WO2011021870A2 - Macromolecular electrolyte film for a macromolecular electrolyte type of fuel cell, a production method for the same and a macromolecular electrolyte type of fuel cell system comprising the same - Google Patents

Macromolecular electrolyte film for a macromolecular electrolyte type of fuel cell, a production method for the same and a macromolecular electrolyte type of fuel cell system comprising the same Download PDF

Info

Publication number
WO2011021870A2
WO2011021870A2 PCT/KR2010/005508 KR2010005508W WO2011021870A2 WO 2011021870 A2 WO2011021870 A2 WO 2011021870A2 KR 2010005508 W KR2010005508 W KR 2010005508W WO 2011021870 A2 WO2011021870 A2 WO 2011021870A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer electrolyte
gas
electrolyte membrane
degrees
Prior art date
Application number
PCT/KR2010/005508
Other languages
French (fr)
Korean (ko)
Other versions
WO2011021870A3 (en
Inventor
이영무
박치훈
황두성
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100079257A external-priority patent/KR20110020186A/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US13/141,804 priority Critical patent/US20120141913A1/en
Publication of WO2011021870A2 publication Critical patent/WO2011021870A2/en
Publication of WO2011021870A3 publication Critical patent/WO2011021870A3/en
Priority to US14/338,624 priority patent/US10516182B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a polymer electrolyte membrane for a polymer electrolyte fuel cell, a method of manufacturing the same, and a polymer electrolyte fuel cell system including the same.
  • a fuel cell is a power generation system that directly converts the chemical reaction energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol and natural gas into electrical energy.
  • This fuel cell is a clean energy source that can replace fossil energy, and has the advantage of generating a wide range of outputs by stacking unit cells, and having an energy density of 4-10 times that of a small lithium battery. It is attracting attention as a compact and mobile portable power source.
  • the fuel cell include a polymer electrolyte fuel cell (PEMFC) and a direct oxidation fuel cell (Direct Oxidation Fuel Cell).
  • PEMFC polymer electrolyte fuel cell
  • Direct Oxidation Fuel Cell Direct Oxidation Fuel Cell
  • DMFC direct methanol fuel cell
  • the stack that substantially generates electricity may comprise several to several unit cells consisting of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate). It has a stacked structure of ten.
  • the membrane-electrode assembly is called an anode electrode (also called “fuel electrode” or “oxidation electrode”) and a cathode electrode (also called “air electrode” or “reduction electrode”) with a polymer electrolyte membrane containing a hydrogen ion conductive polymer therebetween.
  • the polymer electrolyte membrane has a structure that is bonded to the anode electrode and the cathode electrode through a binder having a hydrogen ion conductivity.
  • the principle of generating electricity in a fuel cell is that fuel is supplied to an anode electrode, which is a fuel electrode, adsorbed to a catalyst of the anode electrode, and the fuel is oxidized to generate hydrogen ions and electrons, wherein the generated electrons are an external circuit having electrical conductivity.
  • the anode reaches the cathode, which is an anode, and hydrogen ions are transferred to the polymer electrolyte membrane through a binder having hydrogen ion conductivity, and then passed through the binder to the cathode electrode.
  • An oxidant is supplied to the cathode, and the oxidant, hydrogen ions, and electrons react on the catalyst of the cathode to generate electricity while producing water.
  • One embodiment of the present invention to provide a polymer electrolyte membrane for a polymer electrolyte fuel cell that can improve the performance of the fuel cell.
  • Another embodiment of the present invention is to provide a method for producing the polymer electrolyte membrane.
  • Another embodiment of the present invention is to provide a polymer electrolyte fuel cell system including the polymer electrolyte membrane.
  • the polymer electrolyte membrane for a polymer electrolyte fuel cell includes a hydrocarbon-based hydrogen ion conductive polymer membrane, and the surface contact angle of the polymer electrolyte membrane may be 80 degrees (°) to 180 degrees (°).
  • the surface contact angle of the polymer electrolyte membrane may exhibit weak hydrophobicity of 80 degrees (°) or more and less than 120 degrees (°).
  • the hydrocarbon-based hydrogen ion conductive polymer is a polymer having a hydrogen ion conductive group, the polymer is a benzimidazole-based polymer, benzoxazole-based polymer, polyimide-based polymer, polyetherimide-based polymer, polyphenylene sulfide-based polymer, poly Hydrocarbon polymer selected from the group consisting of sulfone polymer, polyether sulfone polymer, polyether ketone polymer, polyether-ether ketone polymer, polyphenylquinoxaline polymer, copolymers thereof, and combinations thereof Can be.
  • a surface treatment method of a polymer electrolyte membrane for a polymer electrolyte fuel cell including a step of hydrophobic treatment of a hydrocarbon-based hydrogen ion conductive polymer membrane using plasma.
  • the hydrophobic treatment using the plasma is a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas or a combination thereof, and a second gas selected from a hydrocarbon gas, a fluorocarbon gas or a combination thereof. This can be done while blowing.
  • the hydrocarbon gas may be CH 4 or C 2 H 2
  • the fluorocarbon gas may be C 4 F 8 , CF 4 or a combination thereof.
  • the plasma treatment is selected from the group consisting of a first gas selected from argon, nitrogen, oxygen, helium and combinations thereof, and CF 4 , C 4 F 8 gas and combinations thereof This can be done while blowing the second gas.
  • At least one electricity generating unit for generating electricity through an oxidation reaction of the fuel and a reduction reaction of the oxidant, a fuel supply unit for supplying fuel to the electricity generating unit and an oxidant to the electricity generating unit Provided is a fuel cell system comprising an oxidant supply unit for supplying.
  • the electricity generating unit includes an anode electrode and a cathode electrode positioned opposite each other, and at least one membrane-electrode assembly and a separator including a polymer electrolyte membrane positioned between the anode electrode and the cathode electrode.
  • the polymer electrolyte membrane may be bonded to a binder included in an anode electrode and a cathode electrode.
  • the polymer electrolyte membrane has a first surface in contact with the anode electrode and a second surface in contact with the cathode electrode, and the contact angle of the first surface or the second surface is 80 degrees (°) to 180 degrees (°). Can be. In addition, the contact angle of the first surface or the second surface may be greater than 80 degrees (°), less than 120 degrees (°). In addition, the contact angle of the second surface may be 80 degrees (°) to 180 degrees (°), and both the first and second surfaces may be 80 degrees (°) to 180 degrees (°).
  • the polymer electrolyte membrane according to an embodiment of the present invention is excellent in dimensional stability while maintaining the moisture content inside the membrane, and at the same time improve the physical properties of the fuel cell, and improves the bonding with the binder, in particular commercially widely used fluorine-based
  • the adhesion to the binder can be increased, thereby improving the electrochemical performance and long-term performance of the manufactured membrane-electrode assembly.
  • FIG. 1 is a view showing a bonding state of a polymer electrolyte membrane and an electrode according to an embodiment of the present invention.
  • FIG. 2 schematically illustrates the structure of a fuel cell system according to an embodiment of the invention.
  • Figure 4 is a graph showing the measurement of the dimensional stability of the polymer electrolyte membrane of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Figure 6 is a graph showing the cell performance of the unit cells prepared according to Examples 6 to 8 and Comparative Examples 3 and 9 measured at 100% relative humidity.
  • FIG. 7 is a graph showing the cell performance of the unit cells prepared according to Examples 6 to 8 and Comparative Example 3 measured under a relative humidity of 65%.
  • FIG. 8 is a graph showing the cell performance of unit cells prepared according to Examples 6 to 8 and Comparative Example 3, measured at 45% relative humidity, and showing the results.
  • Figure 9 is a graph showing the cell performance of the unit cells prepared according to Comparative Example 3, Comparative Examples 6 to 9 measured at 100% relative humidity conditions.
  • FIG. 10 is a graph showing the cell performance of unit cells prepared according to Comparative Example 3 and Comparative Examples 6 to 8 at 65% relative humidity.
  • 11 is a graph showing the cell performance of unit cells prepared according to Comparative Example 3 and Comparative Examples 6 to 8 at 45% relative humidity.
  • FIG. 13 is a graph showing the cell performance of the unit cell of Comparative Example 13 measured at a temperature of 70 ° C. and various relative relative humidity conditions.
  • FIG. 13 is a graph showing the cell performance of the unit cell of Comparative Example 13 measured at a temperature of 70 ° C. and various relative relative humidity conditions.
  • Comparative Example 14 is a graph showing the cell performance of the unit cell of Comparative Example 14 measured at a temperature of 70 ° C. and various relative relative humidity conditions.
  • Comparative Example 15 is a graph showing the cell performance of the unit cell of Comparative Example 15 measured at 70 ° C. and various relative relative humidity conditions.
  • FIG. 16 is a graph showing the battery performance of a unit cell of Comparative Example 12 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
  • FIG. 16 is a graph showing the battery performance of a unit cell of Comparative Example 12 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
  • 17 is a graph showing the cell performance of the unit cell of Comparative Example 13 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
  • FIG. 19 is a graph showing the cell performance of the unit cell of Comparative Example 15 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
  • the polymer electrolyte membrane for a polymer electrolyte fuel cell is a polymer membrane formed of a hydrocarbon-based hydrogen ion conductive polymer.
  • the polymer electrolyte membrane may have a hydrophobicity of a contact angle of 80 degrees (°) to 180 degrees (°).
  • the surface contact angle of the polymer electrolyte membrane may be weak hydrophobicity of more than 80 degrees (°), less than 120 degrees (°).
  • the contact angle of the polymer electrolyte membrane is less than 80 degrees (°), due to excessive expansion of the polymer electrolyte membrane during hydration, there may be a disadvantage that the problem of separation with the catalyst layer containing the binder may occur.
  • the adhesion between the anode and the cathode electrode with the catalyst layer may be excellent.
  • the effect of excellent bonding can be maximized when using a fluorine-based binder.
  • the bonding between the catalyst layer of the anode and the cathode electrode and the polymer electrolyte membrane is mainly carried out through a binder included in the catalyst layer, and since the commonly used binder shows hydrophobicity as a fluorine resin, it is very compatible with the surface of the polymer electrolyte showing hydrophobicity. This is because bonding can be further improved.
  • the adhesion between the catalyst layer of the electrode and the polymer electrolyte membrane is excellent, long-term stability of the fuel cell may be improved.
  • the surface when the total thickness of the polymer electrolyte membrane is 100%, the surface is about 10% from the outermost surface (surface in contact with the anode electrode or the cathode electrode) of the polymer electrolyte membrane in the depth (direction toward the opposite electrode) direction. It means the depth to.
  • the surface may mean a depth of up to about 5% from the outermost surface of the polymer electrolyte membrane.
  • the polymer electrolyte membrane according to one aspect of the present invention is controlled only to the hydrophobicity (for example, weak hydrophobicity or superhydrophobic) of the physical properties of the surface, the physical properties of the inside is to maintain the physical properties of the polymer electrolyte membrane itself. If the internal properties of the polymer electrolyte membrane also have the same hydrophobicity as the surface, the hydrogen ion conductivity is lowered, which is not good.
  • the contact angle of the surface of the polymer electrolyte membrane in contact with the electrode may exhibit hydrophobicity of 80 degrees (°) to 180 degrees (°). Hydrophobicity may be referred to as weak hydrophobicity in the case of more than 80 degrees and less than 120 degrees, depending on the contact angle, and may be referred to as hydrophobicity in the case of 120 to 180 degrees. In one embodiment of the present invention, the contact angle of the surface of the polymer electrolyte membrane may be more appropriate than the weak hydrophobicity of more than 80 degrees (°), less than 120 degrees (°).
  • the contact angle of the surface of the polymer electrolyte membrane is 80 degrees (°) to 180 degrees (°)
  • it has excellent adhesion with the binder used in the catalyst layer, especially the fluorine-based binder generally used in the catalyst layer, thereby lowering the interface resistance between the electrode and the electrolyte membrane.
  • the dimensional stability is improved to reduce the peeling phenomenon with the catalyst layer including the binder, there is an advantage that can improve the electrochemical performance and long-term stability.
  • the contact angle of the surface of the polymer electrolyte membrane exhibits weak hydrophobicity of 80 degrees (°) or more and less than 120 degrees (°), the output density improvement effect of the fuel cell is more excellent.
  • the hydrocarbon-based hydrogen ion conductive polymer may be any hydrocarbon-based polymer resin having hydrogen ion conductivity, in particular a cation selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups and derivatives thereof in the side chain. Any hydrocarbon-based polymer resin having an exchange group can be used.
  • Examples thereof include benzimidazole polymer, benz oxide polymer, polyimide polymer, polyetherimide polymer, polyphenylene sulfide polymer, polysulfone polymer, polyether sulfone polymer, polyether ketone polymer, poly Hydrocarbon-based polymers selected from ether-etherketone-based polymers or polyphenylquinoxaline-based polymers, copolymers thereof, or a combination thereof can be used.
  • polymer resin examples include polyether ether ketone, polypropylene oxide, polyacrylic acid-based ionomer, polyarylene ether sulfone), sulfonated poly arylene ether sulfone, sulfonated poly ether ether ketone, sulfonated poly phosphazene, sulfonate Fonated poly arylene sulfide, sulfonated poly arylene sulfide sulfide, poly benzoxazole, poly (2,2'-m-phenylene) -5,5'-bibenzimidazole [poly (2,2'-m -phenylene) -5,5'-bibenzimidazole] or poly (2,5-benzimidazole) can be used.
  • the polymer resin has a cation exchange group described above in the side chain.
  • the electrode including the polymer electrolyte membrane and the catalyst layer formed on the electrode substrate is brought into contact with the electrode through the binder of the catalyst layer of the electrode, as shown in FIG.
  • the polymer electrolyte membrane composed of a hydrocarbon-based polymer is not compatible with the binder of the catalyst layer, in particular, the fluorine-based binder, so that the separation of the layer between the electrolyte membrane and the electrode may occur better than when the polymer electrolyte membrane composed of the fluorine-based polymer is used.
  • the compatibility of the polymer electrolyte membrane with the catalyst layer of the electrode can be further improved by controlling the surface of the polymer electrolyte membrane similarly to the fluorine-based binder of the catalyst layer. It can be very large in a polymer electrolyte membrane composed of a hydrocarbon-based polymer.
  • H may be substituted with Na, K, Li, Cs or tetrabutylammonium.
  • NaOH or NaCl is substituted when H is replaced with Na
  • tetrabutylammonium hydroxide is used when the substituent is substituted with tetrabutylammonium
  • K, Li or Cs is also appropriate.
  • Substitutions may be used. Since this substitution method is well known in the art, detailed description thereof will be omitted.
  • the catalyst layer is then converted back into a proton type (H + -form) polymer electrolyte membrane by an acid treatment process.
  • the polymer electrolyte membrane according to one embodiment of the present invention is more effective to use in a polymer electrolyte fuel cell. This is because even in a direct oxidation fuel cell in which the hydrolysis state of the membrane is constant by using a liquid fuel such as methanol, even if the surface contact angle of the electrolyte membrane is adjusted to show hydrophobicity, the effect may be insignificant, or rather, the effect may be reduced.
  • the humidification degree of the oxidant such as the gaseous fuel such as hydrogen gas supplied to the anode electrode and the oxygen gas supplied to the cathode electrode is different from each other, and in particular, its value remains unstable in actual application.
  • the hydration state of the membrane is continuously changed, and the membrane may peel while repeating swelling and shrinking.
  • the present inventors thought that the hydrophilicity of the polymer electrolyte membrane could be suppressed.
  • the present inventors found that the hydrophobicity of the polymer electrolyte membrane can be effectively suppressed as in the embodiment of the present invention. . That is, since the polymer electrolyte membrane according to the embodiment of the present invention has a surface contact angle capable of exhibiting hydrophobicity, this problem can be suppressed.
  • the direct oxidation fuel cell has a relatively low water content polyelectrolyte, while the electrolyte membrane is in a completely humidified state due to the water contained in the liquid fuel.
  • hydrogen ion transfer may occur inefficiently because formation of the hydrogen ion channel is weakened, but the electrolyte membrane according to the exemplary embodiment of the present invention may maintain a constant hydration state.
  • Another embodiment of the present invention is to provide a method for producing a polymer electrolyte membrane.
  • the manufacturing method includes a step of hydrophobic treatment of a hydrocarbon-based hydrogen ion conductive polymer membrane using plasma.
  • the plasma treatment method is a method of modifying a surface by exposing a surface of a polymer electrolyte membrane to a partially ionized gas in a plasma state, and this method occurs on a very small surface, without damaging the polymer electrolyte membrane itself and changing a large physical property therein. It also has the advantage of being able to treat and less pollutants.
  • the plasma processing will be described in more detail.
  • the hydrocarbon-based hydrogen ion conductive polymer membrane is placed on the sample holder in the plasma chamber.
  • one surface facing upward faces the plasma generator, and the other surface facing the plasma generator is directed toward the bottom of the sample holder, so that only one surface is subjected to the plasma treatment.
  • the one surface refers to one surface in the longitudinal direction of the hydrogen ion conductive polymer membrane, that is, one surface in contact with the cathode or anode electrode when the membrane-electrode assembly is manufactured.
  • the hydrogen ion conductive polymer membrane is a membrane formed of the aforementioned hydrogen ion conductive polymer.
  • one surface of the hydrogen ion conductive polymer membrane may be plasma treated, and after treating one surface, the surface opposite thereto may be subjected to the same plasma treatment, and both surfaces may be plasma treated.
  • plasma treatment is performed while blowing a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and a second gas selected from hydrocarbon gas, fluorocarbon gas, or a combination thereof.
  • the plasma treatment may be performed while blowing a second gas of fluorocarbon gas together with the first gas.
  • the hydrocarbon gas may be a gas selected from CH 4 gas, a C 2 H 2 gas or a combination thereof, and the fluorocarbon gas is a gas selected from a CF 4 gas, a C 4 F 8 gas, or a combination thereof. Can be used. When the gas is mixed and used, the mixing ratio can be properly adjusted.
  • the C 2 H 2 gas may be commercially available in the form of C 2 H 2 / Ar gas, C 2 H 2 / He gas, C 2 H 2 / N 2 gas. At this time, the mixing ratio of the C 2 H 2 gas and Ar, He, N 2 gas does not have a substantial effect on the effect of the present invention, it can be used by appropriately adjusted.
  • the blowing rate may be 15 L / min to 30 L / min, and 20 L / min to 25 L / min.
  • the blowing speed of the first gas is included in the above range, the plasma may be formed well, and the radical reaction of the second gas may be smoothly performed.
  • a blowing rate of blowing the second gas may be 5 ml / min to 50 ml / min.
  • the rate of blowing the second gas is adjusted to 5ml / min to 20ml / min, more specifically, 10ml / min to 15mlL / min, weak hydrophobicity can be exhibited, and the rate of blowing the second gas is 20ml.
  • the blowing speed of the second gas is included in the above range, there may be an advantage that the radical reaction does not interfere with the plasma of the first gas and the radical reaction occurs properly on the polymer surface without wasting gas.
  • the surface contact angle of the obtained polymer electrolyte membrane can be adjusted according to the type of gas atmosphere to be subjected to the plasma treatment.
  • the plasma treatment process may include a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and an agent selected from CF 4 gas, C 4 F 8 gas, and combinations thereof.
  • a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof
  • an agent selected from CF 4 gas, C 4 F 8 gas, and combinations thereof.
  • the plasma treatment process may also be performed from a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and a C 2 H 2 gas, CF 4 gas, C 4 F 8 gas, or a combination thereof.
  • a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof
  • a C 2 H 2 gas, CF 4 gas, C 4 F 8 gas, or a combination thereof When carried out under the conditions of blowing the selected second gas, the surface contact angle of the polymer electrolyte membrane may exhibit super hydrophobicity of 120 ° to 180 °.
  • the plasma treatment process may include the first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and CF 4 gas, C 4 F 8 gas, and a combination thereof. It is more appropriate to carry out under conditions for blowing a second gas selected from the combination.
  • the surface properties of the polymer electrolyte membrane can be easily adjusted according to the purpose by plasma treatment.
  • the physical properties of the surface of the polymer electrolyte membrane are hydrophobic in the range of 80 (degrees) to 180 degrees (degrees), for example, at least 80 degrees (degrees), weak hydrophobicity of the contact angle less than 120 degrees (degrees), 120 degrees (degrees) To 180 degrees (°) can be adjusted to show the super hydrophobicity, the physical properties of the polymer electrolyte membrane to maintain the properties of the hydrogen ion conductive polymer membrane itself.
  • the polymer electrolyte membrane internal physical properties also exhibit hydrophobicity included in the above range, that is, when the polymer electrolyte membrane is prepared by including a material having hydrophobicity, the moisture content is too low, there may be a disadvantage that the hydrogen ion conductivity is very low.
  • the polymer electrolyte membrane according to one aspect of the present invention does not have this problem.
  • Another embodiment of the present invention relates to a polymer electrolyte fuel cell system.
  • the fuel cell system includes an electricity generator, a fuel supply, and an oxidant supply.
  • the electricity generation unit serves to generate electricity through the oxidation reaction of the fuel and the reduction reaction of the oxidant.
  • the fuel supply unit serves to supply fuel to the electricity generation unit, and the oxidant supply unit serves to supply an oxidant to the electricity generation unit. Examples of the oxidant include oxygen or air.
  • the fuel may include a hydrogen fuel in the gas or liquid state.
  • the electricity generating unit includes an anode electrode and a cathode electrode positioned to face each other, and includes at least one membrane-electrode assembly and a separator including a polymer electrolyte membrane positioned between the anode electrode and the cathode electrode.
  • the polymer electrolyte membrane may be bonded to a binder included in an anode electrode and a cathode electrode.
  • the polymer electrolyte membrane is a polymer electrolyte membrane according to one embodiment of the present invention, which will be described in more detail.
  • the polymer electrolyte membrane has a first surface in contact with the anode electrode and a second surface in contact with the cathode electrode, and a contact angle of at least one of the first surface and the second surface is 80 degrees (°) to 180 degrees ( °). In addition, the contact angle of at least one of the first surface and the second surface may be 80 degrees (°) or more and less than 120 degrees (°).
  • the contact angle of the second surface may be 80 degrees (°) to 180 degrees (°), 80 degrees (°) or more, may be less than 120 degrees (°).
  • the contact angle of the second surface is in the above range, since the concentration of water at the cathode is higher than that of the anode, the swelling problem of the electrolyte membrane, the problem of lowering the concentration of hydrogen ions, and the problem of water flooding in the electrode layer. Can be suppressed more effectively.
  • both the first and second surfaces may be 80 degrees (°) to 180 degrees (°), and may be 80 degrees (°) or more and less than 120 degrees (°).
  • the electrode and electrolyte can be more effectively suppressed while the problem of swelling of the electrolyte membrane, the problem of lowering the concentration of hydrogen ions, and the problem of water flooding in the electrode layer can be more effectively suppressed.
  • the contactability of the membrane can be improved, the overall interfacial resistance can be greatly lowered, and the loss of moisture in the electrolyte membrane to the outside can be effectively suppressed, so that a polymer electrolyte fuel cell exhibiting better cell chemistry can be provided.
  • the cathode electrode and the anode electrode include an electrode substrate and a catalyst layer.
  • any catalyst that can be used as a catalyst may be used as a catalyst in the reaction of a fuel cell, and a representative platinum-based catalyst may be used as a representative example.
  • the platinum-based catalyst may be platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy or platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni, At least one catalyst selected from the group consisting of Cu, Zn, Sn, Mo, W, Rh and Ru).
  • such a metal catalyst may be used as the metal catalyst (black) itself, or may be supported on a carrier.
  • a carrier carbonaceous materials such as graphite, denka black, ketjen black, acetylene black, carbon nanotube, carbon nanofiber, carbon nanowire, carbon nanoball or activated carbon may be used, or alumina, silica, zirconia, Inorganic fine particles such as titania may be used, but carbon-based materials are generally used.
  • a commercially available commercially available product may be used, or the noble metal supported on the carrier may be prepared and used. Since the process of supporting the precious metal on the carrier is well known in the art, detailed descriptions thereof will be readily understood by those skilled in the art even if the detailed description is omitted.
  • the catalyst layer also improves the adhesion between the polymer electrolyte membrane and the electrode and includes a binder for the transfer of hydrogen ions.
  • the binder may be a polymer resin having hydrogen ion conductivity, and examples thereof include a polymer resin having a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in a side chain thereof. Can be mentioned. Specific examples of the binder include fluorine polymers, benzimidazole polymers, benz oxide polymers, polyimide polymers, polyetherimide polymers, polyphenylene sulfide polymers, polysulfone polymers, polyether sulfone polymers, and polyethers. It may include one or more hydrogen ion conductive polymer selected from ketone-based polymer, polyether-etherketone-based polymer or polyphenylquinoxaline-based polymer.
  • hydrogen ion conductive polymer examples include a mixture of poly (perfluorosulfonic acid) (including commercialized Nafion, etc.), poly (perfluorocarboxylic acid), and tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups.
  • Coalescing sulfonated poly arylene ere sulfone, sulfonated poly ether ether ketone, sulfonated poly phosphazene, sulfonated poly arylene sulfide, sulfonated poly arylene sulfide sulfide, poly benzoxazole, poly (2,2 ' -m-phenylene) -5,5'-bibenzimidazole [poly (2,2'-m-phenylene) -5,5'-bibenzimidazole] or poly (2,5-benzimidazole) selected from One containing at least one hydrogen ion conductive polymer can be used.
  • the hydrogen ion conductive polymer may replace H with Na, K, Li, Cs or tetrabutylammonium in a cation exchanger at the side chain terminal.
  • H Na in the ion-exchange group of the side chain terminal
  • NaOH or Nacl is substituted with tetrabutylammonium when preparing the catalyst composition, and tetrabutylammonium hydroxide is used.
  • K, Li or Cs is also appropriate. Substitutions may be used. Since this substitution method is well known in the art, detailed description thereof will be omitted.
  • the binder may be used in the form of a single substance or a mixture, and may also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
  • non-conductive compound examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro alkylvinyl ether copolymer (PFA), ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylenechlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), dode At least one selected from the group consisting of silbenzenesulfonic acid and sorbitol is more preferred.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoro alky
  • the electrode substrate plays a role of supporting the electrode and diffuses the fuel and the oxidant to the catalyst layer, thereby serving to easily access the fuel and the oxidant to the catalyst layer.
  • the electrode substrate is a conductive substrate, and representative examples thereof include carbon paper, carbon cloth, carbon felt, or metal cloth (porous film or polymer fiber composed of metal in a fibrous state).
  • the metal film is formed on the surface of the formed cloth) may be used, but is not limited thereto.
  • a water-repellent treatment with a fluorine-based resin as the electrode base material because it can prevent the reactant diffusion efficiency from being lowered by water generated when the fuel cell is driven.
  • fluorine-based resins include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
  • microporous layer may be further included to enhance the reactant diffusion effect in the electrode substrate.
  • microporous layers are generally conductive powders having a small particle diameter, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotubes, carbon nanowires, and carbon nanohorns. -horn or carbon nano ring.
  • the microporous layer is prepared by coating a composition comprising a conductive powder, a binder resin and a solvent on the electrode substrate.
  • the binder resin may be polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, cellulose acetate Or copolymers thereof and the like can be preferably used.
  • alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, etc. may be preferably used.
  • the coating process may be screen printing, spray coating, or coating using a doctor blade according to the viscosity of the composition, but is not limited thereto.
  • FIG. 2 A schematic structure of the fuel cell system of the present invention is shown in FIG. 2, which will be described in more detail with reference to the following.
  • the structure shown in FIG. 2 shows a system for supplying fuel and oxidant to an electric generator using a pump
  • the fuel cell system of the present invention is not limited to such a structure, and a fuel cell using a diffusion method without using a pump is shown. Of course, it can also be used for system architecture.
  • the fuel cell system 1 of the present invention includes at least one electricity generation unit 3 for generating electrical energy through an oxidation reaction of a fuel and a reduction reaction of an oxidant, a fuel supply unit 5 for supplying the fuel, And an oxidant supply unit 7 for supplying an oxidant to the electricity generation unit 3.
  • the fuel supply unit 5 for supplying the fuel may include a fuel tank 9 storing fuel and a fuel pump 11 connected to the fuel tank 9.
  • the fuel pump 11 serves to discharge the fuel stored in the fuel tank 9 by a predetermined pumping force.
  • the oxidant supply unit 7 for supplying the oxidant to the electricity generating unit 3 includes at least one oxidant pump 13 for sucking the oxidant with a predetermined pumping force.
  • the electricity generator 3 is composed of a membrane-electrode assembly 17 for oxidizing and reducing a fuel and an oxidant, and a separator 19 and 19 'for supplying fuel and an oxidant to both sides of the membrane-electrode assembly. At least one of these electricity generating units 3 constitutes a stack 15.
  • a sample holder is formed of a polymer resin comprising a polymer resin including a first repeating unit represented by the following Chemical Formula 1a and a second repeating unit represented by the following Chemical Formula 1b in a 4: 6 molar ratio, and having a thickness of 35 ⁇ m in a plasma chamber. On one side facing the plasma generator and the other side facing the bottom of the sample holder.
  • plasma treatment was performed while blowing helium gas at a rate of 25 L / min and a C 4 F 8 gas at a rate of 15 ml / min to prepare an electrolyte membrane treated with one surface of a hydrophobic surface.
  • hydrophobic surface treatment was performed up to 50 nm in the depth direction at the outermost surface.
  • a hydrogen ion conductive polymer membrane formed of the polymer resin used in Example 1 and having a thickness of 35 ⁇ m is placed on the sample holder in the plasma chamber, so that one surface thereof facing upward is directed toward the plasma generator, and the other surface opposite thereto is the sample holder. Face down.
  • plasma treatment was performed while blowing helium gas at a rate of 25 L / min and also C 2 H 2 gas, C 4 F 8 gas and C 4 F 8 gas at 50 ml / min, 10 ml / min and 15 ml / min, respectively.
  • helium gas at a rate of 25 L / min and also C 2 H 2 gas, C 4 F 8 gas and C 4 F 8 gas at 50 ml / min, 10 ml / min and 15 ml / min, respectively.
  • One surface of the polymer electrolyte membrane with a superhydrophobic surface treatment was prepared.
  • Superhydrophobic surface treatment in the prepared polymer electrolyte membrane was up to 110nm in the depth direction from the outermost surface.
  • Example 1 Except that the hydrogen ion conductive polymer membrane (thickness 35 ⁇ m) made of the polymer resin used in Example 1 was plasma treated while blowing nitrogen gas and oxygen gas at a rate of 10 ml / min in the air, respectively.
  • a polymer electrolyte membrane for a fuel cell in which only one surface was hydrophilic was treated.
  • hydrophilic surface treatment was performed up to 0.2 nm in the depth direction at the outermost surface.
  • the surface contact angles of the polymer electrolyte membranes of Examples 1 to 2 and Comparative Examples 1 and 2 with respect to distilled water were measured to be 109.3 degrees (°) (weak hydrophobic), 137.2 degrees (°) (superhydrophobic), and 86.3 degrees (°).
  • the cathode electrode and the anode electrode 0.3 g of Pt / C (Pt supported on carbon, 20% by weight of Pt, 80% by weight of carbon) catalyst and Nafion binder (5% by weight of Nafion / H 2 O / isopropanol)
  • a catalyst composition containing 0.495 g was prepared by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer.
  • the final platinum loading of the anode electrode and cathode electrode was 0.3 mg / cm 2, respectively.
  • the current density and the output density of the unit cell were measured under 0.6V and 0.5V at 65 ° C of 100% relative humidity, and the results are shown in Table 1 below. At this time, H 2 was used as a fuel at 100 ccm (Cubic Centimeter per Minute) and O 2 was used as an oxidizing agent at 100 ccm.
  • the fuel cell using the polymer electrolyte membranes of Examples 1 to 2 having surface contact angles of 109.3 degrees (°) and 137.2 degrees (°) has a current density and an output density of 86.3 degrees ( It can be seen that it is very excellent with respect to Comparative Example 1 which is °). That is, it can be seen that the current density and the output density are improved when the surface contact angle of the polymer electrolyte membrane is 90 degrees (°) to 180 degrees (°).
  • the moisture content of the polymer electrolyte membranes of Examples 1 and 2 and Comparative Examples 1 and 2 were measured at 30 ° C., and the results are shown in FIG. 3.
  • the moisture content was measured by sufficiently drying the polymer electrolyte membrane in a 110 ° C. vacuum oven, and then measuring the weight of the polymer electrolyte membrane. Subsequently, the polymer electrolyte membrane was immersed in ultrapure water at 30 ° C. for one day, sufficiently hydrated, and the weight of the hydrated membrane was measured, and then calculated according to the following Equation 1.
  • Dimensional stability of the polymer electrolyte membranes of Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the results are shown in FIG. 4. Dimensional stability is determined by measuring the dimensional (area) change rate before and after hydration, and the smaller the dimensional (area) change rate is, the higher the dimensional stability is. The rate of dimensional change was measured as follows.
  • the area of the polymer electrolyte membrane was measured. Subsequently, it was soaked in ultrapure water at 30 ° C. for one day, sufficiently hydrated, and then the area of the hydrated film was measured, and then calculated according to the following equation.
  • Rate of dimensional change (hydrated membrane area-dried membrane area) / dried membrane area x 100
  • the battery performance of the unit cells manufactured using the polymer electrolyte membranes of Examples 1 to 2 and Comparative Example 1 was measured, and the results are shown in FIG. 5.
  • the polymer electrolyte membranes (Examples 1 and 2) showing weak hydrophobicity and superhydrophobicity showed high unit cell performance when compared with Comparative Example 1 showing hydrophilicity.
  • the surfaces of the polymer electrolyte membranes of Examples 1 to 2 exhibit hydrophobicity, they exhibit high adhesion to the Nafion binder of the catalyst layer showing hydrophobicity, thereby lowering the resistance of the electrode-fluorine-based polymer binder-polymer electrolyte membrane. It is because the moisture content which determines hydrogen ion conductivity as shown in 3-4 can have high dimensional stability, without making it fall significantly.
  • a sample holder is formed of a polymer resin comprising a polymer resin including a first repeating unit represented by the following Chemical Formula 1a and a second repeating unit represented by the following Chemical Formula 1b in a 4: 6 molar ratio, and having a thickness of 35 ⁇ m in a plasma chamber. On one side facing the plasma generator and the other side facing the bottom of the sample holder.
  • helium and C 4 F 8 gas were blown at a rate of 25 L / min and 10 ml / min, respectively, to prepare a polymer electrolyte membrane for a polymer electrolyte membrane fuel cell, in which only one surface was hydrophobic.
  • hydrophobic surface treatment was performed up to 0.2 nm in the depth direction at the outermost surface.
  • Example 3 One surface prepared in Example 3 was carried out in the same manner as in Example 3 with respect to the untreated surface (the surface opposite to the hydrophobic surface treated surface) of the hydrophobic surface treated polymer electrolyte membrane, and both surfaces were hydrophobic surfaces.
  • a polymer electrolyte membrane for a treated polymer electrolyte membrane fuel cell was prepared.
  • hydrophobic surface treatment was performed up to 0.2 nm in depth direction at the outermost surface.
  • Example 3 A polymer electrolyte membrane for a polymer electrolyte membrane-type fuel cell treated with a superhydrophobic surface was prepared.
  • Superhydrophobic surface treatment in the prepared polymer electrolyte membrane was up to 110nm in the depth direction from the outermost surface.
  • a catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol)
  • the cathode was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer, on which a cathode catalyst layer was formed.
  • a catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol)
  • An anode electrode on which an anode catalyst layer was formed was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer.
  • the final platinum loading of the anode electrode and cathode electrode was 0.3 mg / cm 2, respectively.
  • Example 3 After placing the polymer electrolyte membrane prepared in Example 3 between the cathode electrode and the anode electrode, a membrane-electrode assembly was manufactured by a conventional method, and a unit cell was manufactured using the same. At this time, the hydrophobic surface-treated surface of the polymer electrolyte membrane was positioned in contact with the anode catalyst layer of the anode electrode.
  • a unit cell was prepared in the same manner as in Example 6 except that the hydrophobic surface-treated surface of the polymer electrolyte membrane was placed in contact with the cathode catalyst layer of the cathode electrode.
  • a unit cell was prepared in the same manner as in Example 6 except that both surfaces of the polymer electrolyte membrane prepared in Example 4 were hydrophobic surface-treated electrolyte membrane.
  • a membrane made of a polymer resin represented by Chemical Formula 1 was used as a polymer electrolyte membrane for a fuel cell.
  • a unit cell was prepared in the same manner as in Example 6 except that the polymer electrolyte membrane was used.
  • Example 3 except that the membrane (thickness 35 ⁇ m) made of a polymer resin represented by the formula (1) was plasma treated while blowing nitrogen gas and oxygen gas at a rate of 10 ml / min and 15 ml / min in the air
  • a polymer electrolyte membrane for a fuel cell in which only one surface was hydrophilic was treated.
  • hydrophilic surface treatment was performed up to 0.2 nm in the depth direction at the outermost surface.
  • One surface prepared in Comparative Example 4 was subjected to the surface treatment of the hydrophilic surface-treated polymer electrolyte membrane (the surface opposite to the hydrophilic surface-treated surface) in the same manner as in Comparative Example 4, where the face was hydrophilic surface treatment.
  • hydrophobic surface treatment was performed up to 0.2 nm in depth direction at the outermost surface.
  • a unit cell was prepared in the same manner as in Example 6, except that the polymer electrolyte membrane prepared according to Comparative Example 4 was used.
  • a unit cell was prepared in the same manner as in Example 7, except that the polymer electrolyte membrane prepared according to Comparative Example 4 was used.
  • a unit cell was prepared in the same manner as in Example 8, except that the polymer electrolyte membrane prepared according to Comparative Example 5 was used.
  • Example 3 Using a commercially available Nafion polyelectrolyte membrane (Dupont), using the anode electrode and the cathode electrode prepared in Example 3, to prepare a membrane-electrode assembly in a conventional manner, to prepare a unit cell using the same It was.
  • Dupont Nafion polyelectrolyte membrane
  • Example 3 As a result of measuring the surface contact angle of distilled water of the polymer electrolyte membrane prepared according to Examples 3 and 5 and Comparative Example 3, Example 3 was 85.3 degrees (°), Example 5 was 130 degrees (°), Comparative Example 3 was 51.9 degrees (°). That is, it can be seen that Example 3 is hydrophobic, Example 5 is superhydrophobic, and Comparative Example 3 is hydrophilic.
  • the batteries of Examples 6 to 8 were obtained with excellent output density and current density even under the condition that the relative humidity was low to 45%, It can be seen that it can be operated under low humidity conditions.
  • the unit cells were operated at 0.6 V and 0.5 V, respectively, at the relative humidity, humidifier temperature, and battery temperature conditions of the current density and output density of the unit cells of Comparative Examples 6 to 8, Measured.
  • the results are shown in Table 4 below.
  • the results of Comparative Example 3 are shown in Table 4 together for comparison.
  • Comparative Example 7 when the relative humidity was 100%, similar or somewhat superior results were obtained in Comparative Example 3, but the relative humidity was reduced to 65%.
  • the current density and output density are very low, and the low relative humidity of 45% shows no operation at 0.6V.
  • Comparative Example 6 As shown in FIG. 9 and Table 5, the current density and the output density were lower than those of Comparative Example 3 in all the relative humidity conditions, and particularly at 0.6 V when the relative humidity was low at 45%. You can see that it doesn't work at all.
  • a 51 ⁇ m thick Nafion polymer (trade name: NR212, manufactured by DuPont, USA) was placed in the plasma chamber on a sample holder, with one side facing up toward the plasma generator and the other facing the bottom of the sample holder. Oriented.
  • plasma treatment was performed while blowing helium gas at a rate of 25 L / min and a C 4 F 8 gas at a rate of 15 ml / min to prepare an electrolyte membrane treated with one surface of a hydrophobic surface.
  • Comparative Example 10 One surface prepared in Comparative Example 10 was carried out in the same manner as in Comparative Example 10 with respect to the untreated surface (the surface opposite to the hydrophobic surface treated surface) of the hydrophobic surface treated polymer electrolyte membrane, and both surfaces were hydrophobic surfaces.
  • a polymer electrolyte membrane for a treated polymer electrolyte membrane fuel cell was prepared.
  • hydrophobic surface treatment was performed up to 0.2 nm in depth direction at the outermost surface.
  • a catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol)
  • the cathode was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer, on which a cathode catalyst layer was formed.
  • a catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol)
  • An anode electrode on which an anode catalyst layer was formed was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer.
  • the final platinum loading of the anode electrode and cathode electrode was 0.3 mg / cm 2, respectively.
  • a unit cell was prepared in the same manner as in Comparative Example 12 except that the hydrophobic surface-treated surface of the polymer electrolyte membrane was placed in contact with the cathode catalyst layer of the cathode electrode.
  • a unit cell was prepared in the same manner as in Comparative Example 12 except that both surfaces of the polymer electrolyte membrane prepared in Comparative Example 11 were hydrophobic surface-treated electrolyte membrane.
  • a unit cell was manufactured in the same manner as in Comparative Example 12, except that a Nafion polymer (trade name: NR212, manufacturer: DuPont (USA)) having a thickness of 51 ⁇ m was used as the electrolyte membrane.
  • a Nafion polymer trade name: NR212, manufacturer: DuPont (USA)

