WO2011023186A2 - Dispositif de compensation de forces d'accélération par découplage d'impulsions sur des machines-outils ou des machines à mesurer dans au moins un axe de machine agissant en translation - Google Patents

Dispositif de compensation de forces d'accélération par découplage d'impulsions sur des machines-outils ou des machines à mesurer dans au moins un axe de machine agissant en translation Download PDF

Info

Publication number
WO2011023186A2
WO2011023186A2 PCT/DE2010/001038 DE2010001038W WO2011023186A2 WO 2011023186 A2 WO2011023186 A2 WO 2011023186A2 DE 2010001038 W DE2010001038 W DE 2010001038W WO 2011023186 A2 WO2011023186 A2 WO 2011023186A2
Authority
WO
WIPO (PCT)
Prior art keywords
axis
drive
payload
machine
balancing
Prior art date
Application number
PCT/DE2010/001038
Other languages
German (de)
English (en)
Other versions
WO2011023186A3 (fr
WO2011023186A4 (fr
Inventor
Andreas Ehlerding
Original Assignee
Andreas Ehlerding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andreas Ehlerding filed Critical Andreas Ehlerding
Publication of WO2011023186A2 publication Critical patent/WO2011023186A2/fr
Publication of WO2011023186A3 publication Critical patent/WO2011023186A3/fr
Publication of WO2011023186A4 publication Critical patent/WO2011023186A4/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • B23Q11/0035Arrangements for preventing or isolating vibrations in parts of the machine by adding or adjusting a mass, e.g. counterweights
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41191Cancel vibration by positioning two slides, opposite acceleration

