WO2011024235A1 - Electrode - Google Patents

Electrode Download PDF

Info

Publication number
WO2011024235A1
WO2011024235A1 PCT/JP2009/004233 JP2009004233W WO2011024235A1 WO 2011024235 A1 WO2011024235 A1 WO 2011024235A1 JP 2009004233 W JP2009004233 W JP 2009004233W WO 2011024235 A1 WO2011024235 A1 WO 2011024235A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
electrode
compound particles
plating
cold cathode
Prior art date
Application number
PCT/JP2009/004233
Other languages
French (fr)
Japanese (ja)
Inventor
新田耕司
稲沢信二
徳田健之
山▲崎▼和郎
Original Assignee
住友電気工業株式会社
住電ファインコンダクタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住電ファインコンダクタ株式会社 filed Critical 住友電気工業株式会社
Priority to PCT/JP2009/004233 priority Critical patent/WO2011024235A1/en
Publication of WO2011024235A1 publication Critical patent/WO2011024235A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode

Definitions

  • the present invention relates to an electrode used for a cold cathode fluorescent lamp.
  • the present invention relates to an electrode from which a cold cathode fluorescent lamp having high brightness over a long period of time can be obtained.
  • Cold cathode fluorescent lamps are used as light sources for various electrical devices such as backlight light sources for liquid crystal display devices.
  • This lamp typically includes a cylindrical glass tube having a phosphor layer on the inner wall surface and a pair of cup-shaped electrodes arranged at both ends of the tube, and a rare gas such as Ar and mercury in the tube. Is enclosed.
  • the electrode is typically made of nickel, a lead wire is connected, and a voltage is applied to the electrode via the lead wire.
  • Patent Documents 1 to 3 an emitter made of a metal oxide such as barium (Ba) or cesium (Cs), which has a work function smaller than that of nickel and excellent in electron emission properties, is attached to the electrode or contained on the surface side of the electrode. The structure made is disclosed.
  • the conventional electrode has insufficient adhesion between the electrode and the emitter, and it is difficult to sufficiently contribute to the enhancement of the brightness of the cold cathode fluorescent lamp by dropping the emitter.
  • Patent Document 3 specification 0007 When a paste or aqueous solution is applied to the electrode and heat-treated as described in Patent Documents 1 and 2, the emitter is easily peeled off from the electrode (Patent Document 3 specification 0007), and the life of the lamp becomes extremely short. Not suitable for practical use.
  • the electrode described in Patent Document 3 the emitter powder and nickel powder are mixed and sintered, and then a plate obtained by rolling and a nickel plate are bonded together to form a clad material. Further, it is rolled into an electrode material (plate material), which is manufactured by subjecting this material to cup-like processing.
  • a sintered body has many defects such as pores. Therefore, when an electrode is shaved by the sputtering action of Ar ions, the emitter is easily dropped, and it is difficult to hold the emitter for a long time.
  • an object of the present invention is to provide an electrode for a cold cathode fluorescent lamp that has high luminous efficiency and can maintain the effect over a long period of time.
  • the metal elements of Groups 1 to 3 of the periodic table generally have a low work function and good secondary electron emission properties, they are desirable for electrode materials (cathode materials) for cold cathode fluorescent lamps.
  • these metal elements are easily oxidized in the atmosphere, it is practically impossible to use a bulk material as an electrode as it is or to coat a conventional nickel electrode.
  • oxides of these metal elements exist stably in the atmosphere, they are inferior in workability, so that these oxides cannot be used for electrodes as they are.
  • the adhesion between the oxide and the electrode substrate is inferior.
  • the inventors of the present invention have a structure in which fine powder of a compound of a metal element of Groups 1 to 3 of the periodic table and oxygen is dispersed during plating, and the plating layer sufficiently retains the fine powder. Therefore, it has been found that a cold cathode fluorescent lamp having excellent luminous efficiency and capable of maintaining its effect for a long period of time can be obtained.
  • the present invention is based on this finding, and a metal layer holding compound particles functioning as an emitter is formed by plating.
  • the electrode of the present invention is used for a cold cathode fluorescent lamp, and includes a base material formed in a cup shape and a metal layer formed on the bottom of the inner peripheral surface of the base material. This metal layer is formed by plating. In addition, this metal layer contains compound particles containing one or more metal elements selected from Group 1, Group 2 and Group 3 of the periodic table and oxygen.
  • the electrode of the present invention having the above-described configuration is such that the compound particles are sufficiently held in the metal layer, so that the discharge property is enhanced by the presence of the compound particles and the luminous efficiency can be improved. It is possible to contribute to high brightness over the range. Further, by forming the metal layer by plating, a metal layer in which compound particles are dispersed can be easily formed. Furthermore, the metal layer formed by plating is excellent in workability, and it is also possible to process the material on which the metal layer is formed (the material constituting the base material) into a cup shape. In addition, by forming the metal layer by plating, the metal layer can be formed on a plurality of base materials or materials at one time, so that the productivity of the electrode is excellent.
  • the base material is preferably nickel or a nickel alloy.
  • Nickel composed of Ni and impurities (so-called pure nickel) or a nickel alloy composed of additive elements and the balance Ni and impurities is excellent in plastic workability, and a cup-shaped electrode can be easily produced.
  • Nickel and nickel alloys have a low melting point, and lead wires made of kovar or the like can be easily joined by welding.
  • Nickel alloys are disclosed in, for example, JP 2007-173197 A, specifically Ti, Hf, Zr, V, Fe, Nb, Mo, Mn, W, Sr, Ba, B, Th, Be. , Si, Al, Y, Mg, In, and one or more elements selected from rare earth elements (excluding Y) in total from 0.001% by mass to 5.0% by mass, with the balance being Ni and impurities preferable.
  • This nickel alloy has a smaller work function than nickel, so it is easy to discharge, 2. It is difficult to sputter, 3. It is difficult to form an amalgam, 4. It is difficult to form an oxide film, so it is difficult to prevent discharge, etc. Has various advantages.
  • the additive element typically forms an intermetallic compound with Ni and is present in the nickel base material.
  • the metal layer is formed by plating.
  • plating electroless plating or electroplating (electrolytic plating) can be used.
  • the plating solution only needs to be liquid so that the raw material powder to be added (to be compound particles) does not dissolve, and can be appropriately selected according to the composition of the powder.
  • the plating solution can be selected from an alkaline plating solution, an organic solvent, a molten salt, an ionic liquid, and the like.
  • organic solvents are acetonitrile, dimethylformamide, etc.
  • molten salt such as LiCl-KCl
  • ionic liquids include those of various such EMI-BF 4 and TMHA-TFSI.
  • a plating solution other than those exemplified above may be used.
  • the metal layer being formed by plating can be determined by examining the composition of impurities, the structure of the metal layer, the hardness of the metal layer, and the like. For example, when the metal layer is made of electrolytic nickel plating, the crystal grain size is small (average grain size: about 0.01 to 1 ⁇ m). Therefore, the size of the crystal grain is examined, and the additive used for forming the plating is further decomposed. Since elements (impurities) such as C and S to be mixed are mixed in the plating, the presence of these elements can be examined.
  • the metal layer is made of electroless nickel plating
  • elements (impurities) such as P and B derived from the reducing agent used for forming the plating are mixed in the plating, so the presence of these elements is investigated, Since this plating has a thermodynamically unstable amorphous phase, it is possible to examine the state of the structure.
  • the metal layer is provided at least at the bottom on the inner peripheral surface of the cup-shaped base material.
  • the cup-like electrode can suppress the sputtering phenomenon to some extent due to the hollow cathode effect. As a result, it is possible to suppress a decrease in luminance due to mercury consumption accompanying this phenomenon. And, since the cup-shaped electrode discharges from the bottom and its vicinity in the inner peripheral surface, by providing a metal layer containing compound particles having excellent discharge performance at the bottom, Can be enhanced. On the inner peripheral surface, not only the bottom but also the region from the bottom to 1/3 of the length of the electrode is provided with the metal layer, so that the discharge performance can be further improved.
  • a metal layer may be provided over the entire inner peripheral surface, or a metal layer may be provided on the outer peripheral surface of the cup-shaped electrode.
  • the metal layer is preferably made of nickel or a nickel alloy.
  • Nickel and nickel alloy can be easily plated, and when the substrate is made of nickel or nickel alloy, the plating of nickel or nickel alloy and the substrate is excellent in adhesion. Furthermore, nickel plating or nickel alloy plating has little color unevenness, and a good appearance can be easily obtained, increasing the commercial value.
  • the thickness of the metal layer is preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the metal layer is 1 ⁇ m or more, the compound particles can be easily retained, so that the time for sustaining the high brightness state can be extended.
  • This effect is preferable as the thickness of the metal layer is thicker, but if it exceeds 100 ⁇ m, it is considered uneconomical because the lamp life is considered to be due to factors other than the disappearance of compound particles (for example, reduction of mercury). .
  • a more preferable thickness is 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of a metal layer may differ partially, it is preferable that the metal layer provided in the bottom part of the internal peripheral surface of a base material satisfy
  • the thickness of the metal layer is measured as follows.
  • the cross section of the electrode is observed with an optical microscope (500 to 1000 times), the thickness is measured over the entire area of the observed image, and the average value is taken as the thickness of the cross section.
  • the electrode of the present invention can maintain a high discharge performance because at least a part of the compound particles is automatically exposed from the metal layer when the cold cathode fluorescent lamp is turned on. In addition, you may perform the process for exposing a part of compound particle after forming a metal layer.
  • the compound particles are preferably composed of at least one selected from alkali metal oxides, alkali metal salts, alkaline earth metal oxides, magnesium oxides and rare earth element oxides.
  • alkali metal oxides Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O
  • These oxides and salts have a low work function and excellent discharge characteristics.
  • Rb 2 O and Cs 2 O having a large atomic radius are preferable because of their low work function.
  • the composition of the compound particles and the base material in the metal layer can be measured by using, for example, SEM with EDX or X-ray diffraction.
  • the compound particles preferably have a maximum diameter of 10 ⁇ m or less.
  • the emission efficiency of secondary electrons when viewed from the whole electrode tends to increase with the area where the compound particles are exposed from the metal layer.
  • the compound particles are present in the metal layer at the same volume ratio, the smaller the particles, the larger the surface area of the particles. Therefore, the area ratio of the particles exposed from the metal layer also increases and the electron emission efficiency improves.
  • the compound particles are preferably smaller, and the maximum diameter is more preferably 1 ⁇ m or less, and no lower limit is particularly provided. A method for measuring the maximum diameter of the compound particles in the metal layer will be described later.
  • the particle size of the compound particles depends on the size of the raw material powder to be added when forming the metal layer, and the size of the raw material powder is almost maintained. Therefore, the raw material powder is preferably adjusted so that the particle size of the compound particles becomes a desired size.
  • a commercially available powder having a desired size may be used, or a commercially available powder may be pulverized and a desired size may be selected with a sieve or the like.
  • the shape of the compound particles is not particularly limited because it does not particularly affect the electron emission property.
  • there may be various shapes such as a spherical shape (circular cross section), an elliptical cross section, a rectangular cross section, and a needle shape.
  • Aspect ratio minimum length (short side length, e.g. for elliptical particles: short diameter, rectangular particles: the largest of the perpendiculars to the maximum diagonal)) and maximum length (long side
  • the ratio of the length of the compound particles per unit volume of the metal layer is such that the ratio of the length (for example, elliptical particles: major axis, rectangular particles: maximum diagonal) is relatively large).
  • a shape satisfying an aspect ratio of 1: 2 to 1:50 typically a cross-sectional ellipse or a cross-sectional rectangle is preferable.
  • the aspect ratio exceeds 1:50, for example, when the length of the short side is 200 nm (0.2 ⁇ m), the length of the long side exceeds 10 ⁇ m, and as a result, the particle diameter increases.
  • the aspect ratio of the compound particles in the metal layer can be controlled by using, for example, a material powder from which particles having an excessive aspect ratio have been removed.
  • the aspect ratio of the compound particles in the metal layer is determined by, for example, extracting the compound particles by image processing with an image analysis software obtained by observing the surface of the metal layer with an X-ray microscope, and extracting the maximum length of the extracted particles. And the minimum length is measured, and this measurement result is used.
  • the content of the compound particles is preferably 1% by volume or more and 30% by volume or less.
  • the contribution of the compound particles to 1% by volume or more greatly contributes to the improvement of the luminous efficiency. It is possible to suppress a relative decrease in the amount of the constituent metal and maintain a high holding power, and to suppress instability of the light emission efficiency due to an increase in particle dropout.
  • a more preferable content is 5% by volume or more and 15% by volume or less.
  • the electrode of the present invention has a high luminance and can contribute to the realization of a cold cathode fluorescent lamp capable of maintaining a high luminance state over a long period of time.
  • Test Example 1 Presence or absence of metal layer
  • An electrode having a metal layer on a cup-shaped substrate was prepared, and a cold cathode fluorescent lamp using the electrode was further prepared to evaluate the performance of the lamp.
  • An integrated member in which the base material and the inner lead wire are integrated is manufactured as follows.
  • the ingot of nickel (LC-Ni (Ni201)) is hot-rolled, and the obtained rolled plate material is heat-treated and then surface-cut.
  • the obtained surface-treated material is repeatedly subjected to cold rolling and heat treatment, and then subjected to final heat treatment (softening treatment) to produce a softened material having a thickness of 0.1 mm.
  • the softened material is cut into a predetermined size, and the obtained plate-like material is cold-pressed to produce a cup-shaped base material (diameter ⁇ 1.6 mm ⁇ length 3.0 mm).
  • a glass bead welded to an inner lead wire made of Kovar was welded and joined with a laser, and the inner lead wire with glass beads and the base material were integrated. An integral member is produced.
  • a metal layer is formed on the base material of the obtained integral member as follows. Note that, when the metal layer is formed, when the base material needs to be conductive (Test Examples 4 and 5 to be described later), the inner lead wire is used to ensure the conduction.
  • ⁇ Formation of metal layer> A powder made of a compound to be mixed with a plating solution (described later) is prepared.
  • commercially available Y 2 O 3 powder is pulverized with a ball mill, and is screened into the following four types according to particle size using a commercially available precision sieve. When the shape of the pulverized particles was examined, the aspect ratio generally satisfied 1: 2 to 1:50.
  • the metal layer is formed by a process of degreasing / hydrophilization treatment ⁇ catalyst application ⁇ catalyst activation ⁇ electroless plating.
  • portions other than the base material were previously masked using a commercially available PTFE masking tape.
  • Electroless plating process A unit obtained by adding the prepared Y 2 O 3 powder at a rate of 10 g / L to Nibojoule U-77 (60 ° C, 1 L) manufactured by Uemura Kogyo Co., Ltd. The member was immersed for 6 hours (360 minutes) to form an electroless nickel plating layer having a thickness of 20 ⁇ m.
  • an electrode member including an electrode having a metal layer (plating layer) formed on the entire inner and outer peripheral surfaces of the cup-shaped base material and an inner lead wire was obtained. Note that, after plating, the thickness of the metal layer was measured from an optical microscope observation image (1000 times) for five arbitrary cross sections of the electrode, and was equal to the formed thickness.
  • the maximum diameter ( ⁇ m) of the compound particles in the metal layer and the content (% by volume) of the compound particles were measured.
  • the maximum diameter was determined as follows.
  • the surface of the metal layer is observed with an X-ray microscope (field of view: 200 ⁇ m ⁇ 200 ⁇ m), an observation image (projection image) in which compound particles are dispersed is obtained, and this observation image is processed using commercially available image analysis software.
  • To extract compound particles The maximum length of each compound particle in the field of view is measured, the maximum value is taken as the maximum length of this field of view, and the average of five fields is shown in Table 1 as the maximum diameter.
  • the content was determined as follows.
  • the mass of the electrode and the mass of only the metal layer are measured, the electrode is dissolved with nitric acid or the like, and the constituent metal / compound particles of the substrate / metal layer are dissolved.
  • the obtained solution is examined with an ICP emission spectroscopic analyzer, and the content of the compound is calculated from the concentration of the metal (Y in this case).
  • the mass of the constituent metal of the metal layer is determined from the difference between the mass of the metal layer and the calculated content of the compound.
  • a cold cathode fluorescent lamp was produced using the obtained electrode member, and the luminance was measured every 200 hours. The results are shown in Table 1.
  • a cold cathode fluorescent lamp having an electrode having no metal layer was produced.
  • the integrated member before forming the metal layer was used as it is for the cold cathode fluorescent lamp.
  • the cold cathode fluorescent lamp was produced as follows. Prepare a pair of joining members that join the outer lead wires to the end of the inner lead provided in the electrode member, and have a phosphor layer (here, a halophosphate phosphor layer) on the inner wall surface and open at both ends
  • a phosphor layer here, a halophosphate phosphor layer
  • One joining member is inserted into one end of the glass tube, and glass beads and one end of the glass tube are welded to seal one end of the glass tube, and the electrode of the joining member is fixed in the glass tube.
  • a vacuum is drawn from the other end of the glass tube to introduce a rare gas (Ar gas here) and mercury, and the other joining member is inserted to fix the electrode and seal the glass tube.
  • a cold cathode fluorescent lamp in which the openings of a pair of cup-shaped electrodes are arranged to face each other is obtained.
  • ⁇ Ramp evaluation> The brightness was evaluated by relatively expressing the brightness of the other samples, with the initial value (0 hr) of sample No. 100 having an electrode having no metal layer being 100. Five pairs of bonding members were prepared for each bonding member, and five lamps were produced. The luminance of each lamp was measured, and the luminance was evaluated using the average value of the five lamps as the value of each sample.
  • Sample Nos. 1-1 to 1-4 having a metal layer containing compound particles have a high initial luminance and a small decrease in luminance after a long period of time. Can be maintained over a long period of time. In particular, it can be seen that the smaller the size of the compound particles, the higher the luminance.
  • Test Example 2 Metal Layer Thickness >> With respect to Test Example 1, the immersion time of the plating solution was changed to produce an electrode in which the thickness of the metal layer was changed, and further, a cold cathode fluorescent lamp using this electrode was produced. Similarly, the lamp performance was evaluated. The results are shown in Table 2.
  • an electrode and a cold cathode fluorescent lamp were prepared in the same manner as in Test Example 1 except that the immersion time of the plating solution was changed (immersion time; sample No. 2-1: 3.6 minutes, sample No. 2-2: 36 minutes, sample No. 2-3: 1800 minutes).
  • immersion time sample No. 2-1: 3.6 minutes
  • sample No. 2-2 36 minutes
  • sample No. 2-3 1800 minutes
  • the thickness of the metal layer was measured from an optical microscope observation image (1000 times) for five arbitrary cross sections of the electrode, and was equal to the formed thickness.
  • the content (% by volume) of the compound particles was measured in the same manner as in Test Example 1. The results are also shown in Table 2.
  • Test Example 3 Content of Compound Particles >> Compared to Test Example 1, the amount of the raw material powder added to the plating solution was changed to produce an electrode having a metal layer with a different content of compound particles, and a cold cathode fluorescent lamp using this electrode The lamp performance was evaluated in the same manner as in Test Example 1. The results are shown in Table 3.
  • Test Example 4 Plating Method >> Compared to Test Example 1, an electrode with a metal layer formed using a different plating solution was prepared, and further, a cold cathode fluorescent lamp was manufactured using this electrode, and the performance of the lamp was evaluated in the same manner as Test Example 1. did. The results are shown in Table 4.
  • DMSO 2 dimethylsulfone: Temperature 120 ° C, 1 L, 100 g / L of anhydrous nickel chloride added, and 10 g / L of Y 2 O 3 powder of powder type 1-D prepared in Test Example 1 was used as a plating solution.
  • the inner lead of the integral member that activated the catalyst is the negative electrode
  • the nickel plate (SK nickel manufactured by Sumitomo Metal Mining Co., Ltd.) is the positive electrode
  • the current density is 5 A / dm 2 for 20 minutes.
  • a 20 ⁇ m nickel plating was formed.
  • this plating was performed in a glove box. Note that, after plating, the thickness of the metal layer was measured from an optical microscope observation image (1000 times) for five arbitrary cross sections of the electrode, and was equal to the formed thickness.
  • Test Example 5 Compound Particle Type >> Compared to Test Example 4, an electrode having a metal layer formed using a raw material powder having a different composition was prepared, and a cold cathode fluorescent lamp using this electrode was prepared. Evaluated. The results are shown in Table 5.
  • the metal layer was formed by electroplating using an organic solvent in the same manner as in Test Example 4 (plating conditions are the same as in Test Example 4).
  • Reagents (commercially available products) having the compositions shown in Table 5 were prepared as raw material powders to be added to the plating solution, and pulverized and screened with a ball mill in the same manner as in Test Example 1, and each powder was prepared with a particle size of 1 ⁇ m or less.
  • Each of the prepared powders was mixed with the plating solution shown in Test Example 4 and electroplated, and a cold cathode fluorescent lamp was produced using the obtained electrode. Further, for the obtained electrode (electrode member), the content (% by volume) of the compound particles was measured in the same manner as in Test Example 1. The results are also shown in Table 5.
  • the above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration.
  • you may form a base material and a metal layer with a nickel alloy.
  • the compound particles may be configured to contain a combination of a plurality of different compositions.
  • a material in which a metal layer is formed may be prepared, and a cup-shaped process may be applied to the material to produce an electrode.
  • the electrode of the present invention can be suitably used for a cold cathode fluorescent lamp.
  • the cold cathode fluorescent lamp is, for example, a backlight light source for a liquid crystal display device such as a liquid crystal monitor of a personal computer or a liquid crystal television, a light source for a front light of a small display, It can be suitably used as a light source for various electrical devices such as a light source for irradiating a document such as a copying machine or a scanner, or a light source for an eraser of a copying machine.

