WO2011074427A1 - Automatic bread maker - Google Patents

Automatic bread maker Download PDF

Info

Publication number
WO2011074427A1
WO2011074427A1 PCT/JP2010/071655 JP2010071655W WO2011074427A1 WO 2011074427 A1 WO2011074427 A1 WO 2011074427A1 JP 2010071655 W JP2010071655 W JP 2010071655W WO 2011074427 A1 WO2011074427 A1 WO 2011074427A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
bread
container
pulverization
time
Prior art date
Application number
PCT/JP2010/071655
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 隆
下澤 理如
Original Assignee
三洋電機株式会社
三洋電機コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三洋電機コンシューマエレクトロニクス株式会社 filed Critical 三洋電機株式会社
Publication of WO2011074427A1 publication Critical patent/WO2011074427A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/02Mixing or kneading machines for the preparation of dough with vertically-mounted tools; Machines for whipping or beating
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B7/00Baking plants
    • A21B7/005Baking plants in combination with mixing or kneading devices
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/14Structural elements of mixing or kneading machines; Parts; Accessories
    • A21C1/145Controlling; Testing; Measuring
    • A21C1/146Measuring properties of the dough, e.g. moisture, electrical conductivity, temperature
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/14Structural elements of mixing or kneading machines; Parts; Accessories
    • A21C1/1495Arrangements for cooling or heating ; Arrangements for applying super- or sub-atmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/051Stirrers characterised by their elements, materials or mechanical properties
    • B01F27/054Deformable stirrers, e.g. deformed by a centrifugal force applied during operation
    • B01F27/0543Deformable stirrers, e.g. deformed by a centrifugal force applied during operation the position of the stirring elements depending on the direction of rotation of the stirrer

