WO2011023903A2 - Systeme de montage de modules photovoltaiques - Google Patents

Systeme de montage de modules photovoltaiques Download PDF

Info

Publication number
WO2011023903A2
WO2011023903A2 PCT/FR2010/051772 FR2010051772W WO2011023903A2 WO 2011023903 A2 WO2011023903 A2 WO 2011023903A2 FR 2010051772 W FR2010051772 W FR 2010051772W WO 2011023903 A2 WO2011023903 A2 WO 2011023903A2
Authority
WO
WIPO (PCT)
Prior art keywords
module
mounting system
electrically insulating
support
photovoltaic
Prior art date
Application number
PCT/FR2010/051772
Other languages
English (en)
Other versions
WO2011023903A3 (fr
Inventor
Franz Karg
Hans-Werner Kuster
Jaap Van Der Burgt
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to CN2010900011092U priority Critical patent/CN202957264U/zh
Priority to KR2020127000021U priority patent/KR200480266Y1/ko
Priority to DE212010000121U priority patent/DE212010000121U1/de
Priority to US13/392,319 priority patent/US20120174981A1/en
Publication of WO2011023903A2 publication Critical patent/WO2011023903A2/fr
Publication of WO2011023903A3 publication Critical patent/WO2011023903A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/24Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures specially adapted for flat roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/63Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing modules or their peripheral frames to supporting elements
    • F24S25/632Side connectors; Base connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/12Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using posts in combination with upper profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S25/63Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules for fixing modules or their peripheral frames to supporting elements
    • F24S25/634Clamps; Clips
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/014Methods for installing support elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/6004Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by clipping, e.g. by using snap connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/601Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules by bonding, e.g. by using adhesives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/015Plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making