Landscapes

  • Discharge Lamp (AREA)

Abstract

Disclosed is an electrode which can contribute to increase the luminance of a cold cathode fluorescent lamp.  Specifically disclosed is a cup-shaped electrode used in a cold cathode fluorescent lamp, which comprises a base formed into a cup shape and a metal layer formed on the bottom portion of the inner surface of the base.  The metal layer is formed by plating, and contains compound particles containing one or more metal elements selected from the group 1, group 2 and group 3 elements of the periodic table, and oxygen.  Since the metal layer is formed by plating, adhesion between the metal layer and compound particles is excellent.  Consequently, the electrode can hold compound particles having an excellent discharge performance for a long time, and thus can contribute to increase the luminance of a cold cathode fluorescent lamp.

Description

電極electrode
 本発明は、冷陰極蛍光ランプに利用される電極に関する。特に、長期に亘り高輝度である冷陰極蛍光ランプが得られる電極に関するものである。 The present invention relates to an electrode used for a cold cathode fluorescent lamp. In particular, the present invention relates to an electrode from which a cold cathode fluorescent lamp having high brightness over a long period of time can be obtained.
 液晶表示装置のバックライト用光源といった種々の電気機器の光源として、冷陰極蛍光ランプが利用されている。このランプは、代表的には、内壁面に蛍光体層を有する円筒状のガラス管と、この管の両端に配置される一対のカップ状の電極とを具え、管内にArといった希ガス及び水銀が封入されている。電極は、ニッケルからなるものが代表的であり、リード線が接続されて、リード線を介して電極に電圧が印加される。 Cold cathode fluorescent lamps are used as light sources for various electrical devices such as backlight light sources for liquid crystal display devices. This lamp typically includes a cylindrical glass tube having a phosphor layer on the inner wall surface and a pair of cup-shaped electrodes arranged at both ends of the tube, and a rare gas such as Ar and mercury in the tube. Is enclosed. The electrode is typically made of nickel, a lead wire is connected, and a voltage is applied to the electrode via the lead wire.
 昨今、冷陰極蛍光ランプの更なる高輝度化が望まれている。高輝度化には、放電性の向上(電子を放出し易くすること)が効果的である。特許文献1~3は、ニッケルよりも仕事関数が小さく、電子放出性に優れるバリウム(Ba)やセシウム(Cs)といった金属の酸化物からなるエミッタを電極に付着させたり、電極の表面側に含有させた構成を開示している。 Recently, further enhancement of the brightness of the cold cathode fluorescent lamp is desired. In order to increase the brightness, it is effective to improve discharge characteristics (make it easier to emit electrons). In Patent Documents 1 to 3, an emitter made of a metal oxide such as barium (Ba) or cesium (Cs), which has a work function smaller than that of nickel and excellent in electron emission properties, is attached to the electrode or contained on the surface side of the electrode. The structure made is disclosed.
特開平08-055603号公報Japanese Unexamined Patent Publication No. 08-055603 特開2002-175775号公報JP 2002-175775 A 特開2005-183172号公報JP 2005-183172 A
 しかし、従来の電極は、電極とエミッタとの密着性が不十分であり、エミッタの脱落などにより冷陰極蛍光ランプの高輝度化に十分に寄与することが難しい。 However, the conventional electrode has insufficient adhesion between the electrode and the emitter, and it is difficult to sufficiently contribute to the enhancement of the brightness of the cold cathode fluorescent lamp by dropping the emitter.
 特許文献1,2に記載されるようにペーストや水溶液を電極に塗布して加熱処理する場合、エミッタが電極から剥離し易く(特許文献3明細書0007)、ランプの寿命が極端に短くなるため、実用に適していない。一方、特許文献3に記載の電極は、エミッタの粉末とニッケル粉末とを混合して焼結した後、圧延して得られた板とニッケル板とを貼り合わせてクラッド材とし、このクラッド材を更に圧延して電極素材(板材)とし、この素材にカップ状加工を施すことで製造される。焼結体は、一般に、気孔(ポア)といった欠陥が多いため、Arイオンのスパッタリング作用により電極が削られるとエミッタが脱落し易く、長期に亘りエミッタを保持することが難しい。 When a paste or aqueous solution is applied to the electrode and heat-treated as described in Patent Documents 1 and 2, the emitter is easily peeled off from the electrode (Patent Document 3 specification 0007), and the life of the lamp becomes extremely short. Not suitable for practical use. On the other hand, in the electrode described in Patent Document 3, the emitter powder and nickel powder are mixed and sintered, and then a plate obtained by rolling and a nickel plate are bonded together to form a clad material. Further, it is rolled into an electrode material (plate material), which is manufactured by subjecting this material to cup-like processing. In general, a sintered body has many defects such as pores. Therefore, when an electrode is shaved by the sputtering action of Ar ions, the emitter is easily dropped, and it is difficult to hold the emitter for a long time.
 そこで、本発明の目的は、発光効率が高く、その効果を長期に亘り維持することができる冷陰極蛍光ランプ用の電極を提供することにある。 Therefore, an object of the present invention is to provide an electrode for a cold cathode fluorescent lamp that has high luminous efficiency and can maintain the effect over a long period of time.
 周期表1族~3族の金属元素は、一般に、仕事関数が低く、2次電子の放出性が良好であるため、冷陰極蛍光ランプの電極材料(陰極材料)に望ましい。しかし、これらの金属元素は、大気中で酸化され易いことから、バルク材をそのまま電極に用いたり、従来のニッケル電極にコーティングすることが実用上不可能である。一方、これらの金属元素の酸化物は、大気中で安定に存在するものの、加工性に劣ることから、この酸化物をそのまま電極に用いることも実質的にできない。他方、従来のようにバリウムやセシウムの酸化物粉末を塗布するなどの構成では、この酸化物と電極の基材との密着性に劣る。これに対し、本発明者らは、周期表1族~3族の金属元素と酸素との化合物の微粉末をめっき中に分散させた構造とすると、めっき層が微粉末を十分に保持することができることから、発光効率に優れ、かつその効果が長期に亘り維持可能な冷陰極蛍光ランプが得られる、との知見を得た。本発明はこの知見に基づくものであり、エミッタとして機能する化合物粒子を保持する金属層をめっきにより形成する。 Since the metal elements of Groups 1 to 3 of the periodic table generally have a low work function and good secondary electron emission properties, they are desirable for electrode materials (cathode materials) for cold cathode fluorescent lamps. However, since these metal elements are easily oxidized in the atmosphere, it is practically impossible to use a bulk material as an electrode as it is or to coat a conventional nickel electrode. On the other hand, although oxides of these metal elements exist stably in the atmosphere, they are inferior in workability, so that these oxides cannot be used for electrodes as they are. On the other hand, in the conventional configuration in which barium or cesium oxide powder is applied, the adhesion between the oxide and the electrode substrate is inferior. In contrast, the inventors of the present invention have a structure in which fine powder of a compound of a metal element of Groups 1 to 3 of the periodic table and oxygen is dispersed during plating, and the plating layer sufficiently retains the fine powder. Therefore, it has been found that a cold cathode fluorescent lamp having excellent luminous efficiency and capable of maintaining its effect for a long period of time can be obtained. The present invention is based on this finding, and a metal layer holding compound particles functioning as an emitter is formed by plating.
 本発明電極は、冷陰極蛍光ランプに用いられるものであり、カップ状に形成された基材と、この基材の内周面のうち底部に形成された金属層とを具える。この金属層は、めっきにより形成されている。また、この金属層は、周期表1族,2族,及び3族から選択される1種以上の金属元素と酸素とを含む化合物粒子を含有する。 The electrode of the present invention is used for a cold cathode fluorescent lamp, and includes a base material formed in a cup shape and a metal layer formed on the bottom of the inner peripheral surface of the base material. This metal layer is formed by plating. In addition, this metal layer contains compound particles containing one or more metal elements selected from Group 1, Group 2 and Group 3 of the periodic table and oxygen.
 上記構成を具える本発明電極は、化合物粒子が金属層に十分に保持されることで、化合物粒子の存在により放電性が高められて発光効率を向上することができ、冷陰極蛍光ランプの長期に亘る高輝度化に寄与することができる。また、金属層をめっきにより形成することで、化合物粒子が分散した状態の金属層を容易に形成できる。更に、めっきにより形成された金属層は、加工性に優れており、金属層を形成した素材(基材を構成するもの)をカップ状に加工することも可能である。加えて、金属層をめっきにより形成することで、複数の基材又は素材に対して金属層の形成を一度に行えるため、電極の生産性に優れる。 The electrode of the present invention having the above-described configuration is such that the compound particles are sufficiently held in the metal layer, so that the discharge property is enhanced by the presence of the compound particles and the luminous efficiency can be improved. It is possible to contribute to high brightness over the range. Further, by forming the metal layer by plating, a metal layer in which compound particles are dispersed can be easily formed. Furthermore, the metal layer formed by plating is excellent in workability, and it is also possible to process the material on which the metal layer is formed (the material constituting the base material) into a cup shape. In addition, by forming the metal layer by plating, the metal layer can be formed on a plurality of base materials or materials at one time, so that the productivity of the electrode is excellent.
 本発明電極において基材は、ニッケル又はニッケル合金が好ましい。Ni及び不純物からなるニッケル(いわゆる純ニッケル)、又は添加元素と残部がNi及び不純物からなるニッケル合金は、塑性加工性に優れ、カップ状の電極を容易に製造できる。また、ニッケルやニッケル合金は、融点が低く、コバールなどからなるリード線を溶接により容易に接合できる。 In the electrode of the present invention, the base material is preferably nickel or a nickel alloy. Nickel composed of Ni and impurities (so-called pure nickel) or a nickel alloy composed of additive elements and the balance Ni and impurities is excellent in plastic workability, and a cup-shaped electrode can be easily produced. Nickel and nickel alloys have a low melting point, and lead wires made of kovar or the like can be easily joined by welding.