Definitions

  • the present invention relates to an automatic bread maker mainly used in general households.
  • an automatic bread maker for home use generally has a mechanism for producing bread by directly using a bread container into which bread ingredients are placed (see, for example, Patent Document 1).
  • a bread container in which bread ingredients are placed is placed in a baking chamber in the main body.
  • the bread raw material in a bread container is kneaded into bread dough with the kneading blade provided in a bread container (kneading process).
  • a fermentation process for fermenting the kneaded bread dough is performed, and the bread container is used as a baking mold to bake the bread (baking process).
  • flour rice, rice flour, etc.
  • a mixed powder mixed with raw materials was needed.
  • this bread manufacturing method first, cereal grains are mixed with a liquid, and the mixture is pulverized by a pulverizing blade (a pulverizing step). And the bread raw material containing the paste-form ground powder obtained through the crushing process is kneaded into dough (kneading process), and after the dough is fermented (fermentation process), the fermented dough is baked into bread. (Baking process).
  • an object of the present invention is to provide an automatic bread maker that can stably produce good bread from cereal grains.
  • an automatic bread maker of the present invention includes a container into which bread ingredients are charged, a main body that receives the container, an outside air temperature, a temperature of the container, a temperature around the container, and an inside of the container.
  • An automatic bread maker comprising: a temperature detection unit capable of detecting at least one of the bread raw material temperatures; and a control unit configured to execute a bread manufacturing process in a state where the container is received by the main body.
  • the control unit is provided so as to be able to execute a cereal grain breadmaking course for producing bread using the cereal grains charged in the container, and the cereal grain breadmaking course is executed.
  • at least one step in which the process time is varied based on the temperature detected by the temperature detection unit is included.
  • the “bread raw material temperature” is widely used as the temperature of the material that is the basis of the bread before the bread is baked regardless of its state. Therefore, the term “bread raw material temperature” may include the temperature of the bread dough obtained by kneading the bread raw material.
  • the automatic bread maker of this configuration can detect at least one of the outside air temperature, the temperature of the container into which the bread ingredients are charged, the temperature around the container, and the temperature of the bread ingredients in the container. It is set as the structure provided with an appropriate temperature detection part. And in this structure, at least 1 process by which process time is fluctuate
  • the plurality of steps include a pulverization step of pulverizing cereal grains charged in the container, and a kneading process of bread ingredients in the container containing pulverized cereal grains into bread dough.
  • a process, a fermentation process for fermenting the kneaded bread dough, and a baking process for baking the fermented bread dough are included.
  • control unit is configured to perform the kneading based on a first table in which a time of the kneading process is set in advance in association with a temperature, and a temperature detected by the temperature detecting unit. It is good also as determining the time of a process.
  • the temperature detected by the temperature detection unit is an outside air temperature or a temperature around the container.
  • the quality of the dough produced by the kneading process is easily affected by the environmental temperature in which the automatic bread maker is placed.
  • the environmental temperature preferably the outside temperature or the temperature around the container
  • the environmental temperature that affects the quality of the dough in the kneading process is measured and kneaded based on the measured temperature information and a table prepared in advance. It is the structure which determines the time of a process. For this reason, possibility that the bread manufactured from a grain will be unsatisfactory can be reduced.
  • control unit is configured to perform the fermentation based on the second table in which the time of the fermentation process is determined in advance in association with the temperature and the temperature detected by the temperature detection unit. It is good also as determining the time of a process.
  • the temperature detected by the temperature detector is preferably the outside temperature.
  • Fermentation temperature is important in the fermentation process. For this reason, in an automatic bread maker, the fermentation process is generally performed while controlling the temperature so that the temperature of the dough becomes a predetermined temperature. However, if the outside temperature at which the automatic bread maker is placed is different, the time required for heating to the predetermined temperature by the heating means may vary, and when the time of the fermentation process is fixed at the predetermined time, Variation in bread dough fermentation may occur. In this regard, in the present configuration, a predetermined temperature (preferably the outside temperature) is actually measured by the temperature detector, and the time of the fermentation process is determined based on the actually measured temperature information and a previously prepared table. It has become. For this reason, possibility that the bread manufactured from a grain will be unsatisfactory can be reduced.
  • a predetermined temperature preferably the outside temperature
  • the control unit starts detection of temperature by the temperature detection unit at the start of the fermentation process, and the predetermined temperature is detected from the time when the detected temperature reaches a first predetermined temperature.
  • the temperature detected by the temperature detector is preferably any one of the temperature of the container, the temperature around the container, and the temperature of the bread ingredients in the container.
  • the fermentation time of the bread dough at a predetermined temperature can be made constant regardless of the environment where the automatic bread maker is placed. For this reason, possibility that the bread manufactured from a grain will be unsatisfactory can be reduced. In view of ease of temperature measurement and the like, it is preferable to vary the time of the fermentation process using the temperature around the container.
  • the plurality of steps include a pre-pulverization liquid absorption step in which liquid is absorbed into the cereal grains in the container before the cereal grains are pulverized.
  • a pre-pulverization liquid absorption step in which liquid is absorbed into the cereal grains in the container before the cereal grains are pulverized.
  • control unit is configured based on a third table in which the pre-grinding liquid absorption process time is set in advance in association with the temperature, and the temperature detected by the temperature detection unit.
  • the time for the liquid absorption step before pulverization may be determined.
  • the temperature detected by the temperature detection unit is any one of an outside air temperature, a temperature of the container, a temperature around the container, and a temperature of the bread material in the container.
  • the absorption speed of cereal grains varies depending on the temperature of the liquid in which the cereal grains are immersed. In general, when the liquid temperature is high, the grain absorption rate tends to increase, and when the liquid temperature is low, the grain absorption rate tends to decrease. For this reason, when the liquid absorption time in the liquid absorption process before pulverization is set to a fixed time, the liquid absorption state of the grain may vary depending on the environmental temperature and the temperature of the liquid used. As a result, there is a possibility that the particle size distribution of the pulverized powder in the subsequent pulverization process fluctuates and an unsatisfactory bread is produced.
  • the automatic bread maker of this configuration is configured to detect the temperature that is thought to affect the liquid absorption speed and determine the liquid absorption time based on the detected temperature.
  • the liquid absorption state can be made stable and almost the same state, and the possibility that the bread produced from the grain will be unsatisfactory can be reduced.
  • it is preferable to determine the liquid absorption time by detecting the temperature of the liquid in the container and it is preferable to determine the liquid absorption time by detecting the temperature of the bread material in the container or the temperature of the container. preferable.
  • the structure which detects the temperature of a container is still more preferable for the reason of being easy to obtain the structure which performs temperature detection easily.
  • the plurality of steps may include a liquid absorption step after pulverization in which the pulverized powder of the cereal grains in the container absorbs liquid after the cereal grains are pulverized.
  • the period for cooling the temperature of the pulverized powder that has been raised by pulverization can be obtained by the liquid absorption step after pulverization, it is possible to manufacture bread without using a cooling device, which is necessary for an automatic bread maker. Cost can be reduced.
  • the crushed powder is further broken down by this step, and the amount of fine particles can be increased, so that a fine and well-made (delicious) bread is baked.
  • the control unit ends the post-pulverization liquid absorption step. It is also possible to make it.
  • the temperature detected by the temperature detector is preferably the temperature of the container or the temperature of the bread material in the container.
  • the predetermined temperature (second predetermined temperature) in this case is preferably set to a temperature at which the yeast works actively (for example, 28 ° C. to 30 ° C.).
  • the structure which detects the temperature of a container is preferable for the reason of being easy to obtain the structure which performs temperature detection easily.
  • the control unit terminates the post-grind liquid absorption step when the temperature of the container or the temperature of the bread material in the container reaches the second predetermined temperature, and the outside air
  • the temperature is higher than the second predetermined temperature
  • the suction after the pulverization is performed. It is good also as ending a liquid process.
  • the temperature of the container or the temperature of the bread ingredients in the container is lowered as much as possible so that the temperature of the container or the temperature of the bread ingredients in the container does not reach the predetermined temperature.
  • it is preferable to move to the next kneading step because it does not take a long time to produce bread.
  • temperature variations at the start of the kneading step can be suppressed to some extent.
  • the control unit further sets the time of the liquid absorption step after crushing so that the time of the liquid absorption step after crushing is not less than the first time and within the second time. Even if it is determined that the post-pulverization liquid absorption step can be completed based on information from the temperature detection unit, the post-pulverization liquid absorption step is terminated if the first time is not reached. Even if it is determined that the liquid absorption process after pulverization cannot be completed based on the information from the temperature detection unit, the liquid absorption process after pulverization may be terminated when the second time is exceeded. preferable.
  • the liquid absorption step after pulverization aims not only at obtaining the cooling period of the pulverized powder but also increasing the amount of fine particles in the pulverized powder. For this reason, it is preferable to adopt this configuration so that the liquid absorption time does not become too short. However, if the first time is set too long, the pulverized powder may be cooled too much, and the temperature at the start of the kneading process may become lower than necessary. In consideration of this point, the first time is preferably determined. Further, it may be assumed that it takes a very long time for the container temperature or the bread material temperature to fall to a predetermined temperature or the outside air temperature.
  • the bread manufacturing time may become extremely long, and the user may feel inconvenient. For this reason, it is preferable to set the upper limit of the liquid absorption time so that the liquid absorption time does not become too long.
  • control unit is based on a fourth table in which the time of the liquid absorption step after pulverization is set in advance in association with the temperature, and the temperature detected by the temperature detection unit.
  • the time for the liquid absorption step after pulverization may be determined.
  • the temperature detected by the temperature detection unit is an outside air temperature or a temperature around the container.
  • the pulverized powder of cereal grains can be sufficiently cooled, and temperature variations at the end of the liquid absorption process after pulverization can be suppressed.
  • Vertical sectional view of the automatic bread maker of this embodiment 1 is a partially vertical sectional view of the automatic bread maker according to the present embodiment shown in FIG. 1 cut in a direction perpendicular to FIG.
  • mixing blade The schematic plan view for demonstrating the structure of the grinding
  • mixing blade The top view of the bread container in the automatic bread maker of this embodiment when the kneading blade is in the folded position Top view of bread container when kneading blade is in open position in automatic bread maker of this embodiment Schematic plan view showing the state of the clutch when the kneading blade is in the open position in the automatic bread maker of the present embodiment Control block diagram of automatic bread maker of this embodiment The schematic diagram which shows the flow of the bread-making course for rice grains in the
  • FIG. 1 is a vertical sectional view of the automatic bread maker according to the present embodiment.
  • 2 is a partial vertical sectional view of the automatic bread maker according to the present embodiment shown in FIG. 1 cut in a direction perpendicular to FIG.
  • FIG. 3 is a schematic perspective view for explaining the configuration of the crushing blade and the kneading blade provided in the automatic bread maker of the present embodiment, and is a view when seen obliquely from below.
  • FIG. 4 is a schematic plan view for explaining the configuration of the crushing blade and the kneading blade provided in the automatic bread maker of the present embodiment, and is a view seen from below.
  • FIG. 1 is a vertical sectional view of the automatic bread maker according to the present embodiment.
  • 2 is a partial vertical sectional view of the automatic bread maker according to the present embodiment shown in FIG. 1 cut in a direction perpendicular to FIG.
  • FIG. 3 is a schematic perspective view for explaining the configuration of the crushing blade and the kneading blade provided
  • FIG. 5 is a top view of the bread container when the kneading blade is in the folded position in the automatic bread maker of the present embodiment.
  • FIG. 6 is a top view of the bread container when the kneading blade is in the open posture in the automatic bread maker of the present embodiment.
  • the overall configuration of the automatic bread maker will be described mainly with reference to FIGS. 1 to 6.
  • the left side in FIG. 1 is the front (front) of the automatic bread maker 1 and the right is the back (rear) of the automatic bread maker 1. Further, it is assumed that the left hand side of the observer facing the automatic bread maker 1 from the front is the left side of the automatic bread maker 1, and the right hand side is the right side of the automatic bread maker 1.
  • the automatic bread maker 1 has a box-shaped main body 10 constituted by a synthetic resin outer shell.
  • the main body 10 is provided with a U-shaped synthetic resin handle 11 connected to both ends of the left side surface and the right side surface thereof, whereby the automatic bread maker 1 is easily transported.
  • An operation unit 20 is provided on the front surface of the main body 10.
  • the operation unit 20 includes a group of operation keys such as a start key, a cancel key, a timer key, a reservation key, a selection key for selecting a bread production course (rice flour bread course, flour bread course, etc.),
  • a display unit for displaying contents set by the operation key group, errors, and the like is provided.
  • the display unit includes a liquid crystal display panel and a display lamp using a light emitting diode as a light source.
  • the upper surface of the main body behind the operation unit 20 is covered with a lid 30 made of synthetic resin.
  • the lid 30 is attached to the back side of the main body 10 with a hinge shaft (not shown), and is configured to rotate in a vertical plane with the hinge shaft as a fulcrum.
  • the lid 30 is provided with a viewing window made of heat-resistant glass, and the user can look into the baking chamber 40 described later through the viewing window.
  • a firing chamber 40 is provided inside the main body 10.
  • the baking chamber 40 is made of sheet metal, and an upper surface is opened.
  • the bread container 50 is put into the baking chamber 40 through the opening.
  • the baking chamber 40 includes a peripheral side wall 40a and a bottom wall 40b having a rectangular horizontal section.
  • a sheathed heater 41 is disposed so as to surround the bread container 50 accommodated in the baking chamber 40, and the bread raw material in the bread container 50 can be heated.
  • a sheet metal base 12 is installed inside the main body 10.
  • a bread container support 13 made of an aluminum alloy die-cast product is fixed at a location corresponding to the center of the firing chamber 40. The inside of the bread container support part 13 is exposed inside the baking chamber 40.
  • a driving shaft 14 is vertically supported at the center of the bread container support 13.
  • the pulleys 15 and 16 give rotation to the driving shaft 14. Clutchs are respectively disposed between the pulley 15 and the driving shaft 14 and between the pulley 16 and the driving shaft 14. Therefore, when the pulley 15 is rotated in one direction and the rotation is transmitted to the driving shaft 14, the rotation of the driving shaft 14 is not transmitted to the pulley 16, and the pulley 16 is rotated in the opposite direction to the pulley 15 to drive the driving shaft 14. When the rotation is transmitted to the pulley 15, the rotation of the driving shaft 14 is not transmitted to the pulley 15.
  • the pulley 15 is rotated by a kneading motor 60 fixed to the base 12.
  • the kneading motor 60 is a saddle shaft, and the output shaft 61 protrudes from the lower surface.
  • a pulley 62 connected to the pulley 15 by a belt 63 is fixed to the output shaft 61. Since the kneading motor 60 itself is a low speed / high torque type, and the pulley 62 rotates the pulley 15 at a reduced speed, the driving shaft 14 rotates at a low speed / high torque.
  • the pulley 16 is rotated by a crushing motor 64 that is also supported by the base 12.
  • the grinding motor 64 is also a saddle shaft, and the output shaft 65 protrudes from the upper surface.
  • a pulley 66 connected to the pulley 16 by a belt 67 is fixed to the output shaft 65.
  • the crushing motor 64 plays a role of giving high-speed rotation to a crushing blade described later. Therefore, a high-speed rotating motor is selected as the grinding motor 64, and the reduction ratio between the pulley 66 and the pulley 16 is set to be approximately 1: 1.
  • the bread container 50 is made of sheet metal and has a bucket-like shape, and a handle (not shown) for handbags is attached to the mouth edge.
  • the horizontal section of the bread container 50 is a rectangle with rounded corners.
  • the concave portion 55 is circular in a planar shape, and a gap 56 is provided between the outer peripheral portion of the cover 70 and the inner surface of the concave portion 55 to allow the bread-making raw material to flow.
  • a cylindrical pedestal 51 that is a die-cast product of an aluminum alloy is provided on the bottom surface of the bread container 50.
  • the bread container 50 is arranged in the baking chamber 40 in a state where the pedestal 51 is received by the bread container support part 13.
  • a blade rotating shaft 52 extending in the vertical direction is supported in a state where measures against sealing are taken.
  • a rotational force is transmitted to the blade rotating shaft 52 from the driving shaft 14 through the coupling 53.
  • one member is fixed to the lower end of the blade rotating shaft 52, and the other member is fixed to the upper end of the driving shaft 14.
  • the entire coupling 53 is enclosed by the pedestal 51 and the bread container support 13.
  • the protrusion which is not illustrated is formed in the inner peripheral surface of the bread container support part 13, and the outer peripheral surface of the base 51, respectively, These protrusion comprises the well-known bayonet coupling
  • the twisting direction when the bread container 50 is attached is made to coincide with the rotation direction of the kneading blade 72 described later, and the bread container 50 is configured not to be detached even if the kneading blade 72 rotates.
  • a grinding blade 54 is attached to the blade rotation shaft 52 at a position slightly above the bottom of the bread container 50.
  • the crushing blade 54 is attached to the blade rotation shaft 52 so as not to rotate.
  • the crushing blade 54 is made of a stainless steel plate and has a shape like an airplane propeller (this shape is merely an example) as shown in FIGS. 3 and 4.
  • the crushing blade 54 can be pulled out and removed from the blade rotating shaft 52, and can be easily washed after the bread-making operation and replaced when the sharpness deteriorates.
  • a flat circular dome-shaped cover 70 is attached to the upper end of the blade rotation shaft 52.
  • the cover 70 is made of an aluminum alloy die-cast product and is received by the hub 54a of the grinding blade 54 to cover the grinding blade 54. Since this cover 70 can also be easily pulled out from the blade rotating shaft 52, it is possible to easily perform washing after the bread making operation is completed.
  • a flat, square-shaped kneading blade 72 is attached to the upper outer surface of the cover 70 by a support shaft 71 extending in the vertical direction and disposed at a position away from the blade rotation shaft 52.
  • the kneading blade 72 is a die-cast product of aluminum alloy.
  • the support shaft 71 is fixed or integrated with the kneading blade 72 and moves together with the kneading blade 72.
  • the kneading blade 72 rotates in a horizontal plane around the support shaft 71, and takes a folded posture shown in FIG. 5 and an open posture shown in FIG.
  • the kneading blade 72 In the folded position, the kneading blade 72 is in contact with a stopper portion 73 formed on the cover 70 and cannot be rotated clockwise with respect to the cover 70 any more. At this time, the tip of the kneading blade 72 slightly protrudes from the cover 70.
  • the tip of the kneading blade 72 is separated from the stopper portion 73, and the tip of the kneading blade 72 protrudes greatly from the cover 70.
  • the cover 70 has a window 74 that communicates the space inside the cover and the space outside the cover, and guides the pulverized material provided on the inner surface side corresponding to each window 74 and pulverized by the pulverization blade 54 toward the window 74. And ribs 75 are formed. With this configuration, the efficiency of pulverization using the pulverization blade 54 is enhanced.
  • a clutch 76 is interposed between the cover 70 and the blade rotation shaft 52 as shown in FIG.
  • the clutch 76 connects the blade rotation shaft 52 and the cover 70 in the rotation direction of the blade rotation shaft 52 when the kneading motor 60 rotates the driving shaft 14 (this rotation direction is referred to as “forward rotation”).
  • the clutch 76 connects the blade rotation shaft 52 and the cover 70 in the rotation direction of the blade rotation shaft 52 when the crushing motor 64 rotates the driving shaft 14 (this rotation direction is referred to as “reverse rotation”).
  • the “forward rotation” is a counterclockwise rotation
  • the “reverse rotation” is a clockwise rotation.
  • the clutch 76 switches the connection state according to the posture of the kneading blade 72. That is, when the kneading blade 72 is in the folded position shown in FIG. 5, as shown in FIG. 4, the second engagement body 76b interferes with the rotation track of the first engagement body 76a. For this reason, when the blade rotation shaft 52 rotates in the forward direction, the first engagement body 76 a and the second engagement body 76 b are engaged, and the rotational force of the blade rotation shaft 52 is transmitted to the cover 70 and the kneading blade 72. On the other hand, when the kneading blade 72 is in the open position shown in FIG. 6, as shown in FIG.
  • FIG. 7 is a schematic plan view showing the state of the clutch when the kneading blade is in the open position.
  • FIG. 8 is a control block diagram of the automatic bread maker according to the present embodiment.
  • the control device 81 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like.
  • the controller 81 is preferably disposed at a position that is not easily affected by the heat of the baking chamber 40. In the automatic bread maker 1, the controller 81 is disposed between the front side wall of the main body 10 and the baking chamber 40.
  • the control device 81 includes a first temperature detection unit 18, a second temperature detection unit 19, the above-described operation unit 20, a kneading motor drive circuit 82, a pulverization motor drive circuit 83, and a heater drive circuit 84. Electrically connected.
  • 1st temperature detection part 18 is a temperature sensor which is provided in the side of main part 10 as shown in Drawing 2, and can detect outside temperature.
  • the second temperature detection unit 19 includes a temperature sensor 19 a and a solenoid 19 b, and is provided so that the front end side of the temperature sensor 19 a protrudes from the front side wall of the baking chamber 40 into the baking chamber 40. .
  • the tip of the temperature sensor 19a can be switched between a position in contact with the bread container 50 and a non-contact position by a solenoid 19b.
  • FIG. 1 shows a case where the tip of the temperature sensor 19a is in a non-contact position with the bread container 50.
  • the second temperature detection unit 19 switches the temperature in the baking chamber 40 (this is an example of the temperature around the container of the present invention) and the temperature of the bread container 50 by switching the tip position of the temperature sensor 19a. It can be detected.
  • the kneading motor driving circuit 82 is a circuit that controls the driving of the kneading motor 60 under a command from the control device 81.
  • the crushing motor drive circuit 83 is a circuit that controls the driving of the crushing motor 64 under a command from the control device 81.
  • the heater drive circuit 84 is a circuit that controls the operation of the sheathed heater 41 under a command from the control device 81.
  • the control device 81 reads a program relating to a bread manufacturing course (breadmaking course) stored in a ROM or the like based on an input signal from the operation unit 20, and rotates the kneading blade 72 via the kneading motor drive circuit 82.
  • the automatic bread maker 1 executes the bread manufacturing process while controlling the rotation of the grinding blade 54 via the grinding motor driving circuit 83 and the heating operation by the sheathed heater 41 via the heater driving circuit 84. Further, the control device 81 is provided with a time measuring function, and temporal control in the bread manufacturing process is possible.
  • the control device 81 is an embodiment of the control unit of the present invention. Moreover, the 1st temperature detection part 18 and the 2nd temperature detection part 19 are embodiment of the temperature detection part of this invention.
  • the kneading blade 72, the kneading motor 60, and the kneading motor drive circuit 82 are examples of kneading means (kneading part).
  • the crushing blade 54, the crushing motor 64, and the crushing motor drive circuit 83 are examples of crushing means (crushing unit).
  • the sheathed heater 41 and the heater drive circuit 84 are examples of heating means (heating unit).
  • the automatic bread maker 1 of the present embodiment configured as described above, in addition to the bread making course for producing bread from flour or rice flour, the bread making course for producing bread from rice grains (one form of grain) ( A rice-making bread course) can be executed. And the automatic bread maker 1 has the characteristics in the control action in the case of performing the bread-making course for rice grains which manufactures bread from rice grains. For this reason, below, it demonstrates focusing on the control operation in the case of manufacturing bread from rice grain using the automatic bread maker 1.
  • FIG. 9 is a schematic diagram showing the flow of the bread making course for rice grains in the automatic bread maker of the present embodiment.
  • the temperature indicates the temperature of the bread container 50.
  • a water absorption process before pulverization one form of liquid absorption process before pulverization
  • a pulverization process a pulverization process
  • a water absorption process after pulverization One form of the liquid absorption process after pulverization
  • a kneading (kneading) process a fermentation process, and a baking process are sequentially performed in this order.
  • the user In executing the rice grain breadmaking course, the user attaches the crushing blade 54 and the cover 70 with the kneading blade 72 to the bread container 50. Then, the user measures a predetermined amount of rice grains and water (for example, 220 g of rice grains and 210 g of water) and puts them in the bread container 50.
  • rice grains and water are mixed, but instead of mere water, for example, a liquid having a taste component such as broth, fruit juice, a liquid containing alcohol, or the like may be used.
  • the user puts the bread container 50 into which the rice grains and water have been put into the baking chamber 40, closes the lid 30, selects the rice grain breadmaking course by the operation unit 20, and presses the start key. Thereby, the bread-making course for rice grains which manufactures bread from rice grains is started.
  • the water absorption step before pulverization is a step aimed at making the rice grains easily pulverized to the core in the subsequent pulverization step by including water (one form of liquid) in the rice grains.
  • the control device 81 drives the solenoid 19b to bring the tip of the temperature sensor 19a into contact with the bread container 50. Thereby, the control apparatus 81 detects the temperature of the bread container 50 via the temperature sensor 19a.
  • the timing for detecting the temperature of the bread container 50 may be, for example, the timing immediately after the start key is pressed or after a while.
  • control apparatus 81 shows the temperature of the detected bread container 50, and the time of the pre-grinding water absorption process previously matched with container temperature (refer FIG. 10; Embodiment of the 3rd table of this invention). Then, the time of the water absorption step before pulverization is determined.
  • This table is stored in the ROM of the control device 81, for example.
  • the water absorption speed of rice grains varies depending on the temperature of the water. If the water temperature is high, the water absorption speed increases, and if the water temperature is low, the water absorption speed decreases.
  • the time of the water absorption step before crushing is shortened, and when the temperature of the bread container 50 is low
  • the time of the water absorption step before pulverization variation in the water absorption degree of the rice grains is suppressed.
  • the table in FIG. 10 is obtained by experiments in advance so that a good bread can be obtained, but is merely an example and can be changed as appropriate.
  • the time for the water absorption step before pulverization is changed every 5 ° C., but this temperature interval may be increased or decreased.
  • the upper limit and the lower limit of the temperature may be determined as appropriate.
  • the time for the water absorption step before crushing is determined based on the temperature of the bread container 50, but the present invention is not limited to this. That is, for example, the temperature of the bread raw material contained in the bread container 50 may be measured, and the time for the water absorption step before pulverization may be determined based on this temperature.
  • the time of the water absorption step before pulverization is determined based on, for example, the outside air temperature or the temperature of the baking chamber 40 (the temperature around the bread container 50). It is good also as a structure to be made.
  • the water temperature in the bread container 50 is not appropriately reflected, and the water absorption degree of the rice grain may vary. For this reason, it is preferable that the time of the water absorption process before crushing is determined based on the temperature of the bread container 50 and the temperature of the bread raw material in the bread container 50.
  • the pulverization blade 54 may be rotated at the initial stage, and thereafter, the pulverization blade 54 may be intermittently rotated. If it does in this way, the surface of a rice grain can be damaged, and the liquid absorption efficiency of a rice grain will be improved.
  • a pulverization process of pulverizing rice grains is executed according to a command from the control device 81.
  • the pulverization blade 54 is rotated at high speed in a mixture of rice grains and water.
  • the control device 81 controls the pulverization motor 64 to rotate the blade rotation shaft 52 in the reverse direction, and starts the rotation of the pulverization blade 54 in the mixture of rice grains and water.
  • the cover 70 also starts rotating following the rotation of the blade rotation shaft 52, but the rotation of the cover 70 is immediately prevented by the following operation.
  • the rotation direction of the cover 70 accompanying the rotation of the blade rotation shaft 52 for rotating the pulverization blade 54 is clockwise in FIG. 5, and the kneading blade 72 has been in the folded posture (the posture shown in FIG. 5).
  • the resistance is changed by the resistance received from the mixture of rice grains and water and the posture is changed to the posture shown in FIG.
  • the clutch 76 connects the blade rotation shaft 52 and the cover 70 so that the second engagement body 76b deviates from the rotation track of the first engagement body 76a. Separate.
  • the kneading blade 72 in the open position abuts against the inner wall of the bread container 50 as shown in FIG.
  • the pulverization of the rice grains in the pulverization step is performed in a state where water is soaked in the rice grains by the water absorption step before pulverization, so that the rice grains can be easily pulverized to the core.
  • the rotation of the grinding blade 54 is intermittent. In this intermittent rotation, for example, a cycle of rotating for 1 minute and stopping for 3 minutes is executed five times. In the last cycle, the stop for 3 minutes is not performed.
  • the rotation of the pulverizing blade 54 may be continuous rotation, intermittent rotation is preferable because the rice grains can be uniformly crushed by convection by intermittent rotation.
  • the crushing process is completed in a predetermined time (17 minutes in this embodiment).
  • the grain size of the pulverized powder may vary depending on the hardness of the rice grains and the environmental conditions. For this reason, the end of the pulverization process may be determined using the magnitude of the load (torque) during pulverization as an index.
  • the temperature sensor 19a of the second temperature detection unit 19 is in a position where it does not contact the bread container 50. Thereby, damage to temperature sensor 19a and bread container 50 can be prevented.
  • the temperature of the bread container 50 increases due to friction during the pulverization.
  • the temperature of the bread container 50 is about 40 to 45 ° C., for example.
  • the automatic bread maker 1 is provided with a water absorption step after pulverization in which the pulverized rice grains are left in a state immersed in water after the pulverization step.
  • This water absorption step after pulverization is a cooling period for lowering the temperature of the pulverized powder of rice grains, and at the same time, is a step of increasing the amount of fine particles by further absorbing water into the pulverized powder.
  • the water absorption step after pulverization may be configured to be performed only for a predetermined time. In such a configuration, for example, due to the influence of environmental temperature, the bread container 50 (bread at the start of the next kneading step) is performed. In some cases, the temperature of the raw material) varies and a good bread cannot be obtained.
  • the first temperature detection unit 18 detects the outside air temperature
  • the second temperature detection unit 19 the tip of the temperature sensor 19a is not brought into contact with the bread container 50. That is, bread
  • the ambient temperature is detected at the end of the pulverization process (may be before the start of the pulverization process) by using the temperature around the container 50 (the temperature in the baking chamber 40), and pulverization is performed based on this environmental temperature. You may make it determine the time of a post-water absorption process. Thereby, the dispersion
  • a table (in accordance with the present invention) is examined in advance by examining the relationship between the environmental temperature and the time during which the temperature of the bread container 50 after the pulverization process becomes an optimum temperature (for example, about 28 ° C. to 30 ° C. Embodiment of the fourth table) is created, and this table is stored in the ROM of the control device 81.
  • the optimum water absorption time is examined and stored at intervals of 5 ° C. for a certain range of environmental temperature.
  • the ambient temperature is detected, the water absorption time is determined from the detected temperature and the table previously stored in the control device 81, and the water absorption process after pulverization is executed for the determined time. You can do that.
  • the water absorption process after pulverization it is necessary to lengthen the process time when the environmental temperature is high, and shorten the process time when the environmental temperature is low.
  • the water absorption step after pulverization is performed not by the above method but by another method as shown in FIG. This will be described below.
  • the control device 81 detects the outside air temperature by the first temperature detector 18 (step S1). It is confirmed whether or not the detected outside air temperature is equal to or lower than a predetermined temperature set in advance (corresponding to the second predetermined temperature of the present invention) (step S2).
  • the predetermined temperature is a preferable temperature when starting the kneading process, and is set to a temperature of 28 ° C. or higher and 30 ° C. or lower, for example.
  • Step S3 the control device 81 detects the temperature of the bread container 50 by the second temperature detector 19 (Step S3).
  • temperature detection is performed with the tip of the temperature sensor 19 a of the second temperature detection unit 19 in contact with the bread container 50.
  • the control apparatus 81 confirms whether the temperature of the detected bread container 50 is below predetermined temperature (step S4).
  • the control device 81 sets a first time (for example, 30) set in advance after the water absorption process after crushing is started. It is confirmed whether or not (minute) has elapsed (step S5).
  • the first time is provided so that the time for the water absorption step after pulverization does not become too short. That is, as described above, the water absorption step after pulverization also plays a role of increasing the amount of fine particles of the pulverized powder by further absorbing water into the pulverized powder obtained in the pulverization step. For this reason, since it is not preferable if the water absorption process after grinding becomes too short, the first time is set.
  • step S5 for confirming whether or not the first time has elapsed may be configured not to be provided.
  • step S5 When the first time has elapsed since the start of the water absorption process after pulverization (Yes in step S5), the control device 81 ends the water absorption process after pulverization. On the other hand, if the first time has not elapsed since the start of the water absorption process after pulverization (No in step S5), the control device 81 waits until the first time elapses, and performs the water absorption process after pulverization. finish.
  • the control device 81 When the detected temperature of the bread container 50 is higher than the predetermined temperature (No in step S4), the control device 81 performs a second time (first time) set in advance after the water absorption process after crushing is started. It is confirmed whether or not the time is longer than the time, for example, 60 minutes (step S6). And when the 2nd time has passed (it is Yes at Step S6), even if the temperature of bread container 50 has not reached predetermined temperature, the water absorption process after crushing is ended. On the other hand, when the second time has not elapsed (No in step S6), the process returns to step S3, and the operations after step S3 are performed.
  • Step S6 for confirming whether or not the second time has elapsed from the start of the water absorption step after pulverization is provided for the following reason. That is, it may be assumed that it takes a very long time for the temperature of the bread container 50 to drop to a predetermined temperature. In such a case, if the kneading process is not started indefinitely, the bread production time becomes extremely long, and the user may feel inconvenient. For this reason, the second time is set as the upper limit of the water absorption time so that the time of the water absorption step after crushing does not become too long. However, this step S6 may be omitted. In this case, it waits until the temperature of the bread container 50 reaches a predetermined temperature, and the water absorption process after pulverization is completed.
  • the water absorption step after pulverization is terminated when the temperature falls to the outside temperature. In detail, it processes as follows.
  • Step S2 when the outside air temperature is higher than the predetermined temperature in Step S2 (No in Step S2), the control device 81 detects the temperature of the bread container 50 by the second temperature detection unit 19 (Step S7). Then, the control device 81 confirms whether or not the detected temperature of the bread container 50 is equal to or lower than the outside air temperature (step S8).
  • step S8 determines whether or not the first time has elapsed since the water absorption process after pulverization was started. Confirm (step S9).
  • the first time is determined for the same purpose as in step S5. And like step 5, it is good also as a structure which does not provide step S9.
  • step S9 If the first time has elapsed since the start of the water absorption process after pulverization (Yes in step S9), the control device 81 ends the water absorption process after pulverization. On the other hand, if the first time has not elapsed since the start of the water absorption process after pulverization (No in step S9), the control device 81 waits until the first time elapses and performs the water absorption process after pulverization. finish.
  • step S8 If the detected temperature of the bread container 50 is higher than the outside air temperature (No in step S8), the controller 81 has a second time set in advance since the water absorption step after crushing has started. It is confirmed whether or not (step S10). And when the 2nd time has passed (it is Yes at Step S10), even if the temperature of bread container 50 has not reached outside temperature, the water absorption process after crushing is ended. On the other hand, when the second time has not elapsed (No in step S10), the process returns to step S7, and the operations after step S7 are performed.
  • step S10 is the same as the purpose of providing step S6.
  • Step S10 may be configured not to be provided similarly to step S6. In this case, the process waits until the temperature of the bread container 50 reaches the outside air temperature, and the water absorption process after pulverization is completed.
  • the time of the water absorption process after pulverization is varied based on the temperature of the bread container 50, but the time of the water absorption process after pulverization is varied based on the bread raw material temperature in the bread container 50. It is good also as a structure to be.
  • the time required for the water absorption process after pulverization is determined while appropriately detecting the temperature of the bread container 50 during the water absorption process after pulverization.
  • the outside air temperature and the temperature of the bread container 50 are detected, and the temperature decrease rate of the bread container 50 predicted by the outside air temperature (need to be obtained by experiments in advance).
  • the time required for the water absorption step after crushing may be determined from the temperature of the bread container 50.
  • the kneading process is subsequently performed.
  • seasonings such as gluten, salt, sugar, and shortening are each put in a predetermined amount (for example, gluten 50 g, sugar 16 g, salt 4 g, shortening 10 g) into the bread container 50.
  • This insertion may be performed, for example, by the user's hand, or may be performed without bothering the user by providing an automatic insertion device.
  • gluten is not essential as a bread ingredient. For this reason, you may judge whether to add to a bread raw material according to liking. Further, a thickening stabilizer (for example, guar gum) may be added instead of gluten.
  • a thickening stabilizer for example, guar gum
  • the control device 81 When starting the kneading process of kneading the bread raw material in the bread container 50 containing the pulverized rice grains crushed in the crushing process into the dough, the control device 81 detects the outside air temperature by the first temperature detection unit 18. Then, the control device 81 performs the kneading process based on the detected outside air temperature and a table (see FIG. 12; an embodiment of the first table of the present invention) that indicates a predetermined kneading process time in association with the outside air temperature. Determine the time. This table is stored in the ROM of the control device 81, for example.
  • the quality of the dough made by the kneading process is easily affected by the environmental temperature where the automatic bread maker 1 is placed. In order not to be affected by such environmental temperature, the outside air temperature is measured, and the time of the kneading process is determined based on the actually measured temperature information and a table prepared in advance.
  • the table in FIG. 12 is obtained by experiments in advance so that a good bread can be obtained, but is merely an example and can be changed as appropriate.
  • the time of the kneading process is changed every 5 ° C., but this temperature interval may be increased or decreased.
  • the upper limit and the lower limit of the temperature may be determined as appropriate.
  • the time for the kneading process is determined based on the outside air temperature.
  • the present invention is not limited to this, and the kneading process is based on the temperature around the bread container 50 (for example, the temperature of the baking chamber 40). The time may be determined.
  • the control device 81 controls the kneading motor 60 to rotate the blade rotating shaft 52 in the forward direction.
  • the cover 70 rotates in the forward direction (counterclockwise in FIG. 6) following the forward rotation of the blade rotation shaft 52, the kneading blade 72 is opened by receiving resistance from the bread ingredients in the bread container 50. From (see FIG. 6) to the folded posture (see FIG. 5).
  • the clutch 76 connects the blade rotating shaft 52 and the cover 70 at an angle at which the second engagement body 76 b interferes with the rotation track of the first engagement body 76 a.
  • the cover 70 and the kneading blade 72 rotate in the forward direction together with the blade rotation shaft 52.
  • the kneading blade 72 is rotated at a low speed and a high torque.
  • Bread ingredients are kneaded by the rotation of the kneading blade 72 and kneaded into a dough that has a predetermined elasticity.
  • an element of “kneading” is added to the kneading.
  • the rotation of the kneading blade 72 in the kneading process may be continuous rotation from beginning to end, in the automatic bread maker 1, the initial stage of the kneading process is intermittent rotation, and the latter half is continuous rotation.
  • yeast for example, dry yeast
  • This yeast may be input by the user or may be automatically input.
  • the reason why yeast is not added together with gluten or the like is to avoid direct contact between the yeast (dry yeast) and water as much as possible. However, in some cases, yeast and gluten may be added simultaneously.
  • the control device 81 controls the sheathed heater 41 so that the temperature of the baking chamber 40 is adjusted to a predetermined temperature (for example, 32 ° C.).
  • a predetermined temperature for example, 32 ° C.
  • the tip of the temperature sensor 19 a of the second temperature detection unit 19 is in a position where it does not contact the bread container 50.
  • the temperature sensor 19a and the bread container 50 are hardly damaged.
  • ingredients may be introduced during the kneading process.
  • the fermentation process is subsequently executed according to a command from the control device 81.
  • the control device 81 controls the sheathed heater 41 so that the temperature of the baking chamber 40 becomes a temperature suitable for fermentation (fermentation temperature). It has been found that there is a difference in the time to reach the fermentation temperature depending on the environmental temperature (outside air temperature) where the automatic bread maker 1 is placed. For this reason, if the time of the fermentation process is fixed at a predetermined time, there may be variations in the degree of fermentation of the bread dough.
  • the control device 81 causes the fermentation process to be executed according to the flowchart shown in FIG. First, when the kneading process is completed, the control device 81 starts detecting the temperature of the baking chamber 40 and controls the sheathed heater 41 so that the temperature of the baking chamber 40 is a predetermined fermentation temperature (for example, 38 ° C.). Temperature control is started so as to become (step S11). The temperature of the baking chamber 40 is detected in a state where the driving of the solenoid 19b of the second temperature detector 19 is stopped and the temperature sensor 19a is separated from the bread container 50.
  • a predetermined fermentation temperature for example, 38 ° C.
  • the control device 81 monitors the temperature of the baking chamber 40 until the temperature of the baking chamber 40 reaches a predetermined temperature (corresponding to the first predetermined temperature of the present invention) (step S12).
  • the predetermined temperature here is, for example, 38 ° C.
  • the control device 81 starts time measurement (step S13).
  • the control device 81 confirms whether or not a predetermined time (for example, 50 minutes) has elapsed since the start of the measurement, and ends the fermentation process when the predetermined time has elapsed (step). S14). From the start of time measurement to the end of the fermentation process, the control device 81 controls the sheathed heater 41 so that the temperature of the baking chamber 40 is maintained at a predetermined temperature.
  • the fermentation time of bread dough at a predetermined temperature can be made constant regardless of the environment where the automatic bread maker 1 is placed.
  • the automatic bread maker 1 of this embodiment although it is set as the structure by which the completion
  • the fermentation process may be performed by a flow different from the flow shown above.
  • a table an embodiment of the second table of the present invention
  • the time of the fermentation process (for example, a time in the range of 50 minutes to 70 minutes) is determined from the detected outside air temperature and the table. And a fermentation process is performed only for this determined time.
  • the table used here may be stored in the ROM of the control device 81.
  • degassing or dough rounding may be performed during the fermentation process.
  • the firing process is subsequently performed according to a command from the control device 81.
  • the control device 81 controls the sheathed heater 41 to raise the temperature of the baking chamber 40 to a temperature suitable for baking (for example, 125 ° C.), and for a predetermined time (50 in this embodiment) in the baking environment. Min) Bake bread.
  • the end of the firing process is notified to the user by, for example, a display on a liquid crystal display panel (not shown) of the operation unit 20 or a notification sound.
  • the user opens the lid 30 and takes out the bread container 50.
  • the automatic bread maker 1 of the present embodiment it is possible to bake bread from rice grains, which is very convenient. And when the bread making course for rice grain which bakes bread from rice grain is performed, it is an appropriate process about some processes contained in the bread making course for rice grain based on the temperature detected by temperature detection parts 18 and 19. The time is varied. For this reason, the automatic bread maker 1 of the present embodiment can suppress variations in the quality of bread depending on the environment in which it is placed.
  • the automatic bread maker shown above is an example of the present invention, and the configuration of the automatic bread maker to which the present invention is applied is not limited to the embodiment described above.
  • bread is produced from rice grains.
  • the bread is not limited to rice grains, and bread is produced using grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybeans as raw materials. Even in this case, the present invention is applied.
  • the process time is varied based on the temperature detected by the temperature detector in all of the water absorption process before pulverization, the water absorption process after pulverization, the kneading process, and the fermentation process.
  • the present invention is not limited to this configuration, and the process time may be set to a predetermined time for any one of the above four processes (including a plurality of cases that are not all).
  • the manufacturing process executed in the above-described rice grain breadmaking course is an example, and may be another manufacturing process.
  • the water absorption process is performed before and after the crushing process.
  • the water absorption process may not be performed.
  • the automatic bread maker 1 is configured to include two blades of the crushing blade 54 and the kneading blade 72.
  • the present invention is not limited to this, and the automatic bread maker may be configured to include only one blade for both crushing and kneading.
  • the bread making course executed by the automatic bread maker may be only the rice grain making course.
  • the present invention is suitable for an automatic bread maker for home use.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Baking, Grill, Roasting (AREA)
  • Manufacturing And Processing Devices For Dough (AREA)