Definitions

  • the present invention relates to a mounting system of a photovoltaic module on a structure at least partially metallic, such as a roof structure, a facade structure or a carrier structure in the field.
  • a photovoltaic module is a module capable of converting energy from radiation, in particular solar radiation, into electrical energy, this definition including mixed photovoltaic / thermal modules.
  • a photovoltaic solar module is in the form of a laminated glazing unit comprising photovoltaic cells interposed between a transparent front substrate intended to be arranged on the side of incidence of solar radiation on the module, and a transparent rear substrate. or opaque, intended to be arranged opposite a mounting structure of the module.
  • the front and rear substrates may in particular be formed by glass or thermoplastic polymer plates.
  • the module is conventionally equipped with a metal frame, in particular made of aluminum, which covers its periphery. Fixing the module on the mounting structure is then obtained by joining the frame with the structure and / or with the frame of another module, in the case of mounting several juxtaposed modules.
  • this conventional mounting system by means of a metal frame has the disadvantage of creating an electrically conductive environment at a floating potential or the potential of the earth around the photovoltaic modules.
  • the modules can be exposed to a high intensity of the electric field, which induces a risk of deterioration of the modules.
  • the presence of the metal frame on the periphery of each module and the fixing of the module on the structure to the level of this frame also cause the appearance of mechanical stresses on the periphery of the module, which affects the mechanical strength of the module.
  • the metal frame of each module covers active surface portions at the periphery of the module which, if they were not covered, participate in the energy conversion, which limits the energy conversion efficiency of the module.
  • the invention intends to remedy more particularly by proposing a mounting system allowing reliable mounting of photovoltaic modules on an at least partially metallic structure, while reducing the intensity of the electric field to which the modules are exposed.
  • the subject of the invention is a system for mounting a photovoltaic module on an at least partially metallic structure, the photovoltaic module comprising at least one photovoltaic cell which comprises electrically conductive elements, characterized in that it comprises at each region in which the photovoltaic cell is close to a grounded metal portion of the mounted structure, at least one electrically insulating member positioned between the metal portion and the nearest portion of the electrically conductive members of the photovoltaic cell, the total thickness of electrically insulating material between the metal part and the part closest to the electrically conductive elements of the photovoltaic cell being at least 7 mm, preferably at least 10 mm still preferably at least 12 mm.
  • the electrically conductive elements of the photovoltaic cell are maintained at a distance of at least 7 mm, preferably at least 10 mm, more preferably at least 12 mm, from any metallic portion at the earth potential.
  • the electrically conductive elements of the photovoltaic cell comprise the electrodes and the bus bars of the photovoltaic cell.
  • said at least one electrically insulating element comprises a rear substrate of the photovoltaic module made of an electrically insulating material, in particular glass or a polymeric material.
  • the photovoltaic module can comprising both a front substrate and a rear substrate, the or each photovoltaic cell being interposed between the front and rear substrates.
  • the photovoltaic module is devoid of a metal frame.
  • the electrically conductive elements of the photovoltaic cell are maintained, in the mounted configuration, at a distance of at least 7 mm, preferably at least 10 mm, more preferably at least 12 mm, from any portion metallic.
  • At least one region in which the photovoltaic cell is close to a grounded metal part of the structure in assembled configuration is a region for fixing the module on the structure, and said at least one an electrically insulating member comprises a fastener integral with a rear face of the rear substrate.
  • the fastener is made of a polymer material or a composite material comprising a polymer matrix and electrically insulating fibers.
  • the fastener is able to be coupled directly with the metal part of the structure for fastening the module to the structure.
  • said at least one electrically insulating element at this attachment region further comprises a portion of a support, said support being integral with the metal part of the structure and the attachment being able to be coupled with the part of the support for fixing the module on the structure.
  • the support is entirely made of an electrically insulating material, in particular a polymer material or a composite material comprising a polymer matrix and electrically insulating fibers.
  • the fastener comprises a pattern, projecting or recessed, capable of coming into engagement with a complementary pattern, hollow or protruding, of the part of the support, the fastener and the support being able to be coupled to each other by engaging their respective patterns.
  • the support is secured to the metal part of the snap-fastening structure.
  • the mounting system comprises at least two fasteners integral with the rear face of the rear substrate, which are regularly distributed on said face and offset internally with respect to the peripheral edges of the module.
  • each region in which the photovoltaic cell is close to a grounded metal part of the structure in mounted configuration is a region for fixing the module on the structure.
  • the invention also relates to an assembly comprising an at least partially metallic structure, such as a roof structure, a facade structure or a carrier structure in the open field, and at least one photovoltaic module mounted on the structure, in which the module is mounted on the structure by means of a mounting system as described above.
  • an assembly can be a system for producing high voltage electrical energy, in which voltages of the order of several hundred volts with respect to the ground potential can be reached.
  • FIG. 1 is a perspective view of photovoltaic solitary models mounted on a structure by means of a mounting system according to a first embodiment of the invention
  • FIG. 2 is a perspective view on a larger scale according to the arrow II of Figure 1;
  • FIG. 3 is an enlarged and exploded view of detail III of FIG. 2;
  • FIG. 4 is a perspective view along the arrow IV of Figure 3, on which the photovoltaic module has been omitted;
  • FIG. 5 is a perspective view from below of a photovoltaic module of Figure 1 provided with fasteners of the mounting system;
  • FIG. 6 is an elevational view of photovoltaic solar modules mounted on a structure by means of a mounting system according to a second embodiment of the invention;
  • FIG. 7 is a perspective view on a larger scale of a support of the mounting system of FIG. 6;
  • FIG. 8 is a view similar to FIG. 2 of photovoltaic solar modules mounted on a structure by means of a mounting system according to a third embodiment of the invention.
  • Figure 9 is a section along the plane IX of Figure 8.
  • FIG. 10 is a view in elation of photovoltaic solar modules mounted, by means of a mounting system according to the first embodiment of the invention, on a structure which differs from the structures shown in the preceding figures. .
  • the thicknesses of the constituent elements of the photovoltaic modules and mounting systems have been exaggerated for the sake of visibility, without respecting the actual relative dimensions of these elements.
  • the active layers of the photovoltaic cell of each module have been represented with a thickness similar to that of the substrates of the module, whereas in reality they are thin layers having a much lower thickness.
  • photovoltaic solar modules 10 are mounted on a metal structure 30, of the carrier structure type in the open field, by means of a mounting system 1.
  • the structure 30 is adapted to receive the modules 10 with an inclination relative to the horizontal, this inclination being provided to maximize the incident solar radiation on the module.
  • is the average plane of attachment of the modules 10 on the structure 30, which is inclined at an angle ⁇ relative to the horizontal.
  • the angle ⁇ of inclination of the plane ⁇ with respect to the horizontal is of the order of 45 °. More generally, the angle ⁇ can be between 0 ° and 90 °.
  • the structure 30 is a stainless steel structure comprising a plurality of beams 31, 33, 35 arranged between them so as to form a triangulated frame, on which are fixed sleepers 37 with quadrilateral cross section.
  • the crosspieces 37, of which X37 is a longitudinal axis, are mutually parallel and intended to receive a plurality of juxtaposed photovoltaic modules 10.
  • each module 10 is a parallelepiped photovoltaic module without a frame, which comprises a front substrate or "superstrate” 1 1, a rear substrate 12 and one or more photovoltaic cells 13 sandwiched between the substrates before 1 January and 12.
  • the front substrate 1 intended to be arranged on the side of incidence of solar radiation on the module, is transparent, for example made of a transparent glass extra clear or a transparent thermoplastic polymer such as polycarbonate, polyurethane or polymethylmethacrylate.
  • the rear substrate 12, intended to be arranged facing the structure 30, is made of any suitable electrically insulating material, transparent or not. ⁇ i2 is the thickness of the rear substrate 12.
  • the backing substrate may partially include metal parts, provided that a coating or cover made of an electrically insulating material prevents any electrical connection between these metal parts and the potential of the earth.
  • the or each photovoltaic cell 13 positioned between the substrates 1 1 and 12 is formed by a stack of thin layers successively comprising, from the substrate before 1 1, an electrically conductive transparent layer 14, in particular based on transparent conductive oxide (Transparent Conductive Oxide), which forms a front electrode of the cell; an absorber layer 15, adapted to absorb the energy from the solar radiation incident on the cell, in particular a thin film based on silicon, amorphous or microcrystalline, or based on cadmium telluride; and an electrically conductive layer 16 which forms a back electrode of the cell.
  • a polymeric lamination interlayer is used to connect this stack of thin layers to the back substrate 12 or back cover film.
  • the absorber layer 15 of the or each cell 13 may be a thin layer of chalcopyrite compound comprising copper, indium and selenium, said CIS absorber layer, optionally addition of gallium (CIGS absorber layer), aluminum or sulfur.
  • the or each thin-film cell 13 comprises a stack similar to that described above, a not shown polymeric lamination interlayer also being positioned between the front electrode 14 of the cell and the front substrate 11, so that to ensure a good cohesion of the module 10 during its assembly.
  • the lamination interlayer may in particular be made of polyvinyl butyral (PVB) or ethylene vinyl acetate (EVA).
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • the or each cell 13 may be formed from "wafers" or polycrystalline silicon wafers forming a p / n junction.
  • Each module 1 0 is equ izza of two connection boxes 50, integral with the rear face 12A of the rear substrate 12 intended to be opposite the structure 30, which is the face of the rear substrate 12 opposite the or each photovoltaic cell 13
  • the connection boxes 50 are secured to the face 1 2A by any suitable means, in particular by gluing, and are positioned symmetrically to each other with respect to a longitudinal median axis X10 of the module, at the level of a median portion of the module relative to the direction of the axis X10.
  • the junction boxes 50 are connected to each other and to the outside by means of cables 52, which allows the electrical connection of the module 10, once mounted on the structure 30, with adjacent modules 10 and unrepresented setting devices. available electric current.
  • Each photovoltaic module 10 is mounted on the structure 30 by means of four fasteners 20, integral with the module, and four supports 40, integral with sleepers 37 of the structure.
  • Each fastener 20 and each support 40 of the mounting system 1 are made of an electrically insulating material, in particular a material polymer or a composite material comprising a polymer matrix and electrically insulating fibers.
  • electrically insulating materials include polymers such as polypropylene, polyethylene, polyamide, polycarbonate, which can be reinforced with electrically insulating fibers, such as glass fibers or polymer fibers.
  • each fastener 20 and each support 40 is advantageously shaped by molding, in particular by molding with injection.
  • the four fasteners 20 are secured to the rear face 12A of the rear substrate 12 by gluing by means of an adhesive material.
  • the four fasteners 20 are identical to one another and regularly distributed on the rear face 12A of the module, being internally offset relative to the longitudinal peripheral 18 and transverse peripheral edges 19 of the module. More precisely, if the rear face 12A is divided into four dials of the same dimensions, the fasteners 20 are each positioned at the level of a central portion of one of the dials. Such an arrangement of the fasteners 20 distributed on the rear face 12A reinforces the structure of the module 10 and improve its mechanical strength.
  • each support 40 comprises a first latching portion 42 on the structure 30 and a second coupling portion 44 relative to a fastener 20.
  • the latching portion 42 presents generally a U shape, where the opening of the U is partially closed by a rim 43.
  • One of the lateral branches of the U-shaped detent portion 42 is formed by the coupling portion 44, while the other leg Lateral 41 of the U-shaped detent portion 42 is extended by the flange 43, curved toward the coupling portion 44.
  • the latching portion 42 has a quadrilateral cross section, open between the rim 43 and the part 44, which is complementary to the cross section of each cross member 37.
  • each support 40 of the mounting system 1 is made of an elastically deformable material, so that the lateral branches 41 and 44 of the detent part 42 are able to be elastically separated from each other. It is thus possible to enlarge the opening defined between the flange 43 and the coupling portion 44, in order to obtain the snap of the portion 42 on a crosspiece 37 of the structure 30.
  • the cross member 37 In snap-fastened configuration of the portion 42 on a crosspiece 37, the cross member 37 is received and clamped in the interior volume 47 defined by the portion 42, so that the support 40 is secured to the cross member 37.
  • the coupling portion 44 which in this embodiment constitutes a side branch of the detent portion 42 of each support 40, has a projecting pattern 45.
  • This projecting pattern 45 is provided to engage with a complementary recessed pattern that each clip 20 of the mounting system 1 has on one side 20A.
  • the recessed pattern 25 of each fastener 20 and the projecting pattern 45 of each support 40 have complementary trapezoidal profiles, the cross-section S25, S 45 of each pattern 25, 45 decreasing in a longitudinal direction X25, X45 of the pattern.
  • the patterns 25 and 45 of a fastener 20 and a support 40 of the mounting system 1 are thus able to come into mutual engagement by a sliding movement of one with respect to the other in the longitudinal direction X25, X 45 patterns, as shown by the arrow Fi of Figure 2.
  • the pattern 25 of a fastener 20 is engaged with the pattern 45 of a support 40, the clip and the support are coupled one by report to the other.