Definitions

  • Pulse decoupling in measuring and machine tools in at least
  • Tools and measuring devices are referred to hereinafter as end effectors. Movement devices of a measuring or machine tool, each one
  • axes translational or rotational movement of an end effector relative to a workpiece in an axis of a reference coordinate system of the working space of the machine.
  • Machine axes are those partial movement devices which permit a translatory or rotational movement of a machine element relative to a machine element higher in the hierarchy of the machine, the hierarchy starting at the machine frame as the highest stage and at the machine axes for the direct movement of an end effector as the lowest stage ends.
  • Axes and machine axes may be identical, but they may as well
  • Workpieces can be used are high accelerations of the moving
  • a branch deals with the most anticipated or fast-reacting correction of a predictable or detected motion deviation, ie the error compensation.
  • error prevention knows three sub-branches of solutions. 1. stability, 2. reduction of the moving masses and 3. impulse compensation.
  • the working space of a machine using parallel kinematics is relatively small when compared to a conventional machine of similar dimensions, especially when compared to machines with moving gantries.
  • variable rods In addition, the very complex dynamic behavior of the variable rods and this in conjunction with the heavily loaded joints of a highly accelerated and at the same time very precise movement limits.
  • Swivel head carries An example of this is known from US Pat. No. 7,357,049 B2.
  • WO 93/01021 A1 teaches the parallel superimposed (redundant) movement of longer base axles and shorter additional axles, wherein the additional axles are much smaller due to their smaller paths and spans and thus are lighter, that is to accelerate with less force.
  • a known sub-form of the use of balancing masses is that instead of separately placed and driven balancing masses the input and output side of a moving device relative to a machine (basic) frame in a common axis remain movable and movement predominantly by common
  • This variant is also referred to as jerk or impulse decoupling and is known inter alia from DE 198 10 996 A1.
  • Said storage of the support structure is very complicated and tends to result in a rather unstable overall structure of a corresponding machine.
  • a pulse-decoupled machine axis according to DE 198 10 996 A1 is suitable, on the one hand for the reasons already described, and on the other hand because a redundant supporting axis in the same direction of motion considerably influences the mode of operation of a known impulse decoupling without this being taken into account in WO 2008/14804 A1 , hardly for use as additional axle.
  • At least one spring means to avoid that the side facing away from the tool (drive side) of the pulse-decoupled configuration, in movements of the base axis (ie in the sense of the cited DE 198 10 996 A1, the machine frame) , runs uncontrolled over their axle limits.
  • the first proposal corresponds to an already known from various documents, such as EP 1 724 054 A1 pulse compensation of additional axes (there in a
  • WO 2008/14804 A1 does not disclose any teaching that would be practicable for the operation of pulse-decoupled axes.
  • the object of the invention is therefore, the advantages of the pulse decoupling for
  • a long translationally effective machine axis to be moved payload and one or more of this payload associated balancing masses in the direction of said machine axis parallel to each other slidably and payload and
  • Said second drive system must be able to flexibly avoid the highly accelerated movements of the either driven payload or balancing mass within an application-specific range of motion in the respective direction of movement, preferably while the lower currently active acceleration of said drive system is maintained in its effect at the same time, so that a superimposed acceleration effect arises from both drive systems compared to the payload.
  • a drive is preferably provided for said second drive system, which can generate a constant force regardless of its direction of movement and speed, so that as easily as possible a linear force superimposition of the two drive systems can take place.
  • a linear direct drive in which it is relatively easy, by means of control measures (such as commutation) between a proportionality independent of speed and position
  • the load-bearing structures are completely free from high acceleration forces.
  • the total movement in an axis according to the invention is divided into a high acceleration portion within a relatively small range of motion for the said first drive system and a low acceleration portion within the entire range of motion of the respective axis.
  • the more favorable movement distribution leads to a lower effective space requirement of a machine axis of the same length.
  • An inventively designed machine axis has the following advantages over the alternative prior art, after the impulse decoupling a much higher balancing mass over the payload is provided to restrict the movements of the balancing mass,
  • the total mass of an axis according to the invention is much lower at the same length, at best by an order of magnitude.
  • an axle according to the invention u.a. rather, to be part of a movable machine element, for example in multi-axis configurations.
  • Machine axis to be moved payload and one or more of this payload
  • the type of payload and balancing mass management will depend very much on the circumstances of the application. If, for example, a movement of a machine axis according to the invention is planned transversely to its direction of movement, then the guides and their supporting structures must be suitable for absorbing, in addition to gravity, the occurring acceleration forces in an application-oriented manner, ie in particular with sufficiently low deformation.
  • the forces between the payload and the balancing mass should preferably act on one axis through the center of mass of both masses, which runs parallel to their direction of movement, Otherwise, by means of said guide torques from the relatively high accelerated movement of these masses are introduced into each other in the supporting structures, which can greatly limit the usefulness of such impulse decoupling.
  • payload and balancing mass are each moved in a rather compact form on an axis and preferably also on the same guide and preferably connected to a single drive system with effectively repellent and attractive effect acts essentially along a rod-shaped structure by the centers of gravity of the two driven masses ,
  • Examples could be corresponding voice coil drives, symmetrically arranged common linear drives or ball screw spindle drives.
  • payload and balancing mass are moved side by side, permeable to each other in the transverse profile, so that they can be moved past each other, yet they preferably both have a focus on a common axis of movement through which also acts the effective force of the common drive system.
  • a symmetrically arranged linear drive would be particularly suitable since it avoids the occurrence of disturbing torques most effectively.
  • the balancing mass is guided on the payload, or vice versa, for the reasons already mentioned a symmetrical distribution of the balancing mass, possibly on two separately guided and driven balancing masses is possible.
  • said second drive system also act between leveling compound and supporting structures, as also shown in the concluding illustrated examples.
  • a drive between payload and supporting structures may be preferable because the payload and not the balancing weights are structurally closer to the end effector and thus control and Control influences on said second drive system have a more direct influence on the controlled or controlled size.
  • a machine axis according to the invention should be application-specific with the same
  • Be operated measuring systems such as a conventional linear axis.
  • Position sensors for particularly prominent operating cases such as center position or some defined axis positions are completely sufficient to achieve a correct overall function, since the actual relative position of the balancing weights usually results from such punctual data and calculations during the movement with sufficient accuracy for operational safety.
  • these data are basically rather uninteresting, since a common control of the payload on the two drive systems mainly takes place via a force distribution.
  • Machine dynamics by the additional moving masses and elasticities, so that predominantly the guides of the portals takes place directly on the working plane.
  • first two subspecies are only partially suitable for very long transverse axes with high accelerations, as with increasing distance of the end effector from the suspension, disturbing forces and instabilities occur.
  • the cutting head should be as universally applicable, which in turn leads to a certain minimum size and mass, which complicates a two-dimensional acceleration on stacked axes with momentum compensation.