Abstract

The disclosed automatic bread maker (1) is provided with a temperature detection unit that can detect at least one of: the outside air temperature, the temperature of the container into which bread starting materials are added, the temperature of the vicinity of the aforementioned container, and the temperature of the bread starting materials within the aforementioned container. The bread-making courses executed by means of the control unit of the automatic bread maker (1) include a bread-making course for grain kernels, in which bread is baked using grain kernels. The plurality of steps performed when executing the bread-making course for grain kernels include at least one step wherein the length of time of the step is changed on the basis of the temperature detected by the temperature detection unit with which the automatic bread maker (1) is provided.

Description

自動製パン器Automatic bread machine
 本発明は、主として一般家庭で使用される自動製パン器に関する。 The present invention relates to an automatic bread maker mainly used in general households.
 市販の家庭用自動製パン器は、パン原料を入れるパン容器をそのまま焼き型としてパンを製造する仕組みのものが一般的である(例えば、特許文献1参照)。このような自動製パン器では、まず、パン原料が入れられたパン容器が本体内の焼成室に入れられる。そして、パン容器内のパン原料がパン容器内に設けられる混練ブレードでパン生地に練り上げられる(練り工程)。その後、練り上げられたパン生地を発酵させる発酵工程が行われ、パン容器が焼き型として使用されてパンが焼き上げられる(焼成工程)。 Commercially available automatic bread maker for home use generally has a mechanism for producing bread by directly using a bread container into which bread ingredients are placed (see, for example, Patent Document 1). In such an automatic bread maker, first, a bread container in which bread ingredients are placed is placed in a baking chamber in the main body. And the bread raw material in a bread container is kneaded into bread dough with the kneading blade provided in a bread container (kneading process). Thereafter, a fermentation process for fermenting the kneaded bread dough is performed, and the bread container is used as a baking mold to bake the bread (baking process).
 従来においては、このような自動製パン器を用いてパンの製造が行われる場合、小麦や米などの穀物を製粉した粉(小麦粉、米粉等)や、そのような製粉した粉に各種の補助原料が混ぜられたミックス粉が必要とされた。 Conventionally, when bread is manufactured using such an automatic bread maker, flour (rice, rice flour, etc.) obtained by milling grains such as wheat and rice, and various aids for such milled flour. A mixed powder mixed with raw materials was needed.
特開2000-116526号公報JP 2000-116526 A
 ところで、一般家庭においては米粒に代表されるように、粉の形態ではなく粒の形態で穀物が所持されていることがある。このために、自動製パン器を用いて穀物粒から直接パンを製造することができれば便利である。この点、本出願人らは、鋭意研究の末、穀物粒を原料としてパンを製造する方法を発明している。なお、これについては、先に特許出願を行っている(特願2008-201507)。 By the way, in typical households, as represented by rice grains, grains are sometimes held in the form of grains instead of in the form of flour. For this reason, it would be convenient if bread could be produced directly from grain using an automatic bread maker. In this regard, the present inventors have invented a method for producing bread using cereal grains as a raw material after extensive research. Regarding this, a patent application has already been filed (Japanese Patent Application No. 2008-201507).
 ここで、先に出願したパンの製造方法について紹介する。このパンの製造方法では、まず、穀物粒が液体と混合され、この混合物が粉砕ブレードによって粉砕される(粉砕工程)。そして、粉砕工程を経て得られたペースト状の粉砕粉を含むパン原料が生地に練り上げられ(練り工程)、生地の発酵が行われた(発酵工程)後、発酵された生地がパンに焼き上げられる(焼成工程)。 Here, we introduce the method for manufacturing bread that was filed earlier. In this bread manufacturing method, first, cereal grains are mixed with a liquid, and the mixture is pulverized by a pulverizing blade (a pulverizing step). And the bread raw material containing the paste-form ground powder obtained through the crushing process is kneaded into dough (kneading process), and after the dough is fermented (fermentation process), the fermented dough is baked into bread. (Baking process).
 本出願人らは、これまでの研究の中で、穀物粒から(穀物粒を出発原料として)パンを製造する自動製パン器が置かれる環境によって、パンの出来、不出来が生じ易いという知見を得ている。穀物粒からパンを製造できる自動製パン器は、家庭でのパン製造をより身近なものとできるといったメリットを有する。しかし、環境によってパンの出来栄えが変動する場合、ユーザの家庭でのパン作りに対する意欲が喪失されかねない。 Applicants have found in previous research that bread is likely to be produced or unfavorable depending on the environment in which an automatic bread maker that produces bread (from grain) is placed. Have gained. An automatic bread maker that can produce bread from cereal grains has the advantage of making household bread production more familiar. However, when the bread quality varies depending on the environment, the user's willingness to make bread at home may be lost.
 そこで、本発明は、穀物粒から安定して出来の良いパンを製造できる自動製パン器を提供することを目的とする。 Therefore, an object of the present invention is to provide an automatic bread maker that can stably produce good bread from cereal grains.
 上記目的を達成するために本発明の自動製パン器は、パン原料が投入される容器と、前記容器を受け入れる本体と、外気温度、前記容器の温度、前記容器周辺の温度、及び前記容器内のパン原料温度のうちの少なくともいずれか1つを検知可能な温度検知部と、前記容器が前記本体に受け入れられた状態でパンの製造工程を実行させる制御部と、を備える自動製パン器であって、前記制御部は、前記容器内に投入された穀物粒を用いてパンを製造する穀物粒用製パンコースを実行させることが可能に設けられ、前記穀物粒用製パンコースが実行される場合に行われる複数の工程の中に、前記温度検知部で検知された温度に基づいて工程時間が変動される工程が少なくとも1つ含まれている。 In order to achieve the above object, an automatic bread maker of the present invention includes a container into which bread ingredients are charged, a main body that receives the container, an outside air temperature, a temperature of the container, a temperature around the container, and an inside of the container. An automatic bread maker comprising: a temperature detection unit capable of detecting at least one of the bread raw material temperatures; and a control unit configured to execute a bread manufacturing process in a state where the container is received by the main body. The control unit is provided so as to be able to execute a cereal grain breadmaking course for producing bread using the cereal grains charged in the container, and the cereal grain breadmaking course is executed. Among the plurality of steps performed in the case of at least one step, at least one step in which the process time is varied based on the temperature detected by the temperature detection unit is included.
 なお、本明細書において、「パン原料温度」は、パンが焼き上げられる前において、その状態によらず、パンのもとになる材料の温度として広く用いられるものである。したがって、「パン原料温度」なる語には、パン原料を混練して得られるパン生地の温度が含まれる場合がある。 In the present specification, the “bread raw material temperature” is widely used as the temperature of the material that is the basis of the bread before the bread is baked regardless of its state. Therefore, the term “bread raw material temperature” may include the temperature of the bread dough obtained by kneading the bread raw material.
 自動製パン器が置かれる環境が異なるとパンの出来栄えが変動するのは、主に環境温度や使用する水等の温度が変動するためであると考えられる。この点、本構成の自動製パン器では、外気温度、パン原料が投入される容器の温度、前記容器周辺の温度、及び前記容器内のパン原料温度のうちの少なくともいずれか1つを検知可能な温度検知部を備える構成としている。そして、本構成では、穀物粒用製パンコースが実行される場合に行われる複数の工程の中に、前記温度検知部で検知された温度に基づいて工程時間が変動される工程が少なくとも1つ含まれるようになっている。このために、環境温度等によってパンの出来栄えが変動する可能性を低減できる。 The reason why the quality of bread varies depending on the environment in which the automatic bread maker is placed is mainly due to fluctuations in the environmental temperature and the temperature of water used. In this respect, the automatic bread maker of this configuration can detect at least one of the outside air temperature, the temperature of the container into which the bread ingredients are charged, the temperature around the container, and the temperature of the bread ingredients in the container. It is set as the structure provided with an appropriate temperature detection part. And in this structure, at least 1 process by which process time is fluctuate | varied based on the temperature detected by the said temperature detection part in the some process performed when the bread-making course for grain is performed. It has been included. For this reason, possibility that the quality of bread will fluctuate with environmental temperature etc. can be reduced.
 上記構成の自動製パン器において、前記複数の工程には、前記容器内に投入された穀物粒を粉砕する粉砕工程と、穀物粒の粉砕粉を含む前記容器内のパン原料をパン生地に練り上げる練り工程と、練り上げられたパン生地を発酵させる発酵工程と、発酵させたパン生地を焼成する焼成工程と、が含まれるのが好ましい。 In the automatic bread maker configured as described above, the plurality of steps include a pulverization step of pulverizing cereal grains charged in the container, and a kneading process of bread ingredients in the container containing pulverized cereal grains into bread dough. Preferably, a process, a fermentation process for fermenting the kneaded bread dough, and a baking process for baking the fermented bread dough are included.
 上記構成の自動製パン器において、前記制御部は、温度に対応付けて前記練り工程の時間を予め定めた第1のテーブルと、前記温度検知部によって検知された温度と、に基づいて前記練り工程の時間を決定することとしてもよい。なお、前記温度検知部によって検知する温度は、外気温度又は前記容器周辺の温度であるのが好ましい。 In the automatic bread maker configured as described above, the control unit is configured to perform the kneading based on a first table in which a time of the kneading process is set in advance in association with a temperature, and a temperature detected by the temperature detecting unit. It is good also as determining the time of a process. In addition, it is preferable that the temperature detected by the temperature detection unit is an outside air temperature or a temperature around the container.
 練り工程によって出来上がるパン生地の出来栄えは、自動製パン器が置かれる環境温度による影響を受け易い。本構成では、練り工程におけるパン生地の出来栄えに影響を及ぼす環境温度(好ましくは外気温度又は容器周辺の温度)を実測して、実測された温度情報と予め準備しておいたテーブルとに基づいて練り工程の時間を決定する構成となっている。このために、穀物粒から製造されるパンが不出来となる可能性を低減できる。 The quality of the dough produced by the kneading process is easily affected by the environmental temperature in which the automatic bread maker is placed. In this configuration, the environmental temperature (preferably the outside temperature or the temperature around the container) that affects the quality of the dough in the kneading process is measured and kneaded based on the measured temperature information and a table prepared in advance. It is the structure which determines the time of a process. For this reason, possibility that the bread manufactured from a grain will be unsatisfactory can be reduced.
 上記構成の自動製パン器において、前記制御部は、温度に対応付けて前記発酵工程の時間を予め定めた第2のテーブルと、前記温度検知部によって検知された温度と、に基づいて前記発酵工程の時間を決定することとしてもよい。なお、前記温度検知部によって検知する温度は外気温度であるのが好ましい。 In the automatic bread maker configured as described above, the control unit is configured to perform the fermentation based on the second table in which the time of the fermentation process is determined in advance in association with the temperature and the temperature detected by the temperature detection unit. It is good also as determining the time of a process. The temperature detected by the temperature detector is preferably the outside temperature.
 発酵工程においては発酵温度が重要になる。このため、自動製パン器においては、発酵工程は、一般に、パン生地の温度が所定の温度となるように温度制御を行いながら行われる。しかしながら、自動製パン器が置かれる外気温度が異なると、加熱手段によって所定の温度まで温めるために要する時間に変動が生じる場合があり、発酵工程の時間を所定の時間に固定していると、パン生地の発酵具合にばらつきが生じることがある。この点、本構成では、温度検知部によって所定の温度(好ましくは外気温度)を実測して、実測された温度情報と予め準備しておいたテーブルとに基づいて発酵工程の時間を決定する構成となっている。このために、穀物粒から製造されるパンが不出来となる可能性を低減できる。 Fermentation temperature is important in the fermentation process. For this reason, in an automatic bread maker, the fermentation process is generally performed while controlling the temperature so that the temperature of the dough becomes a predetermined temperature. However, if the outside temperature at which the automatic bread maker is placed is different, the time required for heating to the predetermined temperature by the heating means may vary, and when the time of the fermentation process is fixed at the predetermined time, Variation in bread dough fermentation may occur. In this regard, in the present configuration, a predetermined temperature (preferably the outside temperature) is actually measured by the temperature detector, and the time of the fermentation process is determined based on the actually measured temperature information and a previously prepared table. It has become. For this reason, possibility that the bread manufactured from a grain will be unsatisfactory can be reduced.
 上記構成の自動製パン器において、前記制御部は、前記発酵工程の開始に際して、前記温度検知部によって温度の検知を開始し、検知される温度が第1の所定の温度に到達した時点から所定の時間経過すると前記発酵工程を終了させることとしてもよい。なお、前記温度検知部によって検知する温度は、前記容器の温度、前記容器周辺の温度、及び前記容器内のパン原料温度のうちのいずれか1つの温度であるのが好ましい。 In the automatic bread maker configured as described above, the control unit starts detection of temperature by the temperature detection unit at the start of the fermentation process, and the predetermined temperature is detected from the time when the detected temperature reaches a first predetermined temperature. When the time elapses, the fermentation process may be terminated. The temperature detected by the temperature detector is preferably any one of the temperature of the container, the temperature around the container, and the temperature of the bread ingredients in the container.
 本構成によれば、所定の温度でのパン生地の発酵時間を自動製パン器が置かれた環境によらず一定とすることが可能である。このために、穀物粒から製造されるパンが不出来となる可能性を低減できる。なお、温度の測りやすさ等を考慮すると、容器周辺の温度を用いて発酵工程の時間を変動させるのが好ましい。 According to this configuration, the fermentation time of the bread dough at a predetermined temperature can be made constant regardless of the environment where the automatic bread maker is placed. For this reason, possibility that the bread manufactured from a grain will be unsatisfactory can be reduced. In view of ease of temperature measurement and the like, it is preferable to vary the time of the fermentation process using the temperature around the container.
 上記構成の自動製パン器において、前記複数の工程には、穀物粒を粉砕する前に前記容器内の穀物粒に液体を吸液させる粉砕前吸液工程が含まれるのが好ましい。本構成によれば、穀物粒に液体(代表的なものは水)を含ませた状態で粉砕を行えるので、穀物粒を芯まで粉砕しやすくなる。 In the automatic bread maker configured as described above, it is preferable that the plurality of steps include a pre-pulverization liquid absorption step in which liquid is absorbed into the cereal grains in the container before the cereal grains are pulverized. According to this structure, since it can grind | pulverize in the state which included the liquid (typical thing was water) in the grain, it becomes easy to grind the grain to the core.
 上記構成の自動製パン器において、前記制御部は、温度に対応付けて前記粉砕前吸液工程の時間を予め定めた第3のテーブルと、前記温度検知部によって検知された温度とに基づいて、前記粉砕前吸液工程の時間を決定することとしてもよい。なお、前記温度検知部によって検知する温度は、外気温度、前記容器の温度、前記容器周辺の温度、及び前記容器内のパン原料温度のうちのいずれか1つの温度であるのが好ましい。 In the automatic bread maker configured as described above, the control unit is configured based on a third table in which the pre-grinding liquid absorption process time is set in advance in association with the temperature, and the temperature detected by the temperature detection unit. The time for the liquid absorption step before pulverization may be determined. In addition, it is preferable that the temperature detected by the temperature detection unit is any one of an outside air temperature, a temperature of the container, a temperature around the container, and a temperature of the bread material in the container.
 穀物粒の吸液速度は、穀物粒が浸漬される液体の温度によって変化する。一般に、液温が高い場合には穀物粒の吸液速度が速くなり、液温が低い場合には穀物粒の吸液速度が遅くなる傾向がある。このため、粉砕前吸液工程の吸液時間が一定の時間とされると、環境温度や使用する液体の温度の変動によって穀物粒の吸液状態が変動する可能性がある。そして、その結果、後に行われる粉砕工程での粉砕粉の粒度分布が変動し、不出来なパンが製造されてしまう可能性が生じる。この点、本構成の自動製パン器では、吸液速度に影響を及ぼすと考えられる温度を検知して、検知された温度に基づいて吸液時間を決定する構成であるために、穀物粒の吸液状態を安定してほぼ同一状態とでき、穀物粒から製造されるパンが不出来となる可能性を低減できる。なお、本構成では、容器内の液体の温度を検知して吸液時間を決定するのが好ましく、容器内のパン原料温度、又は、容器の温度を検知して吸液時間を決定するのが好ましい。また、温度検知を行う構成を容易に得やすい等の理由から、容器の温度を検知する構成が更に好ましい。 The absorption speed of cereal grains varies depending on the temperature of the liquid in which the cereal grains are immersed. In general, when the liquid temperature is high, the grain absorption rate tends to increase, and when the liquid temperature is low, the grain absorption rate tends to decrease. For this reason, when the liquid absorption time in the liquid absorption process before pulverization is set to a fixed time, the liquid absorption state of the grain may vary depending on the environmental temperature and the temperature of the liquid used. As a result, there is a possibility that the particle size distribution of the pulverized powder in the subsequent pulverization process fluctuates and an unsatisfactory bread is produced. In this respect, the automatic bread maker of this configuration is configured to detect the temperature that is thought to affect the liquid absorption speed and determine the liquid absorption time based on the detected temperature. The liquid absorption state can be made stable and almost the same state, and the possibility that the bread produced from the grain will be unsatisfactory can be reduced. In this configuration, it is preferable to determine the liquid absorption time by detecting the temperature of the liquid in the container, and it is preferable to determine the liquid absorption time by detecting the temperature of the bread material in the container or the temperature of the container. preferable. Moreover, the structure which detects the temperature of a container is still more preferable for the reason of being easy to obtain the structure which performs temperature detection easily.
 上記構成の自動製パン器において、前記複数の工程には、穀物粒を粉砕した後に前記容器内の穀物粒の粉砕粉に液体を吸液させる粉砕後吸液工程が含まれることとしてもよい。 In the automatic bread maker configured as described above, the plurality of steps may include a liquid absorption step after pulverization in which the pulverized powder of the cereal grains in the container absorbs liquid after the cereal grains are pulverized.
 本構成によれば、粉砕後吸液工程によって、粉砕により上昇した粉砕粉の温度を冷却する期間が得られるために、冷却装置を用いることなくパンの製造が可能となり、自動製パン器に要するコストを抑制できる。また、この工程によって、粉砕粉が更に崩れて微粒子の量が多くできるために、きめが細く、出来の良い(美味しい)パンが焼き上げられる。 According to this configuration, since the period for cooling the temperature of the pulverized powder that has been raised by pulverization can be obtained by the liquid absorption step after pulverization, it is possible to manufacture bread without using a cooling device, which is necessary for an automatic bread maker. Cost can be reduced. In addition, the crushed powder is further broken down by this step, and the amount of fine particles can be increased, so that a fine and well-made (delicious) bread is baked.
 上記構成の自動製パン器において、前記制御部は、前記粉砕後吸液工程において、前記温度検知部によって検知される温度が第2の所定の温度に到達すると、前記粉砕後吸液工程を終了させることとしてもよい。なお、前記温度検知部によって検知する温度は、前記容器の温度、又は、前記容器内のパン原料温度であるのが好ましい。 In the automatic bread maker configured as described above, when the temperature detected by the temperature detector reaches a second predetermined temperature in the post-pulverization liquid absorption step, the control unit ends the post-pulverization liquid absorption step. It is also possible to make it. The temperature detected by the temperature detector is preferably the temperature of the container or the temperature of the bread material in the container.
 本構成によれば、粉砕粉の温度を検知(間接的に検知する場合も含む)して、所定の温度となった時点で粉砕後吸液工程を終了するという構成が得られる。このために、本構成によれば、続いて行われる練り工程において、その開始時の温度ばらつきを効果的に抑制でき、不出来なパンができる可能性を低減できる。なお、この場合の所定の温度(第2の所定の温度)は、イーストが活発に働く温度(例えば28℃~30℃)とするのが好ましい。また、温度検知を行う構成を容易に得やすい等の理由から、容器の温度を検知する構成が好ましい。 According to this configuration, a configuration is obtained in which the temperature of the pulverized powder is detected (including when it is indirectly detected), and the liquid absorption step after pulverization is terminated when the temperature reaches a predetermined temperature. For this reason, according to this structure, in the subsequent kneading process, the temperature variation at the time of the start can be suppressed effectively, and the possibility of unsatisfactory bread can be reduced. Note that the predetermined temperature (second predetermined temperature) in this case is preferably set to a temperature at which the yeast works actively (for example, 28 ° C. to 30 ° C.). Moreover, the structure which detects the temperature of a container is preferable for the reason of being easy to obtain the structure which performs temperature detection easily.
 上記構成の自動製パン器において、前記制御部は、前記容器の温度、又は、前記容器内のパン原料温度が前記第2の所定の温度に到達すると前記粉砕後吸液工程を終了させ、外気温度が前記第2の所定の温度よりも高い場合には、前記容器の温度、又は、前記容器内のパン原料温度が前記第2の所定の温度ではなく外気温度に到達すると、前記粉砕後吸液工程を終了させる、こととしてもよい。 In the automatic bread maker configured as described above, the control unit terminates the post-grind liquid absorption step when the temperature of the container or the temperature of the bread material in the container reaches the second predetermined temperature, and the outside air When the temperature is higher than the second predetermined temperature, when the temperature of the container or the temperature of the bread material in the container reaches the outside air temperature instead of the second predetermined temperature, the suction after the pulverization is performed. It is good also as ending a liquid process.
 例えば夏季のように環境温度が高い場合には、所定の温度まで短時間で温度が下がらない場合も想定される。したがって、本構成のように、容器の温度、又は、容器内のパン原料温度について可能な限り温度を下げて、容器の温度、又は、容器内のパン原料温度が所定の温度に到達しなくても次の練り工程に移行するように構成した方が、パンの製造時間を徒に長くせずに済むために好ましい。また、できる限り温度を下げて次の練り工程に進むために、本構成の場合でも、練り工程開始時の温度ばらつきは、ある程度抑制できる。 For example, when the environmental temperature is high, such as in summer, it may be assumed that the temperature does not drop to a predetermined temperature in a short time. Therefore, as in this configuration, the temperature of the container or the temperature of the bread ingredients in the container is lowered as much as possible so that the temperature of the container or the temperature of the bread ingredients in the container does not reach the predetermined temperature. However, it is preferable to move to the next kneading step because it does not take a long time to produce bread. Further, in order to lower the temperature as much as possible and proceed to the next kneading step, even in the case of this configuration, temperature variations at the start of the kneading step can be suppressed to some extent.
 上記構成の自動製パン器において、前記制御部は、更に、前記粉砕後吸液工程の時間が、第1の時間以上、第2の時間以内となるように前記粉砕後吸液工程の時間を制御し、前記温度検知部からの情報により前記粉砕後吸液工程が終了できると判断される場合であっても、前記第1の時間に満たない場合には前記粉砕後吸液工程を終了させず、前記温度検知部からの情報により前記粉砕後吸液工程が終了できないと判断される場合であっても、前記第2の時間を超える場合には前記粉砕後吸液工程を終了させるのが好ましい。 In the automatic bread maker configured as described above, the control unit further sets the time of the liquid absorption step after crushing so that the time of the liquid absorption step after crushing is not less than the first time and within the second time. Even if it is determined that the post-pulverization liquid absorption step can be completed based on information from the temperature detection unit, the post-pulverization liquid absorption step is terminated if the first time is not reached. Even if it is determined that the liquid absorption process after pulverization cannot be completed based on the information from the temperature detection unit, the liquid absorption process after pulverization may be terminated when the second time is exceeded. preferable.
 上述のように、粉砕後吸液工程は、粉砕粉の冷却期間を得るのみならず、粉砕粉における微粒子の量を増やす効果も狙ったものである。このために、吸液時間があまりにも短くならないように、本構成を採用するのが好ましい。ただし、第1の時間をあまり長く設定すると、粉砕粉の冷却が進みすぎて、練り工程開始時の温度が必要以上に低くなってしまう場合もある。この点を考慮して、第1の時間が決定されるのが好ましい。また、容器温度又はパン原料温度が、所定の温度、或いは、外気温度まで下がるのに、非常に時間を要する場合も想定される。このような場合に、いつまでも練り工程が開始されないこととすると、パンの製造時間が著しく長くなってユーザが不便に感じる可能性もある。このため、吸液時間があまりにも長くなり過ぎないように、吸液時間の上限を設定しておくのが好ましい。 As described above, the liquid absorption step after pulverization aims not only at obtaining the cooling period of the pulverized powder but also increasing the amount of fine particles in the pulverized powder. For this reason, it is preferable to adopt this configuration so that the liquid absorption time does not become too short. However, if the first time is set too long, the pulverized powder may be cooled too much, and the temperature at the start of the kneading process may become lower than necessary. In consideration of this point, the first time is preferably determined. Further, it may be assumed that it takes a very long time for the container temperature or the bread material temperature to fall to a predetermined temperature or the outside air temperature. In such a case, if the kneading process is not started indefinitely, the bread manufacturing time may become extremely long, and the user may feel inconvenient. For this reason, it is preferable to set the upper limit of the liquid absorption time so that the liquid absorption time does not become too long.
