる。焼成室40は水平断面矩形の周側壁40aと底壁40bとを備える。焼成室40の内部には、加熱装置41が焼成室40に収容されたパン容器50を包囲するように配置されている。この加熱装置41はシーズヒータにより構成されている。 A firing chamber 40 is provided inside the main body 10. The baking chamber 40 is made of sheet metal and has an open top surface, from which a bread container 50 is placed. The baking chamber 40 includes a peripheral side wall 40a and a bottom wall 40b having a rectangular horizontal section. Inside the baking chamber 40, a heating device 41 is arranged so as to surround the bread container 50 accommodated in the baking chamber 40. The heating device 41 is constituted by a sheathed heater.
 また、本体10の内部には板金製の基台12が設置されている。基台12には、焼成室40の中心にあたる箇所に、アルミニウム合金のダイキャスト成型品からなるパン容器支持部13が固定されている。パン容器支持部13の内部は焼成室40の内部に露出している。 Also, a sheet metal base 12 is installed inside the main body 10. On the base 12, a bread container support 13 made of an aluminum alloy die-cast product is fixed at a location corresponding to the center of the firing chamber 40. The inside of the bread container support part 13 is exposed inside the baking chamber 40.
 パン容器支持部13は、パン容器50の底面に固定された筒状の台座51を受け入れてパン容器50を支える。パン容器支持部13の中心には、内軸14aと外軸14bとにより構成される二重軸が垂直に支持されている。内軸14a及び外軸14bの下端は共にパン容器支持部13の下面から突き出ており、内軸14aはプーリ15aに固定され、外軸14bはプーリ15bに固定されている。 The bread container support unit 13 supports the bread container 50 by receiving a cylindrical pedestal 51 fixed to the bottom surface of the bread container 50. At the center of the bread container support portion 13, a double shaft composed of an inner shaft 14a and an outer shaft 14b is vertically supported. Both lower ends of the inner shaft 14a and the outer shaft 14b protrude from the lower surface of the bread container support portion 13, the inner shaft 14a is fixed to the pulley 15a, and the outer shaft 14b is fixed to the pulley 15b.
 パン容器50は板金製で、バケツのような形状をしており、口縁部には手提げ用のハンドル(図示せず)が取り付けられている。パン容器50の水平断面は四隅を丸めた矩形であり、四辺のうち対向する二辺の内面には、垂直方向に延びるうね状の突部50aが形成されている。 The bread container 50 is made of sheet metal and has a bucket-like shape, and a handle (not shown) for handbags is attached to the mouth edge. The horizontal cross section of the bread container 50 is a rectangle with rounded four corners, and ridge-like protrusions 50a extending in the vertical direction are formed on the inner surfaces of two opposite sides of the four sides.
 パン容器50の底部中心には、混練ブレード52と粉砕ブレード70とが配置されている。内軸53aと外軸53bとにより構成される二重軸が、パン容器50の中心にシール対策を施した上で垂直に支持されている。内軸53aに混練ブレード52が取り付けられており、外軸53bに粉砕ブレード70が取り付けられている。混練ブレード52と粉砕ブレード70との配置は同軸配置であり、これにより、パン容器50の底部という決して広いとは言えない場所に、混練ブレード52と粉砕ブレード70とをコンパクトに併存させることが可能となっている。 A kneading blade 52 and a crushing blade 70 are disposed at the bottom center of the bread container 50. A double shaft composed of an inner shaft 53a and an outer shaft 53b is vertically supported after a countermeasure against sealing is applied to the center of the bread container 50. A kneading blade 52 is attached to the inner shaft 53a, and a grinding blade 70 is attached to the outer shaft 53b. The arrangement of the kneading blade 52 and the crushing blade 70 is coaxial, so that the kneading blade 52 and the crushing blade 70 can coexist in a compact area at the bottom of the bread container 50. It has become.
 混練ブレード52は、平面視略矩形状の板状の羽根を有している。この混練ブレード52は、内軸53aの上端の非円形断面部に単なる嵌め込みで取り付けられており、工具を用いることなく着脱できる。このために、異なる種類の混練ブレードに容易に交換可能である。 The kneading blade 52 has plate-like blades having a substantially rectangular shape in plan view. The kneading blade 52 is attached to the non-circular cross section at the upper end of the inner shaft 53a by simple fitting, and can be attached and detached without using a tool. For this reason, it can be easily replaced with a different kind of kneading blade.
 粉砕ブレード70は、混練ブレード52の下面に当たらないように外軸53bに取り付けられている。この粉砕ブレード70も単なる嵌め込みで取り付けられるようにしてもよい。粉砕ブレード70は、金属製円板71の上面に複数の切削刃72を散在させたものである(図2参照)。切削刃72は、ジューサーのカッターやおろし金の歯のように形成されている。複数の切削刃72は、放射方向に延びる複数列の横隊を構成している。各横隊における各切削刃突起の円板71の中心からの距離は、横隊毎に前後の横隊と少しずつずれている。このため、複数の切削刃72は、その配置領域全体に満遍なく粉砕作用を及ぼすことができるようになっている。 The grinding blade 70 is attached to the outer shaft 53b so as not to hit the lower surface of the kneading blade 52. The grinding blade 70 may also be attached by simply fitting. The crushing blade 70 has a plurality of cutting blades 72 scattered on the upper surface of a metal disc 71 (see FIG. 2). The cutting blade 72 is formed like a juicer cutter or a grater tooth. The plurality of cutting blades 72 constitute a plurality of rows that extend in the radial direction. The distance from the center of the disk 71 of each cutting blade projection in each line is slightly different from the front and rear lines for each line. For this reason, the plurality of cutting blades 72 can uniformly exert a crushing action on the entire arrangement region.
 パン容器50に設けられる内軸53aは、パン容器支持部13に設けられる内軸14aに連結されて動力を伝達される。また、パン容器50に設けられる外軸53bは、パン容器支持部13に設けられる外軸14bに連結されて動力を伝達される。動力伝達手段としては台座51に囲い込まれるカップリング54a、54bが用いられる。カップリング54aを構成する2部材のうち、一方の部材は内軸53aの下端に固定され、他の部材は内軸14aの上端に固定されている。同様に、カップリング54bを構成する2部材のうち、一方の部材は内軸53bの下端に固定され、他の部材は内軸14bの上端に固定されている。 The inner shaft 53a provided in the bread container 50 is connected to the inner shaft 14a provided in the bread container support 13 to transmit power. Moreover, the outer shaft 53b provided in the bread container 50 is connected to the outer shaft 14b provided in the bread container support portion 13 to transmit power. As power transmission means, couplings 54a and 54b enclosed in a pedestal 51 are used. Of the two members constituting the coupling 54a, one member is fixed to the lower end of the inner shaft 53a, and the other member is fixed to the upper end of the inner shaft 14a. Similarly, of the two members constituting the coupling 54b, one member is fixed to the lower end of the inner shaft 53b, and the other member is fixed to the upper end of the inner shaft 14b.