  • This coupling of the fastener 20 and the support 40 is reversible, insofar as, when the patterns 25 and 45 are in mutual engagement, there remains a degree of freedom of translation of the fastener 20 relative to the support 40, in the direction of the arrow F 2 of Figure 2 opposite the arrow Fi. In other words, when the patterns 25 and 45 are in mutual engagement, the fastener 20 and the support 40 are immobilized relative to each other except in the direction of the arrow F 2 .
  • each fastener 20 is fixed on the rear face 12A of the module 10 such that the axis X 25 of the hollow pattern 25 is parallel to the longitudinal axis X10 of the module.
  • the four supports 40 for receiving a module 10 are distributed in pairs on two adjacent crosspieces 37, one of these crosspieces, called the upper cross member, being disposed above the other, called the lower cross member, because of the fact that angle of inclination ⁇ of the plane ⁇ for fixing the modules on the structure 30.
  • the axis X 45 of the projecting pattern 45 of the support is oriented transversely relative to the X axis 37 of the cross.
  • ⁇ 2o we denote the thickness of each fastener 20 outside the pattern 25 and e 4 4 thickness of the coupling portion 44 of each support 40 outside the pattern 45.
  • the photovoltaic cell 13 which is closest to the crossmember 37, in a direction perpendicular to the plane of the module 10 is at least 7 mm, preferably at least 10 mm, more preferably at least 12 mm. In the assembled configuration, the photovoltaic cell of the module 10 is thus electrically isolated from the metal structure 30.
  • the thickness e 2 o of each fastener 20 is chosen equal to the thickness e 5 o of each of the two connection boxes 50 of the module.
  • the module 10 with its two connection boxes 50 and four fasteners 20 has an optimal compactness, which facilitates packaging, storage and transport.
  • a method of mounting photovoltaic modules 10 on the structure 30, for which the mean plane ⁇ for fixing the modules is inclined relative to the horizontal at the angle ⁇ between 0 ° and 90 °, by means of the mounting system 1 according to the invention comprises steps as described below. Firstly, four fasteners 20 are fixed to each module 10, according to the arrangement shown in FIG. 5, by bonding between the face 20B of each fastener, opposite the face 20A, and the rear face 12A of the module.
  • Supports 40 are also secured to the structure 30, by snapping the portion 42 of each support on cross members 37 of the structure. More specifically, for each module 10, four supports 40 are snapped onto two adjacent crosspieces 37, upper and lower because of the angle of inclination ⁇ of the plane ⁇ , namely two supports on the upper cross member 37 and two supports on the crossbar 37 lower, by arranging the supports on the sleepers with a suitable spacing corresponding to the spacing between the fasteners 20 of the modules 10. Each support 40 is snapped onto the corresponding cross member 37 so that the cross section S 45 of its pattern 45 decreases towards the ground.
  • each support 40 is mounted loosely or with a certain clearance on the crossmember 37 corresponding in snapped configuration, that is to say with the possibility of sliding of the support 40 relative to the crossbar 37, it is possible to adjust the positioning of the supports 40 on the structure 30 prior to mounting the modules 10 or during assembly. This positioning is then blocked by bonding the supports 40 relative to the structure 30, by means of an adhesive material which fills the clearance between the portion 42 and the cross member 37.
  • the positioning of the modules on the structure is easy, thanks to the possible adjustment of the position of the snapped-on supports on the mounting structure.
  • each module 10 is fixed relative to the structure 30 by putting the patterns 25 of the four fasteners 20 of the module in mesh with the patterns.
  • the step of securing the fasteners 20 with the rear face 12A of each module is carried out on the manufacturing site of the modules 10, in an integrated manner on the manufacturing line of the modules, while the following steps are carried out on the assembly site of the modules 10.
  • the disassembly of the module 10 operates in a particularly simple manner, by an upward sliding movement. , in the direction of the arrow F 2 in FIG. 2, of the module 10 with respect to the structure 30.
  • the mounting system 100 differs from the mounting system of FIG. first embodiment only by the structure of the supports. More specifically, in this second embodiment, the detent portion 142 and the coupling portion 144 of each support 140 are spaced from each other and connected to each other by a connecting portion 146 In other words, the coupling portion 144 no longer forms a side branch of the detent portion 142, but is connected to a side branch 148 of the portion 142 by the joint portion 146. As shown in FIG. 7, for each support 140, note c / the distance between the rear face of the side branch 148 and the front face of the coupling portion 144, outside the pattern 145.
  • each fastener 120 and each support 140 of the mounting system 101 are made of an electrically insulating material, in particular a polymeric material or a composite material comprising a polymer matrix.
  • each support 140 is advantageously injection molded in one piece of a composite material comprising a polymer matrix reinforced by electrically insulating fibers.
  • the structure of each support 140, shown in FIGS. 6 and 7, is very schematic. In particular, reinforcing elements at the junction portion 146, which are necessary to ensure a satisfactory mechanical strength of the support 140, have not been shown in these figures.
  • the supports 140 associated with each module 1 10 are chosen such that the distance c / is different between the first pair of supports of the module, snapped onto the upper cross member 137 of the structure 130, and the second pair of module supports, snapped onto the lower cross member 137.
  • the distance di of the first pair of supports 140, snapped onto the upper cross member 137 is smaller than the distance c / 2 of the second pair of supports 140, snapped onto the lower cross member 137, of such so that in the fixed configuration of each module on the structure, the module is inclined at an angle ⁇ of the order of 10 ° relative to the plane ⁇ of fixing modules on the structure.
  • Such a floor arrangement of the modules 1 10 prevents the parking of dirt, or snow, between two adjacent modules and thus limits the clogging of the modules.
  • the total thickness e ⁇ 2 + e? 2 o + c / of electrically insulating material positioned between the cross member 137 and the rear electrode 1 16, which is the conductive element of the photovoltaic cell 113 which is closest to the metal cross member 137, in a direction perpendicular to the plane of the module 110 is at least 7 mm, preferably at least 10 mm, more preferably at least 12 mm.
  • the electrically insulating interlayer material comprises both air and the constituent materials of the rear substrate 1 1 2, the fastener 1 20 and the support 140.
  • the supports 140 of the mounting system 101 can be manufactured in two distinct series, one having the spacing di between the parts 142 and 144 and the other having the spacing c / 2 between the Parts 142 and 144.
  • the supports 140 may be manufactured according to a single model comprising means for modulating the distance c / between the parts 142 and 144, for example a notch system. In this case, reinforcements specific to the junction zone between the parts 142 and 144 are to be provided, in order to keep a satisfactory mechanical strength of the support.
  • each crossmember 237 has a shoulder 238 which, because of the inclination of the plane ⁇ for fixing the modules 210 on the structure 230, is directed upwards, opposite the ground.
  • each of the four fasteners 220 of the module comprises a hook 228 provided to cooperate with the shoulder 238 of the cross member 237.
  • the hook 228 of a fastener 220 is adapted to engage with the shoulder 238 of a cross member 237 by a sliding movement of the hook relative to the shoulder in the direction of the arrow F 3 of Figure 9.
  • each fastener 220 is made of an electrically insulating material, in particular a polymer material or a composite material comprising a polymer matrix and electrically insulating fibers.
  • the total thickness ⁇ 2i2 + ⁇ 22o ⁇ ie electrically insulating material positioned between the metal cross member 237 and the rear electrode 216, which is the conductive element of the photovoltaic cell 213 which is closest to the cross member 237, in a direction perpendicular to the plane of the module 210, is at least 7 mm, preferably at least 10 mm, more preferably at least 12 mm.
  • the conductive elements of the photovoltaic module 21 0 are electrically isolated from the metal structure 230 at each fixing region of the module on the structure, which correspond to the only regions in which the photovoltaic cell of the module is close to the structure.
  • a mounting system ensures that, at each level in which the or each photovoltaic cell of a photovoltaic module is close to a metal part set to the earth of its mounting structure, a certain thickness of electrically insulating material is interposed between the metal part and the nearest part of the conductive elements of the photovoltaic cell, that is to say the rear electrode in the previous examples.
  • the thickness of electrically insulating material positioned between the metal part of the structure and the nearest part of the conductive elements of the photovoltaic cell, in a direction perpendicular to the plane of the module is at least 7 mm, preferably at least 10 mm, more preferably at least 12 mm.
  • each conductive element of the module is electrically isolated and maintained at a distance from any grounded metal portion of the mounting structure, thereby reducing the intensity of the electric field to which the module is exposed.
  • a mounting system according to the invention makes it possible to avoid the risk of deterioration of the high voltage modules in electrical energy production systems, in particular for voltages greater than several hundred volts, which increases the lifetime of the modules.
  • An example of a high-voltage deterioration mechanism for thin-film photovoltaic modules is delamination.
  • a mounting system according to the invention can also achieve higher system voltages, above 500V, or even above 1000V.
  • a mounting system allows a quick and easy installation of photovoltaic modules on a structure, by placing patterning the fasteners directly with the structure or with supports reported on the structure, without requiring special tools. This engagement is effected by a simple sliding movement of each module relative to the structure, until the blockage resulting from the relative shape of the patterns.
  • the fixation obtained from the modules on the structure is reliable and robust.
  • the load bearing of the modules is satisfactory thanks to the regular distribution of the fasteners on the rear face of each module.
  • the assembly of the modules with the structure obtained according to the invention is reversible, which allows individual disassembly of a module with respect to the structure, in case of failure of this module.
  • the constituent elements of a mounting system according to the invention namely the fasteners and possibly the supports, have the advantage of being able to be manufactured simply and economically, in particular by injection of a polymer material.
  • Fasteners and supports comprising a polymer matrix are also able to absorb, by elastic deformation, vibration movements of the modules relative to their mounting structure, which may occur for example under the effect of wind. This results in a damping of the noises associated with such vibration movements.
  • photovoltaic modules are frameless modules.
  • the modules may comprise a frame, preferably a non-metallic frame such that the electrically conductive elements of each photovoltaic cell of the module are kept away from any metal parts grounded in the mounted configuration.
  • the conductive elements of each photovoltaic cell comprise the front and rear electrodes of the cell, but may also comprise bus bars or connection bars, not shown in the figures.
  • a mounting system according to the invention can also involve fasteners and supports having shapes or distribution modes, on the modules and the receiving structure, different from those described above, or a different number of fasteners and supports.
  • the fasteners are advantageously regularly distributed on the rear face of the module, so as to reinforce the structure of the module.
  • a fifth fastener arranged centrally relative to the module and connect the upper and lower crossmember receiving the supports with a central beam on which the fifth fastener can be hung, directly or via a fifth support snapped onto the structure.
  • the supports may be made of a metallic material instead of an electrical insulating material.
  • the total thickness ei 2 + e 2 o, in 2 + ei 2o of the rear substrate and fasteners made of electrically insulating material is advantageously at least 7 mm, preferably at least 10 mm, further from preferably at least 12 mm, in order to ensure a sufficient distance between, on the one hand, the conductive elements of the or each photovoltaic cell of the modules and, on the other hand, the metal supports, the latter being, because of their electrical conductivity, likely to induce deterioration of the high voltage modules if they are too close to the modules.
  • a tile-like floor arrangement of the modules on the structure which is an advantageous arrangement for limiting fouling, can be obtained by means other than an adaptation of the support structure of the mounting system, such as illustrated in the second embodiment, wherein a different distance between the detent and coupling portions is provided from one carrier to the other.
  • a floor arrangement of the modules can be obtained by modifying the structure of the fasteners or the module receiving structure, rather than the structure of the supports. The modification of the reception structure to obtain a floor arrangement of the modules is illustrated in FIG.
  • the mounting system is that of the first embodiment, but the cross members 37, instead of being directly attached to the beams 35 of the structure 30, are fixed on rods 39 projecting from the beams 35 More precisely, as shown in FIG. 10, for each module 10 to be fixed on the structure 30, the upper module receiving cross member 37 is fixed on projecting rods 39 having a length di, whereas the lower cross member 37 of module receiving is fixed on projecting rods 39 having a length c / 2 greater than di.
  • each module is inclined at an angle ⁇ of the order 10 ° with respect to the plane ⁇ .
  • a mounting system according to the invention can be used for mounting photovoltaic modules on a receiving structure of any type, in particular a carrier structure in the field, a roof or a facade.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention a trait à u n système de montage (201) d'un module photovoltaïque (210) sur une structure (230) au moins partiellement métallique, où le module photovoltaïque comprend au moins une cellule photovoltaïque (213) comportant des éléments électriquement conducteurs (214, 216). Le système de montage (201) comprend, au n iveau de chaque région dans laquelle la cellule photovoltaïque (213) est proche d'une partie métallique (237) mise à la terre de la structure (230) en configuration montée, au moins un élément électriquement isolant (212, 220) positionné entre la partie métallique (237) et la partie la plus proche (216) des éléments électriquement conducteurs de la cellule photovoltaïque (213), l'épaisseur totale (e 212 +e 220 ) de matériau électriquement isolant entre la partie métallique (237) et la partie la plus proche (216) des éléments électriquement conducteurs de la cellule photovoltaïque étant d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm.