 上記構成の自動製パン器において、前記制御部は、温度に対応付けて前記粉砕後吸液工程の時間を予め定めた第4のテーブルと、前記温度検知部によって検知された温度とに基づいて、前記粉砕後吸液工程の時間を決定することとしてもよい。なお、前記温度検知部によって検知する温度は、外気温度、又は、前記容器周辺の温度であるのが好ましい。 In the automatic bread maker configured as described above, the control unit is based on a fourth table in which the time of the liquid absorption step after pulverization is set in advance in association with the temperature, and the temperature detected by the temperature detection unit. The time for the liquid absorption step after pulverization may be determined. In addition, it is preferable that the temperature detected by the temperature detection unit is an outside air temperature or a temperature around the container.
 本構成によれば、穀物粒の粉砕粉の冷却を十分行えると共に、粉砕後吸液工程終了時の温度ばらつきを抑制できる。 According to this configuration, the pulverized powder of cereal grains can be sufficiently cooled, and temperature variations at the end of the liquid absorption process after pulverization can be suppressed.
 本発明によると、穀物粒から安定して出来の良いパンを製造できる自動製パン器を提供できる。このため、本発明によると、家庭でのパン製造をより身近なものとできる。 According to the present invention, it is possible to provide an automatic bread maker that can stably produce good bread from cereal grains. For this reason, according to the present invention, bread production at home can be made more familiar.
本実施形態の自動製パン器の垂直断面図Vertical sectional view of the automatic bread maker of this embodiment 図1に示す本実施形態の自動製パン器を図1と直角の方向に切断した一部垂直断面図1 is a partially vertical sectional view of the automatic bread maker according to the present embodiment shown in FIG. 1 cut in a direction perpendicular to FIG. 本実施形態の自動製パン器が備える粉砕ブレード及び混練ブレードの構成を説明するための概略斜視図The schematic perspective view for demonstrating the structure of the grinding | pulverization blade with which the automatic bread maker of this embodiment is equipped, and a kneading | mixing blade 本実施形態の自動製パン器が備える粉砕ブレード及び混練ブレードの構成を説明するための概略平面図The schematic plan view for demonstrating the structure of the grinding | pulverization blade with which the automatic bread maker of this embodiment is equipped, and a kneading | mixing blade 本実施形態の自動製パン器における、混練ブレードが折り畳み姿勢にある場合のパン容器の上面図The top view of the bread container in the automatic bread maker of this embodiment when the kneading blade is in the folded position 本実施形態の自動製パン器における、混練ブレードが開き姿勢にある場合のパン容器の上面図Top view of bread container when kneading blade is in open position in automatic bread maker of this embodiment 本実施形態の自動製パン器における、混練ブレードが開き姿勢にある場合のクラッチの状態を示す概略平面図Schematic plan view showing the state of the clutch when the kneading blade is in the open position in the automatic bread maker of the present embodiment 本実施形態の自動製パン器の制御ブロック図Control block diagram of automatic bread maker of this embodiment 本実施形態の自動製パン器における米粒用製パンコースの流れを示す模式図The schematic diagram which shows the flow of the bread-making course for rice grains in the automatic bread maker of this embodiment 本実施形態の自動製パン器で使用される、温度に対応付けて粉砕前吸水工程の時間を定めたテーブルの一例An example of a table used in the automatic bread maker of the present embodiment, in which the time of the water absorption step before crushing is determined in association with the temperature 本実施形態の自動製パン器において実行される粉砕後吸水工程の詳細フローを示すフローチャートThe flowchart which shows the detailed flow of the water absorption process after the grinding | pulverization performed in the automatic bread maker of this embodiment. 本実施形態の自動製パン器で使用される、温度に対応付けて練り工程の時間を定めたテーブルの一例An example of a table used in the automatic bread maker of this embodiment, in which the time of the kneading process is determined in association with the temperature 本実施形態の自動製パン器において実行される発酵工程の詳細フローを示すフローチャートThe flowchart which shows the detailed flow of the fermentation process performed in the automatic bread maker of this embodiment.
 以下、本発明の自動製パン器の実施形態について、図面を参照しながら詳細に説明する。なお、本明細書に登場する具体的な時間や温度等はあくまでも例示であり、本発明の内容を限定するものではない。 Hereinafter, embodiments of the automatic bread maker of the present invention will be described in detail with reference to the drawings. In addition, the specific time, temperature, etc. which appear in this specification are illustrations to the last, and do not limit the content of this invention.
 図1は、本実施形態の自動製パン器の垂直断面図である。図2は、図1に示す本実施形態の自動製パン器を図1と直角の方向に切断した一部垂直断面図である。図3は、本実施形態の自動製パン器が備える粉砕ブレード及び混練ブレードの構成を説明するための概略斜視図で、斜め下方から見た場合の図である。図4は、本実施形態の自動製パン器が備える粉砕ブレード及び混練ブレードの構成を説明するための概略平面図で、下から見た図である。図5は、本実施形態の自動製パン器における、混練ブレードが折り畳み姿勢にある場合のパン容器の上面図である。図6は、本実施形態の自動製パン器における、混練ブレードが開き姿勢にある場合のパン容器の上面図である。以下、主に図1から図6を参照しながら、自動製パン器の全体構成について説明する。 FIG. 1 is a vertical sectional view of the automatic bread maker according to the present embodiment. 2 is a partial vertical sectional view of the automatic bread maker according to the present embodiment shown in FIG. 1 cut in a direction perpendicular to FIG. FIG. 3 is a schematic perspective view for explaining the configuration of the crushing blade and the kneading blade provided in the automatic bread maker of the present embodiment, and is a view when seen obliquely from below. FIG. 4 is a schematic plan view for explaining the configuration of the crushing blade and the kneading blade provided in the automatic bread maker of the present embodiment, and is a view seen from below. FIG. 5 is a top view of the bread container when the kneading blade is in the folded position in the automatic bread maker of the present embodiment. FIG. 6 is a top view of the bread container when the kneading blade is in the open posture in the automatic bread maker of the present embodiment. Hereinafter, the overall configuration of the automatic bread maker will be described mainly with reference to FIGS. 1 to 6.
 なお、以下においては、図1における左側が自動製パン器1の正面(前面)、右側が自動製パン器1の背面(後面)とする。また、自動製パン器1に正面から向き合った観察者の左手側が自動製パン器1の左側、右手側が自動製パン器1の右側であるものとする。 In the following, the left side in FIG. 1 is the front (front) of the automatic bread maker 1 and the right is the back (rear) of the automatic bread maker 1. Further, it is assumed that the left hand side of the observer facing the automatic bread maker 1 from the front is the left side of the automatic bread maker 1, and the right hand side is the right side of the automatic bread maker 1.
 自動製パン器1は、合成樹脂製の外殻により構成される箱形の本体10を有する。本体10には、その左側面と右側面の両端に連結したコの字状の合成樹脂製ハンドル11が設けられ、これにより自動製パン器1は運搬容易となっている。本体10の上面前部には操作部20が設けられる。操作部20には、図示は省略するが、スタートキー、取り消しキー、タイマーキー、予約キー、パンの製造コース(米粉パンコース、小麦粉パンコース等)を選択する選択キー等の操作キー群と、操作キー群によって設定された内容やエラー等を表示する表示部とが設けられている。なお、表示部は、液晶表示パネルと、発光ダイオードを光源とする表示ランプとによって構成されている。 The automatic bread maker 1 has a box-shaped main body 10 constituted by a synthetic resin outer shell. The main body 10 is provided with a U-shaped synthetic resin handle 11 connected to both ends of the left side surface and the right side surface thereof, whereby the automatic bread maker 1 is easily transported. An operation unit 20 is provided on the front surface of the main body 10. Although not shown, the operation unit 20 includes a group of operation keys such as a start key, a cancel key, a timer key, a reservation key, a selection key for selecting a bread production course (rice flour bread course, flour bread course, etc.), A display unit for displaying contents set by the operation key group, errors, and the like is provided. The display unit includes a liquid crystal display panel and a display lamp using a light emitting diode as a light source.
 操作部20から後ろの本体上面は、合成樹脂製の蓋30で覆われる。蓋30は、図示しない蝶番軸で本体10の背面側に取り付けられており、その蝶番軸を支点として垂直面内で回動する構成となっている。なお、図示しないが、蓋30には耐熱ガラスからなる覗き窓が設けられており、この覗き窓を介してユーザは、後述の焼成室40を覗けるようになっている。 The upper surface of the main body behind the operation unit 20 is covered with a lid 30 made of synthetic resin. The lid 30 is attached to the back side of the main body 10 with a hinge shaft (not shown), and is configured to rotate in a vertical plane with the hinge shaft as a fulcrum. Although not shown, the lid 30 is provided with a viewing window made of heat-resistant glass, and the user can look into the baking chamber 40 described later through the viewing window.
 本体10の内部には焼成室40が設けられている。焼成室40は板金製で、上面が開口しており、この開口からパン容器50は焼成室40に入れられる。焼成室40は水平断面矩形の周側壁40aと底壁40bとを備える。焼成室40の内部には、シーズヒータ41が焼成室40に収容されたパン容器50を包囲するように配置され、パン容器50内のパン原料の加熱が可能になっている。 A firing chamber 40 is provided inside the main body 10. The baking chamber 40 is made of sheet metal, and an upper surface is opened. The bread container 50 is put into the baking chamber 40 through the opening. The baking chamber 40 includes a peripheral side wall 40a and a bottom wall 40b having a rectangular horizontal section. Inside the baking chamber 40, a sheathed heater 41 is disposed so as to surround the bread container 50 accommodated in the baking chamber 40, and the bread raw material in the bread container 50 can be heated.
 また、本体10の内部には板金製の基台12が設置されている。基台12には、焼成室40の中心にあたる箇所に、アルミニウム合金のダイキャスト成型品からなるパン容器支持部13が固定されている。パン容器支持部13の内部は焼成室40の内部に露出している。 Also, a sheet metal base 12 is installed inside the main body 10. On the base 12, a bread container support 13 made of an aluminum alloy die-cast product is fixed at a location corresponding to the center of the firing chamber 40. The inside of the bread container support part 13 is exposed inside the baking chamber 40.
 パン容器支持部13の中心には原動軸14が垂直に支持されている。原動軸14に回転を与えるのはプーリ15、16である。プーリ15と原動軸14の間、及び、プーリ16と原動軸14の間には、各々クラッチが配置されている。このため、プーリ15を一方向に回転させて原動軸14に回転が伝えられる時、原動軸14の回転はプーリ16に伝わらず、プーリ16をプーリ15とは逆方向に回転させて原動軸14に回転が伝えられる時、原動軸14の回転はプーリ15には伝わらない仕組みになっている。 A driving shaft 14 is vertically supported at the center of the bread container support 13. The pulleys 15 and 16 give rotation to the driving shaft 14. Clutchs are respectively disposed between the pulley 15 and the driving shaft 14 and between the pulley 16 and the driving shaft 14. Therefore, when the pulley 15 is rotated in one direction and the rotation is transmitted to the driving shaft 14, the rotation of the driving shaft 14 is not transmitted to the pulley 16, and the pulley 16 is rotated in the opposite direction to the pulley 15 to drive the driving shaft 14. When the rotation is transmitted to the pulley 15, the rotation of the driving shaft 14 is not transmitted to the pulley 15.
 プーリ15を回転させるのは、基台12に固定された混練モータ60である。混練モータ60は竪軸であって、下面から出力軸61が突出する。出力軸61には、プーリ15にベルト63で連結されるプーリ62が固定されている。混練モータ60自身が低速・高トルクタイプであり、その上、プーリ62がプーリ15を減速回転させるので、原動軸14は低速・高トルクで回転する。 The pulley 15 is rotated by a kneading motor 60 fixed to the base 12. The kneading motor 60 is a saddle shaft, and the output shaft 61 protrudes from the lower surface. A pulley 62 connected to the pulley 15 by a belt 63 is fixed to the output shaft 61. Since the kneading motor 60 itself is a low speed / high torque type, and the pulley 62 rotates the pulley 15 at a reduced speed, the driving shaft 14 rotates at a low speed / high torque.
 プーリ16を回転させるのは同じく基台12に支持された粉砕モータ64である。粉砕モータ64も竪軸であって、上面から出力軸65が突出する。出力軸65には、プーリ16にベルト67で連結されるプーリ66が固定されている。粉砕モータ64は、後述する粉砕ブレードに高速回転を与える役割を担う。そのため、粉砕モータ64には高速回転のものが選定され、プーリ66とプーリ16の減速比はほぼ1:1になるように設定されている。 The pulley 16 is rotated by a crushing motor 64 that is also supported by the base 12. The grinding motor 64 is also a saddle shaft, and the output shaft 65 protrudes from the upper surface. A pulley 66 connected to the pulley 16 by a belt 67 is fixed to the output shaft 65. The crushing motor 64 plays a role of giving high-speed rotation to a crushing blade described later. Therefore, a high-speed rotating motor is selected as the grinding motor 64, and the reduction ratio between the pulley 66 and the pulley 16 is set to be approximately 1: 1.
 パン容器50は板金製で、バケツのような形状をしており、口縁部には手提げ用のハンドル(図示せず)が取り付けられている。パン容器50の水平断面は四隅を丸めた矩形である。また、パン容器50の底部には、詳細は後述する粉砕ブレード54とカバー70を収容する凹部55が形成されている。凹部55は平面形状円形で、カバー70の外周部と凹部55の内面の間には、製パン原料の流動を可能とする隙間56が設けられている。また、パン容器50の底面には、アルミニウム合金のダイキャスト成型品である筒状の台座51が設けられている。パン容器50は、この台座51がパン容器支持部13に受け入れられた状態で、焼成室40内に配置されるようになっている。 The bread container 50 is made of sheet metal and has a bucket-like shape, and a handle (not shown) for handbags is attached to the mouth edge. The horizontal section of the bread container 50 is a rectangle with rounded corners. Further, a concave portion 55 for accommodating a grinding blade 54 and a cover 70, which will be described in detail later, is formed at the bottom of the bread container 50. The concave portion 55 is circular in a planar shape, and a gap 56 is provided between the outer peripheral portion of the cover 70 and the inner surface of the concave portion 55 to allow the bread-making raw material to flow. In addition, a cylindrical pedestal 51 that is a die-cast product of an aluminum alloy is provided on the bottom surface of the bread container 50. The bread container 50 is arranged in the baking chamber 40 in a state where the pedestal 51 is received by the bread container support part 13.
 パン容器50の底部中心には、垂直方向に延びるブレード回転軸52が、シール対策が施された状態で支持されている。ブレード回転軸52には、原動軸14よりカップリング53を介して回転力が伝えられる。カップリング53を構成する2部材のうち、一方の部材はブレード回転軸52の下端に固定され、他の部材は原動軸14の上端に固定されている。カップリング53の全体は、台座51とパン容器支持部13に囲い込まれる。 At the center of the bottom of the bread container 50, a blade rotating shaft 52 extending in the vertical direction is supported in a state where measures against sealing are taken. A rotational force is transmitted to the blade rotating shaft 52 from the driving shaft 14 through the coupling 53. Of the two members constituting the coupling 53, one member is fixed to the lower end of the blade rotating shaft 52, and the other member is fixed to the upper end of the driving shaft 14. The entire coupling 53 is enclosed by the pedestal 51 and the bread container support 13.
 パン容器支持部13の内周面と台座51の外周面とには、それぞれ図示しない突起が形成されており、これらの突起は周知のバヨネット結合を構成する。詳細には、パン容器50がパン容器支持部13に取り付けられる際、台座51の突起がパン容器支持部13の突起に干渉しないようにしてパン容器50が下ろされる。そして、台座51がパン容器支持部13に嵌り込んだ後、パン容器50が水平にひねられると、パン容器支持部13の突起の下面に台座51の突起が係合する。これにより、パン容器50が上方に抜けなくなる。また、この操作で、カップリング53の連結も同時に達成される。 The protrusion which is not illustrated is formed in the inner peripheral surface of the bread container support part 13, and the outer peripheral surface of the base 51, respectively, These protrusion comprises the well-known bayonet coupling | bonding. Specifically, when the bread container 50 is attached to the bread container support part 13, the bread container 50 is lowered such that the protrusion of the base 51 does not interfere with the protrusion of the bread container support part 13. Then, after the pedestal 51 is fitted into the bread container support 13, when the bread container 50 is twisted horizontally, the protrusion of the pedestal 51 engages with the lower surface of the protrusion of the bread container support 13. Thereby, the bread container 50 cannot be pulled out upward. In addition, the coupling 53 is simultaneously achieved by this operation.
 なお、パン容器50取り付け時のひねり方向は、後述する混練ブレード72の回転方向に一致させ、混練ブレード72が回転してもパン容器50が外れないように構成される。 The twisting direction when the bread container 50 is attached is made to coincide with the rotation direction of the kneading blade 72 described later, and the bread container 50 is configured not to be detached even if the kneading blade 72 rotates.
 ブレード回転軸52には、パン容器50の底部より少し上の箇所に、粉砕ブレード54が取り付けられている。粉砕ブレード54は、ブレード回転軸52に対して回転不能に取り付けられる。粉砕ブレード54は、ステンレス鋼板製であり、図3及び図4に示すように、飛行機のプロペラのような形状(この形状はあくまでも一例である)を有している。粉砕ブレード54は、ブレード回転軸52から引き抜いて取り外せるようになっており、製パン作業終了後の洗浄や、切れ味が悪くなった時の交換を手軽に行うことができる。 A grinding blade 54 is attached to the blade rotation shaft 52 at a position slightly above the bottom of the bread container 50. The crushing blade 54 is attached to the blade rotation shaft 52 so as not to rotate. The crushing blade 54 is made of a stainless steel plate and has a shape like an airplane propeller (this shape is merely an example) as shown in FIGS. 3 and 4. The crushing blade 54 can be pulled out and removed from the blade rotating shaft 52, and can be easily washed after the bread-making operation and replaced when the sharpness deteriorates.
 ブレード回転軸52の上端には、平面形状円形のドーム状カバー70が取り付けられている。カバー70は、アルミニウム合金のダイキャスト成型品からなり、粉砕ブレード54のハブ54aによって受け止められ、粉砕ブレード54を覆い隠す。このカバー70もブレード回転軸52から簡単に引き抜くことができるので、製パン作業終了後の洗浄を手軽に行うことができる。 A flat circular dome-shaped cover 70 is attached to the upper end of the blade rotation shaft 52. The cover 70 is made of an aluminum alloy die-cast product and is received by the hub 54a of the grinding blade 54 to cover the grinding blade 54. Since this cover 70 can also be easily pulled out from the blade rotating shaft 52, it is possible to easily perform washing after the bread making operation is completed.
 カバー70の上部外面には、ブレード回転軸52から離れた箇所に配置された垂直方向に延びる支軸71により、平面形状くの字形の混練ブレード72が取り付けられている。混練ブレード72はアルミニウム合金のダイキャスト成型品である。支軸71は、混練ブレード72に固定ないし一体化されており、混練ブレード72と動きを共にする。 A flat, square-shaped kneading blade 72 is attached to the upper outer surface of the cover 70 by a support shaft 71 extending in the vertical direction and disposed at a position away from the blade rotation shaft 52. The kneading blade 72 is a die-cast product of aluminum alloy. The support shaft 71 is fixed or integrated with the kneading blade 72 and moves together with the kneading blade 72.
 混練ブレード72は、支軸71を中心として水平面内で回動し、図5に示す折り畳み姿勢と、図6に示す開き姿勢とをとる。折り畳み姿勢では、混練ブレード72はカバー70に形成したストッパ部73に当接しており、それ以上カバー70に対し時計方向の回動を行うことができない。混練ブレード72の先端は、この時、カバー70から少し突き出している。開き姿勢では、混練ブレード72の先端はストッパ部73から離れ、混練ブレード72の先端はカバー70から大きく突き出す。 The kneading blade 72 rotates in a horizontal plane around the support shaft 71, and takes a folded posture shown in FIG. 5 and an open posture shown in FIG. In the folded position, the kneading blade 72 is in contact with a stopper portion 73 formed on the cover 70 and cannot be rotated clockwise with respect to the cover 70 any more. At this time, the tip of the kneading blade 72 slightly protrudes from the cover 70. In the open position, the tip of the kneading blade 72 is separated from the stopper portion 73, and the tip of the kneading blade 72 protrudes greatly from the cover 70.
 なお、カバー70には、カバー内空間とカバー外空間を連通する窓74と、各窓74に対応して内面側に設けられて粉砕ブレード54によって粉砕された粉砕物を窓74の方向に誘導するリブ75と、が形成されている。この構成により、粉砕ブレード54を用いた粉砕の効率が高められている。 The cover 70 has a window 74 that communicates the space inside the cover and the space outside the cover, and guides the pulverized material provided on the inner surface side corresponding to each window 74 and pulverized by the pulverization blade 54 toward the window 74. And ribs 75 are formed. With this configuration, the efficiency of pulverization using the pulverization blade 54 is enhanced.
 カバー70とブレード回転軸52の間には、図4に示すようにクラッチ76が介在する。クラッチ76は、混練モータ60が原動軸14を回転させるときのブレード回転軸52の回転方向(この回転方向を「正方向回転」とする)において、ブレード回転軸52とカバー70を連結する。逆に、粉砕モータ64が原動軸14を回転させるときのブレード回転軸52の回転方向(この回転方向を「逆方向回転」とする)では、クラッチ76はブレード回転軸52とカバー70の連結を切り離す。なお、図5及び図6では、前記「正方向回転」は反時計方向回転となり、前記「逆方向回転」は時計方向回転となる。 A clutch 76 is interposed between the cover 70 and the blade rotation shaft 52 as shown in FIG. The clutch 76 connects the blade rotation shaft 52 and the cover 70 in the rotation direction of the blade rotation shaft 52 when the kneading motor 60 rotates the driving shaft 14 (this rotation direction is referred to as “forward rotation”). On the contrary, in the rotation direction of the blade rotation shaft 52 when the crushing motor 64 rotates the driving shaft 14 (this rotation direction is referred to as “reverse rotation”), the clutch 76 connects the blade rotation shaft 52 and the cover 70. Separate. 5 and 6, the “forward rotation” is a counterclockwise rotation, and the “reverse rotation” is a clockwise rotation.
 クラッチ76は、混練ブレード72の姿勢に応じて連結状態を切り換える。すなわち、混練ブレード72が図5に示す折り畳み姿勢にある場合は、図4に示すように、第2係合体76bは第1係合体76aの回転軌道に干渉している。このため、ブレード回転軸52が正方向回転すると、第1係合体76aと第2係合体76bは係合し、ブレード回転軸52の回転力がカバー70及び混練ブレード72に伝達される。一方、混練ブレード72が図6に示す開き姿勢にある場合には、図7に示すように、第2係合体76bは第1係合体76aの回転軌道から逸脱した状態にある。このため、ブレード回転軸52が逆方向回転しても、第1係合体76aと第2係合体76bは係合しない。従って、ブレード回転軸52の回転力はカバー70及び混練ブレード72に伝達されない。なお、図7は、混練ブレードが開き姿勢にある場合のクラッチの状態を示す概略平面図である。 The clutch 76 switches the connection state according to the posture of the kneading blade 72. That is, when the kneading blade 72 is in the folded position shown in FIG. 5, as shown in FIG. 4, the second engagement body 76b interferes with the rotation track of the first engagement body 76a. For this reason, when the blade rotation shaft 52 rotates in the forward direction, the first engagement body 76 a and the second engagement body 76 b are engaged, and the rotational force of the blade rotation shaft 52 is transmitted to the cover 70 and the kneading blade 72. On the other hand, when the kneading blade 72 is in the open position shown in FIG. 6, as shown in FIG. 7, the second engagement body 76b is in a state of deviating from the rotation track of the first engagement body 76a. For this reason, even if the blade rotating shaft 52 rotates in the reverse direction, the first engaging body 76a and the second engaging body 76b are not engaged. Accordingly, the rotational force of the blade rotation shaft 52 is not transmitted to the cover 70 and the kneading blade 72. FIG. 7 is a schematic plan view showing the state of the clutch when the kneading blade is in the open position.
 図8は、本実施形態の自動製パン器の制御ブロック図である。図8に示すように、自動製パン器1における制御動作は制御装置81によって行われる。制御装置81は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/O(input/output)回路部等からなるマイクロコンピュータ(マイコン)によって構成される。この制御装置81は、焼成室40の熱の影響を受け難い位置に配置するのが好ましく、自動製パン器1においては、本体10の正面側壁と焼成室40との間に配置されている。 FIG. 8 is a control block diagram of the automatic bread maker according to the present embodiment. As shown in FIG. 8, the control operation in the automatic bread maker 1 is performed by the control device 81. The control device 81 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like. . The controller 81 is preferably disposed at a position that is not easily affected by the heat of the baking chamber 40. In the automatic bread maker 1, the controller 81 is disposed between the front side wall of the main body 10 and the baking chamber 40.
 制御装置81には、第1温度検知部18と、第2温度検知部19と、上述の操作部20と、混練モータ駆動回路82と、粉砕モータ駆動回路83と、ヒータ駆動回路84と、が電気的に接続されている。 The control device 81 includes a first temperature detection unit 18, a second temperature detection unit 19, the above-described operation unit 20, a kneading motor drive circuit 82, a pulverization motor drive circuit 83, and a heater drive circuit 84. Electrically connected.
 第1温度検知部18は、図2に示すように本体10の側面に設けられて外気温度を検知可能な温度センサである。第2温度検知部19は、図1に示すように、温度センサ19aとソレノイド19bとを備え、温度センサ19aの先端側が焼成室40の正面側壁から焼成室40に突出するように設けられている。温度センサ19aの先端は、ソレノイド19bによって、パン容器50に接触する位置と非接触な位置とに切り換えることが可能となっている。なお、図1では、温度センサ19aの先端が、パン容器50に非接触な位置にある場合を示している。第2温度検知部19は、温度センサ19aの先端位置の切り換えによって、焼成室40内の温度(これは、本発明の容器周辺の温度の一例である)とパン容器50の温度とを切り換えて検知可能である。 1st temperature detection part 18 is a temperature sensor which is provided in the side of main part 10 as shown in Drawing 2, and can detect outside temperature. As shown in FIG. 1, the second temperature detection unit 19 includes a temperature sensor 19 a and a solenoid 19 b, and is provided so that the front end side of the temperature sensor 19 a protrudes from the front side wall of the baking chamber 40 into the baking chamber 40. . The tip of the temperature sensor 19a can be switched between a position in contact with the bread container 50 and a non-contact position by a solenoid 19b. Note that FIG. 1 shows a case where the tip of the temperature sensor 19a is in a non-contact position with the bread container 50. The second temperature detection unit 19 switches the temperature in the baking chamber 40 (this is an example of the temperature around the container of the present invention) and the temperature of the bread container 50 by switching the tip position of the temperature sensor 19a. It can be detected.