 ニッケル合金は、例えば、特開2007-173197号公報に開示されるもの、具体的にはTi,Hf,Zr,V,Fe,Nb,Mo,Mn,W,Sr,Ba,B,Th,Be,Si,Al,Y,Mg,In,及び希土類元素(Yを除く)から選ばれる1種以上の元素を合計で0.001質量%以上5.0質量%以下含有し、残部がNi及び不純物からなるものが好ましい。このニッケル合金は、1.ニッケルよりも仕事関数が小さいため放電し易い、2.スパッタリングされ難い、3.アマルガムを形成し難い、4.酸化膜を形成し難いため、放電が阻害され難い、といった様々な利点を有する。上記添加元素は、代表的には、Niとの金属間化合物をつくり、ニッケル母材中に存在する。 Nickel alloys are disclosed in, for example, JP 2007-173197 A, specifically Ti, Hf, Zr, V, Fe, Nb, Mo, Mn, W, Sr, Ba, B, Th, Be. , Si, Al, Y, Mg, In, and one or more elements selected from rare earth elements (excluding Y) in total from 0.001% by mass to 5.0% by mass, with the balance being Ni and impurities preferable. This nickel alloy has a smaller work function than nickel, so it is easy to discharge, 2. It is difficult to sputter, 3. It is difficult to form an amalgam, 4. It is difficult to form an oxide film, so it is difficult to prevent discharge, etc. Has various advantages. The additive element typically forms an intermetallic compound with Ni and is present in the nickel base material.
 本発明電極において金属層は、めっきにて形成されたものとする。めっきは、無電解めっきや電気めっき(電解めっき)などが利用できる。めっき液は、添加する原料粉末(化合物粒子となるもの)が溶解しない液性であればよく、粉末の組成に応じて適宜選択することができる。例えば、粉末が酸に可溶な場合、めっき液は、アルカリ性のめっき液、有機溶媒、溶融塩、イオン液体などから選択することができる。より具体的には、例えば、有機溶媒は、アセトニトリル、ジメチルホルムアミドなど、溶融塩は、LiCl-KClなど、イオン液体は、EMI-BF4やTMHA-TFSIなど種々のものが挙げられる。上記例示以外のめっき液を用いてもよい。 In the electrode of the present invention, the metal layer is formed by plating. For plating, electroless plating or electroplating (electrolytic plating) can be used. The plating solution only needs to be liquid so that the raw material powder to be added (to be compound particles) does not dissolve, and can be appropriately selected according to the composition of the powder. For example, when the powder is soluble in an acid, the plating solution can be selected from an alkaline plating solution, an organic solvent, a molten salt, an ionic liquid, and the like. More specifically, for example, organic solvents are acetonitrile, dimethylformamide, etc., molten salt, such as LiCl-KCl, ionic liquids include those of various such EMI-BF 4 and TMHA-TFSI. A plating solution other than those exemplified above may be used.
 なお、金属層がめっきで形成されていることは、不純物の組成、金属層の組織、金属層の硬さなどを調べることで判別することができる。例えば、金属層が電解ニッケルめっきからなる場合、結晶粒径が小さいため(平均粒径:0.01~1μm程度)、結晶粒の大きさを調べたり、更にめっきの形成に用いる添加剤の分解により共析するC,Sといった元素(不純物)がめっきに混入することから、これらの元素の存在を調べることが挙げられる。或いは、例えば、金属層が無電解ニッケルめっきからなる場合、めっきの形成に用いる還元剤に由来するP,Bといった元素(不純物)がめっきに混入することから、これらの元素の存在を調べたり、このめっきは熱力学的に不安定なアモルファス相を有することから、組織の状態を調べることが挙げられる。 Note that the metal layer being formed by plating can be determined by examining the composition of impurities, the structure of the metal layer, the hardness of the metal layer, and the like. For example, when the metal layer is made of electrolytic nickel plating, the crystal grain size is small (average grain size: about 0.01 to 1 μm). Therefore, the size of the crystal grain is examined, and the additive used for forming the plating is further decomposed. Since elements (impurities) such as C and S to be mixed are mixed in the plating, the presence of these elements can be examined. Or, for example, when the metal layer is made of electroless nickel plating, elements (impurities) such as P and B derived from the reducing agent used for forming the plating are mixed in the plating, so the presence of these elements is investigated, Since this plating has a thermodynamically unstable amorphous phase, it is possible to examine the state of the structure.
 上記金属層は、カップ状の基材の内周面において少なくとも底部に具えるものとする。カップ状の電極は、ホローカソード効果により、スパッタリング現象をある程度抑制できることから、結果として、この現象に伴う水銀の消費による輝度の低下を抑制することができる。そして、カップ状の電極は、その内周面のうち、特に底部及びその近傍から放電していくため、放電性に優れる化合物粒子を含有する金属層をこの底部に具えておくことで、放電性を高められる。上記内周面において、底部だけでなく、底部から電極の長さの1/3までの領域にも上記金属層を具える構成であると、放電性をより高められる。上記内周面の全面に亘って金属層を具えていてもよいし、上記カップ状の電極の外周面にも金属層を具えていてもよい。 The metal layer is provided at least at the bottom on the inner peripheral surface of the cup-shaped base material. The cup-like electrode can suppress the sputtering phenomenon to some extent due to the hollow cathode effect. As a result, it is possible to suppress a decrease in luminance due to mercury consumption accompanying this phenomenon. And, since the cup-shaped electrode discharges from the bottom and its vicinity in the inner peripheral surface, by providing a metal layer containing compound particles having excellent discharge performance at the bottom, Can be enhanced. On the inner peripheral surface, not only the bottom but also the region from the bottom to 1/3 of the length of the electrode is provided with the metal layer, so that the discharge performance can be further improved. A metal layer may be provided over the entire inner peripheral surface, or a metal layer may be provided on the outer peripheral surface of the cup-shaped electrode.
 本発明電極において金属層は、ニッケル又はニッケル合金により構成されていることが好ましい。 In the electrode of the present invention, the metal layer is preferably made of nickel or a nickel alloy.
 ニッケルやニッケル合金は、めっきが容易であり、また、基材がニッケルやニッケル合金で構成される場合、ニッケルやニッケル合金のめっきと基材とは密着性に優れる。更に、ニッケルめっきやニッケル合金めっきは色むらなどが少なく、良好な外観が得られ易く、商品価値を高められる。 Nickel and nickel alloy can be easily plated, and when the substrate is made of nickel or nickel alloy, the plating of nickel or nickel alloy and the substrate is excellent in adhesion. Furthermore, nickel plating or nickel alloy plating has little color unevenness, and a good appearance can be easily obtained, increasing the commercial value.
 本発明電極において金属層の厚さは、1μm以上100μm以下であることが好ましい。 In the electrode of the present invention, the thickness of the metal layer is preferably 1 μm or more and 100 μm or less.
 金属層の厚さを1μm以上とすることで、化合物粒子を保持し易くなることから、高輝度状態を持続可能な時間を長くすることができる。この効果は、金属層の厚さが厚い程好ましくなるが、100μmを超えると、化合物粒子の消滅以外の要因(例えば、水銀の減少など)でランプが寿命となると考えられるため、不経済である。より好ましい厚さは、10μm以上50μm以下である。金属層の厚さは部分的に異なっていてもよいが、基材の内周面の底部に具える金属層は、上記範囲を満たすことが好ましい。金属層の厚さは、以下のように測定する。電極の断面を光学顕微鏡(500~1000倍)で観察し、この観察像の全域に亘って厚さを測定し、この平均値を当該断面における厚さとする。n=5個の断面について厚さを測定し、5個の厚さの平均を金属層の厚さとする。 When the thickness of the metal layer is 1 μm or more, the compound particles can be easily retained, so that the time for sustaining the high brightness state can be extended. This effect is preferable as the thickness of the metal layer is thicker, but if it exceeds 100 μm, it is considered uneconomical because the lamp life is considered to be due to factors other than the disappearance of compound particles (for example, reduction of mercury). . A more preferable thickness is 10 μm or more and 50 μm or less. Although the thickness of a metal layer may differ partially, it is preferable that the metal layer provided in the bottom part of the internal peripheral surface of a base material satisfy | fills the said range. The thickness of the metal layer is measured as follows. The cross section of the electrode is observed with an optical microscope (500 to 1000 times), the thickness is measured over the entire area of the observed image, and the average value is taken as the thickness of the cross section. The thickness is measured for n = 5 cross sections, and the average of the five thicknesses is taken as the thickness of the metal layer.
 上記金属層には、化合物粒子の全周面が金属層の構成金属で覆われた状態(金属層に埋設された状態)の粒子や、粒子の外周面の少なくとも一部が露出された状態の粒子が存在する。これら化合物粒子において金属層から露出した部分に、ガラス管に封入されたArイオンが衝突することで2次電子が放出される。金属層中に埋設された状態にある化合物粒子は、Arイオンのスパッタリング作用により粒子近傍の金属層が削られることで露出されるようになり、上述のようにArイオンの衝突により2次電子を放出するようになる。即ち、本発明電極は、冷陰極蛍光ランプの点灯時、化合物粒子の少なくとも一部が自動的に金属層から露出されるため、高い放電性を維持することができる。なお、金属層を形成後、化合物粒子の一部を露出させるための処理を行ってもよい。 In the metal layer, particles in a state where the entire peripheral surface of the compound particle is covered with the constituent metal of the metal layer (a state embedded in the metal layer) and at least a part of the outer peripheral surface of the particle are exposed. There are particles. In these compound particles, Ar ions enclosed in the glass tube collide with portions exposed from the metal layer, whereby secondary electrons are emitted. The compound particles embedded in the metal layer are exposed by scraping the metal layer near the particle by the sputtering action of Ar ions, and as described above, secondary electrons are generated by collision of Ar ions. It will be released. That is, the electrode of the present invention can maintain a high discharge performance because at least a part of the compound particles is automatically exposed from the metal layer when the cold cathode fluorescent lamp is turned on. In addition, you may perform the process for exposing a part of compound particle after forming a metal layer.
 本発明電極において化合物粒子は、アルカリ金属の酸化物、アルカリ金属塩、アルカリ土類金属の酸化物、マグネシウムの酸化物及び希土類元素の酸化物から選択される少なくとも1種からなることが好ましい。 In the electrode of the present invention, the compound particles are preferably composed of at least one selected from alkali metal oxides, alkali metal salts, alkaline earth metal oxides, magnesium oxides and rare earth element oxides.