Description

SYSTEME DE MONTAGE DE MODULES PHOTOVOLTAIQUES
La présente invention a trait à un système de montage d'un module photovoltaïque sur une structure au moins partiellement métallique, telle qu'une structure de toit, une structure de façade ou une structure porteuse en plein champ.
Au sens de l'invention, un module photovoltaïque est un module apte à convertir l'énergie issue d'un rayonnement, en particulier du rayonnement solaire, en énergie électrique, cette définition incluant les modules mixtes photovoltaïques/thermiques.
De manière classique, un module solaire photovoltaïque se présente sous la forme d'un vitrage feuilleté comprenant des cellules photovoltaïques intercalées entre un substrat avant transparent, destiné à être disposé du côté d'incidence du rayonnement solaire sur le module, et un substrat arrière transparent ou opaque, destiné à être agencé en regard d'une structure de montage du module. Les substrats avant et arrière peuvent notamment être formés par des plaques de verre ou de polymère thermoplastique. Afin de permettre le montage du module photovoltaïque sur une structure, telle qu'une structure de toit, une façade de bâtiment ou une structure porteuse en plein champ, le module est classiquement équipé d'un cadre métallique, notamment constitué en aluminium, qui recouvre sa périphérie. La fixation du module sur la structure de montage est alors obtenue par solidarisation du cadre avec la structure et/ou avec le cadre d'un autre module, dans le cas du montage de plusieurs modules juxtaposés.
Lorsque la structure de montage est métallique, ce système de montage classique au moyen d'un cadre métallique a l'inconvénient de créer un environnement électriquement conducteur à un potentiel flottant ou au potentiel de la terre autour des modules photovoltaïques. Ainsi, pour de hautes tensions de système, en particulier supérieures à plusieurs centaines de volts, les modules peuvent être exposés à une forte intensité du champ électrique, ce qui induit un risque de détérioration des modules. La présence du cadre métallique sur la périphérie de chaque module et la fixation du module sur la structure au niveau de ce cadre entraînent également l'apparition de contraintes mécaniques sur la périphérie du module, ce qui nuit à la résistance mécanique du module. De plus, le cadre métallique de chaque module recouvre des parties de surface active à la périphérie du module qui, si elles n'étaient pas recouvertes, participeraient à la conversion d'énergie, ce qui limite le rendement de conversion énergétique du module.
C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un système de montage permettant un montage fiable de modules photovoltaïques sur une structure au moins partiellement métallique, tout en réduisant l'intensité du champ électrique à laquelle les modules sont exposés.
A cet effet, l'invention a pour objet un système de montage d'un module photovoltaïque sur une structure au moins partiellement métallique, le module photovoltaïque comprenant au moins une cellule photovoltaïque qui comporte des éléments électriquement conducteurs, caractérisé en ce qu'il comprend, au niveau de chaque région dans laquelle la cellule photovoltaïque est proche d'une partie métallique mise à la terre de la structure en configuration montée, au moins un élément électriquement isolant positionné entre la partie métallique et la partie la plus proche des éléments électriquement conducteurs de la cellule photovoltaïque, l'épaisseur totale de matériau électriquement isolant entre la partie métal l ique et la partie la pl us proche des éléments électriquement conducteurs de la cellule photovoltaïque étant d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm.
Ainsi, les éléments électriquement conducteurs de la cellule photovoltaïque sont maintenus à une distance d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm, de toute partie métallique au potentiel de la terre. Au sens de l'invention, les éléments électriquement conducteurs de la cellule photovoltaïque comprennent les électrodes et les bus bars de la cellule photovoltaïque.
Selon un mode de réalisation de l'invention, ledit au moins un élément électriquement isolant comprend un substrat arrière du module photovoltaïque constitué en un matériau électriquement isolant, notamment en verre ou en un matériau polymère. De manière classique, le module photovoltaïque peut comprendre à la fois un substrat avant et un substrat arrière, la ou chaque cellule photovoltaïque étant intercalée entre les substrats avant et arrière.
De préférence, le module photovoltaïque est dépourvu d'un cadre métallique. Ainsi, les éléments électriquement conducteurs de la cellule photovoltaïque sont maintenus, dans la configuration montée, à une distance d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm, de toute partie métallique.
Selon une caractéristique avantageuse de l'invention, au moins une région dans laquelle la cellule photovoltaïque est proche d'une partie métallique mise à la terre de la structure en configuration montée est une région de fixation du module sur la structure, et ledit au moins un élément électriquement isolant comprend une attache solidaire d'une face arrière du substrat arrière.
Selon une caractéristique avantageuse de l'invention, l'attache est constituée en un matériau polymère ou en un matériau composite comprenant une matrice polymère et des fibres électriquement isolantes.
Selon un mode de réalisation de l'invention, l'attache est apte à être couplée directement avec la partie métallique de la structure pour la fixation du module sur la structure.
Selon un autre mode de réalisation de l'invention, ledit au moins un élément électriquement isolant au niveau de cette région de fixation comprend en outre une partie d'un support, ledit support étant solidaire de la partie métallique de la structure et l'attache étant apte à être couplée avec la partie du support pour la fixation du module sur la structure.
Selon une caractéristique avantageuse de l'invention, le support est entièrement constitué en un matériau électriquement isolant, en particulier en un matériau polymère ou en un matériau composite comprenant une matrice polymère et des fibres électriquement isolantes.
Selon une caractéristique avantageuse de l'invention, l'attache comporte un motif, en saillie ou en creux, propre à venir en prise avec un motif complémentaire, en creux ou en saillie, de la partie du support, l'attache et le support étant aptes à être couplés l'un par rapport à l'autre par mise en prise de leurs motifs respectifs. Selon une caractéristique avantageuse de l'invention, le support est solidarisé avec la partie métallique de la structure par encliquetage.
Selon une caractéristique avantageuse de l'invention, le système de montage comprend au moins deux attaches solidaires de la face arrière du substrat arrière, qui sont régulièrement réparties sur ladite face et décalées intérieurement par rapport aux bords périphériques du module.
Selon une caractéristique avantageuse de l'invention, chaque région dans laquelle la cellule photovoltaïque est proche d'une partie métallique mise à la terre de la structure en configuration montée est une région de fixation du module sur la structure.
L'invention a également pour objet un ensemble comprenant une structure au moins partiellement métallique, telle qu'une structure de toit, une structure de façade ou une structure porteuse en plein champ, et au moins un module photovoltaïque monté sur la structure, dans lequel le module est monté sur la structure au moyen d'un système de montage tel que décrit ci-dessus. Un tel ensemble peut être un système de production d'énergie électrique à haute tension, dans lequel des tensions de l'ordre de plusieurs centaines de volts par rapport au potentiel de terre peuvent être atteintes.
Les caractéristiques et avantages de l'invention apparaîtront dans la description qui va suivre de plusieurs modes de réalisation d'un système de montage selon l'invention, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
- la figu re 1 est u ne vue en perspective de mod ules sola ires photovoltaïques montés sur une structure au moyen d'un système de montage conforme à un premier mode de réalisation de l'invention ;
- la figure 2 est une vue en perspective à plus grande échelle selon la flèche II de la figure 1 ;
- la figure 3 est une vue à plus grande échelle et en éclaté du détail III de la figure 2 ;
- la figure 4 est une vue en perspective selon la flèche IV de la figure 3, sur laquelle le module photovoltaïque a été omis ;
- la figure 5 est une vue en perspective de dessous d'un module photovoltaïque de la figure 1 muni d'attaches du système de montage ; - la figure 6 est une vue en élévation de modules solaires photovoltaïques montés sur une structure au moyen d'un système de montage conforme à un deuxième mode de réalisation de l'invention ;
- la figure 7 est une vue en perspective à plus grande échelle d'un support du système de montage de la figure 6 ;
- la figure 8 est une vue analogue à la figure 2 de modules solaires photovoltaïques montés sur une structure au moyen d'un système de montage conforme à un troisième mode de réalisation de l'invention ;
- la figure 9 est une coupe selon le plan IX de la figure 8 ; et
- l a fig u re 1 0 est u n e vue en él évation d e modules solaires photovoltaïques montés, au moyen d'un système de montage conforme au premier mode de réalisation de l'invention, sur une structure qui diffère des structures montrées sur les figures précédentes.
Sur les figures, les épaisseurs des éléments constitutifs des modules photovoltaïques et des systèmes de montage ont été exagérées dans un souci de visibilité, sans respecter les dimensions relatives réelles de ces éléments. En particulier, les couches actives de la cellule photovoltaïque de chaque module ont été représentées avec une épaisseur similaire à celle des substrats du module, alors qu'en réalité ce sont de fines couches ayant une épaisseur très inférieure.
Dans le premier mode de réalisation représenté sur la figure 1 , des modules solaires photovoltaïques 10 sont montés sur une structure métallique 30, de type structure porteuse en plein champ, au moyen d'un système de montage 1. La structure 30 est adaptée pour recevoir les modules 10 avec une inclinaison par rapport à l'horizontale, cette inclinaison étant prévue pour maximiser le rayonnement solaire incident sur le module. On note π le plan moyen de fixation des modules 10 sur la structure 30, qui est incliné selon un angle α par rapport à l'horizontale. Tel que représenté sur la figure 1 , l'angle α d'inclinaison du plan π par rapport à l'horizontale est de l'ordre de 45°. De manière plus générale, l'angle α peut être compris entre 0° et 90°.
Dans ce mode de réalisation, la structure 30 est une structure en acier inoxydable comprenant une pluralité de poutrelles 31 , 33, 35 agencées entre elles de manière à former une charpente triangulée, sur laquelle sont fixées des traverses 37 à section transversale quadrilatère. Les traverses 37, dont on note X37 un axe longitudinal, sont parallèles entre elles et destinées à recevoir une pluralité de modules photovoltaïques 10 juxtaposés.
Comme montré sur la figure 5, chaque module 10 est un module photovoltaïque parallélépipédique dépourvu de cadre, qui comprend un substrat avant ou « superstrat » 1 1 , un substrat arrière 12 et une ou plusieurs cellules photovoltaïques 13 intercalées entre les substrats avant 1 1 et arrière 12. Le substrat avant 1 1 , destiné à être agencé du côté d'incidence du rayonnement solaire sur le module, est transparent, par exemple constitué en un verre transparent extra-clair ou en un polymère thermoplastique transparent tel que le polycarbonate, le polyuréthane ou le polyméthacrylate de méthyle. Le substrat arrière 12, destiné à être agencé en regard de la structure 30, est constitué en tout matériau électriquement isolant approprié, transparent ou non. On note θi2 l'épaisseur du substrat arrière 12.
En variante, le substrat arrière peut inclure partiellement des parties métalliques, à condition qu'un revêtement ou un couvercle constitué en un matériau électriquement isolant empêche toute liaison électrique entre ces parties métalliques et le potentiel de la terre.
La ou chaque cellule photovoltaïque 13 positionnée entre les substrats 1 1 et 12 est formée par un empilement de couches minces comprenant successivement, à partir du substrat avant 1 1 , une couche 14 transparente électriquement conductrice, notamment à base d'oxyde conducteur transparent (Transparent Conductive Oxide), qui forme une électrode avant de la cellule ; une couche 15 d'absorbeur, propre à absorber l'énergie issue du rayonnement solaire incident sur la cellule, notamment une couche mince à base de silicium, amorphe ou microcristallin, ou à base de tellurure de cadmium ; et une couche 16 électriquement conductrice qui forme une électrode arrière de la cellule. Un intercalaire de feuilletage polymère, non représenté, est utilisé pour connecter cet empilement de couches minces au substrat arrière 12 ou à un film formant couvercle arrière.
En variante, la couche 15 d'absorbeur de la ou chaque cellule 13 peut être une couche mince de composé chalcopyrite comprenant du cuivre, de l'indium et du sélénium, dite couche d'absorbeur CIS, éventuellement additionnée de gallium (couche d'absorbeur CIGS), d'aluminium ou de soufre. Dans ce cas, la ou chaque cellule 13 à couches minces comprend un empilement analogue à celui décrit ci-dessus, un intercalaire de feuilletage polymère non représenté étant également positionné entre l'électrode avant 14 de la cellule et le substrat avant 1 1 , afin de garantir une bonne cohésion du module 10 lors de son assemblage.