 混練モータ駆動回路82は、制御装置81からの指令の下で混練モータ60の駆動を制御する回路である。また、粉砕モータ駆動回路83は、制御装置81からの指令の下で粉砕モータ64の駆動を制御する回路である。ヒータ駆動回路84は、制御装置81からの指令の下でシーズヒータ41の動作を制御する回路である。 The kneading motor driving circuit 82 is a circuit that controls the driving of the kneading motor 60 under a command from the control device 81. The crushing motor drive circuit 83 is a circuit that controls the driving of the crushing motor 64 under a command from the control device 81. The heater drive circuit 84 is a circuit that controls the operation of the sheathed heater 41 under a command from the control device 81.
 制御装置81は、操作部20からの入力信号に基づいてROM等に格納されたパンの製造コース(製パンコース)に係るプログラムを読み出し、混練モータ駆動回路82を介して混練ブレード72の回転を、粉砕モータ駆動回路83を介して粉砕ブレード54の回転を、ヒータ駆動回路84を介してシーズヒータ41による加熱動作を制御しながら、自動製パン器1にパンの製造工程を実行させる。また、制御装置81には、時間計測機能が備えられており、パンの製造工程における時間的な制御が可能となっている。 The control device 81 reads a program relating to a bread manufacturing course (breadmaking course) stored in a ROM or the like based on an input signal from the operation unit 20, and rotates the kneading blade 72 via the kneading motor drive circuit 82. The automatic bread maker 1 executes the bread manufacturing process while controlling the rotation of the grinding blade 54 via the grinding motor driving circuit 83 and the heating operation by the sheathed heater 41 via the heater driving circuit 84. Further, the control device 81 is provided with a time measuring function, and temporal control in the bread manufacturing process is possible.
 なお、制御装置81は本発明の制御部の実施形態である。また、第1温度検知部18及び第2温度検知部19は本発明の温度検知部の実施形態である。また、混練ブレード72、混練モータ60及び混練モータ駆動回路82は混練手段(混練部)の一例である。また、粉砕ブレード54、粉砕モータ64及び粉砕モータ駆動回路83は粉砕手段(粉砕部)の一例である。また、シーズヒータ41及びヒータ駆動回路84は加熱手段(加熱部)の一例である。 The control device 81 is an embodiment of the control unit of the present invention. Moreover, the 1st temperature detection part 18 and the 2nd temperature detection part 19 are embodiment of the temperature detection part of this invention. The kneading blade 72, the kneading motor 60, and the kneading motor drive circuit 82 are examples of kneading means (kneading part). The crushing blade 54, the crushing motor 64, and the crushing motor drive circuit 83 are examples of crushing means (crushing unit). The sheathed heater 41 and the heater drive circuit 84 are examples of heating means (heating unit).
 以上のように構成される本実施形態の自動製パン器1は、小麦粉や米粉からパンを製造する製パンコースに加えて、米粒(穀物粒の一形態)からパンを製造する製パンコース(米粒用製パンコース)を実行できるようになっている。そして、自動製パン器1は米粒からパンを製造する米粒用製パンコースを実行する場合の制御動作に特徴を有する。このため、以下では、自動製パン器1を用いて米粒からパンを製造する場合の制御動作に絞って説明する。 The automatic bread maker 1 of the present embodiment configured as described above, in addition to the bread making course for producing bread from flour or rice flour, the bread making course for producing bread from rice grains (one form of grain) ( A rice-making bread course) can be executed. And the automatic bread maker 1 has the characteristics in the control action in the case of performing the bread-making course for rice grains which manufactures bread from rice grains. For this reason, below, it demonstrates focusing on the control operation in the case of manufacturing bread from rice grain using the automatic bread maker 1.
 図9は、本実施形態の自動製パン器における米粒用製パンコースの流れを示す模式図である。なお、図9において、温度はパン容器50の温度を示している。図9に示すように、米粒用製パンコース(穀物粒用製パンコースの一例)においては、粉砕前吸水工程(粉砕前吸液工程の一形態)と、粉砕工程と、粉砕後吸水工程(粉砕後吸液工程の一形態)と、練り(捏ね)工程と、発酵工程と、焼成工程と、がこの順番で順次に実行される。 FIG. 9 is a schematic diagram showing the flow of the bread making course for rice grains in the automatic bread maker of the present embodiment. In FIG. 9, the temperature indicates the temperature of the bread container 50. As shown in FIG. 9, in the rice grain breadmaking course (an example of a grain grain breadmaking course), a water absorption process before pulverization (one form of liquid absorption process before pulverization), a pulverization process, and a water absorption process after pulverization ( One form of the liquid absorption process after pulverization), a kneading (kneading) process, a fermentation process, and a baking process are sequentially performed in this order.
 米粒用製パンコースを実行するにあたって、ユーザは、パン容器50に、粉砕ブレード54と混練ブレード72付きのカバー70とを取り付ける。そして、ユーザは、米粒と水をそれぞれ所定量ずつ計量(一例として米粒220g、水210g)してパン容器50に入れる。なお、ここでは、米粒と水とが混ぜられることにしているが、単なる水の代わりに、例えば、だし汁のような味成分を有する液体、果汁、アルコールを含有する液体等が用いられてもよい。ユーザは、米粒と水とを投入したパン容器50を焼成室40に入れて蓋30を閉じ、操作部20によって米粒用製パンコースを選択し、スタートキーを押す。これにより、米粒からパンを製造する米粒用製パンコースが開始される。 In executing the rice grain breadmaking course, the user attaches the crushing blade 54 and the cover 70 with the kneading blade 72 to the bread container 50. Then, the user measures a predetermined amount of rice grains and water (for example, 220 g of rice grains and 210 g of water) and puts them in the bread container 50. Here, rice grains and water are mixed, but instead of mere water, for example, a liquid having a taste component such as broth, fruit juice, a liquid containing alcohol, or the like may be used. . The user puts the bread container 50 into which the rice grains and water have been put into the baking chamber 40, closes the lid 30, selects the rice grain breadmaking course by the operation unit 20, and presses the start key. Thereby, the bread-making course for rice grains which manufactures bread from rice grains is started.
 粉砕前吸水工程は、米粒に水(液体の一形態)を含ませることによって、その後に行われる粉砕工程において、米粒を芯まで粉砕しやすくすることを狙う工程である。制御装置81は、粉砕前吸水工程の開始に際して、ソレノイド19bを駆動させて温度センサ19aの先端をパン容器50に接触させる。これにより、制御装置81は、温度センサ19aを介してパン容器50の温度を検知する。なお、パン容器50の温度を検知するタイミングは、例えば、スタートキーを押して即のタイミングでもよいし、しばらく経過してからでもよい。 The water absorption step before pulverization is a step aimed at making the rice grains easily pulverized to the core in the subsequent pulverization step by including water (one form of liquid) in the rice grains. At the start of the pre-grinding water absorption process, the control device 81 drives the solenoid 19b to bring the tip of the temperature sensor 19a into contact with the bread container 50. Thereby, the control apparatus 81 detects the temperature of the bread container 50 via the temperature sensor 19a. Note that the timing for detecting the temperature of the bread container 50 may be, for example, the timing immediately after the start key is pressed or after a while.
 そして、制御装置81は、検知したパン容器50の温度と、容器温度に対応付けて予め定めた粉砕前吸水工程の時間を示すテーブル(図10参照;本発明の第3のテーブルの実施形態)と、から粉砕前吸水工程の時間を決定する。このテーブルは、例えば制御装置81のROMに記憶されている。米粒の吸水速度は、水の温度によって変動し、水温が高いと吸水速度が高まり、水温が低いと吸水速度が低下する。このために、本実施形態のように、パン容器50の温度(水温を反映した温度を示す)が高い場合には粉砕前吸水工程の時間を短くし、パン容器50の温度が低い場合には粉砕前吸水工程の時間を長くすることよって、米粒の吸水度合いのばらつきが抑制される。 And the control apparatus 81 shows the temperature of the detected bread container 50, and the time of the pre-grinding water absorption process previously matched with container temperature (refer FIG. 10; Embodiment of the 3rd table of this invention). Then, the time of the water absorption step before pulverization is determined. This table is stored in the ROM of the control device 81, for example. The water absorption speed of rice grains varies depending on the temperature of the water. If the water temperature is high, the water absorption speed increases, and if the water temperature is low, the water absorption speed decreases. Therefore, as in the present embodiment, when the temperature of the bread container 50 (indicating the temperature reflecting the water temperature) is high, the time of the water absorption step before crushing is shortened, and when the temperature of the bread container 50 is low By lengthening the time of the water absorption step before pulverization, variation in the water absorption degree of the rice grains is suppressed.
 なお、図10のテーブルは、出来の良いパンが得られるように予め実験によって求めたものであるが、単なる一例であり、適宜変更可能である。例えば、図10では5℃毎に粉砕前吸水工程の時間を変更する構成としているが、この温度間隔は大きくしても、小さくしてもよい。また、温度の上限や下限も適宜定めてよい。 Note that the table in FIG. 10 is obtained by experiments in advance so that a good bread can be obtained, but is merely an example and can be changed as appropriate. For example, in FIG. 10, the time for the water absorption step before pulverization is changed every 5 ° C., but this temperature interval may be increased or decreased. Moreover, the upper limit and the lower limit of the temperature may be determined as appropriate.
 また、本実施形態では、パン容器50の温度に基づいて粉砕前吸水工程の時間が決定される構成となっているが、これに限られる趣旨ではない。すなわち、例えばパン容器50に入ったパン原料温度を測定できるように構成して、この温度に基づいて粉砕前吸水工程の時間が決定される構成としてもよい。なお、季節によって使用する水が冷たくなったり、温かくなったりする傾向があるために、例えば外気温度や焼成室40の温度(パン容器50周辺の温度)に基づいて粉砕前吸水工程の時間が決定される構成としてもよい。しかし、この場合にはパン容器50内の水温が適切に反映されずに、米粒の吸水度合いにばらつきが生じる可能性がある。このため、パン容器50の温度やパン容器50内のパン原料の温度に基づいて粉砕前吸水工程の時間が決定されるのが好ましい。 In the present embodiment, the time for the water absorption step before crushing is determined based on the temperature of the bread container 50, but the present invention is not limited to this. That is, for example, the temperature of the bread raw material contained in the bread container 50 may be measured, and the time for the water absorption step before pulverization may be determined based on this temperature. In addition, since the water used depending on the season tends to be cold or warm, the time of the water absorption step before pulverization is determined based on, for example, the outside air temperature or the temperature of the baking chamber 40 (the temperature around the bread container 50). It is good also as a structure to be made. However, in this case, the water temperature in the bread container 50 is not appropriately reflected, and the water absorption degree of the rice grain may vary. For this reason, it is preferable that the time of the water absorption process before crushing is determined based on the temperature of the bread container 50 and the temperature of the bread raw material in the bread container 50.
 また、粉砕前吸水工程においては、その初期段階で粉砕ブレード54を回転させ、その後も断続的に粉砕ブレード54を回転させるようにしてもよい。このようにすると、米粒の表面に傷をつけることができ、米粒の吸液効率が高められる。 Further, in the water absorption step before pulverization, the pulverization blade 54 may be rotated at the initial stage, and thereafter, the pulverization blade 54 may be intermittently rotated. If it does in this way, the surface of a rice grain can be damaged, and the liquid absorption efficiency of a rice grain will be improved.
 上記のように決定された粉砕前吸水工程の時間が経過する(粉砕前吸水工程が終了する)と、制御装置81の指令によって、米粒を粉砕する粉砕工程が実行される。この粉砕工程では、米粒と水との混合物の中で粉砕ブレード54が高速回転される。具体的には、制御装置81は、粉砕モータ64を制御してブレード回転軸52を逆方向回転させ、米粒と水との混合物の中で粉砕ブレード54の回転を開始させる。なお、この際、カバー70もブレード回転軸52の回転に追随して回転を開始するが、次のような動作によってカバー70の回転はすぐに阻止される。 When the time of the water absorption process before pulverization determined as described above has elapsed (the water absorption process before pulverization ends), a pulverization process of pulverizing rice grains is executed according to a command from the control device 81. In this pulverization step, the pulverization blade 54 is rotated at high speed in a mixture of rice grains and water. Specifically, the control device 81 controls the pulverization motor 64 to rotate the blade rotation shaft 52 in the reverse direction, and starts the rotation of the pulverization blade 54 in the mixture of rice grains and water. At this time, the cover 70 also starts rotating following the rotation of the blade rotation shaft 52, but the rotation of the cover 70 is immediately prevented by the following operation.
 粉砕ブレード54を回転させるためのブレード回転軸52の回転に伴うカバー70の回転方向は、図5において時計方向であり、混練ブレード72は、それまで折り畳み姿勢(図5に示す姿勢)であった場合には、米粒と水の混合物から受ける抵抗で開き姿勢(図6に示す姿勢)に転じる。混練ブレード72が開き姿勢になると、図7に示すように、クラッチ76は、第2係合体76bが第1係合体76aの回転軌道から逸脱するために、ブレード回転軸52とカバー70の連結を切り離す。同時に、開き姿勢になった混練ブレード72は図6に示すようにパン容器50の内側壁に当るために、カバー70の回転は阻止される。 The rotation direction of the cover 70 accompanying the rotation of the blade rotation shaft 52 for rotating the pulverization blade 54 is clockwise in FIG. 5, and the kneading blade 72 has been in the folded posture (the posture shown in FIG. 5). In this case, the resistance is changed by the resistance received from the mixture of rice grains and water and the posture is changed to the posture shown in FIG. When the kneading blade 72 is in the open position, as shown in FIG. 7, the clutch 76 connects the blade rotation shaft 52 and the cover 70 so that the second engagement body 76b deviates from the rotation track of the first engagement body 76a. Separate. At the same time, the kneading blade 72 in the open position abuts against the inner wall of the bread container 50 as shown in FIG.
 粉砕工程における米粒の粉砕は、先に行われる粉砕前吸水工程によって米粒に水が浸み込んだ状態で実行されるために、米粒を芯まで容易に粉砕することができる。粉砕ブレード54の回転は間欠回転とされる。この間欠回転は、例えば1分間回転して3分間回転停止するサイクルが5回実行される。なお、最後のサイクルでは、3分間の停止は行わない。粉砕ブレード54の回転は連続回転としてもよいが、間欠回転とすることにより、米粒を対流させて満遍なく米粒を粉砕できるために、間欠回転とするのが好ましい。 The pulverization of the rice grains in the pulverization step is performed in a state where water is soaked in the rice grains by the water absorption step before pulverization, so that the rice grains can be easily pulverized to the core. The rotation of the grinding blade 54 is intermittent. In this intermittent rotation, for example, a cycle of rotating for 1 minute and stopping for 3 minutes is executed five times. In the last cycle, the stop for 3 minutes is not performed. Although the rotation of the pulverizing blade 54 may be continuous rotation, intermittent rotation is preferable because the rice grains can be uniformly crushed by convection by intermittent rotation.
 なお、自動製パン器1においては所定の時間(本実施形態では17分)で粉砕工程が終了するようにしている。しかしながら、米粒の硬さのばらつきや環境条件によって粉砕粉の粒度にばらつきが生じることがある。このため、粉砕工程の終了を、粉砕時の負荷(トルク)の大きさを指標に判断する構成としても構わない。 In the automatic bread maker 1, the crushing process is completed in a predetermined time (17 minutes in this embodiment). However, the grain size of the pulverized powder may vary depending on the hardness of the rice grains and the environmental conditions. For this reason, the end of the pulverization process may be determined using the magnitude of the load (torque) during pulverization as an index.
 また、粉砕工程時においては、パン容器50の振動が大きいために、第2温度検知部19の温度センサ19aはパン容器50に接触しない位置とするのが好ましい。これにより、温度センサ19a及びパン容器50の損傷を防止できる。 Further, during the crushing process, since the vibration of the bread container 50 is large, it is preferable that the temperature sensor 19a of the second temperature detection unit 19 is in a position where it does not contact the bread container 50. Thereby, damage to temperature sensor 19a and bread container 50 can be prevented.
 図9に示すように、粉砕工程においては、粉砕時の摩擦によりパン容器50の温度(パン容器50内の粉砕粉の温度)が上昇する。そして、パン容器50の温度は例えば40~45℃程度となる。このような状態で、イーストを投入してパン生地の作製を行うと、イーストが働かず出来の良いパンを製造することができない。このため、自動製パン器1では、粉砕工程の後に、米粒の粉砕粉を水に浸漬した状態で放置する粉砕後吸水工程を設けている。 As shown in FIG. 9, in the pulverization step, the temperature of the bread container 50 (the temperature of the pulverized powder in the bread container 50) increases due to friction during the pulverization. The temperature of the bread container 50 is about 40 to 45 ° C., for example. In such a state, when yeast is thrown in and bread dough is produced, the yeast does not work and a good bread cannot be produced. For this reason, the automatic bread maker 1 is provided with a water absorption step after pulverization in which the pulverized rice grains are left in a state immersed in water after the pulverization step.
 この粉砕後吸水工程は、米粒の粉砕粉の温度を低下させる冷却期間であると同時に、粉砕粉に更に水を吸水させて、微粒子の量を増やす役割も担う工程である。このように、微粒子を増やすことにより、きめの細かいパンを焼き上げることが可能になる。粉砕後吸水工程は、予め決められた所定の時間だけ行う構成としてもよいが、このような構成の場合、例えば環境温度の影響等によって、次に行う練り工程の開始時におけるパン容器50(パン原料)の温度にばらつきが生じて、出来の良いパンが得られない場合がある。 This water absorption step after pulverization is a cooling period for lowering the temperature of the pulverized powder of rice grains, and at the same time, is a step of increasing the amount of fine particles by further absorbing water into the pulverized powder. Thus, by increasing the fine particles, it becomes possible to bake fine bread. The water absorption step after pulverization may be configured to be performed only for a predetermined time. In such a configuration, for example, due to the influence of environmental temperature, the bread container 50 (bread at the start of the next kneading step) is performed. In some cases, the temperature of the raw material) varies and a good bread cannot be obtained.
 このため、1つの対策として、第1温度検知部18(外気温度を検知する)、或いは、第2温度検知部19(温度センサ19aの先端をパン容器50に接触させない状態とする。すなわち、パン容器50周辺の温度(焼成室40内の温度)を検知するモードで使用)によって、粉砕工程の終了時(粉砕工程の開始前でもよい)に環境温度を検知し、この環境温度に基づいて粉砕後吸水工程の時間が決定されるようにしてもよい。これにより、粉砕後吸水工程が終了した段階におけるパン容器50の温度のばらつきを抑制できる。 Therefore, as one countermeasure, the first temperature detection unit 18 (detects the outside air temperature) or the second temperature detection unit 19 (the tip of the temperature sensor 19a is not brought into contact with the bread container 50. That is, bread The ambient temperature is detected at the end of the pulverization process (may be before the start of the pulverization process) by using the temperature around the container 50 (the temperature in the baking chamber 40), and pulverization is performed based on this environmental temperature. You may make it determine the time of a post-water absorption process. Thereby, the dispersion | variation in the temperature of the bread container 50 in the stage which the water absorption process after a grinding | pulverization was completed can be suppressed.
 具体的には、例えば予め実験により、環境温度と、粉砕工程後のパン容器50の温度が最適な温度(例えば28℃~30℃程度)となる時間との関係を調べてテーブル(本発明の第4のテーブルの実施形態)を作成し、このテーブルを制御装置81のROMに記憶させておく。例えば、図10のテーブルと同様に、一定範囲の環境温度について、5℃間隔で最適な吸水時間を調べて記憶させておく。そして、前述のように環境温度を検知し、検知された温度と予め制御装置81に記憶させておいたテーブルとから吸水時間を決定して、粉砕後吸水工程が決定された時間だけ実行されるようにすればよい。なお、粉砕後吸水工程の場合は、環境温度が高い場合に工程時間を長くし、環境温度が低い場合に工程時間を短くする必要がある。 Specifically, for example, a table (in accordance with the present invention) is examined in advance by examining the relationship between the environmental temperature and the time during which the temperature of the bread container 50 after the pulverization process becomes an optimum temperature (for example, about 28 ° C. to 30 ° C. Embodiment of the fourth table) is created, and this table is stored in the ROM of the control device 81. For example, as in the table of FIG. 10, the optimum water absorption time is examined and stored at intervals of 5 ° C. for a certain range of environmental temperature. Then, as described above, the ambient temperature is detected, the water absorption time is determined from the detected temperature and the table previously stored in the control device 81, and the water absorption process after pulverization is executed for the determined time. You can do that. In the case of the water absorption process after pulverization, it is necessary to lengthen the process time when the environmental temperature is high, and shorten the process time when the environmental temperature is low.
 本実施形態の自動製パン器1においては、粉砕後吸水工程は上記の手法ではなく、図11に示すような別の手法で実行される。以下、これについて説明する。 In the automatic bread maker 1 of the present embodiment, the water absorption step after pulverization is performed not by the above method but by another method as shown in FIG. This will be described below.
 粉砕工程が終了すると、制御装置81は第1温度検知部18によって外気温度を検知する(ステップS1)。検知された外気温度が予め設定された所定の温度(本発明の第2の所定の温度に該当)以下であるか否かを確認する(ステップS2)。所定の温度は、練り工程を開始するに際して好ましい温度であり、例えば28℃以上30℃以下の温度に設定される。 When the pulverization process is completed, the control device 81 detects the outside air temperature by the first temperature detector 18 (step S1). It is confirmed whether or not the detected outside air temperature is equal to or lower than a predetermined temperature set in advance (corresponding to the second predetermined temperature of the present invention) (step S2). The predetermined temperature is a preferable temperature when starting the kneading process, and is set to a temperature of 28 ° C. or higher and 30 ° C. or lower, for example.
 外気温度が所定の温度以下である場合(ステップS2でYes)には、制御装置81は第2温度検知部19によってパン容器50の温度を検知する(ステップS3)。なお、ここでは、第2温度検知部19の温度センサ19aの先端がパン容器50に接触した状態で温度検知を行う。そして、制御装置81は、検知されたパン容器50の温度が所定の温度以下であるか否かを確認する(ステップS4)。 When the outside air temperature is equal to or lower than the predetermined temperature (Yes in Step S2), the control device 81 detects the temperature of the bread container 50 by the second temperature detector 19 (Step S3). Here, temperature detection is performed with the tip of the temperature sensor 19 a of the second temperature detection unit 19 in contact with the bread container 50. And the control apparatus 81 confirms whether the temperature of the detected bread container 50 is below predetermined temperature (step S4).
 検知されたパン容器50の温度が所定の温度以下である場合(ステップS4でYes)には、制御装置81は、粉砕後吸水工程が開始されてから予め設定された第1の時間(例えば30分)が経過しているか否かを確認する(ステップS5)。この第1の時間は、粉砕後吸水工程の時間が短くなりすぎないように設けられている。すなわち、上述のように粉砕後吸水工程は、粉砕工程で得られた粉砕粉に更に水を吸水させることにより、粉砕粉の微粒子の量を増加させる役割も担う。このため、粉砕後吸水工程があまりに短くなると好ましくないために、第1の時間は設定されている。ただし、第1の時間をあまり長く設定すると、粉砕粉の冷却が進みすぎて、練り工程開始時の温度ばらつきの要因ともなるために、このような事態が発生しないように第1の時間を設定するのが好ましい。なお、第1の時間を経過しているか否かを確認するステップS5は、設けない構成としても構わない。 When the detected temperature of the bread container 50 is equal to or lower than the predetermined temperature (Yes in step S4), the control device 81 sets a first time (for example, 30) set in advance after the water absorption process after crushing is started. It is confirmed whether or not (minute) has elapsed (step S5). The first time is provided so that the time for the water absorption step after pulverization does not become too short. That is, as described above, the water absorption step after pulverization also plays a role of increasing the amount of fine particles of the pulverized powder by further absorbing water into the pulverized powder obtained in the pulverization step. For this reason, since it is not preferable if the water absorption process after grinding becomes too short, the first time is set. However, if the first time is set too long, the pulverized powder will be cooled too much and cause a temperature variation at the start of the kneading process. Therefore, the first time is set so that such a situation does not occur. It is preferable to do this. Note that step S5 for confirming whether or not the first time has elapsed may be configured not to be provided.
 粉砕後吸水工程が開始されてから第1の時間が経過している場合(ステップS5でYes)には、制御装置81は粉砕後吸水工程を終了する。一方、粉砕後吸水工程が開始されてから第1の時間が経過していない場合(ステップS5でNo)には、制御装置81は第1の時間が経過するまで待って、粉砕後吸水工程を終了する。 When the first time has elapsed since the start of the water absorption process after pulverization (Yes in step S5), the control device 81 ends the water absorption process after pulverization. On the other hand, if the first time has not elapsed since the start of the water absorption process after pulverization (No in step S5), the control device 81 waits until the first time elapses, and performs the water absorption process after pulverization. finish.
 検知されたパン容器50の温度が所定の温度より高い場合(ステップS4でNo)には、制御装置81は、粉砕後吸水工程が開始されてから予め設定された第2の時間(第1の時間よりも長い時間であり、例えば60分)が経過しているか否かを確認する(ステップS6)。そして、第2の時間を経過している場合(ステップS6でYes)には、パン容器50の温度が所定の温度に到達していなくても粉砕後吸水工程を終了する。一方、第2の時間を経過していない場合(ステップS6でNo)には、ステップS3に戻り、ステップS3以降の動作を行う。 When the detected temperature of the bread container 50 is higher than the predetermined temperature (No in step S4), the control device 81 performs a second time (first time) set in advance after the water absorption process after crushing is started. It is confirmed whether or not the time is longer than the time, for example, 60 minutes (step S6). And when the 2nd time has passed (it is Yes at Step S6), even if the temperature of bread container 50 has not reached predetermined temperature, the water absorption process after crushing is ended. On the other hand, when the second time has not elapsed (No in step S6), the process returns to step S3, and the operations after step S3 are performed.