  • the mobile portal Since the vast majority of base axis configurations have extremely different acceleration potentials in the horizontally acting base axes, so for example with respect to the flatbed laser cutting machines listed above, the mobile portal a much lower acceleration, provided the same precision requirements allowed as a movable structure on the portal, would also be corresponding additional axes suitable for different movement latitudes, in order to achieve comparable properties for each of the two axles in the overall result.
  • This provides an axis configuration that matches the one set up at the beginning
  • An inventive pulse-decoupled axis along a portal requires little additional space and is only slightly larger mass than the standard design.
  • an extremely powerful drive for the highly accelerated motion components in this axis can be provided, which allows a substantial approximation of the acceleration to the level of the additional axis in the other axial direction, and although the portal guides and thus the entire machine frame compared to the variant without impulse decoupling rather is relieved, so with the same requirements a less robust design would be possible.
  • set up machine type could be redesigned.
  • Flatbed laser cutting machines are known, as described for example in US 2005/0103764 A1, which move a projecting arm in an X axis over the material to be processed and an additional axis which is also movable in the X axis (X2 axis) move said arm in a Y axis.
  • the additional axis contains a further possibility of movement carried by it in the vertical Z axis, to which the laser cutting head is finally attached as the end effector of this example.
  • the ball screw or rack and pinion drives commonly used in such machines are usually not capable of applying a constant force to a driven load, regardless of the relative speed of the driven load to its
  • a corresponding drive is preferably provided.
  • the motors for the rack and pinion (there no. 58) and the racks are to be replaced by en pursue linear actuators.
  • This is structurally relatively easy to provide, especially since the linear drives for the said second drive system of a machine axis according to the invention must generate a lower driving force than the drives to be replaced.
  • the active part of the said first drive system according to the invention would then be advantageous, for example, to be mounted on top of the X2 axle device, so that a compact balancing weight above the X2 axle device by means of a passive axle
  • Drive parts is relatively movable in the Y direction to the X2 - axis device.
  • balancing mass is guided on the X2 axle device or whether a separate guide is to be provided in the cantilever arm can be used in a number of constructive ways
  • the load on the cantilever itself would be largely identical in both cases anyway.
  • a single linear drive for the said second drive system of the Y axis could also be provided along the axis of symmetry of the cantilever arm, whose active part is correspondingly mounted in the middle of the X2 axis device.
  • the space released by the replaced drives (there no. 58) can then be used for two symmetrically arranged and driven compact balancing masses with corresponding linear drives, so that the outside dimensions likewise do not change significantly.
  • the guidance of the balancing masses on the X2 axle device should be advantageous over a guide on the cantilever arm, as this would then be rather expensive.
  • the considerable, preferably roughly doubled, additional static load must then be taken into account.
  • the concrete mass of the balancing weights depends on many factors.
  • Acceleration for a Y axis would be 40 m / s 2 .
  • the balancing weight In order for the payload to be able to move 25 cm in a pulse-decoupled manner, the balancing weight must have the same freedom of movement for the same mass of payload and balancing weight.
  • the additional axis would preferably be itself pulse-decoupled or equipped with at least partial pulse compensation.
  • the invention is advantageously applicable to a large number of other machine types, preferably wherever motion sequences with high constant speeds along longer, complexly shaped paths or for other reasons require long paths and frequent high accelerations at the same time.
  • Fig. 1 shows the total view of a laser cutting machine, consisting of a
  • Device (10) is provided in the Y direction. Details of the device (10) are shown in the following FIGS. 2 and 3.
  • the laser cutting machine includes a device cabinet (4) of the control (5) and not shown units, such as drive amplifiers, other electrical components,
  • Laser source and gas supplies contains.
  • the movement of the device (10) along the device (3) in the Y direction also takes place by means of linear direct drives, but in each case on both sides and close to the dashed lines (11) of the device (10) fitting, so that an impairment of freedom of movement within the device (10) is avoided.
  • Said drive allows a maximum acceleration of 15 m / s 2 , and serves the device (10) according to the invention as said relatively low accelerated
  • FIG. 2 shows a device (10) according to the invention in a first particularly preferred embodiment variant of the invention.
  • the device (10) can be moved by means of the guide elements (12) on the guide (11) already shown in FIG.
  • An additional axis unit (20), as a payload according to the invention, for highly accelerating movement of the end effector, here a laser cutting head (21), contains guides (22) and drives (23) for moving the laser cutting head (21) in the X direction, as well as guides ( 25) and drives (26) for moving the balancing weights (24), which cause a pulse compensation of the additional axis in the X direction.
  • the laser cutting head (21) contains a delivery option, not shown, in the Z direction.
  • the entire additional axis unit (20) is guided by means of the guide elements (15) on the same guide as the outer part of the device (10) and by means of
  • the range of motion for the highly acceleratable drive in the Y direction is about 27 cm, but is limited to about 16 cm from the fixed coordinate system of the machine by the opposite movement of payload and balancing mass, which is here assumed to be about 1.5 times the payload ,
  • the additional axis (20) has a range of motion of about 28 cm in the X direction, but is also effectively available without compromise, so that's the lower
  • Acceleration of the X-axis compared to the Y-axis in the calculation of the maximum usable cutting speed is even slightly overcompensated, and thus effectively, using the previously described design rules, a largely constant cutting speed of up to 100 m / min would be available for both axes , wherein using currently commercially available drive components, accelerations of about 70 m / s 2 could be achieved in both axes.
  • Balancing masses (24), here as (34), have been displaced to the outer part of the device (10), that is to say associated with the balancing mass according to the invention for impulse decoupling.
  • Laser cutting head (21) in the X direction takes place here by means of the additional struts (37) having a guided in the Y direction connection to the laser cutting head (21).
  • the laser cutting head (21) can be moved in the X direction with drives of much larger area and correspondingly higher acceleration.
  • the masses of the listed drive elements of the payload (20) are removed, which now has a much higher acceleration with the same driving force.
  • the drive for the same acceleration can be made weaker. Due to the now considerably higher mass ratio between the inventive balancing weight and inventive payload, the usability of the
  • Range of motion for the present invention relatively high-speed drive.
  • the mass ratio between balancing mass and payload changes from assumed 1.5 to 1 in a device according to FIG. 2 to over 3 to 1 in a device according to FIG. 3. Thus, over 75% of the relative
  • Torques which should preferably be compensated by means of separate and appropriate control of the drives (16) and (33), and correspondingly sized balancing weights (34).
  • the acceleration in the cutting contour can be correspondingly up to 100 m / s 2 here .
  • the balancing mass is guided on the supporting structure and the respective other part, in this case the payload, is carried by the former by means of an inner guide running in parallel to the outer guide, so that the separate
  • the invention can also be advantageously used in machines in which the end effector is preferably moved from point to point rather than continuously, when high speeds are to be achieved with minimal vibration excitation of the machine structures, for example by particularly precise punctiform machining or point measurements to perform high throughput.
  • the invention can be used advantageously for a large number of scarcely enumerable applications, in a form that is easily recognizable to the person skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Machine Tool Units (AREA)
  • Testing Of Balance (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