Dans les deux cas, l'intercalaire de feuilletage peut notamment être constitué en polybutyral de vinyle (PVB) ou en éthylène vinylacétate (EVA).
Selon encore une autre variante, la ou chaque cellule 13 peut être constituée à partir de « wafers » ou galettes de silicium polycristallin formant une jonction p/n.
Chaque module 1 0 est équ ipé de deux boîtes de connexion 50, solidaires de la face arrière 12A du substrat arrière 12 destinée à être en regard de la structure 30, qui est la face du substrat arrière 12 opposée à la ou chaque cellule photovoltaïque 13. Les boîtes de connexion 50 sont solidarisées avec la face 1 2A par tout moyen a pproprié, notamment par collage, et sont positionnées de manière symétrique l'une de l'autre par rapport à un axe médian longitudinal X10 du module, au niveau d'une portion médiane du module par rapport à la direction de l'axe X10. Les boîtes de connexion 50 sont reliées entre elles et avec l'extérieur au moyen de câbles 52, ce qui permet le raccordement électrique du module 10, une fois monté sur la structure 30, avec des modules 10 adjacents et des dispositifs non représentés de mise à disposition de courant électrique.
Chaque module photovoltaïque 10 est monté sur la structure 30 au moyen de quatre attaches 20, solidaires du module, et de quatre supports 40, solidaires de traverses 37 de la structure. Dans ce mode de réalisation, pour chaque module photovoltaïque 10, il existe uniquement quatre régions dans lesquelles la cellule photovoltaïque 13 du module est proche de la structure métallique en configuration montée, ces régions correspondant aux régions de fixation du module sur la structure au moyen des attaches 20 et des supports
40.
Chaque attache 20 et chaque support 40 du système de montage 1 sont constitués en un matériau électriquement isolant, notamment en un matériau polymère ou en un matériau composite comprenant une matrice polymère et des fibres électriquement isolantes. Des exemples de matériaux électriquement isolants appropriés comprennent des polymères tels que le polypropylène, le polyéthylène, le polyamide, le polycarbonate, qui peuvent être renforcés par des fibres électriquement isolantes, telles que des fibres de verre ou des fibres polymères. Dans le cas où les attaches 20 et les supports 40 du système de montage 1 sont constitués en un matériau polymère ou en un matériau comprenant une matrice polymère, chaque attache 20 et chaque support 40 est avantageusement mis en forme par moulage, notamment par moulage par injection.
Les quatre attaches 20 sont solidarisées avec la face arrière 12A du substrat arrière 12 par collage au moyen d'un matériau adhésif. Comme visible sur la figure 5, les quatre attaches 20 sont identiques les unes aux autres et régulièrement réparties sur la face arrière 12A du module, en étant décalées intérieurement par rapport aux bords périphériques longitudinaux 18 et transversaux 19 du module. Plus précisément, si l'on divise la face arrière 12A en quatre cadrans de mêmes dimensions, les attaches 20 sont positionnées chacune au n iveau d'une portion centrale de l'un des cadrans. Un tel agencement des attaches 20 réparties sur la face arrière 12A permet de renforcer la structure du module 10 et d'améliorer sa résistance mécanique.
Comme bien visible sur la figure 4, chaque support 40 comprend une première partie 42 d'encliquetage sur la structure 30 et une deuxième partie 44 de couplage par rapport avec une attache 20. Dans ce mode de réalisation, la partie d'encliquetage 42 présente globalement une forme de U, où l'ouverture du U est partiellement refermée par un rebord 43. L'une des branches latérales de la partie d'encliquetage 42 en U est formée par la partie de couplage 44, tandis que l'autre branche latérale 41 de la partie d'encliquetage 42 en U se prolonge par le rebord 43, incurvé en direction de la partie de couplage 44. Ainsi , la partie d'encl iquetage 42 présente une section transversale quadrilatère, ouverte entre le rebord 43 et la partie 44, qui est complémentaire de la section transversale de chaque traverse 37.
De manière avantageuse, chaque support 40 du système de montage 1 est constitué en un matériau déformable élastiquement, de sorte que les branches latérales 41 et 44 de la partie d'encliquetage 42 sont aptes à être écartées élastiquement l'une de l'autre. Il est ainsi possible d'agrandir l'ouverture délimitée entre le rebord 43 et la partie de couplage 44, afin d'obtenir l'encliquetage de la partie 42 sur une traverse 37 de la structure 30. En configuration encliquetée de la partie 42 sur une traverse 37, la traverse 37 est reçue et enserrée dans le volume intérieur 47 défini par la partie 42, de sorte que le support 40 est solidarisé avec la traverse 37. Dans cette configuration encliquetée, il est possible de prévoir un ajustement peu serré, c'est-à-dire avec un certain jeu, de la partie 42 sur la traverse 37, le support 40 étant alors apte à être déplacé en coulissement selon la direction de l'axe longitudinal X37 de la traverse.
Comme montré sur la figure 4, la partie de couplage 44, qui, dans ce mode de réalisation, constitue une branche latérale de la partie d'encliquetage 42 de chaque support 40, comporte un motif en saillie 45. Ce motif en saillie 45 est prévu pour venir en prise avec un motif en creux 25 complémentaire que comporte chaque attache 20 du système de montage 1 sur une face 2OA. Le motif en creux 25 de chaque attache 20 et le motif en saillie 45 de chaque support 40 présentent des profils trapézoïdaux complémentaires, la section transversale S25, S45 de chaque motif 25, 45 diminuant selon une direction longitudinale X25, X45 du motif. Les motifs 25 et 45 d'une attache 20 et d'un support 40 du système de montage 1 sont ainsi aptes à venir en prise mutuelle par un mouvement de coulissement de l'un par rapport à l'autre selon la direction longitudinale X25, X45 des motifs, comme montré par la flèche Fi de la figure 2. Lorsque le motif 25 d'une attache 20 est en prise avec le motif 45 d'un support 40, l'attache et le support sont couplés l'un par rapport à l'autre.
Ce couplage de l'attache 20 et du support 40 est réversible, dans la mesure où, lorsque les motifs 25 et 45 sont en prise mutuelle, il subsiste un degré de liberté de translation de l'attache 20 par rapport au support 40, dans le sens de la flèche F2 de la figure 2 opposée à la flèche Fi. Autrement dit, lorsque les motifs 25 et 45 sont en prise mutuelle, l'attache 20 et le support 40 sont immobilisés l'un par rapport à l'autre sauf dans le sens de la flèche F2.
Comme visible sur la figure 5, chaque attache 20 est fixée sur la face arrière 12A du module 10 de telle sorte que l'axe X25 de son motif en creux 25 est parallèle à l'axe longitudinal X10 du module. Les quatre supports 40 de réception d'un module 10 sont répartis par paires sur deux traverses 37 voisines, l'une de ces traverses, dite traverse supérieure, étant disposée au- dessus de l'autre, dite traverse inférieure, du fait de l'angle d'inclinaison α du plan π de fixation des modules sur la structure 30. En configuration encliquetée de chacun des supports 40 sur une traverse 37, l'axe X45 du motif en saillie 45 du support est orienté transversalement par rapport à l'axe X37 de la traverse. Ainsi, lorsque les quatre attaches 20 du module sont en prise avec quatre supports 40 correspondants, le module 10 est fixé sur la structure 30 avec son axe longitudinal X10 orienté transversalement par rapport à l'axe X37 des traverses 37.
On note θ2o l'épaisseur de chaque attache 20 en dehors du motif 25 et e44 l'épaisseur de la partie de couplage 44 de chaque support 40 en dehors du motif 45. Au niveau de chaque région de fixation du module sur une traverse 37, dans la configuration couplée de l'attache 20 avec le support 40, l'épaisseur totale θi2+θ2o+θ44 de matériau électriquement isolant positionné entre la traverse métallique 37 et l'électrode arrière 16, qui est l'élément conducteur de la cellule photovoltaïque 13 qui est le plus proche de la traverse 37, dans une direction perpendiculaire au plan du module 10, est d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm. Dans la configuration montée, la cellule photovoltaïque du module 10 est ainsi isolée électriquement par rapport à la structure métallique 30. De manière avantageuse, l'épaisseur e2o de chaque attache 20 est choisie égale à l'épaisseur e5o de chacune des deux boîtes de connexion 50 du module. Ainsi, le module 10 muni de ses deux boîtes de connexion 50 et de ses quatre attaches 20 présente une compacité optimale, ce qui facilite son emballage, son stockage et son transport.
Un procédé de montage de modules photovoltaïques 10 sur la structure 30, pour laquelle le plan moyen π de fixation des modules est incliné par rapport à l'horizontale selon l'angle α compris entre 0° et 90°, au moyen du système de montage 1 conforme à l'invention, comprend des étapes telles que décrites ci- après. Tout d'abord, on fixe quatre attaches 20 sur chaque module 10, selon l'agencement montré sur la figure 5, par collage entre la face 2OB de chaque attache, opposée à la face 2OA, et la face arrière 12A du module.
On solidarise également des supports 40 avec la structure 30, par encliquetage de la partie 42 de chaque support sur des traverses 37 de la structure. Plus précisément, pour chaque module 10, on encliquette quatre supports 40 sur deux traverses 37 voisines, supérieure et inférieure du fait de l'angle d'inclinaison α du plan π, à savoir deux supports sur la traverse 37 supérieure et deux supports sur la traverse 37 inférieure, en disposant les supports sur les traverses avec un espacement approprié correspondant à l'espacement entre les attaches 20 des modules 10. Chaque support 40 est encliqueté sur la traverse 37 correspondante de telle sorte que la section transversale S45 de son motif 45 diminue en direction du sol.
Dans le cas où la partie d'encliquetage 42 de chaque support 40 est montée peu serrée ou avec un certain jeu sur la traverse 37 correspondante en configuration encliquetée, c'est-à-dire avec possibilité de coulissement du support 40 par rapport à la traverse 37, il est possible d'ajuster le positionnement des supports 40 sur la structure 30 préalablement au montage des modules 10 ou en cours de montage. Ce positionnement est ensuite bloqué par collage des supports 40 par rapport à la structure 30, au moyen d'un matériau adhésif qui comble le jeu entre la partie 42 et la traverse 37. Le positionnement des modules sur la structure est aisé, grâce à l'ajustement possible de la position des supports encliquetés sur la structure de montage.
Une fois les modules munis de leurs attaches 20 et la structure équipée de supports 40, on fixe chaque module 10 par rapport à la structure 30 en mettant les motifs 25 des quatre attaches 20 du module en prise avec les motifs
45 des quatre supports 40 encliquetés sur la structure 30 à cet effet. Cette mise en prise mutuelle des motifs 25 et 45 est obtenue par un mouvement de coulissement descendant, dans le sens de la flèche Fi de la figure 2, en direction du sol, du module 10 par rapport à la structure 30.
De manière avantageuse, l'étape de solidarisation des attaches 20 avec la face arrière 12A de chaque module est réalisée sur le site de fabrication des modules 10, de manière intégrée sur la ligne de fabrication des modules, alors que les étapes suivantes sont réalisées sur le site de montage des modules 10.
Dans le cas où il est nécessaire de retirer ou de remplacer un module 10 monté sur la structure 30, par exemple en cas de panne de ce module, le démontage du module 10 s'opère de manière particulièrement simple, par un mouvement de coulissement ascendant, dans le sens de la flèche F2 de la figure 2, du module 10 par rapport à la structure 30.
Dans le deuxième mode de réalisation représenté sur les figures 6 et 7, les éléments analogues à ceux du premier mode de réalisation portent des références identiques augmentées de 100. Le système de montage 100 conforme à ce deuxième mode de réalisation diffère du système de montage du premier mode de réalisation uniquement par la structure des supports. Plus précisément, dans ce deuxième mode de réalisation, la partie d'encliquetage 142 et la partie de couplage 144 de chaque support 140 sont distantes l'une de l'autre et reliées l'une à l'autre par une partie de jonction 146. En d'autres termes, la partie de couplage 144 ne forme plus une branche latérale de la partie d'encliquetage 142, mais est reliée à une branche latérale 148 de la partie 142 par la partie de jonction 146. Comme montré sur la figure 7, pour chaque support 140, on note c/ la distance entre la face arrière de la branche latérale 148 et la face avant de la partie de couplage 144, en dehors du motif 145.
Comme précédemment, chaque attache 120 et chaque support 140 du système de montage 101 sont constitués en un matériau électriquement isolant, notamment en un matériau polymère ou en un matériau composite comprenant une matrice polymère. En particulier, chaque support 140 est avantageusement moulé par injection en une seule pièce en un matériau composite comprenant une matrice polymère renforcée par des fibres électriquement isolantes. La structure de chaque support 140, représentée sur les figures 6 et 7, est très schématique. Notamment, des éléments de renfort au niveau de la partie de jonction 146, qui sont nécessaires pour assurer une résistance mécanique satisfaisante du support 140, n'ont pas été représentés sur ces figures.