 パン容器支持部13の内周面と台座51の外周面とには、それぞれ図示しない突起が形成されており、これらの突起は周知のバヨネット結合を構成する。パン容器50をパン容器支持部13に取り付ける際、台座51の突起がパン容器支持部13の突起に干渉しないようにしてパン容器50を下ろす。そして、台座51がパン容器支持部13に嵌り込んだ後、パン容器50を水平にひねると、パン容器支持部13の突起の下面に台座51の突起が係合する。これにより、パン容器50が上方に抜けなくなる。また、この操作で、カップリング54aの連結とカップリング54bの連結とが、それぞれ同時に達成される。 The protrusion which is not illustrated is formed in the inner peripheral surface of the bread container support part 13, and the outer peripheral surface of the base 51, respectively, These protrusion comprises the well-known bayonet coupling | bonding. When attaching the bread container 50 to the bread container support part 13, the bread container 50 is lowered so that the protrusions of the base 51 do not interfere with the protrusions of the bread container support part 13. Then, after the pedestal 51 is fitted into the bread container support part 13, when the bread container 50 is twisted horizontally, the protrusion of the pedestal 51 is engaged with the lower surface of the protrusion of the bread container support part 13. Thereby, the bread container 50 cannot be pulled out upward. Further, by this operation, the coupling 54a and the coupling 54b are simultaneously achieved.
 なお、パン容器50取り付け時のひねり方向は、混練ブレード52及び粉砕ブレード70の回転方向に一致させている。これにより、混練ブレード52及び粉砕ブレード70が回転してもパン容器50は外れない。 It should be noted that the twisting direction when the bread container 50 is attached matches the rotational direction of the kneading blade 52 and the grinding blade 70. Thereby, even if the kneading blade 52 and the crushing blade 70 rotate, the bread container 50 does not come off.
 混練用モータ60aは基台12に取り付けられ、粉砕用モータ60bは基台12とは別に本体10に設けられたビーム16に取り付けられている。混練用モータ60aと粉砕用モータ60bとはいずれも竪軸であって、混練用モータ60aの下面からは出力軸61aが突出し、粉砕用モータ60bの下面からは出力軸61bが突出する。混練用モータ60aの出力軸61aにはプーリ62aが固定され、このプーリ62aは内軸14aが固定されるプーリ15aにベルト63aで連結される。粉砕用モータ60bの出力軸61bにはプーリ62bが固定され、このプーリ62bは外軸14bが固定されるプーリ15bにベルト63bで連結される。 The kneading motor 60 a is attached to the base 12, and the crushing motor 60 b is attached to the beam 16 provided in the main body 10 separately from the base 12. The kneading motor 60a and the grinding motor 60b are both shafts, and the output shaft 61a projects from the lower surface of the kneading motor 60a, and the output shaft 61b projects from the lower surface of the grinding motor 60b. A pulley 62a is fixed to the output shaft 61a of the kneading motor 60a, and the pulley 62a is connected to a pulley 15a to which the inner shaft 14a is fixed by a belt 63a. A pulley 62b is fixed to the output shaft 61b of the grinding motor 60b, and this pulley 62b is connected to a pulley 15b to which the outer shaft 14b is fixed by a belt 63b.
 なお、混練ブレード52を回転させる内軸14aは、低速・高トルクの回転が求められる。一方、粉砕ブレード70を回転させる外軸14bは高速回転が求められる。このため、プーリ62aはプーリ15aを減速回転させ、プーリ62bはプーリ15bを等速ないし増速回転させるようにプーリ同士の直径比が設定されている。更に、粉砕用モータ60bには高速回転タイプのものが選ばれている。 The inner shaft 14a for rotating the kneading blade 52 is required to rotate at a low speed and a high torque. On the other hand, the outer shaft 14b that rotates the grinding blade 70 is required to rotate at high speed. For this reason, the pulley 62a rotates the pulley 15a at a reduced speed, and the pulley 62b sets a diameter ratio between the pulleys so that the pulley 15b rotates at a constant speed or an increased speed. Further, a high-speed rotation type is selected as the grinding motor 60b.
 図3は、本実施形態の自動製パン器の制御ブロック図である。自動製パン器1は、その動作を制御するための制御装置80を備える。この制御装置80は、本体10内の適所に配置されている。なお、制御装置80は、焼成室40の熱の影響を受け難い位置に配置するのが好ましい。 FIG. 3 is a control block diagram of the automatic bread maker according to the present embodiment. The automatic bread maker 1 includes a control device 80 for controlling the operation thereof. The control device 80 is disposed at an appropriate position in the main body 10. In addition, it is preferable to arrange | position the control apparatus 80 in the position which is hard to receive to the influence of the heat | fever of the baking chamber 40. FIG.
 制御装置80は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/O(input/output)回路部等からなるマイクロコンピュータ(マイコン)81と、このマイコン81に電気的に接続された混練用モータ駆動回路82a、粉砕用モータ駆動回路82b、及びヒータ駆動回路83と、を備えている。また、制御装置80が備えるマイコン81には、上述した操作部20の各種キーが電気的に接続されている。更に、マイコン81には、焼成室40の内側に配置され、焼成室40内の温度を検出する温度センサ18が電気的に接続されている。 The control device 80 includes a microcomputer 81 composed of a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like. A kneading motor drive circuit 82a, a pulverization motor drive circuit 82b, and a heater drive circuit 83, which are electrically connected to each other. Further, the various keys of the operation unit 20 described above are electrically connected to the microcomputer 81 included in the control device 80. Further, the microcomputer 81 is electrically connected to a temperature sensor 18 that is disposed inside the baking chamber 40 and detects the temperature in the baking chamber 40.
 混練用モータ駆動回路82aは、マイコン81からの指令の下で、混練ブレード52を回転させる混練用モータ60aの駆動を制御する回路である。また、粉砕用モータ駆動回路82bは、マイコン81からの指令の下で、粉砕ブレード70を回転させる粉砕用モータ60bの駆動を制御する回路である。ヒータ駆動回路83は、温度センサ18からの情報を受け取るマイコン81からの指令の下で、シーズヒータからなる加熱装置41の動作を制御する回路である。 The kneading motor drive circuit 82a is a circuit that controls the driving of the kneading motor 60a that rotates the kneading blade 52 under a command from the microcomputer 81. The crushing motor drive circuit 82 b is a circuit that controls the driving of the crushing motor 60 b that rotates the crushing blade 70 under a command from the microcomputer 81. The heater drive circuit 83 is a circuit that controls the operation of the heating device 41 including a sheathed heater under a command from the microcomputer 81 that receives information from the temperature sensor 18.
 マイコン81は、操作部20からの入力信号に基づいてROM等に格納されたパンの製造工程に係るプログラムを読み出し、混練用モータ駆動回路82aを介して混練ブレード52の回転、粉砕用モータ駆動回路82bを介して粉砕ブレード70の回転、ヒータ駆動回路83を介して加熱装置41の加熱動作を制御しながら、自動製パン器1にパンの製造工程を実行させる。 The microcomputer 81 reads a program related to a bread manufacturing process stored in a ROM or the like based on an input signal from the operation unit 20, rotates the kneading blade 52 via the kneading motor drive circuit 82a, and crushes the motor drive circuit. While controlling the rotation of the grinding blade 70 via 82b and the heating operation of the heating device 41 via the heater drive circuit 83, the automatic bread maker 1 executes the bread production process.
 なお、制御装置80は本発明の制御部の実施形態である。また、混練ブレード52及び混練用モータ60aは本発明の混練部の実施形態である。また、粉砕ブレード70及び粉砕用モータ60bは本発明の粉砕部の実施形態である。更に、温度センサ18及び加熱装置41は本発明の温度調整部の実施形態である。 The control device 80 is an embodiment of the control unit of the present invention. The kneading blade 52 and the kneading motor 60a are embodiments of the kneading unit of the present invention. The crushing blade 70 and the crushing motor 60b are embodiments of the crushing unit of the present invention. Furthermore, the temperature sensor 18 and the heating device 41 are embodiments of the temperature adjustment unit of the present invention.