 より具体的には、アルカリ金属の酸化物:Li2O,Na2O,K2O,Rb2O,Cs2O、アルカリ金属塩:Li2TiO3,Na2Ti3O7,K2TiO3,Rb2TiO3,Cs2TiO3など、アルカリ土類金属及びマグネシウムの酸化物:MgO,CaO,SrO,BaO、希土類元素の酸化物:Sc2O3,Y2O3,La2O3,CeO2,Pr2O3,Nd2O3,Sm2O3,Eu2O3,Gd2O3,Tb2O3,Dy2O3,Ho2O3,Er2O3,Tm2O3,Yb2O3,Lu2O3から選択される1種又は2種以上を組み合わせてもよい。これらの酸化物や塩は、仕事関数が低く、放電性に優れる。特に、アルカリ金属の酸化物のうち、原子半径が大きいRb2O,Cs2Oは、仕事関数が低く好ましい。なお、金属層中の化合物粒子や基材の組成は、例えば、EDX付きSEMやX線回折などを利用することで測定することができる。 More specifically, alkali metal oxides: Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O, alkali metal salts: Li 2 TiO 3 , Na 2 Ti 3 O 7 , K 2 TiO 3 , Rb 2 TiO 3 , Cs 2 TiO 3 and other alkaline earth metal and magnesium oxides: MgO, CaO, SrO, BaO, rare earth oxides: Sc 2 O 3 , Y 2 O 3 , La 2 O 3 , CeO 2 , Pr 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 may be used alone or in combination. These oxides and salts have a low work function and excellent discharge characteristics. In particular, among the alkali metal oxides, Rb 2 O and Cs 2 O having a large atomic radius are preferable because of their low work function. The composition of the compound particles and the base material in the metal layer can be measured by using, for example, SEM with EDX or X-ray diffraction.
 本発明電極において化合物粒子は、最大径が10μm以下であることが好ましい。 In the electrode of the present invention, the compound particles preferably have a maximum diameter of 10 μm or less.
 電極全体でみたときの2次電子の放出効率は、化合物粒子が金属層から露出している面積と共に増大する傾向にある。一方、同じ体積割合で化合物粒子が金属層に存在する場合、粒子が小さいほど粒子の表面積が増えるため、金属層から露出する粒子の面積割合も大きくなり、電子の放出効率が向上する。また、化合物粒子が大きいと、Arイオンのスパッタリング作用により、粒子を保持する金属層が削られた際に粒子が金属層から脱落し易くなる。従って、化合物粒子は、小さい方が好ましく、その最大径は、1μm以下がより好ましく、下限は特に設けない。金属層中の化合物粒子の最大径の測定方法は、後述する。 The emission efficiency of secondary electrons when viewed from the whole electrode tends to increase with the area where the compound particles are exposed from the metal layer. On the other hand, when the compound particles are present in the metal layer at the same volume ratio, the smaller the particles, the larger the surface area of the particles. Therefore, the area ratio of the particles exposed from the metal layer also increases and the electron emission efficiency improves. Moreover, when the compound particles are large, the particles easily fall off from the metal layer when the metal layer holding the particles is shaved due to the sputtering action of Ar ions. Accordingly, the compound particles are preferably smaller, and the maximum diameter is more preferably 1 μm or less, and no lower limit is particularly provided. A method for measuring the maximum diameter of the compound particles in the metal layer will be described later.
 化合物粒子の粒径は、金属層を形成する際に添加する原料粉末の大きさに依存し、原料粉末の大きさがほぼ維持される。従って、化合物粒子の粒径が所望の大きさとなるように、原料粉末を調整するとよい。所望の大きさの市販の粉末を用いてもよいし、市販の粉末を粉砕して所望の大きさのものを篩いなどで選別して用いてもよい。 The particle size of the compound particles depends on the size of the raw material powder to be added when forming the metal layer, and the size of the raw material powder is almost maintained. Therefore, the raw material powder is preferably adjusted so that the particle size of the compound particles becomes a desired size. A commercially available powder having a desired size may be used, or a commercially available powder may be pulverized and a desired size may be selected with a sieve or the like.
 なお、化合物粒子の形状は、電子の放出性に特に影響を与えないため、問わない。上述のように粉砕する場合、球形状(断面円形状)、断面楕円状、断面矩形状、針状などの種々の形状があり得る。アスペクト比(最小長さ(短辺の長さ、例えば、楕円状の粒子の場合:短径、矩形状の粒子の場合:最大対角線に対する垂線のうち最大のもの)と最大長さ(長辺の長さ、例えば、楕円状の粒子の場合:長径、矩形状の粒子の場合:最大対角線)との比)が比較的大きい形状であると、金属層の単位体積当たりにおける化合物粒子の接触面積が大きくなることから、金属層からの化合物粒子の脱落の抑制に効果的である。具体的には、アスペクト比が1:2~1:50を満たすような形状、代表的には断面楕円状や断面矩形状などが好ましい。アスペクト比が1:50を超えると、例えば、短辺の長さが200nm(0.2μm)の場合、長辺の長さが10μmを超え、結果として、粒子径が増大する。化合物粒子の形状は、原料粉末の形状に依存するため、例えば、アスペクト比が大き過ぎる粒子を除去したものを原料粉末として用いることで、金属層中の化合物粒子のアスペクト比を制御できる。金属層中の化合物粒子のアスペクト比は、例えば、金属層の表面をX線顕微鏡で観察した観察像を市販の画像解析ソフトにより画像処理して化合物粒子を抽出し、抽出した粒子の最大長さ及び最小長さを測定し、この測定結果を用いることで求められる。 Note that the shape of the compound particles is not particularly limited because it does not particularly affect the electron emission property. When pulverizing as described above, there may be various shapes such as a spherical shape (circular cross section), an elliptical cross section, a rectangular cross section, and a needle shape. Aspect ratio (minimum length (short side length, e.g. for elliptical particles: short diameter, rectangular particles: the largest of the perpendiculars to the maximum diagonal)) and maximum length (long side The ratio of the length of the compound particles per unit volume of the metal layer is such that the ratio of the length (for example, elliptical particles: major axis, rectangular particles: maximum diagonal) is relatively large). Since it becomes large, it is effective in suppressing the drop-off of the compound particles from the metal layer. Specifically, a shape satisfying an aspect ratio of 1: 2 to 1:50, typically a cross-sectional ellipse or a cross-sectional rectangle is preferable. When the aspect ratio exceeds 1:50, for example, when the length of the short side is 200 nm (0.2 μm), the length of the long side exceeds 10 μm, and as a result, the particle diameter increases. Since the shape of the compound particles depends on the shape of the raw material powder, the aspect ratio of the compound particles in the metal layer can be controlled by using, for example, a material powder from which particles having an excessive aspect ratio have been removed. The aspect ratio of the compound particles in the metal layer is determined by, for example, extracting the compound particles by image processing with an image analysis software obtained by observing the surface of the metal layer with an X-ray microscope, and extracting the maximum length of the extracted particles. And the minimum length is measured, and this measurement result is used.
 本発明電極において化合物粒子の含有量は、1体積%以上30体積%以下であることが好ましい。 In the electrode of the present invention, the content of the compound particles is preferably 1% by volume or more and 30% by volume or less.
 金属層を100体積%とするとき、化合物粒子の含有量を1体積%以上とすることで、発光効率の向上への寄与が大きく、30体積%以下とすることで、粒子を保持する金属層の構成金属量の相対的な減少を抑制して高い保持力を維持して、粒子の脱落の増加による発光効率の不安定化を抑制することができる。より好ましい含有量は、5体積%以上15体積%以下である。金属層中の化合物粒子の含有量の測定方法は、後述する。 When the metal layer is 100% by volume, the contribution of the compound particles to 1% by volume or more greatly contributes to the improvement of the luminous efficiency. It is possible to suppress a relative decrease in the amount of the constituent metal and maintain a high holding power, and to suppress instability of the light emission efficiency due to an increase in particle dropout. A more preferable content is 5% by volume or more and 15% by volume or less. A method for measuring the content of the compound particles in the metal layer will be described later.
 本発明電極は、高輝度であり、更に高輝度の状態を長期に亘り維持可能な冷陰極蛍光ランプの実現に寄与することができる。 The electrode of the present invention has a high luminance and can contribute to the realization of a cold cathode fluorescent lamp capable of maintaining a high luminance state over a long period of time.
 以下、本発明の実施の形態を説明する。
 《試験例1 金属層の有無》
 カップ状の基材に金属層を具える電極を作製し、更に、この電極を用いた冷陰極蛍光ランプを作製して、ランプの性能を評価した。
Embodiments of the present invention will be described below.
<< Test Example 1 Presence or absence of metal layer >>
An electrode having a metal layer on a cup-shaped substrate was prepared, and a cold cathode fluorescent lamp using the electrode was further prepared to evaluate the performance of the lamp.
 <一体部材の作製>
 基材とインナーリード線とが一体となった一体部材を以下のように作製する。ニッケル(LC-Ni(Ni201))の鋳塊に熱間圧延を施し、得られた圧延板材に熱処理を施した後、表面切削を行う。得られた表面処理材に冷間圧延及び熱処理を繰り返し行った後、最終熱処理(軟化処理)を行って、厚さ:0.1mmの軟化処理材を作製する。この軟化処理材を所定の大きさに切断し、得られた板状材に冷間プレス加工を施して、カップ状の基材を作製する(直径φ1.6mm×長さ3.0mm)。得られた基材の外周面において底部に、コバール製のインナーリード線にガラスビーズを溶着させたものをレーザで溶接して接合し、ガラスビーズ付きインナーリード線と基材とが一体となった一体部材を作製する。なお、基材の底部にインナーリード線を接合した後、ガラスビーズを溶着させてもよい。
<Production of integral member>
An integrated member in which the base material and the inner lead wire are integrated is manufactured as follows. The ingot of nickel (LC-Ni (Ni201)) is hot-rolled, and the obtained rolled plate material is heat-treated and then surface-cut. The obtained surface-treated material is repeatedly subjected to cold rolling and heat treatment, and then subjected to final heat treatment (softening treatment) to produce a softened material having a thickness of 0.1 mm. The softened material is cut into a predetermined size, and the obtained plate-like material is cold-pressed to produce a cup-shaped base material (diameter φ 1.6 mm × length 3.0 mm). At the bottom of the outer peripheral surface of the obtained base material, a glass bead welded to an inner lead wire made of Kovar was welded and joined with a laser, and the inner lead wire with glass beads and the base material were integrated. An integral member is produced. In addition, after joining an inner lead wire to the bottom part of a base material, you may weld a glass bead.
 得られた一体部材の基材に以下のように金属層を形成する。なお、金属層の形成に際して、基材に導通が必要な場合(後述する試験例4,5)は、インナーリード線を用いることで導通を確保する。 A metal layer is formed on the base material of the obtained integral member as follows. Note that, when the metal layer is formed, when the base material needs to be conductive (Test Examples 4 and 5 to be described later), the inner lead wire is used to ensure the conduction.
 <金属層の形成>
  (粉末の準備)
 めっき液(後述)に混合する化合物からなる粉末を準備する。ここでは、市販のY2O3粉末をボールミルで粉砕し、市販の精密篩いを用いて、粒径別に以下の4種類に篩い分ける。なお、粉砕後の粒子の形状を調べたところ、概ねアスペクト比が1:2~1:50を満たしていた。
  粉末種別:1-A 10μm超50μm以下
       1-B 5μm超10μm以下
       1-C 1μm超5μm以下
       1-D 1μm以下
<Formation of metal layer>
(Preparation of powder)