Les supports 140 associés à chaque module 1 10 sont choisis de telle sorte que la distance c/ est différente entre la première paire de supports du module, encliquetés sur la traverse 137 supérieure de la structure 130, et la deuxième paire de supports du module, encliquetés sur la traverse 137 inférieure. Comme montré sur la figure 6, la distance di de la première paire de supports 140, encliquetés sur la traverse 137 supérieure, est inférieure à la distance c/2 de la deuxième paire de supports 140, encliquetés sur la traverse 137 inférieure, de telle sorte qu'en configuration fixée de chaque module sur la structure, le module est incliné selon un angle β de l'ordre de 10° par rapport au plan π de fixation de modules sur la structure. Il en résulte un agencement étage des modules 1 10 sur la structure 130, à la manière de tuiles. Un tel agencement étage des modules 1 10 évite le stationnement de salissures, ou encore de neige, entre deux modules adjacents et limite ainsi l'encrassement des modules.
Dans ce mode de réalisation, au niveau de chaque région de fixation du module sur une traverse 137, dans la configuration couplée de l'attache 120 avec le support 140, l'épaisseur totale e^2+e?2o+c/ de matériau électriquement isolant positionné entre la traverse 137 et l'électrode arrière 1 16, qui est l'élément conducteur de la cellule photovoltaïque 113 qui est le plus proche de la traverse métallique 137, dans une direction perpendiculaire au plan du module 110, est d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 1 2 mm . Dans ce cas, le matériau intercalaire électriquement isolant comprend à la fois de l'air et les matériaux constitutifs du substrat arrière 1 1 2, de l'attache 1 20 et du support 140. De manière avantageuse, comme un espace est prévu entre la partie d'encliquetage et la partie de couplage de chaque support du système de montage, les mouvements de convection d'a ir à l 'arrière des mod u l es, et donc l e refroidissement des modules, sont améliorés.
Les supports 140 du système de montage 101 conforme à ce deuxième mode de réalisation peuvent être fabriqués en deux séries distinctes, l'une présentant l'écartement di entre les parties 142 et 144 et l'autre présentant l'écartement c/2 entre les parties 142 et 144. En variante, les supports 140 peuvent être fabriqués selon un modèle unique comportant des moyens de modulation de la distance c/ entre les parties 142 et 144, par exemple un système à crans. Dans ce cas, des renforts spécifiques de la zone de jonction entre les parties 142 et 144 sont à prévoir, afin de garder une résistance mécanique satisfaisante du support.
Dans le troisième mode de réalisation représenté sur les figures 8 et 9, les éléments analogues à ceux du premier mode de réalisation portent des références identiques augmentées de 200. Le système de montage 201 conforme à ce troisième mode de réalisation diffère du système de montage du premier mode de réalisation en ce que les attaches 220 sont aptes à être couplées directement avec les traverses 237 de la structure 230. Plus précisément, chaque traverse 237 comporte un épaulement 238 qui, du fait de l'inclinaison du plan π de fixation des modules 210 sur la structure 230, est dirigé vers le haut, à l'opposé du sol. Pour la fixation d'un module photovoltaïque 210 sur la structure métallique 230, chacune des quatre attaches 220 du module comporte un crochet 228 prévu pour coopérer avec l'épaulement 238 de la traverse 237. Le crochet 228 d'une attache 220 est apte à venir en prise avec l'épaulement 238 d'une traverse 237 par un mouvement de coulissement du crochet par rapport à l'épaulement dans le sens de la flèche F3 de la figure 9.
Lorsque le crochet 228 d'une attache 220 est en prise avec l'épaulement 238 d'une traverse 237, l'attache est couplée à la traverse et ce couplage est réversible. Le module 210 est fixé sur la structure 230 lorsque ses quatre attaches 220 sont en prise par paires sur deux traverses 237 voisines, l'une des traverses étant disposée au-dessus de l'autre. Dans ce mode de réalisation, chaque attache 220 est constituée en un matériau électriquement isolant, notamment en un matériau polymère ou en un matériau composite comprenant une matrice polymère et des fibres électriquement isolantes. Au niveau de chaque région de fixation du module 210 sur une traverse 237, l'épaisseur totale θ2i2+θ22o <ie matériau électriquement isolant positionné entre la traverse métallique 237 et l'électrode arrière 216, qui est l'élément conducteur de la cellule photovoltaïque 213 qui est le plus proche de la traverse 237, dans une direction perpendiculaire au plan du module 210, est d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm. Ainsi, les éléments conducteurs du module photovoltaïque 21 0 sont isolés électriquement par rapport à la structure métallique 230 au niveau de chaque région de fixation du module sur la structure, qui correspondent aux seules régions dans lesquelles la cellule photovoltaïque du module est proche de la structure.
Comme il ressort des modes de réalisation décrits précédemment, un système de montage conforme à l'invention garantit que, au niveau de chaque rég ion dans laquelle la ou chaque cellule photovoltaïque d'un module photovoltaïque est proche d'une partie métallique mise à la terre de sa structure de montage, une certaine épaisseur de matériau électriquement isolant est intercalée entre la partie métallique et la partie la plus proche des éléments conducteurs de la cellule photovoltaïque, c'est-à-dire l'électrode arrière dans les exemples précédents. De manière avantageuse, au niveau de chaque région dans laquelle la ou chaque cellule photovoltaïque du module est proche d'une partie métallique mise à la terre de sa structure de montage, l'épaisseur de matériau électriquement isolant positionné entre la partie métallique de la structure et la partie la plus proche des éléments conducteurs de la cellule photovoltaïque, dans une direction perpendiculaire au plan du module, est d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm.
Grâce à cet agencement, chaque élément conducteur du module est isolé électriquement et maintenu à une distance par rapport à toute partie métallique mise à la terre de la structure montage, ce qui permet de réduire l'intensité du champ électrique à laquelle le module est exposé. Ainsi, un système de montage selon l'invention permet d'éviter le risque de détérioration des modules à haute tension dans les systèmes de production d'énergie électrique, en particulier pour des tensions supérieures à plusieurs centaines de volts, ce qu i augmente la durée de vie des modules. Un exemple de mécanisme de détérioration susceptible d'intervenir à haute tension pour des modules photovoltaïques à couches minces est la délamination. Un système de montage conforme à l'invention peut aussi permettre d'atteindre des tensions de système plus importantes, au-dessus de 500V, voire même au-dessus de 1000V.
De plus, un système de montage conforme à l'invention permet un montage rapide et aisé de modules photovoltaïques sur une structure, par mise en prise des motifs des attaches directement avec la structure ou avec des supports rapportés sur la structure, sans nécessiter d'outillage particulier. Cette mise en prise s'opère par un mouvement simple de coulissement de chaque module par rapport à la structure, jusqu'au blocage qui résulte de la forme relative des motifs. La fixation obtenue des modules sur la structure est fiable et robuste. En particulier, la tenue à la charge des modules est satisfaisante grâce à la répartition régulière des attaches sur la face arrière de chaque module. En outre, l'assemblage des modules avec la structure obtenu selon l'invention est réversible, ce qui permet un démontage individuel d'un module par rapport à la structure, en cas de panne de ce module.
Les éléments constitutifs d'un système de montage conforme à l'invention, à savoir les attaches et éventuellement les supports, ont l'avantage de pouvoir être fabriqués de manière simple et économique, notamment par injection d'un matériau polymère. Des attaches et supports comprenant une matrice polymère sont également aptes à absorber, par déformation élastique, des mouvements de vibration des modules par rapport à leur structure de montage, susceptibles d'intervenir par exemple sous l'effet du vent. Il en résulte un amortissement des bruits associés à de tels mouvements de vibration.
Enfin, grâce à la mise en place d'un système de montage conforme à l'invention, il n'est plus nécessaire d'avoir un cadre mis à la terre autour de la périphérie du module pour obtenir sa fixation sur une structure. Dès lors, toute la surface active du module est exposée au rayonnement solaire, ce qui garantit un rendement optimal du module.
L'invention n'est pas limitée aux exemples décrits et représentés. En particulier, dans les exemples précédents, des modules photovoltaïques sont des modules sans cadre. En variante, les modules peuvent comprendre un cadre, de préférence un cadre non métallique de telle sorte que les éléments électriquement conducteurs de chaque cellule photovoltaïque du module sont maintenus à distance de toute partie métallique mise à la terre dans la configuration montée. Comme évoqué précédemment, les él éments conducteurs de chaque cellule photovoltaïque comprennent les électrodes avant et arrière de la cellule, mais peuvent également comprendre des bus bars, ou barres de connexion, non représentées sur les figures. Un système de montage conforme à l'invention peut aussi mettre en jeu des attaches et des supports ayant des formes ou des modes de répartition, sur les modules et la structure de réception, différents de ceux décrits précédemment, ou encore un nombre différent d'attaches et de supports. Ces paramètres peuvent notamment être adaptés en fonction du chargement prévisible sur les modules, une fois qu'ils sont fixés sur la structure, par exem ple u n cha rg em ent de vent ou de ne ig e . Com m e mention n é précédemment, les attaches sont avantageusement réparties de manière régulière sur la face arrière du module, de façon à renforcer la structure du module. Ainsi, dans le cas où chaque module doit résister à un chargement particulièrement important, il est par exemple possible de prévoir, en plus des attaches réparties dans chaque cadran de la face arrière 12A du module comme montré sur la figure 5, une cinquième attache disposée de manière centrale par rapport au module et de relier les traverses supérieure et inférieure de réception des supports avec une poutre centrale sur laquelle la cinquième attache peut être accrochée, directement ou par l'intermédiaire d'un cinquième support encliqueté sur la structure.
Lorsque les attaches d'un module sont aptes à être couplées avec des supports solidaires de la structure de montage comme dans les premier et deuxième modes de réalisation, les supports peuvent être constitués en un matériau métallique au lieu d'un matériau isolant électrique. Dans ce cas, l'épaisseur totale ei2 +e2o, en2 +ei2o du substrat arrière et des attaches constitués en matériau électriquement isolant est avantageusement d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm, afin de garantir une distance suffisante entre, d'une part, les éléments conducteurs de la ou chaque cellule photovoltaïque des modules et, d'autre part, les supports métalliques, ces derniers étant, du fait de leur conductivité électrique, susceptibles d'induire une détérioration des modules à haute tension s'ils sont trop proches des modules.
Un agencement étage, à la manière de tuiles, des modules sur la structure, qui est un agencement avantageux pour limiter l'encrassement, peut être obtenu par d'autres biais qu'une adaptation de la structure des supports du système de montage, telle qu'illustrée dans le deuxième mode de réalisation, dans lequel une distance différente entre les parties d'encliquetage et de couplage est prévue d'un support à l'autre. Notamment, un tel agencement étage des modules peut être obtenu en modifiant la structure des attaches ou encore la structure de réception des modules, plutôt que la structure des supports. La modification de la structure de réception en vue d'obtenir un agencement étage des modules est illustrée sur la figure 10.
Sur cette figure, le système de montage est celui du premier mode de réalisation, mais les traverses 37, au lieu d'être rapportées directement sur les poutrelles 35 de la structure 30, sont fixées sur des tiges 39 en saillie par rapport aux poutrelles 35. Plus précisément, comme montré sur la figure 10, pour chaque module 10 à fixer sur la structure 30, la traverse 37 supérieure de réception du module est fixée sur des tiges en saillie 39 ayant une longueur di, alors que la traverse 37 inférieure de réception du module est fixée sur des tiges en saillie 39 ayant une longueur c/2 supérieure à di. Ainsi, dans la configuration où les supports 40 sont encliquetés sur les traverses 37, elles- mêmes fixées sur les tiges en saillie 39, et où les attaches 20 sont couplées aux supports 40, chaque module est incliné selon un angle β de l'ordre de 10° par rapport au plan π.
Enfin, un système de montage conforme à l'invention peut être utilisé pour le montage de modules photovoltaïques sur une structure de réception de tout type, en particulier une structure porteuse en plein champ, un toit ou une façade.