L'invention permet une utilisation particulièrement efficace du découplage d'impulsions dans des machines-outils et des machines à mesurer comportant des axes de machine à mouvement de translation relativement long et pouvant être fortement accélérés, une charge utile à déplacer le long d'un tel axe et une ou plusieurs masses d'équilibrage associées à cette charge utile étant guidées coulissantes parallèlement les unes aux autres dans le sens dudit axe de machine, et une entrée et une sortie d'un premier système d'entraînement à accélération relativement forte étant prévues sur la charge utile et la masse d'équilibrage pour les mouvoir l'une relativement à l'autre. Selon l'invention, au moins un des éléments que sont la charge utile et la masse d'équilibrage comporte également l'entrée ou la sortie d'un deuxième système d'entraînement à accélération relativement faible. L'autre côté correspondant du système d'entraînement à accélération relativement faible se trouve sur la structure porteuse de l'axe de machine correspondant et il sert au déplacement commun à accélération relativement faible desdites charge utile et masse d'équilibrage le long de leur structure porteuse. La superposition des portions de mouvement à accélération faible et forte permet l'accélération élevée sur l'ensemble de l'axe de machine.
PCT/DE2010/001038 2009-08-27 2010-08-27 Dispositif de compensation de forces d'accélération par découplage d'impulsions sur des machines-outils ou des machines à mesurer dans au moins un axe de machine agissant en translation WO2011023186A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910039201 DE102009039201B3 (de) 2009-08-27 2009-08-27 Einrichtung zur Kompensation von Beschleunigungskräften mittels Impulsentkopplung bei Mess- und Werkzeugmaschinen in mindestens einer translatorisch wirksamen Maschinenachse
DE102009039201.7 2009-08-27