A powder made of a compound to be mixed with a plating solution (described later) is prepared. Here, commercially available Y 2 O 3 powder is pulverized with a ball mill, and is screened into the following four types according to particle size using a commercially available precision sieve. When the shape of the pulverized particles was examined, the aspect ratio generally satisfied 1: 2 to 1:50.
Powder type: 1-A>10μm> 50μm 1-B>5μm> 10μm 1-C>1μm> 5μm 1-D 1μm or less
  (金属層の形成工程)
 金属層は、脱脂・親水化処理→触媒の付与→触媒の活性化→無電解めっき、という工程で形成する。なお、一体部材において基材以外の箇所は予め、市販のPTFE製マスキングテープを使用してマスキングを行った。
(Metal layer formation process)
The metal layer is formed by a process of degreasing / hydrophilization treatment → catalyst application → catalyst activation → electroless plating. In the integrated member, portions other than the base material were previously masked using a commercially available PTFE masking tape.
  [脱脂・親水化処理工程]
 用意した一体部材を、上村工業株式会社製スルカップMTE-1-A(50ml/L,50℃,1L)に5分間浸漬した後水洗し、基材表面の脱脂・親水化処理を行った。
[Degreasing and hydrophilization process]
The prepared integral member was immersed in Sulcup MTE-1-A (50 ml / L, 50 ° C., 1 L) manufactured by Uemura Kogyo Co., Ltd. for 5 minutes and then washed with water to degrease and hydrophilize the substrate surface.
  [触媒の付与工程]
 次に、上記処理後の一体部材を、無電解ニッケルめっき用触媒(上村工業株式会社製スルカップPED-104(270g/L)とスルカップAT-105(30ml/L)との混合液1L,30℃)に2分浸漬し、基材に触媒を付与した。
[Catalyst application process]
Next, the integrated member after the above treatment was electroless nickel plating catalyst (mixed liquid 1L, 30 ° C of Sulcup PED-104 (270 g / L) and Sulcup AT-105 (30 ml / L) manufactured by Uemura Kogyo Co., Ltd.) ) For 2 minutes to give the substrate a catalyst.
  [触媒の活性化工程]
 続いて、触媒を付与した基材を、上村工業株式会社製スルカップAL-106(10%水溶液,1L,25℃)に30秒浸漬し、触媒を活性化した。
[Catalyst activation process]
Subsequently, the substrate provided with the catalyst was immersed in Sulcup AL-106 (10% aqueous solution, 1 L, 25 ° C.) manufactured by Uemura Kogyo Co., Ltd. for 30 seconds to activate the catalyst.
  [無電解めっき工程]
 上村工業株式会社製ニボジュールU-77(60℃、1L)に、用意した各Y2O3粉末をそれぞれ10g/Lの割合で添加した液をめっき液とし、上記活性化処理までを行った一体部材を6時間(360分)浸漬し、厚さが20μmの無電解ニッケルめっき層を形成した。この工程により、カップ状の基材の内外周面の全面に亘って金属層(めっき層)が形成された電極とインナーリード線とを具える電極部材が得られた。なお、めっき後、電極の5個の任意の断面について、金属層の厚さを光学顕微鏡観察像(1000倍)から測定したところ、形成した厚さと同等であった。
[Electroless plating process]
A unit obtained by adding the prepared Y 2 O 3 powder at a rate of 10 g / L to Nibojoule U-77 (60 ° C, 1 L) manufactured by Uemura Kogyo Co., Ltd. The member was immersed for 6 hours (360 minutes) to form an electroless nickel plating layer having a thickness of 20 μm. By this step, an electrode member including an electrode having a metal layer (plating layer) formed on the entire inner and outer peripheral surfaces of the cup-shaped base material and an inner lead wire was obtained. Note that, after plating, the thickness of the metal layer was measured from an optical microscope observation image (1000 times) for five arbitrary cross sections of the electrode, and was equal to the formed thickness.
 <化合物粒子の測定>
 得られた電極部材について、金属層中の化合物粒子の最大径(μm)、化合物粒子の含有量(体積%)を測定した。最大径は以下のように求めた。金属層の表面をX線顕微鏡で観察し(視野:200μm×200μm)、化合物粒子が分散された観察像(投影像)を取得し、市販の画像解析ソフトを用いてこの観察像を画像処理して、化合物粒子を抽出する。視野内の全ての化合物粒子についてそれぞれ最大長さを測定し、その最大値をこの視野の最大長さとし、5視野の平均を最大径として表1に示す。含有量は、以下のように求めた。電極の質量、及び金属層のみの質量を測定しておき、電極を硝酸などで溶解して、基材・金属層の構成金属・化合物粒子を溶解する。得られた溶液をICP発光分光分析装置で調べて、金属(ここではY)の濃度から化合物の含有量を算出する。そして、金属層の質量と算出した化合物の含有量との差から、金属層の構成金属の質量が求められる。これらの算出結果と、組成分析に基づく密度とを利用して、体積%に換算する。その結果を表1に示す。金属層のみの質量は、めっき前の基材の質量を予め測定しておき、電極の質量と基材の質量との差を演算することで求められる。或いは、電極から基材部分を研磨などにより除去することで、金属層のみの質量を測定できる。研磨前に電極を切断したり、押し潰して変形させると研磨が行い易い。
<Measurement of compound particles>
With respect to the obtained electrode member, the maximum diameter (μm) of the compound particles in the metal layer and the content (% by volume) of the compound particles were measured. The maximum diameter was determined as follows. The surface of the metal layer is observed with an X-ray microscope (field of view: 200 μm × 200 μm), an observation image (projection image) in which compound particles are dispersed is obtained, and this observation image is processed using commercially available image analysis software. To extract compound particles. The maximum length of each compound particle in the field of view is measured, the maximum value is taken as the maximum length of this field of view, and the average of five fields is shown in Table 1 as the maximum diameter. The content was determined as follows. The mass of the electrode and the mass of only the metal layer are measured, the electrode is dissolved with nitric acid or the like, and the constituent metal / compound particles of the substrate / metal layer are dissolved. The obtained solution is examined with an ICP emission spectroscopic analyzer, and the content of the compound is calculated from the concentration of the metal (Y in this case). And the mass of the constituent metal of the metal layer is determined from the difference between the mass of the metal layer and the calculated content of the compound. These calculation results and the density based on the composition analysis are used to convert to volume%. The results are shown in Table 1. The mass of only the metal layer is obtained by measuring the mass of the base material before plating and calculating the difference between the mass of the electrode and the mass of the base material. Alternatively, the mass of only the metal layer can be measured by removing the substrate portion from the electrode by polishing or the like. Polishing is easy if the electrode is cut or crushed and deformed before polishing.
 <ランプの作製>
 また、得られた電極部材を用いて冷陰極蛍光ランプを作製し、200時間ごとの輝度を測定した。その結果を表1に示す。比較として金属層を有していない電極を具える冷陰極蛍光ランプを作製した。この比較ランプ(試料No.100)は、金属層を形成する前の一体部材をそのまま冷陰極蛍光ランプに用いた。
<Production of lamp>
Further, a cold cathode fluorescent lamp was produced using the obtained electrode member, and the luminance was measured every 200 hours. The results are shown in Table 1. As a comparison, a cold cathode fluorescent lamp having an electrode having no metal layer was produced. In this comparative lamp (Sample No. 100), the integrated member before forming the metal layer was used as it is for the cold cathode fluorescent lamp.
 冷陰極蛍光ランプは、以下のように作製した。電極部材に具えるインナーリードの端部にアウターリード線を接合した接合部材を一対用意し、内壁面に蛍光体層(ここではハロリン酸塩蛍光体層)を有し、両端が開口した円筒状のガラス管の一端に一方の接合部材を挿入し、ガラスビーズとガラス管の一端とを溶着して、ガラス管の一端を封止すると共に、接合部材の電極をガラス管内に固定する。次に、ガラス管の他端から真空引きして希ガス(ここではArガス)及び水銀を導入し、他方の接合部材を挿入して電極を固定すると共にガラス管を封止する。この手順により、一対のカップ状の電極の開口部が対向配置された冷陰極蛍光ランプが得られる。 The cold cathode fluorescent lamp was produced as follows. Prepare a pair of joining members that join the outer lead wires to the end of the inner lead provided in the electrode member, and have a phosphor layer (here, a halophosphate phosphor layer) on the inner wall surface and open at both ends One joining member is inserted into one end of the glass tube, and glass beads and one end of the glass tube are welded to seal one end of the glass tube, and the electrode of the joining member is fixed in the glass tube. Next, a vacuum is drawn from the other end of the glass tube to introduce a rare gas (Ar gas here) and mercury, and the other joining member is inserted to fix the electrode and seal the glass tube. By this procedure, a cold cathode fluorescent lamp in which the openings of a pair of cup-shaped electrodes are arranged to face each other is obtained.
 <ランプの評価>
 輝度は、金属層を有していない電極を具える試料No.100の初期値(0hr)を100とし、その他の試料の輝度を相対的に表して評価した。接合部材ごとに一対の接合部材を5組用意してランプを5個作製し、各ランプの輝度を測定し、5個の平均値を各試料の値として輝度を評価した。
<Ramp evaluation>
The brightness was evaluated by relatively expressing the brightness of the other samples, with the initial value (0 hr) of sample No. 100 having an electrode having no metal layer being 100. Five pairs of bonding members were prepared for each bonding member, and five lamps were produced. The luminance of each lamp was measured, and the luminance was evaluated using the average value of the five lamps as the value of each sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように化合物粒子を含有する金属層を具える試料No.1-1~1-4は、初期輝度が高く、かつ、長時間経過後の輝度の低下度合いも小さく、高輝度状態を長期に亘り維持できることが分かる。特に、化合物粒子の大きさが小さいほど、高輝度であることが分かる。 As shown in Table 1, Sample Nos. 1-1 to 1-4 having a metal layer containing compound particles have a high initial luminance and a small decrease in luminance after a long period of time. Can be maintained over a long period of time. In particular, it can be seen that the smaller the size of the compound particles, the higher the luminance.
 《試験例2 金属層の厚さ》
 試験例1に対して、めっき液の浸漬時間を変化させて、金属層の厚さを変えた電極を作製し、更に、この電極を用いた冷陰極蛍光ランプを作製して、試験例1と同様にランプの性能を評価した。その結果を表2に示す。
<< Test Example 2 Metal Layer Thickness >>
With respect to Test Example 1, the immersion time of the plating solution was changed to produce an electrode in which the thickness of the metal layer was changed, and further, a cold cathode fluorescent lamp using this electrode was produced. Similarly, the lamp performance was evaluated. The results are shown in Table 2.