 粉砕後吸水工程の開始から第2の時間を経過したか否かを確認するステップS6は、次のような理由により設けられる。すなわち、パン容器50の温度が、所定の温度まで下がるのに、非常に時間を要する場合も想定される。このような場合に、いつまでも練り工程を開始しないとパンの製造時間が著しく長くなって、ユーザが不便に感じる可能性もある。このため、粉砕後吸水工程の時間があまりにも長くなり過ぎないように、吸水時間の上限として第2の時間が設定されている。ただし、このステップS6は設けない構成としてもよい。この場合には、パン容器50の温度が所定の温度になるまで待って、粉砕後吸水工程を終了することになる。 Step S6 for confirming whether or not the second time has elapsed from the start of the water absorption step after pulverization is provided for the following reason. That is, it may be assumed that it takes a very long time for the temperature of the bread container 50 to drop to a predetermined temperature. In such a case, if the kneading process is not started indefinitely, the bread production time becomes extremely long, and the user may feel inconvenient. For this reason, the second time is set as the upper limit of the water absorption time so that the time of the water absorption step after crushing does not become too long. However, this step S6 may be omitted. In this case, it waits until the temperature of the bread container 50 reaches a predetermined temperature, and the water absorption process after pulverization is completed.
 ところで、外気温度が所定の温度より高い場合には、粉砕後吸水工程において、パン容器50の温度を所定の温度まで下げるのは無理である。このために、この場合には、原則として外気温度まで下がった時点で粉砕後吸水工程を終了することにしている。詳細には、次のように処理される。 By the way, when the outside air temperature is higher than a predetermined temperature, it is impossible to lower the temperature of the bread container 50 to a predetermined temperature in the water absorption step after pulverization. For this reason, in this case, in principle, the water absorption step after pulverization is terminated when the temperature falls to the outside temperature. In detail, it processes as follows.
 すなわち、ステップS2において、外気温度が所定の温度より高い場合(ステップS2でNo)、制御装置81は第2温度検知部19によってパン容器50の温度を検知する(ステップS7)。そして、制御装置81は、検知されたパン容器50の温度が外気温度以下であるか否かを確認する(ステップS8)。 That is, when the outside air temperature is higher than the predetermined temperature in Step S2 (No in Step S2), the control device 81 detects the temperature of the bread container 50 by the second temperature detection unit 19 (Step S7). Then, the control device 81 confirms whether or not the detected temperature of the bread container 50 is equal to or lower than the outside air temperature (step S8).
 検知されたパン容器50の温度が外気温度以下である場合(ステップS8でYes)には、制御装置81は、粉砕後吸水工程が開始されてから第1の時間が経過しているか否かを確認する(ステップS9)。この第1の時間は、ステップS5の場合と同様の趣旨で定められるものである。そして、ステップ5と同様にステップS9を設けない構成としてもよい。 If the detected temperature of the bread container 50 is equal to or lower than the outside air temperature (Yes in step S8), the control device 81 determines whether or not the first time has elapsed since the water absorption process after pulverization was started. Confirm (step S9). The first time is determined for the same purpose as in step S5. And like step 5, it is good also as a structure which does not provide step S9.
 粉砕後吸水工程が開始されてから第1の時間が経過している場合(ステップS9でYes)には、制御装置81は粉砕後吸水工程を終了する。一方、粉砕後吸水工程が開始されてから第1の時間が経過していない場合(ステップS9でNo)には、制御装置81は第1の時間が経過するまで待って、粉砕後吸水工程を終了する。 If the first time has elapsed since the start of the water absorption process after pulverization (Yes in step S9), the control device 81 ends the water absorption process after pulverization. On the other hand, if the first time has not elapsed since the start of the water absorption process after pulverization (No in step S9), the control device 81 waits until the first time elapses and performs the water absorption process after pulverization. finish.
 検知されたパン容器50の温度が外気温度より高い場合(ステップS8でNo)には、制御装置81は、粉砕後吸水工程が開始されてから予め設定された第2の時間が経過しているか否かを確認する(ステップS10)。そして、第2の時間を経過している場合(ステップS10でYes)には、パン容器50の温度が外気温度に到達していなくても粉砕後吸水工程を終了する。一方、第2の時間を経過していない場合(ステップS10でNo)には、ステップS7に戻り、ステップS7以降の動作を行う。 If the detected temperature of the bread container 50 is higher than the outside air temperature (No in step S8), the controller 81 has a second time set in advance since the water absorption step after crushing has started. It is confirmed whether or not (step S10). And when the 2nd time has passed (it is Yes at Step S10), even if the temperature of bread container 50 has not reached outside temperature, the water absorption process after crushing is ended. On the other hand, when the second time has not elapsed (No in step S10), the process returns to step S7, and the operations after step S7 are performed.
 なお、ステップS10を設ける趣旨は、ステップS6を設ける趣旨と同様である。ステップS10はステップS6と同様に設けない構成としても構わない。この場合には、パン容器50の温度が外気温度になるまで待って、粉砕後吸水工程を終了することになる。 Note that the purpose of providing step S10 is the same as the purpose of providing step S6. Step S10 may be configured not to be provided similarly to step S6. In this case, the process waits until the temperature of the bread container 50 reaches the outside air temperature, and the water absorption process after pulverization is completed.
 また、本実施形態では、パン容器50の温度に基づいて粉砕後吸水工程の時間が変動される構成としているが、パン容器50内のパン原料温度に基づいて粉砕後吸水工程の時間が変動される構成としてもよい。 In the present embodiment, the time of the water absorption process after pulverization is varied based on the temperature of the bread container 50, but the time of the water absorption process after pulverization is varied based on the bread raw material temperature in the bread container 50. It is good also as a structure to be.
 また、本実施形態では、粉砕後吸水工程に要する時間(粉砕後吸水工程の終了時期)を、粉砕後吸水工程中にパン容器50の温度を適宜検知しながら決定する構成とした。これに代えて、粉砕後吸水工程の開始時に、例えば外気温度及びパン容器50の温度を検知し、外気温度によって予想されるパン容器50の温度低下率(予め実験によって求めておく必要がある)とパン容器50の温度から、粉砕後吸水工程に要する時間が決定される構成等としても構わない。 Further, in this embodiment, the time required for the water absorption process after pulverization (end time of the water absorption process after pulverization) is determined while appropriately detecting the temperature of the bread container 50 during the water absorption process after pulverization. Instead, at the start of the water absorption step after pulverization, for example, the outside air temperature and the temperature of the bread container 50 are detected, and the temperature decrease rate of the bread container 50 predicted by the outside air temperature (need to be obtained by experiments in advance). Further, the time required for the water absorption step after crushing may be determined from the temperature of the bread container 50.
 粉砕後吸水工程が終了すると、続いて練り工程が行われる。練り工程の開始時には、グルテンや、食塩、砂糖、ショートニングといった調味料がそれぞれ所定量(一例として、グルテン50g、砂糖16g、塩4g、ショートニング10g)パン容器50に投入される。この投入は、例えばユーザの手によって行われてもよいし、自動投入装置を設けてユーザの手を煩わせることなく行われるようにしてもよい。 When the water absorption process after pulverization is completed, the kneading process is subsequently performed. At the start of the kneading process, seasonings such as gluten, salt, sugar, and shortening are each put in a predetermined amount (for example, gluten 50 g, sugar 16 g, salt 4 g, shortening 10 g) into the bread container 50. This insertion may be performed, for example, by the user's hand, or may be performed without bothering the user by providing an automatic insertion device.
 なお、グルテンは、パン原料として必須のものではない。このため、好みに応じてパン原料に加えるか否かを判断してよい。また、グルテンの代わりに増粘安定剤(例えばグアガム)を投入するようにしても構わない。 Note that gluten is not essential as a bread ingredient. For this reason, you may judge whether to add to a bread raw material according to liking. Further, a thickening stabilizer (for example, guar gum) may be added instead of gluten.
 粉砕工程で粉砕された米粒の粉砕粉を含むパン容器50内のパン原料を生地に練り上げる練り工程を開始するに際し、制御装置81は第1温度検出部18によって外気温度を検知する。そして、制御装置81は、検知した外気温度と、外気温度に対応付けて予め定めた練り工程の時間を示すテーブル(図12参照;本発明の第1のテーブルの実施形態)と、から練り工程の時間を決定する。このテーブルは、例えば制御装置81のROMに記憶されている。練り工程によって出来上がるパン生地の出来栄えは、自動製パン器1が置かれる環境温度による影響を受け易い。このような環境温度の影響を受けないように、外気温度を実測して、実測された温度情報と予め準備しておいたテーブルとに基づいて練り工程の時間を決定するようになっている。 When starting the kneading process of kneading the bread raw material in the bread container 50 containing the pulverized rice grains crushed in the crushing process into the dough, the control device 81 detects the outside air temperature by the first temperature detection unit 18. Then, the control device 81 performs the kneading process based on the detected outside air temperature and a table (see FIG. 12; an embodiment of the first table of the present invention) that indicates a predetermined kneading process time in association with the outside air temperature. Determine the time. This table is stored in the ROM of the control device 81, for example. The quality of the dough made by the kneading process is easily affected by the environmental temperature where the automatic bread maker 1 is placed. In order not to be affected by such environmental temperature, the outside air temperature is measured, and the time of the kneading process is determined based on the actually measured temperature information and a table prepared in advance.
 なお、図12のテーブルは、出来の良いパンが得られるように予め実験によって求めたものであるが、単なる一例であり、適宜変更可能である。例えば、図12では5℃毎に練り工程の時間が変更される構成となっているが、この温度間隔は大きくしても、小さくしてもよい。また、温度の上限や下限も適宜定めてよい。 It should be noted that the table in FIG. 12 is obtained by experiments in advance so that a good bread can be obtained, but is merely an example and can be changed as appropriate. For example, in FIG. 12, the time of the kneading process is changed every 5 ° C., but this temperature interval may be increased or decreased. Moreover, the upper limit and the lower limit of the temperature may be determined as appropriate.
 また、本実施形態では、外気温度に基づいて練り工程の時間が決定される構成にしているが、これに限らず、パン容器50周辺の温度(例えば焼成室40の温度)に基づいて練り工程の時間が決定される構成としてもよい。 In the present embodiment, the time for the kneading process is determined based on the outside air temperature. However, the present invention is not limited to this, and the kneading process is based on the temperature around the bread container 50 (for example, the temperature of the baking chamber 40). The time may be determined.
 また、練り工程の開始にあたっては、制御装置81は混練モータ60を制御してブレード回転軸52を正方向回転させる。このブレード回転軸52の正方向回転に追随してカバー70が正方向(図6においては反時計方向)に回転すると、パン容器50内のパン原料からの抵抗を受けて混練ブレード72が開き姿勢(図6参照)から折り畳み姿勢(図5参照)に転じる。これを受けてクラッチ76は、図4に示すように、第2係合体76bが第1係合体76aの回転軌道に干渉する角度となり、ブレード回転軸52とカバー70を連結する。これにより、カバー70と混練ブレード72は、ブレード回転軸52と一体となって正方向に回転する。なお、混練ブレード72の回転は低速・高トルクとされる。 Also, at the start of the kneading process, the control device 81 controls the kneading motor 60 to rotate the blade rotating shaft 52 in the forward direction. When the cover 70 rotates in the forward direction (counterclockwise in FIG. 6) following the forward rotation of the blade rotation shaft 52, the kneading blade 72 is opened by receiving resistance from the bread ingredients in the bread container 50. From (see FIG. 6) to the folded posture (see FIG. 5). In response to this, as shown in FIG. 4, the clutch 76 connects the blade rotating shaft 52 and the cover 70 at an angle at which the second engagement body 76 b interferes with the rotation track of the first engagement body 76 a. As a result, the cover 70 and the kneading blade 72 rotate in the forward direction together with the blade rotation shaft 52. The kneading blade 72 is rotated at a low speed and a high torque.
 混練ブレード72の回転によってパン原料は混練され、所定の弾力を有する一つにつながった生地(dough)に練り上げられていく。混練ブレード72が生地を振り回してパン容器50の内壁にたたきつけることにより、混練に「捏ね」の要素が加わることになる。練り工程における混練ブレード72の回転は、終始連続回転としてもよいが、自動製パン器1では、練り工程の初期の段階は間欠回転とし、後半を連続回転としている。 Bread ingredients are kneaded by the rotation of the kneading blade 72 and kneaded into a dough that has a predetermined elasticity. When the kneading blade 72 swings the dough and knocks it against the inner wall of the bread container 50, an element of “kneading” is added to the kneading. Although the rotation of the kneading blade 72 in the kneading process may be continuous rotation from beginning to end, in the automatic bread maker 1, the initial stage of the kneading process is intermittent rotation, and the latter half is continuous rotation.
 自動製パン器1では、初期に行う間欠回転が終了した段階で、イースト(例えばドライイースト)が投入されるようになっている。このイーストは、ユーザによって投入されるようにしてもよいし、自動投入されるようにしてもよい。なお、イーストをグルテン等と一緒に投入しないのは、イースト(ドライイースト)と水とが直接接触するのをなるべく避けるためである。ただし、場合によっては、イーストとグルテン等とが同時に投入されるようにしてもよい。 In the automatic bread maker 1, yeast (for example, dry yeast) is introduced when the initial intermittent rotation is completed. This yeast may be input by the user or may be automatically input. The reason why yeast is not added together with gluten or the like is to avoid direct contact between the yeast (dry yeast) and water as much as possible. However, in some cases, yeast and gluten may be added simultaneously.
 なお、自動製パン器1においては、この練り工程において、制御装置81がシーズヒータ41を制御し、焼成室40の温度が所定の温度(例えば32℃等)となるように調整される。この場合、第2温度検知部19の温度センサ19aの先端はパン容器50に接触しない位置にある。このため、パン容器50の振動が大きい練り工程において、温度センサ19a及びパン容器50の損傷は発生し難い。また、具材(例えばレーズン等)入りのパンを焼く場合には、この練り工程の途中で、具材が投入されるようにすればよい。 In the automatic bread maker 1, in this kneading process, the control device 81 controls the sheathed heater 41 so that the temperature of the baking chamber 40 is adjusted to a predetermined temperature (for example, 32 ° C.). In this case, the tip of the temperature sensor 19 a of the second temperature detection unit 19 is in a position where it does not contact the bread container 50. For this reason, in the kneading process in which the vibration of the bread container 50 is large, the temperature sensor 19a and the bread container 50 are hardly damaged. In addition, when baking bread containing ingredients (such as raisins), ingredients may be introduced during the kneading process.
 練り工程が終了すると、制御装置81の指令によって続いて発酵工程が実行される。この発酵工程では、制御装置81は、焼成室40の温度が発酵に適した温度(発酵温度)になるようにシーズヒータ41を制御する。なお、自動製パン器1が置かれる場所の環境温度(外気温度)によって発酵温度に到達するまでの時間に差が生じることがわかっている。このため、発酵工程の時間を所定の時間に固定していると、パン生地の発酵具合にばらつきを生じることがある。 When the kneading process is completed, the fermentation process is subsequently executed according to a command from the control device 81. In this fermentation process, the control device 81 controls the sheathed heater 41 so that the temperature of the baking chamber 40 becomes a temperature suitable for fermentation (fermentation temperature). It has been found that there is a difference in the time to reach the fermentation temperature depending on the environmental temperature (outside air temperature) where the automatic bread maker 1 is placed. For this reason, if the time of the fermentation process is fixed at a predetermined time, there may be variations in the degree of fermentation of the bread dough.
 このために、自動製パン器1では、制御装置81は、図13に示すフローチャートに従って発酵工程を実行させる。まず、練り工程が終了すると、制御装置81は、焼成室40の温度の検知を開始すると共に、シーズヒータ41を制御して、焼成室40の温度が予め定めた発酵温度(例えば38℃等)となるように温度制御を開始する(ステップS11)。なお、焼成室40の温度の検知は、第2温度検知部19のソレノイド19bの駆動を停止して温度センサ19aがパン容器50から離れた状態で行われる。 For this purpose, in the automatic bread maker 1, the control device 81 causes the fermentation process to be executed according to the flowchart shown in FIG. First, when the kneading process is completed, the control device 81 starts detecting the temperature of the baking chamber 40 and controls the sheathed heater 41 so that the temperature of the baking chamber 40 is a predetermined fermentation temperature (for example, 38 ° C.). Temperature control is started so as to become (step S11). The temperature of the baking chamber 40 is detected in a state where the driving of the solenoid 19b of the second temperature detector 19 is stopped and the temperature sensor 19a is separated from the bread container 50.
 そして、制御装置81は、焼成室40の温度が所定の温度(本発明の第1の所定の温度に該当)になるまで、焼成室40の温度を監視する(ステップS12)。なお、ここでの所定の温度は、例えば38℃である。焼成室40の温度が所定の温度になると、制御装置81は、時間計測を開始する(ステップS13)。そして、制御装置81は、この計測が開始されてから予め定めた所定の時間(例えば50分)が経過したか否かを確認し、所定の時間が経過した時点で発酵工程を終了させる(ステップS14)。なお、時間計測の開始から発酵工程の終了までは、制御装置81は、焼成室40の温度が所定の温度に保たれるようにシーズヒータ41を制御する。 Then, the control device 81 monitors the temperature of the baking chamber 40 until the temperature of the baking chamber 40 reaches a predetermined temperature (corresponding to the first predetermined temperature of the present invention) (step S12). The predetermined temperature here is, for example, 38 ° C. When the temperature of the baking chamber 40 reaches a predetermined temperature, the control device 81 starts time measurement (step S13). Then, the control device 81 confirms whether or not a predetermined time (for example, 50 minutes) has elapsed since the start of the measurement, and ends the fermentation process when the predetermined time has elapsed (step). S14). From the start of time measurement to the end of the fermentation process, the control device 81 controls the sheathed heater 41 so that the temperature of the baking chamber 40 is maintained at a predetermined temperature.
 以上のように発酵工程が行われると、所定の温度でのパン生地の発酵時間を、自動製パン器1が置かれた環境によらず一定とすることが可能である。なお、本実施形態の自動製パン器1では、焼成室40の温度(パン容器50周辺の温度)を検知することによって発酵工程の終了判断が行われる構成としているが、この構成に限らず、パン容器50の温度、パン容器50内のパン原料温度(より正確にはパン生地温度)を検知することによって、発酵工程の終了判断が行われることにしてもよい。 When the fermentation process is performed as described above, the fermentation time of bread dough at a predetermined temperature can be made constant regardless of the environment where the automatic bread maker 1 is placed. In addition, in the automatic bread maker 1 of this embodiment, although it is set as the structure by which the completion | finish judgment of a fermentation process is performed by detecting the temperature (temperature around the bread container 50) of the baking chamber 40, it is not restricted to this structure, The end of the fermentation process may be determined by detecting the temperature of the bread container 50 and the temperature of the bread material in the bread container 50 (more precisely, the bread dough temperature).
 また、発酵工程は、以上に示したフローとは異なるフローで行ってもよい。例えば、予め実験により、外気温度と、発酵工程の最適時間との関係を調べてテーブル(本発明の第2のテーブルの実施形態)を作成しておき、発酵工程の開始にあたって外気温度を検知(第1温度検知部18による)して、検知された外気温度とテーブルとから発酵工程の時間(例えば50分~70分の範囲の時間)を決定する。そして、この決定された時間だけ発酵工程が行われるようにする。外気温度が高い場合には、発酵工程は短くなり、外気温度が低い場合には発酵工程は長くなる。なお、ここで使用するテーブルは、制御装置81のROMに記憶させておけばよい。 In addition, the fermentation process may be performed by a flow different from the flow shown above. For example, a table (an embodiment of the second table of the present invention) is prepared by examining the relationship between the outside air temperature and the optimum time of the fermentation process in advance by experiment, and the outside air temperature is detected at the start of the fermentation process ( The time of the fermentation process (for example, a time in the range of 50 minutes to 70 minutes) is determined from the detected outside air temperature and the table. And a fermentation process is performed only for this determined time. When the outside air temperature is high, the fermentation process becomes short, and when the outside air temperature is low, the fermentation process becomes long. It should be noted that the table used here may be stored in the ROM of the control device 81.
 また、場合によっては、この発酵工程の途中で、ガス抜きや生地を丸める処理が行われるようにしても構わない。 In some cases, degassing or dough rounding may be performed during the fermentation process.
 発酵工程が終了すると、制御装置81の指令によって続いて焼成工程が実行される。制御装置81は、シーズヒータ41を制御して、焼成室40の温度を、パン焼きを行うのに適した温度(例えば125℃)まで上昇させ、焼成環境下で所定の時間(本実施形態では50分)パン焼きを実行させる。焼成工程の終了については、例えば操作部20の図示しない液晶表示パネルにおける表示や報知音等によってユーザに知らされる。ユーザは、製パン完了を検知すると、蓋30を開けてパン容器50を取り出す。 When the fermentation process is completed, the firing process is subsequently performed according to a command from the control device 81. The control device 81 controls the sheathed heater 41 to raise the temperature of the baking chamber 40 to a temperature suitable for baking (for example, 125 ° C.), and for a predetermined time (50 in this embodiment) in the baking environment. Min) Bake bread. The end of the firing process is notified to the user by, for example, a display on a liquid crystal display panel (not shown) of the operation unit 20 or a notification sound. When detecting the completion of bread making, the user opens the lid 30 and takes out the bread container 50.
 なお、この焼成工程でも、自動製パン器1が置かれる環境温度(外気温度)によって、パンを焼き上げるのに適した温度にまで到達する時間に差が出る場合がある。このために、この焼成工程でも外気温度に基づいて焼成工程の時間が変動される構成としてもよい。 In this baking process, there may be a difference in the time to reach a temperature suitable for baking bread depending on the environmental temperature (outside air temperature) where the automatic bread maker 1 is placed. For this reason, it is good also as a structure by which the time of a baking process is fluctuate | varied also in this baking process based on external temperature.
 以上のように、本実施形態の自動製パン器1によれば、米粒からパンを焼き上げることが可能であるために、非常に便利である。そして、米粒からパンを焼き上げる米粒用製パンコースが実行される場合に、温度検知部18、19によって検知された温度に基づいて、米粒用製パンコースに含まれるいくつかの工程について、適宜工程時間が変動される構成となっている。このために、本実施形態の自動製パン器1は、それが置かれる環境によってパンの出来栄えがばらつくことを抑制できる。 As described above, according to the automatic bread maker 1 of the present embodiment, it is possible to bake bread from rice grains, which is very convenient. And when the bread making course for rice grain which bakes bread from rice grain is performed, it is an appropriate process about some processes contained in the bread making course for rice grain based on the temperature detected by temperature detection parts 18 and 19. The time is varied. For this reason, the automatic bread maker 1 of the present embodiment can suppress variations in the quality of bread depending on the environment in which it is placed.
 なお、以上に示した自動製パン器は本発明の一例であり、本発明が適用される自動製パン器の構成は、以上に示した実施形態に限定されるものではない。 The automatic bread maker shown above is an example of the present invention, and the configuration of the automatic bread maker to which the present invention is applied is not limited to the embodiment described above.
 例えば、以上に示した実施形態では、米粒からパンを製造する構成としたが、米粒に限らず、小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆等の穀物粒を原料としてパンを製造する場合にも、本発明は適用されるものである。 For example, in the embodiment described above, bread is produced from rice grains. However, the bread is not limited to rice grains, and bread is produced using grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybeans as raw materials. Even in this case, the present invention is applied.
 また、以上に示した実施形態では、粉砕前吸水工程、粉砕後吸水工程、練り工程、及び発酵工程の全てにおいて、温度検知部で検知された温度に基づいて工程時間を変動させる構成とした。しかし、この構成に限らず、上記4つの工程のうちのいずれか(全部でない複数の場合が含まれる)について、工程時間が所定の時間にされるようにしてもよい。 In the embodiment described above, the process time is varied based on the temperature detected by the temperature detector in all of the water absorption process before pulverization, the water absorption process after pulverization, the kneading process, and the fermentation process. However, the present invention is not limited to this configuration, and the process time may be set to a predetermined time for any one of the above four processes (including a plurality of cases that are not all).
 また、以上に示した米粒用製パンコースで実行される製造工程は例示であり、他の製造工程としてもよい。例を挙げると、以上に示した実施形態では、米粒からパンを製造するにあたって、粉砕工程を行う前後に吸水工程を行う構成としているが、これらの吸水工程が行われない構成等としてもよい。 In addition, the manufacturing process executed in the above-described rice grain breadmaking course is an example, and may be another manufacturing process. For example, in the embodiment shown above, when producing bread from rice grains, the water absorption process is performed before and after the crushing process. However, the water absorption process may not be performed.
 その他、以上に示した実施形態では、自動製パン器1が粉砕ブレード54と混練ブレード72との2つのブレードを備える構成とした。しかし、これに限らず、自動製パン器が粉砕と混練とを兼用するブレード1つのみを備える構成等としてもよい。また、自動製パン器によって実行される製パンコースが、米粒用製パンコースのみである構成でもよい。 In addition, in the embodiment shown above, the automatic bread maker 1 is configured to include two blades of the crushing blade 54 and the kneading blade 72. However, the present invention is not limited to this, and the automatic bread maker may be configured to include only one blade for both crushing and kneading. Further, the bread making course executed by the automatic bread maker may be only the rice grain making course.
 本発明は、家庭用の自動製パン器に好適である。 The present invention is suitable for an automatic bread maker for home use.
   1 自動製パン器
   10 本体
   18 第1温度検知部
   19 第2温度検知部
   50 パン容器
   81 制御装置(制御部)
DESCRIPTION OF SYMBOLS 1 Automatic bread maker 10 Main body 18 1st temperature detection part 19 2nd temperature detection part 50 Bread container 81 Control apparatus (control part)