Publications (3)

Publication Number Publication Date
WO2011023186A2 true WO2011023186A2 (fr) 2011-03-03
WO2011023186A3 WO2011023186A3 (fr) 2011-06-23
WO2011023186A4 WO2011023186A4 (fr) 2011-10-06

Family

ID=43501441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/001038 WO2011023186A2 (fr) 2009-08-27 2010-08-27 Dispositif de compensation de forces d'accélération par découplage d'impulsions sur des machines-outils ou des machines à mesurer dans au moins un axe de machine agissant en translation

Country Status (2)

Country Link
DE (1) DE102009039201B3 (fr)
WO (1) WO2011023186A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049453A1 (de) 2010-10-23 2012-04-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Hochdynamisch translatorisch bewegbare Einrichtung zur Zusammenführung einer energetischen Strahlwirkung und eines Hilfsmediums an einem Wirkpunkt
DE102010049454A1 (de) 2010-10-23 2012-04-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Einrichtung zur hochdynamischen Bewegung des Wirkpunktes eines Strahls
DE102011119211A1 (de) 2011-11-23 2013-05-23 Andreas Ehlerding Bewegungseinrichtung mit kombiniert rotorischer und translatorischer Bewegung einer redundant wirksamen Zusatzachseneinheit als Teil einer Werkzeugmaschine
DE102011120318A1 (de) 2011-12-06 2013-06-06 Andreas Ehlerding Bewegungseinrichtung zur kombiniert translatorischen und rotorischen Bewegung mit redundant wirksamer Zusatzachseneinheit, als Teil einer Werkzeugmaschine
DE102011122202A1 (de) 2011-12-23 2013-06-27 Andreas Ehlerding Bewegungseinrichtung mit translatorischer Bewegung eines längenveränderlichen Auslegers, der eine hierzu redundant wirksame Zusatzachseneinheit trägt