 ところで、粉砕ブレード70は、穀物粒を粉砕するために設けられるものであるが、穀物粒を粉砕する際に熱が発生して、パン容器50内の温度が好ましくない温度まで上昇することがある。このために、自動製パン器1が備える温度調整部を構成する構成要素に、冷却装置が更に含まれる構成とするのが好ましい。このような冷却装置の構成としては、例えばパン容器50の外面と接するように、水や氷等のクーラント(冷却材)が投入される冷却ジャケットを配置する構成が挙げられる。また、冷水管をパン容器の外面と接するように配置する構成等としてもよい。 By the way, the grinding blade 70 is provided to grind the grain, but when the grain is ground, heat is generated and the temperature in the bread container 50 may rise to an unfavorable temperature. . For this reason, it is preferable that the component which comprises the temperature control part with which the automatic bread maker 1 is provided is set as the structure which further contains a cooling device. As a configuration of such a cooling device, for example, a configuration in which a cooling jacket into which a coolant (coolant) such as water or ice is charged is disposed so as to be in contact with the outer surface of the bread container 50. Moreover, it is good also as a structure etc. which arrange | position a cold water pipe | tube so that the outer surface of a bread container may be touched.
 続いて、以上のように構成される本実施形態の自動製パン器1によって、穀物粒からパンを製造するフローについて説明する。自動製パン器1は、パン原料として米粒(穀物粒の一例)を用いてパンを製造できるようになっている。そして、米粒からパンを製造するにあたって、上述した玄米キー21aによって、白米用のパンの製造工程と玄米用のパンの製造工程とのうち、いずれの工程を用いてパンを製造するかを選択できるようになっている。 Subsequently, a flow for producing bread from cereal grains by the automatic bread maker 1 of the present embodiment configured as described above will be described. The automatic bread maker 1 can manufacture bread using rice grains (an example of cereal grains) as bread ingredients. And in manufacturing bread from rice grains, it is possible to select which process is used to manufacture bread among the white rice bread manufacturing process and the brown rice bread manufacturing process by the brown rice key 21a described above. It is like that.
 まず、自動製パン器1を用いて白米用のパンの製造工程(白米コース)でパンを製造する場合について説明する。この白米コースを実行するにあたって、ユーザは、パン容器50に混練ブレード52と粉砕ブレード70とを取り付ける。そして、ユーザは、米粒(白米粒)と水をそれぞれ所定量ずつ計量してパン容器50に入れる。なお、ここでは、米粒と水とを混ぜることにしているが、単なる水の代わりに、例えば、だし汁のような味成分を有する液体、果汁、アルコールを含有する液体等としてもよい。ユーザは、米粒と水とを投入したパン容器50を焼成室40に入れて蓋30を閉じ、操作部20によって白米用の製造工程を選択(玄米コースランプが点灯していない状態)し、スタートキーを押す。これにより、白米コースによる米粒からパンを製造する工程が開始される。 First, the case where bread is manufactured in the white rice bread manufacturing process (white rice course) using the automatic bread maker 1 will be described. In executing this white rice course, the user attaches the kneading blade 52 and the crushing blade 70 to the bread container 50. Then, the user measures a predetermined amount of each of the rice grains (white rice grains) and water and puts them in the bread container 50. Here, rice grains and water are mixed, but instead of mere water, for example, a liquid having a taste component such as broth, fruit juice, a liquid containing alcohol, or the like may be used. The user puts the bread container 50 filled with rice grains and water into the baking chamber 40, closes the lid 30, selects the production process for white rice by the operation unit 20 (the brown rice course lamp is not lit), and starts. Press the key. Thereby, the process of manufacturing bread from the rice grain by a white rice course is started.
 なお、自動製パン器1に上述の冷却ジャケットを設ける構成とする場合には、この段階或いは後述の粉砕工程の直前に、冷却ジャケットにクーラントを投入する。クーラントとしては、例えば、水、氷、水と氷を混ぜたもの、保冷用のゲル等を用いることができる。 In addition, when it is set as the structure which provides the above-mentioned cooling jacket in the automatic bread maker 1, a coolant is thrown into a cooling jacket at this stage or just before the below-mentioned crushing process. As the coolant, for example, water, ice, a mixture of water and ice, a gel for keeping cold, or the like can be used.
 図4Aは、自動製パン器によって実行される白米用のパンの製造工程を示す図である。図4Aに示すように、白米コースでは、吸液工程、粉砕工程、混練工程、発酵工程、ガス抜き工程、発酵工程、焼成工程がこの順で順次遂行される。 FIG. 4A is a diagram showing a process for producing white rice bread performed by an automatic bread maker. As shown in FIG. 4A, in the white rice course, the liquid absorption process, the pulverization process, the kneading process, the fermentation process, the degassing process, the fermentation process, and the firing process are sequentially performed in this order.
 吸液工程は、米粒(白米粒)に液体(水)を含ませることによって、その後に行われる粉砕工程において、米粒を芯まで粉砕しやすくすることを狙う工程である。この吸液工程では、米粒と水の混合物をパン容器50内で静置した状態で、所定の時間(本実施形態では50分間)放置する。この時間は、例えば、後の粉砕工程を効率良く行える時間として実験的に求められる。 The liquid-absorbing step is a step aimed at making the rice grains easy to be pulverized to the core in the subsequent pulverization step by adding liquid (water) to the rice grains (white rice grains). In this liquid absorption step, the mixture of rice grains and water is left standing in the bread container 50 and left for a predetermined time (in this embodiment, 50 minutes). This time is experimentally determined, for example, as a time during which the subsequent pulverization process can be performed efficiently.
 なお、この吸液工程は、吸液効率を高めるために温度を例えば40~50℃に昇温した状態で行ってもよい。また、吸液工程の初期段階で粉砕ブレード70を回転させ、その後も断続的に粉砕ブレードを回転させるようにしてもよい。このようにすると、米粒の表面に傷をつけることができ、米粒の吸液効率を高められる。 Note that this liquid absorption step may be performed in a state where the temperature is raised to, for example, 40 to 50 ° C. in order to increase the liquid absorption efficiency. Further, the pulverization blade 70 may be rotated at the initial stage of the liquid absorption process, and thereafter, the pulverization blade may be intermittently rotated. In this way, the surface of the rice grain can be damaged, and the liquid absorption efficiency of the rice grain can be increased.
 吸液工程が終了すると、制御装置80の指令によって続いて粉砕工程が実行される。この粉砕工程は、米粒を粉砕してペースト化する工程である。制御装置80は、粉砕用モータ60bを制御して粉砕ブレード70を高速回転させる。この粉砕ブレード70の高速回転によって、切削刃72により米粒が粉砕される。この粉砕は、米粒に水が浸み込んだ状態で行われるために、米粒を芯まで容易に粉砕することができる。また、パン容器50の内面に形成された突部50aが米粒と水との混合物の流動を抑制し、粉砕を助ける。更に、混練ブレード52を停止させておけば、混練ブレード52も米粒と水との混合物の流動を抑制し、粉砕を助ける。 When the liquid absorption process is completed, the crushing process is subsequently executed according to a command from the control device 80. This pulverization step is a step of pulverizing rice grains to form a paste. The controller 80 controls the grinding motor 60b to rotate the grinding blade 70 at a high speed. The rice grains are pulverized by the cutting blade 72 by the high-speed rotation of the pulverizing blade 70. Since this pulverization is performed in a state where water is soaked in the rice grains, the rice grains can be easily pulverized to the core. Moreover, the protrusion 50a formed in the inner surface of the bread container 50 suppresses the flow of the mixture of rice grains and water, and assists the pulverization. Furthermore, if the kneading blade 52 is stopped, the kneading blade 52 also suppresses the flow of the mixture of the rice grains and water and assists the pulverization.