Claims

REVENDICATIONS
1. Système de montage (1 ; 101 ; 201 ) d'un module photovoltaïque (10 ; 110 ; 210) sur une structure (30 ; 130 ; 230) au moins partiellement métallique, le module photovoltaïque comprenant au moins une cellule photovoltaïque (13 ; 113 ; 213) comportant des éléments électriquement conducteurs (14, 16 ; 114, 116 ; 214, 216), caractérisé en ce qu'il comprend, au niveau de chaque région dans laquelle la cellule photovoltaïque (13 ; 113 ; 213) est proche d'une partie métallique (37 ; 137 ; 237) mise à la terre de la structure (30 ; 130 ; 230) en configuration montée, au moins un élément électriquement isolant (12, 20, 44 ; 112, 120, 144, 146, 148 ; 212, 220) positionné entre la partie métallique (37 ; 137 ; 237) et la partie la plus proche (16 ; 116 ; 216) des éléments électriquement conducteurs de la cellule photovoltaïque, l'épaisseur totale (θi2+θ2o+θ44 ; eii2+θi2o+d; θ2i2+θ22o) de matériau électriquement isolant entre la partie métallique (37 ; 137 ; 237) et la partie la plus proche (16 ; 116 ; 216) des éléments électriquement conducteurs de la cellule photovoltaïque étant d'au moins 7 mm, de préférence d'au moins 10 mm, encore de préférence d'au moins 12 mm.
2. Système de montage selon la revendication 1 , caractérisé en ce que ledit au moins un élément électriquement isolant comprend un substrat arrière (12 ; 112 ; 212) du module photovoltaïque (10 ; 110 ; 210) constitué en un matériau électriquement isolant.
3. Système de montage selon la revendication 2, caractérisé en ce qu'au moins une région dans laquelle la cellule photovoltaïque (13 ; 1 13 ; 213) est proche d'une partie métallique (37 ; 137 ; 237) mise à la terre de la structure (30 ; 130 ; 230) en configuration montée est une région de fixation du module (10 ; 1 10 ; 210) sur la structure, et ledit au moins un élément électriquement isolant comprend une attache (20 ; 120 ; 220) solidaire d'une face arrière (12A ; 112A ; 212A) du substrat arrière (12 ; 112 ; 212).
4. Système de montage selon la revendication 3, caractérisé en ce que l'attache (20 ; 120 ; 220) est constituée en un matériau polymère ou en un matériau composite comprenant une matrice polymère et des fibres électriquement isolantes.
5. Système de montage selon l'une quelconque des revendications 3 ou 4, caractérisé en ce que l'attache (220) est apte à être couplée directement avec la partie métallique (237) de la structure pour la fixation du module (210) sur la structure.
6. Système de montage selon l'une quelconque des revendications 3 ou 4, caractérisé en ce que ledit au moins un élément électriquement isolant au niveau de cette région de fixation comprend en outre au moins une partie (44 ; 144, 146, 148) d'un support (40 ; 140), ledit support (40 ; 140) étant solidaire de la partie métallique (37 ; 137) de la structure (30 ; 130) et l'attache (20 ; 120) étant apte à être couplée avec la partie (44 ; 144, 146, 148) du support (40 ; 140) pour la fixation du module (10 ; 110) sur la structure.
7. Système de montage selon la revendication 6, caractérisé en ce que le support (40 ; 140) est entièrement constitué en un matériau électriquement isolant, notamment en un matériau polymère ou en un matériau composite comprenant une matrice polymère et des fibres électriquement isolantes.
8. Système de montage selon l'une quelconque des revendications 6 ou 7, caractérisé en ce que l'attache (20 ; 120) comporte un motif (25 ; 125), en saillie ou en creux, propre à venir en prise avec un motif complémentaire (45 ; 145), en creux ou en saillie, de la partie (44 ; 144) du support (40 ; 140), l'attache et le support étant apte à être couplés l'un par rapport à l'autre par mise en prise de leurs motifs respectifs.
9. Système de montage selon l'une quelconque des revendications 6 à 8, caractérisé en ce que le support (40 ; 140) est solidarisé avec la partie métallique (37 ; 137) de la structure (30 ; 130) par encliquetage.
10. Système de montage selon l'une quelconque des revendications 3 à 9, caractérisé en ce qu'il comprend au moins deux attaches (20 ; 120 ; 220) solidaires de la face arrière (12A ; 112A ; 212A) du substrat arrière (12 ; 112 ; 212), qui sont régulièrement réparties sur ladite face (12A ; 112A ; 212A) et décalées intérieurement par rapport aux bords périphériques (18, 19) du module.
11. Système de montage selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque région dans laquelle la cellule photovoltaïque (13 ; 113 ; 213) est proche d'une partie métallique (37 ; 137 ; 237) mise à la terre de la structure (30 ; 130 ; 230) en configuration montée est une région de fixation du module (10 ; 110 ; 210) sur la structure.
12. Système de montage selon l'une quelconque des revendications précédentes, caractérisé en ce que le module photovoltaïque est dépourvu de cadre métallique.
13. Ensemble comprenant une structure (30 ; 130 ; 230) au moins partiellement métallique et au moins un module photovoltaïque (10 ; 110 ; 210) monté sur la structure, caractérisé en ce que le module (10 ; 110 ; 210) est monté sur la structure (30 ; 130 ; 230) au moyen d'un système de montage (1 ; 101 ; 201 ) selon l'une quelconque des revendications précédentes.
14. Ensemble selon la revendication 13, caractérisé en ce qu'il s'agit d'un système de production d'énergie électrique à haute tension.
PCT/FR2010/051772 2009-08-25 2010-08-25 Systeme de montage de modules photovoltaiques WO2011023903A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010900011092U CN202957264U (zh) 2009-08-25 2010-08-25 光伏模块的安装系统及包括该安装系统的光伏组件
KR2020127000021U KR200480266Y1 (ko) 2009-08-25 2010-08-25 광발전 모듈을 장착하기 위한 시스템
DE212010000121U DE212010000121U1 (de) 2009-08-25 2010-08-25 System zur Montage von Fotovoltaik-Modulen
US13/392,319 US20120174981A1 (en) 2009-08-25 2010-08-25 Photovoltaic module mounting system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0955785A FR2949494B1 (fr) 2009-08-25 2009-08-25 Dispositif de fixation et procede de montage de modules solaires
FR0955785 2009-08-25
FR1052764A FR2949548B1 (fr) 2009-08-25 2010-04-12 Systeme de montage de modules photovoltaiques
FR1052764 2010-04-12

Publications (2)

Publication Number Publication Date
WO2011023903A2 true WO2011023903A2 (fr) 2011-03-03
WO2011023903A3 WO2011023903A3 (fr) 2012-07-12

Family

ID=42199273

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2010/051772 WO2011023903A2 (fr) 2009-08-25 2010-08-25 Systeme de montage de modules photovoltaiques
PCT/FR2010/051771 WO2011023902A2 (fr) 2009-08-25 2010-08-25 Dispositif de fixation et procede de montage de modules solaires

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051771 WO2011023902A2 (fr) 2009-08-25 2010-08-25 Dispositif de fixation et procede de montage de modules solaires

Country Status (6)