Claims (12)

  1.  パン原料が投入される容器と、
     前記容器を受け入れる本体と、
     外気温度、前記容器の温度、前記容器周辺の温度、及び前記容器内のパン原料温度のうちの少なくともいずれか1つを検知可能な温度検知部と、
     前記容器が前記本体に受け入れられた状態でパンの製造工程を実行させる制御部と、
     を備える自動製パン器であって、
     前記制御部は、前記容器内に投入された穀物粒を用いてパンを製造する穀物粒用製パンコースを実行させることが可能に設けられ、
     前記穀物粒用製パンコースが実行される場合に行われる複数の工程の中に、前記温度検知部で検知された温度に基づいて工程時間が変動される工程が少なくとも1つ含まれている、自動製パン器。
    A container into which bread ingredients are charged;
    A body for receiving the container;
    A temperature detection unit capable of detecting at least one of an outside air temperature, a temperature of the container, a temperature around the container, and a temperature of bread ingredients in the container;
    A control unit for executing a bread manufacturing process in a state where the container is received by the main body;
    An automatic bread maker comprising:
    The control unit is provided so as to be able to execute a bread making course for cereal grains that produces bread using the cereal grains put into the container,
    Among the plurality of steps performed when the grain bread making course is executed, at least one step in which the process time is changed based on the temperature detected by the temperature detection unit is included, Automatic bread machine.
  2.  前記複数の工程には、前記容器内に投入された穀物粒を粉砕する粉砕工程と、穀物粒の粉砕粉を含む前記容器内のパン原料をパン生地に練り上げる練り工程と、練り上げられたパン生地を発酵させる発酵工程と、発酵させたパン生地を焼成する焼成工程と、が含まれる、請求項1の自動製パン器。 The plurality of steps include a pulverization step of pulverizing the grain grains put into the container, a kneading step of kneading the bread ingredients in the container containing the pulverized powder of the grain grains into bread dough, and fermenting the kneaded bread dough The automatic bread maker of Claim 1 including the fermentation process to make and the baking process to bake the fermented bread dough.
  3.  前記制御部は、温度に対応付けて前記練り工程の時間を予め定めた第1のテーブルと、前記温度検知部によって検知された温度と、に基づいて前記練り工程の時間を決定する、請求項2に記載の自動製パン器。 The said control part determines the time of the said kneading process based on the 1st table which predetermined | prescribed the time of the said kneading process previously matched with temperature, and the temperature detected by the said temperature detection part. 2. The automatic bread maker according to 2.
  4.  前記制御部は、温度に対応付けて前記発酵工程の時間を予め定めた第2のテーブルと、前記温度検知部によって検知された温度と、に基づいて前記発酵工程の時間を決定する、請求項2に記載の自動製パン器。 The said control part determines the time of the said fermentation process based on the 2nd table which predetermined | prescribed the time of the said fermentation process previously matched with temperature, and the temperature detected by the said temperature detection part. 2. The automatic bread maker according to 2.
  5.  前記制御部は、前記発酵工程の開始に際して、前記温度検知部によって温度の検知を開始し、検知される温度が第1の所定の温度に到達した時点から所定の時間経過すると前記発酵工程を終了させる、請求項2に記載の自動製パン器。 The control unit starts temperature detection by the temperature detection unit at the start of the fermentation process, and ends the fermentation process when a predetermined time has elapsed since the detected temperature reached the first predetermined temperature. The automatic bread maker according to claim 2.
  6.  前記複数の工程には、穀物粒を粉砕する前に前記容器内の穀物粒に液体を吸液させる粉砕前吸液工程が含まれる、請求項1から5のいずれかに記載の自動製パン器。 The automatic bread maker according to any one of claims 1 to 5, wherein the plurality of steps include a pre-pulverization liquid absorption step in which liquid is absorbed into the cereal grains in the container before the cereal grains are pulverized. .
  7.  前記制御部は、温度に対応付けて前記粉砕前吸液工程の時間を予め定めた第3のテーブルと、前記温度検知部によって検知された温度とに基づいて、前記粉砕前吸液工程の時間を決定する、請求項6に記載の自動製パン器。 The control unit sets the time of the liquid absorption step before pulverization based on a third table in which the time of the liquid absorption step before pulverization is set in advance in association with the temperature and the temperature detected by the temperature detection unit. The automatic bread maker according to claim 6, wherein:
  8.  前記複数の工程には、穀物粒を粉砕した後に前記容器内の穀物粒の粉砕粉に液体を吸液させる粉砕後吸液工程が含まれる、請求項1から5のいずれかに記載の自動製パン器。 The automatic manufacturing method according to any one of claims 1 to 5, wherein the plurality of steps include a liquid absorption step after pulverization in which the pulverized powder of cereal particles in the container absorbs liquid after the cereal particles are pulverized. Bread machine.
  9.  前記制御部は、前記粉砕後吸液工程において、前記温度検知部によって検知される温度が第2の所定の温度に到達すると、前記粉砕後吸液工程を終了させる、請求項8に記載の自動製パン器。 The automatic control unit according to claim 8, wherein the control unit terminates the post-pulverization liquid absorption step when the temperature detected by the temperature detection unit reaches a second predetermined temperature in the post-pulverization liquid absorption step. Baking machine.
  10.  前記制御部は、前記容器の温度、又は、前記容器内のパン原料温度が前記第2の所定の温度に到達すると前記粉砕後吸液工程を終了させ、外気温度が前記第2の所定の温度よりも高い場合には、前記容器の温度、又は、前記容器内のパン原料温度が前記第2の所定の温度ではなく外気温度に到達すると、前記粉砕後吸液工程を終了させる、請求項9に記載の自動製パン器。 When the temperature of the container or the temperature of the bread material in the container reaches the second predetermined temperature, the control unit ends the liquid absorption step after pulverization, and the outside air temperature is set to the second predetermined temperature. The temperature of the container or the temperature of the bread material in the container reaches the outside air temperature instead of the second predetermined temperature, the post-grinding liquid absorption step is terminated. Automatic bread maker described in 1.
  11.  前記制御部は、更に、前記粉砕後吸液工程の時間が、第1の時間以上、第2の時間以内となるように前記粉砕後吸液工程の時間を制御し、前記温度検知部からの情報により前記粉砕後吸液工程が終了できると判断される場合であっても、前記第1の時間に満たない場合には前記粉砕後吸液工程を終了させず、前記温度検知部からの情報により前記粉砕後吸液工程が終了できないと判断される場合であっても、前記第2の時間を超える場合には前記粉砕後吸液工程を終了させる、請求項10に記載の自動製パン器。 The control unit further controls the time of the liquid absorption step after pulverization so that the time of the liquid absorption step after pulverization is equal to or longer than the first time and within the second time, and from the temperature detection unit Even if it is determined that the liquid absorption process after pulverization can be completed by information, if the first time is not reached, the liquid absorption process after pulverization is not terminated, and information from the temperature detection unit 11. The automatic bread maker according to claim 10, wherein even if it is determined that the liquid absorption step after pulverization cannot be completed, the liquid absorption step after pulverization is terminated when the second time is exceeded. .
  12.  前記制御部は、温度に対応付けて前記粉砕後吸液工程の時間を予め定めた第4のテーブルと、前記温度検知部によって検知された温度とに基づいて、前記粉砕後吸液工程の時間を決定する、請求項8に記載の自動製パン器。 The control unit sets the time for the post-pulverization liquid absorption step based on a fourth table that predetermines the time for the post-pulverization liquid absorption step in association with the temperature and the temperature detected by the temperature detection unit. The automatic bread maker according to claim 8, wherein:
PCT/JP2010/071655 2009-12-15 2010-12-03 Automatic bread maker WO2011074427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-283786 2009-12-15
JP2009283786A JP2011125380A (en) 2009-12-15 2009-12-15 Automatic bread maker