 粉砕工程は、粉砕ブレード70による粉砕時間が所定の時間(本実施形態では5分)となった時点で終了される。この時間は所望の粒径(或いは粒度分布)の粉砕粉が得られる時間として実験的に求められる。粉砕工程の終了については、例えば操作部20の液晶パネル22における表示や報知音等によってユーザに知らされる。なお、粉砕工程における粉砕ブレード70の回転は、連続回転としてもよいし、間欠回転としてもよい。間欠回転とすることにより、米粒を対流させて満遍なく米粒を粉砕できるために、間欠回転とするのが好ましい。 The pulverization process ends when the pulverization time by the pulverization blade 70 reaches a predetermined time (5 minutes in the present embodiment). This time is experimentally determined as the time for obtaining a pulverized powder having a desired particle size (or particle size distribution). The end of the crushing process is notified to the user by, for example, a display on the liquid crystal panel 22 of the operation unit 20 or a notification sound. Note that the rotation of the pulverizing blade 70 in the pulverization step may be continuous rotation or intermittent rotation. The intermittent rotation is preferable because the rice grains can be crushed uniformly by convection of the rice grains by intermittent rotation.
 粉砕工程が終了すると、続いて混練工程が即実行されるのではなく、一時製パン作業が停止するように制御装置80は制御動作を行う。これは、ユーザによってグルテンや、食塩、砂糖、ショートニングといった調味料をパン容器50に投入する期間を与えるためである。ユーザは、グルテンや調味料といったパン原料を好みに応じてパン容器50に投入し、その後、パン容器50の蓋30をして、スタートキーを押す。 When the pulverization process is completed, the controller 80 performs a control operation so that the temporary bread making operation is stopped instead of immediately executing the kneading process. This is to give a period for the user to put seasonings such as gluten, salt, sugar and shortening into the bread container 50 by the user. The user puts bread ingredients such as gluten and seasonings into the bread container 50 according to his / her preference, and then covers the bread container 50 and presses the start key.
 ユーザがスタートキーを押すことにより、粉砕工程で粉砕された米粒の粉砕粉を含むパン容器50内のパン原料を生地に練り上げる混練工程が開始される。制御装置80は、混練用モータ60aを制御して混練ブレード52を回転させる。なお、混練ブレード52の回転は低速・高トルクとなっている。 When the user presses the start key, a kneading process is started in which the bread ingredients in the bread container 50 containing the pulverized rice grains pulverized in the pulverization process are kneaded into the dough. The control device 80 controls the kneading motor 60a to rotate the kneading blade 52. The kneading blade 52 rotates at a low speed and a high torque.
 この混練ブレード52の回転によってパン原料は混練され、所定の弾力を有する一つにつながった生地(dough)に練り上げられていく。混練ブレード52が生地を振り回してパン容器50の内壁にたたきつけることにより、混練に「捏ね」の要素が加わることになる。パン容器50の内壁に形成された突部50aが「捏ね」を助ける。混練工程における混練ブレード52の回転は、連続回転としてもよいし、間欠回転としてもよい。混練工程は、混練ブレード52による混練時間が所定の時間(本実施形態では12分)となった時点で終了する。この時間は所望の弾力を有するパン生地が得られる時間として実験的に求められる。 The rotation of the kneading blade 52 causes the bread ingredients to be kneaded and kneaded into a dough that has a predetermined elasticity. When the kneading blade 52 swings the dough and knocks it against the inner wall of the bread container 50, an element of “kneading” is added to the kneading. The protrusion 50a formed on the inner wall of the bread container 50 helps "kneading". The rotation of the kneading blade 52 in the kneading step may be continuous rotation or intermittent rotation. The kneading process ends when the kneading time by the kneading blade 52 reaches a predetermined time (12 minutes in the present embodiment). This time is experimentally determined as the time to obtain bread dough having a desired elasticity.
 ここで、本明細書では、混練工程が開始され練りが進行した後は、半完成状態であっても「生地」と呼称することとしている。 Here, in the present specification, after the kneading process is started and the kneading progresses, the semi-finished state is referred to as “dough”.
 なお、混練工程においては、制御装置80は加熱装置41を制御して焼成室40の温度が所定の温度(例えば30℃前後)となるように調整する。そして、焼成室40の温度が所定の温度となった時点で生地にイースト菌(例えばドライイースト)が投入される。このイースト菌の投入は、本実施形態の自動製パン器1ではユーザが投入することとしているが、自動投入することとしてもよい。自動製パン器1では、ユーザが投入する構成のために、所定の温度となったことを液晶パネル22の表示や報知音等で知らせることにしている。 In the kneading step, the control device 80 controls the heating device 41 so as to adjust the temperature of the firing chamber 40 to a predetermined temperature (for example, around 30 ° C.). Then, when the temperature of the baking chamber 40 reaches a predetermined temperature, yeast (for example, dry yeast) is introduced into the dough. The yeast is input by the user in the automatic bread maker 1 of the present embodiment, but may be automatically input. The automatic bread maker 1 is configured to be notified by the display on the liquid crystal panel 22, a notification sound, or the like that the temperature has reached a predetermined temperature because of a configuration that the user inputs.
 混練工程が終了すると、制御装置80の指令によって続いて発酵工程が実行される。この発酵工程では、制御装置80は加熱装置41を制御して、焼成室40の温度を、発酵が進む温度(例えば32℃)にする。そして、発酵が進む環境下で所定の時間(本実施形態では50分)放置される。 When the kneading process is completed, the fermentation process is subsequently executed according to a command from the control device 80. In this fermentation process, the control device 80 controls the heating device 41 to set the temperature of the baking chamber 40 to a temperature at which fermentation proceeds (for example, 32 ° C.). Then, it is left for a predetermined time (in this embodiment, 50 minutes) in an environment in which fermentation proceeds.
 発酵工程が終了すると、制御装置80の指令によって続いてガス抜き工程が実行される。このガス抜き工程では、制御装置80は混練用モータ60bを制御して混練ブレード52を所定の時間(本実施形態では0.1分)回転させる。この混練ブレード52の回転によって生地に含まれる炭酸ガスが抜かれる。 When the fermentation process is completed, the degassing process is subsequently executed according to a command from the control device 80. In this degassing process, the control device 80 controls the kneading motor 60b to rotate the kneading blade 52 for a predetermined time (in this embodiment, 0.1 minute). By the rotation of the kneading blade 52, carbon dioxide contained in the dough is extracted.
 ガス抜き工程が終了すると、制御装置80の指令によって続いて発酵工程が実行される。この発酵工程では、制御装置80は加熱装置41を制御して、焼成室40の温度を、発酵が進む温度(例えば38℃)にする。そして、発酵が進む環境下で所定の時間(本実施形態では50分)放置される。 When the degassing process is completed, the fermentation process is subsequently executed according to a command from the control device 80. In this fermentation process, the control device 80 controls the heating device 41 to set the temperature of the baking chamber 40 to a temperature at which fermentation proceeds (for example, 38 ° C.). Then, it is left for a predetermined time (in this embodiment, 50 minutes) in an environment in which fermentation proceeds.