Country Link
US (2) US8887454B2 (fr)
KR (2) KR200480266Y1 (fr)
CN (2) CN202993633U (fr)
DE (2) DE212010000121U1 (fr)
FR (2) FR2949494B1 (fr)
WO (2) WO2011023903A2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2282655A4 (fr) 2009-06-05 2013-07-24 First Solar Inc Système de montage au sol pour module photovoltaïque
WO2011148967A1 (fr) * 2010-05-26 2011-12-01 鹿島建設株式会社 Structure de support pour panneaux de cellules solaires du type à génération d'énergie double face
WO2012018360A1 (fr) 2010-08-06 2012-02-09 First Solar, Inc. Support pliable destiné à des modules photovoltaïques
US20140230886A1 (en) * 2011-10-14 2014-08-21 Mark F. Werner Solar Panel Assembly With A Mounting Structure
US20130146549A1 (en) * 2011-12-13 2013-06-13 Superior Solar Systems, LLC Solar panel assembly kit and method of assembly
US20130167907A1 (en) * 2012-01-04 2013-07-04 Panagiotis G. Bitarchas Photovoltaic Mounting Apparatus and Method of Installation
DE102012001195A1 (de) * 2012-01-24 2013-07-25 Pöppelmann Holding GmbH & Co. KG Adapterplatte, Adapter und Solarmodulbefestigungsvorrichtung
US20130257154A1 (en) * 2012-03-27 2013-10-03 General Electric Company System for distributing electrical power supplied from a solar panel array
US9316417B2 (en) * 2012-06-29 2016-04-19 Sunpower Corporation Framing system for mounting solar collecting devices
KR101419027B1 (ko) * 2012-12-05 2014-07-14 주식회사 도시환경이엔지 태양광발전장치
US9303663B2 (en) 2013-04-11 2016-04-05 Northern States Metals Company Locking rail alignment system
EP2804224A1 (fr) 2013-05-13 2014-11-19 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Procédé de fabrication d'un module photovoltaïque
CN103762933B (zh) * 2014-02-21 2016-07-06 李富民 一种太阳能光伏发电安装结构
USD739819S1 (en) 2014-12-09 2015-09-29 Bentek Corporation Inverter power rack and power skid
USD739346S1 (en) * 2014-12-09 2015-09-22 Bentek Corporation Inverter power rack and power skid
CN105241101B (zh) * 2015-10-10 2019-03-01 广西南宁成远科技有限公司 一种角度可调式太阳能热水器安装架
US10128791B2 (en) * 2016-08-11 2018-11-13 Brooklyn Solar Works Structures and methods for supporting solar panels
US11894797B1 (en) * 2019-06-06 2024-02-06 Powershingle, Llc Solar support structures and methods
WO2020249446A1 (fr) * 2019-06-14 2020-12-17 Covestro Intellectual Property Gmbh & Co. Kg Système de raccordement pour cadres, en particulier en liaison avec des panneaux solaires
KR102429988B1 (ko) * 2021-12-31 2022-08-08 주식회사 새길이앤지 효율 향상을 위한 태양광 패널의 설치구조
FR3141757A1 (fr) * 2022-11-09 2024-05-10 Gilles SABBAN Panneau solaire équipé d’un dispositif d’aide à la pose sur le toit d’un bâtiment
CN117231049B (zh) * 2023-10-12 2024-04-09 广东华海智联科技有限公司 一种户外集装箱机房及其装配方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL279460A (fr) * 1961-07-03
DE3423227A1 (de) * 1984-06-21 1986-01-02 Albert 7831 Sasbach Helbling Haltevorrichtung mit halterung fuer sonnenkollektoren
US5143556A (en) * 1989-03-13 1992-09-01 Matlin Ronald W Support for photovoltaic arrays
US5986203A (en) * 1996-06-27 1999-11-16 Evergreen Solar, Inc. Solar cell roof tile and method of forming same
US5741370A (en) * 1996-06-27 1998-04-21 Evergreen Solar, Inc. Solar cell modules with improved backskin and methods for forming same
AUPP558698A0 (en) * 1998-08-31 1998-09-24 Pacific Solar Pty Limited Frame for mounting a panel or the like to a roof
DE10017502A1 (de) * 2000-04-07 2001-10-18 Johann Wimmer Befestigungssystem zur Montage von Photovoltaikmodulen oder thermische Kollektoren
US6414237B1 (en) * 2000-07-14 2002-07-02 Astropower, Inc. Solar collectors, articles for mounting solar modules, and methods of mounting solar modules
US6672018B2 (en) * 2001-10-12 2004-01-06 Jefferson Shingleton Solar module mounting method and clip
DE20310760U1 (de) * 2003-07-11 2004-11-18 SCHÜCO International KG Montagesystem
JP2005123012A (ja) * 2003-10-16 2005-05-12 Pioneer Electronic Corp 有機エレクトロルミネセンス表示パネルとその製造方法
EP1692693A1 (fr) * 2003-11-28 2006-08-23 THOMSON Licensing Procede de production d'un transducteur photoelectrique et phonocapteur laser
NL1028379C2 (nl) * 2005-02-23 2006-08-24 Girasol Internat B V Inrichting en werkwijze voor het bevestigen van objecten, in het bijzonder zonnepanelen, op een dak.
JP2006278738A (ja) 2005-03-29 2006-10-12 Kyocera Corp 太陽光発電装置
US8829328B2 (en) * 2005-12-05 2014-09-09 Global Oled Technology Llc Radiant energy transfer panel mountings
DE102006042092A1 (de) * 2006-09-07 2008-03-27 K2-Systems Gmbh Montagesystem für ein Solarmodul
DE202006018426U1 (de) * 2006-12-04 2007-02-08 Ideematec Deutschland Gmbh Montageschienensystem
EP1947402A1 (fr) 2007-01-18 2008-07-23 Aplisun Develop, S.L. Cadre de support pour panneaux solaires
DE202007008614U1 (de) * 2007-06-15 2007-08-16 Phoenix Solar Ag Traganordnung für eine Solaranlage, Solaranlage mit einer Mehrzahl von Solarmodulen und Solarmodul hierfür
WO2009015106A2 (fr) * 2007-07-20 2009-01-29 Robert Stancel Système de montage rapide pour des modules solaires
FR2924863B1 (fr) * 2007-12-07 2017-06-16 Saint Gobain Perfectionnements apportes a des elements capables de collecter de la lumiere.
DE202008000997U1 (de) * 2008-01-23 2008-05-15 Solarpower Gmbh Befestigungssystem
DE102008006106B4 (de) * 2008-01-25 2012-09-20 Solarmarkt Ag Solarmodul-Befestigungssystem
US8585000B2 (en) * 2008-05-22 2013-11-19 Mainstream Energy Corporation Universal end clamp
DE102008027857A1 (de) * 2008-06-11 2009-03-05 Leichtmetallbau Schletter Gmbh Montagesystem für PV-Module
US20110265861A1 (en) * 2008-07-14 2011-11-03 Gehrlicher Solar Ag Fastening structure for a large solar module, and solar module
DE202008015017U1 (de) * 2008-11-12 2009-01-15 SGGT Straßenausstattungen GmbH Solarmodul-Tragkonstruktion
US9074796B2 (en) * 2010-09-30 2015-07-07 Apollo Precision (Kunming) Yuanhong Limited Photovoltaic module support clamp assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
WO2011023902A3 (fr) 2011-12-22
DE212010000122U1 (de) 2012-04-11
KR20120004267U (ko) 2012-06-14
CN202993633U (zh) 2013-06-12
FR2949494B1 (fr) 2015-02-13
WO2011023902A2 (fr) 2011-03-03
KR20120003444U (ko) 2012-05-17
FR2949548A1 (fr) 2011-03-04
US8887454B2 (en) 2014-11-18
FR2949494A1 (fr) 2011-03-04
KR200480266Y1 (ko) 2016-05-02
US20120174981A1 (en) 2012-07-12
FR2949548B1 (fr) 2013-02-15
US20120174968A1 (en) 2012-07-12
KR200480406Y1 (ko) 2016-05-20
CN202957264U (zh) 2013-05-29
WO2011023903A3 (fr) 2012-07-12
DE212010000121U1 (de) 2012-06-05

Similar Documents

Publication Publication Date Title
WO2011023903A2 (fr) Systeme de montage de modules photovoltaiques
EP2430378B1 (fr) Arrangement comprenant un dispositif de fixation et procede de montage de cet arrangement
EP2212919B1 (fr) Perfectionnements apportés à des éléments capables de collecter de la lumière
EP3303723B1 (fr) Panneau, assemblage de panneaux et toiture associée
EP3164937B1 (fr) Panneau muni d&#39;un dispositif photovoltaïque
WO2011045539A2 (fr) Dispositif conformé pour fixer à lui seul un panneau solaire à une seule poutre d&#39;une structure porteuse et installation comprenant un tel dispositif
EP2718986A1 (fr) Dispositif de fixation pour tuile solaire
EP2718635B1 (fr) Systeme de fixation et d&#39;etancheite pour la realisation d&#39;une toiture solaire, et toiture solaire obtenue
FR3065837A1 (fr) Module solaire avec polymere incline
FR3068513A1 (fr) Panneau photovoltaique
WO2020043876A1 (fr) Installation photovoltaïque
EP4002491A1 (fr) Module photovoltaïque leger et flexible ameliore
FR2960046A1 (fr) Paroi formee d&#39;une pluralite de panneaux solaires juxtaposes, et procede d&#39;assemblage d&#39;une telle paroi
EP3869686B1 (fr) Support pour panneaux photovoltaïques bifaciaux
FR2965671A1 (fr) Dispositif d&#39;egalisation de potentiel de panneaux solaires.
FR2960047A1 (fr) Dispositif d&#39;etancheite d&#39;une paroi formee d&#39;une pluralite de panneaux solaires juxtaposes
WO2020229755A1 (fr) Panneau photovoltaique
WO2020229756A2 (fr) Element de montage de panneau photovoltaique en toiture
WO2024052347A1 (fr) Système photovoltaïque vertical et procédé d&#39;installation d&#39;un tel système
WO2017042481A2 (fr) Structure de toiture comprenant un module photovoltaique semi-rigide, procede de realisation de celle-ci, et gabarit de pose pour ledit procede
WO2023208499A1 (fr) Système photovoltaïque vertical déformable et procédé d&#39;installation d&#39;un tel système
FR3079349A1 (fr) Panneau solaire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001109.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10763748

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 212010000121

Country of ref document: DE

Ref document number: 2120100001217

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20127000021

Country of ref document: KR

Kind code of ref document: U

WWE Wipo information: entry into national phase

Ref document number: 13392319

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10763748

Country of ref document: EP

Kind code of ref document: A2