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052504A1 (de) * 2010-11-26 2012-05-31 Wenzel Scantec Gmbh Koordinatenmessgerät sowie Verfahren zum Betreiben eines Koordinatenmessgeräts
EP2692481A1 (fr) 2012-08-03 2014-02-05 Bystronic Laser AG Dispositif de traitement par rayonnement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001021A1 (fr) 1991-07-13 1993-01-21 Andreas Ehlerding Porte-outil a commande numerique par ordinateur et travaillant dans plusieurs axes
EP0927596A2 (fr) 1997-12-31 1999-07-07 PRIMA INDUSTRIE S.p.A. Une tête opérative pour une machine laser
DE19810996A1 (de) 1998-03-13 1999-09-16 Krauss Maffei Ag Impulsentkoppelter Direktantrieb
US20050103764A1 (en) 2003-10-01 2005-05-19 Trumpf, Inc. Laser cutting machine with two X-axis drives
DE102004057062A1 (de) 2004-11-25 2006-06-22 Technische Universität Dresden Lineardirektantriebsanordnung und Verfahren zu seiner Regelung
EP1724054A1 (fr) 2005-05-18 2006-11-22 Franco Sartorio Mécanisme d'équilibrage pour machine outil
WO2008014804A1 (fr) 2006-08-01 2008-02-07 Trumpf Werkzeugmaschinen Gmbh & Co. Kg Procédé pour coordonner des dispositifs d'entraînement d'une machine-outil, unité de planification de voie et machine-outil correspondante
US7357049B2 (en) 2001-03-09 2008-04-15 Loxin 2002, S.L. Machine for machining large parts
WO2008148558A1 (fr) 2007-06-06 2008-12-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Machine de mesure ou machine-outil à arbres redondants à action translatoire pour mouvement continu sur des trajectoires complexes
WO2008151810A1 (fr) 2007-06-14 2008-12-18 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Procédé pour optimiser la coordination des mouvements de machines de mesure ou de machines-outils comportant des axes à translation redondante
WO2009027006A1 (fr) 2007-08-24 2009-03-05 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Procédé de coordination de mouvement optimisée de machines de mesure ou de machines-outils présentant des axes redondants à effet translatoire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027775A1 (de) * 2000-05-23 2002-02-14 Baumueller Nuernberg Gmbh Aktive Kompensation von Kraftrückwirkungen mechanisch beschleunigter Maschinenteile

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001021A1 (fr) 1991-07-13 1993-01-21 Andreas Ehlerding Porte-outil a commande numerique par ordinateur et travaillant dans plusieurs axes
EP0927596A2 (fr) 1997-12-31 1999-07-07 PRIMA INDUSTRIE S.p.A. Une tête opérative pour une machine laser
DE19810996A1 (de) 1998-03-13 1999-09-16 Krauss Maffei Ag Impulsentkoppelter Direktantrieb
US7357049B2 (en) 2001-03-09 2008-04-15 Loxin 2002, S.L. Machine for machining large parts
US20050103764A1 (en) 2003-10-01 2005-05-19 Trumpf, Inc. Laser cutting machine with two X-axis drives
DE102004057062A1 (de) 2004-11-25 2006-06-22 Technische Universität Dresden Lineardirektantriebsanordnung und Verfahren zu seiner Regelung
EP1724054A1 (fr) 2005-05-18 2006-11-22 Franco Sartorio Mécanisme d'équilibrage pour machine outil
WO2008014804A1 (fr) 2006-08-01 2008-02-07 Trumpf Werkzeugmaschinen Gmbh & Co. Kg Procédé pour coordonner des dispositifs d'entraînement d'une machine-outil, unité de planification de voie et machine-outil correspondante
WO2008148558A1 (fr) 2007-06-06 2008-12-11 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Machine de mesure ou machine-outil à arbres redondants à action translatoire pour mouvement continu sur des trajectoires complexes
WO2008151810A1 (fr) 2007-06-14 2008-12-18 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Procédé pour optimiser la coordination des mouvements de machines de mesure ou de machines-outils comportant des axes à translation redondante
WO2009027006A1 (fr) 2007-08-24 2009-03-05 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Procédé de coordination de mouvement optimisée de machines de mesure ou de machines-outils présentant des axes redondants à effet translatoire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049453A1 (de) 2010-10-23 2012-04-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Hochdynamisch translatorisch bewegbare Einrichtung zur Zusammenführung einer energetischen Strahlwirkung und eines Hilfsmediums an einem Wirkpunkt
DE102010049454A1 (de) 2010-10-23 2012-04-26 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Einrichtung zur hochdynamischen Bewegung des Wirkpunktes eines Strahls
DE102011119211A1 (de) 2011-11-23 2013-05-23 Andreas Ehlerding Bewegungseinrichtung mit kombiniert rotorischer und translatorischer Bewegung einer redundant wirksamen Zusatzachseneinheit als Teil einer Werkzeugmaschine
DE102011120318A1 (de) 2011-12-06 2013-06-06 Andreas Ehlerding Bewegungseinrichtung zur kombiniert translatorischen und rotorischen Bewegung mit redundant wirksamer Zusatzachseneinheit, als Teil einer Werkzeugmaschine
DE102011122202A1 (de) 2011-12-23 2013-06-27 Andreas Ehlerding Bewegungseinrichtung mit translatorischer Bewegung eines längenveränderlichen Auslegers, der eine hierzu redundant wirksame Zusatzachseneinheit trägt