Abstract

The present invention relates to a macromolecular electrolyte film for a macromolecular electrolyte type of fuel cell, to a production method for the same and to a macromolecular electrolyte type of fuel cell system comprising the same; wherein the macromolecular electrolyte film comprises a hydrocarbon-based hydrogen-ion-conducting macromolecular film, and the surface contact angle of the macromolecular film is from 80 degrees (°) to 180 degrees (°).

Description

고분자 전해질형 연료 전지용 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 고분자 전해질형 연료 전지 시스템Polymer electrolyte membrane for polymer electrolyte fuel cell, manufacturing method thereof and polymer electrolyte fuel cell system comprising same
본 기재는 고분자 전해질형 연료 전지용 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 고분자 전해질형 연료 전지 시스템에 관한 것이다.The present disclosure relates to a polymer electrolyte membrane for a polymer electrolyte fuel cell, a method of manufacturing the same, and a polymer electrolyte fuel cell system including the same.
연료 전지(Fuel cell)는 메탄올, 에탄올, 천연기체와 같은 탄화수소 계열의 물질 내에 함유되어 있는 수소와 산소의 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템이다. A fuel cell is a power generation system that directly converts the chemical reaction energy of hydrogen and oxygen contained in hydrocarbon-based materials such as methanol, ethanol and natural gas into electrical energy.
이러한 연료 전지는 화석 에너지를 대체할 수 있는 청정 에너지원으로서, 단위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖고 있으며, 소형 리튬 전지에 비하여 4-10배의 에너지 밀도를 나타내기 때문에 소형 및 이동용 휴대전원으로 주목받고 있다. This fuel cell is a clean energy source that can replace fossil energy, and has the advantage of generating a wide range of outputs by stacking unit cells, and having an energy density of 4-10 times that of a small lithium battery. It is attracting attention as a compact and mobile portable power source.
연료 전지의 대표적인 예로는 고분자 전해질형 연료 전지(PEMFC: Polymer Electrolyte Membrane Fuel Cell), 직접 산화형 연료 전지(Direct Oxidation Fuel Cell)를 들 수 있다. 상기 직접 산화형 연료 전지에서 연료로 메탄올을 사용하는 경우는 직접 메탄올 연료 전지(DMFC: Direct Methanol Fuel Cell)라 한다. Representative examples of the fuel cell include a polymer electrolyte fuel cell (PEMFC) and a direct oxidation fuel cell (Direct Oxidation Fuel Cell). When methanol is used as a fuel in the direct oxidation fuel cell, it is called a direct methanol fuel cell (DMFC).
이러한 연료 전지 시스템에서 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리(Membrane-Electrode Assembly: MEA)와 세퍼레이터(Separator)(또는 바이폴라 플레이트(Bipolar Plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수 십개로 적층된 구조를 가진다. 상기 막-전극 어셈블리는 수소 이온 전도성 고분자를 포함하는 고분자 전해질 막을 사이에 두고 애노드 전극(일명, "연료극" 또는 "산화 전극"이라 한다)과 캐소드 전극(일명 "공기극" 또는 "환원 전극"이라고 한다)이 위치하며, 상기 고분자 전해질 막은 수소 이온 전도성을 갖는 바인더를 통하여 상기 애노드 전극 및 캐소드 전극과 접합되는 구조를 가진다.In such fuel cell systems, the stack that substantially generates electricity may comprise several to several unit cells consisting of a membrane-electrode assembly (MEA) and a separator (also called a bipolar plate). It has a stacked structure of ten. The membrane-electrode assembly is called an anode electrode (also called "fuel electrode" or "oxidation electrode") and a cathode electrode (also called "air electrode" or "reduction electrode") with a polymer electrolyte membrane containing a hydrogen ion conductive polymer therebetween. ) And the polymer electrolyte membrane has a structure that is bonded to the anode electrode and the cathode electrode through a binder having a hydrogen ion conductivity.
연료 전지에서 전기를 발생시키는 원리는 연료가 연료극인 애노드 전극으로 공급되어 애노드 전극의 촉매에 흡착되고, 연료가 산화되어, 수소 이온과 전자를 생성시키고, 이때 발생된 전자는 전기 전도성을 갖는 외부 회로에 따라 산화극인 캐소드 전극에 도달하며, 수소 이온은 수소 이온 전도성을 갖는 바인더를 통해 고분자 전해질 막으로 전달되고, 이를 통과한 후, 다시 바인더를 통해 캐소드 전극으로 전달된다. 캐소드 전극으로 산화제가 공급되고, 이 산화제, 수소 이온 및 전자가 캐소드 전극의 촉매 상에서 반응하여 물을 생성하면서 전기를 발생시키게 된다.The principle of generating electricity in a fuel cell is that fuel is supplied to an anode electrode, which is a fuel electrode, adsorbed to a catalyst of the anode electrode, and the fuel is oxidized to generate hydrogen ions and electrons, wherein the generated electrons are an external circuit having electrical conductivity. As a result, the anode reaches the cathode, which is an anode, and hydrogen ions are transferred to the polymer electrolyte membrane through a binder having hydrogen ion conductivity, and then passed through the binder to the cathode electrode. An oxidant is supplied to the cathode, and the oxidant, hydrogen ions, and electrons react on the catalyst of the cathode to generate electricity while producing water.
본 발명의 일 구현예는 연료 전지의 성능을 향상시킬 수 있는 고분자 전해질형 연료 전지용 고분자 전해질 막을 제공하는 것이다.One embodiment of the present invention to provide a polymer electrolyte membrane for a polymer electrolyte fuel cell that can improve the performance of the fuel cell.
본 발명의 다른 일 구현예는 상기 고분자 전해질 막의 제조 방법을 제공하는 것이다.Another embodiment of the present invention is to provide a method for producing the polymer electrolyte membrane.
본 발명의 또 다른 일 구현예는 상기 고분자 전해질 막을 포함하는 고분자 전해질형 연료 전지 시스템을 제공하는 것이다.Another embodiment of the present invention is to provide a polymer electrolyte fuel cell system including the polymer electrolyte membrane.
본 발명의 일 구현예에 따른 고분자 전해질형 연료 전지용 고분자 전해질 막은 탄화수소계 수소 이온 전도성 고분자 막을 포함하고, 상기 고분자 전해질 막의 표면 접촉각은 80도(°) 내지 180도(°)일 수 있다. 상기 고분자 전해질 막의 표면 접촉각은 80도(°) 이상, 120도(°) 미만의 약한 소수성을 나타낼 수 있다.The polymer electrolyte membrane for a polymer electrolyte fuel cell according to an embodiment of the present invention includes a hydrocarbon-based hydrogen ion conductive polymer membrane, and the surface contact angle of the polymer electrolyte membrane may be 80 degrees (°) to 180 degrees (°). The surface contact angle of the polymer electrolyte membrane may exhibit weak hydrophobicity of 80 degrees (°) or more and less than 120 degrees (°).
상기 탄화수소계 수소 이온 전도성 고분자는 수소 이온 전도성기를 갖는 고분자로서, 상기 고분자는, 벤즈이미다졸계 고분자, 벤즈옥사졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리페닐퀴녹살린계 고분자, 이들의 공중합체, 및 이들의 조합으로 이루어진 군에서 선택되는 탄화수소계 고분자일 수 있다.The hydrocarbon-based hydrogen ion conductive polymer is a polymer having a hydrogen ion conductive group, the polymer is a benzimidazole-based polymer, benzoxazole-based polymer, polyimide-based polymer, polyetherimide-based polymer, polyphenylene sulfide-based polymer, poly Hydrocarbon polymer selected from the group consisting of sulfone polymer, polyether sulfone polymer, polyether ketone polymer, polyether-ether ketone polymer, polyphenylquinoxaline polymer, copolymers thereof, and combinations thereof Can be.
본 발명의 다른 일 구현예에 따르면, 탄화수소계 수소 이온 전도성 고분자 막을 플라즈마를 이용한 소수성 처리하는 공정을 포함하는 고분자 전해질형 연료 전지용 고분자 전해질 막의 표면 처리 방법을 제공한다. According to another embodiment of the present invention, there is provided a surface treatment method of a polymer electrolyte membrane for a polymer electrolyte fuel cell, including a step of hydrophobic treatment of a hydrocarbon-based hydrogen ion conductive polymer membrane using plasma.
이때, 상기 플라즈마를 이용한 소수성 처리는 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 또는 이들의 조합에서 선택되는 제1 가스, 및 하이드로카본 가스, 플루오로카본 가스 또는 이들의 조합에서 선택되는 제2 가스를 불어넣으면서 실시할 수 있다.At this time, the hydrophobic treatment using the plasma is a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas or a combination thereof, and a second gas selected from a hydrocarbon gas, a fluorocarbon gas or a combination thereof. This can be done while blowing.
상기 하이드로카본 가스는 CH4 또는 C2H2일 수 있고, 상기 플루오로카본 가스는 C4F8, CF4 또는 이들의 조합일 수 있다.The hydrocarbon gas may be CH 4 or C 2 H 2 , the fluorocarbon gas may be C 4 F 8 , CF 4 or a combination thereof.
본 발명의 일 구현예에 있어서, 상기 플라즈마 처리는 아르곤, 질소, 산소, 헬륨 및 이들의 조합에서 선택되는 제1 가스, 및 CF4, C4F8 가스 및 이들의 조합으로 이루어진 군에서 선택되는 제2 가스를 불어넣으면서 실시할 수 있다.In one embodiment of the invention, the plasma treatment is selected from the group consisting of a first gas selected from argon, nitrogen, oxygen, helium and combinations thereof, and CF 4 , C 4 F 8 gas and combinations thereof This can be done while blowing the second gas.
본 발명의 또 다른 일 구현예에 따르면, 연료의 산화 반응 및 산화제의 환원 반응을 통하여 전기를 생성시키는 적어도 하나의 전기 발생부, 연료를 상기 전기 발생부로 공급하는 연료 공급부 및 산화제를 상기 전기 발생부로 공급하는 산화제 공급부를 포함하는 연료 전지 시스템을 제공한다. According to another embodiment of the present invention, at least one electricity generating unit for generating electricity through an oxidation reaction of the fuel and a reduction reaction of the oxidant, a fuel supply unit for supplying fuel to the electricity generating unit and an oxidant to the electricity generating unit Provided is a fuel cell system comprising an oxidant supply unit for supplying.
상기 전기 발생부는 서로 대향하여 위치하는 애노드 전극 및 캐소드 전극을 포함하고, 상기 애노드 전극과 상기 캐소드 전극 사이에 위치하는 고분자 전해질 막을 포함하는 적어도 하나의 막-전극 어셈블리 및 세퍼레이터을 포함한다.The electricity generating unit includes an anode electrode and a cathode electrode positioned opposite each other, and at least one membrane-electrode assembly and a separator including a polymer electrolyte membrane positioned between the anode electrode and the cathode electrode.
상기 고분자 전해질 막은 애노드 전극과 캐소드 전극에 포함된 바인더와 접합되어 위치할 수 있다.The polymer electrolyte membrane may be bonded to a binder included in an anode electrode and a cathode electrode.
상기 고분자 전해질 막은 상기 애노드 전극과 접촉하는 제1 표면과, 상기 캐소드 전극과 접촉하는 제2 표면을 가지며, 상기 제1 표면 또는 제2 표면의 접촉각은 80도(°) 내지 180도(°)일 수 있다. 또한 상기 제1 표면 또는 제2 표면의 접촉각은 80도(°) 이상, 120도(°) 미만일 수 있다. 아울러, 상기 제2 표면의 접촉각이 80도(°) 내지 180도(°)일 수도 있고, 제1 및 제2 표면 모두 80도(°) 내지 180도(°)일 수도 있다.The polymer electrolyte membrane has a first surface in contact with the anode electrode and a second surface in contact with the cathode electrode, and the contact angle of the first surface or the second surface is 80 degrees (°) to 180 degrees (°). Can be. In addition, the contact angle of the first surface or the second surface may be greater than 80 degrees (°), less than 120 degrees (°). In addition, the contact angle of the second surface may be 80 degrees (°) to 180 degrees (°), and both the first and second surfaces may be 80 degrees (°) to 180 degrees (°).
본 발명의 일 구현예에 따른 고분자 전해질 막은 막 내부의 함습성은 유지하면서, 치수 안정성이 우수하며, 동시에 연료 전지의 물성을 향상시킬수 있고, 바인더와의 접합성을 높여, 특히 상용화되어 널리 사용되는 불소계 바인더와의 접합성을 높여, 제조된 막-전극 어셈블리(Membrane-Electrode Assembly)의 전기화학적 성능 및 장기 성능을 향상시킬 수 있다. The polymer electrolyte membrane according to an embodiment of the present invention is excellent in dimensional stability while maintaining the moisture content inside the membrane, and at the same time improve the physical properties of the fuel cell, and improves the bonding with the binder, in particular commercially widely used fluorine-based The adhesion to the binder can be increased, thereby improving the electrochemical performance and long-term performance of the manufactured membrane-electrode assembly.
도 1은 본 발명의 일 구현예에 따른 고분자 전해질 막과 전극의 접합 상태를 나타낸 도면.1 is a view showing a bonding state of a polymer electrolyte membrane and an electrode according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 연료 전지 시스템의 구조를 개략적으로 나타낸 도면.2 schematically illustrates the structure of a fuel cell system according to an embodiment of the invention.
도 3은 실시예 1 내지 2와 비교예 1 내지 2의 고분자 전해질 막의 함수율을 측정하여 나타낸 그래프.3 is a graph showing the water content of the polymer electrolyte membranes of Examples 1 and 2 and Comparative Examples 1 and 2;
도 4는 실시예 1 내지 2와 비교예 1 내지 2의 고분자 전해질 막의 치수안정성을 측정하여 나타낸 그래프.Figure 4 is a graph showing the measurement of the dimensional stability of the polymer electrolyte membrane of Examples 1 and 2 and Comparative Examples 1 and 2.
도 5는 실시예 1 내지 2 및 비교예 1의 고분자 전해질 막을 사용하여 제조된 단위 전지의 전지 성능을 나타낸 그래프.5 is a graph showing the cell performance of the unit cell prepared using the polymer electrolyte membrane of Examples 1 to 2 and Comparative Example 1.
도 6은 실시예 6 내지 8 및 비교예 3 및 9에 따라 제조된 단위 전지의 전지 성능을 상대 습도 100% 조건에서 측정하여 나타낸 그래프.Figure 6 is a graph showing the cell performance of the unit cells prepared according to Examples 6 to 8 and Comparative Examples 3 and 9 measured at 100% relative humidity.
도 7은 실시예 6 내지 8, 비교예 3에 따라 제조된 단위 전지의 전지 성능을 상대 습도 65% 조건에서 측정하여 나타낸 그래프.7 is a graph showing the cell performance of the unit cells prepared according to Examples 6 to 8 and Comparative Example 3 measured under a relative humidity of 65%.
도 8은 실시예 6 내지 8 및 비교예 3에 따라 제조된 단위 전지의 전지 성능을 상대 습도 45% 조건에서 측정하여 나탄낸 그래프.FIG. 8 is a graph showing the cell performance of unit cells prepared according to Examples 6 to 8 and Comparative Example 3, measured at 45% relative humidity, and showing the results.
도 9는 비교예 3, 비교예 6 내지 9에 따라 제조된 단위 전지의 전지 성능을 상대 습도 100% 조건에서 측정하여 나타낸 그래프.Figure 9 is a graph showing the cell performance of the unit cells prepared according to Comparative Example 3, Comparative Examples 6 to 9 measured at 100% relative humidity conditions.
도 10은 비교예 3 및 비교예 6 내지 8에 따라 제조된 단위 전지의 전지 성능을 상대 습도 65% 조건에서 측정하여 나타낸 그래프.10 is a graph showing the cell performance of unit cells prepared according to Comparative Example 3 and Comparative Examples 6 to 8 at 65% relative humidity.
도 11은 비교예 3 및 비교예 6 내지 8에 따라 제조된 단위 전지의 전지 성능을 상대 습도 45% 조건에서 측정하여 나타낸 그래프.11 is a graph showing the cell performance of unit cells prepared according to Comparative Example 3 and Comparative Examples 6 to 8 at 45% relative humidity.
도 12는 비교예 12의 단위 전지의 전지 성능을 70℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.12 is a graph showing the cell performance of the unit cell of Comparative Example 12 measured at a temperature of 70 ° C. and various relative relative humidity conditions.
도 13은 비교예 13의 단위 전지의 전지 성능을 70℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.FIG. 13 is a graph showing the cell performance of the unit cell of Comparative Example 13 measured at a temperature of 70 ° C. and various relative relative humidity conditions. FIG.
도 14는 비교예 14의 단위 전지의 전지 성능을 70℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.14 is a graph showing the cell performance of the unit cell of Comparative Example 14 measured at a temperature of 70 ° C. and various relative relative humidity conditions.
도 15는 비교예 15의 단위 전지의 전지 성능을 70℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.15 is a graph showing the cell performance of the unit cell of Comparative Example 15 measured at 70 ° C. and various relative relative humidity conditions.
도 16은 비교예 12의 단위 전지의 전지 성능을 80℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.FIG. 16 is a graph showing the battery performance of a unit cell of Comparative Example 12 measured at a temperature of 80 ° C. and various relative relative humidity conditions. FIG.
도 17은 비교예 13의 단위 전지의 전지 성능을 80℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.17 is a graph showing the cell performance of the unit cell of Comparative Example 13 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
도 18은 비교예 14의 단위 전지의 전지 성능을 80℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.18 is a graph showing the cell performance of the unit cell of Comparative Example 14 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
도 19는 비교예 15의 단위 전지의 전지 성능을 80℃의 온도 및 다양한 상대상대 습도 조건에서 측정하여 나타낸 그래프.19 is a graph showing the cell performance of the unit cell of Comparative Example 15 measured at a temperature of 80 ° C. and various relative relative humidity conditions.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에 따른 고분자 전해질형 연료 전지용 고분자 전해질 막은 탄화수소계 수소 이온 전도성 고분자로 형성된 고분자 막이다. 상기 고분자 전해질 막은 표면의 접촉각이 80도(°) 내지 180도(°)의 소수성을 나타낼 수 있다. 또한 상기 고분자 전해질 막의 표면 접촉각은 80도(°) 이상, 120도(°) 미만의 약한 소수성일 수 있다.The polymer electrolyte membrane for a polymer electrolyte fuel cell according to an embodiment of the present invention is a polymer membrane formed of a hydrocarbon-based hydrogen ion conductive polymer. The polymer electrolyte membrane may have a hydrophobicity of a contact angle of 80 degrees (°) to 180 degrees (°). In addition, the surface contact angle of the polymer electrolyte membrane may be weak hydrophobicity of more than 80 degrees (°), less than 120 degrees (°).
만약 상기 고분자 전해질 막의 접촉각이 80도(°) 미만인 경우에는 수화시 지나친 고분자 전해질 막의 팽창으로 인하여, 바인더가 포함된 촉매층과의 박리문제 발생이 가능한 단점이 있을 수 있다.If the contact angle of the polymer electrolyte membrane is less than 80 degrees (°), due to excessive expansion of the polymer electrolyte membrane during hydration, there may be a disadvantage that the problem of separation with the catalyst layer containing the binder may occur.
이와 같이 고분자 전해질 막의 표면 접촉각이 80도(°) 내지 180도(°)의 소수성을 나타내면, 애노드 및 캐소드 전극의 촉매층과의 접합성이 우수해질 수 있다. 접합성이 우수해지는 효과는, 불소계 바인더를 사용시 보다 극대화될 수 있다. 이는 애노드 및 캐소드 전극의 촉매층과 고분자 전해질 막의 접합은 주로 촉매층에 포함되는 바인더를 통하여 이루어지는데, 일반적으로 사용되는 바인더가 불소계 수지로서 소수성을 나타내므로, 소수성을 나타내는 고분자 전해질의 표면과 상용성이 매우 우수해지므로, 접합성이 더욱 향상될 수 있기 때문이다. 이와 같이 전극의 촉매층과 고분자 전해질 막의 접합성이 우수해지면, 연료 전지의 장기 안정성이 향상될 수 있다. As such, when the surface contact angle of the polymer electrolyte membrane shows hydrophobicity of 80 degrees (°) to 180 degrees (°), the adhesion between the anode and the cathode electrode with the catalyst layer may be excellent. The effect of excellent bonding can be maximized when using a fluorine-based binder. The bonding between the catalyst layer of the anode and the cathode electrode and the polymer electrolyte membrane is mainly carried out through a binder included in the catalyst layer, and since the commonly used binder shows hydrophobicity as a fluorine resin, it is very compatible with the surface of the polymer electrolyte showing hydrophobicity. This is because bonding can be further improved. As such, when the adhesion between the catalyst layer of the electrode and the polymer electrolyte membrane is excellent, long-term stability of the fuel cell may be improved.
본 발명에서 표면이란, 고분자 전해질 막의 전체 두께를 100%로 하였을 때, 고분자 전해질 막의 최외각 표면(애노드 전극 또는 캐소드 전극과 접하는 표면)에서부터, 깊이(반대편 전극과 접하는 방향쪽) 방향으로 약 10%까지의 깊이를 의미한다. 표면은 고분자 전해질 막의 최외각 표면에서부터 약 5%까지의 깊이를 의미할 수도 있다.In the present invention, when the total thickness of the polymer electrolyte membrane is 100%, the surface is about 10% from the outermost surface (surface in contact with the anode electrode or the cathode electrode) of the polymer electrolyte membrane in the depth (direction toward the opposite electrode) direction. It means the depth to. The surface may mean a depth of up to about 5% from the outermost surface of the polymer electrolyte membrane.
즉, 본 발명의 일측면에 따른 고분자 전해질 막은 그 표면의 물성만을 소수성(예를 들어 약한 소수성 또는 초소수성)으로 조절되는 것으로, 그 내부의 물성은 고분자 전해질 막 자체의 물성을 그대로 유지하는 것이다. 만약 고분자 전해질 막의 내부 물성도 표면과 동일한 소수성을 갖는 경우 수소 이온 전도성이 저하되므로 좋지 않다. That is, the polymer electrolyte membrane according to one aspect of the present invention is controlled only to the hydrophobicity (for example, weak hydrophobicity or superhydrophobic) of the physical properties of the surface, the physical properties of the inside is to maintain the physical properties of the polymer electrolyte membrane itself. If the internal properties of the polymer electrolyte membrane also have the same hydrophobicity as the surface, the hydrogen ion conductivity is lowered, which is not good.
이와 같이 전극과 접하는 고분자 전해질 막 표면의 접촉각은 80도(°) 내지 180도(°)의 소수성을 나타낼 수 있다. 소수성은 접촉각에 따라, 다시 80도(°) 이상, 120도(°) 미만인 경우는 약한 소수성이라 칭하고, 120 내지 180도(°)인 경우 초소수성이라 칭할 수 있다. 본 발명의 일 구현예에 있어서, 상기 고분자 전해질 막 표면의 접촉각은 80도(°) 이상, 120도(°) 미만의 약한 소수성이 보다 적절할 수 있다. As such, the contact angle of the surface of the polymer electrolyte membrane in contact with the electrode may exhibit hydrophobicity of 80 degrees (°) to 180 degrees (°). Hydrophobicity may be referred to as weak hydrophobicity in the case of more than 80 degrees and less than 120 degrees, depending on the contact angle, and may be referred to as hydrophobicity in the case of 120 to 180 degrees. In one embodiment of the present invention, the contact angle of the surface of the polymer electrolyte membrane may be more appropriate than the weak hydrophobicity of more than 80 degrees (°), less than 120 degrees (°).
고분자 전해질 막 표면의 접촉각이 80도(°) 내지 180도(°)인 경우 촉매층에 사용되는 바인더, 특히 촉매층에 일반적으로 사용되는 불소계 바인더와 접합성이 우수하여 전극과 전해질 막 계면 저항을 낮출 수 있고, 또한 치수 안정성이 향상되어 바인더를 포함한 촉매층과의 박리현상을 감소시켜, 전기화학적 성능 및 장기 안정성을 향상시킬 수 있는 장점이 있다. 특히 고분자 전해질 막 표면의 접촉각이 80도(°) 이상, 120도(°) 미만인 약한 소수성을 나타내는 경우, 연료 전지의 출력 밀도 향상 효과가 보다 우수하다.When the contact angle of the surface of the polymer electrolyte membrane is 80 degrees (°) to 180 degrees (°), it has excellent adhesion with the binder used in the catalyst layer, especially the fluorine-based binder generally used in the catalyst layer, thereby lowering the interface resistance between the electrode and the electrolyte membrane. In addition, the dimensional stability is improved to reduce the peeling phenomenon with the catalyst layer including the binder, there is an advantage that can improve the electrochemical performance and long-term stability. In particular, when the contact angle of the surface of the polymer electrolyte membrane exhibits weak hydrophobicity of 80 degrees (°) or more and less than 120 degrees (°), the output density improvement effect of the fuel cell is more excellent.
상기 탄화수소계 수소 이온 전도성 고분자는 수소 이온 전도성을 갖는 탄화수소계 고분자 수지는 어떠한 것도 사용할 수 있고, 특히 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 갖고 있는 탄화수소계 고분자 수지는 모두 사용할 수 있다. 그 예로는 벤즈이미다졸계 고분자, 벤즈옥사이드계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 또는 폴리페닐퀴녹살린계 고분자, 이들의 공중합체, 또는 이들의 조합 중에서 선택되는 탄화수소계 고분자를 사용할 수 있다. The hydrocarbon-based hydrogen ion conductive polymer may be any hydrocarbon-based polymer resin having hydrogen ion conductivity, in particular a cation selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups and derivatives thereof in the side chain. Any hydrocarbon-based polymer resin having an exchange group can be used. Examples thereof include benzimidazole polymer, benz oxide polymer, polyimide polymer, polyetherimide polymer, polyphenylene sulfide polymer, polysulfone polymer, polyether sulfone polymer, polyether ketone polymer, poly Hydrocarbon-based polymers selected from ether-etherketone-based polymers or polyphenylquinoxaline-based polymers, copolymers thereof, or a combination thereof can be used.
상기 고분자 수지의 구체적인 예로는 폴리에테르에테르케톤, 폴리프로필렌옥사이드, 폴리아크릴산 계열 이오노머, 폴리아릴렌에테르술폰), 술폰화 폴리 아릴렌 에테르 술폰, 술폰화 폴리 에테르 에테르 케톤, 술폰화 폴리 포스파젠, 술폰화 폴리 아릴렌 설파이드, 술폰화 폴리 아릴렌 설파이드 설파이드, 폴리 벤즈옥사졸, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5'-bibenzimidazole] 또는 폴리(2,5-벤즈이미다졸) 중에서 선택되는 1종 이상을 사용할 수 있다. 물론 상기 고분자 수지는 측쇄에 상술한 양이온 교환기를 갖는 것이다.Specific examples of the polymer resin include polyether ether ketone, polypropylene oxide, polyacrylic acid-based ionomer, polyarylene ether sulfone), sulfonated poly arylene ether sulfone, sulfonated poly ether ether ketone, sulfonated poly phosphazene, sulfonate Fonated poly arylene sulfide, sulfonated poly arylene sulfide sulfide, poly benzoxazole, poly (2,2'-m-phenylene) -5,5'-bibenzimidazole [poly (2,2'-m -phenylene) -5,5'-bibenzimidazole] or poly (2,5-benzimidazole) can be used. Of course, the polymer resin has a cation exchange group described above in the side chain.
본 발명의 일 구현예에 따른 고분자 전해질 막의 표면을 소수성으로 조절함에 따른 효과는, 수소 이온 전도성 고분자로 탄화수소계 고분자를 사용하는 것이, 불소계 고분자를 사용하는 것에 비하여, 보다 우수하게 나타날 수 있다. The effect of controlling the surface of the polymer electrolyte membrane according to one embodiment of the present invention to hydrophobicity, it may be better to use a hydrocarbon-based polymer as a hydrogen ion conductive polymer, compared to using a fluorine-based polymer.
연료 전지에서, 고분자 전해질 막과 전극 기재에 형성된 촉매층을 포함하는 전극은 도 1에 나타낸 것과 같이, 전극의 촉매층의 바인더를 통하여 전극과 접하게 된다. 이때, 탄화수소계 고분자로 구성된 고분자 전해질 막은 촉매층의 바인더, 특히 불소계 바인더와 상용성이 좋지 않아, 불소계 고분자로 구성된 고분자 전해질 막을 사용하는 경우에 비하여, 전해질 막과 전극 사이의 층 분리가 잘 일어날 수 있다. 이러한 층 분리 문제를, 고분자 전해질 막의 표면을 촉매층의 불소계 바인더와 유사하게 소수성을 갖도록 조절함으로써, 상용성을 향상시켜 결과적으로 고분자 전해질 막과 전극의 촉매층의 접합성을 보다 향상시킬 수 있고, 이 효과는 탄화수소계 고분자로 구성된 고분자 전해질 막에서 매우 크게 나타날 수 있다. In the fuel cell, the electrode including the polymer electrolyte membrane and the catalyst layer formed on the electrode substrate is brought into contact with the electrode through the binder of the catalyst layer of the electrode, as shown in FIG. In this case, the polymer electrolyte membrane composed of a hydrocarbon-based polymer is not compatible with the binder of the catalyst layer, in particular, the fluorine-based binder, so that the separation of the layer between the electrolyte membrane and the electrode may occur better than when the polymer electrolyte membrane composed of the fluorine-based polymer is used. . By controlling the layer separation problem to have a hydrophobicity similar to that of the fluorine-based binder of the catalyst layer, the compatibility of the polymer electrolyte membrane with the catalyst layer of the electrode can be further improved by controlling the surface of the polymer electrolyte membrane similarly to the fluorine-based binder of the catalyst layer. It can be very large in a polymer electrolyte membrane composed of a hydrocarbon-based polymer.
또한, 이러한 수소 이온 전도성 고분자의 수소 이온 전도성기에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 수소 이온 전도성 고분자의 수소 이온 전도성기에서 H를 Na으로 치환하는 경우에는 NaOH 또는 NaCl를, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 이 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다. 또한 이러한 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환된 경우 이후 촉매층 산처리 공정에 의하여 다시 프로톤형(H+-form) 고분자 전해질 막으로 전환된다.In the hydrogen ion conductive group of the hydrogen ion conductive polymer, H may be substituted with Na, K, Li, Cs or tetrabutylammonium. In the hydrogen ion conducting group of the hydrogen ion conducting polymer, NaOH or NaCl is substituted when H is replaced with Na, and tetrabutylammonium hydroxide is used when the substituent is substituted with tetrabutylammonium, and K, Li or Cs is also appropriate. Substitutions may be used. Since this substitution method is well known in the art, detailed description thereof will be omitted. In addition, when substituted with Na, K, Li, Cs or tetrabutylammonium, the catalyst layer is then converted back into a proton type (H + -form) polymer electrolyte membrane by an acid treatment process.
또한, 본 발명의 일 구현예에 따른 고분자 전해질 막은 고분자 전해질형 연료 전지에 사용하는 것이 보다 효과적이다. 이는, 메탄올과 같은 액체 연료를 사용하여 막의 가수화 상태가 일정한 직접 산화형 연료 전지에서는 전해질 막의 표면접촉각을 소수성을 나타내도록 조절하여도 그 효과가 미미하거나, 오히려 효과가 저하될 수 있기 때문이다.In addition, the polymer electrolyte membrane according to one embodiment of the present invention is more effective to use in a polymer electrolyte fuel cell. This is because even in a direct oxidation fuel cell in which the hydrolysis state of the membrane is constant by using a liquid fuel such as methanol, even if the surface contact angle of the electrolyte membrane is adjusted to show hydrophobicity, the effect may be insignificant, or rather, the effect may be reduced.
이에 대하여, 고분자 전해질형 연료 전지는 애노드 전극에 공급되는 수소 가스와 같은 기체 연료 및 캐소드 전극에 공급되는 산소 가스와 같은 산화제의 가습 정도가 서로 다르고, 특히 실제 적용시에는 그 값도 불안정하게 유지 되며, 연료전지 반응으로 인해 생성되는 물로 인하여, 막의 수화상태가 지속적으로 변하게 되어, 팽윤 및 수축을 반복하면서 막이 박리되는 현상이 나타날 수 있다. On the other hand, in the polymer electrolyte fuel cell, the humidification degree of the oxidant such as the gaseous fuel such as hydrogen gas supplied to the anode electrode and the oxygen gas supplied to the cathode electrode is different from each other, and in particular, its value remains unstable in actual application. In addition, due to the water generated by the fuel cell reaction, the hydration state of the membrane is continuously changed, and the membrane may peel while repeating swelling and shrinking.
또한 이러한 문제점은 고분자 전해질 막에 친수성을 부여하는 경우 억제할 수 있을 것으로 생각하였으나, 본 발명의 일 구현예와 같이, 고분자 전해질 막에 오히려 소수성을 부여해야 효과적으로 억제할 수 있음을 본 발명자들은 발견하였다. 즉, 본 발명의 일 구현예에 따른 고분자 전해질 막은 표면이 소수성을 나타낼 수 있는 표면 접촉각을 갖고 있기에, 이러한 문제점을 억제할 수 있다.In addition, the present inventors thought that the hydrophilicity of the polymer electrolyte membrane could be suppressed. However, the present inventors found that the hydrophobicity of the polymer electrolyte membrane can be effectively suppressed as in the embodiment of the present invention. . That is, since the polymer electrolyte membrane according to the embodiment of the present invention has a surface contact angle capable of exhibiting hydrophobicity, this problem can be suppressed.
또한, 직접 산화형 연료 전지는 액체 연료에 포함되어 있는 물로 인하여, 전해질 막이 완전 가습상태에 있으므로 수소이온 전달을 위한 물 채널(water channel)이 잘 형성되는 있는 반면, 상대적으로 물 함량이 적은 고분자 전해질형 연료 전지에서는 수소이온 채널의 형성이 약해지기 때문에 수소이온 전달이 비효율적으로 일어날 수 있으나, 본 발명의 일 구현예에 따른 전해질 막은 내부의 수화상태가 일정하게 유지될 수 있다.In addition, the direct oxidation fuel cell has a relatively low water content polyelectrolyte, while the electrolyte membrane is in a completely humidified state due to the water contained in the liquid fuel. In the fuel cell, hydrogen ion transfer may occur inefficiently because formation of the hydrogen ion channel is weakened, but the electrolyte membrane according to the exemplary embodiment of the present invention may maintain a constant hydration state.
본 발명의 다른 일 구현예는 고분자 전해질 막의 제조 방법을 제공하는 것이다. 상기 제조 방법은 탄화수소계 수소 이온 전도성 고분자 막을 플라즈마를 이용하여 소수성 처리하는 공정을 포함한다. 상기 플라즈마 처리 방법은 플라즈마 상태에서 부분적으로 이온화된 가스에 고분자 전해질 막의 표면을 노출시켜 표면을 개질하는 방법으로서, 이런 방법은 아주 적은 표면에서 일어나기에 고분자 전해질 막 자체에 손상 및 내부의 큰 물성 변화없이 처리 할 수 있는 장점과, 오염물질이 적다는 장점을 또한 갖고 있다. 이하 플라즈마 처리에 대하여 보다 자세하게 설명하도록 한다. Another embodiment of the present invention is to provide a method for producing a polymer electrolyte membrane. The manufacturing method includes a step of hydrophobic treatment of a hydrocarbon-based hydrogen ion conductive polymer membrane using plasma. The plasma treatment method is a method of modifying a surface by exposing a surface of a polymer electrolyte membrane to a partially ionized gas in a plasma state, and this method occurs on a very small surface, without damaging the polymer electrolyte membrane itself and changing a large physical property therein. It also has the advantage of being able to treat and less pollutants. Hereinafter, the plasma processing will be described in more detail.
탄화수소계 수소 이온 전도성 고분자 막을 플라즈마 챔버 안에서 샘플 고정대에 올려 놓는다. 이때, 위로 향하는 일면은 플라즈마 발생장치를 향하게 되고, 이에 대향하는 다른 일면은 샘플 고정대 바닥을 향하게 되어, 일면만 플라즈마 처리가 되도록 한다. 상기 일면이란, 수소 이온 전도성 고분자 막의 길이 방향의 일면, 즉 막-전극 어셈블리 제조시 캐소드 또는 애노드 전극과 접하는 일면을 말한다. 상기 수소 이온 전도성 고분자 막은 앞서 상술한 수소 이온 전도성 고분자로 형성된 막이다. The hydrocarbon-based hydrogen ion conductive polymer membrane is placed on the sample holder in the plasma chamber. In this case, one surface facing upward faces the plasma generator, and the other surface facing the plasma generator is directed toward the bottom of the sample holder, so that only one surface is subjected to the plasma treatment. The one surface refers to one surface in the longitudinal direction of the hydrogen ion conductive polymer membrane, that is, one surface in contact with the cathode or anode electrode when the membrane-electrode assembly is manufactured. The hydrogen ion conductive polymer membrane is a membrane formed of the aforementioned hydrogen ion conductive polymer.
이와 같이, 수소 이온 전도성 고분자 막의 일면을 플라즈마 처리할 수도 있고, 일면을 처리한 후, 그에 대향하는 면을 다시 동일하게 플라즈마 처리하여, 양면을 플라즈마 처리할 수도 있다.As described above, one surface of the hydrogen ion conductive polymer membrane may be plasma treated, and after treating one surface, the surface opposite thereto may be subjected to the same plasma treatment, and both surfaces may be plasma treated.
이어서 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 또는 이들의 조합으로부터 선택되는 제1 가스, 및 하이드로카본 가스, 플루오로카본 가스 또는 이들의 조합으로부터 선택되는 제2 가스를 불어넣으면서 플라즈마 처리를 실시한다. 본 발명의 일 구현예에 있어서, 상기 플라즈마 처리는 상기 제1 가스와 함께, 플루오로카본 가스의 제2 가스를 불어넣으면서 실시할 수 있다. Subsequently, plasma treatment is performed while blowing a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and a second gas selected from hydrocarbon gas, fluorocarbon gas, or a combination thereof. . In one embodiment of the present invention, the plasma treatment may be performed while blowing a second gas of fluorocarbon gas together with the first gas.
상기 하이드로카본 가스는 CH4 가스, C2H2 가스 또는 이들의 조합으로부터 선택되는 가스를 들 수 있고, 상기 플루오로카본 가스는 CF4 가스, C4F8 가스 또는 이들의 조합으로부터 선택되는 가스를 사용할 수 있다. 상기 가스를 혼합 사용시 그 혼합비는 적절하게 조절할 수 있다. 아울러, 상기 C2H2 가스는, C2H2/Ar 가스, C2H2/He 가스, C2H2 /N2 가스 형태로 시판되는 것을 사용할 수도 있다. 이때, C2H2 가스와, Ar, He, N2 가스의 혼합비는 본 발명의 효과에 실질적인 효과를 미치지 않으므로, 적절하게 조절하여 사용할 수 있다. The hydrocarbon gas may be a gas selected from CH 4 gas, a C 2 H 2 gas or a combination thereof, and the fluorocarbon gas is a gas selected from a CF 4 gas, a C 4 F 8 gas, or a combination thereof. Can be used. When the gas is mixed and used, the mixing ratio can be properly adjusted. In addition, the C 2 H 2 gas may be commercially available in the form of C 2 H 2 / Ar gas, C 2 H 2 / He gas, C 2 H 2 / N 2 gas. At this time, the mixing ratio of the C 2 H 2 gas and Ar, He, N 2 gas does not have a substantial effect on the effect of the present invention, it can be used by appropriately adjusted.
상기 플라즈마 처리에서, 상기 제1 가스를 불어넣는 속도(blowing rate)는 15L/분 내지 30L/분일 수 있고, 20L/분 내지 25L/분일 수도 있다. 제1 가스의 불어넣는 속도가 상기 범위에 포함되는 경우, 플라즈마 형성이 잘 이루어져 제 2가스의 라디칼 반응이 원활하게 이루어지는 장점이 있을 수 있다. In the plasma treatment, the blowing rate may be 15 L / min to 30 L / min, and 20 L / min to 25 L / min. When the blowing speed of the first gas is included in the above range, the plasma may be formed well, and the radical reaction of the second gas may be smoothly performed.
상기 플라즈마 처리에서, 상기 제2 가스를 불어넣는 속도(blowing rate)는 5ml/분 내지 50ml/분 일 수 있다. 이때, 제2 가스를 불어넣는 속도를 5ml/분 내지 20ml/분으로, 보다 구체적으로는 10ml/분 내지 15mlL/분으로 조절하면, 약한 소수성을 나타낼 수 있고, 제2 가스를 불어넣는 속도를 20ml/분 내지 50ml/분으로 조절하면, 초수성을 나타낼 수 있다. 제2 가스의 불어넣는 속도가 상기 범위에 포함되는 경우, 제 1 가스의 플라즈마에 형성을 방해하지 않으며 가스의 낭비없이 고분자 표면에서 라디칼 반응이 적절하게 발생하는 장점이 있을 수 있다. In the plasma treatment, a blowing rate of blowing the second gas may be 5 ml / min to 50 ml / min. At this time, when the rate of blowing the second gas is adjusted to 5ml / min to 20ml / min, more specifically, 10ml / min to 15mlL / min, weak hydrophobicity can be exhibited, and the rate of blowing the second gas is 20ml. When adjusted to / min to 50ml / min, it is possible to exhibit super water. If the blowing speed of the second gas is included in the above range, there may be an advantage that the radical reaction does not interfere with the plasma of the first gas and the radical reaction occurs properly on the polymer surface without wasting gas.
본 발명의 일 구현예에서, 얻어지는 고분자 전해질 막의 표면 접촉각은 플라즈마 처리를 실시하는 가스 분위기 종류에 따라 조절할 수 있다.In one embodiment of the present invention, the surface contact angle of the obtained polymer electrolyte membrane can be adjusted according to the type of gas atmosphere to be subjected to the plasma treatment.
일 예를 들어, 상기 플라즈마 처리 공정을 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 또는 이들의 조합으로부터 선택되는 제1 가스, 및 CF4 가스, C4F8 가스 및 이들의 조합으로부터 선택되는 제2 가스를 불어넣는 조건 하에서 실시하면, 고분자 전해질 막의 표면 접촉각이 80도(°) 이상, 120도(°) 미만인 약한 소수성을 나타낼 수 있다. For example, the plasma treatment process may include a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and an agent selected from CF 4 gas, C 4 F 8 gas, and combinations thereof. When carried out under the conditions of blowing 2 gases, the surface contact angle of the polymer electrolyte membrane can exhibit weak hydrophobicity of 80 degrees (°) or more and less than 120 degrees (°).
또한, 상기 플라즈마 처리 공정을 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 또는 이들의 조합으로부터 선택되는 제1 가스, 및 C2H2 가스, CF4 가스, C4F8 가스 또는 이들의 조합으로부터 선택되는 제2 가스를 불어넣는 조건 하에서 실시하면 고분자 전해질 막의 표면 접촉각이 120(°) 내지 180도(°)인 초소수성을 나타낼 수 있다.The plasma treatment process may also be performed from a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and a C 2 H 2 gas, CF 4 gas, C 4 F 8 gas, or a combination thereof. When carried out under the conditions of blowing the selected second gas, the surface contact angle of the polymer electrolyte membrane may exhibit super hydrophobicity of 120 ° to 180 °.
이에, 본 발명에서는 상기 플라즈마 처리 공정을 상기 플라즈마 처리 공정을 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 또는 이들의 조합으로부터 선택되는 제1 가스, 및 CF4 가스, C4F8 가스 및 이들의 조합으로부터 선택되는 제2 가스를 불어넣는 조건 하에서 실시하는 것이 보다 적절하다.Accordingly, in the present invention, the plasma treatment process may include the first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, or a combination thereof, and CF 4 gas, C 4 F 8 gas, and a combination thereof. It is more appropriate to carry out under conditions for blowing a second gas selected from the combination.
이와 같이, 고분자 전해질 막의 표면 물성을 플라즈마 처리로 목적에 따라 용이하게 조절할 수 있다.In this way, the surface properties of the polymer electrolyte membrane can be easily adjusted according to the purpose by plasma treatment.
이 공정에 따라 고분자 전해질 막의 표면의 물성만 80(°) 내지 180도(°)의 소수성, 예를 들어 80도(°) 이상, 120도(°) 미만 접촉각의 약한 소수성, 120도(°) 내지 180도(°) 접촉각의 초소수성을 나타내도록 조절될 수 있으며, 고분자 전해질 막의 내부의 물성은 수소 이온 전도성 고분자 막 자체의 물성을 유지하게 된다. 따라서, 고분자 전해질 막 내부 물성 또한 상기 범위에 포함되는 소수성을 나타내는 경우, 즉 소수성을 갖는 물질을 포함시켜 고분자 전해질 막을 제조하는 경우에는, 함수율이 너무 낮아져서, 수소이온 전도도가 매우 낮아지는 단점이 있을 수 있으나, 본 발명의 일 측면에 따른 고분자 전해질 막은 이러한 문제점이 없다.According to this process, only the physical properties of the surface of the polymer electrolyte membrane are hydrophobic in the range of 80 (degrees) to 180 degrees (degrees), for example, at least 80 degrees (degrees), weak hydrophobicity of the contact angle less than 120 degrees (degrees), 120 degrees (degrees) To 180 degrees (°) can be adjusted to show the super hydrophobicity, the physical properties of the polymer electrolyte membrane to maintain the properties of the hydrogen ion conductive polymer membrane itself. Therefore, when the polymer electrolyte membrane internal physical properties also exhibit hydrophobicity included in the above range, that is, when the polymer electrolyte membrane is prepared by including a material having hydrophobicity, the moisture content is too low, there may be a disadvantage that the hydrogen ion conductivity is very low. However, the polymer electrolyte membrane according to one aspect of the present invention does not have this problem.
본 발명의 또 다른 일 구현예는 고분자 전해질형 연료 전지 시스템에 관한 것이다.Another embodiment of the present invention relates to a polymer electrolyte fuel cell system.
상기 연료 전지 시스템은 전기 발생부, 연료 공급부 및 산화제 공급부를 포함한다. 상기 전기 발생부는 연료의 산화 반응과 산화제의 환원 반응을 통하여 전기를 생성시키는 역할을 한다. 상기 연료 공급부는 연료를 상기 전기 발생부로 공급하는 역할을 하며, 상기 산화제 공급부는 산화제를 상기 전기 발생부로 공급하는 역할을 한다. 상기 산화제로는 산소 또는 공기를 들 수 있다. 또한, 상기 연료로는 기체 또는 액체 상태의 수소 연료를 포함할 수 있다.The fuel cell system includes an electricity generator, a fuel supply, and an oxidant supply. The electricity generation unit serves to generate electricity through the oxidation reaction of the fuel and the reduction reaction of the oxidant. The fuel supply unit serves to supply fuel to the electricity generation unit, and the oxidant supply unit serves to supply an oxidant to the electricity generation unit. Examples of the oxidant include oxygen or air. In addition, the fuel may include a hydrogen fuel in the gas or liquid state.
상기 전기 발생부는 서로 대향하여 위치하는 애노드 전극 및 캐소드 전극을 포함하고, 상기 애노드 전극과 상기 캐소드 전극 사이에 위치하는 고분자 전해질 막을 포함하는 적어도 하나의 막-전극 어셈블리 및 세퍼레이터를 포함한다. 상기 고분자 전해질 막은 애노드 전극과 캐소드 전극에 포함된 바인더와 접합되어 위치할 수 있다. 상기 고분자 전해질 막은 본 발명의 일 구현예에 따른 고분자 전해질 막으로서, 이에 대하여 보다 자세하게 설명하도록 한다.The electricity generating unit includes an anode electrode and a cathode electrode positioned to face each other, and includes at least one membrane-electrode assembly and a separator including a polymer electrolyte membrane positioned between the anode electrode and the cathode electrode. The polymer electrolyte membrane may be bonded to a binder included in an anode electrode and a cathode electrode. The polymer electrolyte membrane is a polymer electrolyte membrane according to one embodiment of the present invention, which will be described in more detail.
상기 고분자 전해질 막은 상기 애노드 전극과 접촉하는 제1 표면과, 상기 캐소드 전극과 접촉하는 제2 표면을 가지며, 상기 제1 표면 및 제2 표면 중 적어도 하나의 접촉각이 80도(°) 내지 180도(°)일 수 있다. 또한, 상기 제1 표면 및 제2 표면 중 적어도 하나의 접촉각은 80도(°) 이상, 120도(°) 미만일 수도 있다. The polymer electrolyte membrane has a first surface in contact with the anode electrode and a second surface in contact with the cathode electrode, and a contact angle of at least one of the first surface and the second surface is 80 degrees (°) to 180 degrees ( °). In addition, the contact angle of at least one of the first surface and the second surface may be 80 degrees (°) or more and less than 120 degrees (°).
본 발명의 일 구현예에서, 상기 제2 표면의 접촉각이 80도(°) 내지 180도(°)일 수 있고, 80도(°) 이상, 120도(°) 미만일 수 있다. 상기 제2 표면의 접촉각이 상기 범위에 포함되면, 캐소드 전극에서 물의 농도가 애노드 전극에 비하여 높기 때문에, 그에 따른 전해질 막의 팽윤 문제, 수소 이온 농도 저하 문제, 전극 층에서의 물 범람(water flooding) 문제를 보다 효과적으로 억제할 수 있다.In one embodiment of the present invention, the contact angle of the second surface may be 80 degrees (°) to 180 degrees (°), 80 degrees (°) or more, may be less than 120 degrees (°). When the contact angle of the second surface is in the above range, since the concentration of water at the cathode is higher than that of the anode, the swelling problem of the electrolyte membrane, the problem of lowering the concentration of hydrogen ions, and the problem of water flooding in the electrode layer. Can be suppressed more effectively.
또한 상기 제1 및 제2 표면 모두 80도(°) 내지 180도(°)일 수 있고, 80도(°) 이상, 120도(°) 미만일 수 있다. 제1 및 제2 표면의 접촉각이 모두 상기 범위에 포함되는 경우, 전해질 막의 팽윤 문제, 수소 이온 농도 저하 문제, 전극 층에서의 물 범람(water flooding) 문제를 보다 효과적으로 억제할 수 있으면서, 전극과 전해질 막의 접촉성이 좋아져, 전체 계면 저항을 크게 낮출 수 있고, 전해질 막 내부의 수분이 외부로 손실되는 걸 효과적으로 억제할 수 있어, 보다 우수한 전지화학성능을 나타내는 고분자 전해질형 연료 전지를 제공할 수 있다.In addition, both the first and second surfaces may be 80 degrees (°) to 180 degrees (°), and may be 80 degrees (°) or more and less than 120 degrees (°). When the contact angles of the first and second surfaces are both within the above ranges, the electrode and electrolyte can be more effectively suppressed while the problem of swelling of the electrolyte membrane, the problem of lowering the concentration of hydrogen ions, and the problem of water flooding in the electrode layer can be more effectively suppressed. The contactability of the membrane can be improved, the overall interfacial resistance can be greatly lowered, and the loss of moisture in the electrolyte membrane to the outside can be effectively suppressed, so that a polymer electrolyte fuel cell exhibiting better cell chemistry can be provided.
상기 캐소드 전극 및 애노드 전극은 전극 기재와 촉매층을 포함한다.The cathode electrode and the anode electrode include an electrode substrate and a catalyst layer.
상기 촉매층에서 촉매로는 연료 전지의 반응에 참여하여, 촉매로 사용가능한 것은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로 백금계 촉매를 사용할 수 있다. 상기 백금계 촉매로는 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 또는 백금-M 합금(M은 Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W, Rh 및 Ru로 이루어진 군으로부터 선택되는 1종 이상의 전이 금속) 중에서 선택되는 1종 이상의 촉매를 사용할 수 있다. In the catalyst layer, any catalyst that can be used as a catalyst may be used as a catalyst in the reaction of a fuel cell, and a representative platinum-based catalyst may be used as a representative example. The platinum-based catalyst may be platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy or platinum-M alloy (M is Ga, Ti, V, Cr, Mn, Fe, Co, Ni, At least one catalyst selected from the group consisting of Cu, Zn, Sn, Mo, W, Rh and Ru).
또한 이러한 금속 촉매는 금속 촉매 자체(black)로 사용할 수도 있고, 담체에 담지시켜 사용할 수도 있다. 이 담체로는 흑연, 덴카 블랙, 케첸 블랙, 아세틸렌 블랙, 카본 나노 튜브, 카본 나노 파이버, 카본 나노 와이어, 카본 나노 볼 또는 활성 탄소 등의 탄소계 물질을 사용할 수도 있고, 또는 알루미나, 실리카, 지르코니아, 티타니아 등의 무기물 미립자를 사용할 수도 있으나, 일반적으로 탄소계 물질이 사용되고 있다. 담체에 담지된 귀금속을 촉매로 사용하는 경우에는 상용화된 시판되는 것을 사용할 수도 있고, 또한 담체에 귀금속을 담지시켜 제조하여 사용할 수도 있다. 담체에 귀금속을 담지시키는 공정은 당해 분야에서 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하여도, 당해 분야에 종사하는 사람들에게 쉽게 이해될 수 있는 내용이다.In addition, such a metal catalyst may be used as the metal catalyst (black) itself, or may be supported on a carrier. As the carrier, carbonaceous materials such as graphite, denka black, ketjen black, acetylene black, carbon nanotube, carbon nanofiber, carbon nanowire, carbon nanoball or activated carbon may be used, or alumina, silica, zirconia, Inorganic fine particles such as titania may be used, but carbon-based materials are generally used. In the case of using the noble metal supported on the carrier as a catalyst, a commercially available commercially available product may be used, or the noble metal supported on the carrier may be prepared and used. Since the process of supporting the precious metal on the carrier is well known in the art, detailed descriptions thereof will be readily understood by those skilled in the art even if the detailed description is omitted.
상기 촉매층은 또한 고분자 전해질 막과 전극의 접착력을 향상시키고, 수소 이온의 전달을 위하여 바인더를 포함한다.The catalyst layer also improves the adhesion between the polymer electrolyte membrane and the electrode and includes a binder for the transfer of hydrogen ions.
상기 바인더로는 수소 이온 전도성을 갖는 고분자 수지를 사용할 수 있고, 그 예로는 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 갖고 있는 고분자 수지를 들 수 있다. 바인더의 구체적인 예로는 불소계 고분자, 벤즈이미다졸계 고분자, 벤즈옥사이드계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 또는 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함할 수 있다. The binder may be a polymer resin having hydrogen ion conductivity, and examples thereof include a polymer resin having a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in a side chain thereof. Can be mentioned. Specific examples of the binder include fluorine polymers, benzimidazole polymers, benz oxide polymers, polyimide polymers, polyetherimide polymers, polyphenylene sulfide polymers, polysulfone polymers, polyether sulfone polymers, and polyethers. It may include one or more hydrogen ion conductive polymer selected from ketone-based polymer, polyether-etherketone-based polymer or polyphenylquinoxaline-based polymer.
수소 이온 전도성 고분자의 구체적인 예로는 폴리(퍼플루오로술폰산)(상용화된 나피온 등이 있음), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 술폰화 폴리 아릴렌 에레르 술폰, 술폰화 폴리 에테르 에테르 케톤, 술폰화 폴리 포스파젠, 술폰화 폴리 아릴렌 설파이드, 술폰화 폴리 아릴렌 설파이드 설파이드, 폴리 벤즈옥사졸, 폴리(2,2'-m-페닐렌)-5,5'-바이벤즈이미다졸[poly(2,2'-m-phenylene)-5,5'-bibenzimidazole] 또는 폴리(2,5-벤즈이미다졸) 중에서 선택되는 1종 이상의 수소 이온 전도성 고분자를 포함하는 것을 사용할 수 있다. Specific examples of the hydrogen ion conductive polymer include a mixture of poly (perfluorosulfonic acid) (including commercialized Nafion, etc.), poly (perfluorocarboxylic acid), and tetrafluoroethylene and fluorovinyl ether containing sulfonic acid groups. Coalescing, sulfonated poly arylene ere sulfone, sulfonated poly ether ether ketone, sulfonated poly phosphazene, sulfonated poly arylene sulfide, sulfonated poly arylene sulfide sulfide, poly benzoxazole, poly (2,2 ' -m-phenylene) -5,5'-bibenzimidazole [poly (2,2'-m-phenylene) -5,5'-bibenzimidazole] or poly (2,5-benzimidazole) selected from One containing at least one hydrogen ion conductive polymer can be used.
상기 수소 이온 전도성 고분자는 측쇄 말단의 양이온 교환기에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 측쇄 말단의 이온 교환기에서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH 또는 Nacl을, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 이 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다.The hydrogen ion conductive polymer may replace H with Na, K, Li, Cs or tetrabutylammonium in a cation exchanger at the side chain terminal. In case of substituting H with Na in the ion-exchange group of the side chain terminal, NaOH or Nacl is substituted with tetrabutylammonium when preparing the catalyst composition, and tetrabutylammonium hydroxide is used. K, Li or Cs is also appropriate. Substitutions may be used. Since this substitution method is well known in the art, detailed description thereof will be omitted.
상기 바인더는 단일물 또는 혼합물 형태로 사용가능하며, 또한 선택적으로 고분자 전해질 막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 그 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다. The binder may be used in the form of a single substance or a mixture, and may also be optionally used with a nonconductive compound for the purpose of further improving adhesion to the polymer electrolyte membrane. It is preferable to adjust the usage-amount so that it may be suitable for a purpose of use.
상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라 플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌- 퍼플루오로 알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌 (ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌 공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(Sorbitol)로 이루어진 군에서 선택된 1종 이상의 것이 보다 바람직하다.Examples of the non-conductive compound include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro alkylvinyl ether copolymer (PFA), ethylene / tetrafluoro Ethylene / tetrafluoroethylene (ETFE), ethylenechlorotrifluoro-ethylene copolymer (ECTFE), polyvinylidene fluoride, copolymer of polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), dode At least one selected from the group consisting of silbenzenesulfonic acid and sorbitol is more preferred.
상기 전극 기재는 전극을 지지하는 역할을 하면서 촉매층으로 연료 및 산화제를 확산시켜 촉매층으로 연료 및 산화제가 쉽게 접근할 수 있는 역할을 한다. 상기 전극 기재로는 도전성 기재를 사용하며 그 대표적인 예로 탄소 페이퍼(carbon paper), 탄소 천(carbon cloth), 탄소 펠트(carbon felt) 또는 금속천(섬유 상태의 금속으로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형성된 것을 말함)이 사용될 수 있으나, 이에 한정되는 것은 아니다. The electrode substrate plays a role of supporting the electrode and diffuses the fuel and the oxidant to the catalyst layer, thereby serving to easily access the fuel and the oxidant to the catalyst layer. The electrode substrate is a conductive substrate, and representative examples thereof include carbon paper, carbon cloth, carbon felt, or metal cloth (porous film or polymer fiber composed of metal in a fibrous state). The metal film is formed on the surface of the formed cloth) may be used, but is not limited thereto.
또한 상기 전극 기재는 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸렌 프로필렌(Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또는 이들의 코폴리머를 사용할 수 있다. In addition, it is preferable to use a water-repellent treatment with a fluorine-based resin as the electrode base material because it can prevent the reactant diffusion efficiency from being lowered by water generated when the fuel cell is driven. Examples of the fluorine-based resins include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
또한, 상기 전극 기재에서의 반응물 확산 효과를 증진시키기 위한 미세 기공층(microporous layer)을 더욱 포함할 수도 있다. 이 미세 기공층은 일반적으로 입경이 작은 도전성 분말, 예를 들어 탄소 분말, 카본 블랙, 아세틸렌 블랙, 활성 탄소, 카본 파이버, 플러렌(fullerene), 카본 나노 튜브, 카본 나노 와이어, 카본 나노 혼(carbon nano-horn) 또는 카본 나노 링(carbon nano ring)을 포함할 수 있다. In addition, a microporous layer may be further included to enhance the reactant diffusion effect in the electrode substrate. These microporous layers are generally conductive powders having a small particle diameter, such as carbon powder, carbon black, acetylene black, activated carbon, carbon fiber, fullerene, carbon nanotubes, carbon nanowires, and carbon nanohorns. -horn or carbon nano ring.
상기 미세 기공층은 도전성 분말, 바인더 수지 및 용매를 포함하는 조성물을 상기 전극 기재에 코팅하여 제조된다. 상기 바인더 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드, 알콕시비닐 에테르, 폴리비닐알코올, 셀룰로오스아세테이트 또는 이들의 코폴리머 등이 바람직하게 사용될 수 있다. 상기 용매로는 에탄올, 이소프로필알코올, n-프로필알코올, 부틸알코올 등과 같은 알코올, 물, 디메틸아세트아마이드, 디메틸술폭사이드, N-메틸피롤리돈, 테트라하이드로퓨란 등이 바람직하게 사용될 수 있다. 코팅 공정은 조성물의 점성에 따라 스크린 프린팅법, 스프레이 코팅법 또는 닥터 블레이드를 이용한 코팅법 등이 사용될 수 있으며, 이에 한정되는 것은 아니다.The microporous layer is prepared by coating a composition comprising a conductive powder, a binder resin and a solvent on the electrode substrate. The binder resin may be polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride, alkoxy vinyl ether, polyvinyl alcohol, cellulose acetate Or copolymers thereof and the like can be preferably used. As the solvent, alcohols such as ethanol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, water, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, etc. may be preferably used. The coating process may be screen printing, spray coating, or coating using a doctor blade according to the viscosity of the composition, but is not limited thereto.
본 발명의 연료 전지 시스템의 개략적인 구조를 도 2에 나타내었으며, 이를 참조로 보다 상세하게 설명하면 다음과 같다. 도 2에 나타낸 구조는 연료 및 산화제를 펌프를 사용하여 전기 발생부로 공급하는 시스템을 나타내었으나, 본 발명의 연료 전지 시스템이 이러한 구조에 한정되는 것은 아니며, 펌프를 사용하지 않는 확산 방식을 이용하는 연료 전지 시스템 구조에 사용할 수도 있음은 당연한 일이다.A schematic structure of the fuel cell system of the present invention is shown in FIG. 2, which will be described in more detail with reference to the following. Although the structure shown in FIG. 2 shows a system for supplying fuel and oxidant to an electric generator using a pump, the fuel cell system of the present invention is not limited to such a structure, and a fuel cell using a diffusion method without using a pump is shown. Of course, it can also be used for system architecture.
본 발명의 연료 전지 시스템(1)은 연료의 산화 반응과 산화제의 환원 반응을 통해 전기 에너지를 발생시키는 적어도 하나의 전기 발생부(3)와, 상기한 연료를 공급하는 연료 공급부(5)와, 산화제를 상기 전기 발생부(3)로 공급하는 산화제 공급부(7)를 포함하여 구성된다.The fuel cell system 1 of the present invention includes at least one electricity generation unit 3 for generating electrical energy through an oxidation reaction of a fuel and a reduction reaction of an oxidant, a fuel supply unit 5 for supplying the fuel, And an oxidant supply unit 7 for supplying an oxidant to the electricity generation unit 3.
또한 상기 연료를 공급하는 연료 공급부(5)는 연료를 저장하는 연료 탱크(9), 연료 탱크(9)에 연결 설치되는 연료 펌프(11)를 구비할 수 있다. 상기한 연료 펌프(11)는 소정의 펌핑력에 의해 연료 탱크(9)에 저장된 연료를 배출시키는 기능을 하게 된다.In addition, the fuel supply unit 5 for supplying the fuel may include a fuel tank 9 storing fuel and a fuel pump 11 connected to the fuel tank 9. The fuel pump 11 serves to discharge the fuel stored in the fuel tank 9 by a predetermined pumping force.
상기 전기 발생부(3)로 산화제를 공급하는 산화제 공급부(7)는 소정의 펌핑력으로 산화제를 흡입하는 적어도 하나의 산화제 펌프(13)를 구비한다.The oxidant supply unit 7 for supplying the oxidant to the electricity generating unit 3 includes at least one oxidant pump 13 for sucking the oxidant with a predetermined pumping force.
상기 전기 발생부(3)는 연료와 산화제를 산화 및 환원 반응시키는 막-전극 어셈블리(17)와 이 막-전극 어셈블리의 양측에 연료와 산화제를 공급하기 위한 세퍼레이터(19,19')로 구성되며, 이러한 전기 발생부(3)가 적어도 하나 모여 스택(15)을 구성한다. The electricity generator 3 is composed of a membrane-electrode assembly 17 for oxidizing and reducing a fuel and an oxidant, and a separator 19 and 19 'for supplying fuel and an oxidant to both sides of the membrane-electrode assembly. At least one of these electricity generating units 3 constitutes a stack 15.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일뿐 본 발명이 하기한 실시예에 의해 한정되는 것은 아니다. Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention and the present invention is not limited to the following examples.
(실시예 1)(Example 1)
하기 화학식 1a로 표현되는 제1 반복 단위 및 하기 화학식 1b로 표현되는 제2 반복 단위를 4 : 6 몰비로 포함하는 고분자 수지로 형성되고, 두께가 35㎛인 수소 이온 전도성 고분자 막을 플라즈마 챔버 안에서 샘플 고정대에 올려놓아 위로 향하는 일면은 플라즈마 발생장치를 향하게 하고, 이에 대향하는 다른 일면은 샘플 고정대 바닥을 향하게 하였다. A sample holder is formed of a polymer resin comprising a polymer resin including a first repeating unit represented by the following Chemical Formula 1a and a second repeating unit represented by the following Chemical Formula 1b in a 4: 6 molar ratio, and having a thickness of 35 μm in a plasma chamber. On one side facing the plasma generator and the other side facing the bottom of the sample holder.
[화학식 1a][Formula 1a]
Figure PCTKR2010005508-appb-I000001
Figure PCTKR2010005508-appb-I000001
[화학식 1b] [Formula 1b]
Figure PCTKR2010005508-appb-I000002
Figure PCTKR2010005508-appb-I000002
이어서, 헬륨 가스를 25L/분의 속도로, 또한 C4F8 가스를 15ml/분의 속도로 불어넣으면서 플라즈마 처리하여 일면이 소수성 표면 처리된 전해질 막을 제조하였다.Subsequently, plasma treatment was performed while blowing helium gas at a rate of 25 L / min and a C 4 F 8 gas at a rate of 15 ml / min to prepare an electrolyte membrane treated with one surface of a hydrophobic surface.
이어서, 상기 일면이 소수성 표면 처리된 전해질 막의 소수성 처리되지 않은 면(소수성 처리된 면에 대향하는 면)에 동일한 조건으로 다시 플라즈마를 처리하여, 양면이 모두 소수성 처리된 연료 전지용 고분자 전해질 막을 제조하였다. Subsequently, plasma was treated again on the one side of the hydrophobic surface-treated electrolyte membrane under the same conditions as the non-hydrophobic surface (the surface opposite to the hydrophobic surface), thereby preparing a polymer electrolyte membrane for a fuel cell in which both surfaces were hydrophobic.
제조된 고분자 전해질 막에서, 소수성 표면 처리는 최외각 표면에서 깊이 방향으로 50nm까지 이루어졌다.In the prepared polymer electrolyte membrane, hydrophobic surface treatment was performed up to 50 nm in the depth direction at the outermost surface.
(실시예 2)(Example 2)
상기 실시예 1에서 사용된 고분자 수지로 형성되고, 두께가 35㎛인 수소 이온 전도성 고분자 막을 플라즈마 챔버 안에서 샘플 고정대에 올려놓아 위로 향하는 일면은 플라즈마 발생장치를 향하게 하고, 이에 대향하는 다른 일면은 샘플 고정대 바닥을 향하게 하였다. A hydrogen ion conductive polymer membrane formed of the polymer resin used in Example 1 and having a thickness of 35 μm is placed on the sample holder in the plasma chamber, so that one surface thereof facing upward is directed toward the plasma generator, and the other surface opposite thereto is the sample holder. Face down.
이어서, 헬륨 가스를 25L/분의 속도로, 또한 C2H2 가스, C4F8 가스 및 C4F8 가스를 각각 50ml/분, 10ml/분 및 15ml/분의 속도로 불어넣으면서 플라즈마 처리하여 일면이 초소수성 표면 처리된 고분자 전해질 막을 제조하였다. Subsequently, plasma treatment was performed while blowing helium gas at a rate of 25 L / min and also C 2 H 2 gas, C 4 F 8 gas and C 4 F 8 gas at 50 ml / min, 10 ml / min and 15 ml / min, respectively. One surface of the polymer electrolyte membrane with a superhydrophobic surface treatment was prepared.
이어서, 상기 일면이 초소수성 표면 처리된 전해질 막의 초소수성 처리되지 않은 면(초소수성 처리된 면에 대향하는 면)에 동일한 조건으로 다시 플라즈마를 처리하여, 양면이 모두 초소수성 처리된 연료 전지용 고분자 전해질 막을 제조하였다Subsequently, the surface of the superhydrophobic non-hydrophobic surface (surface opposite to the superhydrophobic surface) of the superhydrophobic surface-treated electrolyte membrane was treated with plasma again, and both surfaces were superhydrophobic. Membrane was prepared
제조된 고분자 전해질 막에서 초소수성 표면 처리는 최외각 표면에서 깊이 방향으로 110nm까지 이루어졌다.Superhydrophobic surface treatment in the prepared polymer electrolyte membrane was up to 110nm in the depth direction from the outermost surface.
(비교예 1)(Comparative Example 1)
상기 실시예 1에서 사용된 고분자 수지로 제조된 수소 이온 전도성 고분자 막(두께 35㎛)을 연료 전지용 고분자 전해질 막으로 사용하였다. A hydrogen ion conductive polymer membrane (thickness 35 μm) made of the polymer resin used in Example 1 was used as the polymer electrolyte membrane for fuel cells.
(비교예 2)(Comparative Example 2)
상기 실시예 1에서 사용된 고분자 수지로 제조된 수소 이온 전도성 고분자 막(두께 35㎛)을 대기 중에서 질소 가스 및 산소 가스를 각각 10ml/분의 속도로 불어넣으면서 플라즈마 처리한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 일면만 친수성 표면 처리된 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 친수성 표면 처리는 최외각 표면에서 깊이 방향으로 0.2nm까지 이루어졌다.Except that the hydrogen ion conductive polymer membrane (thickness 35㎛) made of the polymer resin used in Example 1 was plasma treated while blowing nitrogen gas and oxygen gas at a rate of 10 ml / min in the air, respectively. In the same manner as in 1, a polymer electrolyte membrane for a fuel cell in which only one surface was hydrophilic was treated. In the prepared polymer electrolyte membrane, hydrophilic surface treatment was performed up to 0.2 nm in the depth direction at the outermost surface.
* 표면 접촉각 측정* Surface contact angle measurement
상기 실시예 1 내지 2와 비교예 1 내지 2의 고분자 전해질 막의 증류수에 대한 표면 접촉각을 측정한 결과, 109.3도(°)(약한 소수성), 137.2도(°)(초소수성) 및 86.3도(°)(친수성: 소수성 처리 안한 고분자 전해질 막, 78.4도(°)(친수성)를 나타내었다. 이때, 표면각 측정은 일반적으로 상용화된 장비(DIGIDROP, GBX사)를 이용하여 측정하였으며, 그 방법은 주사 바늘 같이 가는 바늘을 이용하여, 고분자 전해질 막의 표면에 작은 물방울을 떨어뜨린 후, 막 표면에 형성된 물방울의 모양을 관찰하여, 막의 표면과 물방울의 내부가 이루는 각을 측정하였다.The surface contact angles of the polymer electrolyte membranes of Examples 1 to 2 and Comparative Examples 1 and 2 with respect to distilled water were measured to be 109.3 degrees (°) (weak hydrophobic), 137.2 degrees (°) (superhydrophobic), and 86.3 degrees (°). (Hydrophilicity: Hydrophobic polymer electrolyte membrane, 78.4 degrees (°) (hydrophilicity) was shown, the surface angle measurement was generally measured using a commercially available equipment (DIGIDROP, GBX), the method is injection After the droplets were dropped on the surface of the polymer electrolyte membrane using a needle like a needle, the shape of the droplets formed on the membrane surface was observed, and the angle between the membrane surface and the inside of the droplets was measured.
* 전지 성능 측정* Battery performance measurement
상기 실시예 1 내지 2와 비교예 1의 고분자 전해질 막을 사용하여 통상의 방법으로 막-전극 어셈블리를 제조하고, 이를 사용하여 단위 전지를 제조하였다.Using the polymer electrolyte membranes of Examples 1 to 2 and Comparative Example 1 to prepare a membrane-electrode assembly in a conventional manner, using the unit cell was prepared.
이때 캐소드 전극 및 애노드 전극으로는, Pt/C(탄소에 담지된 Pt, Pt 함량 20 중량%, 탄소 80 중량%) 촉매 0.3 g 및 나피온 바인더(5 중량% 농도 나피온/H2O/이소프로판올) 0.495 g을 포함하는 촉매 조성물을 미세 기공층이 형성된 탄소 페이퍼 전극 기재인 SGL 사의 35BC위에 스크린 프린팅하여 제조된 것을 각각 사용하였다. 애노드 전극 및 캐소드 전극의 최종 백금 로딩량은 각각 0.3 mg/㎠이었다.In this case, as the cathode electrode and the anode electrode, 0.3 g of Pt / C (Pt supported on carbon, 20% by weight of Pt, 80% by weight of carbon) catalyst and Nafion binder (5% by weight of Nafion / H 2 O / isopropanol) A catalyst composition containing 0.495 g was prepared by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer. The final platinum loading of the anode electrode and cathode electrode was 0.3 mg / cm 2, respectively.
1) 전류 밀도 및 출력 밀도 측정1) Current density and power density measurement
상기 단위 전지의 전류 밀도 및 출력 밀도를 0.6V 및 0.5V, 65℃ 상대습도 100% 조건에서 측정하여 그 결과를 하기 표 1에 나타내었다. 이때, 연료로는 H2를 100ccm(Cubic Centimeter per Minute), 산화제로 O2를 100ccm 조건으로 사용하였다.The current density and the output density of the unit cell were measured under 0.6V and 0.5V at 65 ° C of 100% relative humidity, and the results are shown in Table 1 below. At this time, H 2 was used as a fuel at 100 ccm (Cubic Centimeter per Minute) and O 2 was used as an oxidizing agent at 100 ccm.
표 1
0.6V 0.5V
전류밀도(mA/cm2) 출력밀도(W/cm2) 전류밀도(mA/cm2) 출력밀도(W/cm2)
실시예 1 900 0.54 1300 0.65
실시예 2 600 0.36 850 0.425
비교예 1 350 0.24 800 0.4
Table 1
0.6 V 0.5 V
Current density (mA / cm 2 ) Power density (W / cm 2 ) Current density (mA / cm 2 ) Power density (W / cm 2 )
Example 1 900 0.54 1300 0.65
Example 2 600 0.36 850 0.425
Comparative Example 1 350 0.24 800 0.4
상기 표 1에 나타낸 것과 같이, 표면의 접촉각이 109.3도(°) 및 137.2도(°)인 실시예 1 내지 2의 고분자 전해질 막을 사용한 연료 전지는 전류 밀도 및 출력 밀도가 표면의 접촉각이 86.3도(°)인 비교예 1에 대하여 매우 우수함을 알 수 있다. 즉, 고분자 전해질 막의 표면 접촉각이 90도(°) 내지 180도(°)인 경우 전류 밀도 및 출력 밀도가 향상됨을 알 수 있다.As shown in Table 1, the fuel cell using the polymer electrolyte membranes of Examples 1 to 2 having surface contact angles of 109.3 degrees (°) and 137.2 degrees (°) has a current density and an output density of 86.3 degrees ( It can be seen that it is very excellent with respect to Comparative Example 1 which is °). That is, it can be seen that the current density and the output density are improved when the surface contact angle of the polymer electrolyte membrane is 90 degrees (°) to 180 degrees (°).
2) 함수율 측정2) moisture content measurement
상기 실시예 1 내지 2와 비교예 1 내지 2의 고분자 전해질 막의 함수율을 30℃에서 측정하여, 그 결과를 도 3에 나타내었다. 함수율 측정은 110℃의 진공 오븐에서 고분자 전해질 막을 충분히 건조시킨 뒤, 고분자 전해질 막의 무게를 측정하였다. 이어서, 상기 고분자 전해질 막을, 30℃의 초순수에 하루 동안 담가두어, 충분히 수화시킨 다음, 수화된 막의 무게를 측정한 후, 다음 식 1에 따라 계산하였다.The moisture content of the polymer electrolyte membranes of Examples 1 and 2 and Comparative Examples 1 and 2 were measured at 30 ° C., and the results are shown in FIG. 3. The moisture content was measured by sufficiently drying the polymer electrolyte membrane in a 110 ° C. vacuum oven, and then measuring the weight of the polymer electrolyte membrane. Subsequently, the polymer electrolyte membrane was immersed in ultrapure water at 30 ° C. for one day, sufficiently hydrated, and the weight of the hydrated membrane was measured, and then calculated according to the following Equation 1.
[식 1][Equation 1]
함수율 = (수화된 막 무게 - 건조된 막 무게)/ 건조된 막 무게 x 100 Water content = (hydrated membrane weight-dried membrane weight) / dried membrane weight x 100
도 3에 나타낸 것과 같이, 실시예 1 내지 2의 고분자 전해질 막의 함수율은 비교예 1의 고분자 전해질 막의 함수율에 비하여 다소 감소되었으나, 그 차이가 그리 크지 않은 않다. 따라서, 고분자 전해질 막의 표면이 소수성을 나타내더라도 함수율 변화는 상대적으로 없음을 알 수 있다. 비교예 2의 경우에는 친수성을 보다 강화시킨 것이므로 함수율이 비교예 1보다 증가함을 알 수 있다. As shown in FIG. 3, the moisture content of the polymer electrolyte membranes of Examples 1 to 2 was slightly reduced compared to that of the polymer electrolyte membrane of Comparative Example 1, but the difference was not so large. Therefore, even if the surface of the polymer electrolyte membrane shows hydrophobicity, it can be seen that there is no change in moisture content. In the case of Comparative Example 2, since the hydrophilicity was further enhanced, it can be seen that the water content increased from Comparative Example 1.
3) 치수 안정성(Dimensional stability)3) Dimensional stability
상기 실시예 1 내지 2와 비교예 1 내지 2의 고분자 전해질 막의 치수 안정성을 측정하여 그 결과를 도 4에 나타내었다. 치수 안정성(Dimensional stability)은 수화 전후의 치수(면적) 변화율(Dimensional change)을 측정하여 판단하는 것으로서, 치수(면적) 변화율이 작을수록 치수 안정성은 높아짐을 의미한다. 치수 변화율은 다음과 같이 측정하였다.Dimensional stability of the polymer electrolyte membranes of Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the results are shown in FIG. 4. Dimensional stability is determined by measuring the dimensional (area) change rate before and after hydration, and the smaller the dimensional (area) change rate is, the higher the dimensional stability is. The rate of dimensional change was measured as follows.
고분자 전해질 막을 110℃의 진공 오븐에서 충분히 건조시킨 후, 고분자 전해질 막의 면적을 측정하였다. 이어서, 30℃의 초순수에 하루 동안 담가두어, 충분히 수화시킨 다음, 수화된 막의 면적을 측정한 후, 다음 식 2에 따라 계산하였다.After the polymer electrolyte membrane was sufficiently dried in a vacuum oven at 110 ° C., the area of the polymer electrolyte membrane was measured. Subsequently, it was soaked in ultrapure water at 30 ° C. for one day, sufficiently hydrated, and then the area of the hydrated film was measured, and then calculated according to the following equation.
[식 2][Equation 2]
치수 변화율 = (수화된 막 면적 - 건조된 막 면적)/ 건조된 막 면적 x 100 Rate of dimensional change = (hydrated membrane area-dried membrane area) / dried membrane area x 100
도 4에 나타낸 것과 같이, 실시예 1 내지 2의 치수안정성이 비교예 1 내지 2에 비하여 우수함을 알 수 있다.As shown in Figure 4, it can be seen that the dimensional stability of Examples 1 to 2 are superior to Comparative Examples 1 to 2.
4) 단위 전지의 전지성능 측정4) Measurement of battery performance of unit cell
상기 실시예 1 내지 2 및 비교예 1의 고분자 전해질 막을 사용하여 제조된 단위 전지의 전지성능을 측정하여 그 결과를 도 5에 나타내었다. 도 5에서 보는 것과 같이, 표면이 약한 소수성 및 초소수성을 나타내는 고분자 전해질 막(실시예 1 및 실시예 2)의 경우, 친수성을 나타내는 비교예 1과 비교하였을 때, 높은 단위 전지 성능을 보여줌을 알 수 있다. 이는 실시예 1 내지 2의 고분자 전해질 막의 표면이 소수성을 나타내므로, 소수성을 나타내는 촉매층의 나피온 바인더와 높은 접합성을 일으켜 전극-불소계 고분자 바인더-고분자 전해질 막과의 저항을 낮추어 주는 효과와 더불어, 도 3 내지 도 4에 나타낸 바와 같이 수소이온 전도도를 결정짓는 함수율은 크게 낮아 지지 않고도, 높은 치수 안정성을 가질 수 있기 때문이다. The battery performance of the unit cells manufactured using the polymer electrolyte membranes of Examples 1 to 2 and Comparative Example 1 was measured, and the results are shown in FIG. 5. As shown in FIG. 5, the polymer electrolyte membranes (Examples 1 and 2) showing weak hydrophobicity and superhydrophobicity showed high unit cell performance when compared with Comparative Example 1 showing hydrophilicity. Can be. Since the surfaces of the polymer electrolyte membranes of Examples 1 to 2 exhibit hydrophobicity, they exhibit high adhesion to the Nafion binder of the catalyst layer showing hydrophobicity, thereby lowering the resistance of the electrode-fluorine-based polymer binder-polymer electrolyte membrane. It is because the moisture content which determines hydrogen ion conductivity as shown in 3-4 can have high dimensional stability, without making it fall significantly.
(실시예 3)(Example 3)
하기 화학식 1a로 표현되는 제1 반복 단위 및 하기 화학식 1b로 표현되는 제2 반복 단위를 4 : 6 몰비로 포함하는 고분자 수지로 형성되고, 두께가 35㎛인 수소 이온 전도성 고분자 막을 플라즈마 챔버 안에서 샘플 고정대에 올려놓아 위로 향하는 일면은 플라즈마 발생장치를 향하게 하고, 이에 대향하는 다른 일면은 샘플 고정대 바닥을 향하게 하였다. A sample holder is formed of a polymer resin comprising a polymer resin including a first repeating unit represented by the following Chemical Formula 1a and a second repeating unit represented by the following Chemical Formula 1b in a 4: 6 molar ratio, and having a thickness of 35 μm in a plasma chamber. On one side facing the plasma generator and the other side facing the bottom of the sample holder.
[화학식 1a][Formula 1a]
Figure PCTKR2010005508-appb-I000003
Figure PCTKR2010005508-appb-I000003
[화학식 1b][Formula 1b]
Figure PCTKR2010005508-appb-I000004
Figure PCTKR2010005508-appb-I000004
이어서, 헬륨 및 C4F8 가스를 각각 25L/분 및 10ml/분의 속도로 불어넣으면서 플라즈마 처리하여 일면만 소수성 표면 처리된 고분자 전해질막형 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 소수성 표면 처리는 최외각 표면에서 깊이 방향으로 0.2nm까지 이루어졌다.Subsequently, helium and C 4 F 8 gas were blown at a rate of 25 L / min and 10 ml / min, respectively, to prepare a polymer electrolyte membrane for a polymer electrolyte membrane fuel cell, in which only one surface was hydrophobic. In the prepared polymer electrolyte membrane, hydrophobic surface treatment was performed up to 0.2 nm in the depth direction at the outermost surface.
(실시예 4)(Example 4)
상기 실시예 3에서 제조된 일면이 소수성 표면 처리된 고분자 전해질 막의 표면처리되지 않은 면(상기 소수성 표면 처리된 면에 대향하는 면)에 대하여 상기 실시예 3과 동일하게 실시하여, 양면이 모두 소수성 표면 처리된 고분자 전해질막형 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 소수성 표면 처리는 최외각 표면에서 깊이 방향으로 각각 0.2nm까지 이루어졌다.One surface prepared in Example 3 was carried out in the same manner as in Example 3 with respect to the untreated surface (the surface opposite to the hydrophobic surface treated surface) of the hydrophobic surface treated polymer electrolyte membrane, and both surfaces were hydrophobic surfaces. A polymer electrolyte membrane for a treated polymer electrolyte membrane fuel cell was prepared. In the prepared polymer electrolyte membrane, hydrophobic surface treatment was performed up to 0.2 nm in depth direction at the outermost surface.
(실시예 5)(Example 5)
헬륨, C4F8 가스 및 C2H2/Ar 가스를 각각 25L/분, 10ml/분 및 50ml/분의 속도로 불어 넣으면서 플라즈마 처리한 것을 제외하고는 상기 실시예 3과 동일하게 실시하여 일면만 초소수성 표면 처리된 고분자 전해질막형 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 초소수성 표면 처리는 최외각 표면에서 깊이 방향으로 110nm까지 이루어졌다.Except that helium, C 4 F 8 gas and C 2 H 2 / Ar gas was plasma treated while blowing at a rate of 25L / min, 10ml / min and 50ml / min, respectively, the same manner as in Example 3 A polymer electrolyte membrane for a polymer electrolyte membrane-type fuel cell treated with a superhydrophobic surface was prepared. Superhydrophobic surface treatment in the prepared polymer electrolyte membrane was up to 110nm in the depth direction from the outermost surface.
(실시예 6)(Example 6)
Pt/C(탄소에 담지된 Pt, Pt 함량 20 중량%, 탄소 80 중량%) 촉매 0.3 g 및 나피온 바인더(5 중량% 농도 나피온/H2O/이소프로판올) 0.495 g을 포함하는 촉매 조성물을 미세 기공층이 형성된 탄소 페이퍼 전극 기재인 SGL 사의 35BC위에 스크린 프린팅하여 캐소드 촉매층이 형성된 캐소드 전극을 제조하였다.A catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol) The cathode was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer, on which a cathode catalyst layer was formed.
Pt/C(탄소에 담지된 Pt, Pt 함량 20 중량%, 탄소 80 중량%) 촉매 0.3 g 및 나피온 바인더(5 중량% 농도 나피온/H2O/이소프로판올) 0.495 g을 포함하는 촉매 조성물을 미세 기공층이 형성된 탄소 페이퍼 전극 기재인 SGL 사의 35BC위에 스크린 프린팅하여 애노드 촉매층이 형성된 애노드 전극을 제조하였다.A catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol) An anode electrode on which an anode catalyst layer was formed was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer.
애노드 전극 및 캐소드 전극의 최종 백금 로딩량은 각각 0.3 mg/㎠이었다.The final platinum loading of the anode electrode and cathode electrode was 0.3 mg / cm 2, respectively.
상기 캐소드 전극 및 애노드 전극 사이에 상기 실시예 3에서 제조된 고분자 전해질 막을 위치시킨 후, 통상의 방법으로 막-전극 어셈블리를 제조하고, 이를 사용하여 단위 전지를 제조하였다. 이때, 상기 고분자 전해질 막의 소수성 표면처리된 면이 애노드 전극의 애노드 촉매층과 접하도록 위치시켰다.After placing the polymer electrolyte membrane prepared in Example 3 between the cathode electrode and the anode electrode, a membrane-electrode assembly was manufactured by a conventional method, and a unit cell was manufactured using the same. At this time, the hydrophobic surface-treated surface of the polymer electrolyte membrane was positioned in contact with the anode catalyst layer of the anode electrode.
(실시예 7)(Example 7)
고분자 전해질 막의 소수성 표면처리된 면이 캐소드 전극의 캐소드 촉매층과 접하도록 위치시킨 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Example 6 except that the hydrophobic surface-treated surface of the polymer electrolyte membrane was placed in contact with the cathode catalyst layer of the cathode electrode.
(실시예 8)(Example 8)
고분자 전해질 막으로 상기 실시예 4에서 제조된 양면이 소수성 표면처리된 전해질 막을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Example 6 except that both surfaces of the polymer electrolyte membrane prepared in Example 4 were hydrophobic surface-treated electrolyte membrane.
(비교예 3)(Comparative Example 3)
상기 화학식 1로 표현되는 고분자 수지로 제조된 막을 연료 전지용 고분자 전해질 막으로 사용하였다. 이 고분자 전해질 막을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 단위 전지를 제조하였다.A membrane made of a polymer resin represented by Chemical Formula 1 was used as a polymer electrolyte membrane for a fuel cell. A unit cell was prepared in the same manner as in Example 6 except that the polymer electrolyte membrane was used.
(비교예 4)(Comparative Example 4)
상기 화학식 1로 표현되는 고분자 수지로 제조된 막(두께 35㎛)을 대기 중에서 질소 가스 및 산소 가스를 10 ml/분 및 15ml/분 속도로 불어넣으면서 플라즈마 처리한 것을 제외하고는 상기 실시예 3과 동일하게 실시하여, 일면만 친수성 표면 처리된 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 친수성 표면 처리는 최외각 표면에서 깊이 방향으로 0.2nm까지 이루어졌다.Example 3 except that the membrane (thickness 35㎛) made of a polymer resin represented by the formula (1) was plasma treated while blowing nitrogen gas and oxygen gas at a rate of 10 ml / min and 15 ml / min in the air In the same manner, a polymer electrolyte membrane for a fuel cell in which only one surface was hydrophilic was treated. In the prepared polymer electrolyte membrane, hydrophilic surface treatment was performed up to 0.2 nm in the depth direction at the outermost surface.
(비교예 5)(Comparative Example 5)
상기 비교예 4에서 제조된 일면이 친수성 표면 처리된 고분자 전해질 막의 표면처리되지 않은 면(상기 친수성 표면 처리된 면에 대향하는 면)에 대하여 상기 비교예 4와 동일하게 실시하여, 앙면이 친수성 표면 처리된 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 소수성 표면 처리는 최외각 표면에서 깊이 방향으로 각각 0.2nm까지 이루어졌다.One surface prepared in Comparative Example 4 was subjected to the surface treatment of the hydrophilic surface-treated polymer electrolyte membrane (the surface opposite to the hydrophilic surface-treated surface) in the same manner as in Comparative Example 4, where the face was hydrophilic surface treatment. To prepare a polymer electrolyte membrane for a fuel cell. In the prepared polymer electrolyte membrane, hydrophobic surface treatment was performed up to 0.2 nm in depth direction at the outermost surface.
(비교예 6)(Comparative Example 6)
상기 비교예 4에 따라 제조된 고분자 전해질 막을 사용한 것을 제외하고는 상기 실시예 6과 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Example 6, except that the polymer electrolyte membrane prepared according to Comparative Example 4 was used.
(비교예 7)(Comparative Example 7)
상기 비교예 4에 따라 제조된 고분자 전해질 막을 사용한 것을 제외하고는 상기 실시예 7과 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Example 7, except that the polymer electrolyte membrane prepared according to Comparative Example 4 was used.
(비교예 8)(Comparative Example 8)
상기 비교예 5에 따라 제조된 고분자 전해질 막을 사용한 것을 제외하고는 상기 실시예 8와 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Example 8, except that the polymer electrolyte membrane prepared according to Comparative Example 5 was used.
(비교예 9)(Comparative Example 9)
시판되는 나피온 고분자 전해질 막(Dupont사)을 사용하고, 상기 실시예 3에서 제조된 애노드 전극 및 캐소드 전극을 사용하여, 통상의 방법으로 막-전극 어셈블리를 제조하고, 이를 사용하여 단위 전지를 제조하였다.Using a commercially available Nafion polyelectrolyte membrane (Dupont), using the anode electrode and the cathode electrode prepared in Example 3, to prepare a membrane-electrode assembly in a conventional manner, to prepare a unit cell using the same It was.
* 표면 접촉각 측정* Surface contact angle measurement
상기 실시예 3 및 5와 비교예 3에 따라 제조된 고분자 전해질 막의 증류수에 대한 표면 접촉각을 측정한 결과, 실시예 3은 85.3도(°), 실시예 5는 130도(°)이었으며, 비교예 3은 51.9도(°)로 나타났다. 즉, 실시예 3은 소수성, 실시예 5는 초소수성, 비교예 3은 친수성을 나타냄을 알 수 있다. As a result of measuring the surface contact angle of distilled water of the polymer electrolyte membrane prepared according to Examples 3 and 5 and Comparative Example 3, Example 3 was 85.3 degrees (°), Example 5 was 130 degrees (°), Comparative Example 3 was 51.9 degrees (°). That is, it can be seen that Example 3 is hydrophobic, Example 5 is superhydrophobic, and Comparative Example 3 is hydrophilic.
* 전지 성능 측정* Battery performance measurement
상기 실시예 6 내지 8, 비교예 3 및 비교예 9의 단위 전지의 전류 밀도 및 출력 밀도를 하기 표 2에 나타낸 상대 습도 및 전지 온도 조건에서, 각각 0.6V 및 0.5V 조건으로 단위 전지를 작동시켜, 측정하였다. 그 결과 중, 실시예 6 내지 8 및 비교예 3의 결과를 하기 표 3에 나타내었다. 하기 표 3에서 RHXX는 상대 습도가 XX%라는 의미이다.The current density and output density of the unit cells of Examples 6 to 8, Comparative Example 3, and Comparative Example 9 were operated at 0.6 V and 0.5 V, respectively, at the relative humidity and battery temperature conditions shown in Table 2 below. Was measured. Among the results, the results of Examples 6 to 8 and Comparative Example 3 are shown in Table 3 below. In Table 3, RHXX means that the relative humidity is XX%.
표 2
상대습도(%) 전지 온도(℃) 연료(H2) 애노드 공급양(ccm) 산화제(O2) 캐소드 공급양(ccm)
100 70 100 100
65 70 100 100
45 70 100 100
TABLE 2
Relative Humidity (%) Battery temperature (℃) Fuel (H 2 ) Anode Supply (ccm) Oxidizer (O 2 ) cathode supply amount (ccm)
100 70 100 100
65 70 100 100
45 70 100 100
표 3
RH(%) 0.6V 0.5V
전류밀도(mA/cm2) 출력밀도(W/cm2) 전류밀도(mA/cm2) 출력밀도(W/cm2)
비교예 3 RH100 0.68 0.41 1.14 0.57
RH65 0.53 0.32 1.01 0.51
RH45 0.25 0.15 0.57 0.29
실시예 6 RH100 0.71 0.43 1.21 0.61
RH65 0.42 0.25 0.94 0.47
RH45 0.21 0.13 0.76 0.38
실시예 7 RH100 0.81 0.48 1.19 0.6
RH65 0.44 0.26 0.89 0.45
RH45 0.41 0.24 0.79 0.39
실시예 8 RH100 1.14 0.68 1.86 0.93
RH65 0.93 0.56 1.68 0.84
RH45 0.8 0.48 1.53 0.77
TABLE 3
RH (%) 0.6 V 0.5 V
Current density (mA / cm 2 ) Power density (W / cm 2 ) Current density (mA / cm 2 ) Power density (W / cm 2 )
Comparative Example 3 RH100 0.68 0.41 1.14 0.57
RH65 0.53 0.32 1.01 0.51
RH45 0.25 0.15 0.57 0.29
Example 6 RH100 0.71 0.43 1.21 0.61
RH65 0.42 0.25 0.94 0.47
RH45 0.21 0.13 0.76 0.38
Example 7 RH100 0.81 0.48 1.19 0.6
RH65 0.44 0.26 0.89 0.45
RH45 0.41 0.24 0.79 0.39
Example 8 RH100 1.14 0.68 1.86 0.93
RH65 0.93 0.56 1.68 0.84
RH45 0.8 0.48 1.53 0.77
또한, 상대 습도가 100%일 때의 실시예 6 내지 8과, 비교예 3 및 9의 실험 결과를 도 6에 나타내었다. 아울러, 상대 습도가 65%때의 실시예 6 내지 8과 비교예 3의 실험 결과를 도 7에 나타내었으며, 상대 습도가 45%일 때의 실험 결과를 도 8에 나타내었다. In addition, the experimental results of Examples 6 to 8 and Comparative Examples 3 and 9 when the relative humidity is 100% are shown in FIG. 6. In addition, the experimental results of Examples 6 to 8 and Comparative Example 3 when the relative humidity is 65% is shown in Figure 7, the experimental results when the relative humidity is 45% is shown in FIG.
상기 표 3 및 도 6에 나타낸 바와 같이, 상대 습도가 100%인 경우 실시예 6 및 7의 전지의 출력 밀도 및 전류 밀도는 비교예 3 보다 다소 우수하게 나타났으며, 실시예 8의 전지의 출력 밀도 및 전류 밀도는 비교예 3에 비하여 현저하게 우수함을 알 수 있다. 특히 실시예 8의 경우, 출력 밀도 및 전류 밀도가 비교예 9의 나피온 고분자 전해질 막을 사용한 경우와 유사하거나 더 높게 나타났기에, 소수성 처리를 양면에 형성한 고분자 전해질 막을 사용하는 경우, 탄화수소계 고분자 전해질 막을 사용하여도 나피온과 유사하거나 더 높은 전기화학적 성능을 지니고 있음을 알 수 있다. As shown in Table 3 and FIG. 6, when the relative humidity is 100%, the output densities and current densities of the batteries of Examples 6 and 7 are somewhat better than those of Comparative Example 3, and the output of the batteries of Example 8 It can be seen that the density and the current density are remarkably superior to Comparative Example 3. Particularly, in the case of Example 8, the output density and the current density were similar or higher than those using the Nafion polymer electrolyte membrane of Comparative Example 9, and thus, when the polymer electrolyte membrane having the hydrophobic treatment formed on both sides was used, the hydrocarbon-based polymer electrolyte was used. It can be seen that the use of a membrane has similar or higher electrochemical performance than Nafion.
아울러, 상기 표 3 및, 도 7과 도 8에 나타낸 바와 같이, 실시예 6 및 7의 전지의 출력 밀도 및 전류 밀도는 상대 습도가 65%인 경우에는 비교예 3과 유사하거나 다소 낮게 나타났으나, 상대 습도가 45%인 경우에는, 매우 우수함을 알 수 있다. 아울러, 실시예 8의 경우에는 상대 습도가 65% 및 45%인 경우 모두 우수한 결과가 얻어졌다.In addition, as shown in Table 3 and FIGS. 7 and 8, the output densities and current densities of the batteries of Examples 6 and 7 were similar or somewhat lower than those of Comparative Example 3 when the relative humidity was 65%. When the relative humidity is 45%, it is found to be very excellent. In addition, in the case of Example 8, excellent results were obtained for both 65% and 45% relative humidity.
이에, 도 6 내지 도 8의 결과 및 상기 표 3의 결과로부터, 실시예 6 내지 8의 전지는 상대 습도가 45%까지 낮은 조건 하에서도 출력 밀도 및 전류 밀도가 우수하게 얻어졌으므로, 무가습 조건 또는 저가습 조건 하에서 작동시킬 수 있음을 알 수 있다.Therefore, from the results of FIGS. 6 to 8 and the results of Table 3, the batteries of Examples 6 to 8 were obtained with excellent output density and current density even under the condition that the relative humidity was low to 45%, It can be seen that it can be operated under low humidity conditions.
* 전지 성능 측정* Battery performance measurement
상기 비교예 6 내지 8의 단위 전지의 전류 밀도 및 출력 밀도를 상기 표 2에 나타낸 상대 습도, 가습기(humidifier) 온도, 및 전지 온도 조건에서, 각각 0.6V 및 0.5V 조건으로 단위 전지를 작동시켜, 측정하였다. 그 결과를 하기 표 4에 나타내었다. 또한, 비교를 위하여 비교예 3의 결과를 표 4에 함께 나타내었다. The unit cells were operated at 0.6 V and 0.5 V, respectively, at the relative humidity, humidifier temperature, and battery temperature conditions of the current density and output density of the unit cells of Comparative Examples 6 to 8, Measured. The results are shown in Table 4 below. In addition, the results of Comparative Example 3 are shown in Table 4 together for comparison.
표 4
RH(%) 0.6V 0.5V
전류밀도(mA/cm2) 출력밀도(W/cm2) 전류밀도(mA/cm2) 출력밀도(W/cm2)
비교예 3 RH100 0.68 0.41 1.14 0.57
RH65 0.53 0.32 1.01 0.51
RH45 0.25 0.15 0.57 0.29
비교예 6 RH100 0.49 0.49 0.81 0.40
RH65 0.344 0.344 0.67 0.33
RH45 0 0 0.028 0.013
비교예 7 RH100 0.70 0.70 1.12 0.56
RH65 0.056 0.056 0.618 0.31
RH45 0 0 0.05 0.025
비교예 8 RH100 0.152 0.152 0.234 0.12
RH65 0.162 0.162 0.244 0.12
RH45 0.104 0.104 0.164 0.082
Table 4
RH (%) 0.6 V 0.5 V
Current density (mA / cm 2 ) Power density (W / cm 2 ) Current density (mA / cm 2 ) Power density (W / cm 2 )
Comparative Example 3 RH100 0.68 0.41 1.14 0.57
RH65 0.53 0.32 1.01 0.51
RH45 0.25 0.15 0.57 0.29
Comparative Example 6 RH100 0.49 0.49 0.81 0.40
RH65 0.344 0.344 0.67 0.33
RH45 0 0 0.028 0.013
Comparative Example 7 RH100 0.70 0.70 1.12 0.56
RH65 0.056 0.056 0.618 0.31
RH45 0 0 0.05 0.025
Comparative Example 8 RH100 0.152 0.152 0.234 0.12
RH65 0.162 0.162 0.244 0.12
RH45 0.104 0.104 0.164 0.082
또한, 상대 습도가 100%일 때, 비교예 6 내지 9 및 비교예 3의 실험 결과를 도 9에 나타내었다. 아울러, 상대 습도가 65%일 때, 비교예 6 내지 8 및 비교예 3의 실험 결과를 도 10에 나타내었으며, 상대 습도가 45%일 때의 실험 결과를 도 11에 나타내었다. 도 9 및 상기 표 5에 나타낸 결과로부터, 상대 습도와 상관없이 비교예 6 내지 8의 경우, 비교예 3보다 우수한 출력 밀도 및 전류 밀도를 나타냄을 알 수 있다. 그러나 이 결과는 표 3에 나타낸 실시예 6 내지 8의 전지의 출력 밀도 및 전류 밀도에 비하여 열화된 결과였으며, 나피온 고분자 전해질 막을 사용한 비교예 9에 대하여 열화된 결과였다.In addition, when the relative humidity is 100%, the experimental results of Comparative Examples 6 to 9 and Comparative Example 3 are shown in FIG. In addition, when the relative humidity is 65%, the experimental results of Comparative Examples 6 to 8 and Comparative Example 3 are shown in Figure 10, the experimental results when the relative humidity is 45% is shown in FIG. From the results shown in FIG. 9 and Table 5, it can be seen that in Comparative Examples 6 to 8, the output density and the current density were superior to those of Comparative Example 3 regardless of the relative humidity. However, this result was inferior to the output density and current density of the batteries of Examples 6 to 8 shown in Table 3, and to Comparative Example 9 using the Nafion polyelectrolyte membrane.
아울러, 도 10 및 상기 표 5에 나타낸 결과와 같이, 비교예 7의 경우에는 상대 습도가 100%인 경우에는 비교예 3과 유사하거나 다소 우수한 결과가 얻어졌으나, 상대 습도가 65%로 저하된 경우 전류 밀도 및 출력 밀도가 매우 저하되었으며, 상대 습도가 45%로 낮은 경우는 0.6V에서는 아예 작동이 되지 않음을 알 수 있다.In addition, as shown in FIG. 10 and Table 5, in Comparative Example 7, when the relative humidity was 100%, similar or somewhat superior results were obtained in Comparative Example 3, but the relative humidity was reduced to 65%. The current density and output density are very low, and the low relative humidity of 45% shows no operation at 0.6V.
비교예 6의 경우에는 도 9 및 상기 표 5에 나타낸 것과 같이, 모든 상대 습도 조건에서 비교예 3보다 열화된 전류 밀도 및 출력 밀도를 나타냈으며, 특히 상대 습도가 45%로 낮은 경우는 0.6V에서는 아예 작동이 되지 않음을 알 수 있다.In Comparative Example 6, as shown in FIG. 9 and Table 5, the current density and the output density were lower than those of Comparative Example 3 in all the relative humidity conditions, and particularly at 0.6 V when the relative humidity was low at 45%. You can see that it doesn't work at all.
이에, 상기 표 5 및 도 9 내지 11의 결과로부터, 비교예 6 내지 8의 전지는 출력 밀도 및 전류 밀도가 실시예 6 내지 8에 대하여 매우 열화되었기에, 고분자 전해질 막에 친수성 처리를 실시하는 것은 오히려 전지 물성을 저하시킬 수 있고, 또한 무가습 조건 또는 저가습 조건 하에서는 작동시킬 수 없음을 알 수 있다.Accordingly, the results of Table 5 and the results of FIGS. 9 to 11 show that the cells of Comparative Examples 6 to 8 are very degraded with respect to Examples 6 to 8, so that the hydrophilic treatment of the polymer electrolyte membrane is rather It can be seen that the battery physical properties can be lowered and it can not be operated under the non-humidity condition or the low-humidity condition.
(비교예 10)(Comparative Example 10)
두께가 51㎛인 나피온 고분자(상품명: NR212, 제조사:듀폰(미국)) 막을 플라즈마 챔버 안에서 샘플 고정대에 올려놓아 위로 향하는 일면은 플라즈마 발생장치를 향하게 하고, 이에 대향하는 다른 일면은 샘플 고정대 바닥을 향하게 하였다. A 51 μm thick Nafion polymer (trade name: NR212, manufactured by DuPont, USA) was placed in the plasma chamber on a sample holder, with one side facing up toward the plasma generator and the other facing the bottom of the sample holder. Oriented.
이어서, 헬륨 가스를 25L/분의 속도로, 또한 C4F8 가스를 15ml/분의 속도로 불어넣으면서 플라즈마 처리하여 일면이 소수성 표면 처리된 전해질 막을 제조하였다.Subsequently, plasma treatment was performed while blowing helium gas at a rate of 25 L / min and a C 4 F 8 gas at a rate of 15 ml / min to prepare an electrolyte membrane treated with one surface of a hydrophobic surface.
(비교예 11)(Comparative Example 11)
상기 비교예 10에서 제조된 일면이 소수성 표면 처리된 고분자 전해질 막의 표면처리되지 않은 면(상기 소수성 표면 처리된 면에 대향하는 면)에 대하여 상기 비교예 10과 동일하게 실시하여, 양면이 모두 소수성 표면 처리된 고분자 전해질막형 연료 전지용 고분자 전해질 막을 제조하였다. 제조된 고분자 전해질 막에서 소수성 표면 처리는 최외각 표면에서 깊이 방향으로 각각 0.2nm까지 이루어졌다.One surface prepared in Comparative Example 10 was carried out in the same manner as in Comparative Example 10 with respect to the untreated surface (the surface opposite to the hydrophobic surface treated surface) of the hydrophobic surface treated polymer electrolyte membrane, and both surfaces were hydrophobic surfaces. A polymer electrolyte membrane for a treated polymer electrolyte membrane fuel cell was prepared. In the prepared polymer electrolyte membrane, hydrophobic surface treatment was performed up to 0.2 nm in depth direction at the outermost surface.
(비교예 12)(Comparative Example 12)
Pt/C(탄소에 담지된 Pt, Pt 함량 20 중량%, 탄소 80 중량%) 촉매 0.3 g 및 나피온 바인더(5 중량% 농도 나피온/H2O/이소프로판올) 0.495 g을 포함하는 촉매 조성물을 미세 기공층이 형성된 탄소 페이퍼 전극 기재인 SGL 사의 35BC위에 스크린 프린팅하여 캐소드 촉매층이 형성된 캐소드 전극을 제조하였다.A catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol) The cathode was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer, on which a cathode catalyst layer was formed.
Pt/C(탄소에 담지된 Pt, Pt 함량 20 중량%, 탄소 80 중량%) 촉매 0.3 g 및 나피온 바인더(5 중량% 농도 나피온/H2O/이소프로판올) 0.495 g을 포함하는 촉매 조성물을 미세 기공층이 형성된 탄소 페이퍼 전극 기재인 SGL 사의 35BC위에 스크린 프린팅하여 애노드 촉매층이 형성된 애노드 전극을 제조하였다.A catalyst composition comprising 0.3 g of Pt / C (Pt supported on carbon, 20 wt% Pt, 80 wt% carbon) catalyst and 0.495 g of Nafion binder (5 wt% Nafion / H 2 O / isopropanol) An anode electrode on which an anode catalyst layer was formed was formed by screen printing on 35BC of SGL, a carbon paper electrode substrate having a fine pore layer.
애노드 전극 및 캐소드 전극의 최종 백금 로딩량은 각각 0.3 mg/㎠이었다.The final platinum loading of the anode electrode and cathode electrode was 0.3 mg / cm 2, respectively.
상기 캐소드 전극 및 애노드 전극 사이에 상기 비교예 10에서 제조된 고분자 전해질 막을 위치시킨 후, 통상의 방법으로 막-전극 어셈블리를 제조하고, 이를 사용하여 단위 전지를 제조하였다. 이때, 상기 고분자 전해질 막의 소수성 표면처리된 면이 애노드 전극의 애노드 촉매층과 접하도록 위치시켰다.After placing the polymer electrolyte membrane prepared in Comparative Example 10 between the cathode electrode and the anode electrode, a membrane-electrode assembly was manufactured by a conventional method, and a unit cell was prepared using the same. At this time, the hydrophobic surface-treated surface of the polymer electrolyte membrane was positioned in contact with the anode catalyst layer of the anode electrode.
(비교예 13)(Comparative Example 13)
고분자 전해질 막의 소수성 표면처리된 면이 캐소드 전극의 캐소드 촉매층과 접하도록 위치시킨 것을 제외하고는 상기 비교예 12와 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Comparative Example 12 except that the hydrophobic surface-treated surface of the polymer electrolyte membrane was placed in contact with the cathode catalyst layer of the cathode electrode.
(비교예 14)(Comparative Example 14)
고분자 전해질 막으로 상기 비교예 11에서 제조된 양면이 소수성 표면처리된 전해질 막을 사용한 것을 제외하고는 상기 비교예 12와 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was prepared in the same manner as in Comparative Example 12 except that both surfaces of the polymer electrolyte membrane prepared in Comparative Example 11 were hydrophobic surface-treated electrolyte membrane.
(비교예 15)(Comparative Example 15)
두께가 51㎛인 나피온 고분자(상품명: NR212, 제조사:듀폰(미국)) 막을 전해질 막으로 사용한 것을 제외하고는 상기 비교예 12와 동일하게 실시하여 단위 전지를 제조하였다.A unit cell was manufactured in the same manner as in Comparative Example 12, except that a Nafion polymer (trade name: NR212, manufacturer: DuPont (USA)) having a thickness of 51 μm was used as the electrolyte membrane.
* 표면 접촉각 측정* Surface contact angle measurement
상기 비교예 10에 따라 제조된 고분자 전해질 막의 증류수에 대한 표면 접촉각을 측정한 결과, 100.55도(°)로 나타났으므로, 소수성을 나타냄을 알 수 있다.As a result of measuring the surface contact angle with respect to the distilled water of the polymer electrolyte membrane prepared according to Comparative Example 10, it was shown that 100.55 degrees (°), it can be seen that the hydrophobicity.
* 전지 성능 측정* Battery performance measurement
상기 비교예 12 내지 15의 단위 전지의 전류 밀도 및 출력 밀도를 70℃의 온도 및 상대 습도 100%, 65% 및 45%의 조건에서 각각 측정하여 그 결과를 도 12(비교예 12), 도 13(비교예 13), 도 14(비교예 14) 및 도 15(비교예 15)에 나타내었다. 도 12 내지 도 15에서, RHXX는 상대 습도가 XX%라는 의미이다.The current densities and output densities of the unit cells of Comparative Examples 12 to 15 were measured under the conditions of temperature and relative humidity of 100%, 65%, and 45% at 70 ° C., respectively, and the results are shown in FIGS. 12 and 12. (Comparative Example 13), FIG. 14 (Comparative Example 14), and FIG. 15 (Comparative Example 15). In Figures 12-15, RHXX means that the relative humidity is XX%.
도 12 내지 도 15에 나타낸 것과 같이, 상대 습도 조건과 상관없이, 나피온 고분자 막을 소수성 처리하여, 표면이 소수성을 나타내는 비교예 12 내지 14의 경우, 처리하지 않은 나피온 고분자막을 사용한 비교예 15에 비하여 출력 특성이 매우 열화됨을 알 수 있다.As shown in Figs. 12 to 15, irrespective of the relative humidity conditions, the Nafion polymer membranes were hydrophobicly treated, and in Comparative Examples 12 to 14 where the surface was hydrophobic, the comparative example 15 using the untreated Nafion polymer membranes In comparison, it can be seen that the output characteristics are very deteriorated.
또한, 상기 비교예 12 내지 15의 단위 전지의 전류 밀도 및 출력 밀도를 80℃의 온도 및 상대 습도 100%, 65% 및 45%의 조건에서 각각 측정하여 그 결과를 도 16(비교예 12), 도 17(비교예 13), 도 18(비교예 14) 및 도 19(비교예 15)에 나타내었다. 도 16 내지 도 19에서 RHXX는 상대 습도가 XX%라는 의미이다.In addition, the current density and the output density of the unit cells of Comparative Examples 12 to 15 were measured under the conditions of temperature and relative humidity of 100%, 65% and 45% at 80 ° C., respectively, and the results are shown in FIG. 17 (comparative example 13), FIG. 18 (comparative example 14), and FIG. 19 (comparative example 15). 16 to 19, RHXX means that the relative humidity is XX%.
도 16 내지 도 19에 나타낸 것과 같이, 상대 습도 조건과 상관없이, 나피온 고분자 막을 소수성 처리하여, 표면이 소수성을 나타내는 비교예 12 내지 14의 경우, 처리하지 않은 나피온 고분자막을 사용한 비교예 15에 비하여 출력 특성이 매우 열화됨을 알 수 있다.As shown in Figs. 16 to 19, irrespective of the relative humidity conditions, the Nafion polymer membranes were hydrophobicly treated, and in Comparative Examples 12 to 14 where the surface was hydrophobic, the comparative example 15 using the untreated Nafion polymer membranes In comparison, it can be seen that the output characteristics are very deteriorated.
이 결과로부터, 탄화수소 고분자 전해질 막이 아닌, 불소계 고분자 전해질 막을 소수성 처리하는 경우, 오히려 전지 특성을 열화시킴을 알 수 있다.From this result, it can be seen that when hydrophobic treatment of the fluorine-based polymer electrolyte membrane, rather than the hydrocarbon polymer electrolyte membrane, battery characteristics are deteriorated.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. The present invention is not limited to the above embodiments, but may be manufactured in various forms, and a person skilled in the art to which the present invention pertains has another specific form without changing the technical spirit or essential features of the present invention. It will be appreciated that the present invention may be practiced as. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (13)

  1. 탄화수소계 수소 이온 전도성 고분자 막을 포함하며, 표면 접촉각이 80도(°) 내지 180도(°)인 고분자 전해질형 연료 전지용 고분자 전해질 막.A polymer electrolyte membrane for a polymer electrolyte fuel cell, comprising a hydrocarbon-based hydrogen ion conductive polymer membrane, and having a surface contact angle of 80 degrees (°) to 180 degrees (°).
  2. 제1항에 있어서, The method of claim 1,
    상기 고분자 전해질 막의 표면 접촉각이 80도(°) 이상, 120도(°) 미만인 고분자 전해질형 연료 전지용 고분자 전해질막.A polymer electrolyte membrane for a polymer electrolyte fuel cell, wherein the surface contact angle of the polymer electrolyte membrane is 80 degrees (°) or more and less than 120 degrees (°).
  3. 제1항에 있어서,The method of claim 1,
    상기 탄화수소계 수소 이온 전도성 고분자는 수소 이온 전도성기를 갖는 고분자이고, 상기 고분자는, 벤즈이미다졸계 고분자, 벤즈옥사졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리페닐퀴녹살린계 고분자, 이들의 공중합체, 및 이들의 조합으로 이루어진 군에서 선택되는 탄화수소계 고분자인 고분자 전해질형 연료 전지용 고분자 전해질 막.The hydrocarbon-based hydrogen ion conductive polymer is a polymer having a hydrogen ion conductive group, the polymer is a benzimidazole-based polymer, benzoxazole-based polymer, polyimide-based polymer, polyetherimide-based polymer, polyphenylene sulfide-based polymer, poly A hydrocarbon polymer selected from the group consisting of sulfone polymers, polyether sulfone polymers, polyether ketone polymers, polyether-ether ketone polymers, polyphenylquinoxaline polymers, copolymers thereof, and combinations thereof Polymer electrolyte membrane for polymer electrolyte fuel cell.
  4. 탄화수소계 수소 이온 전도성 고분자 막을 플라즈마를 이용한 소수성 처리하는 Hydrophobic Treatment of Hydrocarbon Hydrogen Conductive Polymer Membrane
    공정을 포함하는 표면 처리된 고분자 전해질형 연료 전지용 고분자 전해질 막의 제조 방법.Method for producing a polymer electrolyte membrane for a surface-treated polymer electrolyte fuel cell comprising a step.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 플라즈마를 이용한 소수성 처리는 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 및 이들의 조합에서 선택되는 제1 가스; 및 하이드로카본 가스, 플루오로카본 가스 및 이들의 조합에서 선택되는 제2 가스를 불어넣으면서 실시하는 것인 고분자 전해질형 연료 전지용 고분자 전해질 막의 제조 방법.The hydrophobic treatment using the plasma may include a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, and a combination thereof; And blowing a second gas selected from a hydrocarbon gas, a fluorocarbon gas, and a combination thereof.
  6. 제5항에 있어서,The method of claim 5,
    상기 하이드로카본 가스는 CH4 가스 또는 C2H2 가스인 고분자 전해질형 연료 전지용 고분자 전해질 막의 제조 방법.The hydrocarbon gas is CH 4 gas or C 2 H 2 gas for producing a polymer electrolyte membrane for a polymer electrolyte fuel cell.
  7. 제5항에 있어서,The method of claim 5,
    상기 플루오로카본 가스는 C4F8 가스, CF4 가스 또는 이들의 조합인 고분자 전해질형 연료 전지용 고분자 전해질 막의 제조 방법.The fluorocarbon gas is a C 4 F 8 gas, CF 4 gas or a combination thereof, a method for producing a polymer electrolyte membrane for a polymer electrolyte fuel cell.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 플라즈마 처리는 아르곤 가스, 질소 가스, 산소 가스, 헬륨 가스 및 이들의 조합에서 선택되는 제1 가스; 및 CF4 가스, C4F8 가스 및 이들의 조합으로 이루어진 군에서 선택되는 제2 가스를 불어넣으면서 실시하는 것인 고분자 전해질형 연료 전지용 고분자 전해질 막의 제조 방법.The plasma treatment may include a first gas selected from argon gas, nitrogen gas, oxygen gas, helium gas, and combinations thereof; And CF 4 gas, C 4 F 8 gas, and a second gas selected from the group consisting of a combination thereof.
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 탄화수소계 수소 이온 전도성 고분자는 수소 이온 전도성기를 갖는 고분자이고, 상기 고분자는 벤즈이미다졸계 고분자, 벤즈옥사졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자, 폴리페닐퀴녹살린계 고분자, 이들의 공중합체, 및 이들의 조합으로 이루어진 군에서 선택되는 탄화수소계 고분자인 고분자 전해질형 연료 전지용 고분자 전해질 막의 제조 방법.The hydrocarbon-based hydrogen ion conductive polymer is a polymer having a hydrogen ion conductive group, the polymer is a benzimidazole-based polymer, benzoxazole-based polymer, polyimide-based polymer, polyetherimide-based polymer, polyphenylene sulfide-based polymer, polysul Polymer which is a hydrocarbon-based polymer selected from the group consisting of a phone-based polymer, a polyether sulfone-based polymer, a polyether ketone-based polymer, a polyether-etherketone-based polymer, a polyphenylquinoxaline-based polymer, a copolymer thereof, and a combination thereof Method for producing a polymer electrolyte membrane for an electrolyte fuel cell.
  10. 서로 대향하여 위치하는 애노드 전극 및 캐소드 전극을 포함하고, 상기 애노드 전극과 상기 캐소드 전극 사이에 위치하며, 수소 이온 전도성기를 포함하는 탄화수소계 고분자를 포함하는 고분자 전해질 막을 포함하는 적어도 하나의 막-전극 어셈블리 및 세퍼레이터를 포함하며, 연료의 산화 반응 및 산화제의 환원 반응을 통하여 전기를 생성시키는 적어도 하나의 전기 발생부;At least one membrane-electrode assembly comprising an anode electrode and a cathode electrode positioned opposite to each other, and between the anode electrode and the cathode electrode and comprising a polymer electrolyte membrane comprising a hydrocarbon-based polymer comprising a hydrogen ion conductive group And a separator, the at least one electricity generating unit generating electricity through an oxidation reaction of the fuel and a reduction reaction of the oxidant;
    연료를 상기 전기 발생부로 공급하는 연료 공급부; 및A fuel supply unit supplying fuel to the electricity generation unit; And
    산화제를 상기 전기 발생부로 공급하는 산화제 공급부를 포함하며,An oxidant supply unit for supplying an oxidant to the electricity generating unit,
    상기 고분자 전해질 막은 상기 애노드 전극과 접촉하는 제1 표면과, 상기 캐소드 전극과 접촉하는 제2 표면을 가지며, 상기 제1 표면과 제2 표면 중 적어도 하나의 표면의 접촉각이 80도(°) 내지 180도(°)인 고분자 전해질형 연료 전지 시스템.The polymer electrolyte membrane has a first surface in contact with the anode electrode and a second surface in contact with the cathode electrode, and a contact angle between at least one surface of the first surface and the second surface is 80 degrees (°) to 180 degrees. A polymer electrolyte fuel cell system with degrees (°).
  11. 제10항에 있어서,The method of claim 10,
    상기 제1 표면과 제2 표면 중 적어도 하나의 표면의 접촉각이 80도(°) 이상, 120도(°) 미만인 고분자 전해질형 연료 전지 시스템.And a contact angle between at least one of the first surface and the second surface is greater than or equal to 80 degrees and less than or equal to 120 degrees.
  12. 제10항에 있어서,The method of claim 10,
    상기 제2 표면의 접촉각이 80도(°) 내지 180도(°)인 고분자 전해질형 연료 전지 시스템.A polymer electrolyte fuel cell system, wherein the contact angle of the second surface is 80 degrees (°) to 180 degrees (°).
  13. 제10항에 있어서,The method of claim 10,
    상기 제1 표면과 제2 표면은 표면의 접촉각이 80도(°) 내지 180도(°)인 고분자 전해질형 연료 전지 시스템.The first surface and the second surface of the polymer electrolyte fuel cell system having a contact angle of 80 degrees (°) to 180 degrees (°).
PCT/KR2010/005508 2009-08-21 2010-08-19 Macromolecular electrolyte film for a macromolecular electrolyte type of fuel cell, a production method for the same and a macromolecular electrolyte type of fuel cell system comprising the same WO2011021870A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/141,804 US20120141913A1 (en) 2009-08-21 2010-08-19 Polymer electrolyte membrane for polymer electrolyte fuel cell, method of manufacturing the same and polymer electrolyte fuel cell system including the same
US14/338,624 US10516182B2 (en) 2009-08-21 2014-07-23 Polymer ion exchange membrane and method of preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0077748 2009-08-21
KR20090077748 2009-08-21
KR10-2010-0079257 2010-08-17
KR1020100079257A KR20110020186A (en) 2009-08-21 2010-08-17 Polymer electrolyte for polymer electrolyte membrane fuel cell, method of preparing same, and polyer electrolyte membrane fuel cell system including same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/141,804 A-371-Of-International US20120141913A1 (en) 2009-08-21 2010-08-19 Polymer electrolyte membrane for polymer electrolyte fuel cell, method of manufacturing the same and polymer electrolyte fuel cell system including the same
US14/338,624 Continuation-In-Part US10516182B2 (en) 2009-08-21 2014-07-23 Polymer ion exchange membrane and method of preparing same

Publications (2)

Publication Number Publication Date
WO2011021870A2 true WO2011021870A2 (en) 2011-02-24
WO2011021870A3 WO2011021870A3 (en) 2011-07-14

Family

ID=43607491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005508 WO2011021870A2 (en) 2009-08-21 2010-08-19 Macromolecular electrolyte film for a macromolecular electrolyte type of fuel cell, a production method for the same and a macromolecular electrolyte type of fuel cell system comprising the same

Country Status (1)

Country Link
WO (1) WO2011021870A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115075056A (en) * 2022-06-21 2022-09-20 华南理工大学 Carbon fiber paper with directional water transmission function and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255373A1 (en) * 2002-07-03 2005-11-17 Hidekazu Kimura Liquid fuel feed fuel cell, electrode for fuel cell and methods for manufacturing same
KR20060134197A (en) * 2004-04-08 2006-12-27 도아고세이가부시키가이샤 Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
KR20070090556A (en) * 2006-03-03 2007-09-06 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR20070106199A (en) * 2006-04-28 2007-11-01 삼성에스디아이 주식회사 Seperater for fuel cell, method of preparing same, and fuel cell system comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050255373A1 (en) * 2002-07-03 2005-11-17 Hidekazu Kimura Liquid fuel feed fuel cell, electrode for fuel cell and methods for manufacturing same
KR20060134197A (en) * 2004-04-08 2006-12-27 도아고세이가부시키가이샤 Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
KR20070090556A (en) * 2006-03-03 2007-09-06 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR20070106199A (en) * 2006-04-28 2007-11-01 삼성에스디아이 주식회사 Seperater for fuel cell, method of preparing same, and fuel cell system comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115075056A (en) * 2022-06-21 2022-09-20 华南理工大学 Carbon fiber paper with directional water transmission function and preparation method and application thereof
CN115075056B (en) * 2022-06-21 2023-09-26 华南理工大学 Carbon fiber paper with directional water transmission function and preparation method and application thereof

Also Published As

Publication number Publication date
WO2011021870A3 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
KR101725967B1 (en) Polymer electrolyte for polymer electrolyte membrane fuel cell, method of preparing same, and polyer electrolyte membrane fuel cell system including same
WO2019066534A2 (en) Radical scavenger, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising same
US8652706B2 (en) Polymer electrolyte membrane for fuel cell and fuel cell system including the same
US8795927B2 (en) Highly durable electrode catalyst layer
WO2020004848A1 (en) Manufacturing method of membrane electrode assembly, membrane electrode assembly manufactured thereby, and fuel cell comprising membrane electrode assembly
WO2017052248A1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
WO2014178620A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane and fuel cell comprising membrane electrode assembly
WO2017175893A1 (en) Composite electrolyte membrane having asymmetric density gradient for fuel cell, method for manufacturing same, membrane-electrode assembly comprising composite electrolyte membrane having asymmetric density gradient for fuel cell, and fuel cell comprising same
WO2015080475A1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising polymer electrolyte membrane, and fuel cell comprising membrane electrode assembly
WO2017171285A2 (en) Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same
KR20060048562A (en) Polymer electrolyte for direct oxidation fuel cell, method of preparing same and direct oxidation fuel cell comprising same
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
WO2018124764A1 (en) Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same
WO2017142344A1 (en) Core-shell particles, polymer electrolyte membrane comprising same, fuel cell or electrochemical cell comprising polymer electrolyte membrane, and method for manufacturing core-shell particles
WO2018236119A1 (en) Electrode comprising organic functional metal oxide, manufacturing method therefor, membrane-electrode assembly comprising same, and fuel cell comprising membrane-electrode assembly
WO2019132281A1 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
KR102175009B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same
WO2016163773A1 (en) Polymer electrolyte membrane, electrochemical cell and flow cell comprising same, method for manufacturing polymer electrolyte membrane, and flow cell electrolyte
KR20070098136A (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
KR101064225B1 (en) Membrane-Electrode Assembly including guarding gasket
WO2011021870A2 (en) Macromolecular electrolyte film for a macromolecular electrolyte type of fuel cell, a production method for the same and a macromolecular electrolyte type of fuel cell system comprising the same
WO2022145748A1 (en) Membrane-electrode assembly and fuel cell comprising same
WO2017188793A1 (en) Fuel cell membrane-electrode assembly
WO2019139415A1 (en) Gas diffusion layer for fuel cell, membrane-electrode assembly comprising same, fuel cell comprising same, and method for preparing gas diffusion layer for fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810178

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13141804

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810178

Country of ref document: EP

Kind code of ref document: A2