 この試験では、めっき液の浸漬時間を変えた以外の点は、試験例1と同様にして電極及び冷陰極蛍光ランプを作製した(浸漬時間;試料No.2-1:3.6分、試料No.2-2:36分、試料No.2-3:1800分)。なお、めっき後、電極の5個の任意の断面について、金属層の厚さを光学顕微鏡観察像(1000倍)から測定したところ、形成した厚さと同等であった。また、得られた電極(電極部材)について、試験例1と同様にして化合物粒子の含有量(体積%)を測定した。その結果も表2に示す。 In this test, an electrode and a cold cathode fluorescent lamp were prepared in the same manner as in Test Example 1 except that the immersion time of the plating solution was changed (immersion time; sample No. 2-1: 3.6 minutes, sample No. 2-2: 36 minutes, sample No. 2-3: 1800 minutes). Note that, after plating, the thickness of the metal layer was measured from an optical microscope observation image (1000 times) for five arbitrary cross sections of the electrode, and was equal to the formed thickness. Further, for the obtained electrode (electrode member), the content (% by volume) of the compound particles was measured in the same manner as in Test Example 1. The results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、化合物粒子の含有量が概ね等しい場合、金属層の厚さが厚いほど、長時間経過後の輝度の低下度合いが小さいことが分かる。この理由は、金属層の厚さが薄いと、Arイオンによるスパッタリング作用で金属層が削られるのと同時に、化合物粒子が脱落して、基材が露出してくるためであると考えられる。また、金属層の厚さが100μmを超える試料No.2-3は、100μm以下である試料No.1-4と同等の傾向を示すため、金属層の厚さは100μm以下で十分であると考えられる。 As shown in Table 2, it can be seen that when the content of the compound particles is approximately equal, the thicker the metal layer, the smaller the decrease in luminance after a long time. The reason for this is considered to be that when the metal layer is thin, the metal layer is scraped by the sputtering action by Ar ions, and at the same time, the compound particles fall off and the base material is exposed. Sample No. 2-3 with a metal layer thickness exceeding 100 μm shows the same tendency as Sample No. 1-4 with a thickness of 100 μm or less. Therefore, it is sufficient that the thickness of the metal layer is 100 μm or less. Conceivable.
 《試験例3 化合物粒子の含有量》
 試験例1に対して、めっき液に添加する原料粉末の添加量を変化させて、化合物粒子の含有量が異なる金属層を具える電極を作製し、更に、この電極を用いた冷陰極蛍光ランプを作製して、試験例1と同様にランプの性能を評価した。その結果を表3に示す。
<< Test Example 3 Content of Compound Particles >>
Compared to Test Example 1, the amount of the raw material powder added to the plating solution was changed to produce an electrode having a metal layer with a different content of compound particles, and a cold cathode fluorescent lamp using this electrode The lamp performance was evaluated in the same manner as in Test Example 1. The results are shown in Table 3.
 この試験では、めっき液への原料粉末の添加量を表3に示すように変えた以外の点は、試験例1と同様にして電極及び冷陰極蛍光ランプを作製した。また、得られた電極(電極部材)について、試験例1と同様にして化合物粒子の含有量(体積%)を測定した。その結果も表3に示す。 In this test, an electrode and a cold cathode fluorescent lamp were produced in the same manner as in Test Example 1 except that the amount of the raw material powder added to the plating solution was changed as shown in Table 3. Further, for the obtained electrode (electrode member), the content (volume%) of the compound particles was measured in the same manner as in Test Example 1. The results are also shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、金属層の厚さが等しい場合、化合物粒子の含有量が多いほど、初期輝度が高いことが分かる。しかし、化合物粒子が多い試料No.3-3は、長時間経過後の輝度の低下度合いが比較的大きい。この理由は、含有量が多いと、経時的に脱落する化合物粒子が多くなるためであると考えられる。 As shown in Table 3, when the thickness of the metal layer is equal, it can be seen that the higher the content of the compound particles, the higher the initial luminance. However, Sample No. 3-3 with a large amount of compound particles has a relatively large decrease in luminance after a long time. The reason for this is considered to be that when the content is large, the amount of compound particles that drop off with time increases.
 《試験例4 めっき方法》
 試験例1に対して、異なるめっき液を用いて金属層を形成した電極を作製し、更に、この電極を用いて冷陰極蛍光ランプを作製して、試験例1と同様にランプの性能を評価した。その結果を表4に示す。
<< Test Example 4 Plating Method >>
Compared to Test Example 1, an electrode with a metal layer formed using a different plating solution was prepared, and further, a cold cathode fluorescent lamp was manufactured using this electrode, and the performance of the lamp was evaluated in the same manner as Test Example 1. did. The results are shown in Table 4.
 この試験では、めっき工程の条件を変えた以外の点は、試験例1と同様にして電極及び冷陰極蛍光ランプを作製した。また、得られた電極(電極部材)について、試験例1と同様にして化合物粒子の含有量(体積%)を測定した。その結果も表4に示す。 In this test, an electrode and a cold cathode fluorescent lamp were produced in the same manner as in Test Example 1 except that the conditions of the plating process were changed. Further, for the obtained electrode (electrode member), the content (% by volume) of the compound particles was measured in the same manner as in Test Example 1. The results are also shown in Table 4.
  [めっき工程]
 DMSO2(ジメチルスルホン):温度120℃、1Lに、無水塩化ニッケルを100g/L添加し、更に試験例1で用意した粉末種別1-DのY2O3の粉末を10g/L添加したものをめっき液として、電気めっきを行った。ここでは、触媒を活性化した一体部材のインナーリードを-極とし、ニッケル板(住友金属鉱山株式会社製 SKニッケル)を+極とし、電流密度:5A/dm2で20分行い、厚さが20μmのニッケルめっきを形成した。また、このめっきは、グローブボックス内で行った。なお、めっき後、電極の5個の任意の断面について、金属層の厚さを光学顕微鏡観察像(1000倍)から測定したところ、形成した厚さと同等であった。
[Plating process]
DMSO 2 (dimethylsulfone): Temperature 120 ° C, 1 L, 100 g / L of anhydrous nickel chloride added, and 10 g / L of Y 2 O 3 powder of powder type 1-D prepared in Test Example 1 Was used as a plating solution. Here, the inner lead of the integral member that activated the catalyst is the negative electrode, the nickel plate (SK nickel manufactured by Sumitomo Metal Mining Co., Ltd.) is the positive electrode, and the current density is 5 A / dm 2 for 20 minutes. A 20 μm nickel plating was formed. Moreover, this plating was performed in a glove box. Note that, after plating, the thickness of the metal layer was measured from an optical microscope observation image (1000 times) for five arbitrary cross sections of the electrode, and was equal to the formed thickness.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、金属層の形成方法(めっき液の種類)に関わらず、化合物粒子を含有する金属層を具える電極を用いることで、初期輝度が高く、かつ長期に亘り高輝度な状態が維持可能な冷陰極蛍光ランプが得られることが分かる。 As shown in Table 4, regardless of the method of forming the metal layer (type of plating solution), by using an electrode comprising a metal layer containing compound particles, the initial luminance is high, and the luminance is high over a long period of time. It can be seen that a cold cathode fluorescent lamp capable of maintaining the state is obtained.
 《試験例5 化合物粒子の種類》
 試験例4に対して、組成が異なる原料粉末を用いて金属層を形成した電極を作製し、更に、この電極を用いた冷陰極蛍光ランプを作製して、試験例1と同様にランプの性能を評価した。その結果を表5に示す。
<< Test Example 5 Compound Particle Type >>
Compared to Test Example 4, an electrode having a metal layer formed using a raw material powder having a different composition was prepared, and a cold cathode fluorescent lamp using this electrode was prepared. Evaluated. The results are shown in Table 5.
 この試験では、金属層の形成を試験例4と同様に有機溶媒を用いた電気めっきで行った(めっき条件は試験例4と同様)。めっき液に添加する原料粉末として表5に示す組成の試薬(市販品)を用意し、試験例1と同様にボールミルで粉砕して篩い分けし、各粉末とも1μm以下のものを用意した。用意した各粉末を試験例4に示すめっき液に混合して電気めっきを行い、得られた電極を用いて冷陰極蛍光ランプを作製した。また、得られた電極(電極部材)について、試験例1と同様にして化合物粒子の含有量(体積%)を測定した。その結果も表5に示す。 In this test, the metal layer was formed by electroplating using an organic solvent in the same manner as in Test Example 4 (plating conditions are the same as in Test Example 4). Reagents (commercially available products) having the compositions shown in Table 5 were prepared as raw material powders to be added to the plating solution, and pulverized and screened with a ball mill in the same manner as in Test Example 1, and each powder was prepared with a particle size of 1 μm or less. Each of the prepared powders was mixed with the plating solution shown in Test Example 4 and electroplated, and a cold cathode fluorescent lamp was produced using the obtained electrode. Further, for the obtained electrode (electrode member), the content (% by volume) of the compound particles was measured in the same manner as in Test Example 1. The results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように化合物粒子を含有する金属層を具える電極を用いることで、初期輝度が高く、かつ長期に亘り高輝度な状態を維持することができる冷陰極蛍光ランプが得られることが分かる。 By using an electrode including a metal layer containing compound particles as shown in Table 5, it is possible to obtain a cold cathode fluorescent lamp having a high initial luminance and capable of maintaining a high luminance state over a long period of time. I understand.
 なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、基材や金属層をニッケル合金で形成してもよい。また、化合物粒子は、複数の異なる組成のものが組み合わされて含有された構成としてもよい。更に、金属層を形成した素材を用意し、この素材にカップ状の加工を施して電極を作製してもよい。 It should be noted that the above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, you may form a base material and a metal layer with a nickel alloy. In addition, the compound particles may be configured to contain a combination of a plurality of different compositions. Further, a material in which a metal layer is formed may be prepared, and a cup-shaped process may be applied to the material to produce an electrode.
 本発明電極は、冷陰極蛍光ランプに好適に利用でき、この冷陰極蛍光ランプは、例えば、パソコンの液晶モニタや液晶テレビなどの液晶表示装置のバックライト用光源、小型ディスプレイのフロントライト用光源、複写機やスキャナなどの原稿照射用光源、複写機のイレイサー用光源といった種々の電気機器の光源に好適に利用できる。 The electrode of the present invention can be suitably used for a cold cathode fluorescent lamp. The cold cathode fluorescent lamp is, for example, a backlight light source for a liquid crystal display device such as a liquid crystal monitor of a personal computer or a liquid crystal television, a light source for a front light of a small display, It can be suitably used as a light source for various electrical devices such as a light source for irradiating a document such as a copying machine or a scanner, or a light source for an eraser of a copying machine.