Also Published As

Publication number Publication date
WO2011023186A3 (fr) 2011-06-23
WO2011023186A4 (fr) 2011-10-06
DE102009039201B3 (de) 2011-04-07

Similar Documents

Publication Publication Date Title
DE102009039201B3 (de) Einrichtung zur Kompensation von Beschleunigungskräften mittels Impulsentkopplung bei Mess- und Werkzeugmaschinen in mindestens einer translatorisch wirksamen Maschinenachse
DE102012101979B4 (de) Verfahren und Vorrichtung zur Erzeugung einer Relativbewegung
EP2740563B1 (fr) Dispositif d'usinage, machine d'usinage et procédé de déplacement d'une tête d'usinage
EP2160662B1 (fr) Procédé destiné à optimiser la coordination de mouvements d'appareils de mesure ou de machines-outils au moyen d'axes de translation redondants
EP2418045B1 (fr) Machine rotative destinée à la fabrication de verres lunettes en matière synthétique
EP2156252B1 (fr) Machine de mesure ou machine-outil à arbres redondants à action translatoire pour mouvement continu sur des trajectoires complexes
WO2008148678A1 (fr) Machine-outil
WO2011023185A2 (fr) Dispositif de compensation de couples de rotation résultant de l'accélération d'axes supplémentaires redondants sur des machines-outils et des machines à mesurer, au moyen d'une pluralité de masses d'équilibrage à mouvement linéaire coordonné
WO2001032367A1 (fr) Machine d'usinage permettant le mouvement selon plusieurs axes d'un outil ou d'une piece a usiner
WO2012052525A1 (fr) Dispositif pour assurer mouvement hautement dynamique du point d'action d'un faisceau
EP1068044B1 (fr) Dispositif de support trepied et procede de compensation de torsion
WO2007079778A1 (fr) Procédé de réglage d'axes
EP2148759A1 (fr) Machine-outil optimisée dynamiquement à systèmes d'entraînement superposés
DE102007010580B4 (de) Vorrichtung zur Bewegung einer Arbeitsplattform einer Bearbeitungsmaschine sowie Verfahren zur Steuerung einer Bewegungsbahn dieser Arbeitsplattform
DE102011119211A1 (de) Bewegungseinrichtung mit kombiniert rotorischer und translatorischer Bewegung einer redundant wirksamen Zusatzachseneinheit als Teil einer Werkzeugmaschine
DE102010049453A1 (de) Hochdynamisch translatorisch bewegbare Einrichtung zur Zusammenführung einer energetischen Strahlwirkung und eines Hilfsmediums an einem Wirkpunkt
DE102006046974B3 (de) Ruckentkoppelte Antriebsachse
DE19641879A1 (de) Stellantrieb
EP2415556B1 (fr) Entraînement pour une machine dotée d'un réglage de point de travail couplé à des impulsions
DE19819277A1 (de) Transfereinrichtung zum Transport von Werkstücken durch eine Stufenpresse, Transferpressenlinie oder dgl. Pressenanlage
DE102011122202A1 (de) Bewegungseinrichtung mit translatorischer Bewegung eines längenveränderlichen Auslegers, der eine hierzu redundant wirksame Zusatzachseneinheit trägt
DE19826587A1 (de) Regelvorrichtung und -verfahren für Bearbeitungsmaschinen
EP3793768B1 (fr) Dispositif et procédé servant à générer un déplacement relatif entre un outil et une pièce
AT521951B1 (de) Werkzeugmaschine
DE102015221660A1 (de) Numerisch gesteuerte werkzeugmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790717

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct app. not ent. europ. phase

Ref document number: 10790717

Country of ref document: EP

Kind code of ref document: A2