 発酵工程が終了すると、制御装置80の指令によって続いて焼成工程が実行される。制御装置80は、加熱装置41を制御して、焼成室40の温度を、パン焼きを行うのに適した温度(例えば125℃)まで上昇させ、焼成環境下で所定の時間(本実施形態では50分)パン焼きを行う。焼成工程の終了については、例えば操作部20の液晶パネル22における表示や報知音等によってユーザに知らされる。ユーザは、製パン完了を検知すると、蓋30を開けてパン容器50を取り出す。これにより、白米粒からパンを製造する工程が完了となる。 When the fermentation process is completed, the firing process is subsequently performed according to a command from the control device 80. The control device 80 controls the heating device 41 to raise the temperature of the baking chamber 40 to a temperature suitable for baking (for example, 125 ° C.), and for a predetermined time (50 in this embodiment) in the baking environment. Min) Bake. The end of the firing process is notified to the user by, for example, a display on the liquid crystal panel 22 of the operation unit 20 or a notification sound. When detecting the completion of bread making, the user opens the lid 30 and takes out the bread container 50. Thereby, the process of manufacturing bread from white rice grains is completed.
 次に、自動製パン器1を用いて玄米用のパンの製造工程(玄米コース)でパンを製造する場合について説明する。この玄米コースを実行するにあたってユーザが行う準備は、上述の白米コースと同様である。ただし、玄米コースでパンを製造する場合には、操作部20の玄米キー21aを押して玄米用のパンの製造工程が実行されるようにコース選択を行った上でスタートキーを押す必要がある。 Next, the case where bread is produced in the brown rice bread production process (brown rice course) using the automatic bread maker 1 will be described. Preparations performed by the user in executing this brown rice course are the same as the above-described white rice course. However, when bread is produced in the brown rice course, it is necessary to press the start key after selecting the course so that the brown rice bread manufacturing process is executed by pressing the brown rice key 21a of the operation unit 20.
 図4Bは、自動製パン器によって実行される玄米用のパンの製造工程を示す図である。図4Bに示すように、玄米コースでは、白米コースと同じく、吸液工程、粉砕工程、混練工程、発酵工程、ガス抜き工程、発酵工程、焼成工程がこの順で順次遂行される。ただし、吸液工程、粉砕工程、及び混練工程に要する時間の長さが白米コースの場合に比べて長くなっている。 FIG. 4B is a diagram illustrating a process for producing brown rice bread performed by an automatic bread maker. As shown in FIG. 4B, in the brown rice course, the liquid absorption process, the pulverization process, the kneading process, the fermentation process, the degassing process, the fermentation process, and the baking process are sequentially performed in this order as in the white rice course. However, the length of time required for the liquid absorption process, the pulverization process, and the kneading process is longer than that for the white rice course.
 玄米は白米に比べて米粒の硬さが硬い。このために、玄米の方が白米に比べて米粒を粉砕し難い。このために、玄米コースでは、玄米粒を粉砕し易くする目的で行う吸液工程に要する時間(吸液時間)の長さを白米の場合よりも長くしている。また、玄米粒は硬く、白米と同様の粒径まで粉砕しようとすると同一の粉砕時間では不十分である。このために、玄米コースでは、粉砕工程に要する時間(粉砕時間)の長さを白米の場合よりも長くしている。 Brown rice has a harder rice grain than white rice. For this reason, brown rice is more difficult to grind rice grains than white rice. For this reason, in the brown rice course, the length of time required for the liquid absorption process (liquid absorption time) performed for the purpose of facilitating the pulverization of the brown rice grains is made longer than that for white rice. In addition, the brown rice grains are hard, and the same pulverization time is insufficient when pulverizing to the same particle size as that of white rice. For this reason, in the brown rice course, the time required for the pulverization process (pulverization time) is set longer than that for white rice.
 また、玄米の粉砕粉は白米の粉砕粉と比べて、その状態がさらさらした状態である。このために、混練工程によって弾力性に富む所望の生地を得るために、混練工程に要する時間(混練時間)の長さを白米の場合に比べて長くしている。 Moreover, the pulverized powder of brown rice is in a more sloppy state than the pulverized powder of white rice. For this reason, in order to obtain a desired dough having high elasticity by the kneading step, the time required for the kneading step (kneading time) is made longer than that for white rice.
 具体的には、玄米コースは、白米コースの場合に比べて吸液工程に要する時間の長さが50分長くされ、粉砕工程に要する時間の長さが8分長くされ、混練工程に要する時間の長さが4分長くされている。ただし、これは一例であり、各工程に要する時間の長さをどの程度長くするかは、適宜変更可能である。 Specifically, in the brown rice course, the time required for the liquid absorption process is increased by 50 minutes and the time required for the pulverization process is increased by 8 minutes compared to the white rice course, and the time required for the kneading process. Is 4 minutes longer. However, this is only an example, and how long the time required for each process is increased can be appropriately changed.
 なお、玄米コースの吸液工程、粉砕工程、及び混練工程で行われる具体的動作は、各工程に要する時間の長さが変更される以外は白米コースと同じである。また、玄米コースの発酵工程から焼成工程終了に至るまでの具体的動作は、各工程に要する時間を含めて白米コースと同一である。このため、これらの動作の詳細については説明を省略する。 In addition, the specific operation performed in the liquid absorption process, the pulverization process, and the kneading process of the brown rice course is the same as the white rice course except that the length of time required for each process is changed. Moreover, the specific operation | movement from the fermentation process of a brown rice course to completion | finish of a baking process is the same as a white rice course including the time which each process requires. For this reason, description of the details of these operations is omitted.
 以上のように、本実施形態の自動製パン器1では、米粒の種類(白米であるか、玄米であるか)に応じたパンの製造工程の選択を可能とする玄米キー21aを設けている。このために、ユーザは、この玄米キー21aによってパン原料(米粒の種類)に応じた適切なパンの製造工程を選択して、米粒から製粉工程を経ることなく(製粉した粉(米粉)からではなく、米粒から直接)美味しいパンを製造することができる。 As described above, the automatic bread maker 1 of the present embodiment is provided with the brown rice key 21a that enables selection of the bread production process according to the type of rice grain (whether white rice or brown rice). . For this purpose, the user selects an appropriate bread manufacturing process corresponding to the bread raw material (type of rice grain) with this brown rice key 21a, and does not go through the milling process from the rice grain (from the milled powder (rice flour)) (Not directly from rice grains) and can produce delicious bread.
 なお、以上に示した自動製パン器は本発明の一例であり、本発明が適用される自動製パン器の構成は、以上に示した実施形態に限定されるものではない。 The automatic bread maker shown above is an example of the present invention, and the configuration of the automatic bread maker to which the present invention is applied is not limited to the embodiment described above.
 例えば、以上に示した実施形態では、米粒からパンを製造する場合に、白米用のパンの製造工程と、玄米用のパンの製造工程とのうちの一方を選択する構成となっている。しかし、例えば、白米と玄米との中間の米として位置づけられる五分づき米等に対応する他のパンの製造工程を、白米用のパンの製造工程及び玄米用のパンの製造工程とは別に設けて、これについても選択できるようにしても構わない。なお、このような製パン工程の選択を行う選択手段として、以上に示した実施形態では本体10に設けた入力キー(入力ボタン)を採用しているが、この構成に限らず、例えば、タッチパネルやリモコン等を入力手段として採用しても勿論構わない。 For example, in the embodiment shown above, when bread is produced from rice grains, one of a white rice bread production process and a brown rice bread production process is selected. However, for example, another bread manufacturing process corresponding to five-minute rice, which is positioned as an intermediate rice between white rice and brown rice, is provided separately from the white rice bread manufacturing process and the brown rice bread manufacturing process. This may be selected as well. As the selection means for selecting such a bread making process, the input keys (input buttons) provided on the main body 10 are employed in the embodiment described above. However, the present invention is not limited to this configuration. Of course, a remote controller or the like may be used as the input means.
 また、以上に示した実施形態では、製粉した粉(穀物粉)からではなく、穀物粒から直接パンを製造する場合に使用する穀物粒が米粒である場合を一例として示している。しかし、本発明は、米粒に限らず、小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆等の穀物粒を原料としてパンを製造する場合にも適用されるものである。その適用例として次のような構成が挙げられる。すなわち、各種穀物粒を、同一のパンの製造工程で製造できるもの同士を集めた複数のグループに分類し、各分類に応じた(言い換えれば、穀物粒の種類に応じた)パンの製造工程を選択してパンを製造できるように自動製パン器を構成することとしてよい。なお、このような構成とする場合には、ユーザが穀物粒の分類がすぐわかるように、例えば、分類表を自動製パン器に刻印しておく等の工夫を行うのが好ましい。 Moreover, in embodiment shown above, the case where the grain grain used when manufacturing bread directly from a grain grain instead of the milled powder (cereal flour) is a rice grain is shown as an example. However, the present invention is not limited to rice grains, but can be applied to the production of bread using grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybeans as raw materials. The following configuration can be given as an application example. In other words, various grain grains are classified into a plurality of groups that gather together those that can be manufactured in the same bread manufacturing process, and the bread manufacturing process according to each classification (in other words, according to the type of grain) An automatic bread maker may be configured to select and produce bread. In the case of such a configuration, it is preferable to devise, for example, imprinting a classification table on an automatic bread maker so that the user can easily understand the grain classification.
 また、以上に示した実施形態では、穀物粒の種類(白米であるか、玄米であるか)に応じて、パンの製造工程のうち、吸液工程、粉砕工程、及び混練工程の3つの工程に要する時間の長さを変更している。しかし、この3つの工程のうちのいずれか一つ、或いは、いずれか2つに要する時間の長さを変更する構成としても構わない。更に、各工程で行う動作を変更するにあたって、時間のみならず、例えば粉砕ブレード70や混練ブレード52の回転の制御方法を変更する等しても構わない。 Moreover, in embodiment shown above, three processes of a liquid absorption process, a grinding | pulverization process, and a kneading | mixing process among bread manufacturing processes according to the kind (whether it is white rice or brown rice) of grain grains. The length of time it takes is changed. However, the length of time required for any one or two of the three steps may be changed. Furthermore, when changing the operation performed in each process, not only the time but also the method for controlling the rotation of the crushing blade 70 and the kneading blade 52 may be changed.
 また、以上に示した実施形態で採用されるパンの製造工程は例示であり、他の製造工程としてもよい。例を挙げると、以上に示した実施形態では、穀物粒(米粒)からパンを製造するにあたって、粉砕工程を行う前に吸液工程を行う構成としているが、この吸液工程を行わない構成としてもよい(図5Aに示す工程が該当)。ただし、単に吸液工程をなくすのみとすると、粉砕工程における穀物粒の粉砕効率が低下するために、粉砕工程を図5Bに示すような構成とするのが好ましい。 Moreover, the bread manufacturing process employed in the embodiment described above is an example, and may be another manufacturing process. For example, in the embodiment described above, when producing bread from cereal grains (rice grains), the liquid absorption process is performed before the pulverization process, but the liquid absorption process is not performed. (The process shown in FIG. 5A is applicable). However, if the liquid absorption step is simply eliminated, the pulverization efficiency of the grain in the pulverization step is lowered, so that the pulverization step is preferably configured as shown in FIG. 5B.
 図5Bに示す粉砕工程では、粉砕期間(例えば1分)と吸液期間(例えば9分)とが交互に繰り返される構成となっている。この構成の場合、最初の粉砕期間における粉砕は、穀物粒の吸水があまり進んでいないので、吸液工程を経てから粉砕工程を行う場合に比べて粉砕効率は悪い。 In the pulverization step shown in FIG. 5B, the pulverization period (for example, 1 minute) and the liquid absorption period (for example, 9 minutes) are alternately repeated. In the case of this configuration, the pulverization in the first pulverization period has poor pulverization efficiency as compared with the case where the pulverization step is performed after the liquid absorption step because water absorption of the grain is not so advanced.
 しかしながら、図5Bに示す粉砕工程の場合、最初の粉砕期間の後に行われる吸液期間は、穀物粒がある程度細かくされた後に実行されることになる。このために、穀物粒の表面積が増加した状態で穀物粒に吸液させることになり、高い吸液効率で吸液が行われることになる。したがって、この吸液期間の長さ(9分)は吸液のための時間としては比較的短いが、この時間でも吸液がかなり進む。 However, in the case of the pulverization step shown in FIG. 5B, the liquid absorption period that is performed after the first pulverization period is executed after the grain has been refined to some extent. For this reason, the cereal grains are allowed to absorb liquid with the surface area of the cereal grains increased, and the liquid absorption is performed with high liquid absorption efficiency. Therefore, the length of the liquid absorption period (9 minutes) is relatively short as the time for liquid absorption, but the liquid absorption proceeds considerably even during this time.
 また、2回目以降の粉砕期間における穀物粒の粉砕は、先に行われた吸液期間における穀物粒の吸液の効果で、効率良く行うことができる。また、2回目以降の吸液期間の穀物粒の吸液も、先に行われた穀物粒の粉砕の効果で、効率良く行える。すなわち、粉砕期間と吸液期間とを交互に繰り返すことで、穀物粒に水を十分含ませながら、穀物粒を効率良く粉砕することができる。したがって、図5Bに示す構成によれば、粉砕工程の前に吸液工程を行わなくても、穀物粒を効率良く粉砕できる。そして、この構成の場合、粉砕工程と別に吸液工程を設ける必要がないので、パンの製造工程の時間短縮が図れる。 In addition, the pulverization of the grain in the second and subsequent pulverization periods can be efficiently performed due to the effect of the absorption of the cereal grains in the liquid absorption period previously performed. Moreover, the absorption of the grain grains in the second and subsequent liquid-absorbing periods can be efficiently performed by the effect of the grain grain grinding performed previously. That is, by alternately repeating the pulverization period and the liquid absorption period, the cereal grains can be efficiently pulverized while sufficiently containing water in the cereal grains. Therefore, according to the configuration shown in FIG. 5B, the grain can be efficiently pulverized without performing the liquid absorption step before the pulverization step. And in this structure, since it is not necessary to provide a liquid absorption process separately from a crushing process, the time of the bread manufacturing process can be shortened.
 ところで、図5Bにおいて、白米コースと玄米コースとでは、粉砕期間と吸液期間との繰り返し回数を異なる構成とし、玄米コースの方が、繰り返し回数が多い構成としている。これは、上述のように玄米が白米より硬く粉砕が行い難いことを考慮するものである。なお、白米コース、玄米コースとも、粉砕工程後の工程は、以上に示した実施形態と同様としてよい。そして、このように、2つのコースを設けることで、以上に示した実施形態と同様、いずれの米粒を用いる場合にも美味しいパンを製造できる。 By the way, in FIG. 5B, the white rice course and the brown rice course have a different number of repetitions of the pulverization period and the liquid absorption period, and the brown rice course has a higher number of repetitions. This is because brown rice is harder than white rice and difficult to grind as described above. In both the white rice course and the brown rice course, the process after the pulverization process may be the same as that in the embodiment described above. And by providing two courses in this way, delicious bread can be produced when any rice grain is used, as in the embodiment described above.
 なお、吸液工程を設けない以上の例では、白米コースの場合、粉砕期間(1分)と吸液期間(9分)とがそれぞれ4回繰り返され、その後更に1回粉砕期間が行われた時点(すなわち、最初の粉砕ブレードの回転開始から41分経過した時点)で、粉砕工程が終了することとしている。しかし、粉砕工程における粉砕期間及び吸液期間の長さ及び回数はあくまで例示であり、これらの時間の長さや回数は、例えば、穀物粒を所望の粒度(或いは粒度分布)とできる条件を目安に設定すればよく、適宜変更可能である。このことは、玄米コースについても同様である。ただし、白米コースと同様に粉砕期間及び吸液期間を繰り返す場合には、玄米コースの方が白米コースよりも、その繰り返し回数を多く設定する必要がある。 In the above example in which the liquid absorption step is not provided, in the case of the white rice course, the pulverization period (1 minute) and the liquid absorption period (9 minutes) were each repeated 4 times, and then the pulverization period was performed once more. At the time (that is, when 41 minutes have passed since the start of the rotation of the first crushing blade), the crushing process is finished. However, the length and number of times of the pulverization period and the liquid absorption period in the pulverization process are merely examples, and the length and number of times of these times are, for example, based on conditions that allow the grains to have a desired particle size (or particle size distribution). What is necessary is just to set and it can change suitably. The same applies to the brown rice course. However, when repeating the pulverization period and the liquid absorption period in the same manner as the white rice course, the brown rice course needs to be set more frequently than the white rice course.
 また、吸液工程を設けない以上の例では、粉砕期間の長さは全て同じ(一定の長さ)となっている。しかし、この構成に限定される趣旨でない。すなわち、例えば、初回の粉砕期間の長さは短く設定(例えば10秒等)し、その後は初回に比べて長く設定することとしてもよい。この場合、例えば、2回目以降の粉砕期間の長さは全て同じであってもよいし、徐々に粉砕期間の長さが長くなるようにしてもよい。上述のように、初回の粉砕期間における粉砕は、穀物粒が十分に水を含んでいないので、粉砕効率が悪い。このため、初回の粉砕期間は、穀物粒の表面に傷をつけて吸液しやすい穀物粒を得ることを主な目的とし、粉砕期間の長さをその後に行われる粉砕期間の長さより短めとすることとしてもよい。 Further, in the above example in which the liquid absorption process is not provided, the length of the pulverization period is the same (a constant length). However, it is not intended to be limited to this configuration. That is, for example, the length of the first pulverization period may be set short (for example, 10 seconds), and thereafter may be set longer than the first pulverization period. In this case, for example, the lengths of the second and subsequent grinding periods may all be the same, or the length of the grinding period may be gradually increased. As described above, the pulverization in the first pulverization period is poor in pulverization efficiency because the grain does not contain water sufficiently. For this reason, the primary grinding period is mainly intended to obtain grain grains that are easily damaged by scratching the surface of the grain grains, and the length of the grinding period is shorter than the length of the subsequent grinding period. It is good to do.
 また、同様に、吸液工程を設けない以上の例では、吸液期間の長さは全て同じ(一定の長さ)となっている。しかし、この構成に限定される趣旨でなく、各吸液期間の長さを一定の長さとしないこととしてもよい。すなわち、例えば、初回の吸液期間の長さを他の吸液期間の長さよりも長くする等してもよい。 Similarly, in the above example in which the liquid absorption step is not provided, the length of the liquid absorption period is the same (constant length). However, the purpose is not limited to this configuration, and the length of each liquid absorption period may not be a fixed length. That is, for example, the length of the first liquid absorption period may be longer than the length of other liquid absorption periods.
 その他、以上に示した実施形態では、自動製パン器は、粉砕ブレードと混練ブレードとの2つのブレードを備える構成とした。しかし、これに限らず、自動製パン器が粉砕と混練とを兼用するブレード1つのみを備える構成等としてもよい。また、自動製パン器の構成について、パン生地のみならず、例えばケーキ生地、パスタ生地、うどん生地等の生地を穀物粒から製造できるように構成してもよい。そして、これらの生地を製造するに際して、穀物粒の種類に応じた生地の製造工程を選択できるように構成してもよい。 In addition, in the embodiment described above, the automatic bread maker is configured to include two blades, a grinding blade and a kneading blade. However, the present invention is not limited to this, and the automatic bread maker may be configured to include only one blade for both crushing and kneading. Moreover, about the structure of an automatic bread maker, you may comprise not only bread dough but can manufacture doughs, such as cake dough, pasta dough, and udon dough, from a grain grain, for example. And when manufacturing these dough, you may comprise so that the manufacturing process of the dough according to the kind of grain may be selected.
 本発明は、家庭用の自動製パン器に好適である。 The present invention is suitable for an automatic bread maker for home use.
   1 自動製パン器
   18 温度センサ(温度調整部の一部)
   21a 玄米キー(製パン工程選択部)
   41 加熱装置(温度調整部の一部)
   50 パン容器
   52 混練ブレード(混練部の一部)
   60a 混練用モータ(混練部の一部)
   60b 粉砕用モータ(粉砕部の一部)
   70 粉砕ブレード(粉砕部の一部)
   80 制御装置(制御部)
1 Automatic bread maker 18 Temperature sensor (part of temperature control unit)
21a Brown rice key (Breadmaking process selection part)
41 Heating device (part of temperature control unit)
50 bread container 52 kneading blade (part of kneading section)
60a Kneading motor (part of kneading section)
60b Motor for grinding (part of grinding part)
70 Crushing blade (part of crushing part)
80 Control device (control unit)

Claims (5)

  1.  パン原料が投入される容器と、
     パン原料として前記容器に投入された穀物粒を粉砕する粉砕部と、
     前記粉砕部で粉砕された前記穀物粒の粉砕粉を含む前記容器内のパン原料をパン生地に練り上げる混練部と、
     前記容器内の温度を調整する温度調整部と、
     前記穀物粒の種類に応じたパンの製造工程の選択を可能とする製パン工程選択部と、
     前記粉砕部、前記混練部、及び前記温度調整部を制御して、前記製パン工程選択部で選択されたパンの製造工程を実行させる制御部と、
     を備えることを特徴とする自動製パン器。
    A container into which bread ingredients are charged;
    A pulverizing unit for pulverizing grains put into the container as a raw material for bread;
    A kneading unit for kneading the bread ingredients in the container containing the pulverized powder of the cereal grains pulverized in the pulverization unit into bread dough;
    A temperature adjusting unit for adjusting the temperature in the container;
    A bread making process selection unit that enables selection of a bread manufacturing process according to the type of grain,
    A control unit for controlling the pulverizing unit, the kneading unit, and the temperature adjusting unit to execute the bread manufacturing process selected by the bread making process selecting unit;
    An automatic bread maker characterized by comprising:
  2.  前記製パン工程選択部によって、白米用のパンの製造工程と、玄米用のパンの製造工程との選択が可能であることを特徴とする請求項1に記載の自動製パン器。 2. The automatic bread maker according to claim 1, wherein the bread making process selection section allows selection of a white rice bread manufacturing process and a brown rice bread manufacturing process.
  3.  前記パンの製造工程には、前記穀物粒を液体に浸して吸液させる吸液工程と、吸液した前記穀物粒を粉砕する粉砕工程と、前記穀物粒の粉砕粉を含むパン原料をパン生地に練り上げる混練工程と、練り上げられたパン生地を発酵させる発酵工程と、発酵させたパン生地を焼く焼成工程とが含まれ、
     前記製パン工程選択部によって選択可能な複数のパンの製造工程の間では、前記吸液工程および前記粉砕工程のうちの少なくとも一方の工程に要する時間の長さが、互いに異なっていることを特徴とする請求項1に記載の自動製パン器。
    The bread manufacturing process includes a liquid absorption process for immersing the cereal grains in a liquid to absorb the liquid, a pulverization process for pulverizing the absorbed cereal grains, and a bread material containing the pulverized powder of the cereal grains as bread dough. A kneading step for kneading, a fermentation step for fermenting the kneaded dough, and a baking step for baking the fermented dough,
    The length of time required for at least one of the liquid absorption process and the pulverization process is different between the plurality of bread manufacturing processes selectable by the bread making process selection unit. The automatic bread maker according to claim 1.
  4.  前記パンの製造工程には、前記穀物粒を粉砕する粉砕工程と、前記穀物粒の粉砕粉を含むパン原料をパン生地に練り上げる混練工程と、練り上げられたパン生地を発酵させる発酵工程と、発酵させたパン生地を焼く焼成工程とが含まれ、
     前記粉砕工程は、前記穀物粒を粉砕する粉砕期間と、前記穀物粒に吸液させる吸液期間と、が交互に繰り返されるように設けられ、
     前記製パン工程選択部によって選択可能な複数のパンの製造工程の間では、前記粉砕期間及び前記吸液期間の繰り返し回数が、互いに異なっていることを特徴とする請求項1に記載の自動製パン器。
    In the bread production process, a pulverization process for pulverizing the cereal grains, a kneading process for kneading bread ingredients including the pulverized powder of the cereal grains into bread dough, a fermentation process for fermenting the kneaded bread dough, and fermenting And baking process of baking dough,
    The pulverization step is provided such that a pulverization period for pulverizing the cereal grains and a liquid absorption period for absorbing the cereal grains are alternately repeated,
    2. The automatic brewing according to claim 1, wherein the number of repetitions of the pulverization period and the liquid absorption period is different between a plurality of bread manufacturing processes selectable by the bread making process selection unit. Bread machine.
  5.  前記製パン工程選択部によって選択可能な複数のパンの製造工程の間では、前記混練工程に要する時間の長さが、互いに異なっていることを特徴とする請求項3又は4に記載の自動製パン器。 5. The automatic manufacturing according to claim 3, wherein the time required for the kneading process is different between the manufacturing processes of a plurality of breads that can be selected by the bread-making process selection unit. Bread machine.
PCT/JP2010/062674 2009-08-25 2010-07-28 Automatic bread maker WO2011024589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-194120 2009-08-25
JP2009194120A JP5347833B2 (en) 2009-08-25 2009-08-25 Automatic bread machine

Publications (1)

Publication Number Publication Date
WO2011024589A1 true WO2011024589A1 (en) 2011-03-03

Family

ID=43627699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062674 WO2011024589A1 (en) 2009-08-25 2010-07-28 Automatic bread maker

Country Status (3)

Country Link
JP (1) JP5347833B2 (en)
TW (1) TW201106907A (en)
WO (1) WO2011024589A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938556B2 (en) * 2012-02-28 2016-06-22 パナソニックIpマネジメント株式会社 Automatic bread machine
JP5824616B2 (en) * 2012-03-14 2015-11-25 パナソニックIpマネジメント株式会社 Bread dough producing machine and bread making machine using the dough
JP5824617B2 (en) * 2012-03-16 2015-11-25 パナソニックIpマネジメント株式会社 Bread dough producing machine and bread making machine using the dough
JP5617871B2 (en) * 2012-04-20 2014-11-05 パナソニック株式会社 Automatic bread machine
JP6082976B2 (en) * 2012-09-14 2017-02-22 パナソニックIpマネジメント株式会社 Automatic bread machine
JP6082975B2 (en) * 2012-09-14 2017-02-22 パナソニックIpマネジメント株式会社 Automatic bread machine
CN109757999B (en) * 2017-11-09 2022-02-11 佛山市顺德区美的电热电器制造有限公司 Bread reservation making method, bread maker and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187181A (en) * 1995-01-06 1996-07-23 Matsushita Electric Ind Co Ltd Automatic bread baking apparatus
JP2000116526A (en) * 1998-10-13 2000-04-25 Matsushita Electric Ind Co Ltd Automatic bread maker
JP2001327242A (en) * 2000-05-22 2001-11-27 Niigata Gourmet:Kk Method for producing bread using rice flour
JP2003135012A (en) * 2001-10-31 2003-05-13 Kyoto Eiyo Kagaku Kenkyusho:Kk Method for producing cereal embryo processed food and food product containing the resultant cereal embryo processed food
WO2010016400A1 (en) * 2008-08-05 2010-02-11 三洋電機株式会社 Method for producing food dough to be cooked and method for producing bread

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479850A (en) * 1993-10-22 1996-01-02 The Andersons Apparatus and method for a breadmaking machine
JP3234911B2 (en) * 1997-01-31 2001-12-04 シャープ株式会社 High frequency cooking device
JP2006136257A (en) * 2004-11-12 2006-06-01 Shitogi Japan:Kk Method for producing rice flour bread and method for producing granular rice flour bread

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187181A (en) * 1995-01-06 1996-07-23 Matsushita Electric Ind Co Ltd Automatic bread baking apparatus
JP2000116526A (en) * 1998-10-13 2000-04-25 Matsushita Electric Ind Co Ltd Automatic bread maker
JP2001327242A (en) * 2000-05-22 2001-11-27 Niigata Gourmet:Kk Method for producing bread using rice flour
JP2003135012A (en) * 2001-10-31 2003-05-13 Kyoto Eiyo Kagaku Kenkyusho:Kk Method for producing cereal embryo processed food and food product containing the resultant cereal embryo processed food
WO2010016400A1 (en) * 2008-08-05 2010-02-11 三洋電機株式会社 Method for producing food dough to be cooked and method for producing bread

Also Published As

Publication number Publication date
TW201106907A (en) 2011-03-01
JP2011045410A (en) 2011-03-10
JP5347833B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5449795B2 (en) Automatic bread machine
JP5347833B2 (en) Automatic bread machine
JP2011045413A (en) Automatic bread maker
JP5418212B2 (en) Automatic bread machine
US20120125207A1 (en) Automatic bread making machine
JP5289245B2 (en) Automatic bread machine
WO2011024776A1 (en) Automatic bread-maker
JP5295039B2 (en) Automatic bread machine
JP5295040B2 (en) Automatic bread machine
WO2011065273A1 (en) Automatic bread maker
JP2010246589A (en) Automatic bread making machine
JP5682695B2 (en) Automatic bread machine
JP4859965B2 (en) Automatic bread machine
JP2011224165A (en) Automatic bread maker
JP2010184081A (en) Automatic bread-making machine
TWI406646B (en) Automatic bread maker
JP5402577B2 (en) Automatic bread machine
JP5957738B2 (en) Automatic bread machine
WO2011074427A1 (en) Automatic bread maker
JP5295041B2 (en) Automatic bread machine
JP4859966B2 (en) Automatic bread machine
WO2011129004A1 (en) Automatic bread making machine
JP2010184082A (en) Automatic bread-making machine
JP2010246590A (en) Bread making machine
JP2012147994A (en) Automatic breadmaking machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811640

Country of ref document: EP

Kind code of ref document: A1