Claims (6)

  1.  冷陰極蛍光ランプに用いられるカップ状の電極であって、
     カップ状に形成された基材と、前記基材の内周面のうち底部に、めっきにより形成された金属層とを具え、
     前記金属層は、周期表1族,2族,及び3族から選択される1種以上の金属元素と酸素とを含む化合物粒子を含有することを特徴とする電極。
    A cup-shaped electrode used in a cold cathode fluorescent lamp,
    A base formed in a cup shape, and a metal layer formed by plating on the bottom of the inner peripheral surface of the base;
    The electrode, wherein the metal layer contains compound particles containing one or more metal elements selected from Groups 1, 2, and 3 of the periodic table and oxygen.
  2.  前記金属層は、ニッケル又はニッケル合金により構成されていることを特徴とする請求項1に記載の電極。 2. The electrode according to claim 1, wherein the metal layer is made of nickel or a nickel alloy.
  3.  前記化合物粒子は、最大径が10μm以下であることを特徴とする請求項1又は2に記載の電極。 3. The electrode according to claim 1, wherein the compound particles have a maximum diameter of 10 μm or less.
  4.  前記化合物粒子の含有量は、1体積%以上30体積%以下であることを特徴とする請求項1~3のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 3, wherein the content of the compound particles is 1% by volume or more and 30% by volume or less.
  5.  前記金属層の厚さは、1μm以上100μm以下であることを特徴とする請求項1~4のいずれか1項に記載の電極。 The electrode according to any one of claims 1 to 4, wherein the metal layer has a thickness of 1 µm or more and 100 µm or less.
  6.  前記化合物粒子は、アルカリ金属の酸化物、アルカリ金属塩、アルカリ土類金属の酸化物、マグネシウムの酸化物及び希土類元素の酸化物から選択される少なくとも1種からなることを特徴とする請求項1~5のいずれか1項に記載の電極。 2. The compound particles are made of at least one selected from an alkali metal oxide, an alkali metal salt, an alkaline earth metal oxide, a magnesium oxide, and a rare earth element oxide. 6. The electrode according to any one of 1 to 5.
PCT/JP2009/004233 2009-08-28 2009-08-28 Electrode WO2011024235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004233 WO2011024235A1 (en) 2009-08-28 2009-08-28 Electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004233 WO2011024235A1 (en) 2009-08-28 2009-08-28 Electrode