Publications (1)

Publication Number Publication Date
WO2011074427A1 true WO2011074427A1 (en) 2011-06-23

Family

ID=44167183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071655 WO2011074427A1 (en) 2009-12-15 2010-12-03 Automatic bread maker

Country Status (3)

Country Link
JP (1) JP2011125380A (en)
TW (1) TW201134397A (en)
WO (1) WO2011074427A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351696B2 (en) * 2019-09-30 2023-09-27 株式会社ツインバード bread maker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167517A (en) * 1985-12-20 1987-07-23 松下電器産業株式会社 Full-automatic bread maker
JP2000069898A (en) * 1998-09-03 2000-03-07 Mk Seiko Co Ltd Food processing apparatus provided with rice polishing function and rice-polishing apparatus
JP2006334151A (en) * 2005-06-02 2006-12-14 Mk Seiko Co Ltd Automatic bread maker
JP2007020458A (en) * 2005-07-15 2007-02-01 Namisato:Kk Rice powder having high rate of moisture content, method for producing and storing the rice powder, and method for producing rice powder having desired rate of moisture content
JP2008000109A (en) * 2006-06-26 2008-01-10 Takefumi Yoneya Rice flour-containing confectionery, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167517A (en) * 1985-12-20 1987-07-23 松下電器産業株式会社 Full-automatic bread maker
JP2000069898A (en) * 1998-09-03 2000-03-07 Mk Seiko Co Ltd Food processing apparatus provided with rice polishing function and rice-polishing apparatus
JP2006334151A (en) * 2005-06-02 2006-12-14 Mk Seiko Co Ltd Automatic bread maker
JP2007020458A (en) * 2005-07-15 2007-02-01 Namisato:Kk Rice powder having high rate of moisture content, method for producing and storing the rice powder, and method for producing rice powder having desired rate of moisture content
JP2008000109A (en) * 2006-06-26 2008-01-10 Takefumi Yoneya Rice flour-containing confectionery, and method for producing the same

Also Published As

Publication number Publication date
JP2011125380A (en) 2011-06-30
TW201134397A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
JP5418212B2 (en) Automatic bread machine
JP5449795B2 (en) Automatic bread machine
KR20110084105A (en) Automatic bread maker
WO2011099392A1 (en) Automatic bread making machine
WO2011099393A1 (en) Automatic bread making machine
JP5347833B2 (en) Automatic bread machine
WO2011065273A1 (en) Automatic bread maker
JP5295039B2 (en) Automatic bread machine
JP2011224165A (en) Automatic bread maker
JP2011143075A (en) Automatic bread maker
WO2011074427A1 (en) Automatic bread maker
JP2010246589A (en) Automatic bread making machine
JP5402577B2 (en) Automatic bread machine
JP4799693B2 (en) Automatic bread machine
WO2011065272A1 (en) Automatic bread maker
JP4799694B2 (en) Automatic bread machine
JP4804578B2 (en) Automatic bread machine
JP2010184081A (en) Automatic bread-making machine
JP2013106894A (en) Automatic bread maker
JP4794675B2 (en) Automatic bread machine
JP4799692B2 (en) Automatic bread machine
JP5682695B2 (en) Automatic bread machine
JP2012147994A (en) Automatic breadmaking machine
JP2014050447A (en) Automatic bread making machine
WO2011129004A1 (en) Automatic bread making machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837456

Country of ref document: EP

Kind code of ref document: A1