Publications (1)

Publication Number Publication Date
WO2011024235A1 true WO2011024235A1 (en) 2011-03-03

Family

ID=43627365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004233 WO2011024235A1 (en) 2009-08-28 2009-08-28 Electrode

Country Status (1)

Country Link
WO (1) WO2011024235A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175775A (en) * 2000-12-05 2002-06-21 Ay Tekku:Kk Cold cathode fluorescent lamp
JP2004199992A (en) * 2002-12-18 2004-07-15 Tokyo Cathode Laboratory Co Ltd Electrode for fluorescent lamp, its manufacturing method, and fluorescent lamp
JP2004259678A (en) * 2003-02-27 2004-09-16 Tokyo Cathode Laboratory Co Ltd Electrode member for discharge tube, manufacturing method of the same, and discharge tube and liquid crystal display using the same
JP2004355971A (en) * 2003-05-29 2004-12-16 Tokyo Cathode Laboratory Co Ltd Electrode for fluorescent lamp, its manufacturing method, and fluorescent lamp
JP2005183172A (en) * 2003-12-19 2005-07-07 Erebamu:Kk Discharge lamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002175775A (en) * 2000-12-05 2002-06-21 Ay Tekku:Kk Cold cathode fluorescent lamp
JP2004199992A (en) * 2002-12-18 2004-07-15 Tokyo Cathode Laboratory Co Ltd Electrode for fluorescent lamp, its manufacturing method, and fluorescent lamp
JP2004259678A (en) * 2003-02-27 2004-09-16 Tokyo Cathode Laboratory Co Ltd Electrode member for discharge tube, manufacturing method of the same, and discharge tube and liquid crystal display using the same
JP2004355971A (en) * 2003-05-29 2004-12-16 Tokyo Cathode Laboratory Co Ltd Electrode for fluorescent lamp, its manufacturing method, and fluorescent lamp
JP2005183172A (en) * 2003-12-19 2005-07-07 Erebamu:Kk Discharge lamp

Similar Documents

Publication Publication Date Title
TWI320803B (en) Electrode material
EP1746632B1 (en) Cold-cathode tube-use sintered electrode, cold-cathode tube provided with this cold-cathode tube-use sintered electrode and liquid crystal display unit
TW200834643A (en) Electrode member for cold cathode fluorescent lamp
WO2011024235A1 (en) Electrode
JP2009218150A (en) Electrode
JP2008123722A (en) Electrode material for cold-cathode fluorescent lamp
JP4674805B2 (en) Method for producing electrode material for cold cathode fluorescent lamp
US20090128001A1 (en) Electrode for cold-cathode fluorescent lamp
TW201110188A (en) Electrode
JP4157369B2 (en) Cold cathode tube electrode and cold cathode tube using the same
JP2004355971A (en) Electrode for fluorescent lamp, its manufacturing method, and fluorescent lamp
EP1947676A1 (en) Electrode, method for producing electrode, and cold-cathode fluorescent lamp
JP4653600B2 (en) Cold cathode tube electrode and cold cathode tube using the same
JP2008060056A (en) Electrode for cold-cathode fluorescent lamp
KR20080084731A (en) Cold cathode fluorescent lamp
JP2004192874A (en) Electrode for cold-cathode tube, and cold-cathode tube using it
JP5451688B2 (en) Cold cathode fluorescent tube electrode alloy, cold cathode fluorescent tube electrode and cold cathode fluorescent tube
JP4394748B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
TW200836236A (en) Cold cathode fluorescent lamp and method of manufacturing the same
JP5629148B2 (en) Cold cathode discharge tube electrode and cold cathode discharge tube using the same
JP4612749B1 (en) Electrode material
JP4945803B2 (en) Cold cathode fluorescent lamp
JP4531125B1 (en) Cold cathode discharge tube electrode and cold cathode discharge tube
JP2005203184A (en) Electrode material for cold cathode fluorescent lamp, discharge electrode and its manufacturing method
KR101204605B1 (en) Electrode material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP